mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 20:42:39 +00:00 
			
		
		
		
	 94bfa3b669
			
		
	
	
		94bfa3b669
		
	
	
	
	
		
			
			Convert to rcu_dereference_raw() given that many callers may have many different locking models. Located-by: Miles Lane <miles.lane@gmail.com> Tested-by: Miles Lane <miles.lane@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
		
			
				
	
	
		
			938 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			938 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * 2002-10-18  written by Jim Houston jim.houston@ccur.com
 | |
|  *	Copyright (C) 2002 by Concurrent Computer Corporation
 | |
|  *	Distributed under the GNU GPL license version 2.
 | |
|  *
 | |
|  * Modified by George Anzinger to reuse immediately and to use
 | |
|  * find bit instructions.  Also removed _irq on spinlocks.
 | |
|  *
 | |
|  * Modified by Nadia Derbey to make it RCU safe.
 | |
|  *
 | |
|  * Small id to pointer translation service.
 | |
|  *
 | |
|  * It uses a radix tree like structure as a sparse array indexed
 | |
|  * by the id to obtain the pointer.  The bitmap makes allocating
 | |
|  * a new id quick.
 | |
|  *
 | |
|  * You call it to allocate an id (an int) an associate with that id a
 | |
|  * pointer or what ever, we treat it as a (void *).  You can pass this
 | |
|  * id to a user for him to pass back at a later time.  You then pass
 | |
|  * that id to this code and it returns your pointer.
 | |
| 
 | |
|  * You can release ids at any time. When all ids are released, most of
 | |
|  * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
 | |
|  * don't need to go to the memory "store" during an id allocate, just
 | |
|  * so you don't need to be too concerned about locking and conflicts
 | |
|  * with the slab allocator.
 | |
|  */
 | |
| 
 | |
| #ifndef TEST                        // to test in user space...
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #endif
 | |
| #include <linux/err.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/idr.h>
 | |
| 
 | |
| static struct kmem_cache *idr_layer_cache;
 | |
| 
 | |
| static struct idr_layer *get_from_free_list(struct idr *idp)
 | |
| {
 | |
| 	struct idr_layer *p;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&idp->lock, flags);
 | |
| 	if ((p = idp->id_free)) {
 | |
| 		idp->id_free = p->ary[0];
 | |
| 		idp->id_free_cnt--;
 | |
| 		p->ary[0] = NULL;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&idp->lock, flags);
 | |
| 	return(p);
 | |
| }
 | |
| 
 | |
| static void idr_layer_rcu_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct idr_layer *layer;
 | |
| 
 | |
| 	layer = container_of(head, struct idr_layer, rcu_head);
 | |
| 	kmem_cache_free(idr_layer_cache, layer);
 | |
| }
 | |
| 
 | |
| static inline void free_layer(struct idr_layer *p)
 | |
| {
 | |
| 	call_rcu(&p->rcu_head, idr_layer_rcu_free);
 | |
| }
 | |
| 
 | |
| /* only called when idp->lock is held */
 | |
| static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
 | |
| {
 | |
| 	p->ary[0] = idp->id_free;
 | |
| 	idp->id_free = p;
 | |
| 	idp->id_free_cnt++;
 | |
| }
 | |
| 
 | |
| static void move_to_free_list(struct idr *idp, struct idr_layer *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Depends on the return element being zeroed.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&idp->lock, flags);
 | |
| 	__move_to_free_list(idp, p);
 | |
| 	spin_unlock_irqrestore(&idp->lock, flags);
 | |
| }
 | |
| 
 | |
| static void idr_mark_full(struct idr_layer **pa, int id)
 | |
| {
 | |
| 	struct idr_layer *p = pa[0];
 | |
| 	int l = 0;
 | |
| 
 | |
| 	__set_bit(id & IDR_MASK, &p->bitmap);
 | |
| 	/*
 | |
| 	 * If this layer is full mark the bit in the layer above to
 | |
| 	 * show that this part of the radix tree is full.  This may
 | |
| 	 * complete the layer above and require walking up the radix
 | |
| 	 * tree.
 | |
| 	 */
 | |
| 	while (p->bitmap == IDR_FULL) {
 | |
| 		if (!(p = pa[++l]))
 | |
| 			break;
 | |
| 		id = id >> IDR_BITS;
 | |
| 		__set_bit((id & IDR_MASK), &p->bitmap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_pre_get - reserver resources for idr allocation
 | |
|  * @idp:	idr handle
 | |
|  * @gfp_mask:	memory allocation flags
 | |
|  *
 | |
|  * This function should be called prior to locking and calling the
 | |
|  * idr_get_new* functions. It preallocates enough memory to satisfy
 | |
|  * the worst possible allocation.
 | |
|  *
 | |
|  * If the system is REALLY out of memory this function returns 0,
 | |
|  * otherwise 1.
 | |
|  */
 | |
| int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
 | |
| {
 | |
| 	while (idp->id_free_cnt < IDR_FREE_MAX) {
 | |
| 		struct idr_layer *new;
 | |
| 		new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
 | |
| 		if (new == NULL)
 | |
| 			return (0);
 | |
| 		move_to_free_list(idp, new);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_pre_get);
 | |
| 
 | |
| static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
 | |
| {
 | |
| 	int n, m, sh;
 | |
| 	struct idr_layer *p, *new;
 | |
| 	int l, id, oid;
 | |
| 	unsigned long bm;
 | |
| 
 | |
| 	id = *starting_id;
 | |
|  restart:
 | |
| 	p = idp->top;
 | |
| 	l = idp->layers;
 | |
| 	pa[l--] = NULL;
 | |
| 	while (1) {
 | |
| 		/*
 | |
| 		 * We run around this while until we reach the leaf node...
 | |
| 		 */
 | |
| 		n = (id >> (IDR_BITS*l)) & IDR_MASK;
 | |
| 		bm = ~p->bitmap;
 | |
| 		m = find_next_bit(&bm, IDR_SIZE, n);
 | |
| 		if (m == IDR_SIZE) {
 | |
| 			/* no space available go back to previous layer. */
 | |
| 			l++;
 | |
| 			oid = id;
 | |
| 			id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
 | |
| 
 | |
| 			/* if already at the top layer, we need to grow */
 | |
| 			if (id >= 1 << (idp->layers * IDR_BITS)) {
 | |
| 				*starting_id = id;
 | |
| 				return IDR_NEED_TO_GROW;
 | |
| 			}
 | |
| 			p = pa[l];
 | |
| 			BUG_ON(!p);
 | |
| 
 | |
| 			/* If we need to go up one layer, continue the
 | |
| 			 * loop; otherwise, restart from the top.
 | |
| 			 */
 | |
| 			sh = IDR_BITS * (l + 1);
 | |
| 			if (oid >> sh == id >> sh)
 | |
| 				continue;
 | |
| 			else
 | |
| 				goto restart;
 | |
| 		}
 | |
| 		if (m != n) {
 | |
| 			sh = IDR_BITS*l;
 | |
| 			id = ((id >> sh) ^ n ^ m) << sh;
 | |
| 		}
 | |
| 		if ((id >= MAX_ID_BIT) || (id < 0))
 | |
| 			return IDR_NOMORE_SPACE;
 | |
| 		if (l == 0)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * Create the layer below if it is missing.
 | |
| 		 */
 | |
| 		if (!p->ary[m]) {
 | |
| 			new = get_from_free_list(idp);
 | |
| 			if (!new)
 | |
| 				return -1;
 | |
| 			new->layer = l-1;
 | |
| 			rcu_assign_pointer(p->ary[m], new);
 | |
| 			p->count++;
 | |
| 		}
 | |
| 		pa[l--] = p;
 | |
| 		p = p->ary[m];
 | |
| 	}
 | |
| 
 | |
| 	pa[l] = p;
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| static int idr_get_empty_slot(struct idr *idp, int starting_id,
 | |
| 			      struct idr_layer **pa)
 | |
| {
 | |
| 	struct idr_layer *p, *new;
 | |
| 	int layers, v, id;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	id = starting_id;
 | |
| build_up:
 | |
| 	p = idp->top;
 | |
| 	layers = idp->layers;
 | |
| 	if (unlikely(!p)) {
 | |
| 		if (!(p = get_from_free_list(idp)))
 | |
| 			return -1;
 | |
| 		p->layer = 0;
 | |
| 		layers = 1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Add a new layer to the top of the tree if the requested
 | |
| 	 * id is larger than the currently allocated space.
 | |
| 	 */
 | |
| 	while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
 | |
| 		layers++;
 | |
| 		if (!p->count) {
 | |
| 			/* special case: if the tree is currently empty,
 | |
| 			 * then we grow the tree by moving the top node
 | |
| 			 * upwards.
 | |
| 			 */
 | |
| 			p->layer++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!(new = get_from_free_list(idp))) {
 | |
| 			/*
 | |
| 			 * The allocation failed.  If we built part of
 | |
| 			 * the structure tear it down.
 | |
| 			 */
 | |
| 			spin_lock_irqsave(&idp->lock, flags);
 | |
| 			for (new = p; p && p != idp->top; new = p) {
 | |
| 				p = p->ary[0];
 | |
| 				new->ary[0] = NULL;
 | |
| 				new->bitmap = new->count = 0;
 | |
| 				__move_to_free_list(idp, new);
 | |
| 			}
 | |
| 			spin_unlock_irqrestore(&idp->lock, flags);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		new->ary[0] = p;
 | |
| 		new->count = 1;
 | |
| 		new->layer = layers-1;
 | |
| 		if (p->bitmap == IDR_FULL)
 | |
| 			__set_bit(0, &new->bitmap);
 | |
| 		p = new;
 | |
| 	}
 | |
| 	rcu_assign_pointer(idp->top, p);
 | |
| 	idp->layers = layers;
 | |
| 	v = sub_alloc(idp, &id, pa);
 | |
| 	if (v == IDR_NEED_TO_GROW)
 | |
| 		goto build_up;
 | |
| 	return(v);
 | |
| }
 | |
| 
 | |
| static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
 | |
| {
 | |
| 	struct idr_layer *pa[MAX_LEVEL];
 | |
| 	int id;
 | |
| 
 | |
| 	id = idr_get_empty_slot(idp, starting_id, pa);
 | |
| 	if (id >= 0) {
 | |
| 		/*
 | |
| 		 * Successfully found an empty slot.  Install the user
 | |
| 		 * pointer and mark the slot full.
 | |
| 		 */
 | |
| 		rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
 | |
| 				(struct idr_layer *)ptr);
 | |
| 		pa[0]->count++;
 | |
| 		idr_mark_full(pa, id);
 | |
| 	}
 | |
| 
 | |
| 	return id;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_get_new_above - allocate new idr entry above or equal to a start id
 | |
|  * @idp: idr handle
 | |
|  * @ptr: pointer you want associated with the id
 | |
|  * @start_id: id to start search at
 | |
|  * @id: pointer to the allocated handle
 | |
|  *
 | |
|  * This is the allocate id function.  It should be called with any
 | |
|  * required locks.
 | |
|  *
 | |
|  * If memory is required, it will return -EAGAIN, you should unlock
 | |
|  * and go back to the idr_pre_get() call.  If the idr is full, it will
 | |
|  * return -ENOSPC.
 | |
|  *
 | |
|  * @id returns a value in the range @starting_id ... 0x7fffffff
 | |
|  */
 | |
| int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
 | |
| {
 | |
| 	int rv;
 | |
| 
 | |
| 	rv = idr_get_new_above_int(idp, ptr, starting_id);
 | |
| 	/*
 | |
| 	 * This is a cheap hack until the IDR code can be fixed to
 | |
| 	 * return proper error values.
 | |
| 	 */
 | |
| 	if (rv < 0)
 | |
| 		return _idr_rc_to_errno(rv);
 | |
| 	*id = rv;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_get_new_above);
 | |
| 
 | |
| /**
 | |
|  * idr_get_new - allocate new idr entry
 | |
|  * @idp: idr handle
 | |
|  * @ptr: pointer you want associated with the id
 | |
|  * @id: pointer to the allocated handle
 | |
|  *
 | |
|  * This is the allocate id function.  It should be called with any
 | |
|  * required locks.
 | |
|  *
 | |
|  * If memory is required, it will return -EAGAIN, you should unlock
 | |
|  * and go back to the idr_pre_get() call.  If the idr is full, it will
 | |
|  * return -ENOSPC.
 | |
|  *
 | |
|  * @id returns a value in the range 0 ... 0x7fffffff
 | |
|  */
 | |
| int idr_get_new(struct idr *idp, void *ptr, int *id)
 | |
| {
 | |
| 	int rv;
 | |
| 
 | |
| 	rv = idr_get_new_above_int(idp, ptr, 0);
 | |
| 	/*
 | |
| 	 * This is a cheap hack until the IDR code can be fixed to
 | |
| 	 * return proper error values.
 | |
| 	 */
 | |
| 	if (rv < 0)
 | |
| 		return _idr_rc_to_errno(rv);
 | |
| 	*id = rv;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_get_new);
 | |
| 
 | |
| static void idr_remove_warning(int id)
 | |
| {
 | |
| 	printk(KERN_WARNING
 | |
| 		"idr_remove called for id=%d which is not allocated.\n", id);
 | |
| 	dump_stack();
 | |
| }
 | |
| 
 | |
| static void sub_remove(struct idr *idp, int shift, int id)
 | |
| {
 | |
| 	struct idr_layer *p = idp->top;
 | |
| 	struct idr_layer **pa[MAX_LEVEL];
 | |
| 	struct idr_layer ***paa = &pa[0];
 | |
| 	struct idr_layer *to_free;
 | |
| 	int n;
 | |
| 
 | |
| 	*paa = NULL;
 | |
| 	*++paa = &idp->top;
 | |
| 
 | |
| 	while ((shift > 0) && p) {
 | |
| 		n = (id >> shift) & IDR_MASK;
 | |
| 		__clear_bit(n, &p->bitmap);
 | |
| 		*++paa = &p->ary[n];
 | |
| 		p = p->ary[n];
 | |
| 		shift -= IDR_BITS;
 | |
| 	}
 | |
| 	n = id & IDR_MASK;
 | |
| 	if (likely(p != NULL && test_bit(n, &p->bitmap))){
 | |
| 		__clear_bit(n, &p->bitmap);
 | |
| 		rcu_assign_pointer(p->ary[n], NULL);
 | |
| 		to_free = NULL;
 | |
| 		while(*paa && ! --((**paa)->count)){
 | |
| 			if (to_free)
 | |
| 				free_layer(to_free);
 | |
| 			to_free = **paa;
 | |
| 			**paa-- = NULL;
 | |
| 		}
 | |
| 		if (!*paa)
 | |
| 			idp->layers = 0;
 | |
| 		if (to_free)
 | |
| 			free_layer(to_free);
 | |
| 	} else
 | |
| 		idr_remove_warning(id);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_remove - remove the given id and free it's slot
 | |
|  * @idp: idr handle
 | |
|  * @id: unique key
 | |
|  */
 | |
| void idr_remove(struct idr *idp, int id)
 | |
| {
 | |
| 	struct idr_layer *p;
 | |
| 	struct idr_layer *to_free;
 | |
| 
 | |
| 	/* Mask off upper bits we don't use for the search. */
 | |
| 	id &= MAX_ID_MASK;
 | |
| 
 | |
| 	sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
 | |
| 	if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
 | |
| 	    idp->top->ary[0]) {
 | |
| 		/*
 | |
| 		 * Single child at leftmost slot: we can shrink the tree.
 | |
| 		 * This level is not needed anymore since when layers are
 | |
| 		 * inserted, they are inserted at the top of the existing
 | |
| 		 * tree.
 | |
| 		 */
 | |
| 		to_free = idp->top;
 | |
| 		p = idp->top->ary[0];
 | |
| 		rcu_assign_pointer(idp->top, p);
 | |
| 		--idp->layers;
 | |
| 		to_free->bitmap = to_free->count = 0;
 | |
| 		free_layer(to_free);
 | |
| 	}
 | |
| 	while (idp->id_free_cnt >= IDR_FREE_MAX) {
 | |
| 		p = get_from_free_list(idp);
 | |
| 		/*
 | |
| 		 * Note: we don't call the rcu callback here, since the only
 | |
| 		 * layers that fall into the freelist are those that have been
 | |
| 		 * preallocated.
 | |
| 		 */
 | |
| 		kmem_cache_free(idr_layer_cache, p);
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_remove);
 | |
| 
 | |
| /**
 | |
|  * idr_remove_all - remove all ids from the given idr tree
 | |
|  * @idp: idr handle
 | |
|  *
 | |
|  * idr_destroy() only frees up unused, cached idp_layers, but this
 | |
|  * function will remove all id mappings and leave all idp_layers
 | |
|  * unused.
 | |
|  *
 | |
|  * A typical clean-up sequence for objects stored in an idr tree, will
 | |
|  * use idr_for_each() to free all objects, if necessay, then
 | |
|  * idr_remove_all() to remove all ids, and idr_destroy() to free
 | |
|  * up the cached idr_layers.
 | |
|  */
 | |
| void idr_remove_all(struct idr *idp)
 | |
| {
 | |
| 	int n, id, max;
 | |
| 	int bt_mask;
 | |
| 	struct idr_layer *p;
 | |
| 	struct idr_layer *pa[MAX_LEVEL];
 | |
| 	struct idr_layer **paa = &pa[0];
 | |
| 
 | |
| 	n = idp->layers * IDR_BITS;
 | |
| 	p = idp->top;
 | |
| 	rcu_assign_pointer(idp->top, NULL);
 | |
| 	max = 1 << n;
 | |
| 
 | |
| 	id = 0;
 | |
| 	while (id < max) {
 | |
| 		while (n > IDR_BITS && p) {
 | |
| 			n -= IDR_BITS;
 | |
| 			*paa++ = p;
 | |
| 			p = p->ary[(id >> n) & IDR_MASK];
 | |
| 		}
 | |
| 
 | |
| 		bt_mask = id;
 | |
| 		id += 1 << n;
 | |
| 		/* Get the highest bit that the above add changed from 0->1. */
 | |
| 		while (n < fls(id ^ bt_mask)) {
 | |
| 			if (p)
 | |
| 				free_layer(p);
 | |
| 			n += IDR_BITS;
 | |
| 			p = *--paa;
 | |
| 		}
 | |
| 	}
 | |
| 	idp->layers = 0;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_remove_all);
 | |
| 
 | |
| /**
 | |
|  * idr_destroy - release all cached layers within an idr tree
 | |
|  * idp: idr handle
 | |
|  */
 | |
| void idr_destroy(struct idr *idp)
 | |
| {
 | |
| 	while (idp->id_free_cnt) {
 | |
| 		struct idr_layer *p = get_from_free_list(idp);
 | |
| 		kmem_cache_free(idr_layer_cache, p);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(idr_destroy);
 | |
| 
 | |
| /**
 | |
|  * idr_find - return pointer for given id
 | |
|  * @idp: idr handle
 | |
|  * @id: lookup key
 | |
|  *
 | |
|  * Return the pointer given the id it has been registered with.  A %NULL
 | |
|  * return indicates that @id is not valid or you passed %NULL in
 | |
|  * idr_get_new().
 | |
|  *
 | |
|  * This function can be called under rcu_read_lock(), given that the leaf
 | |
|  * pointers lifetimes are correctly managed.
 | |
|  */
 | |
| void *idr_find(struct idr *idp, int id)
 | |
| {
 | |
| 	int n;
 | |
| 	struct idr_layer *p;
 | |
| 
 | |
| 	p = rcu_dereference_raw(idp->top);
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 	n = (p->layer+1) * IDR_BITS;
 | |
| 
 | |
| 	/* Mask off upper bits we don't use for the search. */
 | |
| 	id &= MAX_ID_MASK;
 | |
| 
 | |
| 	if (id >= (1 << n))
 | |
| 		return NULL;
 | |
| 	BUG_ON(n == 0);
 | |
| 
 | |
| 	while (n > 0 && p) {
 | |
| 		n -= IDR_BITS;
 | |
| 		BUG_ON(n != p->layer*IDR_BITS);
 | |
| 		p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 | |
| 	}
 | |
| 	return((void *)p);
 | |
| }
 | |
| EXPORT_SYMBOL(idr_find);
 | |
| 
 | |
| /**
 | |
|  * idr_for_each - iterate through all stored pointers
 | |
|  * @idp: idr handle
 | |
|  * @fn: function to be called for each pointer
 | |
|  * @data: data passed back to callback function
 | |
|  *
 | |
|  * Iterate over the pointers registered with the given idr.  The
 | |
|  * callback function will be called for each pointer currently
 | |
|  * registered, passing the id, the pointer and the data pointer passed
 | |
|  * to this function.  It is not safe to modify the idr tree while in
 | |
|  * the callback, so functions such as idr_get_new and idr_remove are
 | |
|  * not allowed.
 | |
|  *
 | |
|  * We check the return of @fn each time. If it returns anything other
 | |
|  * than 0, we break out and return that value.
 | |
|  *
 | |
|  * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
 | |
|  */
 | |
| int idr_for_each(struct idr *idp,
 | |
| 		 int (*fn)(int id, void *p, void *data), void *data)
 | |
| {
 | |
| 	int n, id, max, error = 0;
 | |
| 	struct idr_layer *p;
 | |
| 	struct idr_layer *pa[MAX_LEVEL];
 | |
| 	struct idr_layer **paa = &pa[0];
 | |
| 
 | |
| 	n = idp->layers * IDR_BITS;
 | |
| 	p = rcu_dereference_raw(idp->top);
 | |
| 	max = 1 << n;
 | |
| 
 | |
| 	id = 0;
 | |
| 	while (id < max) {
 | |
| 		while (n > 0 && p) {
 | |
| 			n -= IDR_BITS;
 | |
| 			*paa++ = p;
 | |
| 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 | |
| 		}
 | |
| 
 | |
| 		if (p) {
 | |
| 			error = fn(id, (void *)p, data);
 | |
| 			if (error)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		id += 1 << n;
 | |
| 		while (n < fls(id)) {
 | |
| 			n += IDR_BITS;
 | |
| 			p = *--paa;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_for_each);
 | |
| 
 | |
| /**
 | |
|  * idr_get_next - lookup next object of id to given id.
 | |
|  * @idp: idr handle
 | |
|  * @id:  pointer to lookup key
 | |
|  *
 | |
|  * Returns pointer to registered object with id, which is next number to
 | |
|  * given id.
 | |
|  */
 | |
| 
 | |
| void *idr_get_next(struct idr *idp, int *nextidp)
 | |
| {
 | |
| 	struct idr_layer *p, *pa[MAX_LEVEL];
 | |
| 	struct idr_layer **paa = &pa[0];
 | |
| 	int id = *nextidp;
 | |
| 	int n, max;
 | |
| 
 | |
| 	/* find first ent */
 | |
| 	n = idp->layers * IDR_BITS;
 | |
| 	max = 1 << n;
 | |
| 	p = rcu_dereference_raw(idp->top);
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (id < max) {
 | |
| 		while (n > 0 && p) {
 | |
| 			n -= IDR_BITS;
 | |
| 			*paa++ = p;
 | |
| 			p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
 | |
| 		}
 | |
| 
 | |
| 		if (p) {
 | |
| 			*nextidp = id;
 | |
| 			return p;
 | |
| 		}
 | |
| 
 | |
| 		id += 1 << n;
 | |
| 		while (n < fls(id)) {
 | |
| 			n += IDR_BITS;
 | |
| 			p = *--paa;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_get_next);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * idr_replace - replace pointer for given id
 | |
|  * @idp: idr handle
 | |
|  * @ptr: pointer you want associated with the id
 | |
|  * @id: lookup key
 | |
|  *
 | |
|  * Replace the pointer registered with an id and return the old value.
 | |
|  * A -ENOENT return indicates that @id was not found.
 | |
|  * A -EINVAL return indicates that @id was not within valid constraints.
 | |
|  *
 | |
|  * The caller must serialize with writers.
 | |
|  */
 | |
| void *idr_replace(struct idr *idp, void *ptr, int id)
 | |
| {
 | |
| 	int n;
 | |
| 	struct idr_layer *p, *old_p;
 | |
| 
 | |
| 	p = idp->top;
 | |
| 	if (!p)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	n = (p->layer+1) * IDR_BITS;
 | |
| 
 | |
| 	id &= MAX_ID_MASK;
 | |
| 
 | |
| 	if (id >= (1 << n))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	n -= IDR_BITS;
 | |
| 	while ((n > 0) && p) {
 | |
| 		p = p->ary[(id >> n) & IDR_MASK];
 | |
| 		n -= IDR_BITS;
 | |
| 	}
 | |
| 
 | |
| 	n = id & IDR_MASK;
 | |
| 	if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 	old_p = p->ary[n];
 | |
| 	rcu_assign_pointer(p->ary[n], ptr);
 | |
| 
 | |
| 	return old_p;
 | |
| }
 | |
| EXPORT_SYMBOL(idr_replace);
 | |
| 
 | |
| void __init idr_init_cache(void)
 | |
| {
 | |
| 	idr_layer_cache = kmem_cache_create("idr_layer_cache",
 | |
| 				sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * idr_init - initialize idr handle
 | |
|  * @idp:	idr handle
 | |
|  *
 | |
|  * This function is use to set up the handle (@idp) that you will pass
 | |
|  * to the rest of the functions.
 | |
|  */
 | |
| void idr_init(struct idr *idp)
 | |
| {
 | |
| 	memset(idp, 0, sizeof(struct idr));
 | |
| 	spin_lock_init(&idp->lock);
 | |
| }
 | |
| EXPORT_SYMBOL(idr_init);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * IDA - IDR based ID allocator
 | |
|  *
 | |
|  * this is id allocator without id -> pointer translation.  Memory
 | |
|  * usage is much lower than full blown idr because each id only
 | |
|  * occupies a bit.  ida uses a custom leaf node which contains
 | |
|  * IDA_BITMAP_BITS slots.
 | |
|  *
 | |
|  * 2007-04-25  written by Tejun Heo <htejun@gmail.com>
 | |
|  */
 | |
| 
 | |
| static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!ida->free_bitmap) {
 | |
| 		spin_lock_irqsave(&ida->idr.lock, flags);
 | |
| 		if (!ida->free_bitmap) {
 | |
| 			ida->free_bitmap = bitmap;
 | |
| 			bitmap = NULL;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&ida->idr.lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	kfree(bitmap);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ida_pre_get - reserve resources for ida allocation
 | |
|  * @ida:	ida handle
 | |
|  * @gfp_mask:	memory allocation flag
 | |
|  *
 | |
|  * This function should be called prior to locking and calling the
 | |
|  * following function.  It preallocates enough memory to satisfy the
 | |
|  * worst possible allocation.
 | |
|  *
 | |
|  * If the system is REALLY out of memory this function returns 0,
 | |
|  * otherwise 1.
 | |
|  */
 | |
| int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
 | |
| {
 | |
| 	/* allocate idr_layers */
 | |
| 	if (!idr_pre_get(&ida->idr, gfp_mask))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* allocate free_bitmap */
 | |
| 	if (!ida->free_bitmap) {
 | |
| 		struct ida_bitmap *bitmap;
 | |
| 
 | |
| 		bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
 | |
| 		if (!bitmap)
 | |
| 			return 0;
 | |
| 
 | |
| 		free_bitmap(ida, bitmap);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL(ida_pre_get);
 | |
| 
 | |
| /**
 | |
|  * ida_get_new_above - allocate new ID above or equal to a start id
 | |
|  * @ida:	ida handle
 | |
|  * @staring_id:	id to start search at
 | |
|  * @p_id:	pointer to the allocated handle
 | |
|  *
 | |
|  * Allocate new ID above or equal to @ida.  It should be called with
 | |
|  * any required locks.
 | |
|  *
 | |
|  * If memory is required, it will return -EAGAIN, you should unlock
 | |
|  * and go back to the ida_pre_get() call.  If the ida is full, it will
 | |
|  * return -ENOSPC.
 | |
|  *
 | |
|  * @p_id returns a value in the range @starting_id ... 0x7fffffff.
 | |
|  */
 | |
| int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
 | |
| {
 | |
| 	struct idr_layer *pa[MAX_LEVEL];
 | |
| 	struct ida_bitmap *bitmap;
 | |
| 	unsigned long flags;
 | |
| 	int idr_id = starting_id / IDA_BITMAP_BITS;
 | |
| 	int offset = starting_id % IDA_BITMAP_BITS;
 | |
| 	int t, id;
 | |
| 
 | |
|  restart:
 | |
| 	/* get vacant slot */
 | |
| 	t = idr_get_empty_slot(&ida->idr, idr_id, pa);
 | |
| 	if (t < 0)
 | |
| 		return _idr_rc_to_errno(t);
 | |
| 
 | |
| 	if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	if (t != idr_id)
 | |
| 		offset = 0;
 | |
| 	idr_id = t;
 | |
| 
 | |
| 	/* if bitmap isn't there, create a new one */
 | |
| 	bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
 | |
| 	if (!bitmap) {
 | |
| 		spin_lock_irqsave(&ida->idr.lock, flags);
 | |
| 		bitmap = ida->free_bitmap;
 | |
| 		ida->free_bitmap = NULL;
 | |
| 		spin_unlock_irqrestore(&ida->idr.lock, flags);
 | |
| 
 | |
| 		if (!bitmap)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		memset(bitmap, 0, sizeof(struct ida_bitmap));
 | |
| 		rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
 | |
| 				(void *)bitmap);
 | |
| 		pa[0]->count++;
 | |
| 	}
 | |
| 
 | |
| 	/* lookup for empty slot */
 | |
| 	t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
 | |
| 	if (t == IDA_BITMAP_BITS) {
 | |
| 		/* no empty slot after offset, continue to the next chunk */
 | |
| 		idr_id++;
 | |
| 		offset = 0;
 | |
| 		goto restart;
 | |
| 	}
 | |
| 
 | |
| 	id = idr_id * IDA_BITMAP_BITS + t;
 | |
| 	if (id >= MAX_ID_BIT)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	__set_bit(t, bitmap->bitmap);
 | |
| 	if (++bitmap->nr_busy == IDA_BITMAP_BITS)
 | |
| 		idr_mark_full(pa, idr_id);
 | |
| 
 | |
| 	*p_id = id;
 | |
| 
 | |
| 	/* Each leaf node can handle nearly a thousand slots and the
 | |
| 	 * whole idea of ida is to have small memory foot print.
 | |
| 	 * Throw away extra resources one by one after each successful
 | |
| 	 * allocation.
 | |
| 	 */
 | |
| 	if (ida->idr.id_free_cnt || ida->free_bitmap) {
 | |
| 		struct idr_layer *p = get_from_free_list(&ida->idr);
 | |
| 		if (p)
 | |
| 			kmem_cache_free(idr_layer_cache, p);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(ida_get_new_above);
 | |
| 
 | |
| /**
 | |
|  * ida_get_new - allocate new ID
 | |
|  * @ida:	idr handle
 | |
|  * @p_id:	pointer to the allocated handle
 | |
|  *
 | |
|  * Allocate new ID.  It should be called with any required locks.
 | |
|  *
 | |
|  * If memory is required, it will return -EAGAIN, you should unlock
 | |
|  * and go back to the idr_pre_get() call.  If the idr is full, it will
 | |
|  * return -ENOSPC.
 | |
|  *
 | |
|  * @id returns a value in the range 0 ... 0x7fffffff.
 | |
|  */
 | |
| int ida_get_new(struct ida *ida, int *p_id)
 | |
| {
 | |
| 	return ida_get_new_above(ida, 0, p_id);
 | |
| }
 | |
| EXPORT_SYMBOL(ida_get_new);
 | |
| 
 | |
| /**
 | |
|  * ida_remove - remove the given ID
 | |
|  * @ida:	ida handle
 | |
|  * @id:		ID to free
 | |
|  */
 | |
| void ida_remove(struct ida *ida, int id)
 | |
| {
 | |
| 	struct idr_layer *p = ida->idr.top;
 | |
| 	int shift = (ida->idr.layers - 1) * IDR_BITS;
 | |
| 	int idr_id = id / IDA_BITMAP_BITS;
 | |
| 	int offset = id % IDA_BITMAP_BITS;
 | |
| 	int n;
 | |
| 	struct ida_bitmap *bitmap;
 | |
| 
 | |
| 	/* clear full bits while looking up the leaf idr_layer */
 | |
| 	while ((shift > 0) && p) {
 | |
| 		n = (idr_id >> shift) & IDR_MASK;
 | |
| 		__clear_bit(n, &p->bitmap);
 | |
| 		p = p->ary[n];
 | |
| 		shift -= IDR_BITS;
 | |
| 	}
 | |
| 
 | |
| 	if (p == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	n = idr_id & IDR_MASK;
 | |
| 	__clear_bit(n, &p->bitmap);
 | |
| 
 | |
| 	bitmap = (void *)p->ary[n];
 | |
| 	if (!test_bit(offset, bitmap->bitmap))
 | |
| 		goto err;
 | |
| 
 | |
| 	/* update bitmap and remove it if empty */
 | |
| 	__clear_bit(offset, bitmap->bitmap);
 | |
| 	if (--bitmap->nr_busy == 0) {
 | |
| 		__set_bit(n, &p->bitmap);	/* to please idr_remove() */
 | |
| 		idr_remove(&ida->idr, idr_id);
 | |
| 		free_bitmap(ida, bitmap);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
|  err:
 | |
| 	printk(KERN_WARNING
 | |
| 	       "ida_remove called for id=%d which is not allocated.\n", id);
 | |
| }
 | |
| EXPORT_SYMBOL(ida_remove);
 | |
| 
 | |
| /**
 | |
|  * ida_destroy - release all cached layers within an ida tree
 | |
|  * ida:		ida handle
 | |
|  */
 | |
| void ida_destroy(struct ida *ida)
 | |
| {
 | |
| 	idr_destroy(&ida->idr);
 | |
| 	kfree(ida->free_bitmap);
 | |
| }
 | |
| EXPORT_SYMBOL(ida_destroy);
 | |
| 
 | |
| /**
 | |
|  * ida_init - initialize ida handle
 | |
|  * @ida:	ida handle
 | |
|  *
 | |
|  * This function is use to set up the handle (@ida) that you will pass
 | |
|  * to the rest of the functions.
 | |
|  */
 | |
| void ida_init(struct ida *ida)
 | |
| {
 | |
| 	memset(ida, 0, sizeof(struct ida));
 | |
| 	idr_init(&ida->idr);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(ida_init);
 |