mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-09-01 06:39:05 +00:00

Clarify that Winbond octal capable chips may be clocked at up to 166MHz, which is their absolute maximum. No per-operation maximum value (captured with a "0" in the table) involves that in these cases the maximum frequency of the chip applies, ie. the one commonly described in the DT. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
527 lines
16 KiB
C
527 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2017 exceet electronics GmbH
|
|
*
|
|
* Authors:
|
|
* Frieder Schrempf <frieder.schrempf@exceet.de>
|
|
* Boris Brezillon <boris.brezillon@bootlin.com>
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mtd/spinand.h>
|
|
#include <linux/units.h>
|
|
#include <linux/delay.h>
|
|
|
|
#define SPINAND_MFR_WINBOND 0xEF
|
|
|
|
#define WINBOND_CFG_BUF_READ BIT(3)
|
|
|
|
#define W25N04KV_STATUS_ECC_5_8_BITFLIPS (3 << 4)
|
|
|
|
#define W25N0XJW_SR4 0xD0
|
|
#define W25N0XJW_SR4_HS BIT(2)
|
|
|
|
#define W35N01JW_VCR_IO_MODE 0x00
|
|
#define W35N01JW_VCR_IO_MODE_SINGLE_SDR 0xFF
|
|
#define W35N01JW_VCR_IO_MODE_OCTAL_SDR 0xDF
|
|
#define W35N01JW_VCR_IO_MODE_OCTAL_DDR_DS 0xE7
|
|
#define W35N01JW_VCR_IO_MODE_OCTAL_DDR 0xC7
|
|
#define W35N01JW_VCR_DUMMY_CLOCK_REG 0x01
|
|
|
|
/*
|
|
* "X2" in the core is equivalent to "dual output" in the datasheets,
|
|
* "X4" in the core is equivalent to "quad output" in the datasheets.
|
|
* Quad and octal capable chips feature an absolute maximum frequency of 166MHz.
|
|
*/
|
|
|
|
static SPINAND_OP_VARIANTS(read_cache_octal_variants,
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_8D_OP(0, 3, NULL, 0, 120 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_8D_OP(0, 2, NULL, 0, 105 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(0, 20, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(0, 16, NULL, 0, 162 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(0, 12, NULL, 0, 124 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(0, 8, NULL, 0, 86 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_8S_OP(0, 2, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_8S_OP(0, 1, NULL, 0, 133 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0, 0));
|
|
|
|
static SPINAND_OP_VARIANTS(write_cache_octal_variants,
|
|
SPINAND_PROG_LOAD_1S_8S_8S_OP(true, 0, NULL, 0),
|
|
SPINAND_PROG_LOAD_1S_1S_8S_OP(0, NULL, 0),
|
|
SPINAND_PROG_LOAD_1S_1S_1S_OP(true, 0, NULL, 0));
|
|
|
|
static SPINAND_OP_VARIANTS(update_cache_octal_variants,
|
|
SPINAND_PROG_LOAD_1S_8S_8S_OP(false, 0, NULL, 0),
|
|
SPINAND_PROG_LOAD_1S_1S_1S_OP(false, 0, NULL, 0));
|
|
|
|
static SPINAND_OP_VARIANTS(read_cache_dual_quad_dtr_variants,
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_4D_4D_OP(0, 8, NULL, 0, 80 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_4D_OP(0, 2, NULL, 0, 80 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 4, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 2, NULL, 0, 104 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(0, 1, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_2D_2D_OP(0, 4, NULL, 0, 80 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_2D_OP(0, 2, NULL, 0, 80 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(0, 2, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(0, 1, NULL, 0, 104 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(0, 1, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_1D_OP(0, 2, NULL, 0, 80 * HZ_PER_MHZ),
|
|
SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0, 54 * HZ_PER_MHZ));
|
|
|
|
static SPINAND_OP_VARIANTS(read_cache_variants,
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 2, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(0, 1, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(0, 1, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(0, 1, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0, 0),
|
|
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0, 0));
|
|
|
|
static SPINAND_OP_VARIANTS(write_cache_variants,
|
|
SPINAND_PROG_LOAD_1S_1S_4S_OP(true, 0, NULL, 0),
|
|
SPINAND_PROG_LOAD_1S_1S_1S_OP(true, 0, NULL, 0));
|
|
|
|
static SPINAND_OP_VARIANTS(update_cache_variants,
|
|
SPINAND_PROG_LOAD_1S_1S_4S_OP(false, 0, NULL, 0),
|
|
SPINAND_PROG_LOAD_1S_1S_1S_OP(false, 0, NULL, 0));
|
|
|
|
static int w25m02gv_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
if (section > 3)
|
|
return -ERANGE;
|
|
|
|
region->offset = (16 * section) + 8;
|
|
region->length = 8;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int w25m02gv_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
if (section > 3)
|
|
return -ERANGE;
|
|
|
|
region->offset = (16 * section) + 2;
|
|
region->length = 6;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops w25m02gv_ooblayout = {
|
|
.ecc = w25m02gv_ooblayout_ecc,
|
|
.free = w25m02gv_ooblayout_free,
|
|
};
|
|
|
|
static int w25m02gv_select_target(struct spinand_device *spinand,
|
|
unsigned int target)
|
|
{
|
|
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0xc2, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(1,
|
|
spinand->scratchbuf,
|
|
1));
|
|
|
|
*spinand->scratchbuf = target;
|
|
return spi_mem_exec_op(spinand->spimem, &op);
|
|
}
|
|
|
|
static int w25n01kv_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
if (section > 3)
|
|
return -ERANGE;
|
|
|
|
region->offset = 64 + (8 * section);
|
|
region->length = 7;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int w25n02kv_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
if (section > 3)
|
|
return -ERANGE;
|
|
|
|
region->offset = 64 + (16 * section);
|
|
region->length = 13;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int w25n02kv_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
if (section > 3)
|
|
return -ERANGE;
|
|
|
|
region->offset = (16 * section) + 2;
|
|
region->length = 14;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops w25n01kv_ooblayout = {
|
|
.ecc = w25n01kv_ooblayout_ecc,
|
|
.free = w25n02kv_ooblayout_free,
|
|
};
|
|
|
|
static const struct mtd_ooblayout_ops w25n02kv_ooblayout = {
|
|
.ecc = w25n02kv_ooblayout_ecc,
|
|
.free = w25n02kv_ooblayout_free,
|
|
};
|
|
|
|
static int w35n01jw_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
if (section > 7)
|
|
return -ERANGE;
|
|
|
|
region->offset = (16 * section) + 12;
|
|
region->length = 4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int w35n01jw_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
if (section > 7)
|
|
return -ERANGE;
|
|
|
|
region->offset = 16 * section;
|
|
region->length = 12;
|
|
|
|
/* Extract BBM */
|
|
if (!section) {
|
|
region->offset += 2;
|
|
region->length -= 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops w35n01jw_ooblayout = {
|
|
.ecc = w35n01jw_ooblayout_ecc,
|
|
.free = w35n01jw_ooblayout_free,
|
|
};
|
|
|
|
static int w25n02kv_ecc_get_status(struct spinand_device *spinand,
|
|
u8 status)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
u8 mbf = 0;
|
|
struct spi_mem_op op = SPINAND_GET_FEATURE_1S_1S_1S_OP(0x30, spinand->scratchbuf);
|
|
|
|
switch (status & STATUS_ECC_MASK) {
|
|
case STATUS_ECC_NO_BITFLIPS:
|
|
return 0;
|
|
|
|
case STATUS_ECC_UNCOR_ERROR:
|
|
return -EBADMSG;
|
|
|
|
case STATUS_ECC_HAS_BITFLIPS:
|
|
case W25N04KV_STATUS_ECC_5_8_BITFLIPS:
|
|
/*
|
|
* Let's try to retrieve the real maximum number of bitflips
|
|
* in order to avoid forcing the wear-leveling layer to move
|
|
* data around if it's not necessary.
|
|
*/
|
|
if (spi_mem_exec_op(spinand->spimem, &op))
|
|
return nanddev_get_ecc_conf(nand)->strength;
|
|
|
|
mbf = *(spinand->scratchbuf) >> 4;
|
|
|
|
if (WARN_ON(mbf > nanddev_get_ecc_conf(nand)->strength || !mbf))
|
|
return nanddev_get_ecc_conf(nand)->strength;
|
|
|
|
return mbf;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int w25n0xjw_hs_cfg(struct spinand_device *spinand)
|
|
{
|
|
const struct spi_mem_op *op;
|
|
bool hs;
|
|
u8 sr4;
|
|
int ret;
|
|
|
|
op = spinand->op_templates.read_cache;
|
|
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
|
|
hs = false;
|
|
else if (op->cmd.buswidth == 1 && op->addr.buswidth == 1 &&
|
|
op->dummy.buswidth == 1 && op->data.buswidth == 1)
|
|
hs = false;
|
|
else if (!op->max_freq)
|
|
hs = true;
|
|
else
|
|
hs = false;
|
|
|
|
ret = spinand_read_reg_op(spinand, W25N0XJW_SR4, &sr4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (hs)
|
|
sr4 |= W25N0XJW_SR4_HS;
|
|
else
|
|
sr4 &= ~W25N0XJW_SR4_HS;
|
|
|
|
ret = spinand_write_reg_op(spinand, W25N0XJW_SR4, sr4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int w35n0xjw_write_vcr(struct spinand_device *spinand, u8 reg, u8 val)
|
|
{
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(0x81, 1),
|
|
SPI_MEM_OP_ADDR(3, reg, 1),
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(1, spinand->scratchbuf, 1));
|
|
int ret;
|
|
|
|
*spinand->scratchbuf = val;
|
|
|
|
ret = spinand_write_enable_op(spinand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_mem_exec_op(spinand->spimem, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Write VCR operation doesn't set the busy bit in SR, which means we
|
|
* cannot perform a status poll. Minimum time of 50ns is needed to
|
|
* complete the write.
|
|
*/
|
|
ndelay(50);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int w35n0xjw_vcr_cfg(struct spinand_device *spinand)
|
|
{
|
|
const struct spi_mem_op *op;
|
|
unsigned int dummy_cycles;
|
|
bool dtr, single;
|
|
u8 io_mode;
|
|
int ret;
|
|
|
|
op = spinand->op_templates.read_cache;
|
|
|
|
single = (op->cmd.buswidth == 1 && op->addr.buswidth == 1 && op->data.buswidth == 1);
|
|
dtr = (op->cmd.dtr || op->addr.dtr || op->data.dtr);
|
|
if (single && !dtr)
|
|
io_mode = W35N01JW_VCR_IO_MODE_SINGLE_SDR;
|
|
else if (!single && !dtr)
|
|
io_mode = W35N01JW_VCR_IO_MODE_OCTAL_SDR;
|
|
else if (!single && dtr)
|
|
io_mode = W35N01JW_VCR_IO_MODE_OCTAL_DDR;
|
|
else
|
|
return -EINVAL;
|
|
|
|
ret = w35n0xjw_write_vcr(spinand, W35N01JW_VCR_IO_MODE, io_mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dummy_cycles = ((op->dummy.nbytes * 8) / op->dummy.buswidth) / (op->dummy.dtr ? 2 : 1);
|
|
switch (dummy_cycles) {
|
|
case 8:
|
|
case 12:
|
|
case 16:
|
|
case 20:
|
|
case 24:
|
|
case 28:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
ret = w35n0xjw_write_vcr(spinand, W35N01JW_VCR_DUMMY_CLOCK_REG, dummy_cycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spinand_info winbond_spinand_table[] = {
|
|
/* 512M-bit densities */
|
|
SPINAND_INFO("W25N512GW", /* 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x20),
|
|
NAND_MEMORG(1, 2048, 64, 64, 512, 10, 1, 1, 1),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
|
|
/* 1G-bit densities */
|
|
SPINAND_INFO("W25N01GV", /* 3.3V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x21),
|
|
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
|
|
SPINAND_INFO("W25N01GW", /* 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x21),
|
|
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
|
|
SPINAND_INFO("W25N01JW", /* high-speed 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xbc, 0x21),
|
|
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_dual_quad_dtr_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
|
|
SPINAND_CONFIGURE_CHIP(w25n0xjw_hs_cfg)),
|
|
SPINAND_INFO("W25N01KV", /* 3.3V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xae, 0x21),
|
|
NAND_MEMORG(1, 2048, 96, 64, 1024, 20, 1, 1, 1),
|
|
NAND_ECCREQ(4, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25n01kv_ooblayout, w25n02kv_ecc_get_status)),
|
|
SPINAND_INFO("W35N01JW", /* 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xdc, 0x21),
|
|
NAND_MEMORG(1, 4096, 128, 64, 512, 10, 1, 1, 1),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_octal_variants,
|
|
&write_cache_octal_variants,
|
|
&update_cache_octal_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w35n01jw_ooblayout, NULL),
|
|
SPINAND_CONFIGURE_CHIP(w35n0xjw_vcr_cfg)),
|
|
SPINAND_INFO("W35N02JW", /* 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xdf, 0x22),
|
|
NAND_MEMORG(1, 4096, 128, 64, 512, 10, 1, 2, 1),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_octal_variants,
|
|
&write_cache_octal_variants,
|
|
&update_cache_octal_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w35n01jw_ooblayout, NULL),
|
|
SPINAND_CONFIGURE_CHIP(w35n0xjw_vcr_cfg)),
|
|
SPINAND_INFO("W35N04JW", /* 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xdf, 0x23),
|
|
NAND_MEMORG(1, 4096, 128, 64, 512, 10, 1, 4, 1),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_octal_variants,
|
|
&write_cache_octal_variants,
|
|
&update_cache_octal_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w35n01jw_ooblayout, NULL),
|
|
SPINAND_CONFIGURE_CHIP(w35n0xjw_vcr_cfg)),
|
|
/* 2G-bit densities */
|
|
SPINAND_INFO("W25M02GV", /* 2x1G-bit 3.3V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xab, 0x21),
|
|
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 2),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
|
|
SPINAND_SELECT_TARGET(w25m02gv_select_target)),
|
|
SPINAND_INFO("W25N02JW", /* high-speed 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xbf, 0x22),
|
|
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 2, 1),
|
|
NAND_ECCREQ(1, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_dual_quad_dtr_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
|
|
SPINAND_CONFIGURE_CHIP(w25n0xjw_hs_cfg)),
|
|
SPINAND_INFO("W25N02KV", /* 3.3V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x22),
|
|
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
|
|
NAND_ECCREQ(8, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
|
|
SPINAND_INFO("W25N02KW", /* 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x22),
|
|
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
|
|
NAND_ECCREQ(8, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
|
|
/* 4G-bit densities */
|
|
SPINAND_INFO("W25N04KV", /* 3.3V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x23),
|
|
NAND_MEMORG(1, 2048, 128, 64, 4096, 40, 2, 1, 1),
|
|
NAND_ECCREQ(8, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
|
|
SPINAND_INFO("W25N04KW", /* 1.8V */
|
|
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x23),
|
|
NAND_MEMORG(1, 2048, 128, 64, 4096, 40, 1, 1, 1),
|
|
NAND_ECCREQ(8, 512),
|
|
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
|
|
&write_cache_variants,
|
|
&update_cache_variants),
|
|
0,
|
|
SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
|
|
};
|
|
|
|
static int winbond_spinand_init(struct spinand_device *spinand)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Make sure all dies are in buffer read mode and not continuous read
|
|
* mode.
|
|
*/
|
|
for (i = 0; i < nand->memorg.ntargets; i++) {
|
|
spinand_select_target(spinand, i);
|
|
spinand_upd_cfg(spinand, WINBOND_CFG_BUF_READ,
|
|
WINBOND_CFG_BUF_READ);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spinand_manufacturer_ops winbond_spinand_manuf_ops = {
|
|
.init = winbond_spinand_init,
|
|
};
|
|
|
|
const struct spinand_manufacturer winbond_spinand_manufacturer = {
|
|
.id = SPINAND_MFR_WINBOND,
|
|
.name = "Winbond",
|
|
.chips = winbond_spinand_table,
|
|
.nchips = ARRAY_SIZE(winbond_spinand_table),
|
|
.ops = &winbond_spinand_manuf_ops,
|
|
};
|