linux-loongson/drivers/mtd/nand/raw/loongson1-nand-controller.c
Keguang Zhang 615f8f5077 mtd: rawnand: loongson1: Fix inconsistent refcounting in ls1x_nand_chip_init()
As reported by Dan,
commit d2d10ede04 ("mtd: rawnand: Add Loongson-1 NAND Controller
Driver"), leads to the following Smatch static checker warning:

drivers/mtd/nand/raw/loongson1-nand-controller.c:730 ls1x_nand_chip_init()
warn: inconsistent refcounting 'chip_np->kobj.kref.refcount.refs.counter':

Fix this issue by calling of_node_put() immediately after using chip_np.
In addition, remove all unnecessary of_node_put(chip_np) calls.

Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/all/aBR535RZZT-sa6QZ@stanley.mountain/
Fixes: d2d10ede04 ("mtd: rawnand: Add Loongson-1 NAND Controller Driver")
Signed-off-by: Keguang Zhang <keguang.zhang@gmail.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2025-05-12 16:28:21 +02:00

837 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* NAND Controller Driver for Loongson-1 SoC
*
* Copyright (C) 2015-2025 Keguang Zhang <keguang.zhang@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/sizes.h>
/* Loongson-1 NAND Controller Registers */
#define LS1X_NAND_CMD 0x0
#define LS1X_NAND_ADDR1 0x4
#define LS1X_NAND_ADDR2 0x8
#define LS1X_NAND_TIMING 0xc
#define LS1X_NAND_IDL 0x10
#define LS1X_NAND_IDH_STATUS 0x14
#define LS1X_NAND_PARAM 0x18
#define LS1X_NAND_OP_NUM 0x1c
/* NAND Command Register Bits */
#define LS1X_NAND_CMD_OP_DONE BIT(10)
#define LS1X_NAND_CMD_OP_SPARE BIT(9)
#define LS1X_NAND_CMD_OP_MAIN BIT(8)
#define LS1X_NAND_CMD_STATUS BIT(7)
#define LS1X_NAND_CMD_RESET BIT(6)
#define LS1X_NAND_CMD_READID BIT(5)
#define LS1X_NAND_CMD_BLOCKS_ERASE BIT(4)
#define LS1X_NAND_CMD_ERASE BIT(3)
#define LS1X_NAND_CMD_WRITE BIT(2)
#define LS1X_NAND_CMD_READ BIT(1)
#define LS1X_NAND_CMD_VALID BIT(0)
#define LS1X_NAND_WAIT_CYCLE_MASK GENMASK(7, 0)
#define LS1X_NAND_HOLD_CYCLE_MASK GENMASK(15, 8)
#define LS1X_NAND_CELL_SIZE_MASK GENMASK(11, 8)
#define LS1X_NAND_COL_ADDR_CYC 2U
#define LS1X_NAND_MAX_ADDR_CYC 5U
#define BITS_PER_WORD (4 * BITS_PER_BYTE)
struct ls1x_nand_host;
struct ls1x_nand_op {
char addrs[LS1X_NAND_MAX_ADDR_CYC];
unsigned int naddrs;
unsigned int addrs_offset;
unsigned int aligned_offset;
unsigned int cmd_reg;
unsigned int row_start;
unsigned int rdy_timeout_ms;
unsigned int orig_len;
bool is_readid;
bool is_erase;
bool is_write;
bool is_read;
bool is_change_column;
size_t len;
char *buf;
};
struct ls1x_nand_data {
unsigned int status_field;
unsigned int op_scope_field;
unsigned int hold_cycle;
unsigned int wait_cycle;
void (*set_addr)(struct ls1x_nand_host *host, struct ls1x_nand_op *op);
};
struct ls1x_nand_host {
struct device *dev;
struct nand_chip chip;
struct nand_controller controller;
const struct ls1x_nand_data *data;
void __iomem *reg_base;
struct regmap *regmap;
/* DMA Engine stuff */
dma_addr_t dma_base;
struct dma_chan *dma_chan;
dma_cookie_t dma_cookie;
struct completion dma_complete;
};
static const struct regmap_config ls1x_nand_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
static int ls1x_nand_op_cmd_mapping(struct nand_chip *chip, struct ls1x_nand_op *op, u8 opcode)
{
struct ls1x_nand_host *host = nand_get_controller_data(chip);
op->row_start = chip->page_shift + 1;
/* The controller abstracts the following NAND operations. */
switch (opcode) {
case NAND_CMD_STATUS:
op->cmd_reg = LS1X_NAND_CMD_STATUS;
break;
case NAND_CMD_RESET:
op->cmd_reg = LS1X_NAND_CMD_RESET;
break;
case NAND_CMD_READID:
op->is_readid = true;
op->cmd_reg = LS1X_NAND_CMD_READID;
break;
case NAND_CMD_ERASE1:
op->is_erase = true;
op->addrs_offset = LS1X_NAND_COL_ADDR_CYC;
break;
case NAND_CMD_ERASE2:
if (!op->is_erase)
return -EOPNOTSUPP;
/* During erasing, row_start differs from the default value. */
op->row_start = chip->page_shift;
op->cmd_reg = LS1X_NAND_CMD_ERASE;
break;
case NAND_CMD_SEQIN:
op->is_write = true;
break;
case NAND_CMD_PAGEPROG:
if (!op->is_write)
return -EOPNOTSUPP;
op->cmd_reg = LS1X_NAND_CMD_WRITE;
break;
case NAND_CMD_READ0:
op->is_read = true;
break;
case NAND_CMD_READSTART:
if (!op->is_read)
return -EOPNOTSUPP;
op->cmd_reg = LS1X_NAND_CMD_READ;
break;
case NAND_CMD_RNDOUT:
op->is_change_column = true;
break;
case NAND_CMD_RNDOUTSTART:
if (!op->is_change_column)
return -EOPNOTSUPP;
op->cmd_reg = LS1X_NAND_CMD_READ;
break;
default:
dev_dbg(host->dev, "unsupported opcode: %u\n", opcode);
return -EOPNOTSUPP;
}
return 0;
}
static int ls1x_nand_parse_instructions(struct nand_chip *chip,
const struct nand_subop *subop, struct ls1x_nand_op *op)
{
unsigned int op_id;
int ret;
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
const struct nand_op_instr *instr = &subop->instrs[op_id];
unsigned int offset, naddrs;
const u8 *addrs;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
ret = ls1x_nand_op_cmd_mapping(chip, op, instr->ctx.cmd.opcode);
if (ret < 0)
return ret;
break;
case NAND_OP_ADDR_INSTR:
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
if (naddrs > LS1X_NAND_MAX_ADDR_CYC)
return -EOPNOTSUPP;
op->naddrs = naddrs;
offset = nand_subop_get_addr_start_off(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
memcpy(op->addrs + op->addrs_offset, addrs, naddrs);
break;
case NAND_OP_DATA_IN_INSTR:
case NAND_OP_DATA_OUT_INSTR:
offset = nand_subop_get_data_start_off(subop, op_id);
op->orig_len = nand_subop_get_data_len(subop, op_id);
if (instr->type == NAND_OP_DATA_IN_INSTR)
op->buf = instr->ctx.data.buf.in + offset;
else if (instr->type == NAND_OP_DATA_OUT_INSTR)
op->buf = (void *)instr->ctx.data.buf.out + offset;
break;
case NAND_OP_WAITRDY_INSTR:
op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
break;
default:
break;
}
}
return 0;
}
static void ls1b_nand_set_addr(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
struct nand_chip *chip = &host->chip;
int i;
for (i = 0; i < LS1X_NAND_MAX_ADDR_CYC; i++) {
int shift, mask, val;
if (i < LS1X_NAND_COL_ADDR_CYC) {
shift = i * BITS_PER_BYTE;
mask = (u32)0xff << shift;
mask &= GENMASK(chip->page_shift, 0);
val = (u32)op->addrs[i] << shift;
regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);
} else if (!op->is_change_column) {
shift = op->row_start + (i - LS1X_NAND_COL_ADDR_CYC) * BITS_PER_BYTE;
mask = (u32)0xff << shift;
val = (u32)op->addrs[i] << shift;
regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);
if (i == 4) {
mask = (u32)0xff >> (BITS_PER_WORD - shift);
val = (u32)op->addrs[i] >> (BITS_PER_WORD - shift);
regmap_update_bits(host->regmap, LS1X_NAND_ADDR2, mask, val);
}
}
}
}
static void ls1c_nand_set_addr(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
int i;
for (i = 0; i < LS1X_NAND_MAX_ADDR_CYC; i++) {
int shift, mask, val;
if (i < LS1X_NAND_COL_ADDR_CYC) {
shift = i * BITS_PER_BYTE;
mask = (u32)0xff << shift;
val = (u32)op->addrs[i] << shift;
regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);
} else if (!op->is_change_column) {
shift = (i - LS1X_NAND_COL_ADDR_CYC) * BITS_PER_BYTE;
mask = (u32)0xff << shift;
val = (u32)op->addrs[i] << shift;
regmap_update_bits(host->regmap, LS1X_NAND_ADDR2, mask, val);
}
}
}
static void ls1x_nand_trigger_op(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
int col0 = op->addrs[0];
short col;
if (!IS_ALIGNED(col0, chip->buf_align)) {
col0 = ALIGN_DOWN(op->addrs[0], chip->buf_align);
op->aligned_offset = op->addrs[0] - col0;
op->addrs[0] = col0;
}
if (host->data->set_addr)
host->data->set_addr(host, op);
/* set operation length */
if (op->is_write || op->is_read || op->is_change_column)
op->len = ALIGN(op->orig_len + op->aligned_offset, chip->buf_align);
else if (op->is_erase)
op->len = 1;
else
op->len = op->orig_len;
writel(op->len, host->reg_base + LS1X_NAND_OP_NUM);
/* set operation area and scope */
col = op->addrs[1] << BITS_PER_BYTE | op->addrs[0];
if (op->orig_len && !op->is_readid) {
unsigned int op_scope = 0;
if (col < mtd->writesize) {
op->cmd_reg |= LS1X_NAND_CMD_OP_MAIN;
op_scope = mtd->writesize;
}
op->cmd_reg |= LS1X_NAND_CMD_OP_SPARE;
op_scope += mtd->oobsize;
op_scope <<= __ffs(host->data->op_scope_field);
regmap_update_bits(host->regmap, LS1X_NAND_PARAM,
host->data->op_scope_field, op_scope);
}
/* set command */
writel(op->cmd_reg, host->reg_base + LS1X_NAND_CMD);
/* trigger operation */
regmap_write_bits(host->regmap, LS1X_NAND_CMD, LS1X_NAND_CMD_VALID, LS1X_NAND_CMD_VALID);
}
static int ls1x_nand_wait_for_op_done(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
unsigned int val;
int ret = 0;
if (op->rdy_timeout_ms) {
ret = regmap_read_poll_timeout(host->regmap, LS1X_NAND_CMD,
val, val & LS1X_NAND_CMD_OP_DONE,
0, op->rdy_timeout_ms * MSEC_PER_SEC);
if (ret)
dev_err(host->dev, "operation failed\n");
}
return ret;
}
static void ls1x_nand_dma_callback(void *data)
{
struct ls1x_nand_host *host = (struct ls1x_nand_host *)data;
struct dma_chan *chan = host->dma_chan;
struct device *dev = chan->device->dev;
enum dma_status status;
status = dmaengine_tx_status(chan, host->dma_cookie, NULL);
if (likely(status == DMA_COMPLETE)) {
dev_dbg(dev, "DMA complete with cookie=%d\n", host->dma_cookie);
complete(&host->dma_complete);
} else {
dev_err(dev, "DMA error with cookie=%d\n", host->dma_cookie);
}
}
static int ls1x_nand_dma_transfer(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
struct nand_chip *chip = &host->chip;
struct dma_chan *chan = host->dma_chan;
struct device *dev = chan->device->dev;
struct dma_async_tx_descriptor *desc;
enum dma_data_direction data_dir = op->is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
enum dma_transfer_direction xfer_dir = op->is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
void *buf = op->buf;
char *dma_buf = NULL;
dma_addr_t dma_addr;
int ret;
if (IS_ALIGNED((uintptr_t)buf, chip->buf_align) &&
IS_ALIGNED(op->orig_len, chip->buf_align)) {
dma_addr = dma_map_single(dev, buf, op->orig_len, data_dir);
if (dma_mapping_error(dev, dma_addr)) {
dev_err(dev, "failed to map DMA buffer\n");
return -ENXIO;
}
} else if (!op->is_write) {
dma_buf = dma_alloc_coherent(dev, op->len, &dma_addr, GFP_KERNEL);
if (!dma_buf)
return -ENOMEM;
} else {
dev_err(dev, "subpage writing not supported\n");
return -EOPNOTSUPP;
}
desc = dmaengine_prep_slave_single(chan, dma_addr, op->len, xfer_dir, DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dev, "failed to prepare DMA descriptor\n");
ret = -ENOMEM;
goto err;
}
desc->callback = ls1x_nand_dma_callback;
desc->callback_param = host;
host->dma_cookie = dmaengine_submit(desc);
ret = dma_submit_error(host->dma_cookie);
if (ret) {
dev_err(dev, "failed to submit DMA descriptor\n");
goto err;
}
dev_dbg(dev, "issue DMA with cookie=%d\n", host->dma_cookie);
dma_async_issue_pending(chan);
if (!wait_for_completion_timeout(&host->dma_complete, msecs_to_jiffies(1000))) {
dmaengine_terminate_sync(chan);
reinit_completion(&host->dma_complete);
ret = -ETIMEDOUT;
goto err;
}
if (dma_buf)
memcpy(buf, dma_buf + op->aligned_offset, op->orig_len);
err:
if (dma_buf)
dma_free_coherent(dev, op->len, dma_buf, dma_addr);
else
dma_unmap_single(dev, dma_addr, op->orig_len, data_dir);
return ret;
}
static int ls1x_nand_data_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
struct ls1x_nand_host *host = nand_get_controller_data(chip);
struct ls1x_nand_op op = {};
int ret;
ret = ls1x_nand_parse_instructions(chip, subop, &op);
if (ret)
return ret;
ls1x_nand_trigger_op(host, &op);
ret = ls1x_nand_dma_transfer(host, &op);
if (ret)
return ret;
return ls1x_nand_wait_for_op_done(host, &op);
}
static int ls1x_nand_misc_type_exec(struct nand_chip *chip,
const struct nand_subop *subop, struct ls1x_nand_op *op)
{
struct ls1x_nand_host *host = nand_get_controller_data(chip);
int ret;
ret = ls1x_nand_parse_instructions(chip, subop, op);
if (ret)
return ret;
ls1x_nand_trigger_op(host, op);
return ls1x_nand_wait_for_op_done(host, op);
}
static int ls1x_nand_zerolen_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
struct ls1x_nand_op op = {};
return ls1x_nand_misc_type_exec(chip, subop, &op);
}
static int ls1x_nand_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
struct ls1x_nand_host *host = nand_get_controller_data(chip);
struct ls1x_nand_op op = {};
int i, ret;
union {
char ids[5];
struct {
int idl;
char idh;
};
} nand_id;
ret = ls1x_nand_misc_type_exec(chip, subop, &op);
if (ret)
return ret;
nand_id.idl = readl(host->reg_base + LS1X_NAND_IDL);
nand_id.idh = readb(host->reg_base + LS1X_NAND_IDH_STATUS);
for (i = 0; i < min(sizeof(nand_id.ids), op.orig_len); i++)
op.buf[i] = nand_id.ids[sizeof(nand_id.ids) - 1 - i];
return ret;
}
static int ls1x_nand_read_status_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
struct ls1x_nand_host *host = nand_get_controller_data(chip);
struct ls1x_nand_op op = {};
int val, ret;
ret = ls1x_nand_misc_type_exec(chip, subop, &op);
if (ret)
return ret;
val = readl(host->reg_base + LS1X_NAND_IDH_STATUS);
val &= ~host->data->status_field;
op.buf[0] = val << ffs(host->data->status_field);
return ret;
}
static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(
ls1x_nand_read_id_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
NAND_OP_PARSER_PATTERN(
ls1x_nand_read_status_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
NAND_OP_PARSER_PATTERN(
ls1x_nand_zerolen_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
ls1x_nand_zerolen_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
ls1x_nand_data_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
NAND_OP_PARSER_PATTERN(
ls1x_nand_data_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
);
static int ls1x_nand_is_valid_cmd(u8 opcode)
{
if (opcode == NAND_CMD_STATUS || opcode == NAND_CMD_RESET || opcode == NAND_CMD_READID)
return 0;
return -EOPNOTSUPP;
}
static int ls1x_nand_is_valid_cmd_seq(u8 opcode1, u8 opcode2)
{
if (opcode1 == NAND_CMD_RNDOUT && opcode2 == NAND_CMD_RNDOUTSTART)
return 0;
if (opcode1 == NAND_CMD_READ0 && opcode2 == NAND_CMD_READSTART)
return 0;
if (opcode1 == NAND_CMD_ERASE1 && opcode2 == NAND_CMD_ERASE2)
return 0;
if (opcode1 == NAND_CMD_SEQIN && opcode2 == NAND_CMD_PAGEPROG)
return 0;
return -EOPNOTSUPP;
}
static int ls1x_nand_check_op(struct nand_chip *chip, const struct nand_operation *op)
{
const struct nand_op_instr *instr1 = NULL, *instr2 = NULL;
int op_id;
for (op_id = 0; op_id < op->ninstrs; op_id++) {
const struct nand_op_instr *instr = &op->instrs[op_id];
if (instr->type == NAND_OP_CMD_INSTR) {
if (!instr1)
instr1 = instr;
else if (!instr2)
instr2 = instr;
else
break;
}
}
if (!instr1)
return -EOPNOTSUPP;
if (!instr2)
return ls1x_nand_is_valid_cmd(instr1->ctx.cmd.opcode);
return ls1x_nand_is_valid_cmd_seq(instr1->ctx.cmd.opcode, instr2->ctx.cmd.opcode);
}
static int ls1x_nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op, bool check_only)
{
if (check_only)
return ls1x_nand_check_op(chip, op);
return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op, check_only);
}
static int ls1x_nand_attach_chip(struct nand_chip *chip)
{
struct ls1x_nand_host *host = nand_get_controller_data(chip);
u64 chipsize = nanddev_target_size(&chip->base);
int cell_size = 0;
switch (chipsize) {
case SZ_128M:
cell_size = 0x0;
break;
case SZ_256M:
cell_size = 0x1;
break;
case SZ_512M:
cell_size = 0x2;
break;
case SZ_1G:
cell_size = 0x3;
break;
case SZ_2G:
cell_size = 0x4;
break;
case SZ_4G:
cell_size = 0x5;
break;
case SZ_8G:
cell_size = 0x6;
break;
case SZ_16G:
cell_size = 0x7;
break;
default:
dev_err(host->dev, "unsupported chip size: %llu MB\n", chipsize);
return -EINVAL;
}
switch (chip->ecc.engine_type) {
case NAND_ECC_ENGINE_TYPE_NONE:
break;
case NAND_ECC_ENGINE_TYPE_SOFT:
break;
default:
return -EINVAL;
}
/* set cell size */
regmap_update_bits(host->regmap, LS1X_NAND_PARAM, LS1X_NAND_CELL_SIZE_MASK,
FIELD_PREP(LS1X_NAND_CELL_SIZE_MASK, cell_size));
regmap_update_bits(host->regmap, LS1X_NAND_TIMING, LS1X_NAND_HOLD_CYCLE_MASK,
FIELD_PREP(LS1X_NAND_HOLD_CYCLE_MASK, host->data->hold_cycle));
regmap_update_bits(host->regmap, LS1X_NAND_TIMING, LS1X_NAND_WAIT_CYCLE_MASK,
FIELD_PREP(LS1X_NAND_WAIT_CYCLE_MASK, host->data->wait_cycle));
chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
return 0;
}
static const struct nand_controller_ops ls1x_nand_controller_ops = {
.exec_op = ls1x_nand_exec_op,
.attach_chip = ls1x_nand_attach_chip,
};
static void ls1x_nand_controller_cleanup(struct ls1x_nand_host *host)
{
if (host->dma_chan)
dma_release_channel(host->dma_chan);
}
static int ls1x_nand_controller_init(struct ls1x_nand_host *host)
{
struct device *dev = host->dev;
struct dma_chan *chan;
struct dma_slave_config cfg = {};
int ret;
host->regmap = devm_regmap_init_mmio(dev, host->reg_base, &ls1x_nand_regmap_config);
if (IS_ERR(host->regmap))
return dev_err_probe(dev, PTR_ERR(host->regmap), "failed to init regmap\n");
chan = dma_request_chan(dev, "rxtx");
if (IS_ERR(chan))
return dev_err_probe(dev, PTR_ERR(chan), "failed to request DMA channel\n");
host->dma_chan = chan;
cfg.src_addr = host->dma_base;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr = host->dma_base;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
ret = dmaengine_slave_config(host->dma_chan, &cfg);
if (ret)
return dev_err_probe(dev, ret, "failed to config DMA channel\n");
init_completion(&host->dma_complete);
return 0;
}
static int ls1x_nand_chip_init(struct ls1x_nand_host *host)
{
struct device *dev = host->dev;
int nchips = of_get_child_count(dev->of_node);
struct device_node *chip_np;
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
if (nchips != 1)
return dev_err_probe(dev, -EINVAL, "Currently one NAND chip supported\n");
chip_np = of_get_next_child(dev->of_node, NULL);
if (!chip_np)
return dev_err_probe(dev, -ENODEV, "failed to get child node for NAND chip\n");
nand_set_flash_node(chip, chip_np);
of_node_put(chip_np);
if (!mtd->name)
return dev_err_probe(dev, -EINVAL, "Missing MTD label\n");
nand_set_controller_data(chip, host);
chip->controller = &host->controller;
chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD;
chip->buf_align = 16;
mtd->dev.parent = dev;
mtd->owner = THIS_MODULE;
ret = nand_scan(chip, 1);
if (ret)
return dev_err_probe(dev, ret, "failed to scan NAND chip\n");
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
nand_cleanup(chip);
return dev_err_probe(dev, ret, "failed to register MTD device\n");
}
return 0;
}
static int ls1x_nand_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct ls1x_nand_data *data;
struct ls1x_nand_host *host;
struct resource *res;
int ret;
data = of_device_get_match_data(dev);
if (!data)
return -ENODEV;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(host->reg_base))
return PTR_ERR(host->reg_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-dma");
if (!res)
return dev_err_probe(dev, -EINVAL, "Missing 'nand-dma' in reg-names property\n");
host->dma_base = dma_map_resource(dev, res->start, resource_size(res),
DMA_BIDIRECTIONAL, 0);
if (dma_mapping_error(dev, host->dma_base))
return -ENXIO;
host->dev = dev;
host->data = data;
host->controller.ops = &ls1x_nand_controller_ops;
nand_controller_init(&host->controller);
ret = ls1x_nand_controller_init(host);
if (ret)
goto err;
ret = ls1x_nand_chip_init(host);
if (ret)
goto err;
platform_set_drvdata(pdev, host);
return 0;
err:
ls1x_nand_controller_cleanup(host);
return ret;
}
static void ls1x_nand_remove(struct platform_device *pdev)
{
struct ls1x_nand_host *host = platform_get_drvdata(pdev);
struct nand_chip *chip = &host->chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
ls1x_nand_controller_cleanup(host);
}
static const struct ls1x_nand_data ls1b_nand_data = {
.status_field = GENMASK(15, 8),
.hold_cycle = 0x2,
.wait_cycle = 0xc,
.set_addr = ls1b_nand_set_addr,
};
static const struct ls1x_nand_data ls1c_nand_data = {
.status_field = GENMASK(23, 16),
.op_scope_field = GENMASK(29, 16),
.hold_cycle = 0x2,
.wait_cycle = 0xc,
.set_addr = ls1c_nand_set_addr,
};
static const struct of_device_id ls1x_nand_match[] = {
{
.compatible = "loongson,ls1b-nand-controller",
.data = &ls1b_nand_data,
},
{
.compatible = "loongson,ls1c-nand-controller",
.data = &ls1c_nand_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ls1x_nand_match);
static struct platform_driver ls1x_nand_driver = {
.probe = ls1x_nand_probe,
.remove = ls1x_nand_remove,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = ls1x_nand_match,
},
};
module_platform_driver(ls1x_nand_driver);
MODULE_AUTHOR("Keguang Zhang <keguang.zhang@gmail.com>");
MODULE_DESCRIPTION("Loongson-1 NAND Controller Driver");
MODULE_LICENSE("GPL");