mirror of
				https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
				synced 2025-10-31 18:36:37 +00:00 
			
		
		
		
	 bc4016f481
			
		
	
	
		bc4016f481
		
	
	
	
	
		
			
			* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (29 commits) sched: Export account_system_vtime() sched: Call tick_check_idle before __irq_enter sched: Remove irq time from available CPU power sched: Do not account irq time to current task x86: Add IRQ_TIME_ACCOUNTING sched: Add IRQ_TIME_ACCOUNTING, finer accounting of irq time sched: Add a PF flag for ksoftirqd identification sched: Consolidate account_system_vtime extern declaration sched: Fix softirq time accounting sched: Drop group_capacity to 1 only if local group has extra capacity sched: Force balancing on newidle balance if local group has capacity sched: Set group_imb only a task can be pulled from the busiest cpu sched: Do not consider SCHED_IDLE tasks to be cache hot sched: Drop all load weight manipulation for RT tasks sched: Create special class for stop/migrate work sched: Unindent labels sched: Comment updates: fix default latency and granularity numbers tracing/sched: Add sched_pi_setprio tracepoint sched: Give CPU bound RT tasks preference sched: Try not to migrate higher priority RT tasks ...
		
			
				
	
	
		
			3945 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3945 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 | |
|  *
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  *  Interactivity improvements by Mike Galbraith
 | |
|  *  (C) 2007 Mike Galbraith <efault@gmx.de>
 | |
|  *
 | |
|  *  Various enhancements by Dmitry Adamushko.
 | |
|  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 | |
|  *
 | |
|  *  Group scheduling enhancements by Srivatsa Vaddagiri
 | |
|  *  Copyright IBM Corporation, 2007
 | |
|  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 | |
|  *
 | |
|  *  Scaled math optimizations by Thomas Gleixner
 | |
|  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 | |
|  *
 | |
|  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 | |
|  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/latencytop.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| /*
 | |
|  * Targeted preemption latency for CPU-bound tasks:
 | |
|  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  *
 | |
|  * NOTE: this latency value is not the same as the concept of
 | |
|  * 'timeslice length' - timeslices in CFS are of variable length
 | |
|  * and have no persistent notion like in traditional, time-slice
 | |
|  * based scheduling concepts.
 | |
|  *
 | |
|  * (to see the precise effective timeslice length of your workload,
 | |
|  *  run vmstat and monitor the context-switches (cs) field)
 | |
|  */
 | |
| unsigned int sysctl_sched_latency = 6000000ULL;
 | |
| unsigned int normalized_sysctl_sched_latency = 6000000ULL;
 | |
| 
 | |
| /*
 | |
|  * The initial- and re-scaling of tunables is configurable
 | |
|  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 | |
|  *
 | |
|  * Options are:
 | |
|  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 | |
|  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 | |
|  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 | |
|  */
 | |
| enum sched_tunable_scaling sysctl_sched_tunable_scaling
 | |
| 	= SCHED_TUNABLESCALING_LOG;
 | |
| 
 | |
| /*
 | |
|  * Minimal preemption granularity for CPU-bound tasks:
 | |
|  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  */
 | |
| unsigned int sysctl_sched_min_granularity = 750000ULL;
 | |
| unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
 | |
| 
 | |
| /*
 | |
|  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 | |
|  */
 | |
| static unsigned int sched_nr_latency = 8;
 | |
| 
 | |
| /*
 | |
|  * After fork, child runs first. If set to 0 (default) then
 | |
|  * parent will (try to) run first.
 | |
|  */
 | |
| unsigned int sysctl_sched_child_runs_first __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * sys_sched_yield() compat mode
 | |
|  *
 | |
|  * This option switches the agressive yield implementation of the
 | |
|  * old scheduler back on.
 | |
|  */
 | |
| unsigned int __read_mostly sysctl_sched_compat_yield;
 | |
| 
 | |
| /*
 | |
|  * SCHED_OTHER wake-up granularity.
 | |
|  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
 | |
|  *
 | |
|  * This option delays the preemption effects of decoupled workloads
 | |
|  * and reduces their over-scheduling. Synchronous workloads will still
 | |
|  * have immediate wakeup/sleep latencies.
 | |
|  */
 | |
| unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
 | |
| unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
 | |
| 
 | |
| const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 | |
| 
 | |
| static const struct sched_class fair_sched_class;
 | |
| 
 | |
| /**************************************************************
 | |
|  * CFS operations on generic schedulable entities:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 
 | |
| /* cpu runqueue to which this cfs_rq is attached */
 | |
| static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return cfs_rq->rq;
 | |
| }
 | |
| 
 | |
| /* An entity is a task if it doesn't "own" a runqueue */
 | |
| #define entity_is_task(se)	(!se->my_q)
 | |
| 
 | |
| static inline struct task_struct *task_of(struct sched_entity *se)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	WARN_ON_ONCE(!entity_is_task(se));
 | |
| #endif
 | |
| 	return container_of(se, struct task_struct, se);
 | |
| }
 | |
| 
 | |
| /* Walk up scheduling entities hierarchy */
 | |
| #define for_each_sched_entity(se) \
 | |
| 		for (; se; se = se->parent)
 | |
| 
 | |
| static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	return p->se.cfs_rq;
 | |
| }
 | |
| 
 | |
| /* runqueue on which this entity is (to be) queued */
 | |
| static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | |
| {
 | |
| 	return se->cfs_rq;
 | |
| }
 | |
| 
 | |
| /* runqueue "owned" by this group */
 | |
| static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | |
| {
 | |
| 	return grp->my_q;
 | |
| }
 | |
| 
 | |
| /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 | |
|  * another cpu ('this_cpu')
 | |
|  */
 | |
| static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 | |
| {
 | |
| 	return cfs_rq->tg->cfs_rq[this_cpu];
 | |
| }
 | |
| 
 | |
| /* Iterate thr' all leaf cfs_rq's on a runqueue */
 | |
| #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 | |
| 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 | |
| 
 | |
| /* Do the two (enqueued) entities belong to the same group ? */
 | |
| static inline int
 | |
| is_same_group(struct sched_entity *se, struct sched_entity *pse)
 | |
| {
 | |
| 	if (se->cfs_rq == pse->cfs_rq)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | |
| {
 | |
| 	return se->parent;
 | |
| }
 | |
| 
 | |
| /* return depth at which a sched entity is present in the hierarchy */
 | |
| static inline int depth_se(struct sched_entity *se)
 | |
| {
 | |
| 	int depth = 0;
 | |
| 
 | |
| 	for_each_sched_entity(se)
 | |
| 		depth++;
 | |
| 
 | |
| 	return depth;
 | |
| }
 | |
| 
 | |
| static void
 | |
| find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 | |
| {
 | |
| 	int se_depth, pse_depth;
 | |
| 
 | |
| 	/*
 | |
| 	 * preemption test can be made between sibling entities who are in the
 | |
| 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 | |
| 	 * both tasks until we find their ancestors who are siblings of common
 | |
| 	 * parent.
 | |
| 	 */
 | |
| 
 | |
| 	/* First walk up until both entities are at same depth */
 | |
| 	se_depth = depth_se(*se);
 | |
| 	pse_depth = depth_se(*pse);
 | |
| 
 | |
| 	while (se_depth > pse_depth) {
 | |
| 		se_depth--;
 | |
| 		*se = parent_entity(*se);
 | |
| 	}
 | |
| 
 | |
| 	while (pse_depth > se_depth) {
 | |
| 		pse_depth--;
 | |
| 		*pse = parent_entity(*pse);
 | |
| 	}
 | |
| 
 | |
| 	while (!is_same_group(*se, *pse)) {
 | |
| 		*se = parent_entity(*se);
 | |
| 		*pse = parent_entity(*pse);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else	/* !CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| static inline struct task_struct *task_of(struct sched_entity *se)
 | |
| {
 | |
| 	return container_of(se, struct task_struct, se);
 | |
| }
 | |
| 
 | |
| static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	return container_of(cfs_rq, struct rq, cfs);
 | |
| }
 | |
| 
 | |
| #define entity_is_task(se)	1
 | |
| 
 | |
| #define for_each_sched_entity(se) \
 | |
| 		for (; se; se = NULL)
 | |
| 
 | |
| static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 | |
| {
 | |
| 	return &task_rq(p)->cfs;
 | |
| }
 | |
| 
 | |
| static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 | |
| {
 | |
| 	struct task_struct *p = task_of(se);
 | |
| 	struct rq *rq = task_rq(p);
 | |
| 
 | |
| 	return &rq->cfs;
 | |
| }
 | |
| 
 | |
| /* runqueue "owned" by this group */
 | |
| static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 | |
| {
 | |
| 	return &cpu_rq(this_cpu)->cfs;
 | |
| }
 | |
| 
 | |
| #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 | |
| 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 | |
| 
 | |
| static inline int
 | |
| is_same_group(struct sched_entity *se, struct sched_entity *pse)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline struct sched_entity *parent_entity(struct sched_entity *se)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_FAIR_GROUP_SCHED */
 | |
| 
 | |
| 
 | |
| /**************************************************************
 | |
|  * Scheduling class tree data structure manipulation methods:
 | |
|  */
 | |
| 
 | |
| static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
 | |
| {
 | |
| 	s64 delta = (s64)(vruntime - min_vruntime);
 | |
| 	if (delta > 0)
 | |
| 		min_vruntime = vruntime;
 | |
| 
 | |
| 	return min_vruntime;
 | |
| }
 | |
| 
 | |
| static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 | |
| {
 | |
| 	s64 delta = (s64)(vruntime - min_vruntime);
 | |
| 	if (delta < 0)
 | |
| 		min_vruntime = vruntime;
 | |
| 
 | |
| 	return min_vruntime;
 | |
| }
 | |
| 
 | |
| static inline int entity_before(struct sched_entity *a,
 | |
| 				struct sched_entity *b)
 | |
| {
 | |
| 	return (s64)(a->vruntime - b->vruntime) < 0;
 | |
| }
 | |
| 
 | |
| static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	return se->vruntime - cfs_rq->min_vruntime;
 | |
| }
 | |
| 
 | |
| static void update_min_vruntime(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	u64 vruntime = cfs_rq->min_vruntime;
 | |
| 
 | |
| 	if (cfs_rq->curr)
 | |
| 		vruntime = cfs_rq->curr->vruntime;
 | |
| 
 | |
| 	if (cfs_rq->rb_leftmost) {
 | |
| 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 | |
| 						   struct sched_entity,
 | |
| 						   run_node);
 | |
| 
 | |
| 		if (!cfs_rq->curr)
 | |
| 			vruntime = se->vruntime;
 | |
| 		else
 | |
| 			vruntime = min_vruntime(vruntime, se->vruntime);
 | |
| 	}
 | |
| 
 | |
| 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enqueue an entity into the rb-tree:
 | |
|  */
 | |
| static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct sched_entity *entry;
 | |
| 	s64 key = entity_key(cfs_rq, se);
 | |
| 	int leftmost = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the right place in the rbtree:
 | |
| 	 */
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		entry = rb_entry(parent, struct sched_entity, run_node);
 | |
| 		/*
 | |
| 		 * We dont care about collisions. Nodes with
 | |
| 		 * the same key stay together.
 | |
| 		 */
 | |
| 		if (key < entity_key(cfs_rq, entry)) {
 | |
| 			link = &parent->rb_left;
 | |
| 		} else {
 | |
| 			link = &parent->rb_right;
 | |
| 			leftmost = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Maintain a cache of leftmost tree entries (it is frequently
 | |
| 	 * used):
 | |
| 	 */
 | |
| 	if (leftmost)
 | |
| 		cfs_rq->rb_leftmost = &se->run_node;
 | |
| 
 | |
| 	rb_link_node(&se->run_node, parent, link);
 | |
| 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 | |
| }
 | |
| 
 | |
| static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	if (cfs_rq->rb_leftmost == &se->run_node) {
 | |
| 		struct rb_node *next_node;
 | |
| 
 | |
| 		next_node = rb_next(&se->run_node);
 | |
| 		cfs_rq->rb_leftmost = next_node;
 | |
| 	}
 | |
| 
 | |
| 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 | |
| }
 | |
| 
 | |
| static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *left = cfs_rq->rb_leftmost;
 | |
| 
 | |
| 	if (!left)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_entry(left, struct sched_entity, run_node);
 | |
| }
 | |
| 
 | |
| static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 | |
| 
 | |
| 	if (!last)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return rb_entry(last, struct sched_entity, run_node);
 | |
| }
 | |
| 
 | |
| /**************************************************************
 | |
|  * Scheduling class statistics methods:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| int sched_proc_update_handler(struct ctl_table *table, int write,
 | |
| 		void __user *buffer, size_t *lenp,
 | |
| 		loff_t *ppos)
 | |
| {
 | |
| 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 | |
| 	int factor = get_update_sysctl_factor();
 | |
| 
 | |
| 	if (ret || !write)
 | |
| 		return ret;
 | |
| 
 | |
| 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 | |
| 					sysctl_sched_min_granularity);
 | |
| 
 | |
| #define WRT_SYSCTL(name) \
 | |
| 	(normalized_sysctl_##name = sysctl_##name / (factor))
 | |
| 	WRT_SYSCTL(sched_min_granularity);
 | |
| 	WRT_SYSCTL(sched_latency);
 | |
| 	WRT_SYSCTL(sched_wakeup_granularity);
 | |
| 	WRT_SYSCTL(sched_shares_ratelimit);
 | |
| #undef WRT_SYSCTL
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * delta /= w
 | |
|  */
 | |
| static inline unsigned long
 | |
| calc_delta_fair(unsigned long delta, struct sched_entity *se)
 | |
| {
 | |
| 	if (unlikely(se->load.weight != NICE_0_LOAD))
 | |
| 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
 | |
| 
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The idea is to set a period in which each task runs once.
 | |
|  *
 | |
|  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 | |
|  * this period because otherwise the slices get too small.
 | |
|  *
 | |
|  * p = (nr <= nl) ? l : l*nr/nl
 | |
|  */
 | |
| static u64 __sched_period(unsigned long nr_running)
 | |
| {
 | |
| 	u64 period = sysctl_sched_latency;
 | |
| 	unsigned long nr_latency = sched_nr_latency;
 | |
| 
 | |
| 	if (unlikely(nr_running > nr_latency)) {
 | |
| 		period = sysctl_sched_min_granularity;
 | |
| 		period *= nr_running;
 | |
| 	}
 | |
| 
 | |
| 	return period;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We calculate the wall-time slice from the period by taking a part
 | |
|  * proportional to the weight.
 | |
|  *
 | |
|  * s = p*P[w/rw]
 | |
|  */
 | |
| static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		struct load_weight *load;
 | |
| 		struct load_weight lw;
 | |
| 
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		load = &cfs_rq->load;
 | |
| 
 | |
| 		if (unlikely(!se->on_rq)) {
 | |
| 			lw = cfs_rq->load;
 | |
| 
 | |
| 			update_load_add(&lw, se->load.weight);
 | |
| 			load = &lw;
 | |
| 		}
 | |
| 		slice = calc_delta_mine(slice, se->load.weight, load);
 | |
| 	}
 | |
| 	return slice;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We calculate the vruntime slice of a to be inserted task
 | |
|  *
 | |
|  * vs = s/w
 | |
|  */
 | |
| static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the current task's runtime statistics. Skip current tasks that
 | |
|  * are not in our scheduling class.
 | |
|  */
 | |
| static inline void
 | |
| __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 | |
| 	      unsigned long delta_exec)
 | |
| {
 | |
| 	unsigned long delta_exec_weighted;
 | |
| 
 | |
| 	schedstat_set(curr->statistics.exec_max,
 | |
| 		      max((u64)delta_exec, curr->statistics.exec_max));
 | |
| 
 | |
| 	curr->sum_exec_runtime += delta_exec;
 | |
| 	schedstat_add(cfs_rq, exec_clock, delta_exec);
 | |
| 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
 | |
| 
 | |
| 	curr->vruntime += delta_exec_weighted;
 | |
| 	update_min_vruntime(cfs_rq);
 | |
| }
 | |
| 
 | |
| static void update_curr(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *curr = cfs_rq->curr;
 | |
| 	u64 now = rq_of(cfs_rq)->clock_task;
 | |
| 	unsigned long delta_exec;
 | |
| 
 | |
| 	if (unlikely(!curr))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the amount of time the current task was running
 | |
| 	 * since the last time we changed load (this cannot
 | |
| 	 * overflow on 32 bits):
 | |
| 	 */
 | |
| 	delta_exec = (unsigned long)(now - curr->exec_start);
 | |
| 	if (!delta_exec)
 | |
| 		return;
 | |
| 
 | |
| 	__update_curr(cfs_rq, curr, delta_exec);
 | |
| 	curr->exec_start = now;
 | |
| 
 | |
| 	if (entity_is_task(curr)) {
 | |
| 		struct task_struct *curtask = task_of(curr);
 | |
| 
 | |
| 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 | |
| 		cpuacct_charge(curtask, delta_exec);
 | |
| 		account_group_exec_runtime(curtask, delta_exec);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Task is being enqueued - update stats:
 | |
|  */
 | |
| static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * Are we enqueueing a waiting task? (for current tasks
 | |
| 	 * a dequeue/enqueue event is a NOP)
 | |
| 	 */
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		update_stats_wait_start(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| static void
 | |
| update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 | |
| 			rq_of(cfs_rq)->clock - se->statistics.wait_start));
 | |
| 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 | |
| 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 | |
| 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	if (entity_is_task(se)) {
 | |
| 		trace_sched_stat_wait(task_of(se),
 | |
| 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
 | |
| 	}
 | |
| #endif
 | |
| 	schedstat_set(se->statistics.wait_start, 0);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * Mark the end of the wait period if dequeueing a
 | |
| 	 * waiting task:
 | |
| 	 */
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		update_stats_wait_end(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are picking a new current task - update its stats:
 | |
|  */
 | |
| static inline void
 | |
| update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/*
 | |
| 	 * We are starting a new run period:
 | |
| 	 */
 | |
| 	se->exec_start = rq_of(cfs_rq)->clock_task;
 | |
| }
 | |
| 
 | |
| /**************************************************
 | |
|  * Scheduling class queueing methods:
 | |
|  */
 | |
| 
 | |
| #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
 | |
| static void
 | |
| add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 | |
| {
 | |
| 	cfs_rq->task_weight += weight;
 | |
| }
 | |
| #else
 | |
| static inline void
 | |
| add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	update_load_add(&cfs_rq->load, se->load.weight);
 | |
| 	if (!parent_entity(se))
 | |
| 		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
 | |
| 	if (entity_is_task(se)) {
 | |
| 		add_cfs_task_weight(cfs_rq, se->load.weight);
 | |
| 		list_add(&se->group_node, &cfs_rq->tasks);
 | |
| 	}
 | |
| 	cfs_rq->nr_running++;
 | |
| 	se->on_rq = 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	update_load_sub(&cfs_rq->load, se->load.weight);
 | |
| 	if (!parent_entity(se))
 | |
| 		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
 | |
| 	if (entity_is_task(se)) {
 | |
| 		add_cfs_task_weight(cfs_rq, -se->load.weight);
 | |
| 		list_del_init(&se->group_node);
 | |
| 	}
 | |
| 	cfs_rq->nr_running--;
 | |
| 	se->on_rq = 0;
 | |
| }
 | |
| 
 | |
| static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	struct task_struct *tsk = NULL;
 | |
| 
 | |
| 	if (entity_is_task(se))
 | |
| 		tsk = task_of(se);
 | |
| 
 | |
| 	if (se->statistics.sleep_start) {
 | |
| 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
 | |
| 
 | |
| 		if ((s64)delta < 0)
 | |
| 			delta = 0;
 | |
| 
 | |
| 		if (unlikely(delta > se->statistics.sleep_max))
 | |
| 			se->statistics.sleep_max = delta;
 | |
| 
 | |
| 		se->statistics.sleep_start = 0;
 | |
| 		se->statistics.sum_sleep_runtime += delta;
 | |
| 
 | |
| 		if (tsk) {
 | |
| 			account_scheduler_latency(tsk, delta >> 10, 1);
 | |
| 			trace_sched_stat_sleep(tsk, delta);
 | |
| 		}
 | |
| 	}
 | |
| 	if (se->statistics.block_start) {
 | |
| 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
 | |
| 
 | |
| 		if ((s64)delta < 0)
 | |
| 			delta = 0;
 | |
| 
 | |
| 		if (unlikely(delta > se->statistics.block_max))
 | |
| 			se->statistics.block_max = delta;
 | |
| 
 | |
| 		se->statistics.block_start = 0;
 | |
| 		se->statistics.sum_sleep_runtime += delta;
 | |
| 
 | |
| 		if (tsk) {
 | |
| 			if (tsk->in_iowait) {
 | |
| 				se->statistics.iowait_sum += delta;
 | |
| 				se->statistics.iowait_count++;
 | |
| 				trace_sched_stat_iowait(tsk, delta);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Blocking time is in units of nanosecs, so shift by
 | |
| 			 * 20 to get a milliseconds-range estimation of the
 | |
| 			 * amount of time that the task spent sleeping:
 | |
| 			 */
 | |
| 			if (unlikely(prof_on == SLEEP_PROFILING)) {
 | |
| 				profile_hits(SLEEP_PROFILING,
 | |
| 						(void *)get_wchan(tsk),
 | |
| 						delta >> 20);
 | |
| 			}
 | |
| 			account_scheduler_latency(tsk, delta >> 10, 0);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| 	s64 d = se->vruntime - cfs_rq->min_vruntime;
 | |
| 
 | |
| 	if (d < 0)
 | |
| 		d = -d;
 | |
| 
 | |
| 	if (d > 3*sysctl_sched_latency)
 | |
| 		schedstat_inc(cfs_rq, nr_spread_over);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
 | |
| {
 | |
| 	u64 vruntime = cfs_rq->min_vruntime;
 | |
| 
 | |
| 	/*
 | |
| 	 * The 'current' period is already promised to the current tasks,
 | |
| 	 * however the extra weight of the new task will slow them down a
 | |
| 	 * little, place the new task so that it fits in the slot that
 | |
| 	 * stays open at the end.
 | |
| 	 */
 | |
| 	if (initial && sched_feat(START_DEBIT))
 | |
| 		vruntime += sched_vslice(cfs_rq, se);
 | |
| 
 | |
| 	/* sleeps up to a single latency don't count. */
 | |
| 	if (!initial) {
 | |
| 		unsigned long thresh = sysctl_sched_latency;
 | |
| 
 | |
| 		/*
 | |
| 		 * Halve their sleep time's effect, to allow
 | |
| 		 * for a gentler effect of sleepers:
 | |
| 		 */
 | |
| 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
 | |
| 			thresh >>= 1;
 | |
| 
 | |
| 		vruntime -= thresh;
 | |
| 	}
 | |
| 
 | |
| 	/* ensure we never gain time by being placed backwards. */
 | |
| 	vruntime = max_vruntime(se->vruntime, vruntime);
 | |
| 
 | |
| 	se->vruntime = vruntime;
 | |
| }
 | |
| 
 | |
| static void
 | |
| enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update the normalized vruntime before updating min_vruntime
 | |
| 	 * through callig update_curr().
 | |
| 	 */
 | |
| 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
 | |
| 		se->vruntime += cfs_rq->min_vruntime;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 	account_entity_enqueue(cfs_rq, se);
 | |
| 
 | |
| 	if (flags & ENQUEUE_WAKEUP) {
 | |
| 		place_entity(cfs_rq, se, 0);
 | |
| 		enqueue_sleeper(cfs_rq, se);
 | |
| 	}
 | |
| 
 | |
| 	update_stats_enqueue(cfs_rq, se);
 | |
| 	check_spread(cfs_rq, se);
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		__enqueue_entity(cfs_rq, se);
 | |
| }
 | |
| 
 | |
| static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	if (!se || cfs_rq->last == se)
 | |
| 		cfs_rq->last = NULL;
 | |
| 
 | |
| 	if (!se || cfs_rq->next == se)
 | |
| 		cfs_rq->next = NULL;
 | |
| }
 | |
| 
 | |
| static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	for_each_sched_entity(se)
 | |
| 		__clear_buddies(cfs_rq_of(se), se);
 | |
| }
 | |
| 
 | |
| static void
 | |
| dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| 	update_stats_dequeue(cfs_rq, se);
 | |
| 	if (flags & DEQUEUE_SLEEP) {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 		if (entity_is_task(se)) {
 | |
| 			struct task_struct *tsk = task_of(se);
 | |
| 
 | |
| 			if (tsk->state & TASK_INTERRUPTIBLE)
 | |
| 				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
 | |
| 			if (tsk->state & TASK_UNINTERRUPTIBLE)
 | |
| 				se->statistics.block_start = rq_of(cfs_rq)->clock;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	if (se != cfs_rq->curr)
 | |
| 		__dequeue_entity(cfs_rq, se);
 | |
| 	account_entity_dequeue(cfs_rq, se);
 | |
| 	update_min_vruntime(cfs_rq);
 | |
| 
 | |
| 	/*
 | |
| 	 * Normalize the entity after updating the min_vruntime because the
 | |
| 	 * update can refer to the ->curr item and we need to reflect this
 | |
| 	 * movement in our normalized position.
 | |
| 	 */
 | |
| 	if (!(flags & DEQUEUE_SLEEP))
 | |
| 		se->vruntime -= cfs_rq->min_vruntime;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void
 | |
| check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 | |
| {
 | |
| 	unsigned long ideal_runtime, delta_exec;
 | |
| 
 | |
| 	ideal_runtime = sched_slice(cfs_rq, curr);
 | |
| 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
 | |
| 	if (delta_exec > ideal_runtime) {
 | |
| 		resched_task(rq_of(cfs_rq)->curr);
 | |
| 		/*
 | |
| 		 * The current task ran long enough, ensure it doesn't get
 | |
| 		 * re-elected due to buddy favours.
 | |
| 		 */
 | |
| 		clear_buddies(cfs_rq, curr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that a task that missed wakeup preemption by a
 | |
| 	 * narrow margin doesn't have to wait for a full slice.
 | |
| 	 * This also mitigates buddy induced latencies under load.
 | |
| 	 */
 | |
| 	if (!sched_feat(WAKEUP_PREEMPT))
 | |
| 		return;
 | |
| 
 | |
| 	if (delta_exec < sysctl_sched_min_granularity)
 | |
| 		return;
 | |
| 
 | |
| 	if (cfs_rq->nr_running > 1) {
 | |
| 		struct sched_entity *se = __pick_next_entity(cfs_rq);
 | |
| 		s64 delta = curr->vruntime - se->vruntime;
 | |
| 
 | |
| 		if (delta > ideal_runtime)
 | |
| 			resched_task(rq_of(cfs_rq)->curr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 | |
| {
 | |
| 	/* 'current' is not kept within the tree. */
 | |
| 	if (se->on_rq) {
 | |
| 		/*
 | |
| 		 * Any task has to be enqueued before it get to execute on
 | |
| 		 * a CPU. So account for the time it spent waiting on the
 | |
| 		 * runqueue.
 | |
| 		 */
 | |
| 		update_stats_wait_end(cfs_rq, se);
 | |
| 		__dequeue_entity(cfs_rq, se);
 | |
| 	}
 | |
| 
 | |
| 	update_stats_curr_start(cfs_rq, se);
 | |
| 	cfs_rq->curr = se;
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	/*
 | |
| 	 * Track our maximum slice length, if the CPU's load is at
 | |
| 	 * least twice that of our own weight (i.e. dont track it
 | |
| 	 * when there are only lesser-weight tasks around):
 | |
| 	 */
 | |
| 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
 | |
| 		se->statistics.slice_max = max(se->statistics.slice_max,
 | |
| 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
 | |
| 	}
 | |
| #endif
 | |
| 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
 | |
| }
 | |
| 
 | |
| static int
 | |
| wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
 | |
| 
 | |
| static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
 | |
| {
 | |
| 	struct sched_entity *se = __pick_next_entity(cfs_rq);
 | |
| 	struct sched_entity *left = se;
 | |
| 
 | |
| 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
 | |
| 		se = cfs_rq->next;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prefer last buddy, try to return the CPU to a preempted task.
 | |
| 	 */
 | |
| 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
 | |
| 		se = cfs_rq->last;
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	return se;
 | |
| }
 | |
| 
 | |
| static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 | |
| {
 | |
| 	/*
 | |
| 	 * If still on the runqueue then deactivate_task()
 | |
| 	 * was not called and update_curr() has to be done:
 | |
| 	 */
 | |
| 	if (prev->on_rq)
 | |
| 		update_curr(cfs_rq);
 | |
| 
 | |
| 	check_spread(cfs_rq, prev);
 | |
| 	if (prev->on_rq) {
 | |
| 		update_stats_wait_start(cfs_rq, prev);
 | |
| 		/* Put 'current' back into the tree. */
 | |
| 		__enqueue_entity(cfs_rq, prev);
 | |
| 	}
 | |
| 	cfs_rq->curr = NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
 | |
| {
 | |
| 	/*
 | |
| 	 * Update run-time statistics of the 'current'.
 | |
| 	 */
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| 	/*
 | |
| 	 * queued ticks are scheduled to match the slice, so don't bother
 | |
| 	 * validating it and just reschedule.
 | |
| 	 */
 | |
| 	if (queued) {
 | |
| 		resched_task(rq_of(cfs_rq)->curr);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * don't let the period tick interfere with the hrtick preemption
 | |
| 	 */
 | |
| 	if (!sched_feat(DOUBLE_TICK) &&
 | |
| 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
 | |
| 		return;
 | |
| #endif
 | |
| 
 | |
| 	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
 | |
| 		check_preempt_tick(cfs_rq, curr);
 | |
| }
 | |
| 
 | |
| /**************************************************
 | |
|  * CFS operations on tasks:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_HRTICK
 | |
| static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	WARN_ON(task_rq(p) != rq);
 | |
| 
 | |
| 	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
 | |
| 		u64 slice = sched_slice(cfs_rq, se);
 | |
| 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
 | |
| 		s64 delta = slice - ran;
 | |
| 
 | |
| 		if (delta < 0) {
 | |
| 			if (rq->curr == p)
 | |
| 				resched_task(p);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't schedule slices shorter than 10000ns, that just
 | |
| 		 * doesn't make sense. Rely on vruntime for fairness.
 | |
| 		 */
 | |
| 		if (rq->curr != p)
 | |
| 			delta = max_t(s64, 10000LL, delta);
 | |
| 
 | |
| 		hrtick_start(rq, delta);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called from enqueue/dequeue and updates the hrtick when the
 | |
|  * current task is from our class and nr_running is low enough
 | |
|  * to matter.
 | |
|  */
 | |
| static void hrtick_update(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 
 | |
| 	if (curr->sched_class != &fair_sched_class)
 | |
| 		return;
 | |
| 
 | |
| 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
 | |
| 		hrtick_start_fair(rq, curr);
 | |
| }
 | |
| #else /* !CONFIG_SCHED_HRTICK */
 | |
| static inline void
 | |
| hrtick_start_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void hrtick_update(struct rq *rq)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The enqueue_task method is called before nr_running is
 | |
|  * increased. Here we update the fair scheduling stats and
 | |
|  * then put the task into the rbtree:
 | |
|  */
 | |
| static void
 | |
| enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		if (se->on_rq)
 | |
| 			break;
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		enqueue_entity(cfs_rq, se, flags);
 | |
| 		flags = ENQUEUE_WAKEUP;
 | |
| 	}
 | |
| 
 | |
| 	hrtick_update(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The dequeue_task method is called before nr_running is
 | |
|  * decreased. We remove the task from the rbtree and
 | |
|  * update the fair scheduling stats:
 | |
|  */
 | |
| static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		dequeue_entity(cfs_rq, se, flags);
 | |
| 		/* Don't dequeue parent if it has other entities besides us */
 | |
| 		if (cfs_rq->load.weight)
 | |
| 			break;
 | |
| 		flags |= DEQUEUE_SLEEP;
 | |
| 	}
 | |
| 
 | |
| 	hrtick_update(rq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_yield() support is very simple - we dequeue and enqueue.
 | |
|  *
 | |
|  * If compat_yield is turned on then we requeue to the end of the tree.
 | |
|  */
 | |
| static void yield_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | |
| 	struct sched_entity *rightmost, *se = &curr->se;
 | |
| 
 | |
| 	/*
 | |
| 	 * Are we the only task in the tree?
 | |
| 	 */
 | |
| 	if (unlikely(cfs_rq->nr_running == 1))
 | |
| 		return;
 | |
| 
 | |
| 	clear_buddies(cfs_rq, se);
 | |
| 
 | |
| 	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
 | |
| 		update_rq_clock(rq);
 | |
| 		/*
 | |
| 		 * Update run-time statistics of the 'current'.
 | |
| 		 */
 | |
| 		update_curr(cfs_rq);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Find the rightmost entry in the rbtree:
 | |
| 	 */
 | |
| 	rightmost = __pick_last_entity(cfs_rq);
 | |
| 	/*
 | |
| 	 * Already in the rightmost position?
 | |
| 	 */
 | |
| 	if (unlikely(!rightmost || entity_before(rightmost, se)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Minimally necessary key value to be last in the tree:
 | |
| 	 * Upon rescheduling, sched_class::put_prev_task() will place
 | |
| 	 * 'current' within the tree based on its new key value.
 | |
| 	 */
 | |
| 	se->vruntime = rightmost->vruntime + 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static void task_waking_fair(struct rq *rq, struct task_struct *p)
 | |
| {
 | |
| 	struct sched_entity *se = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
 | |
| 
 | |
| 	se->vruntime -= cfs_rq->min_vruntime;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| /*
 | |
|  * effective_load() calculates the load change as seen from the root_task_group
 | |
|  *
 | |
|  * Adding load to a group doesn't make a group heavier, but can cause movement
 | |
|  * of group shares between cpus. Assuming the shares were perfectly aligned one
 | |
|  * can calculate the shift in shares.
 | |
|  *
 | |
|  * The problem is that perfectly aligning the shares is rather expensive, hence
 | |
|  * we try to avoid doing that too often - see update_shares(), which ratelimits
 | |
|  * this change.
 | |
|  *
 | |
|  * We compensate this by not only taking the current delta into account, but
 | |
|  * also considering the delta between when the shares were last adjusted and
 | |
|  * now.
 | |
|  *
 | |
|  * We still saw a performance dip, some tracing learned us that between
 | |
|  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 | |
|  * significantly. Therefore try to bias the error in direction of failing
 | |
|  * the affine wakeup.
 | |
|  *
 | |
|  */
 | |
| static long effective_load(struct task_group *tg, int cpu,
 | |
| 		long wl, long wg)
 | |
| {
 | |
| 	struct sched_entity *se = tg->se[cpu];
 | |
| 
 | |
| 	if (!tg->parent)
 | |
| 		return wl;
 | |
| 
 | |
| 	/*
 | |
| 	 * By not taking the decrease of shares on the other cpu into
 | |
| 	 * account our error leans towards reducing the affine wakeups.
 | |
| 	 */
 | |
| 	if (!wl && sched_feat(ASYM_EFF_LOAD))
 | |
| 		return wl;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		long S, rw, s, a, b;
 | |
| 		long more_w;
 | |
| 
 | |
| 		/*
 | |
| 		 * Instead of using this increment, also add the difference
 | |
| 		 * between when the shares were last updated and now.
 | |
| 		 */
 | |
| 		more_w = se->my_q->load.weight - se->my_q->rq_weight;
 | |
| 		wl += more_w;
 | |
| 		wg += more_w;
 | |
| 
 | |
| 		S = se->my_q->tg->shares;
 | |
| 		s = se->my_q->shares;
 | |
| 		rw = se->my_q->rq_weight;
 | |
| 
 | |
| 		a = S*(rw + wl);
 | |
| 		b = S*rw + s*wg;
 | |
| 
 | |
| 		wl = s*(a-b);
 | |
| 
 | |
| 		if (likely(b))
 | |
| 			wl /= b;
 | |
| 
 | |
| 		/*
 | |
| 		 * Assume the group is already running and will
 | |
| 		 * thus already be accounted for in the weight.
 | |
| 		 *
 | |
| 		 * That is, moving shares between CPUs, does not
 | |
| 		 * alter the group weight.
 | |
| 		 */
 | |
| 		wg = 0;
 | |
| 	}
 | |
| 
 | |
| 	return wl;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline unsigned long effective_load(struct task_group *tg, int cpu,
 | |
| 		unsigned long wl, unsigned long wg)
 | |
| {
 | |
| 	return wl;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
 | |
| {
 | |
| 	unsigned long this_load, load;
 | |
| 	int idx, this_cpu, prev_cpu;
 | |
| 	unsigned long tl_per_task;
 | |
| 	struct task_group *tg;
 | |
| 	unsigned long weight;
 | |
| 	int balanced;
 | |
| 
 | |
| 	idx	  = sd->wake_idx;
 | |
| 	this_cpu  = smp_processor_id();
 | |
| 	prev_cpu  = task_cpu(p);
 | |
| 	load	  = source_load(prev_cpu, idx);
 | |
| 	this_load = target_load(this_cpu, idx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If sync wakeup then subtract the (maximum possible)
 | |
| 	 * effect of the currently running task from the load
 | |
| 	 * of the current CPU:
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	if (sync) {
 | |
| 		tg = task_group(current);
 | |
| 		weight = current->se.load.weight;
 | |
| 
 | |
| 		this_load += effective_load(tg, this_cpu, -weight, -weight);
 | |
| 		load += effective_load(tg, prev_cpu, 0, -weight);
 | |
| 	}
 | |
| 
 | |
| 	tg = task_group(p);
 | |
| 	weight = p->se.load.weight;
 | |
| 
 | |
| 	/*
 | |
| 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
 | |
| 	 * due to the sync cause above having dropped this_load to 0, we'll
 | |
| 	 * always have an imbalance, but there's really nothing you can do
 | |
| 	 * about that, so that's good too.
 | |
| 	 *
 | |
| 	 * Otherwise check if either cpus are near enough in load to allow this
 | |
| 	 * task to be woken on this_cpu.
 | |
| 	 */
 | |
| 	if (this_load) {
 | |
| 		unsigned long this_eff_load, prev_eff_load;
 | |
| 
 | |
| 		this_eff_load = 100;
 | |
| 		this_eff_load *= power_of(prev_cpu);
 | |
| 		this_eff_load *= this_load +
 | |
| 			effective_load(tg, this_cpu, weight, weight);
 | |
| 
 | |
| 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
 | |
| 		prev_eff_load *= power_of(this_cpu);
 | |
| 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
 | |
| 
 | |
| 		balanced = this_eff_load <= prev_eff_load;
 | |
| 	} else
 | |
| 		balanced = true;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * If the currently running task will sleep within
 | |
| 	 * a reasonable amount of time then attract this newly
 | |
| 	 * woken task:
 | |
| 	 */
 | |
| 	if (sync && balanced)
 | |
| 		return 1;
 | |
| 
 | |
| 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
 | |
| 	tl_per_task = cpu_avg_load_per_task(this_cpu);
 | |
| 
 | |
| 	if (balanced ||
 | |
| 	    (this_load <= load &&
 | |
| 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
 | |
| 		/*
 | |
| 		 * This domain has SD_WAKE_AFFINE and
 | |
| 		 * p is cache cold in this domain, and
 | |
| 		 * there is no bad imbalance.
 | |
| 		 */
 | |
| 		schedstat_inc(sd, ttwu_move_affine);
 | |
| 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_idlest_group finds and returns the least busy CPU group within the
 | |
|  * domain.
 | |
|  */
 | |
| static struct sched_group *
 | |
| find_idlest_group(struct sched_domain *sd, struct task_struct *p,
 | |
| 		  int this_cpu, int load_idx)
 | |
| {
 | |
| 	struct sched_group *idlest = NULL, *group = sd->groups;
 | |
| 	unsigned long min_load = ULONG_MAX, this_load = 0;
 | |
| 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned long load, avg_load;
 | |
| 		int local_group;
 | |
| 		int i;
 | |
| 
 | |
| 		/* Skip over this group if it has no CPUs allowed */
 | |
| 		if (!cpumask_intersects(sched_group_cpus(group),
 | |
| 					&p->cpus_allowed))
 | |
| 			continue;
 | |
| 
 | |
| 		local_group = cpumask_test_cpu(this_cpu,
 | |
| 					       sched_group_cpus(group));
 | |
| 
 | |
| 		/* Tally up the load of all CPUs in the group */
 | |
| 		avg_load = 0;
 | |
| 
 | |
| 		for_each_cpu(i, sched_group_cpus(group)) {
 | |
| 			/* Bias balancing toward cpus of our domain */
 | |
| 			if (local_group)
 | |
| 				load = source_load(i, load_idx);
 | |
| 			else
 | |
| 				load = target_load(i, load_idx);
 | |
| 
 | |
| 			avg_load += load;
 | |
| 		}
 | |
| 
 | |
| 		/* Adjust by relative CPU power of the group */
 | |
| 		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
 | |
| 
 | |
| 		if (local_group) {
 | |
| 			this_load = avg_load;
 | |
| 		} else if (avg_load < min_load) {
 | |
| 			min_load = avg_load;
 | |
| 			idlest = group;
 | |
| 		}
 | |
| 	} while (group = group->next, group != sd->groups);
 | |
| 
 | |
| 	if (!idlest || 100*this_load < imbalance*min_load)
 | |
| 		return NULL;
 | |
| 	return idlest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_idlest_cpu - find the idlest cpu among the cpus in group.
 | |
|  */
 | |
| static int
 | |
| find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
 | |
| {
 | |
| 	unsigned long load, min_load = ULONG_MAX;
 | |
| 	int idlest = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Traverse only the allowed CPUs */
 | |
| 	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
 | |
| 		load = weighted_cpuload(i);
 | |
| 
 | |
| 		if (load < min_load || (load == min_load && i == this_cpu)) {
 | |
| 			min_load = load;
 | |
| 			idlest = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return idlest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try and locate an idle CPU in the sched_domain.
 | |
|  */
 | |
| static int select_idle_sibling(struct task_struct *p, int target)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int prev_cpu = task_cpu(p);
 | |
| 	struct sched_domain *sd;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task is going to be woken-up on this cpu and if it is
 | |
| 	 * already idle, then it is the right target.
 | |
| 	 */
 | |
| 	if (target == cpu && idle_cpu(cpu))
 | |
| 		return cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the task is going to be woken-up on the cpu where it previously
 | |
| 	 * ran and if it is currently idle, then it the right target.
 | |
| 	 */
 | |
| 	if (target == prev_cpu && idle_cpu(prev_cpu))
 | |
| 		return prev_cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise, iterate the domains and find an elegible idle cpu.
 | |
| 	 */
 | |
| 	for_each_domain(target, sd) {
 | |
| 		if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
 | |
| 			break;
 | |
| 
 | |
| 		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
 | |
| 			if (idle_cpu(i)) {
 | |
| 				target = i;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Lets stop looking for an idle sibling when we reached
 | |
| 		 * the domain that spans the current cpu and prev_cpu.
 | |
| 		 */
 | |
| 		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
 | |
| 		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return target;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_balance_self: balance the current task (running on cpu) in domains
 | |
|  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 | |
|  * SD_BALANCE_EXEC.
 | |
|  *
 | |
|  * Balance, ie. select the least loaded group.
 | |
|  *
 | |
|  * Returns the target CPU number, or the same CPU if no balancing is needed.
 | |
|  *
 | |
|  * preempt must be disabled.
 | |
|  */
 | |
| static int
 | |
| select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
 | |
| {
 | |
| 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	int prev_cpu = task_cpu(p);
 | |
| 	int new_cpu = cpu;
 | |
| 	int want_affine = 0;
 | |
| 	int want_sd = 1;
 | |
| 	int sync = wake_flags & WF_SYNC;
 | |
| 
 | |
| 	if (sd_flag & SD_BALANCE_WAKE) {
 | |
| 		if (cpumask_test_cpu(cpu, &p->cpus_allowed))
 | |
| 			want_affine = 1;
 | |
| 		new_cpu = prev_cpu;
 | |
| 	}
 | |
| 
 | |
| 	for_each_domain(cpu, tmp) {
 | |
| 		if (!(tmp->flags & SD_LOAD_BALANCE))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If power savings logic is enabled for a domain, see if we
 | |
| 		 * are not overloaded, if so, don't balance wider.
 | |
| 		 */
 | |
| 		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
 | |
| 			unsigned long power = 0;
 | |
| 			unsigned long nr_running = 0;
 | |
| 			unsigned long capacity;
 | |
| 			int i;
 | |
| 
 | |
| 			for_each_cpu(i, sched_domain_span(tmp)) {
 | |
| 				power += power_of(i);
 | |
| 				nr_running += cpu_rq(i)->cfs.nr_running;
 | |
| 			}
 | |
| 
 | |
| 			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
 | |
| 
 | |
| 			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
 | |
| 				nr_running /= 2;
 | |
| 
 | |
| 			if (nr_running < capacity)
 | |
| 				want_sd = 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If both cpu and prev_cpu are part of this domain,
 | |
| 		 * cpu is a valid SD_WAKE_AFFINE target.
 | |
| 		 */
 | |
| 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
 | |
| 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
 | |
| 			affine_sd = tmp;
 | |
| 			want_affine = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (!want_sd && !want_affine)
 | |
| 			break;
 | |
| 
 | |
| 		if (!(tmp->flags & sd_flag))
 | |
| 			continue;
 | |
| 
 | |
| 		if (want_sd)
 | |
| 			sd = tmp;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	if (sched_feat(LB_SHARES_UPDATE)) {
 | |
| 		/*
 | |
| 		 * Pick the largest domain to update shares over
 | |
| 		 */
 | |
| 		tmp = sd;
 | |
| 		if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
 | |
| 			tmp = affine_sd;
 | |
| 
 | |
| 		if (tmp) {
 | |
| 			raw_spin_unlock(&rq->lock);
 | |
| 			update_shares(tmp);
 | |
| 			raw_spin_lock(&rq->lock);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (affine_sd) {
 | |
| 		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
 | |
| 			return select_idle_sibling(p, cpu);
 | |
| 		else
 | |
| 			return select_idle_sibling(p, prev_cpu);
 | |
| 	}
 | |
| 
 | |
| 	while (sd) {
 | |
| 		int load_idx = sd->forkexec_idx;
 | |
| 		struct sched_group *group;
 | |
| 		int weight;
 | |
| 
 | |
| 		if (!(sd->flags & sd_flag)) {
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (sd_flag & SD_BALANCE_WAKE)
 | |
| 			load_idx = sd->wake_idx;
 | |
| 
 | |
| 		group = find_idlest_group(sd, p, cpu, load_idx);
 | |
| 		if (!group) {
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		new_cpu = find_idlest_cpu(group, p, cpu);
 | |
| 		if (new_cpu == -1 || new_cpu == cpu) {
 | |
| 			/* Now try balancing at a lower domain level of cpu */
 | |
| 			sd = sd->child;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Now try balancing at a lower domain level of new_cpu */
 | |
| 		cpu = new_cpu;
 | |
| 		weight = sd->span_weight;
 | |
| 		sd = NULL;
 | |
| 		for_each_domain(cpu, tmp) {
 | |
| 			if (weight <= tmp->span_weight)
 | |
| 				break;
 | |
| 			if (tmp->flags & sd_flag)
 | |
| 				sd = tmp;
 | |
| 		}
 | |
| 		/* while loop will break here if sd == NULL */
 | |
| 	}
 | |
| 
 | |
| 	return new_cpu;
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| static unsigned long
 | |
| wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
 | |
| {
 | |
| 	unsigned long gran = sysctl_sched_wakeup_granularity;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since its curr running now, convert the gran from real-time
 | |
| 	 * to virtual-time in his units.
 | |
| 	 *
 | |
| 	 * By using 'se' instead of 'curr' we penalize light tasks, so
 | |
| 	 * they get preempted easier. That is, if 'se' < 'curr' then
 | |
| 	 * the resulting gran will be larger, therefore penalizing the
 | |
| 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
 | |
| 	 * be smaller, again penalizing the lighter task.
 | |
| 	 *
 | |
| 	 * This is especially important for buddies when the leftmost
 | |
| 	 * task is higher priority than the buddy.
 | |
| 	 */
 | |
| 	if (unlikely(se->load.weight != NICE_0_LOAD))
 | |
| 		gran = calc_delta_fair(gran, se);
 | |
| 
 | |
| 	return gran;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Should 'se' preempt 'curr'.
 | |
|  *
 | |
|  *             |s1
 | |
|  *        |s2
 | |
|  *   |s3
 | |
|  *         g
 | |
|  *      |<--->|c
 | |
|  *
 | |
|  *  w(c, s1) = -1
 | |
|  *  w(c, s2) =  0
 | |
|  *  w(c, s3) =  1
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
 | |
| {
 | |
| 	s64 gran, vdiff = curr->vruntime - se->vruntime;
 | |
| 
 | |
| 	if (vdiff <= 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	gran = wakeup_gran(curr, se);
 | |
| 	if (vdiff > gran)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void set_last_buddy(struct sched_entity *se)
 | |
| {
 | |
| 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
 | |
| 		for_each_sched_entity(se)
 | |
| 			cfs_rq_of(se)->last = se;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void set_next_buddy(struct sched_entity *se)
 | |
| {
 | |
| 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
 | |
| 		for_each_sched_entity(se)
 | |
| 			cfs_rq_of(se)->next = se;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Preempt the current task with a newly woken task if needed:
 | |
|  */
 | |
| static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
 | |
| {
 | |
| 	struct task_struct *curr = rq->curr;
 | |
| 	struct sched_entity *se = &curr->se, *pse = &p->se;
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
 | |
| 	int scale = cfs_rq->nr_running >= sched_nr_latency;
 | |
| 
 | |
| 	if (unlikely(rt_prio(p->prio)))
 | |
| 		goto preempt;
 | |
| 
 | |
| 	if (unlikely(p->sched_class != &fair_sched_class))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(se == pse))
 | |
| 		return;
 | |
| 
 | |
| 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
 | |
| 		set_next_buddy(pse);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can come here with TIF_NEED_RESCHED already set from new task
 | |
| 	 * wake up path.
 | |
| 	 */
 | |
| 	if (test_tsk_need_resched(curr))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Batch and idle tasks do not preempt (their preemption is driven by
 | |
| 	 * the tick):
 | |
| 	 */
 | |
| 	if (unlikely(p->policy != SCHED_NORMAL))
 | |
| 		return;
 | |
| 
 | |
| 	/* Idle tasks are by definition preempted by everybody. */
 | |
| 	if (unlikely(curr->policy == SCHED_IDLE))
 | |
| 		goto preempt;
 | |
| 
 | |
| 	if (!sched_feat(WAKEUP_PREEMPT))
 | |
| 		return;
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 	find_matching_se(&se, &pse);
 | |
| 	BUG_ON(!pse);
 | |
| 	if (wakeup_preempt_entity(se, pse) == 1)
 | |
| 		goto preempt;
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| preempt:
 | |
| 	resched_task(curr);
 | |
| 	/*
 | |
| 	 * Only set the backward buddy when the current task is still
 | |
| 	 * on the rq. This can happen when a wakeup gets interleaved
 | |
| 	 * with schedule on the ->pre_schedule() or idle_balance()
 | |
| 	 * point, either of which can * drop the rq lock.
 | |
| 	 *
 | |
| 	 * Also, during early boot the idle thread is in the fair class,
 | |
| 	 * for obvious reasons its a bad idea to schedule back to it.
 | |
| 	 */
 | |
| 	if (unlikely(!se->on_rq || curr == rq->idle))
 | |
| 		return;
 | |
| 
 | |
| 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
 | |
| 		set_last_buddy(se);
 | |
| }
 | |
| 
 | |
| static struct task_struct *pick_next_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct task_struct *p;
 | |
| 	struct cfs_rq *cfs_rq = &rq->cfs;
 | |
| 	struct sched_entity *se;
 | |
| 
 | |
| 	if (!cfs_rq->nr_running)
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		se = pick_next_entity(cfs_rq);
 | |
| 		set_next_entity(cfs_rq, se);
 | |
| 		cfs_rq = group_cfs_rq(se);
 | |
| 	} while (cfs_rq);
 | |
| 
 | |
| 	p = task_of(se);
 | |
| 	hrtick_start_fair(rq, p);
 | |
| 
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account for a descheduled task:
 | |
|  */
 | |
| static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
 | |
| {
 | |
| 	struct sched_entity *se = &prev->se;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		put_prev_entity(cfs_rq, se);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /**************************************************
 | |
|  * Fair scheduling class load-balancing methods:
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * pull_task - move a task from a remote runqueue to the local runqueue.
 | |
|  * Both runqueues must be locked.
 | |
|  */
 | |
| static void pull_task(struct rq *src_rq, struct task_struct *p,
 | |
| 		      struct rq *this_rq, int this_cpu)
 | |
| {
 | |
| 	deactivate_task(src_rq, p, 0);
 | |
| 	set_task_cpu(p, this_cpu);
 | |
| 	activate_task(this_rq, p, 0);
 | |
| 	check_preempt_curr(this_rq, p, 0);
 | |
| 
 | |
| 	/* re-arm NEWIDLE balancing when moving tasks */
 | |
| 	src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
 | |
| 	this_rq->idle_stamp = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 | |
|  */
 | |
| static
 | |
| int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
 | |
| 		     struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 		     int *all_pinned)
 | |
| {
 | |
| 	int tsk_cache_hot = 0;
 | |
| 	/*
 | |
| 	 * We do not migrate tasks that are:
 | |
| 	 * 1) running (obviously), or
 | |
| 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
 | |
| 	 * 3) are cache-hot on their current CPU.
 | |
| 	 */
 | |
| 	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
 | |
| 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	*all_pinned = 0;
 | |
| 
 | |
| 	if (task_running(rq, p)) {
 | |
| 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Aggressive migration if:
 | |
| 	 * 1) task is cache cold, or
 | |
| 	 * 2) too many balance attempts have failed.
 | |
| 	 */
 | |
| 
 | |
| 	tsk_cache_hot = task_hot(p, rq->clock_task, sd);
 | |
| 	if (!tsk_cache_hot ||
 | |
| 		sd->nr_balance_failed > sd->cache_nice_tries) {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 		if (tsk_cache_hot) {
 | |
| 			schedstat_inc(sd, lb_hot_gained[idle]);
 | |
| 			schedstat_inc(p, se.statistics.nr_forced_migrations);
 | |
| 		}
 | |
| #endif
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (tsk_cache_hot) {
 | |
| 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * move_one_task tries to move exactly one task from busiest to this_rq, as
 | |
|  * part of active balancing operations within "domain".
 | |
|  * Returns 1 if successful and 0 otherwise.
 | |
|  *
 | |
|  * Called with both runqueues locked.
 | |
|  */
 | |
| static int
 | |
| move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 	      struct sched_domain *sd, enum cpu_idle_type idle)
 | |
| {
 | |
| 	struct task_struct *p, *n;
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	int pinned = 0;
 | |
| 
 | |
| 	for_each_leaf_cfs_rq(busiest, cfs_rq) {
 | |
| 		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
 | |
| 
 | |
| 			if (!can_migrate_task(p, busiest, this_cpu,
 | |
| 						sd, idle, &pinned))
 | |
| 				continue;
 | |
| 
 | |
| 			pull_task(busiest, p, this_rq, this_cpu);
 | |
| 			/*
 | |
| 			 * Right now, this is only the second place pull_task()
 | |
| 			 * is called, so we can safely collect pull_task()
 | |
| 			 * stats here rather than inside pull_task().
 | |
| 			 */
 | |
| 			schedstat_inc(sd, lb_gained[idle]);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 	      unsigned long max_load_move, struct sched_domain *sd,
 | |
| 	      enum cpu_idle_type idle, int *all_pinned,
 | |
| 	      int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
 | |
| {
 | |
| 	int loops = 0, pulled = 0, pinned = 0;
 | |
| 	long rem_load_move = max_load_move;
 | |
| 	struct task_struct *p, *n;
 | |
| 
 | |
| 	if (max_load_move == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	pinned = 1;
 | |
| 
 | |
| 	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
 | |
| 		if (loops++ > sysctl_sched_nr_migrate)
 | |
| 			break;
 | |
| 
 | |
| 		if ((p->se.load.weight >> 1) > rem_load_move ||
 | |
| 		    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
 | |
| 			continue;
 | |
| 
 | |
| 		pull_task(busiest, p, this_rq, this_cpu);
 | |
| 		pulled++;
 | |
| 		rem_load_move -= p->se.load.weight;
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 		/*
 | |
| 		 * NEWIDLE balancing is a source of latency, so preemptible
 | |
| 		 * kernels will stop after the first task is pulled to minimize
 | |
| 		 * the critical section.
 | |
| 		 */
 | |
| 		if (idle == CPU_NEWLY_IDLE)
 | |
| 			break;
 | |
| #endif
 | |
| 
 | |
| 		/*
 | |
| 		 * We only want to steal up to the prescribed amount of
 | |
| 		 * weighted load.
 | |
| 		 */
 | |
| 		if (rem_load_move <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (p->prio < *this_best_prio)
 | |
| 			*this_best_prio = p->prio;
 | |
| 	}
 | |
| out:
 | |
| 	/*
 | |
| 	 * Right now, this is one of only two places pull_task() is called,
 | |
| 	 * so we can safely collect pull_task() stats here rather than
 | |
| 	 * inside pull_task().
 | |
| 	 */
 | |
| 	schedstat_add(sd, lb_gained[idle], pulled);
 | |
| 
 | |
| 	if (all_pinned)
 | |
| 		*all_pinned = pinned;
 | |
| 
 | |
| 	return max_load_move - rem_load_move;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static unsigned long
 | |
| load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 		  unsigned long max_load_move,
 | |
| 		  struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 		  int *all_pinned, int *this_best_prio)
 | |
| {
 | |
| 	long rem_load_move = max_load_move;
 | |
| 	int busiest_cpu = cpu_of(busiest);
 | |
| 	struct task_group *tg;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	update_h_load(busiest_cpu);
 | |
| 
 | |
| 	list_for_each_entry_rcu(tg, &task_groups, list) {
 | |
| 		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
 | |
| 		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
 | |
| 		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
 | |
| 		u64 rem_load, moved_load;
 | |
| 
 | |
| 		/*
 | |
| 		 * empty group
 | |
| 		 */
 | |
| 		if (!busiest_cfs_rq->task_weight)
 | |
| 			continue;
 | |
| 
 | |
| 		rem_load = (u64)rem_load_move * busiest_weight;
 | |
| 		rem_load = div_u64(rem_load, busiest_h_load + 1);
 | |
| 
 | |
| 		moved_load = balance_tasks(this_rq, this_cpu, busiest,
 | |
| 				rem_load, sd, idle, all_pinned, this_best_prio,
 | |
| 				busiest_cfs_rq);
 | |
| 
 | |
| 		if (!moved_load)
 | |
| 			continue;
 | |
| 
 | |
| 		moved_load *= busiest_h_load;
 | |
| 		moved_load = div_u64(moved_load, busiest_weight + 1);
 | |
| 
 | |
| 		rem_load_move -= moved_load;
 | |
| 		if (rem_load_move < 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return max_load_move - rem_load_move;
 | |
| }
 | |
| #else
 | |
| static unsigned long
 | |
| load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 		  unsigned long max_load_move,
 | |
| 		  struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 		  int *all_pinned, int *this_best_prio)
 | |
| {
 | |
| 	return balance_tasks(this_rq, this_cpu, busiest,
 | |
| 			max_load_move, sd, idle, all_pinned,
 | |
| 			this_best_prio, &busiest->cfs);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * move_tasks tries to move up to max_load_move weighted load from busiest to
 | |
|  * this_rq, as part of a balancing operation within domain "sd".
 | |
|  * Returns 1 if successful and 0 otherwise.
 | |
|  *
 | |
|  * Called with both runqueues locked.
 | |
|  */
 | |
| static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
 | |
| 		      unsigned long max_load_move,
 | |
| 		      struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 		      int *all_pinned)
 | |
| {
 | |
| 	unsigned long total_load_moved = 0, load_moved;
 | |
| 	int this_best_prio = this_rq->curr->prio;
 | |
| 
 | |
| 	do {
 | |
| 		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
 | |
| 				max_load_move - total_load_moved,
 | |
| 				sd, idle, all_pinned, &this_best_prio);
 | |
| 
 | |
| 		total_load_moved += load_moved;
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 		/*
 | |
| 		 * NEWIDLE balancing is a source of latency, so preemptible
 | |
| 		 * kernels will stop after the first task is pulled to minimize
 | |
| 		 * the critical section.
 | |
| 		 */
 | |
| 		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
 | |
| 			break;
 | |
| 
 | |
| 		if (raw_spin_is_contended(&this_rq->lock) ||
 | |
| 				raw_spin_is_contended(&busiest->lock))
 | |
| 			break;
 | |
| #endif
 | |
| 	} while (load_moved && max_load_move > total_load_moved);
 | |
| 
 | |
| 	return total_load_moved > 0;
 | |
| }
 | |
| 
 | |
| /********** Helpers for find_busiest_group ************************/
 | |
| /*
 | |
|  * sd_lb_stats - Structure to store the statistics of a sched_domain
 | |
|  * 		during load balancing.
 | |
|  */
 | |
| struct sd_lb_stats {
 | |
| 	struct sched_group *busiest; /* Busiest group in this sd */
 | |
| 	struct sched_group *this;  /* Local group in this sd */
 | |
| 	unsigned long total_load;  /* Total load of all groups in sd */
 | |
| 	unsigned long total_pwr;   /*	Total power of all groups in sd */
 | |
| 	unsigned long avg_load;	   /* Average load across all groups in sd */
 | |
| 
 | |
| 	/** Statistics of this group */
 | |
| 	unsigned long this_load;
 | |
| 	unsigned long this_load_per_task;
 | |
| 	unsigned long this_nr_running;
 | |
| 	unsigned long this_has_capacity;
 | |
| 
 | |
| 	/* Statistics of the busiest group */
 | |
| 	unsigned long max_load;
 | |
| 	unsigned long busiest_load_per_task;
 | |
| 	unsigned long busiest_nr_running;
 | |
| 	unsigned long busiest_group_capacity;
 | |
| 	unsigned long busiest_has_capacity;
 | |
| 
 | |
| 	int group_imb; /* Is there imbalance in this sd */
 | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 | |
| 	int power_savings_balance; /* Is powersave balance needed for this sd */
 | |
| 	struct sched_group *group_min; /* Least loaded group in sd */
 | |
| 	struct sched_group *group_leader; /* Group which relieves group_min */
 | |
| 	unsigned long min_load_per_task; /* load_per_task in group_min */
 | |
| 	unsigned long leader_nr_running; /* Nr running of group_leader */
 | |
| 	unsigned long min_nr_running; /* Nr running of group_min */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * sg_lb_stats - stats of a sched_group required for load_balancing
 | |
|  */
 | |
| struct sg_lb_stats {
 | |
| 	unsigned long avg_load; /*Avg load across the CPUs of the group */
 | |
| 	unsigned long group_load; /* Total load over the CPUs of the group */
 | |
| 	unsigned long sum_nr_running; /* Nr tasks running in the group */
 | |
| 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
 | |
| 	unsigned long group_capacity;
 | |
| 	int group_imb; /* Is there an imbalance in the group ? */
 | |
| 	int group_has_capacity; /* Is there extra capacity in the group? */
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 | |
|  * @group: The group whose first cpu is to be returned.
 | |
|  */
 | |
| static inline unsigned int group_first_cpu(struct sched_group *group)
 | |
| {
 | |
| 	return cpumask_first(sched_group_cpus(group));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_sd_load_idx - Obtain the load index for a given sched domain.
 | |
|  * @sd: The sched_domain whose load_idx is to be obtained.
 | |
|  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 | |
|  */
 | |
| static inline int get_sd_load_idx(struct sched_domain *sd,
 | |
| 					enum cpu_idle_type idle)
 | |
| {
 | |
| 	int load_idx;
 | |
| 
 | |
| 	switch (idle) {
 | |
| 	case CPU_NOT_IDLE:
 | |
| 		load_idx = sd->busy_idx;
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_NEWLY_IDLE:
 | |
| 		load_idx = sd->newidle_idx;
 | |
| 		break;
 | |
| 	default:
 | |
| 		load_idx = sd->idle_idx;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return load_idx;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 | |
| /**
 | |
|  * init_sd_power_savings_stats - Initialize power savings statistics for
 | |
|  * the given sched_domain, during load balancing.
 | |
|  *
 | |
|  * @sd: Sched domain whose power-savings statistics are to be initialized.
 | |
|  * @sds: Variable containing the statistics for sd.
 | |
|  * @idle: Idle status of the CPU at which we're performing load-balancing.
 | |
|  */
 | |
| static inline void init_sd_power_savings_stats(struct sched_domain *sd,
 | |
| 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
 | |
| {
 | |
| 	/*
 | |
| 	 * Busy processors will not participate in power savings
 | |
| 	 * balance.
 | |
| 	 */
 | |
| 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
 | |
| 		sds->power_savings_balance = 0;
 | |
| 	else {
 | |
| 		sds->power_savings_balance = 1;
 | |
| 		sds->min_nr_running = ULONG_MAX;
 | |
| 		sds->leader_nr_running = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sd_power_savings_stats - Update the power saving stats for a
 | |
|  * sched_domain while performing load balancing.
 | |
|  *
 | |
|  * @group: sched_group belonging to the sched_domain under consideration.
 | |
|  * @sds: Variable containing the statistics of the sched_domain
 | |
|  * @local_group: Does group contain the CPU for which we're performing
 | |
|  * 		load balancing ?
 | |
|  * @sgs: Variable containing the statistics of the group.
 | |
|  */
 | |
| static inline void update_sd_power_savings_stats(struct sched_group *group,
 | |
| 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
 | |
| {
 | |
| 
 | |
| 	if (!sds->power_savings_balance)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the local group is idle or completely loaded
 | |
| 	 * no need to do power savings balance at this domain
 | |
| 	 */
 | |
| 	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
 | |
| 				!sds->this_nr_running))
 | |
| 		sds->power_savings_balance = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If a group is already running at full capacity or idle,
 | |
| 	 * don't include that group in power savings calculations
 | |
| 	 */
 | |
| 	if (!sds->power_savings_balance ||
 | |
| 		sgs->sum_nr_running >= sgs->group_capacity ||
 | |
| 		!sgs->sum_nr_running)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the group which has the least non-idle load.
 | |
| 	 * This is the group from where we need to pick up the load
 | |
| 	 * for saving power
 | |
| 	 */
 | |
| 	if ((sgs->sum_nr_running < sds->min_nr_running) ||
 | |
| 	    (sgs->sum_nr_running == sds->min_nr_running &&
 | |
| 	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
 | |
| 		sds->group_min = group;
 | |
| 		sds->min_nr_running = sgs->sum_nr_running;
 | |
| 		sds->min_load_per_task = sgs->sum_weighted_load /
 | |
| 						sgs->sum_nr_running;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the group which is almost near its
 | |
| 	 * capacity but still has some space to pick up some load
 | |
| 	 * from other group and save more power
 | |
| 	 */
 | |
| 	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
 | |
| 		return;
 | |
| 
 | |
| 	if (sgs->sum_nr_running > sds->leader_nr_running ||
 | |
| 	    (sgs->sum_nr_running == sds->leader_nr_running &&
 | |
| 	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
 | |
| 		sds->group_leader = group;
 | |
| 		sds->leader_nr_running = sgs->sum_nr_running;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_power_save_busiest_group - see if there is potential for some power-savings balance
 | |
|  * @sds: Variable containing the statistics of the sched_domain
 | |
|  *	under consideration.
 | |
|  * @this_cpu: Cpu at which we're currently performing load-balancing.
 | |
|  * @imbalance: Variable to store the imbalance.
 | |
|  *
 | |
|  * Description:
 | |
|  * Check if we have potential to perform some power-savings balance.
 | |
|  * If yes, set the busiest group to be the least loaded group in the
 | |
|  * sched_domain, so that it's CPUs can be put to idle.
 | |
|  *
 | |
|  * Returns 1 if there is potential to perform power-savings balance.
 | |
|  * Else returns 0.
 | |
|  */
 | |
| static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
 | |
| 					int this_cpu, unsigned long *imbalance)
 | |
| {
 | |
| 	if (!sds->power_savings_balance)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sds->this != sds->group_leader ||
 | |
| 			sds->group_leader == sds->group_min)
 | |
| 		return 0;
 | |
| 
 | |
| 	*imbalance = sds->min_load_per_task;
 | |
| 	sds->busiest = sds->group_min;
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| }
 | |
| #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
 | |
| static inline void init_sd_power_savings_stats(struct sched_domain *sd,
 | |
| 	struct sd_lb_stats *sds, enum cpu_idle_type idle)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline void update_sd_power_savings_stats(struct sched_group *group,
 | |
| 	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
 | |
| 					int this_cpu, unsigned long *imbalance)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
 | |
| 
 | |
| 
 | |
| unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	return SCHED_LOAD_SCALE;
 | |
| }
 | |
| 
 | |
| unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	return default_scale_freq_power(sd, cpu);
 | |
| }
 | |
| 
 | |
| unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	unsigned long weight = sd->span_weight;
 | |
| 	unsigned long smt_gain = sd->smt_gain;
 | |
| 
 | |
| 	smt_gain /= weight;
 | |
| 
 | |
| 	return smt_gain;
 | |
| }
 | |
| 
 | |
| unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	return default_scale_smt_power(sd, cpu);
 | |
| }
 | |
| 
 | |
| unsigned long scale_rt_power(int cpu)
 | |
| {
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	u64 total, available;
 | |
| 
 | |
| 	total = sched_avg_period() + (rq->clock - rq->age_stamp);
 | |
| 
 | |
| 	if (unlikely(total < rq->rt_avg)) {
 | |
| 		/* Ensures that power won't end up being negative */
 | |
| 		available = 0;
 | |
| 	} else {
 | |
| 		available = total - rq->rt_avg;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((s64)total < SCHED_LOAD_SCALE))
 | |
| 		total = SCHED_LOAD_SCALE;
 | |
| 
 | |
| 	total >>= SCHED_LOAD_SHIFT;
 | |
| 
 | |
| 	return div_u64(available, total);
 | |
| }
 | |
| 
 | |
| static void update_cpu_power(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	unsigned long weight = sd->span_weight;
 | |
| 	unsigned long power = SCHED_LOAD_SCALE;
 | |
| 	struct sched_group *sdg = sd->groups;
 | |
| 
 | |
| 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
 | |
| 		if (sched_feat(ARCH_POWER))
 | |
| 			power *= arch_scale_smt_power(sd, cpu);
 | |
| 		else
 | |
| 			power *= default_scale_smt_power(sd, cpu);
 | |
| 
 | |
| 		power >>= SCHED_LOAD_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	sdg->cpu_power_orig = power;
 | |
| 
 | |
| 	if (sched_feat(ARCH_POWER))
 | |
| 		power *= arch_scale_freq_power(sd, cpu);
 | |
| 	else
 | |
| 		power *= default_scale_freq_power(sd, cpu);
 | |
| 
 | |
| 	power >>= SCHED_LOAD_SHIFT;
 | |
| 
 | |
| 	power *= scale_rt_power(cpu);
 | |
| 	power >>= SCHED_LOAD_SHIFT;
 | |
| 
 | |
| 	if (!power)
 | |
| 		power = 1;
 | |
| 
 | |
| 	cpu_rq(cpu)->cpu_power = power;
 | |
| 	sdg->cpu_power = power;
 | |
| }
 | |
| 
 | |
| static void update_group_power(struct sched_domain *sd, int cpu)
 | |
| {
 | |
| 	struct sched_domain *child = sd->child;
 | |
| 	struct sched_group *group, *sdg = sd->groups;
 | |
| 	unsigned long power;
 | |
| 
 | |
| 	if (!child) {
 | |
| 		update_cpu_power(sd, cpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	power = 0;
 | |
| 
 | |
| 	group = child->groups;
 | |
| 	do {
 | |
| 		power += group->cpu_power;
 | |
| 		group = group->next;
 | |
| 	} while (group != child->groups);
 | |
| 
 | |
| 	sdg->cpu_power = power;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try and fix up capacity for tiny siblings, this is needed when
 | |
|  * things like SD_ASYM_PACKING need f_b_g to select another sibling
 | |
|  * which on its own isn't powerful enough.
 | |
|  *
 | |
|  * See update_sd_pick_busiest() and check_asym_packing().
 | |
|  */
 | |
| static inline int
 | |
| fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
 | |
| {
 | |
| 	/*
 | |
| 	 * Only siblings can have significantly less than SCHED_LOAD_SCALE
 | |
| 	 */
 | |
| 	if (sd->level != SD_LV_SIBLING)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If ~90% of the cpu_power is still there, we're good.
 | |
| 	 */
 | |
| 	if (group->cpu_power * 32 > group->cpu_power_orig * 29)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 | |
|  * @sd: The sched_domain whose statistics are to be updated.
 | |
|  * @group: sched_group whose statistics are to be updated.
 | |
|  * @this_cpu: Cpu for which load balance is currently performed.
 | |
|  * @idle: Idle status of this_cpu
 | |
|  * @load_idx: Load index of sched_domain of this_cpu for load calc.
 | |
|  * @sd_idle: Idle status of the sched_domain containing group.
 | |
|  * @local_group: Does group contain this_cpu.
 | |
|  * @cpus: Set of cpus considered for load balancing.
 | |
|  * @balance: Should we balance.
 | |
|  * @sgs: variable to hold the statistics for this group.
 | |
|  */
 | |
| static inline void update_sg_lb_stats(struct sched_domain *sd,
 | |
| 			struct sched_group *group, int this_cpu,
 | |
| 			enum cpu_idle_type idle, int load_idx, int *sd_idle,
 | |
| 			int local_group, const struct cpumask *cpus,
 | |
| 			int *balance, struct sg_lb_stats *sgs)
 | |
| {
 | |
| 	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
 | |
| 	int i;
 | |
| 	unsigned int balance_cpu = -1, first_idle_cpu = 0;
 | |
| 	unsigned long avg_load_per_task = 0;
 | |
| 
 | |
| 	if (local_group)
 | |
| 		balance_cpu = group_first_cpu(group);
 | |
| 
 | |
| 	/* Tally up the load of all CPUs in the group */
 | |
| 	max_cpu_load = 0;
 | |
| 	min_cpu_load = ~0UL;
 | |
| 	max_nr_running = 0;
 | |
| 
 | |
| 	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
 | |
| 		struct rq *rq = cpu_rq(i);
 | |
| 
 | |
| 		if (*sd_idle && rq->nr_running)
 | |
| 			*sd_idle = 0;
 | |
| 
 | |
| 		/* Bias balancing toward cpus of our domain */
 | |
| 		if (local_group) {
 | |
| 			if (idle_cpu(i) && !first_idle_cpu) {
 | |
| 				first_idle_cpu = 1;
 | |
| 				balance_cpu = i;
 | |
| 			}
 | |
| 
 | |
| 			load = target_load(i, load_idx);
 | |
| 		} else {
 | |
| 			load = source_load(i, load_idx);
 | |
| 			if (load > max_cpu_load) {
 | |
| 				max_cpu_load = load;
 | |
| 				max_nr_running = rq->nr_running;
 | |
| 			}
 | |
| 			if (min_cpu_load > load)
 | |
| 				min_cpu_load = load;
 | |
| 		}
 | |
| 
 | |
| 		sgs->group_load += load;
 | |
| 		sgs->sum_nr_running += rq->nr_running;
 | |
| 		sgs->sum_weighted_load += weighted_cpuload(i);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First idle cpu or the first cpu(busiest) in this sched group
 | |
| 	 * is eligible for doing load balancing at this and above
 | |
| 	 * domains. In the newly idle case, we will allow all the cpu's
 | |
| 	 * to do the newly idle load balance.
 | |
| 	 */
 | |
| 	if (idle != CPU_NEWLY_IDLE && local_group) {
 | |
| 		if (balance_cpu != this_cpu) {
 | |
| 			*balance = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 		update_group_power(sd, this_cpu);
 | |
| 	}
 | |
| 
 | |
| 	/* Adjust by relative CPU power of the group */
 | |
| 	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
 | |
| 
 | |
| 	/*
 | |
| 	 * Consider the group unbalanced when the imbalance is larger
 | |
| 	 * than the average weight of two tasks.
 | |
| 	 *
 | |
| 	 * APZ: with cgroup the avg task weight can vary wildly and
 | |
| 	 *      might not be a suitable number - should we keep a
 | |
| 	 *      normalized nr_running number somewhere that negates
 | |
| 	 *      the hierarchy?
 | |
| 	 */
 | |
| 	if (sgs->sum_nr_running)
 | |
| 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
 | |
| 
 | |
| 	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
 | |
| 		sgs->group_imb = 1;
 | |
| 
 | |
| 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
 | |
| 	if (!sgs->group_capacity)
 | |
| 		sgs->group_capacity = fix_small_capacity(sd, group);
 | |
| 
 | |
| 	if (sgs->group_capacity > sgs->sum_nr_running)
 | |
| 		sgs->group_has_capacity = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sd_pick_busiest - return 1 on busiest group
 | |
|  * @sd: sched_domain whose statistics are to be checked
 | |
|  * @sds: sched_domain statistics
 | |
|  * @sg: sched_group candidate to be checked for being the busiest
 | |
|  * @sgs: sched_group statistics
 | |
|  * @this_cpu: the current cpu
 | |
|  *
 | |
|  * Determine if @sg is a busier group than the previously selected
 | |
|  * busiest group.
 | |
|  */
 | |
| static bool update_sd_pick_busiest(struct sched_domain *sd,
 | |
| 				   struct sd_lb_stats *sds,
 | |
| 				   struct sched_group *sg,
 | |
| 				   struct sg_lb_stats *sgs,
 | |
| 				   int this_cpu)
 | |
| {
 | |
| 	if (sgs->avg_load <= sds->max_load)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sgs->sum_nr_running > sgs->group_capacity)
 | |
| 		return true;
 | |
| 
 | |
| 	if (sgs->group_imb)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * ASYM_PACKING needs to move all the work to the lowest
 | |
| 	 * numbered CPUs in the group, therefore mark all groups
 | |
| 	 * higher than ourself as busy.
 | |
| 	 */
 | |
| 	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
 | |
| 	    this_cpu < group_first_cpu(sg)) {
 | |
| 		if (!sds->busiest)
 | |
| 			return true;
 | |
| 
 | |
| 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 | |
|  * @sd: sched_domain whose statistics are to be updated.
 | |
|  * @this_cpu: Cpu for which load balance is currently performed.
 | |
|  * @idle: Idle status of this_cpu
 | |
|  * @sd_idle: Idle status of the sched_domain containing sg.
 | |
|  * @cpus: Set of cpus considered for load balancing.
 | |
|  * @balance: Should we balance.
 | |
|  * @sds: variable to hold the statistics for this sched_domain.
 | |
|  */
 | |
| static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
 | |
| 			enum cpu_idle_type idle, int *sd_idle,
 | |
| 			const struct cpumask *cpus, int *balance,
 | |
| 			struct sd_lb_stats *sds)
 | |
| {
 | |
| 	struct sched_domain *child = sd->child;
 | |
| 	struct sched_group *sg = sd->groups;
 | |
| 	struct sg_lb_stats sgs;
 | |
| 	int load_idx, prefer_sibling = 0;
 | |
| 
 | |
| 	if (child && child->flags & SD_PREFER_SIBLING)
 | |
| 		prefer_sibling = 1;
 | |
| 
 | |
| 	init_sd_power_savings_stats(sd, sds, idle);
 | |
| 	load_idx = get_sd_load_idx(sd, idle);
 | |
| 
 | |
| 	do {
 | |
| 		int local_group;
 | |
| 
 | |
| 		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
 | |
| 		memset(&sgs, 0, sizeof(sgs));
 | |
| 		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
 | |
| 				local_group, cpus, balance, &sgs);
 | |
| 
 | |
| 		if (local_group && !(*balance))
 | |
| 			return;
 | |
| 
 | |
| 		sds->total_load += sgs.group_load;
 | |
| 		sds->total_pwr += sg->cpu_power;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the child domain prefers tasks go to siblings
 | |
| 		 * first, lower the sg capacity to one so that we'll try
 | |
| 		 * and move all the excess tasks away. We lower the capacity
 | |
| 		 * of a group only if the local group has the capacity to fit
 | |
| 		 * these excess tasks, i.e. nr_running < group_capacity. The
 | |
| 		 * extra check prevents the case where you always pull from the
 | |
| 		 * heaviest group when it is already under-utilized (possible
 | |
| 		 * with a large weight task outweighs the tasks on the system).
 | |
| 		 */
 | |
| 		if (prefer_sibling && !local_group && sds->this_has_capacity)
 | |
| 			sgs.group_capacity = min(sgs.group_capacity, 1UL);
 | |
| 
 | |
| 		if (local_group) {
 | |
| 			sds->this_load = sgs.avg_load;
 | |
| 			sds->this = sg;
 | |
| 			sds->this_nr_running = sgs.sum_nr_running;
 | |
| 			sds->this_load_per_task = sgs.sum_weighted_load;
 | |
| 			sds->this_has_capacity = sgs.group_has_capacity;
 | |
| 		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
 | |
| 			sds->max_load = sgs.avg_load;
 | |
| 			sds->busiest = sg;
 | |
| 			sds->busiest_nr_running = sgs.sum_nr_running;
 | |
| 			sds->busiest_group_capacity = sgs.group_capacity;
 | |
| 			sds->busiest_load_per_task = sgs.sum_weighted_load;
 | |
| 			sds->busiest_has_capacity = sgs.group_has_capacity;
 | |
| 			sds->group_imb = sgs.group_imb;
 | |
| 		}
 | |
| 
 | |
| 		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
 | |
| 		sg = sg->next;
 | |
| 	} while (sg != sd->groups);
 | |
| }
 | |
| 
 | |
| int __weak arch_sd_sibling_asym_packing(void)
 | |
| {
 | |
|        return 0*SD_ASYM_PACKING;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_asym_packing - Check to see if the group is packed into the
 | |
|  *			sched doman.
 | |
|  *
 | |
|  * This is primarily intended to used at the sibling level.  Some
 | |
|  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 | |
|  * case of POWER7, it can move to lower SMT modes only when higher
 | |
|  * threads are idle.  When in lower SMT modes, the threads will
 | |
|  * perform better since they share less core resources.  Hence when we
 | |
|  * have idle threads, we want them to be the higher ones.
 | |
|  *
 | |
|  * This packing function is run on idle threads.  It checks to see if
 | |
|  * the busiest CPU in this domain (core in the P7 case) has a higher
 | |
|  * CPU number than the packing function is being run on.  Here we are
 | |
|  * assuming lower CPU number will be equivalent to lower a SMT thread
 | |
|  * number.
 | |
|  *
 | |
|  * Returns 1 when packing is required and a task should be moved to
 | |
|  * this CPU.  The amount of the imbalance is returned in *imbalance.
 | |
|  *
 | |
|  * @sd: The sched_domain whose packing is to be checked.
 | |
|  * @sds: Statistics of the sched_domain which is to be packed
 | |
|  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 | |
|  * @imbalance: returns amount of imbalanced due to packing.
 | |
|  */
 | |
| static int check_asym_packing(struct sched_domain *sd,
 | |
| 			      struct sd_lb_stats *sds,
 | |
| 			      int this_cpu, unsigned long *imbalance)
 | |
| {
 | |
| 	int busiest_cpu;
 | |
| 
 | |
| 	if (!(sd->flags & SD_ASYM_PACKING))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!sds->busiest)
 | |
| 		return 0;
 | |
| 
 | |
| 	busiest_cpu = group_first_cpu(sds->busiest);
 | |
| 	if (this_cpu > busiest_cpu)
 | |
| 		return 0;
 | |
| 
 | |
| 	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
 | |
| 				       SCHED_LOAD_SCALE);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fix_small_imbalance - Calculate the minor imbalance that exists
 | |
|  *			amongst the groups of a sched_domain, during
 | |
|  *			load balancing.
 | |
|  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 | |
|  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 | |
|  * @imbalance: Variable to store the imbalance.
 | |
|  */
 | |
| static inline void fix_small_imbalance(struct sd_lb_stats *sds,
 | |
| 				int this_cpu, unsigned long *imbalance)
 | |
| {
 | |
| 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
 | |
| 	unsigned int imbn = 2;
 | |
| 	unsigned long scaled_busy_load_per_task;
 | |
| 
 | |
| 	if (sds->this_nr_running) {
 | |
| 		sds->this_load_per_task /= sds->this_nr_running;
 | |
| 		if (sds->busiest_load_per_task >
 | |
| 				sds->this_load_per_task)
 | |
| 			imbn = 1;
 | |
| 	} else
 | |
| 		sds->this_load_per_task =
 | |
| 			cpu_avg_load_per_task(this_cpu);
 | |
| 
 | |
| 	scaled_busy_load_per_task = sds->busiest_load_per_task
 | |
| 						 * SCHED_LOAD_SCALE;
 | |
| 	scaled_busy_load_per_task /= sds->busiest->cpu_power;
 | |
| 
 | |
| 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
 | |
| 			(scaled_busy_load_per_task * imbn)) {
 | |
| 		*imbalance = sds->busiest_load_per_task;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, we don't have enough imbalance to justify moving tasks,
 | |
| 	 * however we may be able to increase total CPU power used by
 | |
| 	 * moving them.
 | |
| 	 */
 | |
| 
 | |
| 	pwr_now += sds->busiest->cpu_power *
 | |
| 			min(sds->busiest_load_per_task, sds->max_load);
 | |
| 	pwr_now += sds->this->cpu_power *
 | |
| 			min(sds->this_load_per_task, sds->this_load);
 | |
| 	pwr_now /= SCHED_LOAD_SCALE;
 | |
| 
 | |
| 	/* Amount of load we'd subtract */
 | |
| 	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
 | |
| 		sds->busiest->cpu_power;
 | |
| 	if (sds->max_load > tmp)
 | |
| 		pwr_move += sds->busiest->cpu_power *
 | |
| 			min(sds->busiest_load_per_task, sds->max_load - tmp);
 | |
| 
 | |
| 	/* Amount of load we'd add */
 | |
| 	if (sds->max_load * sds->busiest->cpu_power <
 | |
| 		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
 | |
| 		tmp = (sds->max_load * sds->busiest->cpu_power) /
 | |
| 			sds->this->cpu_power;
 | |
| 	else
 | |
| 		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
 | |
| 			sds->this->cpu_power;
 | |
| 	pwr_move += sds->this->cpu_power *
 | |
| 			min(sds->this_load_per_task, sds->this_load + tmp);
 | |
| 	pwr_move /= SCHED_LOAD_SCALE;
 | |
| 
 | |
| 	/* Move if we gain throughput */
 | |
| 	if (pwr_move > pwr_now)
 | |
| 		*imbalance = sds->busiest_load_per_task;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * calculate_imbalance - Calculate the amount of imbalance present within the
 | |
|  *			 groups of a given sched_domain during load balance.
 | |
|  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 | |
|  * @this_cpu: Cpu for which currently load balance is being performed.
 | |
|  * @imbalance: The variable to store the imbalance.
 | |
|  */
 | |
| static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
 | |
| 		unsigned long *imbalance)
 | |
| {
 | |
| 	unsigned long max_pull, load_above_capacity = ~0UL;
 | |
| 
 | |
| 	sds->busiest_load_per_task /= sds->busiest_nr_running;
 | |
| 	if (sds->group_imb) {
 | |
| 		sds->busiest_load_per_task =
 | |
| 			min(sds->busiest_load_per_task, sds->avg_load);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In the presence of smp nice balancing, certain scenarios can have
 | |
| 	 * max load less than avg load(as we skip the groups at or below
 | |
| 	 * its cpu_power, while calculating max_load..)
 | |
| 	 */
 | |
| 	if (sds->max_load < sds->avg_load) {
 | |
| 		*imbalance = 0;
 | |
| 		return fix_small_imbalance(sds, this_cpu, imbalance);
 | |
| 	}
 | |
| 
 | |
| 	if (!sds->group_imb) {
 | |
| 		/*
 | |
| 		 * Don't want to pull so many tasks that a group would go idle.
 | |
| 		 */
 | |
| 		load_above_capacity = (sds->busiest_nr_running -
 | |
| 						sds->busiest_group_capacity);
 | |
| 
 | |
| 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
 | |
| 
 | |
| 		load_above_capacity /= sds->busiest->cpu_power;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We're trying to get all the cpus to the average_load, so we don't
 | |
| 	 * want to push ourselves above the average load, nor do we wish to
 | |
| 	 * reduce the max loaded cpu below the average load. At the same time,
 | |
| 	 * we also don't want to reduce the group load below the group capacity
 | |
| 	 * (so that we can implement power-savings policies etc). Thus we look
 | |
| 	 * for the minimum possible imbalance.
 | |
| 	 * Be careful of negative numbers as they'll appear as very large values
 | |
| 	 * with unsigned longs.
 | |
| 	 */
 | |
| 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
 | |
| 
 | |
| 	/* How much load to actually move to equalise the imbalance */
 | |
| 	*imbalance = min(max_pull * sds->busiest->cpu_power,
 | |
| 		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
 | |
| 			/ SCHED_LOAD_SCALE;
 | |
| 
 | |
| 	/*
 | |
| 	 * if *imbalance is less than the average load per runnable task
 | |
| 	 * there is no gaurantee that any tasks will be moved so we'll have
 | |
| 	 * a think about bumping its value to force at least one task to be
 | |
| 	 * moved
 | |
| 	 */
 | |
| 	if (*imbalance < sds->busiest_load_per_task)
 | |
| 		return fix_small_imbalance(sds, this_cpu, imbalance);
 | |
| 
 | |
| }
 | |
| 
 | |
| /******* find_busiest_group() helpers end here *********************/
 | |
| 
 | |
| /**
 | |
|  * find_busiest_group - Returns the busiest group within the sched_domain
 | |
|  * if there is an imbalance. If there isn't an imbalance, and
 | |
|  * the user has opted for power-savings, it returns a group whose
 | |
|  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 | |
|  * such a group exists.
 | |
|  *
 | |
|  * Also calculates the amount of weighted load which should be moved
 | |
|  * to restore balance.
 | |
|  *
 | |
|  * @sd: The sched_domain whose busiest group is to be returned.
 | |
|  * @this_cpu: The cpu for which load balancing is currently being performed.
 | |
|  * @imbalance: Variable which stores amount of weighted load which should
 | |
|  *		be moved to restore balance/put a group to idle.
 | |
|  * @idle: The idle status of this_cpu.
 | |
|  * @sd_idle: The idleness of sd
 | |
|  * @cpus: The set of CPUs under consideration for load-balancing.
 | |
|  * @balance: Pointer to a variable indicating if this_cpu
 | |
|  *	is the appropriate cpu to perform load balancing at this_level.
 | |
|  *
 | |
|  * Returns:	- the busiest group if imbalance exists.
 | |
|  *		- If no imbalance and user has opted for power-savings balance,
 | |
|  *		   return the least loaded group whose CPUs can be
 | |
|  *		   put to idle by rebalancing its tasks onto our group.
 | |
|  */
 | |
| static struct sched_group *
 | |
| find_busiest_group(struct sched_domain *sd, int this_cpu,
 | |
| 		   unsigned long *imbalance, enum cpu_idle_type idle,
 | |
| 		   int *sd_idle, const struct cpumask *cpus, int *balance)
 | |
| {
 | |
| 	struct sd_lb_stats sds;
 | |
| 
 | |
| 	memset(&sds, 0, sizeof(sds));
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the various statistics relavent for load balancing at
 | |
| 	 * this level.
 | |
| 	 */
 | |
| 	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
 | |
| 					balance, &sds);
 | |
| 
 | |
| 	/* Cases where imbalance does not exist from POV of this_cpu */
 | |
| 	/* 1) this_cpu is not the appropriate cpu to perform load balancing
 | |
| 	 *    at this level.
 | |
| 	 * 2) There is no busy sibling group to pull from.
 | |
| 	 * 3) This group is the busiest group.
 | |
| 	 * 4) This group is more busy than the avg busieness at this
 | |
| 	 *    sched_domain.
 | |
| 	 * 5) The imbalance is within the specified limit.
 | |
| 	 *
 | |
| 	 * Note: when doing newidle balance, if the local group has excess
 | |
| 	 * capacity (i.e. nr_running < group_capacity) and the busiest group
 | |
| 	 * does not have any capacity, we force a load balance to pull tasks
 | |
| 	 * to the local group. In this case, we skip past checks 3, 4 and 5.
 | |
| 	 */
 | |
| 	if (!(*balance))
 | |
| 		goto ret;
 | |
| 
 | |
| 	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
 | |
| 	    check_asym_packing(sd, &sds, this_cpu, imbalance))
 | |
| 		return sds.busiest;
 | |
| 
 | |
| 	if (!sds.busiest || sds.busiest_nr_running == 0)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	/*  SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
 | |
| 	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
 | |
| 			!sds.busiest_has_capacity)
 | |
| 		goto force_balance;
 | |
| 
 | |
| 	if (sds.this_load >= sds.max_load)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
 | |
| 
 | |
| 	if (sds.this_load >= sds.avg_load)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| force_balance:
 | |
| 	/* Looks like there is an imbalance. Compute it */
 | |
| 	calculate_imbalance(&sds, this_cpu, imbalance);
 | |
| 	return sds.busiest;
 | |
| 
 | |
| out_balanced:
 | |
| 	/*
 | |
| 	 * There is no obvious imbalance. But check if we can do some balancing
 | |
| 	 * to save power.
 | |
| 	 */
 | |
| 	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
 | |
| 		return sds.busiest;
 | |
| ret:
 | |
| 	*imbalance = 0;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find_busiest_queue - find the busiest runqueue among the cpus in group.
 | |
|  */
 | |
| static struct rq *
 | |
| find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
 | |
| 		   enum cpu_idle_type idle, unsigned long imbalance,
 | |
| 		   const struct cpumask *cpus)
 | |
| {
 | |
| 	struct rq *busiest = NULL, *rq;
 | |
| 	unsigned long max_load = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu(i, sched_group_cpus(group)) {
 | |
| 		unsigned long power = power_of(i);
 | |
| 		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
 | |
| 		unsigned long wl;
 | |
| 
 | |
| 		if (!capacity)
 | |
| 			capacity = fix_small_capacity(sd, group);
 | |
| 
 | |
| 		if (!cpumask_test_cpu(i, cpus))
 | |
| 			continue;
 | |
| 
 | |
| 		rq = cpu_rq(i);
 | |
| 		wl = weighted_cpuload(i);
 | |
| 
 | |
| 		/*
 | |
| 		 * When comparing with imbalance, use weighted_cpuload()
 | |
| 		 * which is not scaled with the cpu power.
 | |
| 		 */
 | |
| 		if (capacity && rq->nr_running == 1 && wl > imbalance)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * For the load comparisons with the other cpu's, consider
 | |
| 		 * the weighted_cpuload() scaled with the cpu power, so that
 | |
| 		 * the load can be moved away from the cpu that is potentially
 | |
| 		 * running at a lower capacity.
 | |
| 		 */
 | |
| 		wl = (wl * SCHED_LOAD_SCALE) / power;
 | |
| 
 | |
| 		if (wl > max_load) {
 | |
| 			max_load = wl;
 | |
| 			busiest = rq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return busiest;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 | |
|  * so long as it is large enough.
 | |
|  */
 | |
| #define MAX_PINNED_INTERVAL	512
 | |
| 
 | |
| /* Working cpumask for load_balance and load_balance_newidle. */
 | |
| static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
 | |
| 
 | |
| static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
 | |
| 			       int busiest_cpu, int this_cpu)
 | |
| {
 | |
| 	if (idle == CPU_NEWLY_IDLE) {
 | |
| 
 | |
| 		/*
 | |
| 		 * ASYM_PACKING needs to force migrate tasks from busy but
 | |
| 		 * higher numbered CPUs in order to pack all tasks in the
 | |
| 		 * lowest numbered CPUs.
 | |
| 		 */
 | |
| 		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * The only task running in a non-idle cpu can be moved to this
 | |
| 		 * cpu in an attempt to completely freeup the other CPU
 | |
| 		 * package.
 | |
| 		 *
 | |
| 		 * The package power saving logic comes from
 | |
| 		 * find_busiest_group(). If there are no imbalance, then
 | |
| 		 * f_b_g() will return NULL. However when sched_mc={1,2} then
 | |
| 		 * f_b_g() will select a group from which a running task may be
 | |
| 		 * pulled to this cpu in order to make the other package idle.
 | |
| 		 * If there is no opportunity to make a package idle and if
 | |
| 		 * there are no imbalance, then f_b_g() will return NULL and no
 | |
| 		 * action will be taken in load_balance_newidle().
 | |
| 		 *
 | |
| 		 * Under normal task pull operation due to imbalance, there
 | |
| 		 * will be more than one task in the source run queue and
 | |
| 		 * move_tasks() will succeed.  ld_moved will be true and this
 | |
| 		 * active balance code will not be triggered.
 | |
| 		 */
 | |
| 		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
 | |
| }
 | |
| 
 | |
| static int active_load_balance_cpu_stop(void *data);
 | |
| 
 | |
| /*
 | |
|  * Check this_cpu to ensure it is balanced within domain. Attempt to move
 | |
|  * tasks if there is an imbalance.
 | |
|  */
 | |
| static int load_balance(int this_cpu, struct rq *this_rq,
 | |
| 			struct sched_domain *sd, enum cpu_idle_type idle,
 | |
| 			int *balance)
 | |
| {
 | |
| 	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
 | |
| 	struct sched_group *group;
 | |
| 	unsigned long imbalance;
 | |
| 	struct rq *busiest;
 | |
| 	unsigned long flags;
 | |
| 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
 | |
| 
 | |
| 	cpumask_copy(cpus, cpu_active_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * When power savings policy is enabled for the parent domain, idle
 | |
| 	 * sibling can pick up load irrespective of busy siblings. In this case,
 | |
| 	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
 | |
| 	 * portraying it as CPU_NOT_IDLE.
 | |
| 	 */
 | |
| 	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 		sd_idle = 1;
 | |
| 
 | |
| 	schedstat_inc(sd, lb_count[idle]);
 | |
| 
 | |
| redo:
 | |
| 	update_shares(sd);
 | |
| 	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
 | |
| 				   cpus, balance);
 | |
| 
 | |
| 	if (*balance == 0)
 | |
| 		goto out_balanced;
 | |
| 
 | |
| 	if (!group) {
 | |
| 		schedstat_inc(sd, lb_nobusyg[idle]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
 | |
| 	if (!busiest) {
 | |
| 		schedstat_inc(sd, lb_nobusyq[idle]);
 | |
| 		goto out_balanced;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(busiest == this_rq);
 | |
| 
 | |
| 	schedstat_add(sd, lb_imbalance[idle], imbalance);
 | |
| 
 | |
| 	ld_moved = 0;
 | |
| 	if (busiest->nr_running > 1) {
 | |
| 		/*
 | |
| 		 * Attempt to move tasks. If find_busiest_group has found
 | |
| 		 * an imbalance but busiest->nr_running <= 1, the group is
 | |
| 		 * still unbalanced. ld_moved simply stays zero, so it is
 | |
| 		 * correctly treated as an imbalance.
 | |
| 		 */
 | |
| 		local_irq_save(flags);
 | |
| 		double_rq_lock(this_rq, busiest);
 | |
| 		ld_moved = move_tasks(this_rq, this_cpu, busiest,
 | |
| 				      imbalance, sd, idle, &all_pinned);
 | |
| 		double_rq_unlock(this_rq, busiest);
 | |
| 		local_irq_restore(flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * some other cpu did the load balance for us.
 | |
| 		 */
 | |
| 		if (ld_moved && this_cpu != smp_processor_id())
 | |
| 			resched_cpu(this_cpu);
 | |
| 
 | |
| 		/* All tasks on this runqueue were pinned by CPU affinity */
 | |
| 		if (unlikely(all_pinned)) {
 | |
| 			cpumask_clear_cpu(cpu_of(busiest), cpus);
 | |
| 			if (!cpumask_empty(cpus))
 | |
| 				goto redo;
 | |
| 			goto out_balanced;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!ld_moved) {
 | |
| 		schedstat_inc(sd, lb_failed[idle]);
 | |
| 		/*
 | |
| 		 * Increment the failure counter only on periodic balance.
 | |
| 		 * We do not want newidle balance, which can be very
 | |
| 		 * frequent, pollute the failure counter causing
 | |
| 		 * excessive cache_hot migrations and active balances.
 | |
| 		 */
 | |
| 		if (idle != CPU_NEWLY_IDLE)
 | |
| 			sd->nr_balance_failed++;
 | |
| 
 | |
| 		if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
 | |
| 					this_cpu)) {
 | |
| 			raw_spin_lock_irqsave(&busiest->lock, flags);
 | |
| 
 | |
| 			/* don't kick the active_load_balance_cpu_stop,
 | |
| 			 * if the curr task on busiest cpu can't be
 | |
| 			 * moved to this_cpu
 | |
| 			 */
 | |
| 			if (!cpumask_test_cpu(this_cpu,
 | |
| 					      &busiest->curr->cpus_allowed)) {
 | |
| 				raw_spin_unlock_irqrestore(&busiest->lock,
 | |
| 							    flags);
 | |
| 				all_pinned = 1;
 | |
| 				goto out_one_pinned;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * ->active_balance synchronizes accesses to
 | |
| 			 * ->active_balance_work.  Once set, it's cleared
 | |
| 			 * only after active load balance is finished.
 | |
| 			 */
 | |
| 			if (!busiest->active_balance) {
 | |
| 				busiest->active_balance = 1;
 | |
| 				busiest->push_cpu = this_cpu;
 | |
| 				active_balance = 1;
 | |
| 			}
 | |
| 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
 | |
| 
 | |
| 			if (active_balance)
 | |
| 				stop_one_cpu_nowait(cpu_of(busiest),
 | |
| 					active_load_balance_cpu_stop, busiest,
 | |
| 					&busiest->active_balance_work);
 | |
| 
 | |
| 			/*
 | |
| 			 * We've kicked active balancing, reset the failure
 | |
| 			 * counter.
 | |
| 			 */
 | |
| 			sd->nr_balance_failed = sd->cache_nice_tries+1;
 | |
| 		}
 | |
| 	} else
 | |
| 		sd->nr_balance_failed = 0;
 | |
| 
 | |
| 	if (likely(!active_balance)) {
 | |
| 		/* We were unbalanced, so reset the balancing interval */
 | |
| 		sd->balance_interval = sd->min_interval;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If we've begun active balancing, start to back off. This
 | |
| 		 * case may not be covered by the all_pinned logic if there
 | |
| 		 * is only 1 task on the busy runqueue (because we don't call
 | |
| 		 * move_tasks).
 | |
| 		 */
 | |
| 		if (sd->balance_interval < sd->max_interval)
 | |
| 			sd->balance_interval *= 2;
 | |
| 	}
 | |
| 
 | |
| 	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 		ld_moved = -1;
 | |
| 
 | |
| 	goto out;
 | |
| 
 | |
| out_balanced:
 | |
| 	schedstat_inc(sd, lb_balanced[idle]);
 | |
| 
 | |
| 	sd->nr_balance_failed = 0;
 | |
| 
 | |
| out_one_pinned:
 | |
| 	/* tune up the balancing interval */
 | |
| 	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
 | |
| 			(sd->balance_interval < sd->max_interval))
 | |
| 		sd->balance_interval *= 2;
 | |
| 
 | |
| 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
 | |
| 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 | |
| 		ld_moved = -1;
 | |
| 	else
 | |
| 		ld_moved = 0;
 | |
| out:
 | |
| 	if (ld_moved)
 | |
| 		update_shares(sd);
 | |
| 	return ld_moved;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * idle_balance is called by schedule() if this_cpu is about to become
 | |
|  * idle. Attempts to pull tasks from other CPUs.
 | |
|  */
 | |
| static void idle_balance(int this_cpu, struct rq *this_rq)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	int pulled_task = 0;
 | |
| 	unsigned long next_balance = jiffies + HZ;
 | |
| 
 | |
| 	this_rq->idle_stamp = this_rq->clock;
 | |
| 
 | |
| 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
 | |
| 	 */
 | |
| 	raw_spin_unlock(&this_rq->lock);
 | |
| 
 | |
| 	for_each_domain(this_cpu, sd) {
 | |
| 		unsigned long interval;
 | |
| 		int balance = 1;
 | |
| 
 | |
| 		if (!(sd->flags & SD_LOAD_BALANCE))
 | |
| 			continue;
 | |
| 
 | |
| 		if (sd->flags & SD_BALANCE_NEWIDLE) {
 | |
| 			/* If we've pulled tasks over stop searching: */
 | |
| 			pulled_task = load_balance(this_cpu, this_rq,
 | |
| 						   sd, CPU_NEWLY_IDLE, &balance);
 | |
| 		}
 | |
| 
 | |
| 		interval = msecs_to_jiffies(sd->balance_interval);
 | |
| 		if (time_after(next_balance, sd->last_balance + interval))
 | |
| 			next_balance = sd->last_balance + interval;
 | |
| 		if (pulled_task)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	raw_spin_lock(&this_rq->lock);
 | |
| 
 | |
| 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
 | |
| 		/*
 | |
| 		 * We are going idle. next_balance may be set based on
 | |
| 		 * a busy processor. So reset next_balance.
 | |
| 		 */
 | |
| 		this_rq->next_balance = next_balance;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 | |
|  * running tasks off the busiest CPU onto idle CPUs. It requires at
 | |
|  * least 1 task to be running on each physical CPU where possible, and
 | |
|  * avoids physical / logical imbalances.
 | |
|  */
 | |
| static int active_load_balance_cpu_stop(void *data)
 | |
| {
 | |
| 	struct rq *busiest_rq = data;
 | |
| 	int busiest_cpu = cpu_of(busiest_rq);
 | |
| 	int target_cpu = busiest_rq->push_cpu;
 | |
| 	struct rq *target_rq = cpu_rq(target_cpu);
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	raw_spin_lock_irq(&busiest_rq->lock);
 | |
| 
 | |
| 	/* make sure the requested cpu hasn't gone down in the meantime */
 | |
| 	if (unlikely(busiest_cpu != smp_processor_id() ||
 | |
| 		     !busiest_rq->active_balance))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Is there any task to move? */
 | |
| 	if (busiest_rq->nr_running <= 1)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * This condition is "impossible", if it occurs
 | |
| 	 * we need to fix it. Originally reported by
 | |
| 	 * Bjorn Helgaas on a 128-cpu setup.
 | |
| 	 */
 | |
| 	BUG_ON(busiest_rq == target_rq);
 | |
| 
 | |
| 	/* move a task from busiest_rq to target_rq */
 | |
| 	double_lock_balance(busiest_rq, target_rq);
 | |
| 
 | |
| 	/* Search for an sd spanning us and the target CPU. */
 | |
| 	for_each_domain(target_cpu, sd) {
 | |
| 		if ((sd->flags & SD_LOAD_BALANCE) &&
 | |
| 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
 | |
| 				break;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(sd)) {
 | |
| 		schedstat_inc(sd, alb_count);
 | |
| 
 | |
| 		if (move_one_task(target_rq, target_cpu, busiest_rq,
 | |
| 				  sd, CPU_IDLE))
 | |
| 			schedstat_inc(sd, alb_pushed);
 | |
| 		else
 | |
| 			schedstat_inc(sd, alb_failed);
 | |
| 	}
 | |
| 	double_unlock_balance(busiest_rq, target_rq);
 | |
| out_unlock:
 | |
| 	busiest_rq->active_balance = 0;
 | |
| 	raw_spin_unlock_irq(&busiest_rq->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 
 | |
| static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
 | |
| 
 | |
| static void trigger_sched_softirq(void *data)
 | |
| {
 | |
| 	raise_softirq_irqoff(SCHED_SOFTIRQ);
 | |
| }
 | |
| 
 | |
| static inline void init_sched_softirq_csd(struct call_single_data *csd)
 | |
| {
 | |
| 	csd->func = trigger_sched_softirq;
 | |
| 	csd->info = NULL;
 | |
| 	csd->flags = 0;
 | |
| 	csd->priv = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * idle load balancing details
 | |
|  * - One of the idle CPUs nominates itself as idle load_balancer, while
 | |
|  *   entering idle.
 | |
|  * - This idle load balancer CPU will also go into tickless mode when
 | |
|  *   it is idle, just like all other idle CPUs
 | |
|  * - When one of the busy CPUs notice that there may be an idle rebalancing
 | |
|  *   needed, they will kick the idle load balancer, which then does idle
 | |
|  *   load balancing for all the idle CPUs.
 | |
|  */
 | |
| static struct {
 | |
| 	atomic_t load_balancer;
 | |
| 	atomic_t first_pick_cpu;
 | |
| 	atomic_t second_pick_cpu;
 | |
| 	cpumask_var_t idle_cpus_mask;
 | |
| 	cpumask_var_t grp_idle_mask;
 | |
| 	unsigned long next_balance;     /* in jiffy units */
 | |
| } nohz ____cacheline_aligned;
 | |
| 
 | |
| int get_nohz_load_balancer(void)
 | |
| {
 | |
| 	return atomic_read(&nohz.load_balancer);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
 | |
| /**
 | |
|  * lowest_flag_domain - Return lowest sched_domain containing flag.
 | |
|  * @cpu:	The cpu whose lowest level of sched domain is to
 | |
|  *		be returned.
 | |
|  * @flag:	The flag to check for the lowest sched_domain
 | |
|  *		for the given cpu.
 | |
|  *
 | |
|  * Returns the lowest sched_domain of a cpu which contains the given flag.
 | |
|  */
 | |
| static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 
 | |
| 	for_each_domain(cpu, sd)
 | |
| 		if (sd && (sd->flags & flag))
 | |
| 			break;
 | |
| 
 | |
| 	return sd;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * for_each_flag_domain - Iterates over sched_domains containing the flag.
 | |
|  * @cpu:	The cpu whose domains we're iterating over.
 | |
|  * @sd:		variable holding the value of the power_savings_sd
 | |
|  *		for cpu.
 | |
|  * @flag:	The flag to filter the sched_domains to be iterated.
 | |
|  *
 | |
|  * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 | |
|  * set, starting from the lowest sched_domain to the highest.
 | |
|  */
 | |
| #define for_each_flag_domain(cpu, sd, flag) \
 | |
| 	for (sd = lowest_flag_domain(cpu, flag); \
 | |
| 		(sd && (sd->flags & flag)); sd = sd->parent)
 | |
| 
 | |
| /**
 | |
|  * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 | |
|  * @ilb_group:	group to be checked for semi-idleness
 | |
|  *
 | |
|  * Returns:	1 if the group is semi-idle. 0 otherwise.
 | |
|  *
 | |
|  * We define a sched_group to be semi idle if it has atleast one idle-CPU
 | |
|  * and atleast one non-idle CPU. This helper function checks if the given
 | |
|  * sched_group is semi-idle or not.
 | |
|  */
 | |
| static inline int is_semi_idle_group(struct sched_group *ilb_group)
 | |
| {
 | |
| 	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
 | |
| 					sched_group_cpus(ilb_group));
 | |
| 
 | |
| 	/*
 | |
| 	 * A sched_group is semi-idle when it has atleast one busy cpu
 | |
| 	 * and atleast one idle cpu.
 | |
| 	 */
 | |
| 	if (cpumask_empty(nohz.grp_idle_mask))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| /**
 | |
|  * find_new_ilb - Finds the optimum idle load balancer for nomination.
 | |
|  * @cpu:	The cpu which is nominating a new idle_load_balancer.
 | |
|  *
 | |
|  * Returns:	Returns the id of the idle load balancer if it exists,
 | |
|  *		Else, returns >= nr_cpu_ids.
 | |
|  *
 | |
|  * This algorithm picks the idle load balancer such that it belongs to a
 | |
|  * semi-idle powersavings sched_domain. The idea is to try and avoid
 | |
|  * completely idle packages/cores just for the purpose of idle load balancing
 | |
|  * when there are other idle cpu's which are better suited for that job.
 | |
|  */
 | |
| static int find_new_ilb(int cpu)
 | |
| {
 | |
| 	struct sched_domain *sd;
 | |
| 	struct sched_group *ilb_group;
 | |
| 
 | |
| 	/*
 | |
| 	 * Have idle load balancer selection from semi-idle packages only
 | |
| 	 * when power-aware load balancing is enabled
 | |
| 	 */
 | |
| 	if (!(sched_smt_power_savings || sched_mc_power_savings))
 | |
| 		goto out_done;
 | |
| 
 | |
| 	/*
 | |
| 	 * Optimize for the case when we have no idle CPUs or only one
 | |
| 	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
 | |
| 	 */
 | |
| 	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
 | |
| 		goto out_done;
 | |
| 
 | |
| 	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
 | |
| 		ilb_group = sd->groups;
 | |
| 
 | |
| 		do {
 | |
| 			if (is_semi_idle_group(ilb_group))
 | |
| 				return cpumask_first(nohz.grp_idle_mask);
 | |
| 
 | |
| 			ilb_group = ilb_group->next;
 | |
| 
 | |
| 		} while (ilb_group != sd->groups);
 | |
| 	}
 | |
| 
 | |
| out_done:
 | |
| 	return nr_cpu_ids;
 | |
| }
 | |
| #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
 | |
| static inline int find_new_ilb(int call_cpu)
 | |
| {
 | |
| 	return nr_cpu_ids;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 | |
|  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 | |
|  * CPU (if there is one).
 | |
|  */
 | |
| static void nohz_balancer_kick(int cpu)
 | |
| {
 | |
| 	int ilb_cpu;
 | |
| 
 | |
| 	nohz.next_balance++;
 | |
| 
 | |
| 	ilb_cpu = get_nohz_load_balancer();
 | |
| 
 | |
| 	if (ilb_cpu >= nr_cpu_ids) {
 | |
| 		ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
 | |
| 		if (ilb_cpu >= nr_cpu_ids)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
 | |
| 		struct call_single_data *cp;
 | |
| 
 | |
| 		cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
 | |
| 		cp = &per_cpu(remote_sched_softirq_cb, cpu);
 | |
| 		__smp_call_function_single(ilb_cpu, cp, 0);
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine will try to nominate the ilb (idle load balancing)
 | |
|  * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 | |
|  * load balancing on behalf of all those cpus.
 | |
|  *
 | |
|  * When the ilb owner becomes busy, we will not have new ilb owner until some
 | |
|  * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
 | |
|  * idle load balancing by kicking one of the idle CPUs.
 | |
|  *
 | |
|  * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
 | |
|  * ilb owner CPU in future (when there is a need for idle load balancing on
 | |
|  * behalf of all idle CPUs).
 | |
|  */
 | |
| void select_nohz_load_balancer(int stop_tick)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	if (stop_tick) {
 | |
| 		if (!cpu_active(cpu)) {
 | |
| 			if (atomic_read(&nohz.load_balancer) != cpu)
 | |
| 				return;
 | |
| 
 | |
| 			/*
 | |
| 			 * If we are going offline and still the leader,
 | |
| 			 * give up!
 | |
| 			 */
 | |
| 			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
 | |
| 					   nr_cpu_ids) != cpu)
 | |
| 				BUG();
 | |
| 
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
 | |
| 
 | |
| 		if (atomic_read(&nohz.first_pick_cpu) == cpu)
 | |
| 			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
 | |
| 		if (atomic_read(&nohz.second_pick_cpu) == cpu)
 | |
| 			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
 | |
| 
 | |
| 		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
 | |
| 			int new_ilb;
 | |
| 
 | |
| 			/* make me the ilb owner */
 | |
| 			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
 | |
| 					   cpu) != nr_cpu_ids)
 | |
| 				return;
 | |
| 
 | |
| 			/*
 | |
| 			 * Check to see if there is a more power-efficient
 | |
| 			 * ilb.
 | |
| 			 */
 | |
| 			new_ilb = find_new_ilb(cpu);
 | |
| 			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
 | |
| 				atomic_set(&nohz.load_balancer, nr_cpu_ids);
 | |
| 				resched_cpu(new_ilb);
 | |
| 				return;
 | |
| 			}
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
 | |
| 			return;
 | |
| 
 | |
| 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
 | |
| 
 | |
| 		if (atomic_read(&nohz.load_balancer) == cpu)
 | |
| 			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
 | |
| 					   nr_cpu_ids) != cpu)
 | |
| 				BUG();
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static DEFINE_SPINLOCK(balancing);
 | |
| 
 | |
| /*
 | |
|  * It checks each scheduling domain to see if it is due to be balanced,
 | |
|  * and initiates a balancing operation if so.
 | |
|  *
 | |
|  * Balancing parameters are set up in arch_init_sched_domains.
 | |
|  */
 | |
| static void rebalance_domains(int cpu, enum cpu_idle_type idle)
 | |
| {
 | |
| 	int balance = 1;
 | |
| 	struct rq *rq = cpu_rq(cpu);
 | |
| 	unsigned long interval;
 | |
| 	struct sched_domain *sd;
 | |
| 	/* Earliest time when we have to do rebalance again */
 | |
| 	unsigned long next_balance = jiffies + 60*HZ;
 | |
| 	int update_next_balance = 0;
 | |
| 	int need_serialize;
 | |
| 
 | |
| 	for_each_domain(cpu, sd) {
 | |
| 		if (!(sd->flags & SD_LOAD_BALANCE))
 | |
| 			continue;
 | |
| 
 | |
| 		interval = sd->balance_interval;
 | |
| 		if (idle != CPU_IDLE)
 | |
| 			interval *= sd->busy_factor;
 | |
| 
 | |
| 		/* scale ms to jiffies */
 | |
| 		interval = msecs_to_jiffies(interval);
 | |
| 		if (unlikely(!interval))
 | |
| 			interval = 1;
 | |
| 		if (interval > HZ*NR_CPUS/10)
 | |
| 			interval = HZ*NR_CPUS/10;
 | |
| 
 | |
| 		need_serialize = sd->flags & SD_SERIALIZE;
 | |
| 
 | |
| 		if (need_serialize) {
 | |
| 			if (!spin_trylock(&balancing))
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
 | |
| 			if (load_balance(cpu, rq, sd, idle, &balance)) {
 | |
| 				/*
 | |
| 				 * We've pulled tasks over so either we're no
 | |
| 				 * longer idle, or one of our SMT siblings is
 | |
| 				 * not idle.
 | |
| 				 */
 | |
| 				idle = CPU_NOT_IDLE;
 | |
| 			}
 | |
| 			sd->last_balance = jiffies;
 | |
| 		}
 | |
| 		if (need_serialize)
 | |
| 			spin_unlock(&balancing);
 | |
| out:
 | |
| 		if (time_after(next_balance, sd->last_balance + interval)) {
 | |
| 			next_balance = sd->last_balance + interval;
 | |
| 			update_next_balance = 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Stop the load balance at this level. There is another
 | |
| 		 * CPU in our sched group which is doing load balancing more
 | |
| 		 * actively.
 | |
| 		 */
 | |
| 		if (!balance)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * next_balance will be updated only when there is a need.
 | |
| 	 * When the cpu is attached to null domain for ex, it will not be
 | |
| 	 * updated.
 | |
| 	 */
 | |
| 	if (likely(update_next_balance))
 | |
| 		rq->next_balance = next_balance;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ
 | |
| /*
 | |
|  * In CONFIG_NO_HZ case, the idle balance kickee will do the
 | |
|  * rebalancing for all the cpus for whom scheduler ticks are stopped.
 | |
|  */
 | |
| static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
 | |
| {
 | |
| 	struct rq *this_rq = cpu_rq(this_cpu);
 | |
| 	struct rq *rq;
 | |
| 	int balance_cpu;
 | |
| 
 | |
| 	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
 | |
| 		if (balance_cpu == this_cpu)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this cpu gets work to do, stop the load balancing
 | |
| 		 * work being done for other cpus. Next load
 | |
| 		 * balancing owner will pick it up.
 | |
| 		 */
 | |
| 		if (need_resched()) {
 | |
| 			this_rq->nohz_balance_kick = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		raw_spin_lock_irq(&this_rq->lock);
 | |
| 		update_rq_clock(this_rq);
 | |
| 		update_cpu_load(this_rq);
 | |
| 		raw_spin_unlock_irq(&this_rq->lock);
 | |
| 
 | |
| 		rebalance_domains(balance_cpu, CPU_IDLE);
 | |
| 
 | |
| 		rq = cpu_rq(balance_cpu);
 | |
| 		if (time_after(this_rq->next_balance, rq->next_balance))
 | |
| 			this_rq->next_balance = rq->next_balance;
 | |
| 	}
 | |
| 	nohz.next_balance = this_rq->next_balance;
 | |
| 	this_rq->nohz_balance_kick = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Current heuristic for kicking the idle load balancer
 | |
|  * - first_pick_cpu is the one of the busy CPUs. It will kick
 | |
|  *   idle load balancer when it has more than one process active. This
 | |
|  *   eliminates the need for idle load balancing altogether when we have
 | |
|  *   only one running process in the system (common case).
 | |
|  * - If there are more than one busy CPU, idle load balancer may have
 | |
|  *   to run for active_load_balance to happen (i.e., two busy CPUs are
 | |
|  *   SMT or core siblings and can run better if they move to different
 | |
|  *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
 | |
|  *   which will kick idle load balancer as soon as it has any load.
 | |
|  */
 | |
| static inline int nohz_kick_needed(struct rq *rq, int cpu)
 | |
| {
 | |
| 	unsigned long now = jiffies;
 | |
| 	int ret;
 | |
| 	int first_pick_cpu, second_pick_cpu;
 | |
| 
 | |
| 	if (time_before(now, nohz.next_balance))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (rq->idle_at_tick)
 | |
| 		return 0;
 | |
| 
 | |
| 	first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
 | |
| 	second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
 | |
| 
 | |
| 	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
 | |
| 	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
 | |
| 	if (ret == nr_cpu_ids || ret == cpu) {
 | |
| 		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
 | |
| 		if (rq->nr_running > 1)
 | |
| 			return 1;
 | |
| 	} else {
 | |
| 		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
 | |
| 		if (ret == nr_cpu_ids || ret == cpu) {
 | |
| 			if (rq->nr_running)
 | |
| 				return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * run_rebalance_domains is triggered when needed from the scheduler tick.
 | |
|  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 | |
|  */
 | |
| static void run_rebalance_domains(struct softirq_action *h)
 | |
| {
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	struct rq *this_rq = cpu_rq(this_cpu);
 | |
| 	enum cpu_idle_type idle = this_rq->idle_at_tick ?
 | |
| 						CPU_IDLE : CPU_NOT_IDLE;
 | |
| 
 | |
| 	rebalance_domains(this_cpu, idle);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this cpu has a pending nohz_balance_kick, then do the
 | |
| 	 * balancing on behalf of the other idle cpus whose ticks are
 | |
| 	 * stopped.
 | |
| 	 */
 | |
| 	nohz_idle_balance(this_cpu, idle);
 | |
| }
 | |
| 
 | |
| static inline int on_null_domain(int cpu)
 | |
| {
 | |
| 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 | |
|  */
 | |
| static inline void trigger_load_balance(struct rq *rq, int cpu)
 | |
| {
 | |
| 	/* Don't need to rebalance while attached to NULL domain */
 | |
| 	if (time_after_eq(jiffies, rq->next_balance) &&
 | |
| 	    likely(!on_null_domain(cpu)))
 | |
| 		raise_softirq(SCHED_SOFTIRQ);
 | |
| #ifdef CONFIG_NO_HZ
 | |
| 	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
 | |
| 		nohz_balancer_kick(cpu);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void rq_online_fair(struct rq *rq)
 | |
| {
 | |
| 	update_sysctl();
 | |
| }
 | |
| 
 | |
| static void rq_offline_fair(struct rq *rq)
 | |
| {
 | |
| 	update_sysctl();
 | |
| }
 | |
| 
 | |
| #else	/* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * on UP we do not need to balance between CPUs:
 | |
|  */
 | |
| static inline void idle_balance(int cpu, struct rq *rq)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * scheduler tick hitting a task of our scheduling class:
 | |
|  */
 | |
| static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 	struct sched_entity *se = &curr->se;
 | |
| 
 | |
| 	for_each_sched_entity(se) {
 | |
| 		cfs_rq = cfs_rq_of(se);
 | |
| 		entity_tick(cfs_rq, se, queued);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * called on fork with the child task as argument from the parent's context
 | |
|  *  - child not yet on the tasklist
 | |
|  *  - preemption disabled
 | |
|  */
 | |
| static void task_fork_fair(struct task_struct *p)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(current);
 | |
| 	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
 | |
| 	int this_cpu = smp_processor_id();
 | |
| 	struct rq *rq = this_rq();
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&rq->lock, flags);
 | |
| 
 | |
| 	update_rq_clock(rq);
 | |
| 
 | |
| 	if (unlikely(task_cpu(p) != this_cpu)) {
 | |
| 		rcu_read_lock();
 | |
| 		__set_task_cpu(p, this_cpu);
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 
 | |
| 	if (curr)
 | |
| 		se->vruntime = curr->vruntime;
 | |
| 	place_entity(cfs_rq, se, 1);
 | |
| 
 | |
| 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
 | |
| 		/*
 | |
| 		 * Upon rescheduling, sched_class::put_prev_task() will place
 | |
| 		 * 'current' within the tree based on its new key value.
 | |
| 		 */
 | |
| 		swap(curr->vruntime, se->vruntime);
 | |
| 		resched_task(rq->curr);
 | |
| 	}
 | |
| 
 | |
| 	se->vruntime -= cfs_rq->min_vruntime;
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Priority of the task has changed. Check to see if we preempt
 | |
|  * the current task.
 | |
|  */
 | |
| static void prio_changed_fair(struct rq *rq, struct task_struct *p,
 | |
| 			      int oldprio, int running)
 | |
| {
 | |
| 	/*
 | |
| 	 * Reschedule if we are currently running on this runqueue and
 | |
| 	 * our priority decreased, or if we are not currently running on
 | |
| 	 * this runqueue and our priority is higher than the current's
 | |
| 	 */
 | |
| 	if (running) {
 | |
| 		if (p->prio > oldprio)
 | |
| 			resched_task(rq->curr);
 | |
| 	} else
 | |
| 		check_preempt_curr(rq, p, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We switched to the sched_fair class.
 | |
|  */
 | |
| static void switched_to_fair(struct rq *rq, struct task_struct *p,
 | |
| 			     int running)
 | |
| {
 | |
| 	/*
 | |
| 	 * We were most likely switched from sched_rt, so
 | |
| 	 * kick off the schedule if running, otherwise just see
 | |
| 	 * if we can still preempt the current task.
 | |
| 	 */
 | |
| 	if (running)
 | |
| 		resched_task(rq->curr);
 | |
| 	else
 | |
| 		check_preempt_curr(rq, p, 0);
 | |
| }
 | |
| 
 | |
| /* Account for a task changing its policy or group.
 | |
|  *
 | |
|  * This routine is mostly called to set cfs_rq->curr field when a task
 | |
|  * migrates between groups/classes.
 | |
|  */
 | |
| static void set_curr_task_fair(struct rq *rq)
 | |
| {
 | |
| 	struct sched_entity *se = &rq->curr->se;
 | |
| 
 | |
| 	for_each_sched_entity(se)
 | |
| 		set_next_entity(cfs_rq_of(se), se);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| static void moved_group_fair(struct task_struct *p, int on_rq)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
 | |
| 
 | |
| 	update_curr(cfs_rq);
 | |
| 	if (!on_rq)
 | |
| 		place_entity(cfs_rq, &p->se, 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
 | |
| {
 | |
| 	struct sched_entity *se = &task->se;
 | |
| 	unsigned int rr_interval = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
 | |
| 	 * idle runqueue:
 | |
| 	 */
 | |
| 	if (rq->cfs.load.weight)
 | |
| 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
 | |
| 
 | |
| 	return rr_interval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All the scheduling class methods:
 | |
|  */
 | |
| static const struct sched_class fair_sched_class = {
 | |
| 	.next			= &idle_sched_class,
 | |
| 	.enqueue_task		= enqueue_task_fair,
 | |
| 	.dequeue_task		= dequeue_task_fair,
 | |
| 	.yield_task		= yield_task_fair,
 | |
| 
 | |
| 	.check_preempt_curr	= check_preempt_wakeup,
 | |
| 
 | |
| 	.pick_next_task		= pick_next_task_fair,
 | |
| 	.put_prev_task		= put_prev_task_fair,
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	.select_task_rq		= select_task_rq_fair,
 | |
| 
 | |
| 	.rq_online		= rq_online_fair,
 | |
| 	.rq_offline		= rq_offline_fair,
 | |
| 
 | |
| 	.task_waking		= task_waking_fair,
 | |
| #endif
 | |
| 
 | |
| 	.set_curr_task          = set_curr_task_fair,
 | |
| 	.task_tick		= task_tick_fair,
 | |
| 	.task_fork		= task_fork_fair,
 | |
| 
 | |
| 	.prio_changed		= prio_changed_fair,
 | |
| 	.switched_to		= switched_to_fair,
 | |
| 
 | |
| 	.get_rr_interval	= get_rr_interval_fair,
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	.moved_group		= moved_group_fair,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SCHED_DEBUG
 | |
| static void print_cfs_stats(struct seq_file *m, int cpu)
 | |
| {
 | |
| 	struct cfs_rq *cfs_rq;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
 | |
| 		print_cfs_rq(m, cpu, cfs_rq);
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #endif
 |