mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 16:38:31 +00:00 
			
		
		
		
	 01cf6fe855
			
		
	
	
		01cf6fe855
		
	
	
	
	
		
			
			EEH and pci_dlpar #undef DEBUG, but I think they were added before the ability to control this from Kconfig. It's really annoying to only get some of the debug messages from these files. Leave the lpar.c #undef alone as it produces so much output as to make the kernel unusable. Update the Kconfig text to indicate this particular quirk :) Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
		
			
				
	
	
		
			1289 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1289 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * eeh.c
 | |
|  * Copyright IBM Corporation 2001, 2005, 2006
 | |
|  * Copyright Dave Engebretsen & Todd Inglett 2001
 | |
|  * Copyright Linas Vepstas 2005, 2006
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 | |
|  *
 | |
|  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/of.h>
 | |
| 
 | |
| #include <asm/atomic.h>
 | |
| #include <asm/eeh.h>
 | |
| #include <asm/eeh_event.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/ppc-pci.h>
 | |
| #include <asm/rtas.h>
 | |
| 
 | |
| 
 | |
| /** Overview:
 | |
|  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
 | |
|  *  dealing with PCI bus errors that can't be dealt with within the
 | |
|  *  usual PCI framework, except by check-stopping the CPU.  Systems
 | |
|  *  that are designed for high-availability/reliability cannot afford
 | |
|  *  to crash due to a "mere" PCI error, thus the need for EEH.
 | |
|  *  An EEH-capable bridge operates by converting a detected error
 | |
|  *  into a "slot freeze", taking the PCI adapter off-line, making
 | |
|  *  the slot behave, from the OS'es point of view, as if the slot
 | |
|  *  were "empty": all reads return 0xff's and all writes are silently
 | |
|  *  ignored.  EEH slot isolation events can be triggered by parity
 | |
|  *  errors on the address or data busses (e.g. during posted writes),
 | |
|  *  which in turn might be caused by low voltage on the bus, dust,
 | |
|  *  vibration, humidity, radioactivity or plain-old failed hardware.
 | |
|  *
 | |
|  *  Note, however, that one of the leading causes of EEH slot
 | |
|  *  freeze events are buggy device drivers, buggy device microcode,
 | |
|  *  or buggy device hardware.  This is because any attempt by the
 | |
|  *  device to bus-master data to a memory address that is not
 | |
|  *  assigned to the device will trigger a slot freeze.   (The idea
 | |
|  *  is to prevent devices-gone-wild from corrupting system memory).
 | |
|  *  Buggy hardware/drivers will have a miserable time co-existing
 | |
|  *  with EEH.
 | |
|  *
 | |
|  *  Ideally, a PCI device driver, when suspecting that an isolation
 | |
|  *  event has occured (e.g. by reading 0xff's), will then ask EEH
 | |
|  *  whether this is the case, and then take appropriate steps to
 | |
|  *  reset the PCI slot, the PCI device, and then resume operations.
 | |
|  *  However, until that day,  the checking is done here, with the
 | |
|  *  eeh_check_failure() routine embedded in the MMIO macros.  If
 | |
|  *  the slot is found to be isolated, an "EEH Event" is synthesized
 | |
|  *  and sent out for processing.
 | |
|  */
 | |
| 
 | |
| /* If a device driver keeps reading an MMIO register in an interrupt
 | |
|  * handler after a slot isolation event, it might be broken.
 | |
|  * This sets the threshold for how many read attempts we allow
 | |
|  * before printing an error message.
 | |
|  */
 | |
| #define EEH_MAX_FAILS	2100000
 | |
| 
 | |
| /* Time to wait for a PCI slot to report status, in milliseconds */
 | |
| #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
 | |
| 
 | |
| /* RTAS tokens */
 | |
| static int ibm_set_eeh_option;
 | |
| static int ibm_set_slot_reset;
 | |
| static int ibm_read_slot_reset_state;
 | |
| static int ibm_read_slot_reset_state2;
 | |
| static int ibm_slot_error_detail;
 | |
| static int ibm_get_config_addr_info;
 | |
| static int ibm_get_config_addr_info2;
 | |
| static int ibm_configure_bridge;
 | |
| 
 | |
| int eeh_subsystem_enabled;
 | |
| EXPORT_SYMBOL(eeh_subsystem_enabled);
 | |
| 
 | |
| /* Lock to avoid races due to multiple reports of an error */
 | |
| static DEFINE_RAW_SPINLOCK(confirm_error_lock);
 | |
| 
 | |
| /* Buffer for reporting slot-error-detail rtas calls. Its here
 | |
|  * in BSS, and not dynamically alloced, so that it ends up in
 | |
|  * RMO where RTAS can access it.
 | |
|  */
 | |
| static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
 | |
| static DEFINE_SPINLOCK(slot_errbuf_lock);
 | |
| static int eeh_error_buf_size;
 | |
| 
 | |
| /* Buffer for reporting pci register dumps. Its here in BSS, and
 | |
|  * not dynamically alloced, so that it ends up in RMO where RTAS
 | |
|  * can access it.
 | |
|  */
 | |
| #define EEH_PCI_REGS_LOG_LEN 4096
 | |
| static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 | |
| 
 | |
| /* System monitoring statistics */
 | |
| static unsigned long no_device;
 | |
| static unsigned long no_dn;
 | |
| static unsigned long no_cfg_addr;
 | |
| static unsigned long ignored_check;
 | |
| static unsigned long total_mmio_ffs;
 | |
| static unsigned long false_positives;
 | |
| static unsigned long slot_resets;
 | |
| 
 | |
| #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
 | |
| 
 | |
| /* --------------------------------------------------------------- */
 | |
| /* Below lies the EEH event infrastructure */
 | |
| 
 | |
| static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
 | |
|                                    char *driver_log, size_t loglen)
 | |
| {
 | |
| 	int config_addr;
 | |
| 	unsigned long flags;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Log the error with the rtas logger */
 | |
| 	spin_lock_irqsave(&slot_errbuf_lock, flags);
 | |
| 	memset(slot_errbuf, 0, eeh_error_buf_size);
 | |
| 
 | |
| 	/* Use PE configuration address, if present */
 | |
| 	config_addr = pdn->eeh_config_addr;
 | |
| 	if (pdn->eeh_pe_config_addr)
 | |
| 		config_addr = pdn->eeh_pe_config_addr;
 | |
| 
 | |
| 	rc = rtas_call(ibm_slot_error_detail,
 | |
| 	               8, 1, NULL, config_addr,
 | |
| 	               BUID_HI(pdn->phb->buid),
 | |
| 	               BUID_LO(pdn->phb->buid),
 | |
| 	               virt_to_phys(driver_log), loglen,
 | |
| 	               virt_to_phys(slot_errbuf),
 | |
| 	               eeh_error_buf_size,
 | |
| 	               severity);
 | |
| 
 | |
| 	if (rc == 0)
 | |
| 		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
 | |
| 	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * gather_pci_data - copy assorted PCI config space registers to buff
 | |
|  * @pdn: device to report data for
 | |
|  * @buf: point to buffer in which to log
 | |
|  * @len: amount of room in buffer
 | |
|  *
 | |
|  * This routine captures assorted PCI configuration space data,
 | |
|  * and puts them into a buffer for RTAS error logging.
 | |
|  */
 | |
| static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
 | |
| {
 | |
| 	struct pci_dev *dev = pdn->pcidev;
 | |
| 	u32 cfg;
 | |
| 	int cap, i;
 | |
| 	int n = 0;
 | |
| 
 | |
| 	n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
 | |
| 	printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
 | |
| 
 | |
| 	rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
 | |
| 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 | |
| 	printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
 | |
| 
 | |
| 	rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
 | |
| 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 | |
| 	printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
 | |
| 
 | |
| 	if (!dev) {
 | |
| 		printk(KERN_WARNING "EEH: no PCI device for this of node\n");
 | |
| 		return n;
 | |
| 	}
 | |
| 
 | |
| 	/* Gather bridge-specific registers */
 | |
| 	if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
 | |
| 		rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
 | |
| 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 | |
| 		printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
 | |
| 
 | |
| 		rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
 | |
| 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 | |
| 		printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
 | |
| 	}
 | |
| 
 | |
| 	/* Dump out the PCI-X command and status regs */
 | |
| 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 | |
| 	if (cap) {
 | |
| 		rtas_read_config(pdn, cap, 4, &cfg);
 | |
| 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 | |
| 		printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
 | |
| 
 | |
| 		rtas_read_config(pdn, cap+4, 4, &cfg);
 | |
| 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 | |
| 		printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
 | |
| 	}
 | |
| 
 | |
| 	/* If PCI-E capable, dump PCI-E cap 10, and the AER */
 | |
| 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
 | |
| 	if (cap) {
 | |
| 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 | |
| 		printk(KERN_WARNING
 | |
| 		       "EEH: PCI-E capabilities and status follow:\n");
 | |
| 
 | |
| 		for (i=0; i<=8; i++) {
 | |
| 			rtas_read_config(pdn, cap+4*i, 4, &cfg);
 | |
| 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 | |
| 			printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
 | |
| 		}
 | |
| 
 | |
| 		cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
 | |
| 		if (cap) {
 | |
| 			n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 | |
| 			printk(KERN_WARNING
 | |
| 			       "EEH: PCI-E AER capability register set follows:\n");
 | |
| 
 | |
| 			for (i=0; i<14; i++) {
 | |
| 				rtas_read_config(pdn, cap+4*i, 4, &cfg);
 | |
| 				n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 | |
| 				printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Gather status on devices under the bridge */
 | |
| 	if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
 | |
| 		struct device_node *dn;
 | |
| 
 | |
| 		for_each_child_of_node(pdn->node, dn) {
 | |
| 			pdn = PCI_DN(dn);
 | |
| 			if (pdn)
 | |
| 				n += gather_pci_data(pdn, buf+n, len-n);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
 | |
| {
 | |
| 	size_t loglen = 0;
 | |
| 	pci_regs_buf[0] = 0;
 | |
| 
 | |
| 	rtas_pci_enable(pdn, EEH_THAW_MMIO);
 | |
| 	loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
 | |
| 
 | |
| 	rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_slot_reset_state - Read the reset state of a device node's slot
 | |
|  * @dn: device node to read
 | |
|  * @rets: array to return results in
 | |
|  */
 | |
| static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
 | |
| {
 | |
| 	int token, outputs;
 | |
| 	int config_addr;
 | |
| 
 | |
| 	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
 | |
| 		token = ibm_read_slot_reset_state2;
 | |
| 		outputs = 4;
 | |
| 	} else {
 | |
| 		token = ibm_read_slot_reset_state;
 | |
| 		rets[2] = 0; /* fake PE Unavailable info */
 | |
| 		outputs = 3;
 | |
| 	}
 | |
| 
 | |
| 	/* Use PE configuration address, if present */
 | |
| 	config_addr = pdn->eeh_config_addr;
 | |
| 	if (pdn->eeh_pe_config_addr)
 | |
| 		config_addr = pdn->eeh_pe_config_addr;
 | |
| 
 | |
| 	return rtas_call(token, 3, outputs, rets, config_addr,
 | |
| 			 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_wait_for_slot_status - returns error status of slot
 | |
|  * @pdn pci device node
 | |
|  * @max_wait_msecs maximum number to millisecs to wait
 | |
|  *
 | |
|  * Return negative value if a permanent error, else return
 | |
|  * Partition Endpoint (PE) status value.
 | |
|  *
 | |
|  * If @max_wait_msecs is positive, then this routine will
 | |
|  * sleep until a valid status can be obtained, or until
 | |
|  * the max allowed wait time is exceeded, in which case
 | |
|  * a -2 is returned.
 | |
|  */
 | |
| int
 | |
| eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
 | |
| {
 | |
| 	int rc;
 | |
| 	int rets[3];
 | |
| 	int mwait;
 | |
| 
 | |
| 	while (1) {
 | |
| 		rc = read_slot_reset_state(pdn, rets);
 | |
| 		if (rc) return rc;
 | |
| 		if (rets[1] == 0) return -1;  /* EEH is not supported */
 | |
| 
 | |
| 		if (rets[0] != 5) return rets[0]; /* return actual status */
 | |
| 
 | |
| 		if (rets[2] == 0) return -1; /* permanently unavailable */
 | |
| 
 | |
| 		if (max_wait_msecs <= 0) break;
 | |
| 
 | |
| 		mwait = rets[2];
 | |
| 		if (mwait <= 0) {
 | |
| 			printk (KERN_WARNING
 | |
| 			        "EEH: Firmware returned bad wait value=%d\n", mwait);
 | |
| 			mwait = 1000;
 | |
| 		} else if (mwait > 300*1000) {
 | |
| 			printk (KERN_WARNING
 | |
| 			        "EEH: Firmware is taking too long, time=%d\n", mwait);
 | |
| 			mwait = 300*1000;
 | |
| 		}
 | |
| 		max_wait_msecs -= mwait;
 | |
| 		msleep (mwait);
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
 | |
| 	return -2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_token_to_phys - convert EEH address token to phys address
 | |
|  * @token i/o token, should be address in the form 0xA....
 | |
|  */
 | |
| static inline unsigned long eeh_token_to_phys(unsigned long token)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	unsigned long pa;
 | |
| 
 | |
| 	ptep = find_linux_pte(init_mm.pgd, token);
 | |
| 	if (!ptep)
 | |
| 		return token;
 | |
| 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
 | |
| 
 | |
| 	return pa | (token & (PAGE_SIZE-1));
 | |
| }
 | |
| 
 | |
| /** 
 | |
|  * Return the "partitionable endpoint" (pe) under which this device lies
 | |
|  */
 | |
| struct device_node * find_device_pe(struct device_node *dn)
 | |
| {
 | |
| 	while ((dn->parent) && PCI_DN(dn->parent) &&
 | |
| 	      (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
 | |
| 		dn = dn->parent;
 | |
| 	}
 | |
| 	return dn;
 | |
| }
 | |
| 
 | |
| /** Mark all devices that are children of this device as failed.
 | |
|  *  Mark the device driver too, so that it can see the failure
 | |
|  *  immediately; this is critical, since some drivers poll
 | |
|  *  status registers in interrupts ... If a driver is polling,
 | |
|  *  and the slot is frozen, then the driver can deadlock in
 | |
|  *  an interrupt context, which is bad.
 | |
|  */
 | |
| 
 | |
| static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
 | |
| {
 | |
| 	struct device_node *dn;
 | |
| 
 | |
| 	for_each_child_of_node(parent, dn) {
 | |
| 		if (PCI_DN(dn)) {
 | |
| 			/* Mark the pci device driver too */
 | |
| 			struct pci_dev *dev = PCI_DN(dn)->pcidev;
 | |
| 
 | |
| 			PCI_DN(dn)->eeh_mode |= mode_flag;
 | |
| 
 | |
| 			if (dev && dev->driver)
 | |
| 				dev->error_state = pci_channel_io_frozen;
 | |
| 
 | |
| 			__eeh_mark_slot(dn, mode_flag);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void eeh_mark_slot (struct device_node *dn, int mode_flag)
 | |
| {
 | |
| 	struct pci_dev *dev;
 | |
| 	dn = find_device_pe (dn);
 | |
| 
 | |
| 	/* Back up one, since config addrs might be shared */
 | |
| 	if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
 | |
| 		dn = dn->parent;
 | |
| 
 | |
| 	PCI_DN(dn)->eeh_mode |= mode_flag;
 | |
| 
 | |
| 	/* Mark the pci device too */
 | |
| 	dev = PCI_DN(dn)->pcidev;
 | |
| 	if (dev)
 | |
| 		dev->error_state = pci_channel_io_frozen;
 | |
| 
 | |
| 	__eeh_mark_slot(dn, mode_flag);
 | |
| }
 | |
| 
 | |
| static void __eeh_clear_slot(struct device_node *parent, int mode_flag)
 | |
| {
 | |
| 	struct device_node *dn;
 | |
| 
 | |
| 	for_each_child_of_node(parent, dn) {
 | |
| 		if (PCI_DN(dn)) {
 | |
| 			PCI_DN(dn)->eeh_mode &= ~mode_flag;
 | |
| 			PCI_DN(dn)->eeh_check_count = 0;
 | |
| 			__eeh_clear_slot(dn, mode_flag);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void eeh_clear_slot (struct device_node *dn, int mode_flag)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	raw_spin_lock_irqsave(&confirm_error_lock, flags);
 | |
| 	
 | |
| 	dn = find_device_pe (dn);
 | |
| 	
 | |
| 	/* Back up one, since config addrs might be shared */
 | |
| 	if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
 | |
| 		dn = dn->parent;
 | |
| 
 | |
| 	PCI_DN(dn)->eeh_mode &= ~mode_flag;
 | |
| 	PCI_DN(dn)->eeh_check_count = 0;
 | |
| 	__eeh_clear_slot(dn, mode_flag);
 | |
| 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
 | |
|  * @dn device node
 | |
|  * @dev pci device, if known
 | |
|  *
 | |
|  * Check for an EEH failure for the given device node.  Call this
 | |
|  * routine if the result of a read was all 0xff's and you want to
 | |
|  * find out if this is due to an EEH slot freeze.  This routine
 | |
|  * will query firmware for the EEH status.
 | |
|  *
 | |
|  * Returns 0 if there has not been an EEH error; otherwise returns
 | |
|  * a non-zero value and queues up a slot isolation event notification.
 | |
|  *
 | |
|  * It is safe to call this routine in an interrupt context.
 | |
|  */
 | |
| int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
 | |
| {
 | |
| 	int ret;
 | |
| 	int rets[3];
 | |
| 	unsigned long flags;
 | |
| 	struct pci_dn *pdn;
 | |
| 	int rc = 0;
 | |
| 	const char *location;
 | |
| 
 | |
| 	total_mmio_ffs++;
 | |
| 
 | |
| 	if (!eeh_subsystem_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!dn) {
 | |
| 		no_dn++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	dn = find_device_pe(dn);
 | |
| 	pdn = PCI_DN(dn);
 | |
| 
 | |
| 	/* Access to IO BARs might get this far and still not want checking. */
 | |
| 	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
 | |
| 	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
 | |
| 		ignored_check++;
 | |
| 		pr_debug("EEH: Ignored check (%x) for %s %s\n",
 | |
| 			 pdn->eeh_mode, eeh_pci_name(dev), dn->full_name);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
 | |
| 		no_cfg_addr++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* If we already have a pending isolation event for this
 | |
| 	 * slot, we know it's bad already, we don't need to check.
 | |
| 	 * Do this checking under a lock; as multiple PCI devices
 | |
| 	 * in one slot might report errors simultaneously, and we
 | |
| 	 * only want one error recovery routine running.
 | |
| 	 */
 | |
| 	raw_spin_lock_irqsave(&confirm_error_lock, flags);
 | |
| 	rc = 1;
 | |
| 	if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
 | |
| 		pdn->eeh_check_count ++;
 | |
| 		if (pdn->eeh_check_count % EEH_MAX_FAILS == 0) {
 | |
| 			location = of_get_property(dn, "ibm,loc-code", NULL);
 | |
| 			printk (KERN_ERR "EEH: %d reads ignored for recovering device at "
 | |
| 				"location=%s driver=%s pci addr=%s\n",
 | |
| 				pdn->eeh_check_count, location,
 | |
| 				dev->driver->name, eeh_pci_name(dev));
 | |
| 			printk (KERN_ERR "EEH: Might be infinite loop in %s driver\n",
 | |
| 				dev->driver->name);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 		goto dn_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now test for an EEH failure.  This is VERY expensive.
 | |
| 	 * Note that the eeh_config_addr may be a parent device
 | |
| 	 * in the case of a device behind a bridge, or it may be
 | |
| 	 * function zero of a multi-function device.
 | |
| 	 * In any case they must share a common PHB.
 | |
| 	 */
 | |
| 	ret = read_slot_reset_state(pdn, rets);
 | |
| 
 | |
| 	/* If the call to firmware failed, punt */
 | |
| 	if (ret != 0) {
 | |
| 		printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
 | |
| 		       ret, dn->full_name);
 | |
| 		false_positives++;
 | |
| 		pdn->eeh_false_positives ++;
 | |
| 		rc = 0;
 | |
| 		goto dn_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Note that config-io to empty slots may fail;
 | |
| 	 * they are empty when they don't have children. */
 | |
| 	if ((rets[0] == 5) && (rets[2] == 0) && (dn->child == NULL)) {
 | |
| 		false_positives++;
 | |
| 		pdn->eeh_false_positives ++;
 | |
| 		rc = 0;
 | |
| 		goto dn_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* If EEH is not supported on this device, punt. */
 | |
| 	if (rets[1] != 1) {
 | |
| 		printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
 | |
| 		       ret, dn->full_name);
 | |
| 		false_positives++;
 | |
| 		pdn->eeh_false_positives ++;
 | |
| 		rc = 0;
 | |
| 		goto dn_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* If not the kind of error we know about, punt. */
 | |
| 	if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
 | |
| 		false_positives++;
 | |
| 		pdn->eeh_false_positives ++;
 | |
| 		rc = 0;
 | |
| 		goto dn_unlock;
 | |
| 	}
 | |
| 
 | |
| 	slot_resets++;
 | |
|  
 | |
| 	/* Avoid repeated reports of this failure, including problems
 | |
| 	 * with other functions on this device, and functions under
 | |
| 	 * bridges. */
 | |
| 	eeh_mark_slot (dn, EEH_MODE_ISOLATED);
 | |
| 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
 | |
| 
 | |
| 	eeh_send_failure_event (dn, dev);
 | |
| 
 | |
| 	/* Most EEH events are due to device driver bugs.  Having
 | |
| 	 * a stack trace will help the device-driver authors figure
 | |
| 	 * out what happened.  So print that out. */
 | |
| 	dump_stack();
 | |
| 	return 1;
 | |
| 
 | |
| dn_unlock:
 | |
| 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
 | |
| 
 | |
| /**
 | |
|  * eeh_check_failure - check if all 1's data is due to EEH slot freeze
 | |
|  * @token i/o token, should be address in the form 0xA....
 | |
|  * @val value, should be all 1's (XXX why do we need this arg??)
 | |
|  *
 | |
|  * Check for an EEH failure at the given token address.  Call this
 | |
|  * routine if the result of a read was all 0xff's and you want to
 | |
|  * find out if this is due to an EEH slot freeze event.  This routine
 | |
|  * will query firmware for the EEH status.
 | |
|  *
 | |
|  * Note this routine is safe to call in an interrupt context.
 | |
|  */
 | |
| unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	struct pci_dev *dev;
 | |
| 	struct device_node *dn;
 | |
| 
 | |
| 	/* Finding the phys addr + pci device; this is pretty quick. */
 | |
| 	addr = eeh_token_to_phys((unsigned long __force) token);
 | |
| 	dev = pci_get_device_by_addr(addr);
 | |
| 	if (!dev) {
 | |
| 		no_device++;
 | |
| 		return val;
 | |
| 	}
 | |
| 
 | |
| 	dn = pci_device_to_OF_node(dev);
 | |
| 	eeh_dn_check_failure (dn, dev);
 | |
| 
 | |
| 	pci_dev_put(dev);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(eeh_check_failure);
 | |
| 
 | |
| /* ------------------------------------------------------------- */
 | |
| /* The code below deals with error recovery */
 | |
| 
 | |
| /**
 | |
|  * rtas_pci_enable - enable MMIO or DMA transfers for this slot
 | |
|  * @pdn pci device node
 | |
|  */
 | |
| 
 | |
| int
 | |
| rtas_pci_enable(struct pci_dn *pdn, int function)
 | |
| {
 | |
| 	int config_addr;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Use PE configuration address, if present */
 | |
| 	config_addr = pdn->eeh_config_addr;
 | |
| 	if (pdn->eeh_pe_config_addr)
 | |
| 		config_addr = pdn->eeh_pe_config_addr;
 | |
| 
 | |
| 	rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
 | |
| 	               config_addr,
 | |
| 	               BUID_HI(pdn->phb->buid),
 | |
| 	               BUID_LO(pdn->phb->buid),
 | |
| 		            function);
 | |
| 
 | |
| 	if (rc)
 | |
| 		printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
 | |
| 		        function, rc, pdn->node->full_name);
 | |
| 
 | |
| 	rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
 | |
| 	if ((rc == 4) && (function == EEH_THAW_MMIO))
 | |
| 		return 0;
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtas_pci_slot_reset - raises/lowers the pci #RST line
 | |
|  * @pdn pci device node
 | |
|  * @state: 1/0 to raise/lower the #RST
 | |
|  *
 | |
|  * Clear the EEH-frozen condition on a slot.  This routine
 | |
|  * asserts the PCI #RST line if the 'state' argument is '1',
 | |
|  * and drops the #RST line if 'state is '0'.  This routine is
 | |
|  * safe to call in an interrupt context.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void
 | |
| rtas_pci_slot_reset(struct pci_dn *pdn, int state)
 | |
| {
 | |
| 	int config_addr;
 | |
| 	int rc;
 | |
| 
 | |
| 	BUG_ON (pdn==NULL); 
 | |
| 
 | |
| 	if (!pdn->phb) {
 | |
| 		printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
 | |
| 		        pdn->node->full_name);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Use PE configuration address, if present */
 | |
| 	config_addr = pdn->eeh_config_addr;
 | |
| 	if (pdn->eeh_pe_config_addr)
 | |
| 		config_addr = pdn->eeh_pe_config_addr;
 | |
| 
 | |
| 	rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
 | |
| 	               config_addr,
 | |
| 	               BUID_HI(pdn->phb->buid),
 | |
| 	               BUID_LO(pdn->phb->buid),
 | |
| 	               state);
 | |
| 	if (rc)
 | |
| 		printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
 | |
| 		        " (%d) #RST=%d dn=%s\n",
 | |
| 		        rc, state, pdn->node->full_name);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
 | |
|  * @dev:	pci device struct
 | |
|  * @state:	reset state to enter
 | |
|  *
 | |
|  * Return value:
 | |
|  * 	0 if success
 | |
|  **/
 | |
| int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 | |
| {
 | |
| 	struct device_node *dn = pci_device_to_OF_node(dev);
 | |
| 	struct pci_dn *pdn = PCI_DN(dn);
 | |
| 
 | |
| 	switch (state) {
 | |
| 	case pcie_deassert_reset:
 | |
| 		rtas_pci_slot_reset(pdn, 0);
 | |
| 		break;
 | |
| 	case pcie_hot_reset:
 | |
| 		rtas_pci_slot_reset(pdn, 1);
 | |
| 		break;
 | |
| 	case pcie_warm_reset:
 | |
| 		rtas_pci_slot_reset(pdn, 3);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	};
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
 | |
|  * @pdn: pci device node to be reset.
 | |
|  *
 | |
|  *  Return 0 if success, else a non-zero value.
 | |
|  */
 | |
| 
 | |
| static void __rtas_set_slot_reset(struct pci_dn *pdn)
 | |
| {
 | |
| 	struct pci_dev *dev = pdn->pcidev;
 | |
| 
 | |
| 	/* Determine type of EEH reset required by device,
 | |
| 	 * default hot reset or fundamental reset
 | |
| 	 */
 | |
| 	if (dev && dev->needs_freset)
 | |
| 		rtas_pci_slot_reset(pdn, 3);
 | |
| 	else
 | |
| 		rtas_pci_slot_reset(pdn, 1);
 | |
| 
 | |
| 	/* The PCI bus requires that the reset be held high for at least
 | |
| 	 * a 100 milliseconds. We wait a bit longer 'just in case'.  */
 | |
| 
 | |
| #define PCI_BUS_RST_HOLD_TIME_MSEC 250
 | |
| 	msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
 | |
| 	
 | |
| 	/* We might get hit with another EEH freeze as soon as the 
 | |
| 	 * pci slot reset line is dropped. Make sure we don't miss
 | |
| 	 * these, and clear the flag now. */
 | |
| 	eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
 | |
| 
 | |
| 	rtas_pci_slot_reset (pdn, 0);
 | |
| 
 | |
| 	/* After a PCI slot has been reset, the PCI Express spec requires
 | |
| 	 * a 1.5 second idle time for the bus to stabilize, before starting
 | |
| 	 * up traffic. */
 | |
| #define PCI_BUS_SETTLE_TIME_MSEC 1800
 | |
| 	msleep (PCI_BUS_SETTLE_TIME_MSEC);
 | |
| }
 | |
| 
 | |
| int rtas_set_slot_reset(struct pci_dn *pdn)
 | |
| {
 | |
| 	int i, rc;
 | |
| 
 | |
| 	/* Take three shots at resetting the bus */
 | |
| 	for (i=0; i<3; i++) {
 | |
| 		__rtas_set_slot_reset(pdn);
 | |
| 
 | |
| 		rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
 | |
| 		if (rc == 0)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (rc < 0) {
 | |
| 			printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
 | |
| 			       pdn->node->full_name);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
 | |
| 		       i+1, pdn->node->full_name, rc);
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* ------------------------------------------------------- */
 | |
| /** Save and restore of PCI BARs
 | |
|  *
 | |
|  * Although firmware will set up BARs during boot, it doesn't
 | |
|  * set up device BAR's after a device reset, although it will,
 | |
|  * if requested, set up bridge configuration. Thus, we need to
 | |
|  * configure the PCI devices ourselves.  
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * __restore_bars - Restore the Base Address Registers
 | |
|  * @pdn: pci device node
 | |
|  *
 | |
|  * Loads the PCI configuration space base address registers,
 | |
|  * the expansion ROM base address, the latency timer, and etc.
 | |
|  * from the saved values in the device node.
 | |
|  */
 | |
| static inline void __restore_bars (struct pci_dn *pdn)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 cmd;
 | |
| 
 | |
| 	if (NULL==pdn->phb) return;
 | |
| 	for (i=4; i<10; i++) {
 | |
| 		rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* 12 == Expansion ROM Address */
 | |
| 	rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
 | |
| 
 | |
| #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
 | |
| #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
 | |
| 
 | |
| 	rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
 | |
| 	            SAVED_BYTE(PCI_CACHE_LINE_SIZE));
 | |
| 
 | |
| 	rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
 | |
| 	            SAVED_BYTE(PCI_LATENCY_TIMER));
 | |
| 
 | |
| 	/* max latency, min grant, interrupt pin and line */
 | |
| 	rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
 | |
| 
 | |
| 	/* Restore PERR & SERR bits, some devices require it,
 | |
| 	   don't touch the other command bits */
 | |
| 	rtas_read_config(pdn, PCI_COMMAND, 4, &cmd);
 | |
| 	if (pdn->config_space[1] & PCI_COMMAND_PARITY)
 | |
| 		cmd |= PCI_COMMAND_PARITY;
 | |
| 	else
 | |
| 		cmd &= ~PCI_COMMAND_PARITY;
 | |
| 	if (pdn->config_space[1] & PCI_COMMAND_SERR)
 | |
| 		cmd |= PCI_COMMAND_SERR;
 | |
| 	else
 | |
| 		cmd &= ~PCI_COMMAND_SERR;
 | |
| 	rtas_write_config(pdn, PCI_COMMAND, 4, cmd);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_restore_bars - restore the PCI config space info
 | |
|  *
 | |
|  * This routine performs a recursive walk to the children
 | |
|  * of this device as well.
 | |
|  */
 | |
| void eeh_restore_bars(struct pci_dn *pdn)
 | |
| {
 | |
| 	struct device_node *dn;
 | |
| 	if (!pdn) 
 | |
| 		return;
 | |
| 	
 | |
| 	if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
 | |
| 		__restore_bars (pdn);
 | |
| 
 | |
| 	for_each_child_of_node(pdn->node, dn)
 | |
| 		eeh_restore_bars (PCI_DN(dn));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_save_bars - save device bars
 | |
|  *
 | |
|  * Save the values of the device bars. Unlike the restore
 | |
|  * routine, this routine is *not* recursive. This is because
 | |
|  * PCI devices are added individuallly; but, for the restore,
 | |
|  * an entire slot is reset at a time.
 | |
|  */
 | |
| static void eeh_save_bars(struct pci_dn *pdn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!pdn )
 | |
| 		return;
 | |
| 	
 | |
| 	for (i = 0; i < 16; i++)
 | |
| 		rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
 | |
| }
 | |
| 
 | |
| void
 | |
| rtas_configure_bridge(struct pci_dn *pdn)
 | |
| {
 | |
| 	int config_addr;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* Use PE configuration address, if present */
 | |
| 	config_addr = pdn->eeh_config_addr;
 | |
| 	if (pdn->eeh_pe_config_addr)
 | |
| 		config_addr = pdn->eeh_pe_config_addr;
 | |
| 
 | |
| 	rc = rtas_call(ibm_configure_bridge,3,1, NULL,
 | |
| 	               config_addr,
 | |
| 	               BUID_HI(pdn->phb->buid),
 | |
| 	               BUID_LO(pdn->phb->buid));
 | |
| 	if (rc) {
 | |
| 		printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
 | |
| 		        rc, pdn->node->full_name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ------------------------------------------------------------- */
 | |
| /* The code below deals with enabling EEH for devices during  the
 | |
|  * early boot sequence.  EEH must be enabled before any PCI probing
 | |
|  * can be done.
 | |
|  */
 | |
| 
 | |
| #define EEH_ENABLE 1
 | |
| 
 | |
| struct eeh_early_enable_info {
 | |
| 	unsigned int buid_hi;
 | |
| 	unsigned int buid_lo;
 | |
| };
 | |
| 
 | |
| static int get_pe_addr (int config_addr,
 | |
|                         struct eeh_early_enable_info *info)
 | |
| {
 | |
| 	unsigned int rets[3];
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Use latest config-addr token on power6 */
 | |
| 	if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
 | |
| 		/* Make sure we have a PE in hand */
 | |
| 		ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
 | |
| 			config_addr, info->buid_hi, info->buid_lo, 1);
 | |
| 		if (ret || (rets[0]==0))
 | |
| 			return 0;
 | |
| 
 | |
| 		ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
 | |
| 			config_addr, info->buid_hi, info->buid_lo, 0);
 | |
| 		if (ret)
 | |
| 			return 0;
 | |
| 		return rets[0];
 | |
| 	}
 | |
| 
 | |
| 	/* Use older config-addr token on power5 */
 | |
| 	if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
 | |
| 		ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
 | |
| 			config_addr, info->buid_hi, info->buid_lo, 0);
 | |
| 		if (ret)
 | |
| 			return 0;
 | |
| 		return rets[0];
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Enable eeh for the given device node. */
 | |
| static void *early_enable_eeh(struct device_node *dn, void *data)
 | |
| {
 | |
| 	unsigned int rets[3];
 | |
| 	struct eeh_early_enable_info *info = data;
 | |
| 	int ret;
 | |
| 	const u32 *class_code = of_get_property(dn, "class-code", NULL);
 | |
| 	const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
 | |
| 	const u32 *device_id = of_get_property(dn, "device-id", NULL);
 | |
| 	const u32 *regs;
 | |
| 	int enable;
 | |
| 	struct pci_dn *pdn = PCI_DN(dn);
 | |
| 
 | |
| 	pdn->class_code = 0;
 | |
| 	pdn->eeh_mode = 0;
 | |
| 	pdn->eeh_check_count = 0;
 | |
| 	pdn->eeh_freeze_count = 0;
 | |
| 	pdn->eeh_false_positives = 0;
 | |
| 
 | |
| 	if (!of_device_is_available(dn))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Ignore bad nodes. */
 | |
| 	if (!class_code || !vendor_id || !device_id)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* There is nothing to check on PCI to ISA bridges */
 | |
| 	if (dn->type && !strcmp(dn->type, "isa")) {
 | |
| 		pdn->eeh_mode |= EEH_MODE_NOCHECK;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	pdn->class_code = *class_code;
 | |
| 
 | |
| 	/* Ok... see if this device supports EEH.  Some do, some don't,
 | |
| 	 * and the only way to find out is to check each and every one. */
 | |
| 	regs = of_get_property(dn, "reg", NULL);
 | |
| 	if (regs) {
 | |
| 		/* First register entry is addr (00BBSS00)  */
 | |
| 		/* Try to enable eeh */
 | |
| 		ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
 | |
| 		                regs[0], info->buid_hi, info->buid_lo,
 | |
| 		                EEH_ENABLE);
 | |
| 
 | |
| 		enable = 0;
 | |
| 		if (ret == 0) {
 | |
| 			pdn->eeh_config_addr = regs[0];
 | |
| 
 | |
| 			/* If the newer, better, ibm,get-config-addr-info is supported, 
 | |
| 			 * then use that instead. */
 | |
| 			pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
 | |
| 
 | |
| 			/* Some older systems (Power4) allow the
 | |
| 			 * ibm,set-eeh-option call to succeed even on nodes
 | |
| 			 * where EEH is not supported. Verify support
 | |
| 			 * explicitly. */
 | |
| 			ret = read_slot_reset_state(pdn, rets);
 | |
| 			if ((ret == 0) && (rets[1] == 1))
 | |
| 				enable = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (enable) {
 | |
| 			eeh_subsystem_enabled = 1;
 | |
| 			pdn->eeh_mode |= EEH_MODE_SUPPORTED;
 | |
| 
 | |
| 			pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n",
 | |
| 				 dn->full_name, pdn->eeh_config_addr,
 | |
| 				 pdn->eeh_pe_config_addr);
 | |
| 		} else {
 | |
| 
 | |
| 			/* This device doesn't support EEH, but it may have an
 | |
| 			 * EEH parent, in which case we mark it as supported. */
 | |
| 			if (dn->parent && PCI_DN(dn->parent)
 | |
| 			    && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
 | |
| 				/* Parent supports EEH. */
 | |
| 				pdn->eeh_mode |= EEH_MODE_SUPPORTED;
 | |
| 				pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
 | |
| 		       dn->full_name);
 | |
| 	}
 | |
| 
 | |
| 	eeh_save_bars(pdn);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize EEH by trying to enable it for all of the adapters in the system.
 | |
|  * As a side effect we can determine here if eeh is supported at all.
 | |
|  * Note that we leave EEH on so failed config cycles won't cause a machine
 | |
|  * check.  If a user turns off EEH for a particular adapter they are really
 | |
|  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 | |
|  * grant access to a slot if EEH isn't enabled, and so we always enable
 | |
|  * EEH for all slots/all devices.
 | |
|  *
 | |
|  * The eeh-force-off option disables EEH checking globally, for all slots.
 | |
|  * Even if force-off is set, the EEH hardware is still enabled, so that
 | |
|  * newer systems can boot.
 | |
|  */
 | |
| void __init eeh_init(void)
 | |
| {
 | |
| 	struct device_node *phb, *np;
 | |
| 	struct eeh_early_enable_info info;
 | |
| 
 | |
| 	raw_spin_lock_init(&confirm_error_lock);
 | |
| 	spin_lock_init(&slot_errbuf_lock);
 | |
| 
 | |
| 	np = of_find_node_by_path("/rtas");
 | |
| 	if (np == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
 | |
| 	ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
 | |
| 	ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
 | |
| 	ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
 | |
| 	ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
 | |
| 	ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
 | |
| 	ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
 | |
| 	ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
 | |
| 
 | |
| 	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
 | |
| 		return;
 | |
| 
 | |
| 	eeh_error_buf_size = rtas_token("rtas-error-log-max");
 | |
| 	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
 | |
| 		eeh_error_buf_size = 1024;
 | |
| 	}
 | |
| 	if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
 | |
| 		printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
 | |
| 		      "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
 | |
| 		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable EEH for all adapters.  Note that eeh requires buid's */
 | |
| 	for (phb = of_find_node_by_name(NULL, "pci"); phb;
 | |
| 	     phb = of_find_node_by_name(phb, "pci")) {
 | |
| 		unsigned long buid;
 | |
| 
 | |
| 		buid = get_phb_buid(phb);
 | |
| 		if (buid == 0 || PCI_DN(phb) == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		info.buid_lo = BUID_LO(buid);
 | |
| 		info.buid_hi = BUID_HI(buid);
 | |
| 		traverse_pci_devices(phb, early_enable_eeh, &info);
 | |
| 	}
 | |
| 
 | |
| 	if (eeh_subsystem_enabled)
 | |
| 		printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
 | |
| 	else
 | |
| 		printk(KERN_WARNING "EEH: No capable adapters found\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * eeh_add_device_early - enable EEH for the indicated device_node
 | |
|  * @dn: device node for which to set up EEH
 | |
|  *
 | |
|  * This routine must be used to perform EEH initialization for PCI
 | |
|  * devices that were added after system boot (e.g. hotplug, dlpar).
 | |
|  * This routine must be called before any i/o is performed to the
 | |
|  * adapter (inluding any config-space i/o).
 | |
|  * Whether this actually enables EEH or not for this device depends
 | |
|  * on the CEC architecture, type of the device, on earlier boot
 | |
|  * command-line arguments & etc.
 | |
|  */
 | |
| static void eeh_add_device_early(struct device_node *dn)
 | |
| {
 | |
| 	struct pci_controller *phb;
 | |
| 	struct eeh_early_enable_info info;
 | |
| 
 | |
| 	if (!dn || !PCI_DN(dn))
 | |
| 		return;
 | |
| 	phb = PCI_DN(dn)->phb;
 | |
| 
 | |
| 	/* USB Bus children of PCI devices will not have BUID's */
 | |
| 	if (NULL == phb || 0 == phb->buid)
 | |
| 		return;
 | |
| 
 | |
| 	info.buid_hi = BUID_HI(phb->buid);
 | |
| 	info.buid_lo = BUID_LO(phb->buid);
 | |
| 	early_enable_eeh(dn, &info);
 | |
| }
 | |
| 
 | |
| void eeh_add_device_tree_early(struct device_node *dn)
 | |
| {
 | |
| 	struct device_node *sib;
 | |
| 
 | |
| 	for_each_child_of_node(dn, sib)
 | |
| 		eeh_add_device_tree_early(sib);
 | |
| 	eeh_add_device_early(dn);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
 | |
| 
 | |
| /**
 | |
|  * eeh_add_device_late - perform EEH initialization for the indicated pci device
 | |
|  * @dev: pci device for which to set up EEH
 | |
|  *
 | |
|  * This routine must be used to complete EEH initialization for PCI
 | |
|  * devices that were added after system boot (e.g. hotplug, dlpar).
 | |
|  */
 | |
| static void eeh_add_device_late(struct pci_dev *dev)
 | |
| {
 | |
| 	struct device_node *dn;
 | |
| 	struct pci_dn *pdn;
 | |
| 
 | |
| 	if (!dev || !eeh_subsystem_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
 | |
| 
 | |
| 	dn = pci_device_to_OF_node(dev);
 | |
| 	pdn = PCI_DN(dn);
 | |
| 	if (pdn->pcidev == dev) {
 | |
| 		pr_debug("EEH: Already referenced !\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	WARN_ON(pdn->pcidev);
 | |
| 
 | |
| 	pci_dev_get (dev);
 | |
| 	pdn->pcidev = dev;
 | |
| 
 | |
| 	pci_addr_cache_insert_device(dev);
 | |
| 	eeh_sysfs_add_device(dev);
 | |
| }
 | |
| 
 | |
| void eeh_add_device_tree_late(struct pci_bus *bus)
 | |
| {
 | |
| 	struct pci_dev *dev;
 | |
| 
 | |
| 	list_for_each_entry(dev, &bus->devices, bus_list) {
 | |
|  		eeh_add_device_late(dev);
 | |
|  		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 | |
|  			struct pci_bus *subbus = dev->subordinate;
 | |
|  			if (subbus)
 | |
|  				eeh_add_device_tree_late(subbus);
 | |
|  		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
 | |
| 
 | |
| /**
 | |
|  * eeh_remove_device - undo EEH setup for the indicated pci device
 | |
|  * @dev: pci device to be removed
 | |
|  *
 | |
|  * This routine should be called when a device is removed from
 | |
|  * a running system (e.g. by hotplug or dlpar).  It unregisters
 | |
|  * the PCI device from the EEH subsystem.  I/O errors affecting
 | |
|  * this device will no longer be detected after this call; thus,
 | |
|  * i/o errors affecting this slot may leave this device unusable.
 | |
|  */
 | |
| static void eeh_remove_device(struct pci_dev *dev)
 | |
| {
 | |
| 	struct device_node *dn;
 | |
| 	if (!dev || !eeh_subsystem_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/* Unregister the device with the EEH/PCI address search system */
 | |
| 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
 | |
| 
 | |
| 	dn = pci_device_to_OF_node(dev);
 | |
| 	if (PCI_DN(dn)->pcidev == NULL) {
 | |
| 		pr_debug("EEH: Not referenced !\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	PCI_DN(dn)->pcidev = NULL;
 | |
| 	pci_dev_put (dev);
 | |
| 
 | |
| 	pci_addr_cache_remove_device(dev);
 | |
| 	eeh_sysfs_remove_device(dev);
 | |
| }
 | |
| 
 | |
| void eeh_remove_bus_device(struct pci_dev *dev)
 | |
| {
 | |
| 	struct pci_bus *bus = dev->subordinate;
 | |
| 	struct pci_dev *child, *tmp;
 | |
| 
 | |
| 	eeh_remove_device(dev);
 | |
| 
 | |
| 	if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
 | |
| 		list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
 | |
| 			 eeh_remove_bus_device(child);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
 | |
| 
 | |
| static int proc_eeh_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	if (0 == eeh_subsystem_enabled) {
 | |
| 		seq_printf(m, "EEH Subsystem is globally disabled\n");
 | |
| 		seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
 | |
| 	} else {
 | |
| 		seq_printf(m, "EEH Subsystem is enabled\n");
 | |
| 		seq_printf(m,
 | |
| 				"no device=%ld\n"
 | |
| 				"no device node=%ld\n"
 | |
| 				"no config address=%ld\n"
 | |
| 				"check not wanted=%ld\n"
 | |
| 				"eeh_total_mmio_ffs=%ld\n"
 | |
| 				"eeh_false_positives=%ld\n"
 | |
| 				"eeh_slot_resets=%ld\n",
 | |
| 				no_device, no_dn, no_cfg_addr, 
 | |
| 				ignored_check, total_mmio_ffs, 
 | |
| 				false_positives,
 | |
| 				slot_resets);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int proc_eeh_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, proc_eeh_show, NULL);
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_eeh_operations = {
 | |
| 	.open      = proc_eeh_open,
 | |
| 	.read      = seq_read,
 | |
| 	.llseek    = seq_lseek,
 | |
| 	.release   = single_release,
 | |
| };
 | |
| 
 | |
| static int __init eeh_init_proc(void)
 | |
| {
 | |
| 	if (machine_is(pseries))
 | |
| 		proc_create("ppc64/eeh", 0, NULL, &proc_eeh_operations);
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(eeh_init_proc);
 |