mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 18:53:24 +00:00 
			
		
		
		
	 3d1228ead6
			
		
	
	
		3d1228ead6
		
	
	
	
	
		
			
			This patch adds ptrace support for setting and getting the VFP registers using PTRACE_SETVFPREGS and PTRACE_GETVFPREGS. The user_vfp structure defined in asm/user.h contains 32 double registers (to cover VFPv3 and Neon hardware) and the FPSCR register. Cc: Paul Brook <paul@codesourcery.com> Cc: Daniel Jacobowitz <dan@codesourcery.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			381 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/vfp/vfp.h
 | |
|  *
 | |
|  *  Copyright (C) 2004 ARM Limited.
 | |
|  *  Written by Deep Blue Solutions Limited.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
 | |
| {
 | |
| 	if (shift) {
 | |
| 		if (shift < 32)
 | |
| 			val = val >> shift | ((val << (32 - shift)) != 0);
 | |
| 		else
 | |
| 			val = val != 0;
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
 | |
| {
 | |
| 	if (shift) {
 | |
| 		if (shift < 64)
 | |
| 			val = val >> shift | ((val << (64 - shift)) != 0);
 | |
| 		else
 | |
| 			val = val != 0;
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static inline u32 vfp_hi64to32jamming(u64 val)
 | |
| {
 | |
| 	u32 v;
 | |
| 
 | |
| 	asm(
 | |
| 	"cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t"
 | |
| 	"movcc	%0, %R1\n\t"
 | |
| 	"orrcs	%0, %R1, #1"
 | |
| 	: "=r" (v) : "r" (val) : "cc");
 | |
| 
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
 | |
| {
 | |
| 	asm(	"adds	%Q0, %Q2, %Q4\n\t"
 | |
| 		"adcs	%R0, %R2, %R4\n\t"
 | |
| 		"adcs	%Q1, %Q3, %Q5\n\t"
 | |
| 		"adc	%R1, %R3, %R5"
 | |
| 	    : "=r" (nl), "=r" (nh)
 | |
| 	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
 | |
| 	    : "cc");
 | |
| 	*resh = nh;
 | |
| 	*resl = nl;
 | |
| }
 | |
| 
 | |
| static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
 | |
| {
 | |
| 	asm(	"subs	%Q0, %Q2, %Q4\n\t"
 | |
| 		"sbcs	%R0, %R2, %R4\n\t"
 | |
| 		"sbcs	%Q1, %Q3, %Q5\n\t"
 | |
| 		"sbc	%R1, %R3, %R5\n\t"
 | |
| 	    : "=r" (nl), "=r" (nh)
 | |
| 	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
 | |
| 	    : "cc");
 | |
| 	*resh = nh;
 | |
| 	*resl = nl;
 | |
| }
 | |
| 
 | |
| static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
 | |
| {
 | |
| 	u32 nh, nl, mh, ml;
 | |
| 	u64 rh, rma, rmb, rl;
 | |
| 
 | |
| 	nl = n;
 | |
| 	ml = m;
 | |
| 	rl = (u64)nl * ml;
 | |
| 
 | |
| 	nh = n >> 32;
 | |
| 	rma = (u64)nh * ml;
 | |
| 
 | |
| 	mh = m >> 32;
 | |
| 	rmb = (u64)nl * mh;
 | |
| 	rma += rmb;
 | |
| 
 | |
| 	rh = (u64)nh * mh;
 | |
| 	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
 | |
| 
 | |
| 	rma <<= 32;
 | |
| 	rl += rma;
 | |
| 	rh += (rl < rma);
 | |
| 
 | |
| 	*resl = rl;
 | |
| 	*resh = rh;
 | |
| }
 | |
| 
 | |
| static inline void shift64left(u64 *resh, u64 *resl, u64 n)
 | |
| {
 | |
| 	*resh = n >> 63;
 | |
| 	*resl = n << 1;
 | |
| }
 | |
| 
 | |
| static inline u64 vfp_hi64multiply64(u64 n, u64 m)
 | |
| {
 | |
| 	u64 rh, rl;
 | |
| 	mul64to128(&rh, &rl, n, m);
 | |
| 	return rh | (rl != 0);
 | |
| }
 | |
| 
 | |
| static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
 | |
| {
 | |
| 	u64 mh, ml, remh, reml, termh, terml, z;
 | |
| 
 | |
| 	if (nh >= m)
 | |
| 		return ~0ULL;
 | |
| 	mh = m >> 32;
 | |
| 	if (mh << 32 <= nh) {
 | |
| 		z = 0xffffffff00000000ULL;
 | |
| 	} else {
 | |
| 		z = nh;
 | |
| 		do_div(z, mh);
 | |
| 		z <<= 32;
 | |
| 	}
 | |
| 	mul64to128(&termh, &terml, m, z);
 | |
| 	sub128(&remh, &reml, nh, nl, termh, terml);
 | |
| 	ml = m << 32;
 | |
| 	while ((s64)remh < 0) {
 | |
| 		z -= 0x100000000ULL;
 | |
| 		add128(&remh, &reml, remh, reml, mh, ml);
 | |
| 	}
 | |
| 	remh = (remh << 32) | (reml >> 32);
 | |
| 	if (mh << 32 <= remh) {
 | |
| 		z |= 0xffffffff;
 | |
| 	} else {
 | |
| 		do_div(remh, mh);
 | |
| 		z |= remh;
 | |
| 	}
 | |
| 	return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Operations on unpacked elements
 | |
|  */
 | |
| #define vfp_sign_negate(sign)	(sign ^ 0x8000)
 | |
| 
 | |
| /*
 | |
|  * Single-precision
 | |
|  */
 | |
| struct vfp_single {
 | |
| 	s16	exponent;
 | |
| 	u16	sign;
 | |
| 	u32	significand;
 | |
| };
 | |
| 
 | |
| extern s32 vfp_get_float(unsigned int reg);
 | |
| extern void vfp_put_float(s32 val, unsigned int reg);
 | |
| 
 | |
| /*
 | |
|  * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
 | |
|  * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
 | |
|  * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
 | |
|  *  which are not propagated to the float upon packing.
 | |
|  */
 | |
| #define VFP_SINGLE_MANTISSA_BITS	(23)
 | |
| #define VFP_SINGLE_EXPONENT_BITS	(8)
 | |
| #define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
 | |
| #define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
 | |
| 
 | |
| /*
 | |
|  * The bit in an unpacked float which indicates that it is a quiet NaN
 | |
|  */
 | |
| #define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
 | |
| 
 | |
| /*
 | |
|  * Operations on packed single-precision numbers
 | |
|  */
 | |
| #define vfp_single_packed_sign(v)	((v) & 0x80000000)
 | |
| #define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
 | |
| #define vfp_single_packed_abs(v)	((v) & ~0x80000000)
 | |
| #define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
 | |
| #define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
 | |
| 
 | |
| /*
 | |
|  * Unpack a single-precision float.  Note that this returns the magnitude
 | |
|  * of the single-precision float mantissa with the 1. if necessary,
 | |
|  * aligned to bit 30.
 | |
|  */
 | |
| static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
 | |
| {
 | |
| 	u32 significand;
 | |
| 
 | |
| 	s->sign = vfp_single_packed_sign(val) >> 16,
 | |
| 	s->exponent = vfp_single_packed_exponent(val);
 | |
| 
 | |
| 	significand = (u32) val;
 | |
| 	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
 | |
| 	if (s->exponent && s->exponent != 255)
 | |
| 		significand |= 0x40000000;
 | |
| 	s->significand = significand;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-pack a single-precision float.  This assumes that the float is
 | |
|  * already normalised such that the MSB is bit 30, _not_ bit 31.
 | |
|  */
 | |
| static inline s32 vfp_single_pack(struct vfp_single *s)
 | |
| {
 | |
| 	u32 val;
 | |
| 	val = (s->sign << 16) +
 | |
| 	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
 | |
| 	      (s->significand >> VFP_SINGLE_LOW_BITS);
 | |
| 	return (s32)val;
 | |
| }
 | |
| 
 | |
| #define VFP_NUMBER		(1<<0)
 | |
| #define VFP_ZERO		(1<<1)
 | |
| #define VFP_DENORMAL		(1<<2)
 | |
| #define VFP_INFINITY		(1<<3)
 | |
| #define VFP_NAN			(1<<4)
 | |
| #define VFP_NAN_SIGNAL		(1<<5)
 | |
| 
 | |
| #define VFP_QNAN		(VFP_NAN)
 | |
| #define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
 | |
| 
 | |
| static inline int vfp_single_type(struct vfp_single *s)
 | |
| {
 | |
| 	int type = VFP_NUMBER;
 | |
| 	if (s->exponent == 255) {
 | |
| 		if (s->significand == 0)
 | |
| 			type = VFP_INFINITY;
 | |
| 		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
 | |
| 			type = VFP_QNAN;
 | |
| 		else
 | |
| 			type = VFP_SNAN;
 | |
| 	} else if (s->exponent == 0) {
 | |
| 		if (s->significand == 0)
 | |
| 			type |= VFP_ZERO;
 | |
| 		else
 | |
| 			type |= VFP_DENORMAL;
 | |
| 	}
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| #ifndef DEBUG
 | |
| #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
 | |
| u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
 | |
| #else
 | |
| u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Double-precision
 | |
|  */
 | |
| struct vfp_double {
 | |
| 	s16	exponent;
 | |
| 	u16	sign;
 | |
| 	u64	significand;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * VFP_REG_ZERO is a special register number for vfp_get_double
 | |
|  * which returns (double)0.0.  This is useful for the compare with
 | |
|  * zero instructions.
 | |
|  */
 | |
| #ifdef CONFIG_VFPv3
 | |
| #define VFP_REG_ZERO	32
 | |
| #else
 | |
| #define VFP_REG_ZERO	16
 | |
| #endif
 | |
| extern u64 vfp_get_double(unsigned int reg);
 | |
| extern void vfp_put_double(u64 val, unsigned int reg);
 | |
| 
 | |
| #define VFP_DOUBLE_MANTISSA_BITS	(52)
 | |
| #define VFP_DOUBLE_EXPONENT_BITS	(11)
 | |
| #define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
 | |
| #define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
 | |
| 
 | |
| /*
 | |
|  * The bit in an unpacked double which indicates that it is a quiet NaN
 | |
|  */
 | |
| #define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
 | |
| 
 | |
| /*
 | |
|  * Operations on packed single-precision numbers
 | |
|  */
 | |
| #define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
 | |
| #define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
 | |
| #define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
 | |
| #define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
 | |
| #define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
 | |
| 
 | |
| /*
 | |
|  * Unpack a double-precision float.  Note that this returns the magnitude
 | |
|  * of the double-precision float mantissa with the 1. if necessary,
 | |
|  * aligned to bit 62.
 | |
|  */
 | |
| static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
 | |
| {
 | |
| 	u64 significand;
 | |
| 
 | |
| 	s->sign = vfp_double_packed_sign(val) >> 48;
 | |
| 	s->exponent = vfp_double_packed_exponent(val);
 | |
| 
 | |
| 	significand = (u64) val;
 | |
| 	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
 | |
| 	if (s->exponent && s->exponent != 2047)
 | |
| 		significand |= (1ULL << 62);
 | |
| 	s->significand = significand;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-pack a double-precision float.  This assumes that the float is
 | |
|  * already normalised such that the MSB is bit 30, _not_ bit 31.
 | |
|  */
 | |
| static inline s64 vfp_double_pack(struct vfp_double *s)
 | |
| {
 | |
| 	u64 val;
 | |
| 	val = ((u64)s->sign << 48) +
 | |
| 	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
 | |
| 	      (s->significand >> VFP_DOUBLE_LOW_BITS);
 | |
| 	return (s64)val;
 | |
| }
 | |
| 
 | |
| static inline int vfp_double_type(struct vfp_double *s)
 | |
| {
 | |
| 	int type = VFP_NUMBER;
 | |
| 	if (s->exponent == 2047) {
 | |
| 		if (s->significand == 0)
 | |
| 			type = VFP_INFINITY;
 | |
| 		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
 | |
| 			type = VFP_QNAN;
 | |
| 		else
 | |
| 			type = VFP_SNAN;
 | |
| 	} else if (s->exponent == 0) {
 | |
| 		if (s->significand == 0)
 | |
| 			type |= VFP_ZERO;
 | |
| 		else
 | |
| 			type |= VFP_DENORMAL;
 | |
| 	}
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
 | |
| 
 | |
| u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
 | |
| 
 | |
| /*
 | |
|  * A special flag to tell the normalisation code not to normalise.
 | |
|  */
 | |
| #define VFP_NAN_FLAG	0x100
 | |
| 
 | |
| /*
 | |
|  * A bit pattern used to indicate the initial (unset) value of the
 | |
|  * exception mask, in case nothing handles an instruction.  This
 | |
|  * doesn't include the NAN flag, which get masked out before
 | |
|  * we check for an error.
 | |
|  */
 | |
| #define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG)
 | |
| 
 | |
| /*
 | |
|  * A flag to tell vfp instruction type.
 | |
|  *  OP_SCALAR - this operation always operates in scalar mode
 | |
|  *  OP_SD - the instruction exceptionally writes to a single precision result.
 | |
|  *  OP_DD - the instruction exceptionally writes to a double precision result.
 | |
|  *  OP_SM - the instruction exceptionally reads from a single precision operand.
 | |
|  */
 | |
| #define OP_SCALAR	(1 << 0)
 | |
| #define OP_SD		(1 << 1)
 | |
| #define OP_DD		(1 << 1)
 | |
| #define OP_SM		(1 << 2)
 | |
| 
 | |
| struct op {
 | |
| 	u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
 | |
| 	u32 flags;
 | |
| };
 | |
| 
 | |
| extern void vfp_save_state(void *location, u32 fpexc);
 |