linux-loongson/drivers/mtd/nand/raw/nuvoton-ma35d1-nand-controller.c
Hui-Ping Chen 5abb5d414d mtd: rawnand: nuvoton: add new driver for the Nuvoton MA35 SoC
Nuvoton MA35 SoCs NAND Flash Interface Controller
supports 2kiB, 4kiB and 8kiB page size, and up to
8-bit, 12-bit, and 24-bit hardware ECC calculation
circuit to protect data.

Signed-off-by: Hui-Ping Chen <hpchen0nvt@gmail.com>
[Miquel Raynal: Fixed compatible and driver name to match latest bindings]
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2024-12-24 13:14:22 +01:00

1030 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024 Nuvoton Technology Corp.
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
/* NFI Registers */
#define MA35_NFI_REG_DMACTL 0x400
#define DMA_EN BIT(0)
#define DMA_RST BIT(1)
#define DMA_BUSY BIT(9)
#define MA35_NFI_REG_DMASA 0x408
#define MA35_NFI_REG_GCTL 0x800
#define GRST BIT(0)
#define NAND_EN BIT(3)
#define MA35_NFI_REG_NANDCTL 0x8A0
#define SWRST BIT(0)
#define DMA_R_EN BIT(1)
#define DMA_W_EN BIT(2)
#define ECC_CHK BIT(7)
#define PROT3BEN BIT(8)
#define PSIZE_2K BIT(16)
#define PSIZE_4K BIT(17)
#define PSIZE_8K GENMASK(17, 16)
#define PSIZE_MASK GENMASK(17, 16)
#define BCH_T24 BIT(18)
#define BCH_T8 BIT(20)
#define BCH_T12 BIT(21)
#define BCH_NONE (0x0)
#define BCH_MASK GENMASK(22, 18)
#define ECC_EN BIT(23)
#define DISABLE_CS0 BIT(25)
#define MA35_NFI_REG_NANDINTEN 0x8A8
#define MA35_NFI_REG_NANDINTSTS 0x8AC
#define INT_DMA BIT(0)
#define INT_ECC BIT(2)
#define INT_RB0 BIT(10)
#define MA35_NFI_REG_NANDCMD 0x8B0
#define MA35_NFI_REG_NANDADDR 0x8B4
#define ENDADDR BIT(31)
#define MA35_NFI_REG_NANDDATA 0x8B8
#define MA35_NFI_REG_NANDRACTL 0x8BC
#define MA35_NFI_REG_NANDECTL 0x8C0
#define ENABLE_WP 0x0
#define DISABLE_WP BIT(0)
#define MA35_NFI_REG_NANDECCES0 0x8D0
#define ECC_STATUS_MASK GENMASK(1, 0)
#define ECC_ERR_CNT_MASK GENMASK(4, 0)
#define MA35_NFI_REG_NANDECCEA0 0x900
#define MA35_NFI_REG_NANDECCED0 0x960
#define MA35_NFI_REG_NANDRA0 0xA00
/* Define for the BCH hardware ECC engine */
/* define the total padding bytes for 512/1024 data segment */
#define MA35_BCH_PADDING_512 32
#define MA35_BCH_PADDING_1024 64
/* define the BCH parity code length for 512 bytes data pattern */
#define MA35_PARITY_BCH8 15
#define MA35_PARITY_BCH12 23
/* define the BCH parity code length for 1024 bytes data pattern */
#define MA35_PARITY_BCH24 45
#define MA35_MAX_NSELS (2)
#define PREFIX_RA_IS_EMPTY(reg) FIELD_GET(GENMASK(31, 16), (reg))
struct ma35_nand_chip {
struct list_head node;
struct nand_chip chip;
u32 eccstatus;
u8 nsels;
u8 sels[] __counted_by(nsels);
};
struct ma35_nand_info {
struct nand_controller controller;
struct device *dev;
void __iomem *regs;
int irq;
struct clk *clk;
struct completion complete;
struct list_head chips;
u8 *buffer;
unsigned long assigned_cs;
};
static inline struct ma35_nand_chip *to_ma35_nand(struct nand_chip *chip)
{
return container_of(chip, struct ma35_nand_chip, chip);
}
static int ma35_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oob_region)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oob_region->length = chip->ecc.total;
oob_region->offset = mtd->oobsize - oob_region->length;
return 0;
}
static int ma35_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oob_region)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oob_region->length = mtd->oobsize - chip->ecc.total - 2;
oob_region->offset = 2;
return 0;
}
static const struct mtd_ooblayout_ops ma35_ooblayout_ops = {
.free = ma35_ooblayout_free,
.ecc = ma35_ooblayout_ecc,
};
static inline void ma35_clear_spare(struct nand_chip *chip, int size)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
int i;
for (i = 0; i < size / 4; i++)
writel(0xff, nand->regs + MA35_NFI_REG_NANDRA0);
}
static inline void read_remaining_bytes(struct ma35_nand_info *nand, u32 *buf,
u32 offset, int size, int swap)
{
u32 value = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset);
u8 *ptr = (u8 *)buf;
int i, shift;
for (i = 0; i < size; i++) {
shift = (swap ? 3 - i : i) * 8;
ptr[i] = (value >> shift) & 0xff;
}
}
static inline void ma35_read_spare(struct nand_chip *chip, int size, u32 *buf, u32 offset)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
u32 off = round_down(offset, 4);
int len = offset % 4;
int i;
if (len) {
read_remaining_bytes(nand, buf, off, 4 - len, 1);
off += 4;
size -= (4 - len);
}
for (i = 0; i < size / 4; i++)
*buf++ = readl(nand->regs + MA35_NFI_REG_NANDRA0 + off + (i * 4));
read_remaining_bytes(nand, buf, off + (size & ~3), size % 4, 0);
}
static inline void ma35_write_spare(struct nand_chip *chip, int size, u32 *buf)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
u32 value;
int i, j;
u8 *ptr;
for (i = 0, j = 0; i < size / 4; i++, j += 4)
writel(*buf++, nand->regs + MA35_NFI_REG_NANDRA0 + j);
ptr = (u8 *)buf;
switch (size % 4) {
case 1:
writel(*ptr, nand->regs + MA35_NFI_REG_NANDRA0 + j);
break;
case 2:
value = *ptr | (*(ptr + 1) << 8);
writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + j);
break;
case 3:
value = *ptr | (*(ptr + 1) << 8) | (*(ptr + 2) << 16);
writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + j);
break;
default:
break;
}
}
static void ma35_nand_target_enable(struct nand_chip *chip, unsigned int cs)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
u32 reg;
switch (cs) {
case 0:
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg & ~DISABLE_CS0, nand->regs + MA35_NFI_REG_NANDCTL);
reg = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
reg |= INT_RB0;
writel(reg, nand->regs + MA35_NFI_REG_NANDINTSTS);
break;
default:
break;
}
}
static int ma35_nand_hwecc_init(struct nand_chip *chip, struct ma35_nand_info *nand)
{
struct ma35_nand_chip *nvtnand = to_ma35_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct device *dev = mtd->dev.parent;
u32 reg;
nand->buffer = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
if (!nand->buffer)
return -ENOMEM;
/* Redundant area size */
writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL);
/* Protect redundant 3 bytes and disable ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
reg |= (PROT3BEN | ECC_CHK);
reg &= ~ECC_EN;
if (chip->ecc.strength != 0) {
chip->ecc.steps = mtd->writesize / chip->ecc.size;
nvtnand->eccstatus = (chip->ecc.steps < 4) ? 1 : chip->ecc.steps / 4;
/* Set BCH algorithm */
reg &= ~BCH_MASK;
switch (chip->ecc.strength) {
case 8:
chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH8;
reg |= BCH_T8;
break;
case 12:
chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH12;
reg |= BCH_T12;
break;
case 24:
chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH24;
reg |= BCH_T24;
break;
default:
dev_err(nand->dev, "ECC strength unsupported\n");
return -EINVAL;
}
chip->ecc.bytes = chip->ecc.total / chip->ecc.steps;
}
writel(reg, nand->regs + MA35_NFI_REG_NANDCTL);
return 0;
}
/* Correct data by BCH alrogithm */
static void ma35_nfi_correct(struct nand_chip *chip, u8 index,
u8 err_cnt, u8 *addr)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
u32 temp_data[24], temp_addr[24];
u32 padding_len, parity_len;
u32 value, offset, remain;
u32 err_data[6];
u8 i, j;
/* Configurations */
if (chip->ecc.strength <= 8) {
parity_len = MA35_PARITY_BCH8;
padding_len = MA35_BCH_PADDING_512;
} else if (chip->ecc.strength <= 12) {
parity_len = MA35_PARITY_BCH12;
padding_len = MA35_BCH_PADDING_512;
} else if (chip->ecc.strength <= 24) {
parity_len = MA35_PARITY_BCH24;
padding_len = MA35_BCH_PADDING_1024;
} else {
dev_err(nand->dev, "Invalid BCH_TSEL = 0x%lx\n",
readl(nand->regs + MA35_NFI_REG_NANDCTL) & BCH_MASK);
return;
}
/*
* got valid BCH_ECC_DATAx and parse them to temp_data[]
* got the valid register number of BCH_ECC_DATAx since
* one register include 4 error bytes
*/
j = (err_cnt + 3) / 4;
j = (j > 6) ? 6 : j;
for (i = 0; i < j; i++)
err_data[i] = readl(nand->regs + MA35_NFI_REG_NANDECCED0 + i * 4);
for (i = 0; i < j; i++) {
temp_data[i * 4 + 0] = err_data[i] & 0xff;
temp_data[i * 4 + 1] = (err_data[i] >> 8) & 0xff;
temp_data[i * 4 + 2] = (err_data[i] >> 16) & 0xff;
temp_data[i * 4 + 3] = (err_data[i] >> 24) & 0xff;
}
/*
* got valid REG_BCH_ECC_ADDRx and parse them to temp_addr[]
* got the valid register number of REG_BCH_ECC_ADDRx since
* one register include 2 error addresses
*/
j = (err_cnt + 1) / 2;
j = (j > 12) ? 12 : j;
for (i = 0; i < j; i++) {
temp_addr[i * 2 + 0] = readl(nand->regs + MA35_NFI_REG_NANDECCEA0 + i * 4)
& 0x07ff;
temp_addr[i * 2 + 1] = (readl(nand->regs + MA35_NFI_REG_NANDECCEA0 + i * 4)
>> 16) & 0x07ff;
}
/* pointer to begin address of field that with data error */
addr += index * chip->ecc.size;
/* correct each error bytes */
for (i = 0; i < err_cnt; i++) {
u32 corrected_index = temp_addr[i];
if (corrected_index < chip->ecc.size) {
/* for wrong data in field */
*(addr + corrected_index) ^= temp_data[i];
} else if (corrected_index < (chip->ecc.size + 3)) {
/* for wrong first-3-bytes in redundancy area */
corrected_index -= chip->ecc.size;
temp_addr[i] += (parity_len * index); /* field offset */
value = readl(nand->regs + MA35_NFI_REG_NANDRA0);
value ^= temp_data[i] << (8 * corrected_index);
writel(value, nand->regs + MA35_NFI_REG_NANDRA0);
} else {
/*
* for wrong parity code in redundancy area
* ERR_ADDRx = [data in field] + [3 bytes] + [xx] + [parity code]
* |<-- padding bytes -->|
* The ERR_ADDRx for last parity code always = field size + padding size.
* The first parity code = field size + padding size - parity code length.
* For example, for BCH T12, the first parity code = 512 + 32 - 23 = 521.
* That is, error byte address offset within field is
*/
corrected_index -= (chip->ecc.size + padding_len - parity_len);
/*
* final address = first parity code of first field +
* offset of fields +
* offset within field
*/
offset = (readl(nand->regs + MA35_NFI_REG_NANDRACTL) & 0x1ff) -
(parity_len * chip->ecc.steps) +
(parity_len * index) + corrected_index;
remain = offset % 4;
value = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset - remain);
value ^= temp_data[i] << (8 * remain);
writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + offset - remain);
}
}
}
static int ma35_nfi_ecc_check(struct nand_chip *chip, u8 *addr)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct ma35_nand_chip *nvtnand = to_ma35_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int maxbitflips = 0;
int cnt = 0;
u32 status;
int i, j;
for (j = 0; j < nvtnand->eccstatus; j++) {
status = readl(nand->regs + MA35_NFI_REG_NANDECCES0 + j * 4);
if (!status)
continue;
for (i = 0; i < 4; i++) {
if ((status & ECC_STATUS_MASK) == 0x01) {
/* Correctable error */
cnt = (status >> 2) & ECC_ERR_CNT_MASK;
ma35_nfi_correct(chip, j * 4 + i, cnt, addr);
maxbitflips = max_t(u32, maxbitflips, cnt);
mtd->ecc_stats.corrected += cnt;
} else {
/* Uncorrectable error */
mtd->ecc_stats.failed++;
dev_err(nand->dev, "uncorrectable error! 0x%4x\n", status);
return -EBADMSG;
}
status >>= 8;
}
}
return maxbitflips;
}
static void ma35_nand_dmac_init(struct ma35_nand_info *nand)
{
/* DMAC reset and enable */
writel(DMA_RST | DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
writel(DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
/* Clear DMA finished flag and enable */
writel(INT_DMA | INT_ECC, nand->regs + MA35_NFI_REG_NANDINTSTS);
writel(INT_DMA, nand->regs + MA35_NFI_REG_NANDINTEN);
}
static int ma35_nand_do_write(struct nand_chip *chip, const u8 *addr, u32 len)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
dma_addr_t dma_addr;
int ret = 0, i;
u32 reg;
if (len != mtd->writesize) {
for (i = 0; i < len; i++)
writel(addr[i], nand->regs + MA35_NFI_REG_NANDDATA);
return 0;
}
ma35_nand_dmac_init(nand);
/* To mark this page as dirty. */
reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
if (reg & 0xffff0000)
writel(reg & 0xffff, nand->regs + MA35_NFI_REG_NANDRA0);
dma_addr = dma_map_single(nand->dev, (void *)addr, len, DMA_TO_DEVICE);
ret = dma_mapping_error(nand->dev, dma_addr);
if (ret) {
dev_err(nand->dev, "dma mapping error\n");
return -EINVAL;
}
dma_sync_single_for_device(nand->dev, dma_addr, len, DMA_TO_DEVICE);
reinit_completion(&nand->complete);
writel(dma_addr, nand->regs + MA35_NFI_REG_DMASA);
writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | DMA_W_EN,
nand->regs + MA35_NFI_REG_NANDCTL);
ret = wait_for_completion_timeout(&nand->complete, msecs_to_jiffies(1000));
if (!ret) {
dev_err(nand->dev, "write timeout\n");
ret = -ETIMEDOUT;
}
dma_unmap_single(nand->dev, dma_addr, len, DMA_TO_DEVICE);
return ret;
}
static int ma35_nand_do_read(struct nand_chip *chip, u8 *addr, u32 len)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int ret = 0, cnt = 0, i;
dma_addr_t dma_addr;
u32 reg;
if (len != mtd->writesize) {
for (i = 0; i < len; i++)
addr[i] = readb(nand->regs + MA35_NFI_REG_NANDDATA);
return 0;
}
ma35_nand_dmac_init(nand);
/* Setup and start DMA using dma_addr */
dma_addr = dma_map_single(nand->dev, (void *)addr, len, DMA_FROM_DEVICE);
ret = dma_mapping_error(nand->dev, dma_addr);
if (ret) {
dev_err(nand->dev, "dma mapping error\n");
return -EINVAL;
}
reinit_completion(&nand->complete);
writel(dma_addr, nand->regs + MA35_NFI_REG_DMASA);
writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | DMA_R_EN,
nand->regs + MA35_NFI_REG_NANDCTL);
ret = wait_for_completion_timeout(&nand->complete, msecs_to_jiffies(1000));
if (!ret) {
dev_err(nand->dev, "read timeout\n");
ret = -ETIMEDOUT;
}
dma_unmap_single(nand->dev, dma_addr, len, DMA_FROM_DEVICE);
reg = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
if (reg & INT_ECC) {
cnt = ma35_nfi_ecc_check(chip, addr);
if (cnt < 0) {
writel(DMA_RST | DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | SWRST,
nand->regs + MA35_NFI_REG_NANDCTL);
}
writel(INT_ECC, nand->regs + MA35_NFI_REG_NANDINTSTS);
}
ret = ret < 0 ? ret : cnt;
return ret;
}
static int ma35_nand_format_subpage(struct nand_chip *chip, u32 offset,
u32 len, const u8 *buf)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 page_off = round_down(offset, chip->ecc.size);
u32 end = DIV_ROUND_UP(page_off + len, chip->ecc.size);
u32 start = page_off / chip->ecc.size;
u32 reg;
int i;
reg = readl(nand->regs + MA35_NFI_REG_NANDRACTL) | 0xffff0000;
memset(nand->buffer, 0xff, mtd->writesize);
for (i = start; i < end; i++) {
memcpy(nand->buffer + i * chip->ecc.size,
buf + i * chip->ecc.size, chip->ecc.size);
reg &= ~(1 << (i + 16));
}
writel(reg, nand->regs + MA35_NFI_REG_NANDRACTL);
return 0;
}
static int ma35_nand_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
u32 data_len, const u8 *buf,
int oob_required, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 reg, oobpoi, index;
int i;
/* Enable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
ma35_nand_target_enable(chip, chip->cur_cs);
ma35_clear_spare(chip, mtd->oobsize);
ma35_write_spare(chip, mtd->oobsize - chip->ecc.total,
(u32 *)chip->oob_poi);
ma35_nand_format_subpage(chip, offset, data_len, buf);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
ma35_nand_do_write(chip, nand->buffer, mtd->writesize);
nand_prog_page_end_op(chip);
oobpoi = mtd->oobsize - chip->ecc.total;
reg = readl(nand->regs + MA35_NFI_REG_NANDRACTL);
for (i = 0; i < chip->ecc.steps; i++) {
index = i * chip->ecc.bytes;
if (!(reg & (1 << (i + 16)))) {
ma35_read_spare(chip, chip->ecc.bytes,
(u32 *)(chip->oob_poi + oobpoi + index),
oobpoi + index);
}
}
writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL);
/* Disable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
return 0;
}
static int ma35_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 reg;
/* Enable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
ma35_nand_target_enable(chip, chip->cur_cs);
ma35_clear_spare(chip, mtd->oobsize);
ma35_write_spare(chip, mtd->oobsize - chip->ecc.total,
(u32 *)chip->oob_poi);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
ma35_nand_do_write(chip, buf, mtd->writesize);
nand_prog_page_end_op(chip);
ma35_read_spare(chip, chip->ecc.total,
(u32 *)(chip->oob_poi + (mtd->oobsize - chip->ecc.total)),
mtd->oobsize - chip->ecc.total);
/* Disable HW ECC engine */
writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
return 0;
}
static int ma35_nand_read_subpage_hwecc(struct nand_chip *chip, u32 offset,
u32 data_len, u8 *buf, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int bitflips = 0;
u32 reg;
/* Enable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
ma35_nand_target_enable(chip, chip->cur_cs);
nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi);
reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
if (PREFIX_RA_IS_EMPTY(reg)) {
memset((void *)buf, 0xff, mtd->writesize);
} else {
nand_read_page_op(chip, page, offset, NULL, 0);
bitflips = ma35_nand_do_read(chip, buf + offset, data_len);
ma35_read_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi, 0);
}
/* Disable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
return bitflips;
}
static int ma35_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int bitflips = 0;
u32 reg;
/* Enable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
ma35_nand_target_enable(chip, chip->cur_cs);
nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi);
reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
if (PREFIX_RA_IS_EMPTY(reg)) {
memset((void *)buf, 0xff, mtd->writesize);
} else {
nand_read_page_op(chip, page, 0, NULL, 0);
bitflips = ma35_nand_do_read(chip, buf, mtd->writesize);
ma35_read_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi, 0);
}
/* Disable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
return bitflips;
}
static int ma35_nand_read_oob_hwecc(struct nand_chip *chip, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 reg;
ma35_nand_target_enable(chip, chip->cur_cs);
nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
/* copy OOB data to controller redundant area for page read */
ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi);
reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
if (PREFIX_RA_IS_EMPTY(reg))
memset((void *)chip->oob_poi, 0xff, mtd->oobsize);
return 0;
}
static inline void ma35_hw_init(struct ma35_nand_info *nand)
{
u32 reg;
/* Disable flash wp. */
writel(DISABLE_WP, nand->regs + MA35_NFI_REG_NANDECTL);
/* resets the internal state machine and counters */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
reg |= SWRST;
writel(reg, nand->regs + MA35_NFI_REG_NANDCTL);
}
static irqreturn_t ma35_nand_irq(int irq, void *id)
{
struct ma35_nand_info *nand = (struct ma35_nand_info *)id;
u32 isr;
isr = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
if (isr & INT_DMA) {
writel(INT_DMA, nand->regs + MA35_NFI_REG_NANDINTSTS);
complete(&nand->complete);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int ma35_nand_attach_chip(struct nand_chip *chip)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct device *dev = mtd->dev.parent;
u32 reg;
if (chip->options & NAND_BUSWIDTH_16) {
dev_err(dev, "16 bits bus width not supported");
return -EINVAL;
}
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL) & (~PSIZE_MASK);
switch (mtd->writesize) {
case SZ_2K:
writel(reg | PSIZE_2K, nand->regs + MA35_NFI_REG_NANDCTL);
break;
case SZ_4K:
writel(reg | PSIZE_4K, nand->regs + MA35_NFI_REG_NANDCTL);
break;
case SZ_8K:
writel(reg | PSIZE_8K, nand->regs + MA35_NFI_REG_NANDCTL);
break;
default:
dev_err(dev, "Unsupported page size");
return -EINVAL;
}
switch (chip->ecc.engine_type) {
case NAND_ECC_ENGINE_TYPE_ON_HOST:
/* Do not store BBT bits in the OOB section as it is not protected */
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
chip->options |= NAND_USES_DMA | NAND_SUBPAGE_READ;
chip->ecc.write_subpage = ma35_nand_write_subpage_hwecc;
chip->ecc.write_page = ma35_nand_write_page_hwecc;
chip->ecc.read_subpage = ma35_nand_read_subpage_hwecc;
chip->ecc.read_page = ma35_nand_read_page_hwecc;
chip->ecc.read_oob = ma35_nand_read_oob_hwecc;
return ma35_nand_hwecc_init(chip, nand);
case NAND_ECC_ENGINE_TYPE_NONE:
case NAND_ECC_ENGINE_TYPE_SOFT:
case NAND_ECC_ENGINE_TYPE_ON_DIE:
break;
default:
return -EINVAL;
}
return 0;
}
static int ma35_nfc_exec_instr(struct nand_chip *chip,
const struct nand_op_instr *instr)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
unsigned int i;
int ret = 0;
u32 status;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writel(instr->ctx.cmd.opcode, nand->regs + MA35_NFI_REG_NANDCMD);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
if (i == (instr->ctx.addr.naddrs - 1))
writel(instr->ctx.addr.addrs[i] | ENDADDR,
nand->regs + MA35_NFI_REG_NANDADDR);
else
writel(instr->ctx.addr.addrs[i],
nand->regs + MA35_NFI_REG_NANDADDR);
}
break;
case NAND_OP_DATA_IN_INSTR:
ret = ma35_nand_do_read(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
ret = ma35_nand_do_write(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
return readl_poll_timeout(nand->regs + MA35_NFI_REG_NANDINTSTS, status,
status & INT_RB0, 20,
instr->ctx.waitrdy.timeout_ms * MSEC_PER_SEC);
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ma35_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
int ret = 0;
u32 i;
if (check_only)
return 0;
ma35_nand_target_enable(chip, op->cs);
for (i = 0; i < op->ninstrs; i++) {
ret = ma35_nfc_exec_instr(chip, &op->instrs[i]);
if (ret)
break;
}
return ret;
}
static const struct nand_controller_ops ma35_nfc_ops = {
.attach_chip = ma35_nand_attach_chip,
.exec_op = ma35_nfc_exec_op,
};
static int ma35_nand_chip_init(struct device *dev, struct ma35_nand_info *nand,
struct device_node *np)
{
struct ma35_nand_chip *nvtnand;
struct nand_chip *chip;
struct mtd_info *mtd;
int nsels;
int ret;
u32 cs;
int i;
nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
if (!nsels || nsels > MA35_MAX_NSELS) {
dev_err(dev, "invalid reg property size %d\n", nsels);
return -EINVAL;
}
nvtnand = devm_kzalloc(dev, struct_size(nvtnand, sels, nsels),
GFP_KERNEL);
if (!nvtnand)
return -ENOMEM;
nvtnand->nsels = nsels;
for (i = 0; i < nsels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &cs);
if (ret) {
dev_err(dev, "reg property failure : %d\n", ret);
return ret;
}
if (cs >= MA35_MAX_NSELS) {
dev_err(dev, "invalid CS: %u\n", cs);
return -EINVAL;
}
if (test_and_set_bit(cs, &nand->assigned_cs)) {
dev_err(dev, "CS %u already assigned\n", cs);
return -EINVAL;
}
nvtnand->sels[i] = cs;
}
chip = &nvtnand->chip;
chip->controller = &nand->controller;
nand_set_flash_node(chip, np);
nand_set_controller_data(chip, nand);
mtd = nand_to_mtd(chip);
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
mtd_set_ooblayout(mtd, &ma35_ooblayout_ops);
ret = nand_scan(chip, nsels);
if (ret)
return ret;
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
nand_cleanup(chip);
return ret;
}
list_add_tail(&nvtnand->node, &nand->chips);
return 0;
}
static void ma35_chips_cleanup(struct ma35_nand_info *nand)
{
struct ma35_nand_chip *nvtnand, *tmp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(nvtnand, tmp, &nand->chips, node) {
chip = &nvtnand->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&nvtnand->node);
}
}
static int ma35_nand_chips_init(struct device *dev, struct ma35_nand_info *nand)
{
struct device_node *np = dev->of_node, *nand_np;
int ret;
for_each_child_of_node(np, nand_np) {
ret = ma35_nand_chip_init(dev, nand, nand_np);
if (ret) {
ma35_chips_cleanup(nand);
return ret;
}
}
return 0;
}
static int ma35_nand_probe(struct platform_device *pdev)
{
struct ma35_nand_info *nand;
int ret = 0;
nand = devm_kzalloc(&pdev->dev, sizeof(*nand), GFP_KERNEL);
if (!nand)
return -ENOMEM;
nand_controller_init(&nand->controller);
INIT_LIST_HEAD(&nand->chips);
nand->controller.ops = &ma35_nfc_ops;
init_completion(&nand->complete);
nand->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nand->regs))
return PTR_ERR(nand->regs);
nand->dev = &pdev->dev;
nand->clk = devm_clk_get_enabled(&pdev->dev, "nand_gate");
if (IS_ERR(nand->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(nand->clk),
"failed to find NAND clock\n");
nand->irq = platform_get_irq(pdev, 0);
if (nand->irq < 0)
return dev_err_probe(&pdev->dev, nand->irq,
"failed to get platform irq\n");
ret = devm_request_irq(&pdev->dev, nand->irq, ma35_nand_irq,
IRQF_TRIGGER_HIGH, "ma35d1-nand-controller", nand);
if (ret) {
dev_err(&pdev->dev, "failed to request NAND irq\n");
return -ENXIO;
}
platform_set_drvdata(pdev, nand);
writel(GRST | NAND_EN, nand->regs + MA35_NFI_REG_GCTL);
ma35_hw_init(nand);
ret = ma35_nand_chips_init(&pdev->dev, nand);
if (ret) {
dev_err(&pdev->dev, "failed to init NAND chips\n");
clk_disable(nand->clk);
return ret;
}
return ret;
}
static void ma35_nand_remove(struct platform_device *pdev)
{
struct ma35_nand_info *nand = platform_get_drvdata(pdev);
ma35_chips_cleanup(nand);
}
static const struct of_device_id ma35_nand_of_match[] = {
{ .compatible = "nuvoton,ma35d1-nand-controller" },
{},
};
MODULE_DEVICE_TABLE(of, ma35_nand_of_match);
static struct platform_driver ma35_nand_driver = {
.driver = {
.name = "ma35d1-nand-controller",
.of_match_table = ma35_nand_of_match,
},
.probe = ma35_nand_probe,
.remove = ma35_nand_remove,
};
module_platform_driver(ma35_nand_driver);
MODULE_DESCRIPTION("Nuvoton ma35 NAND driver");
MODULE_AUTHOR("Hui-Ping Chen <hpchen0nvt@gmail.com>");
MODULE_LICENSE("GPL");