mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 14:30:50 +00:00 
			
		
		
		
	 c01778001a
			
		
	
	
		c01778001a
		
	
	
	
	
		
			
			There are places in Linux where writes to newly allocated page cache pages happen without a subsequent call to flush_dcache_page() (several PIO drivers including USB HCD). This patch changes the meaning of PG_arch_1 to be PG_dcache_clean and always flush the D-cache for a newly mapped page in update_mmu_cache(). The patch also sets the PG_arch_1 bit in the DMA cache maintenance function to avoid additional cache flushing in update_mmu_cache(). Tested-by: Rabin Vincent <rabin.vincent@stericsson.com> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
		
			
				
	
	
		
			640 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			640 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/mm/dma-mapping.c
 | |
|  *
 | |
|  *  Copyright (C) 2000-2004 Russell King
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  *  DMA uncached mapping support.
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| 
 | |
| #include <asm/memory.h>
 | |
| #include <asm/highmem.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sizes.h>
 | |
| 
 | |
| static u64 get_coherent_dma_mask(struct device *dev)
 | |
| {
 | |
| 	u64 mask = ISA_DMA_THRESHOLD;
 | |
| 
 | |
| 	if (dev) {
 | |
| 		mask = dev->coherent_dma_mask;
 | |
| 
 | |
| 		/*
 | |
| 		 * Sanity check the DMA mask - it must be non-zero, and
 | |
| 		 * must be able to be satisfied by a DMA allocation.
 | |
| 		 */
 | |
| 		if (mask == 0) {
 | |
| 			dev_warn(dev, "coherent DMA mask is unset\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if ((~mask) & ISA_DMA_THRESHOLD) {
 | |
| 			dev_warn(dev, "coherent DMA mask %#llx is smaller "
 | |
| 				 "than system GFP_DMA mask %#llx\n",
 | |
| 				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a DMA buffer for 'dev' of size 'size' using the
 | |
|  * specified gfp mask.  Note that 'size' must be page aligned.
 | |
|  */
 | |
| static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long order = get_order(size);
 | |
| 	struct page *page, *p, *e;
 | |
| 	void *ptr;
 | |
| 	u64 mask = get_coherent_dma_mask(dev);
 | |
| 
 | |
| #ifdef CONFIG_DMA_API_DEBUG
 | |
| 	u64 limit = (mask + 1) & ~mask;
 | |
| 	if (limit && size >= limit) {
 | |
| 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 | |
| 			size, mask);
 | |
| 		return NULL;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (!mask)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (mask < 0xffffffffULL)
 | |
| 		gfp |= GFP_DMA;
 | |
| 
 | |
| 	page = alloc_pages(gfp, order);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now split the huge page and free the excess pages
 | |
| 	 */
 | |
| 	split_page(page, order);
 | |
| 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 | |
| 		__free_page(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the allocated pages are zeroed, and that any data
 | |
| 	 * lurking in the kernel direct-mapped region is invalidated.
 | |
| 	 */
 | |
| 	ptr = page_address(page);
 | |
| 	memset(ptr, 0, size);
 | |
| 	dmac_flush_range(ptr, ptr + size);
 | |
| 	outer_flush_range(__pa(ptr), __pa(ptr) + size);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a DMA buffer.  'size' must be page aligned.
 | |
|  */
 | |
| static void __dma_free_buffer(struct page *page, size_t size)
 | |
| {
 | |
| 	struct page *e = page + (size >> PAGE_SHIFT);
 | |
| 
 | |
| 	while (page < e) {
 | |
| 		__free_page(page);
 | |
| 		page++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /* Sanity check size */
 | |
| #if (CONSISTENT_DMA_SIZE % SZ_2M)
 | |
| #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
 | |
| #endif
 | |
| 
 | |
| #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
 | |
| #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
 | |
| #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * These are the page tables (2MB each) covering uncached, DMA consistent allocations
 | |
|  */
 | |
| static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
 | |
| 
 | |
| #include "vmregion.h"
 | |
| 
 | |
| static struct arm_vmregion_head consistent_head = {
 | |
| 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
 | |
| 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
 | |
| 	.vm_start	= CONSISTENT_BASE,
 | |
| 	.vm_end		= CONSISTENT_END,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| #error ARM Coherent DMA allocator does not (yet) support huge TLB
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Initialise the consistent memory allocation.
 | |
|  */
 | |
| static int __init consistent_init(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	pgd_t *pgd;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	int i = 0;
 | |
| 	u32 base = CONSISTENT_BASE;
 | |
| 
 | |
| 	do {
 | |
| 		pgd = pgd_offset(&init_mm, base);
 | |
| 		pmd = pmd_alloc(&init_mm, pgd, base);
 | |
| 		if (!pmd) {
 | |
| 			printk(KERN_ERR "%s: no pmd tables\n", __func__);
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 		WARN_ON(!pmd_none(*pmd));
 | |
| 
 | |
| 		pte = pte_alloc_kernel(pmd, base);
 | |
| 		if (!pte) {
 | |
| 			printk(KERN_ERR "%s: no pte tables\n", __func__);
 | |
| 			ret = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		consistent_pte[i++] = pte;
 | |
| 		base += (1 << PGDIR_SHIFT);
 | |
| 	} while (base < CONSISTENT_END);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| core_initcall(consistent_init);
 | |
| 
 | |
| static void *
 | |
| __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
 | |
| {
 | |
| 	struct arm_vmregion *c;
 | |
| 	size_t align;
 | |
| 	int bit;
 | |
| 
 | |
| 	if (!consistent_pte[0]) {
 | |
| 		printk(KERN_ERR "%s: not initialised\n", __func__);
 | |
| 		dump_stack();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Align the virtual region allocation - maximum alignment is
 | |
| 	 * a section size, minimum is a page size.  This helps reduce
 | |
| 	 * fragmentation of the DMA space, and also prevents allocations
 | |
| 	 * smaller than a section from crossing a section boundary.
 | |
| 	 */
 | |
| 	bit = fls(size - 1) + 1;
 | |
| 	if (bit > SECTION_SHIFT)
 | |
| 		bit = SECTION_SHIFT;
 | |
| 	align = 1 << bit;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a virtual address in the consistent mapping region.
 | |
| 	 */
 | |
| 	c = arm_vmregion_alloc(&consistent_head, align, size,
 | |
| 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
 | |
| 	if (c) {
 | |
| 		pte_t *pte;
 | |
| 		int idx = CONSISTENT_PTE_INDEX(c->vm_start);
 | |
| 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 | |
| 
 | |
| 		pte = consistent_pte[idx] + off;
 | |
| 		c->vm_pages = page;
 | |
| 
 | |
| 		do {
 | |
| 			BUG_ON(!pte_none(*pte));
 | |
| 
 | |
| 			set_pte_ext(pte, mk_pte(page, prot), 0);
 | |
| 			page++;
 | |
| 			pte++;
 | |
| 			off++;
 | |
| 			if (off >= PTRS_PER_PTE) {
 | |
| 				off = 0;
 | |
| 				pte = consistent_pte[++idx];
 | |
| 			}
 | |
| 		} while (size -= PAGE_SIZE);
 | |
| 
 | |
| 		dsb();
 | |
| 
 | |
| 		return (void *)c->vm_start;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __dma_free_remap(void *cpu_addr, size_t size)
 | |
| {
 | |
| 	struct arm_vmregion *c;
 | |
| 	unsigned long addr;
 | |
| 	pte_t *ptep;
 | |
| 	int idx;
 | |
| 	u32 off;
 | |
| 
 | |
| 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
 | |
| 	if (!c) {
 | |
| 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
 | |
| 		       __func__, cpu_addr);
 | |
| 		dump_stack();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((c->vm_end - c->vm_start) != size) {
 | |
| 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
 | |
| 		       __func__, c->vm_end - c->vm_start, size);
 | |
| 		dump_stack();
 | |
| 		size = c->vm_end - c->vm_start;
 | |
| 	}
 | |
| 
 | |
| 	idx = CONSISTENT_PTE_INDEX(c->vm_start);
 | |
| 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
 | |
| 	ptep = consistent_pte[idx] + off;
 | |
| 	addr = c->vm_start;
 | |
| 	do {
 | |
| 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
 | |
| 
 | |
| 		ptep++;
 | |
| 		addr += PAGE_SIZE;
 | |
| 		off++;
 | |
| 		if (off >= PTRS_PER_PTE) {
 | |
| 			off = 0;
 | |
| 			ptep = consistent_pte[++idx];
 | |
| 		}
 | |
| 
 | |
| 		if (pte_none(pte) || !pte_present(pte))
 | |
| 			printk(KERN_CRIT "%s: bad page in kernel page table\n",
 | |
| 			       __func__);
 | |
| 	} while (size -= PAGE_SIZE);
 | |
| 
 | |
| 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
 | |
| 
 | |
| 	arm_vmregion_free(&consistent_head, c);
 | |
| }
 | |
| 
 | |
| #else	/* !CONFIG_MMU */
 | |
| 
 | |
| #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page)
 | |
| #define __dma_free_remap(addr, size)			do { } while (0)
 | |
| 
 | |
| #endif	/* CONFIG_MMU */
 | |
| 
 | |
| static void *
 | |
| __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
 | |
| 	    pgprot_t prot)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	void *addr;
 | |
| 
 | |
| 	*handle = ~0;
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	page = __dma_alloc_buffer(dev, size, gfp);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!arch_is_coherent())
 | |
| 		addr = __dma_alloc_remap(page, size, gfp, prot);
 | |
| 	else
 | |
| 		addr = page_address(page);
 | |
| 
 | |
| 	if (addr)
 | |
| 		*handle = page_to_dma(dev, page);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate DMA-coherent memory space and return both the kernel remapped
 | |
|  * virtual and bus address for that space.
 | |
|  */
 | |
| void *
 | |
| dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
 | |
| {
 | |
| 	void *memory;
 | |
| 
 | |
| 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 | |
| 		return memory;
 | |
| 
 | |
| 	return __dma_alloc(dev, size, handle, gfp,
 | |
| 			   pgprot_dmacoherent(pgprot_kernel));
 | |
| }
 | |
| EXPORT_SYMBOL(dma_alloc_coherent);
 | |
| 
 | |
| /*
 | |
|  * Allocate a writecombining region, in much the same way as
 | |
|  * dma_alloc_coherent above.
 | |
|  */
 | |
| void *
 | |
| dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
 | |
| {
 | |
| 	return __dma_alloc(dev, size, handle, gfp,
 | |
| 			   pgprot_writecombine(pgprot_kernel));
 | |
| }
 | |
| EXPORT_SYMBOL(dma_alloc_writecombine);
 | |
| 
 | |
| static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
 | |
| 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
 | |
| {
 | |
| 	int ret = -ENXIO;
 | |
| #ifdef CONFIG_MMU
 | |
| 	unsigned long user_size, kern_size;
 | |
| 	struct arm_vmregion *c;
 | |
| 
 | |
| 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 | |
| 
 | |
| 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
 | |
| 	if (c) {
 | |
| 		unsigned long off = vma->vm_pgoff;
 | |
| 
 | |
| 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
 | |
| 
 | |
| 		if (off < kern_size &&
 | |
| 		    user_size <= (kern_size - off)) {
 | |
| 			ret = remap_pfn_range(vma, vma->vm_start,
 | |
| 					      page_to_pfn(c->vm_pages) + off,
 | |
| 					      user_size << PAGE_SHIFT,
 | |
| 					      vma->vm_page_prot);
 | |
| 		}
 | |
| 	}
 | |
| #endif	/* CONFIG_MMU */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
 | |
| 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
 | |
| {
 | |
| 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
 | |
| 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_mmap_coherent);
 | |
| 
 | |
| int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
 | |
| 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
 | |
| {
 | |
| 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 | |
| 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_mmap_writecombine);
 | |
| 
 | |
| /*
 | |
|  * free a page as defined by the above mapping.
 | |
|  * Must not be called with IRQs disabled.
 | |
|  */
 | |
| void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
 | |
| {
 | |
| 	WARN_ON(irqs_disabled());
 | |
| 
 | |
| 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 | |
| 		return;
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	if (!arch_is_coherent())
 | |
| 		__dma_free_remap(cpu_addr, size);
 | |
| 
 | |
| 	__dma_free_buffer(dma_to_page(dev, handle), size);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_free_coherent);
 | |
| 
 | |
| /*
 | |
|  * Make an area consistent for devices.
 | |
|  * Note: Drivers should NOT use this function directly, as it will break
 | |
|  * platforms with CONFIG_DMABOUNCE.
 | |
|  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 | |
|  */
 | |
| void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
 | |
| 	enum dma_data_direction dir)
 | |
| {
 | |
| 	unsigned long paddr;
 | |
| 
 | |
| 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
 | |
| 
 | |
| 	dmac_map_area(kaddr, size, dir);
 | |
| 
 | |
| 	paddr = __pa(kaddr);
 | |
| 	if (dir == DMA_FROM_DEVICE) {
 | |
| 		outer_inv_range(paddr, paddr + size);
 | |
| 	} else {
 | |
| 		outer_clean_range(paddr, paddr + size);
 | |
| 	}
 | |
| 	/* FIXME: non-speculating: flush on bidirectional mappings? */
 | |
| }
 | |
| EXPORT_SYMBOL(___dma_single_cpu_to_dev);
 | |
| 
 | |
| void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
 | |
| 	enum dma_data_direction dir)
 | |
| {
 | |
| 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
 | |
| 
 | |
| 	/* FIXME: non-speculating: not required */
 | |
| 	/* don't bother invalidating if DMA to device */
 | |
| 	if (dir != DMA_TO_DEVICE) {
 | |
| 		unsigned long paddr = __pa(kaddr);
 | |
| 		outer_inv_range(paddr, paddr + size);
 | |
| 	}
 | |
| 
 | |
| 	dmac_unmap_area(kaddr, size, dir);
 | |
| }
 | |
| EXPORT_SYMBOL(___dma_single_dev_to_cpu);
 | |
| 
 | |
| static void dma_cache_maint_page(struct page *page, unsigned long offset,
 | |
| 	size_t size, enum dma_data_direction dir,
 | |
| 	void (*op)(const void *, size_t, int))
 | |
| {
 | |
| 	/*
 | |
| 	 * A single sg entry may refer to multiple physically contiguous
 | |
| 	 * pages.  But we still need to process highmem pages individually.
 | |
| 	 * If highmem is not configured then the bulk of this loop gets
 | |
| 	 * optimized out.
 | |
| 	 */
 | |
| 	size_t left = size;
 | |
| 	do {
 | |
| 		size_t len = left;
 | |
| 		void *vaddr;
 | |
| 
 | |
| 		if (PageHighMem(page)) {
 | |
| 			if (len + offset > PAGE_SIZE) {
 | |
| 				if (offset >= PAGE_SIZE) {
 | |
| 					page += offset / PAGE_SIZE;
 | |
| 					offset %= PAGE_SIZE;
 | |
| 				}
 | |
| 				len = PAGE_SIZE - offset;
 | |
| 			}
 | |
| 			vaddr = kmap_high_get(page);
 | |
| 			if (vaddr) {
 | |
| 				vaddr += offset;
 | |
| 				op(vaddr, len, dir);
 | |
| 				kunmap_high(page);
 | |
| 			} else if (cache_is_vipt()) {
 | |
| 				pte_t saved_pte;
 | |
| 				vaddr = kmap_high_l1_vipt(page, &saved_pte);
 | |
| 				op(vaddr + offset, len, dir);
 | |
| 				kunmap_high_l1_vipt(page, saved_pte);
 | |
| 			}
 | |
| 		} else {
 | |
| 			vaddr = page_address(page) + offset;
 | |
| 			op(vaddr, len, dir);
 | |
| 		}
 | |
| 		offset = 0;
 | |
| 		page++;
 | |
| 		left -= len;
 | |
| 	} while (left);
 | |
| }
 | |
| 
 | |
| void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
 | |
| 	size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	unsigned long paddr;
 | |
| 
 | |
| 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 | |
| 
 | |
| 	paddr = page_to_phys(page) + off;
 | |
| 	if (dir == DMA_FROM_DEVICE) {
 | |
| 		outer_inv_range(paddr, paddr + size);
 | |
| 	} else {
 | |
| 		outer_clean_range(paddr, paddr + size);
 | |
| 	}
 | |
| 	/* FIXME: non-speculating: flush on bidirectional mappings? */
 | |
| }
 | |
| EXPORT_SYMBOL(___dma_page_cpu_to_dev);
 | |
| 
 | |
| void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
 | |
| 	size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	unsigned long paddr = page_to_phys(page) + off;
 | |
| 
 | |
| 	/* FIXME: non-speculating: not required */
 | |
| 	/* don't bother invalidating if DMA to device */
 | |
| 	if (dir != DMA_TO_DEVICE)
 | |
| 		outer_inv_range(paddr, paddr + size);
 | |
| 
 | |
| 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the D-cache clean for this page to avoid extra flushing.
 | |
| 	 */
 | |
| 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
 | |
| 		set_bit(PG_dcache_clean, &page->flags);
 | |
| }
 | |
| EXPORT_SYMBOL(___dma_page_dev_to_cpu);
 | |
| 
 | |
| /**
 | |
|  * dma_map_sg - map a set of SG buffers for streaming mode DMA
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * Map a set of buffers described by scatterlist in streaming mode for DMA.
 | |
|  * This is the scatter-gather version of the dma_map_single interface.
 | |
|  * Here the scatter gather list elements are each tagged with the
 | |
|  * appropriate dma address and length.  They are obtained via
 | |
|  * sg_dma_{address,length}.
 | |
|  *
 | |
|  * Device ownership issues as mentioned for dma_map_single are the same
 | |
|  * here.
 | |
|  */
 | |
| int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 		enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| 		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
 | |
| 						s->length, dir);
 | |
| 		if (dma_mapping_error(dev, s->dma_address))
 | |
| 			goto bad_mapping;
 | |
| 	}
 | |
| 	return nents;
 | |
| 
 | |
|  bad_mapping:
 | |
| 	for_each_sg(sg, s, i, j)
 | |
| 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_map_sg);
 | |
| 
 | |
| /**
 | |
|  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to unmap (returned from dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  *
 | |
|  * Unmap a set of streaming mode DMA translations.  Again, CPU access
 | |
|  * rules concerning calls here are the same as for dma_unmap_single().
 | |
|  */
 | |
| void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 		enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i)
 | |
| 		dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_unmap_sg);
 | |
| 
 | |
| /**
 | |
|  * dma_sync_sg_for_cpu
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map (returned from dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  */
 | |
| void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 | |
| 			int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
 | |
| 					    sg_dma_len(s), dir))
 | |
| 			continue;
 | |
| 
 | |
| 		__dma_page_dev_to_cpu(sg_page(s), s->offset,
 | |
| 				      s->length, dir);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_sg_for_cpu);
 | |
| 
 | |
| /**
 | |
|  * dma_sync_sg_for_device
 | |
|  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 | |
|  * @sg: list of buffers
 | |
|  * @nents: number of buffers to map (returned from dma_map_sg)
 | |
|  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 | |
|  */
 | |
| void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 | |
| 			int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
 | |
| 					sg_dma_len(s), dir))
 | |
| 			continue;
 | |
| 
 | |
| 		__dma_page_cpu_to_dev(sg_page(s), s->offset,
 | |
| 				      s->length, dir);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_sg_for_device);
 |