linux-loongson/tools/testing/selftests/mm/mlock-random-test.c
Brendan Jackman 1ddae9d67e selftests/mm/mlock: print error on failure
It's not really possible to start diagnosing this without knowing the
actual error.

Also update the mlock2 helper to behave like libc would by setting errno
and returning -1.

Link: https://lkml.kernel.org/r/20250311-mm-selftests-v4-12-dec210a658f5@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16 22:06:40 -07:00

268 lines
6.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* It tests the mlock/mlock2() when they are invoked
* on randomly memory region.
*/
#include <unistd.h>
#include <sys/resource.h>
#include <sys/capability.h>
#include <sys/mman.h>
#include <linux/mman.h>
#include <fcntl.h>
#include <string.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <time.h>
#include "../kselftest.h"
#include "mlock2.h"
#define CHUNK_UNIT (128 * 1024)
#define MLOCK_RLIMIT_SIZE (CHUNK_UNIT * 2)
#define MLOCK_WITHIN_LIMIT_SIZE CHUNK_UNIT
#define MLOCK_OUTOF_LIMIT_SIZE (CHUNK_UNIT * 3)
#define TEST_LOOP 100
#define PAGE_ALIGN(size, ps) (((size) + ((ps) - 1)) & ~((ps) - 1))
int set_cap_limits(rlim_t max)
{
struct rlimit new;
cap_t cap = cap_init();
new.rlim_cur = max;
new.rlim_max = max;
if (setrlimit(RLIMIT_MEMLOCK, &new)) {
ksft_perror("setrlimit() returns error\n");
return -1;
}
/* drop capabilities including CAP_IPC_LOCK */
if (cap_set_proc(cap)) {
ksft_perror("cap_set_proc() returns error\n");
return -1;
}
return 0;
}
int get_proc_locked_vm_size(void)
{
FILE *f;
int ret = -1;
char line[1024] = {0};
unsigned long lock_size = 0;
f = fopen("/proc/self/status", "r");
if (!f)
ksft_exit_fail_msg("fopen: %s\n", strerror(errno));
while (fgets(line, 1024, f)) {
if (strstr(line, "VmLck")) {
ret = sscanf(line, "VmLck:\t%8lu kB", &lock_size);
if (ret <= 0) {
fclose(f);
ksft_exit_fail_msg("sscanf() on VmLck error: %s: %d\n",
line, ret);
}
fclose(f);
return (int)(lock_size << 10);
}
}
fclose(f);
ksft_exit_fail_msg("cannot parse VmLck in /proc/self/status: %s\n", strerror(errno));
return -1;
}
/*
* Get the MMUPageSize of the memory region including input
* address from proc file.
*
* return value: on error case, 0 will be returned.
* Otherwise the page size(in bytes) is returned.
*/
int get_proc_page_size(unsigned long addr)
{
FILE *smaps;
char *line;
unsigned long mmupage_size = 0;
size_t size;
smaps = seek_to_smaps_entry(addr);
if (!smaps)
ksft_exit_fail_msg("Unable to parse /proc/self/smaps\n");
while (getline(&line, &size, smaps) > 0) {
if (!strstr(line, "MMUPageSize")) {
free(line);
line = NULL;
size = 0;
continue;
}
/* found the MMUPageSize of this section */
if (sscanf(line, "MMUPageSize: %8lu kB", &mmupage_size) < 1)
ksft_exit_fail_msg("Unable to parse smaps entry for Size:%s\n",
line);
}
free(line);
if (smaps)
fclose(smaps);
return mmupage_size << 10;
}
/*
* Test mlock/mlock2() on provided memory chunk.
* It expects the mlock/mlock2() to be successful (within rlimit)
*
* With allocated memory chunk [p, p + alloc_size), this
* test will choose start/len randomly to perform mlock/mlock2
* [start, start + len] memory range. The range is within range
* of the allocated chunk.
*
* The memory region size alloc_size is within the rlimit.
* So we always expect a success of mlock/mlock2.
*
* VmLck is assumed to be 0 before this test.
*
* return value: 0 - success
* else: failure
*/
static void test_mlock_within_limit(char *p, int alloc_size)
{
int i;
int ret = 0;
int locked_vm_size = 0;
struct rlimit cur;
int page_size = 0;
getrlimit(RLIMIT_MEMLOCK, &cur);
if (cur.rlim_cur < alloc_size)
ksft_exit_fail_msg("alloc_size[%d] < %u rlimit,lead to mlock failure\n",
alloc_size, (unsigned int)cur.rlim_cur);
srand(time(NULL));
for (i = 0; i < TEST_LOOP; i++) {
/*
* - choose mlock/mlock2 randomly
* - choose lock_size randomly but lock_size < alloc_size
* - choose start_offset randomly but p+start_offset+lock_size
* < p+alloc_size
*/
int is_mlock = !!(rand() % 2);
int lock_size = rand() % alloc_size;
int start_offset = rand() % (alloc_size - lock_size);
if (is_mlock)
ret = mlock(p + start_offset, lock_size);
else
ret = mlock2_(p + start_offset, lock_size,
MLOCK_ONFAULT);
if (ret)
ksft_exit_fail_msg("%s() failure (%s) at |%p(%d)| mlock:|%p(%d)|\n",
is_mlock ? "mlock" : "mlock2",
strerror(errno), p, alloc_size,
p + start_offset, lock_size);
}
/*
* Check VmLck left by the tests.
*/
locked_vm_size = get_proc_locked_vm_size();
page_size = get_proc_page_size((unsigned long)p);
if (locked_vm_size > PAGE_ALIGN(alloc_size, page_size) + page_size)
ksft_exit_fail_msg("%s left VmLck:%d on %d chunk\n",
__func__, locked_vm_size, alloc_size);
ksft_test_result_pass("%s\n", __func__);
}
/*
* We expect the mlock/mlock2() to be fail (outof limitation)
*
* With allocated memory chunk [p, p + alloc_size), this
* test will randomly choose start/len and perform mlock/mlock2
* on [start, start+len] range.
*
* The memory region size alloc_size is above the rlimit.
* And the len to be locked is higher than rlimit.
* So we always expect a failure of mlock/mlock2.
* No locked page number should be increased as a side effect.
*
* return value: 0 - success
* else: failure
*/
static void test_mlock_outof_limit(char *p, int alloc_size)
{
int i;
int ret = 0;
int locked_vm_size = 0, old_locked_vm_size = 0;
struct rlimit cur;
getrlimit(RLIMIT_MEMLOCK, &cur);
if (cur.rlim_cur >= alloc_size)
ksft_exit_fail_msg("alloc_size[%d] >%u rlimit, violates test condition\n",
alloc_size, (unsigned int)cur.rlim_cur);
old_locked_vm_size = get_proc_locked_vm_size();
srand(time(NULL));
for (i = 0; i < TEST_LOOP; i++) {
int is_mlock = !!(rand() % 2);
int lock_size = (rand() % (alloc_size - cur.rlim_cur))
+ cur.rlim_cur;
int start_offset = rand() % (alloc_size - lock_size);
if (is_mlock)
ret = mlock(p + start_offset, lock_size);
else
ret = mlock2_(p + start_offset, lock_size,
MLOCK_ONFAULT);
if (ret == 0)
ksft_exit_fail_msg("%s() succeeds? on %p(%d) mlock%p(%d)\n",
is_mlock ? "mlock" : "mlock2",
p, alloc_size, p + start_offset, lock_size);
}
locked_vm_size = get_proc_locked_vm_size();
if (locked_vm_size != old_locked_vm_size)
ksft_exit_fail_msg("tests leads to new mlocked page: old[%d], new[%d]\n",
old_locked_vm_size,
locked_vm_size);
ksft_test_result_pass("%s\n", __func__);
}
int main(int argc, char **argv)
{
char *p = NULL;
ksft_print_header();
if (set_cap_limits(MLOCK_RLIMIT_SIZE))
ksft_finished();
ksft_set_plan(2);
p = malloc(MLOCK_WITHIN_LIMIT_SIZE);
if (p == NULL)
ksft_exit_fail_msg("malloc() failure: %s\n", strerror(errno));
test_mlock_within_limit(p, MLOCK_WITHIN_LIMIT_SIZE);
munlock(p, MLOCK_WITHIN_LIMIT_SIZE);
free(p);
p = malloc(MLOCK_OUTOF_LIMIT_SIZE);
if (p == NULL)
ksft_exit_fail_msg("malloc() failure: %s\n", strerror(errno));
test_mlock_outof_limit(p, MLOCK_OUTOF_LIMIT_SIZE);
munlock(p, MLOCK_OUTOF_LIMIT_SIZE);
free(p);
ksft_finished();
}