mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-08-28 00:19:36 +00:00

Add more detail to the kernel-doc function-header comments for stop_machine(), stop_machine_cpuslocked(), and stop_core_cpuslocked(). Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
191 lines
6.0 KiB
C
191 lines
6.0 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_STOP_MACHINE
|
|
#define _LINUX_STOP_MACHINE
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask_types.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/list.h>
|
|
|
|
/*
|
|
* stop_cpu[s]() is simplistic per-cpu maximum priority cpu
|
|
* monopolization mechanism. The caller can specify a non-sleeping
|
|
* function to be executed on a single or multiple cpus preempting all
|
|
* other processes and monopolizing those cpus until it finishes.
|
|
*
|
|
* Resources for this mechanism are preallocated when a cpu is brought
|
|
* up and requests are guaranteed to be served as long as the target
|
|
* cpus are online.
|
|
*/
|
|
typedef int (*cpu_stop_fn_t)(void *arg);
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
struct cpu_stop_work {
|
|
struct list_head list; /* cpu_stopper->works */
|
|
cpu_stop_fn_t fn;
|
|
unsigned long caller;
|
|
void *arg;
|
|
struct cpu_stop_done *done;
|
|
};
|
|
|
|
int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg);
|
|
int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg);
|
|
bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
|
|
struct cpu_stop_work *work_buf);
|
|
void stop_machine_park(int cpu);
|
|
void stop_machine_unpark(int cpu);
|
|
void stop_machine_yield(const struct cpumask *cpumask);
|
|
|
|
extern void print_stop_info(const char *log_lvl, struct task_struct *task);
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
#include <linux/workqueue.h>
|
|
|
|
struct cpu_stop_work {
|
|
struct work_struct work;
|
|
cpu_stop_fn_t fn;
|
|
void *arg;
|
|
};
|
|
|
|
static inline int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
|
|
{
|
|
int ret = -ENOENT;
|
|
preempt_disable();
|
|
if (cpu == smp_processor_id())
|
|
ret = fn(arg);
|
|
preempt_enable();
|
|
return ret;
|
|
}
|
|
|
|
static void stop_one_cpu_nowait_workfn(struct work_struct *work)
|
|
{
|
|
struct cpu_stop_work *stwork =
|
|
container_of(work, struct cpu_stop_work, work);
|
|
preempt_disable();
|
|
stwork->fn(stwork->arg);
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline bool stop_one_cpu_nowait(unsigned int cpu,
|
|
cpu_stop_fn_t fn, void *arg,
|
|
struct cpu_stop_work *work_buf)
|
|
{
|
|
if (cpu == smp_processor_id()) {
|
|
INIT_WORK(&work_buf->work, stop_one_cpu_nowait_workfn);
|
|
work_buf->fn = fn;
|
|
work_buf->arg = arg;
|
|
schedule_work(&work_buf->work);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void print_stop_info(const char *log_lvl, struct task_struct *task) { }
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* stop_machine "Bogolock": stop the entire machine, disable interrupts.
|
|
* This is a very heavy lock, which is equivalent to grabbing every raw
|
|
* spinlock (and more). So the "read" side to such a lock is anything
|
|
* which disables preemption.
|
|
*/
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_HOTPLUG_CPU)
|
|
|
|
/**
|
|
* stop_machine: freeze the machine on all CPUs and run this function
|
|
* @fn: the function to run
|
|
* @data: the data ptr to pass to @fn()
|
|
* @cpus: the cpus to run @fn() on (NULL = run on each online CPU)
|
|
*
|
|
* Description: This causes a thread to be scheduled on every CPU, which
|
|
* will run with interrupts disabled. Each CPU specified by @cpus will
|
|
* run @fn. While @fn is executing, there will no other CPUs holding
|
|
* a raw spinlock or running within any other type of preempt-disabled
|
|
* region of code.
|
|
*
|
|
* When @cpus specifies only a single CPU, this can be thought of as
|
|
* a reader-writer lock where readers disable preemption (for example,
|
|
* by holding a raw spinlock) and where the insanely heavy writers run
|
|
* @fn while also preventing any other CPU from doing any useful work.
|
|
* These writers can also be thought of as having implicitly grabbed every
|
|
* raw spinlock in the kernel.
|
|
*
|
|
* When @fn is a no-op, this can be thought of as an RCU implementation
|
|
* where readers again disable preemption and writers use stop_machine()
|
|
* in place of synchronize_rcu(), albeit with orders of magnitude more
|
|
* disruption than even that of synchronize_rcu_expedited().
|
|
*
|
|
* Although only one stop_machine() operation can proceed at a time,
|
|
* the possibility of blocking in cpus_read_lock() means that the caller
|
|
* cannot usefully rely on this serialization.
|
|
*
|
|
* Return: 0 if all invocations of @fn return zero. Otherwise, the
|
|
* value returned by an arbitrarily chosen member of the set of calls to
|
|
* @fn that returned non-zero.
|
|
*/
|
|
int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus);
|
|
|
|
/**
|
|
* stop_machine_cpuslocked: freeze the machine on all CPUs and run this function
|
|
* @fn: the function to run
|
|
* @data: the data ptr to pass to @fn()
|
|
* @cpus: the cpus to run @fn() on (NULL = run on each online CPU)
|
|
*
|
|
* Same as above. Avoids nested calls to cpus_read_lock().
|
|
*
|
|
* Context: Must be called from within a cpus_read_lock() protected region.
|
|
*/
|
|
int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus);
|
|
|
|
/**
|
|
* stop_core_cpuslocked: - stop all threads on just one core
|
|
* @cpu: any cpu in the targeted core
|
|
* @fn: the function to run on each CPU in the core containing @cpu
|
|
* @data: the data ptr to pass to @fn()
|
|
*
|
|
* Same as above, but instead of every CPU, only the logical CPUs of the
|
|
* single core containing @cpu are affected.
|
|
*
|
|
* Context: Must be called from within a cpus_read_lock() protected region.
|
|
*
|
|
* Return: 0 if all invocations of @fn return zero. Otherwise, the
|
|
* value returned by an arbitrarily chosen member of the set of calls to
|
|
* @fn that returned non-zero.
|
|
*/
|
|
int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data);
|
|
|
|
int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
|
|
const struct cpumask *cpus);
|
|
#else /* CONFIG_SMP || CONFIG_HOTPLUG_CPU */
|
|
|
|
static __always_inline int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
|
|
const struct cpumask *cpus)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
local_irq_save(flags);
|
|
ret = fn(data);
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
static __always_inline int
|
|
stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
|
|
{
|
|
return stop_machine_cpuslocked(fn, data, cpus);
|
|
}
|
|
|
|
static __always_inline int
|
|
stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
|
|
const struct cpumask *cpus)
|
|
{
|
|
return stop_machine(fn, data, cpus);
|
|
}
|
|
|
|
#endif /* CONFIG_SMP || CONFIG_HOTPLUG_CPU */
|
|
#endif /* _LINUX_STOP_MACHINE */
|