linux-loongson/drivers/hid/intel-thc-hid/intel-thc/intel-thc-dma.c
Even Xu 22da60f030 HID: Intel-thc-hid: Intel-thc: Introduce interrupt delay control
This patch adds support for a new feature, named "Interrupt Delay",
allowing driver to set a specific delay time for next interrupt
detection. It gives driver a capability to control THC waiting time for
the next interrupt, to reduce the likelihood of spurious readings.

APIs added:
- thc_i2c_set_rx_int_delay(): Set I2C Rx input interrupt delay value
- thc_i2c_rx_int_delay_enable(): Enable or disable I2C Rx interrupt delay

As this interrupt delay feature is only applicable to RxDMA and must
remain disabled during SWDMA operations, it also involves a change
in SWDMA code to record the max input size control feature state
before SWDMA and restore the state after SWDMA.

Signed-off-by: Even Xu <even.xu@intel.com>
Tested-by: Chong Han <chong.han@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Jiri Kosina <jkosina@suse.com>
2025-06-10 21:15:59 +02:00

1010 lines
29 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2024 Intel Corporation */
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/overflow.h>
#include <linux/regmap.h>
#include <linux/scatterlist.h>
#include "intel-thc-dev.h"
#include "intel-thc-dma.h"
#include "intel-thc-hw.h"
static void dma_set_prd_base_addr(struct thc_device *dev, u64 physical_addr,
struct thc_dma_configuration *dma_config)
{
u32 addr_high, addr_low;
if (!dma_config->is_enabled)
return;
addr_high = upper_32_bits(physical_addr);
addr_low = lower_32_bits(physical_addr);
regmap_write(dev->thc_regmap, dma_config->prd_base_addr_high, addr_high);
regmap_write(dev->thc_regmap, dma_config->prd_base_addr_low, addr_low);
}
static void dma_set_start_bit(struct thc_device *dev,
struct thc_dma_configuration *dma_config)
{
u32 ctrl, mask, mbits, data, offset;
if (!dma_config->is_enabled)
return;
switch (dma_config->dma_channel) {
case THC_RXDMA1:
case THC_RXDMA2:
if (dma_config->dma_channel == THC_RXDMA2) {
mbits = FIELD_PREP(THC_M_PRT_DEVINT_CFG_1_THC_M_PRT_INTTYP_DATA_VAL,
THC_BITMASK_INTERRUPT_TYPE_DATA);
mask = THC_M_PRT_DEVINT_CFG_1_THC_M_PRT_INTTYP_DATA_VAL;
regmap_write_bits(dev->thc_regmap,
THC_M_PRT_DEVINT_CFG_1_OFFSET, mask, mbits);
}
mbits = THC_M_PRT_READ_DMA_CNTRL_IE_EOF |
THC_M_PRT_READ_DMA_CNTRL_SOO |
THC_M_PRT_READ_DMA_CNTRL_IE_STALL |
THC_M_PRT_READ_DMA_CNTRL_IE_ERROR |
THC_M_PRT_READ_DMA_CNTRL_START;
mask = THC_M_PRT_READ_DMA_CNTRL_TPCWP | mbits;
mask |= THC_M_PRT_READ_DMA_CNTRL_INT_SW_DMA_EN;
ctrl = FIELD_PREP(THC_M_PRT_READ_DMA_CNTRL_TPCWP, THC_POINTER_WRAPAROUND) | mbits;
offset = dma_config->dma_channel == THC_RXDMA1 ?
THC_M_PRT_READ_DMA_CNTRL_1_OFFSET : THC_M_PRT_READ_DMA_CNTRL_2_OFFSET;
regmap_write_bits(dev->thc_regmap, offset, mask, ctrl);
break;
case THC_SWDMA:
mbits = THC_M_PRT_READ_DMA_CNTRL_IE_DMACPL |
THC_M_PRT_READ_DMA_CNTRL_IE_IOC |
THC_M_PRT_READ_DMA_CNTRL_SOO |
THC_M_PRT_READ_DMA_CNTRL_START;
mask = THC_M_PRT_READ_DMA_CNTRL_TPCWP | mbits;
ctrl = FIELD_PREP(THC_M_PRT_READ_DMA_CNTRL_TPCWP, THC_POINTER_WRAPAROUND) | mbits;
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_SW_OFFSET,
mask, ctrl);
break;
case THC_TXDMA:
regmap_write_bits(dev->thc_regmap, THC_M_PRT_WRITE_INT_STS_OFFSET,
THC_M_PRT_WRITE_INT_STS_THC_WRDMA_CMPL_STATUS,
THC_M_PRT_WRITE_INT_STS_THC_WRDMA_CMPL_STATUS);
/* Select interrupt or polling method upon Write completion */
if (dev->dma_ctx->use_write_interrupts)
data = THC_M_PRT_WRITE_DMA_CNTRL_THC_WRDMA_IE_IOC_DMACPL;
else
data = 0;
data |= THC_M_PRT_WRITE_DMA_CNTRL_THC_WRDMA_START;
mask = THC_M_PRT_WRITE_DMA_CNTRL_THC_WRDMA_IE_IOC_DMACPL |
THC_M_PRT_WRITE_DMA_CNTRL_THC_WRDMA_START;
regmap_write_bits(dev->thc_regmap, THC_M_PRT_WRITE_DMA_CNTRL_OFFSET,
mask, data);
break;
default:
break;
}
}
static void dma_set_prd_control(struct thc_device *dev, u8 entry_count, u8 cb_depth,
struct thc_dma_configuration *dma_config)
{
u32 ctrl, mask;
if (!dma_config->is_enabled)
return;
if (dma_config->dma_channel == THC_TXDMA) {
mask = THC_M_PRT_WRITE_DMA_CNTRL_THC_WRDMA_PTEC;
ctrl = FIELD_PREP(THC_M_PRT_WRITE_DMA_CNTRL_THC_WRDMA_PTEC, entry_count);
} else {
mask = THC_M_PRT_RPRD_CNTRL_PTEC | THC_M_PRT_RPRD_CNTRL_PCD;
ctrl = FIELD_PREP(THC_M_PRT_RPRD_CNTRL_PTEC, entry_count) |
FIELD_PREP(THC_M_PRT_RPRD_CNTRL_PCD, cb_depth);
}
regmap_write_bits(dev->thc_regmap, dma_config->prd_cntrl, mask, ctrl);
}
static void dma_clear_prd_control(struct thc_device *dev,
struct thc_dma_configuration *dma_config)
{
u32 mask;
if (!dma_config->is_enabled)
return;
if (dma_config->dma_channel == THC_TXDMA)
mask = THC_M_PRT_WRITE_DMA_CNTRL_THC_WRDMA_PTEC;
else
mask = THC_M_PRT_RPRD_CNTRL_PTEC | THC_M_PRT_RPRD_CNTRL_PCD;
regmap_write_bits(dev->thc_regmap, dma_config->prd_cntrl, mask, 0);
}
static u8 dma_get_read_pointer(struct thc_device *dev,
struct thc_dma_configuration *dma_config)
{
u32 ctrl, read_pointer;
regmap_read(dev->thc_regmap, dma_config->dma_cntrl, &ctrl);
read_pointer = FIELD_GET(THC_M_PRT_READ_DMA_CNTRL_TPCRP, ctrl);
dev_dbg(dev->dev, "THC_M_PRT_READ_DMA_CNTRL 0x%x offset 0x%x TPCRP 0x%x\n",
ctrl, dma_config->dma_cntrl, read_pointer);
return read_pointer;
}
static u8 dma_get_write_pointer(struct thc_device *dev,
struct thc_dma_configuration *dma_config)
{
u32 ctrl, write_pointer;
regmap_read(dev->thc_regmap, dma_config->dma_cntrl, &ctrl);
write_pointer = FIELD_GET(THC_M_PRT_READ_DMA_CNTRL_TPCWP, ctrl);
dev_dbg(dev->dev, "THC_M_PRT_READ_DMA_CNTRL 0x%x offset 0x%x TPCWP 0x%x\n",
ctrl, dma_config->dma_cntrl, write_pointer);
return write_pointer;
}
static void dma_set_write_pointer(struct thc_device *dev, u8 value,
struct thc_dma_configuration *dma_config)
{
u32 ctrl, mask;
mask = THC_M_PRT_READ_DMA_CNTRL_TPCWP;
ctrl = FIELD_PREP(THC_M_PRT_READ_DMA_CNTRL_TPCWP, value);
regmap_write_bits(dev->thc_regmap, dma_config->dma_cntrl, mask, ctrl);
}
static size_t dma_get_max_packet_size(struct thc_device *dev,
struct thc_dma_configuration *dma_config)
{
return dma_config->max_packet_size;
}
static void dma_set_max_packet_size(struct thc_device *dev, size_t size,
struct thc_dma_configuration *dma_config)
{
if (size) {
dma_config->max_packet_size = ALIGN(size, SZ_4K);
dma_config->is_enabled = true;
}
}
static void thc_copy_one_sgl_to_prd(struct thc_device *dev,
struct thc_dma_configuration *config,
unsigned int ind)
{
struct thc_prd_table *prd_tbl;
struct scatterlist *sg;
int j;
prd_tbl = &config->prd_tbls[ind];
for_each_sg(config->sgls[ind], sg, config->sgls_nent[ind], j) {
prd_tbl->entries[j].dest_addr =
sg_dma_address(sg) >> THC_ADDRESS_SHIFT;
prd_tbl->entries[j].len = sg_dma_len(sg);
prd_tbl->entries[j].hw_status = 0;
prd_tbl->entries[j].end_of_prd = 0;
}
/* Set the end_of_prd flag in the last filled entry */
if (j > 0)
prd_tbl->entries[j - 1].end_of_prd = 1;
}
static void thc_copy_sgls_to_prd(struct thc_device *dev,
struct thc_dma_configuration *config)
{
unsigned int i;
memset(config->prd_tbls, 0, array_size(PRD_TABLE_SIZE, config->prd_tbl_num));
for (i = 0; i < config->prd_tbl_num; i++)
thc_copy_one_sgl_to_prd(dev, config, i);
}
static int setup_dma_buffers(struct thc_device *dev,
struct thc_dma_configuration *config,
enum dma_data_direction dir)
{
size_t prd_tbls_size = array_size(PRD_TABLE_SIZE, config->prd_tbl_num);
unsigned int i, nent = PRD_ENTRIES_NUM;
dma_addr_t dma_handle;
void *cpu_addr;
size_t buf_sz;
int count;
if (!config->is_enabled)
return 0;
memset(config->sgls, 0, sizeof(config->sgls));
memset(config->sgls_nent, 0, sizeof(config->sgls_nent));
cpu_addr = dma_alloc_coherent(dev->dev, prd_tbls_size,
&dma_handle, GFP_KERNEL);
if (!cpu_addr)
return -ENOMEM;
config->prd_tbls = cpu_addr;
config->prd_tbls_dma_handle = dma_handle;
buf_sz = dma_get_max_packet_size(dev, config);
/* Allocate and map the scatter-gather lists, one for each PRD table */
for (i = 0; i < config->prd_tbl_num; i++) {
config->sgls[i] = sgl_alloc(buf_sz, GFP_KERNEL, &nent);
if (!config->sgls[i] || nent > PRD_ENTRIES_NUM) {
dev_err_once(dev->dev, "sgl_alloc (%uth) failed, nent %u\n",
i, nent);
return -ENOMEM;
}
count = dma_map_sg(dev->dev, config->sgls[i], nent, dir);
config->sgls_nent[i] = count;
}
thc_copy_sgls_to_prd(dev, config);
return 0;
}
static void thc_reset_dma_settings(struct thc_device *dev)
{
/* Stop all DMA channels and reset DMA read pointers */
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_1_OFFSET,
THC_M_PRT_READ_DMA_CNTRL_START, 0);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_2_OFFSET,
THC_M_PRT_READ_DMA_CNTRL_START, 0);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_SW_OFFSET,
THC_M_PRT_READ_DMA_CNTRL_START, 0);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_WRITE_DMA_CNTRL_OFFSET,
THC_M_PRT_WRITE_DMA_CNTRL_THC_WRDMA_START, 0);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_1_OFFSET,
THC_M_PRT_READ_DMA_CNTRL_TPCPR,
THC_M_PRT_READ_DMA_CNTRL_TPCPR);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_2_OFFSET,
THC_M_PRT_READ_DMA_CNTRL_TPCPR,
THC_M_PRT_READ_DMA_CNTRL_TPCPR);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_SW_OFFSET,
THC_M_PRT_READ_DMA_CNTRL_TPCPR,
THC_M_PRT_READ_DMA_CNTRL_TPCPR);
}
static void release_dma_buffers(struct thc_device *dev,
struct thc_dma_configuration *config)
{
size_t prd_tbls_size = array_size(PRD_TABLE_SIZE, config->prd_tbl_num);
unsigned int i;
if (!config->is_enabled)
return;
for (i = 0; i < config->prd_tbl_num; i++) {
if (!config->sgls[i] || !config->sgls_nent[i])
continue;
dma_unmap_sg(dev->dev, config->sgls[i],
config->sgls_nent[i],
config->dir);
sgl_free(config->sgls[i]);
config->sgls[i] = NULL;
}
memset(config->prd_tbls, 0, prd_tbls_size);
if (config->prd_tbls) {
dma_free_coherent(dev->dev, prd_tbls_size, config->prd_tbls,
config->prd_tbls_dma_handle);
config->prd_tbls = NULL;
config->prd_tbls_dma_handle = 0;
}
}
struct thc_dma_context *thc_dma_init(struct thc_device *dev)
{
struct thc_dma_context *dma_ctx;
dma_ctx = devm_kzalloc(dev->dev, sizeof(*dma_ctx), GFP_KERNEL);
if (!dma_ctx)
return NULL;
dev->dma_ctx = dma_ctx;
dma_ctx->dma_config[THC_RXDMA1].dma_channel = THC_RXDMA1;
dma_ctx->dma_config[THC_RXDMA2].dma_channel = THC_RXDMA2;
dma_ctx->dma_config[THC_TXDMA].dma_channel = THC_TXDMA;
dma_ctx->dma_config[THC_SWDMA].dma_channel = THC_SWDMA;
dma_ctx->dma_config[THC_RXDMA1].dir = DMA_FROM_DEVICE;
dma_ctx->dma_config[THC_RXDMA2].dir = DMA_FROM_DEVICE;
dma_ctx->dma_config[THC_TXDMA].dir = DMA_TO_DEVICE;
dma_ctx->dma_config[THC_SWDMA].dir = DMA_FROM_DEVICE;
dma_ctx->dma_config[THC_RXDMA1].prd_tbl_num = PRD_TABLES_NUM;
dma_ctx->dma_config[THC_RXDMA2].prd_tbl_num = PRD_TABLES_NUM;
dma_ctx->dma_config[THC_TXDMA].prd_tbl_num = 1;
dma_ctx->dma_config[THC_SWDMA].prd_tbl_num = 1;
dma_ctx->dma_config[THC_RXDMA1].prd_base_addr_high = THC_M_PRT_RPRD_BA_HI_1_OFFSET;
dma_ctx->dma_config[THC_RXDMA2].prd_base_addr_high = THC_M_PRT_RPRD_BA_HI_2_OFFSET;
dma_ctx->dma_config[THC_TXDMA].prd_base_addr_high = THC_M_PRT_WPRD_BA_HI_OFFSET;
dma_ctx->dma_config[THC_SWDMA].prd_base_addr_high = THC_M_PRT_RPRD_BA_HI_SW_OFFSET;
dma_ctx->dma_config[THC_RXDMA1].prd_base_addr_low = THC_M_PRT_RPRD_BA_LOW_1_OFFSET;
dma_ctx->dma_config[THC_RXDMA2].prd_base_addr_low = THC_M_PRT_RPRD_BA_LOW_2_OFFSET;
dma_ctx->dma_config[THC_TXDMA].prd_base_addr_low = THC_M_PRT_WPRD_BA_LOW_OFFSET;
dma_ctx->dma_config[THC_SWDMA].prd_base_addr_low = THC_M_PRT_RPRD_BA_LOW_SW_OFFSET;
dma_ctx->dma_config[THC_RXDMA1].prd_cntrl = THC_M_PRT_RPRD_CNTRL_1_OFFSET;
dma_ctx->dma_config[THC_RXDMA2].prd_cntrl = THC_M_PRT_RPRD_CNTRL_2_OFFSET;
dma_ctx->dma_config[THC_TXDMA].prd_cntrl = THC_M_PRT_WRITE_DMA_CNTRL_OFFSET;
dma_ctx->dma_config[THC_SWDMA].prd_cntrl = THC_M_PRT_RPRD_CNTRL_SW_OFFSET;
dma_ctx->dma_config[THC_RXDMA1].dma_cntrl = THC_M_PRT_READ_DMA_CNTRL_1_OFFSET;
dma_ctx->dma_config[THC_RXDMA2].dma_cntrl = THC_M_PRT_READ_DMA_CNTRL_2_OFFSET;
dma_ctx->dma_config[THC_TXDMA].dma_cntrl = THC_M_PRT_WRITE_DMA_CNTRL_OFFSET;
dma_ctx->dma_config[THC_SWDMA].dma_cntrl = THC_M_PRT_READ_DMA_CNTRL_SW_OFFSET;
/* Enable write DMA completion interrupt by default */
dma_ctx->use_write_interrupts = 1;
return dma_ctx;
}
/**
* thc_dma_set_max_packet_sizes - Set max packet sizes for all DMA engines
*
* @dev: The pointer of THC private device context
* @mps_read1: RxDMA1 max packet size
* @mps_read2: RxDMA2 max packet size
* @mps_write: TxDMA max packet size
* @mps_swdma: Software DMA max packet size
*
* If mps is not 0, it means the corresponding DMA channel is used, then set
* the flag to turn on this channel.
*
* Return: 0 on success, other error codes on failed.
*/
int thc_dma_set_max_packet_sizes(struct thc_device *dev, size_t mps_read1,
size_t mps_read2, size_t mps_write,
size_t mps_swdma)
{
if (!dev->dma_ctx) {
dev_err_once(dev->dev,
"Cannot set max packet sizes because DMA context is NULL!\n");
return -EINVAL;
}
dma_set_max_packet_size(dev, mps_read1, &dev->dma_ctx->dma_config[THC_RXDMA1]);
dma_set_max_packet_size(dev, mps_read2, &dev->dma_ctx->dma_config[THC_RXDMA2]);
dma_set_max_packet_size(dev, mps_write, &dev->dma_ctx->dma_config[THC_TXDMA]);
dma_set_max_packet_size(dev, mps_swdma, &dev->dma_ctx->dma_config[THC_SWDMA]);
return 0;
}
EXPORT_SYMBOL_NS_GPL(thc_dma_set_max_packet_sizes, "INTEL_THC");
/**
* thc_dma_allocate - Allocate DMA buffers for all DMA engines
*
* @dev: The pointer of THC private device context
*
* Return: 0 on success, other error codes on failed.
*/
int thc_dma_allocate(struct thc_device *dev)
{
int ret, chan;
for (chan = 0; chan < MAX_THC_DMA_CHANNEL; chan++) {
ret = setup_dma_buffers(dev, &dev->dma_ctx->dma_config[chan],
dev->dma_ctx->dma_config[chan].dir);
if (ret < 0) {
dev_err_once(dev->dev, "DMA setup failed for DMA channel %d\n", chan);
goto release_bufs;
}
}
return 0;
release_bufs:
while (chan--)
release_dma_buffers(dev, &dev->dma_ctx->dma_config[chan]);
return ret;
}
EXPORT_SYMBOL_NS_GPL(thc_dma_allocate, "INTEL_THC");
/**
* thc_dma_release - Release DMA buffers for all DMA engines
*
* @dev: The pointer of THC private device context
*/
void thc_dma_release(struct thc_device *dev)
{
int chan;
for (chan = 0; chan < MAX_THC_DMA_CHANNEL; chan++)
release_dma_buffers(dev, &dev->dma_ctx->dma_config[chan]);
}
EXPORT_SYMBOL_NS_GPL(thc_dma_release, "INTEL_THC");
static int calc_prd_entries_num(struct thc_prd_table *prd_tbl,
size_t mes_len, u8 *nent)
{
*nent = DIV_ROUND_UP(mes_len, THC_MIN_BYTES_PER_SG_LIST_ENTRY);
if (*nent > PRD_ENTRIES_NUM)
return -EMSGSIZE;
return 0;
}
static size_t calc_message_len(struct thc_prd_table *prd_tbl, u8 *nent)
{
size_t mes_len = 0;
unsigned int j;
for (j = 0; j < PRD_ENTRIES_NUM; j++) {
mes_len += prd_tbl->entries[j].len;
if (prd_tbl->entries[j].end_of_prd)
break;
}
*nent = j + 1;
return mes_len;
}
/**
* thc_dma_configure - Configure DMA settings for all DMA engines
*
* @dev: The pointer of THC private device context
*
* Return: 0 on success, other error codes on failed.
*/
int thc_dma_configure(struct thc_device *dev)
{
struct thc_dma_context *dma_ctx = dev->dma_ctx;
int chan;
thc_reset_dma_settings(dev);
if (!dma_ctx) {
dev_err_once(dev->dev, "Cannot do DMA configure because DMA context is NULL\n");
return -EINVAL;
}
for (chan = 0; chan < MAX_THC_DMA_CHANNEL; chan++) {
dma_set_prd_base_addr(dev,
dma_ctx->dma_config[chan].prd_tbls_dma_handle,
&dma_ctx->dma_config[chan]);
dma_set_prd_control(dev, PRD_ENTRIES_NUM - 1,
dma_ctx->dma_config[chan].prd_tbl_num - 1,
&dma_ctx->dma_config[chan]);
}
/* Start read2 DMA engine */
dma_set_start_bit(dev, &dma_ctx->dma_config[THC_RXDMA2]);
dev_dbg(dev->dev, "DMA configured successfully!\n");
return 0;
}
EXPORT_SYMBOL_NS_GPL(thc_dma_configure, "INTEL_THC");
/**
* thc_dma_unconfigure - Unconfigure DMA settings for all DMA engines
*
* @dev: The pointer of THC private device context
*/
void thc_dma_unconfigure(struct thc_device *dev)
{
int chan;
for (chan = 0; chan < MAX_THC_DMA_CHANNEL; chan++) {
dma_set_prd_base_addr(dev, 0, &dev->dma_ctx->dma_config[chan]);
dma_clear_prd_control(dev, &dev->dma_ctx->dma_config[chan]);
}
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_1_OFFSET,
THC_M_PRT_READ_DMA_CNTRL_START, 0);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_READ_DMA_CNTRL_2_OFFSET,
THC_M_PRT_READ_DMA_CNTRL_START, 0);
}
EXPORT_SYMBOL_NS_GPL(thc_dma_unconfigure, "INTEL_THC");
static int thc_wait_for_dma_pause(struct thc_device *dev, enum thc_dma_channel channel)
{
u32 ctrl_reg, sts_reg, sts;
int ret;
ctrl_reg = (channel == THC_RXDMA1) ? THC_M_PRT_READ_DMA_CNTRL_1_OFFSET :
((channel == THC_RXDMA2) ? THC_M_PRT_READ_DMA_CNTRL_2_OFFSET :
THC_M_PRT_READ_DMA_CNTRL_SW_OFFSET);
regmap_write_bits(dev->thc_regmap, ctrl_reg, THC_M_PRT_READ_DMA_CNTRL_START, 0);
sts_reg = (channel == THC_RXDMA1) ? THC_M_PRT_READ_DMA_INT_STS_1_OFFSET :
((channel == THC_RXDMA2) ? THC_M_PRT_READ_DMA_INT_STS_2_OFFSET :
THC_M_PRT_READ_DMA_INT_STS_SW_OFFSET);
ret = regmap_read_poll_timeout(dev->thc_regmap, sts_reg, sts,
!(sts & THC_M_PRT_READ_DMA_INT_STS_ACTIVE),
THC_DEFAULT_RXDMA_POLLING_US_INTERVAL,
THC_DEFAULT_RXDMA_POLLING_US_TIMEOUT);
if (ret) {
dev_err_once(dev->dev,
"Timeout while waiting for DMA %d stop\n", channel);
return ret;
}
return 0;
}
static int read_dma_buffer(struct thc_device *dev,
struct thc_dma_configuration *read_config,
u8 prd_table_index, void *read_buff)
{
struct thc_prd_table *prd_tbl;
struct scatterlist *sg;
size_t mes_len, ret;
u8 nent;
if (prd_table_index >= read_config->prd_tbl_num) {
dev_err_once(dev->dev, "PRD table index %d too big\n", prd_table_index);
return -EINVAL;
}
prd_tbl = &read_config->prd_tbls[prd_table_index];
mes_len = calc_message_len(prd_tbl, &nent);
if (mes_len > read_config->max_packet_size) {
dev_err(dev->dev,
"Message length %zu is bigger than buffer length %lu\n",
mes_len, read_config->max_packet_size);
return -EMSGSIZE;
}
sg = read_config->sgls[prd_table_index];
ret = sg_copy_to_buffer(sg, nent, read_buff, mes_len);
if (ret != mes_len) {
dev_err_once(dev->dev, "Copied %zu bytes instead of requested %zu\n",
ret, mes_len);
return -EIO;
}
return mes_len;
}
static void update_write_pointer(struct thc_device *dev,
struct thc_dma_configuration *read_config)
{
u8 write_ptr = dma_get_write_pointer(dev, read_config);
if (write_ptr + 1 == THC_WRAPAROUND_VALUE_ODD)
dma_set_write_pointer(dev, THC_POINTER_WRAPAROUND, read_config);
else if (write_ptr + 1 == THC_WRAPAROUND_VALUE_EVEN)
dma_set_write_pointer(dev, 0, read_config);
else
dma_set_write_pointer(dev, write_ptr + 1, read_config);
}
static int is_dma_buf_empty(struct thc_device *dev,
struct thc_dma_configuration *read_config,
u8 *read_ptr, u8 *write_ptr)
{
*read_ptr = dma_get_read_pointer(dev, read_config);
*write_ptr = dma_get_write_pointer(dev, read_config);
if ((*read_ptr & THC_POINTER_MASK) == (*write_ptr & THC_POINTER_MASK))
if (*read_ptr != *write_ptr)
return true;
return false;
}
static int thc_dma_read(struct thc_device *dev,
struct thc_dma_configuration *read_config,
void *read_buff, size_t *read_len, int *read_finished)
{
u8 read_ptr, write_ptr, prd_table_index;
int status;
if (!is_dma_buf_empty(dev, read_config, &read_ptr, &write_ptr)) {
prd_table_index = write_ptr & THC_POINTER_MASK;
status = read_dma_buffer(dev, read_config, prd_table_index, read_buff);
if (status <= 0) {
dev_err_once(dev->dev, "read DMA buffer failed %d\n", status);
return -EIO;
}
*read_len = status;
/* Clear the relevant PRD table */
thc_copy_one_sgl_to_prd(dev, read_config, prd_table_index);
/* Increment the write pointer to let the HW know we have processed this PRD */
update_write_pointer(dev, read_config);
}
/*
* This function only reads one frame from PRD table for each call, so we need to
* check if all DMAed data is read out and return the flag to the caller. Caller
* should repeatedly call thc_dma_read() until all DMAed data is handled.
*/
if (read_finished)
*read_finished = is_dma_buf_empty(dev, read_config, &read_ptr, &write_ptr) ? 1 : 0;
return 0;
}
/**
* thc_rxdma_read - Read data from RXDMA buffer
*
* @dev: The pointer of THC private device context
* @dma_channel: The RXDMA engine of read data source
* @read_buff: The pointer of the read data buffer
* @read_len: The pointer of the read data length
* @read_finished: The pointer of the flag indicating if all pending data has been read out
*
* Return: 0 on success, other error codes on failed.
*/
int thc_rxdma_read(struct thc_device *dev, enum thc_dma_channel dma_channel,
void *read_buff, size_t *read_len, int *read_finished)
{
struct thc_dma_configuration *dma_config;
int ret;
dma_config = &dev->dma_ctx->dma_config[dma_channel];
if (!dma_config->is_enabled) {
dev_err_once(dev->dev, "The DMA channel %d is not enabled", dma_channel);
return -EINVAL;
}
if (!read_buff || !read_len) {
dev_err(dev->dev, "Invalid input parameters, read_buff %p, read_len %p\n",
read_buff, read_len);
return -EINVAL;
}
if (dma_channel >= THC_TXDMA) {
dev_err(dev->dev, "Unsupported DMA channel for RxDMA read, %d\n", dma_channel);
return -EINVAL;
}
ret = thc_dma_read(dev, dma_config, read_buff, read_len, read_finished);
return ret;
}
EXPORT_SYMBOL_NS_GPL(thc_rxdma_read, "INTEL_THC");
static int thc_swdma_read_start(struct thc_device *dev, void *write_buff,
size_t write_len, u32 *prd_tbl_len)
{
u32 mask, val, data0 = 0, data1 = 0;
int ret;
ret = thc_interrupt_quiesce(dev, true);
if (ret)
return ret;
if (thc_wait_for_dma_pause(dev, THC_RXDMA1) || thc_wait_for_dma_pause(dev, THC_RXDMA2))
return -EIO;
thc_reset_dma_settings(dev);
/*
* Max input size control feature is only available for RxDMA, it must keep disabled
* during SWDMA operation, and restore to previous state after SWDMA is done.
* Max input size variables in THC device context track hardware state, and keep change
* when feature state was changed, so those variables cannot be used to record feature
* state after state was changed during SWDMA operation. Here have to use a temp variable
* in DMA context to record feature state before SWDMA operation.
*/
if (dev->i2c_max_rx_size_en) {
thc_i2c_rx_max_size_enable(dev, false);
dev->dma_ctx->rx_max_size_en = true;
}
/*
* Interrupt delay feature is in the same situation with max input size control feature,
* needs record feature state before SWDMA.
*/
if (dev->i2c_int_delay_en) {
thc_i2c_rx_int_delay_enable(dev, false);
dev->dma_ctx->rx_int_delay_en = true;
}
mask = THC_M_PRT_RPRD_CNTRL_SW_THC_SWDMA_I2C_WBC |
THC_M_PRT_RPRD_CNTRL_SW_THC_SWDMA_I2C_RX_DLEN_EN;
val = FIELD_PREP(THC_M_PRT_RPRD_CNTRL_SW_THC_SWDMA_I2C_WBC, write_len) |
((!prd_tbl_len) ? THC_M_PRT_RPRD_CNTRL_SW_THC_SWDMA_I2C_RX_DLEN_EN : 0);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_RPRD_CNTRL_SW_OFFSET,
mask, val);
if (prd_tbl_len) {
mask = THC_M_PRT_SW_DMA_PRD_TABLE_LEN_THC_M_PRT_SW_DMA_PRD_TABLE_LEN;
val = FIELD_PREP(THC_M_PRT_SW_DMA_PRD_TABLE_LEN_THC_M_PRT_SW_DMA_PRD_TABLE_LEN,
*prd_tbl_len);
regmap_write_bits(dev->thc_regmap, THC_M_PRT_SW_DMA_PRD_TABLE_LEN_OFFSET,
mask, val);
}
if (write_len <= sizeof(u32)) {
for (int i = 0; i < write_len; i++)
data0 |= *(((u8 *)write_buff) + i) << (i * 8);
regmap_write(dev->thc_regmap, THC_M_PRT_SW_SEQ_DATA0_ADDR_OFFSET, data0);
} else if (write_len <= 2 * sizeof(u32)) {
data0 = *(u32 *)write_buff;
regmap_write(dev->thc_regmap, THC_M_PRT_SW_SEQ_DATA0_ADDR_OFFSET, data0);
for (int i = 0; i < write_len - sizeof(u32); i++)
data1 |= *(((u8 *)write_buff) + sizeof(u32) + i) << (i * 8);
regmap_write(dev->thc_regmap, THC_M_PRT_SW_SEQ_DATA1_OFFSET, data1);
}
dma_set_start_bit(dev, &dev->dma_ctx->dma_config[THC_SWDMA]);
return 0;
}
static int thc_swdma_read_completion(struct thc_device *dev)
{
int ret;
ret = thc_wait_for_dma_pause(dev, THC_SWDMA);
if (ret)
return ret;
/*
* Restore max input size control feature to previous state after SWDMA if it was
* enabled before SWDMA, and reset temp rx_max_size_en variable for next time.
*/
if (dev->dma_ctx->rx_max_size_en) {
thc_i2c_rx_max_size_enable(dev, true);
dev->dma_ctx->rx_max_size_en = false;
}
/*
* Restore input interrupt delay feature to previous state after SWDMA if it was
* enabled before SWDMA, and reset temp rx_int_delay_en variable for next time.
*/
if (dev->dma_ctx->rx_int_delay_en) {
thc_i2c_rx_int_delay_enable(dev, true);
dev->dma_ctx->rx_int_delay_en = false;
}
thc_reset_dma_settings(dev);
dma_set_start_bit(dev, &dev->dma_ctx->dma_config[THC_RXDMA2]);
ret = thc_interrupt_quiesce(dev, false);
return ret;
}
/**
* thc_swdma_read - Use software DMA to read data from touch device
*
* @dev: The pointer of THC private device context
* @write_buff: The pointer of write buffer for SWDMA sequence
* @write_len: The write data length for SWDMA sequence
* @prd_tbl_len: The prd table length of SWDMA engine, can be set to NULL
* @read_buff: The pointer of the read data buffer
* @read_len: The pointer of the read data length
*
* Return: 0 on success, other error codes on failed.
*/
int thc_swdma_read(struct thc_device *dev, void *write_buff, size_t write_len,
u32 *prd_tbl_len, void *read_buff, size_t *read_len)
{
int ret;
if (!(&dev->dma_ctx->dma_config[THC_SWDMA])->is_enabled) {
dev_err_once(dev->dev, "The SWDMA channel is not enabled");
return -EINVAL;
}
if (!read_buff || !read_len) {
dev_err(dev->dev, "Invalid input parameters, read_buff %p, read_len %p\n",
read_buff, read_len);
return -EINVAL;
}
if (mutex_lock_interruptible(&dev->thc_bus_lock))
return -EINTR;
dev->swdma_done = false;
ret = thc_swdma_read_start(dev, write_buff, write_len, prd_tbl_len);
if (ret)
goto end;
ret = wait_event_interruptible_timeout(dev->swdma_complete_wait, dev->swdma_done, 1 * HZ);
if (ret <= 0 || !dev->swdma_done) {
dev_err_once(dev->dev, "timeout for waiting SWDMA completion\n");
ret = -ETIMEDOUT;
goto end;
}
ret = thc_dma_read(dev, &dev->dma_ctx->dma_config[THC_SWDMA], read_buff, read_len, NULL);
if (ret)
goto end;
ret = thc_swdma_read_completion(dev);
end:
mutex_unlock(&dev->thc_bus_lock);
return ret;
}
EXPORT_SYMBOL_NS_GPL(thc_swdma_read, "INTEL_THC");
static int write_dma_buffer(struct thc_device *dev,
void *buffer, size_t buf_len)
{
struct thc_dma_configuration *write_config = &dev->dma_ctx->dma_config[THC_TXDMA];
struct thc_prd_table *prd_tbl;
struct scatterlist *sg;
unsigned long len_left;
size_t ret;
u8 nent;
int i;
/* There is only one PRD table for write */
prd_tbl = &write_config->prd_tbls[0];
if (calc_prd_entries_num(prd_tbl, buf_len, &nent) < 0) {
dev_err(dev->dev, "Tx message length too big (%zu)\n", buf_len);
return -EOVERFLOW;
}
sg = write_config->sgls[0];
ret = sg_copy_from_buffer(sg, nent, buffer, buf_len);
if (ret != buf_len) {
dev_err_once(dev->dev, "Copied %zu bytes instead of requested %zu\n",
ret, buf_len);
return -EIO;
}
prd_tbl = &write_config->prd_tbls[0];
len_left = buf_len;
for_each_sg(write_config->sgls[0], sg, write_config->sgls_nent[0], i) {
if (sg_dma_address(sg) == 0 || sg_dma_len(sg) == 0) {
dev_err_once(dev->dev, "SGList: zero address or length\n");
return -EINVAL;
}
prd_tbl->entries[i].dest_addr =
sg_dma_address(sg) >> THC_ADDRESS_SHIFT;
if (len_left < sg_dma_len(sg)) {
prd_tbl->entries[i].len = len_left;
prd_tbl->entries[i].end_of_prd = 1;
break;
}
prd_tbl->entries[i].len = sg_dma_len(sg);
prd_tbl->entries[i].end_of_prd = 0;
len_left -= sg_dma_len(sg);
}
dma_set_prd_control(dev, i, 0, write_config);
return 0;
}
static void thc_ensure_performance_limitations(struct thc_device *dev)
{
unsigned long delay_usec = 0;
/*
* Minimum amount of delay the THC / QUICKSPI driver must wait
* between end of write operation and begin of read operation.
* This value shall be in 10us multiples.
*/
if (dev->perf_limit > 0) {
delay_usec = dev->perf_limit * 10;
udelay(delay_usec);
}
}
static void thc_dma_write_completion(struct thc_device *dev)
{
thc_ensure_performance_limitations(dev);
}
/**
* thc_dma_write - Use TXDMA to write data to touch device
*
* @dev: The pointer of THC private device context
* @buffer: The pointer of write data buffer
* @buf_len: The write data length
*
* Return: 0 on success, other error codes on failed.
*/
int thc_dma_write(struct thc_device *dev, void *buffer, size_t buf_len)
{
bool restore_interrupts = false;
u32 sts, ctrl;
int ret;
if (!(&dev->dma_ctx->dma_config[THC_TXDMA])->is_enabled) {
dev_err_once(dev->dev, "The TxDMA channel is not enabled\n");
return -EINVAL;
}
if (!buffer || buf_len <= 0) {
dev_err(dev->dev, "Invalid input parameters, buffer %p\n, buf_len %zu\n",
buffer, buf_len);
return -EINVAL;
}
regmap_read(dev->thc_regmap, THC_M_PRT_WRITE_INT_STS_OFFSET, &sts);
if (sts & THC_M_PRT_WRITE_INT_STS_THC_WRDMA_ACTIVE) {
dev_err_once(dev->dev, "THC TxDMA is till active and can't start again\n");
return -EBUSY;
}
if (mutex_lock_interruptible(&dev->thc_bus_lock))
return -EINTR;
regmap_read(dev->thc_regmap, THC_M_PRT_CONTROL_OFFSET, &ctrl);
ret = write_dma_buffer(dev, buffer, buf_len);
if (ret)
goto end;
if (dev->perf_limit && !(ctrl & THC_M_PRT_CONTROL_THC_DEVINT_QUIESCE_HW_STS)) {
ret = thc_interrupt_quiesce(dev, true);
if (ret)
goto end;
restore_interrupts = true;
}
dev->write_done = false;
dma_set_start_bit(dev, &dev->dma_ctx->dma_config[THC_TXDMA]);
ret = wait_event_interruptible_timeout(dev->write_complete_wait, dev->write_done, 1 * HZ);
if (ret <= 0 || !dev->write_done) {
dev_err_once(dev->dev, "timeout for waiting TxDMA completion\n");
ret = -ETIMEDOUT;
goto end;
}
thc_dma_write_completion(dev);
mutex_unlock(&dev->thc_bus_lock);
return 0;
end:
mutex_unlock(&dev->thc_bus_lock);
if (restore_interrupts)
ret = thc_interrupt_quiesce(dev, false);
return ret;
}
EXPORT_SYMBOL_NS_GPL(thc_dma_write, "INTEL_THC");