linux-loongson/drivers/mtd/nand/spi/winbond.c
Miquel Raynal fb2fae70e7 mtd: spinand: winbond: Add comment about the maximum frequency
Clarify that Winbond octal capable chips may be clocked at up to 166MHz,
which is their absolute maximum.

No per-operation maximum value (captured with a "0" in the table)
involves that in these cases the maximum frequency of the chip applies,
ie. the one commonly described in the DT.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2025-07-30 11:32:16 +02:00

527 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 exceet electronics GmbH
*
* Authors:
* Frieder Schrempf <frieder.schrempf@exceet.de>
* Boris Brezillon <boris.brezillon@bootlin.com>
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/mtd/spinand.h>
#include <linux/units.h>
#include <linux/delay.h>
#define SPINAND_MFR_WINBOND 0xEF
#define WINBOND_CFG_BUF_READ BIT(3)
#define W25N04KV_STATUS_ECC_5_8_BITFLIPS (3 << 4)
#define W25N0XJW_SR4 0xD0
#define W25N0XJW_SR4_HS BIT(2)
#define W35N01JW_VCR_IO_MODE 0x00
#define W35N01JW_VCR_IO_MODE_SINGLE_SDR 0xFF
#define W35N01JW_VCR_IO_MODE_OCTAL_SDR 0xDF
#define W35N01JW_VCR_IO_MODE_OCTAL_DDR_DS 0xE7
#define W35N01JW_VCR_IO_MODE_OCTAL_DDR 0xC7
#define W35N01JW_VCR_DUMMY_CLOCK_REG 0x01
/*
* "X2" in the core is equivalent to "dual output" in the datasheets,
* "X4" in the core is equivalent to "quad output" in the datasheets.
* Quad and octal capable chips feature an absolute maximum frequency of 166MHz.
*/
static SPINAND_OP_VARIANTS(read_cache_octal_variants,
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_8D_OP(0, 3, NULL, 0, 120 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_8D_OP(0, 2, NULL, 0, 105 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(0, 20, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(0, 16, NULL, 0, 162 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(0, 12, NULL, 0, 124 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_8S_8S_OP(0, 8, NULL, 0, 86 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_8S_OP(0, 2, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_8S_OP(0, 1, NULL, 0, 133 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0, 0));
static SPINAND_OP_VARIANTS(write_cache_octal_variants,
SPINAND_PROG_LOAD_1S_8S_8S_OP(true, 0, NULL, 0),
SPINAND_PROG_LOAD_1S_1S_8S_OP(0, NULL, 0),
SPINAND_PROG_LOAD_1S_1S_1S_OP(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(update_cache_octal_variants,
SPINAND_PROG_LOAD_1S_8S_8S_OP(false, 0, NULL, 0),
SPINAND_PROG_LOAD_1S_1S_1S_OP(false, 0, NULL, 0));
static SPINAND_OP_VARIANTS(read_cache_dual_quad_dtr_variants,
SPINAND_PAGE_READ_FROM_CACHE_1S_4D_4D_OP(0, 8, NULL, 0, 80 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_4D_OP(0, 2, NULL, 0, 80 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 4, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 2, NULL, 0, 104 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_2D_2D_OP(0, 4, NULL, 0, 80 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_2D_OP(0, 2, NULL, 0, 80 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(0, 2, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(0, 1, NULL, 0, 104 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1D_1D_OP(0, 2, NULL, 0, 80 * HZ_PER_MHZ),
SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0, 54 * HZ_PER_MHZ));
static SPINAND_OP_VARIANTS(read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 2, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0, 0));
static SPINAND_OP_VARIANTS(write_cache_variants,
SPINAND_PROG_LOAD_1S_1S_4S_OP(true, 0, NULL, 0),
SPINAND_PROG_LOAD_1S_1S_1S_OP(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(update_cache_variants,
SPINAND_PROG_LOAD_1S_1S_4S_OP(false, 0, NULL, 0),
SPINAND_PROG_LOAD_1S_1S_1S_OP(false, 0, NULL, 0));
static int w25m02gv_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 3)
return -ERANGE;
region->offset = (16 * section) + 8;
region->length = 8;
return 0;
}
static int w25m02gv_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 3)
return -ERANGE;
region->offset = (16 * section) + 2;
region->length = 6;
return 0;
}
static const struct mtd_ooblayout_ops w25m02gv_ooblayout = {
.ecc = w25m02gv_ooblayout_ecc,
.free = w25m02gv_ooblayout_free,
};
static int w25m02gv_select_target(struct spinand_device *spinand,
unsigned int target)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0xc2, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1,
spinand->scratchbuf,
1));
*spinand->scratchbuf = target;
return spi_mem_exec_op(spinand->spimem, &op);
}
static int w25n01kv_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 3)
return -ERANGE;
region->offset = 64 + (8 * section);
region->length = 7;
return 0;
}
static int w25n02kv_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 3)
return -ERANGE;
region->offset = 64 + (16 * section);
region->length = 13;
return 0;
}
static int w25n02kv_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 3)
return -ERANGE;
region->offset = (16 * section) + 2;
region->length = 14;
return 0;
}
static const struct mtd_ooblayout_ops w25n01kv_ooblayout = {
.ecc = w25n01kv_ooblayout_ecc,
.free = w25n02kv_ooblayout_free,
};
static const struct mtd_ooblayout_ops w25n02kv_ooblayout = {
.ecc = w25n02kv_ooblayout_ecc,
.free = w25n02kv_ooblayout_free,
};
static int w35n01jw_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 7)
return -ERANGE;
region->offset = (16 * section) + 12;
region->length = 4;
return 0;
}
static int w35n01jw_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section > 7)
return -ERANGE;
region->offset = 16 * section;
region->length = 12;
/* Extract BBM */
if (!section) {
region->offset += 2;
region->length -= 2;
}
return 0;
}
static const struct mtd_ooblayout_ops w35n01jw_ooblayout = {
.ecc = w35n01jw_ooblayout_ecc,
.free = w35n01jw_ooblayout_free,
};
static int w25n02kv_ecc_get_status(struct spinand_device *spinand,
u8 status)
{
struct nand_device *nand = spinand_to_nand(spinand);
u8 mbf = 0;
struct spi_mem_op op = SPINAND_GET_FEATURE_1S_1S_1S_OP(0x30, spinand->scratchbuf);
switch (status & STATUS_ECC_MASK) {
case STATUS_ECC_NO_BITFLIPS:
return 0;
case STATUS_ECC_UNCOR_ERROR:
return -EBADMSG;
case STATUS_ECC_HAS_BITFLIPS:
case W25N04KV_STATUS_ECC_5_8_BITFLIPS:
/*
* Let's try to retrieve the real maximum number of bitflips
* in order to avoid forcing the wear-leveling layer to move
* data around if it's not necessary.
*/
if (spi_mem_exec_op(spinand->spimem, &op))
return nanddev_get_ecc_conf(nand)->strength;
mbf = *(spinand->scratchbuf) >> 4;
if (WARN_ON(mbf > nanddev_get_ecc_conf(nand)->strength || !mbf))
return nanddev_get_ecc_conf(nand)->strength;
return mbf;
default:
break;
}
return -EINVAL;
}
static int w25n0xjw_hs_cfg(struct spinand_device *spinand)
{
const struct spi_mem_op *op;
bool hs;
u8 sr4;
int ret;
op = spinand->op_templates.read_cache;
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
hs = false;
else if (op->cmd.buswidth == 1 && op->addr.buswidth == 1 &&
op->dummy.buswidth == 1 && op->data.buswidth == 1)
hs = false;
else if (!op->max_freq)
hs = true;
else
hs = false;
ret = spinand_read_reg_op(spinand, W25N0XJW_SR4, &sr4);
if (ret)
return ret;
if (hs)
sr4 |= W25N0XJW_SR4_HS;
else
sr4 &= ~W25N0XJW_SR4_HS;
ret = spinand_write_reg_op(spinand, W25N0XJW_SR4, sr4);
if (ret)
return ret;
return 0;
}
static int w35n0xjw_write_vcr(struct spinand_device *spinand, u8 reg, u8 val)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(0x81, 1),
SPI_MEM_OP_ADDR(3, reg, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, spinand->scratchbuf, 1));
int ret;
*spinand->scratchbuf = val;
ret = spinand_write_enable_op(spinand);
if (ret)
return ret;
ret = spi_mem_exec_op(spinand->spimem, &op);
if (ret)
return ret;
/*
* Write VCR operation doesn't set the busy bit in SR, which means we
* cannot perform a status poll. Minimum time of 50ns is needed to
* complete the write.
*/
ndelay(50);
return 0;
}
static int w35n0xjw_vcr_cfg(struct spinand_device *spinand)
{
const struct spi_mem_op *op;
unsigned int dummy_cycles;
bool dtr, single;
u8 io_mode;
int ret;
op = spinand->op_templates.read_cache;
single = (op->cmd.buswidth == 1 && op->addr.buswidth == 1 && op->data.buswidth == 1);
dtr = (op->cmd.dtr || op->addr.dtr || op->data.dtr);
if (single && !dtr)
io_mode = W35N01JW_VCR_IO_MODE_SINGLE_SDR;
else if (!single && !dtr)
io_mode = W35N01JW_VCR_IO_MODE_OCTAL_SDR;
else if (!single && dtr)
io_mode = W35N01JW_VCR_IO_MODE_OCTAL_DDR;
else
return -EINVAL;
ret = w35n0xjw_write_vcr(spinand, W35N01JW_VCR_IO_MODE, io_mode);
if (ret)
return ret;
dummy_cycles = ((op->dummy.nbytes * 8) / op->dummy.buswidth) / (op->dummy.dtr ? 2 : 1);
switch (dummy_cycles) {
case 8:
case 12:
case 16:
case 20:
case 24:
case 28:
break;
default:
return -EINVAL;
}
ret = w35n0xjw_write_vcr(spinand, W35N01JW_VCR_DUMMY_CLOCK_REG, dummy_cycles);
if (ret)
return ret;
return 0;
}
static const struct spinand_info winbond_spinand_table[] = {
/* 512M-bit densities */
SPINAND_INFO("W25N512GW", /* 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x20),
NAND_MEMORG(1, 2048, 64, 64, 512, 10, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
/* 1G-bit densities */
SPINAND_INFO("W25N01GV", /* 3.3V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x21),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
SPINAND_INFO("W25N01GW", /* 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x21),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
SPINAND_INFO("W25N01JW", /* high-speed 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xbc, 0x21),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_dual_quad_dtr_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
SPINAND_CONFIGURE_CHIP(w25n0xjw_hs_cfg)),
SPINAND_INFO("W25N01KV", /* 3.3V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xae, 0x21),
NAND_MEMORG(1, 2048, 96, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25n01kv_ooblayout, w25n02kv_ecc_get_status)),
SPINAND_INFO("W35N01JW", /* 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xdc, 0x21),
NAND_MEMORG(1, 4096, 128, 64, 512, 10, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_octal_variants,
&write_cache_octal_variants,
&update_cache_octal_variants),
0,
SPINAND_ECCINFO(&w35n01jw_ooblayout, NULL),
SPINAND_CONFIGURE_CHIP(w35n0xjw_vcr_cfg)),
SPINAND_INFO("W35N02JW", /* 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xdf, 0x22),
NAND_MEMORG(1, 4096, 128, 64, 512, 10, 1, 2, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_octal_variants,
&write_cache_octal_variants,
&update_cache_octal_variants),
0,
SPINAND_ECCINFO(&w35n01jw_ooblayout, NULL),
SPINAND_CONFIGURE_CHIP(w35n0xjw_vcr_cfg)),
SPINAND_INFO("W35N04JW", /* 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xdf, 0x23),
NAND_MEMORG(1, 4096, 128, 64, 512, 10, 1, 4, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_octal_variants,
&write_cache_octal_variants,
&update_cache_octal_variants),
0,
SPINAND_ECCINFO(&w35n01jw_ooblayout, NULL),
SPINAND_CONFIGURE_CHIP(w35n0xjw_vcr_cfg)),
/* 2G-bit densities */
SPINAND_INFO("W25M02GV", /* 2x1G-bit 3.3V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xab, 0x21),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 2),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
SPINAND_SELECT_TARGET(w25m02gv_select_target)),
SPINAND_INFO("W25N02JW", /* high-speed 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xbf, 0x22),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 2, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_dual_quad_dtr_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
SPINAND_CONFIGURE_CHIP(w25n0xjw_hs_cfg)),
SPINAND_INFO("W25N02KV", /* 3.3V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x22),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
SPINAND_INFO("W25N02KW", /* 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x22),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
/* 4G-bit densities */
SPINAND_INFO("W25N04KV", /* 3.3V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xaa, 0x23),
NAND_MEMORG(1, 2048, 128, 64, 4096, 40, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
SPINAND_INFO("W25N04KW", /* 1.8V */
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0xba, 0x23),
NAND_MEMORG(1, 2048, 128, 64, 4096, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&w25n02kv_ooblayout, w25n02kv_ecc_get_status)),
};
static int winbond_spinand_init(struct spinand_device *spinand)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
/*
* Make sure all dies are in buffer read mode and not continuous read
* mode.
*/
for (i = 0; i < nand->memorg.ntargets; i++) {
spinand_select_target(spinand, i);
spinand_upd_cfg(spinand, WINBOND_CFG_BUF_READ,
WINBOND_CFG_BUF_READ);
}
return 0;
}
static const struct spinand_manufacturer_ops winbond_spinand_manuf_ops = {
.init = winbond_spinand_init,
};
const struct spinand_manufacturer winbond_spinand_manufacturer = {
.id = SPINAND_MFR_WINBOND,
.name = "Winbond",
.chips = winbond_spinand_table,
.nchips = ARRAY_SIZE(winbond_spinand_table),
.ops = &winbond_spinand_manuf_ops,
};