linux-loongson/drivers/hid/intel-thc-hid/intel-quickspi/pci-quickspi.c
Even Xu 60c9fca90e HID: Intel-thc-hid: Intel-quickspi: Enable Wake-on-Touch feature
This patch call THC helper functions to enable Wake-on-Touch (WoT)
during driver initialization and disable it when driver is removed.

Signed-off-by: Even Xu <even.xu@intel.com>
Tested-by: Chong Han <chong.han@intel.com>
Signed-off-by: Jiri Kosina <jkosina@suse.com>
2025-06-10 21:19:50 +02:00

1001 lines
24 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2024 Intel Corporation */
#include <linux/acpi.h>
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/irqreturn.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/gpio/consumer.h>
#include "intel-thc-dev.h"
#include "intel-thc-hw.h"
#include "intel-thc-wot.h"
#include "quickspi-dev.h"
#include "quickspi-hid.h"
#include "quickspi-protocol.h"
struct quickspi_driver_data mtl = {
.max_packet_size_value = MAX_PACKET_SIZE_VALUE_MTL,
};
struct quickspi_driver_data lnl = {
.max_packet_size_value = MAX_PACKET_SIZE_VALUE_LNL,
};
struct quickspi_driver_data ptl = {
.max_packet_size_value = MAX_PACKET_SIZE_VALUE_LNL,
};
/* THC QuickSPI ACPI method to get device properties */
/* HIDSPI Method: {6e2ac436-0fcf-41af-a265-b32a220dcfab} */
static guid_t hidspi_guid =
GUID_INIT(0x6e2ac436, 0x0fcf, 0x41af, 0xa2, 0x65, 0xb3, 0x2a,
0x22, 0x0d, 0xcf, 0xab);
/* QuickSpi Method: {300D35b7-ac20-413e-8e9c-92e4dafd0afe} */
static guid_t thc_quickspi_guid =
GUID_INIT(0x300d35b7, 0xac20, 0x413e, 0x8e, 0x9c, 0x92, 0xe4,
0xda, 0xfd, 0x0a, 0xfe);
/* Platform Method: {84005682-5b71-41a4-0x8d668130f787a138} */
static guid_t thc_platform_guid =
GUID_INIT(0x84005682, 0x5b71, 0x41a4, 0x8d, 0x66, 0x81, 0x30,
0xf7, 0x87, 0xa1, 0x38);
/* QuickSPI Wake-on-Touch GPIO resource */
static const struct acpi_gpio_params wake_gpio = { 0, 0, true };
static const struct acpi_gpio_mapping quickspi_gpios[] = {
{ "wake-on-touch", &wake_gpio, 1 },
{ }
};
/**
* thc_acpi_get_property - Query device ACPI parameter
*
* @adev: point to ACPI device
* @guid: ACPI method's guid
* @rev: ACPI method's revision
* @func: ACPI method's function number
* @type: ACPI parameter's data type
* @prop_buf: point to return buffer
*
* This is a helper function for device to query its ACPI parameters.
*
* Return: 0 if successful or ENODEV on failed.
*/
static int thc_acpi_get_property(struct acpi_device *adev, const guid_t *guid,
u64 rev, u64 func, acpi_object_type type, void *prop_buf)
{
acpi_handle handle = acpi_device_handle(adev);
union acpi_object *obj;
obj = acpi_evaluate_dsm_typed(handle, guid, rev, func, NULL, type);
if (!obj) {
acpi_handle_err(handle,
"Error _DSM call failed, rev: %llu, func: %llu, type: %u\n",
rev, func, type);
return -ENODEV;
}
if (type == ACPI_TYPE_INTEGER)
*(u32 *)prop_buf = (u32)obj->integer.value;
else if (type == ACPI_TYPE_BUFFER)
memcpy(prop_buf, obj->buffer.pointer, obj->buffer.length);
ACPI_FREE(obj);
return 0;
}
/**
* quickspi_get_acpi_resources - Query all quickspi devices' ACPI parameters
*
* @qsdev: point to quickspi device
*
* This function gets all quickspi devices' ACPI resource.
*
* Return: 0 if successful or error code on failed.
*/
static int quickspi_get_acpi_resources(struct quickspi_device *qsdev)
{
struct acpi_device *adev = ACPI_COMPANION(qsdev->dev);
int ret = -EINVAL;
if (!adev) {
dev_err(qsdev->dev, "no valid ACPI companion\n");
return ret;
}
qsdev->acpi_dev = adev;
ret = thc_acpi_get_property(adev, &hidspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_INPUT_REP_HDR_ADDR,
ACPI_TYPE_INTEGER,
&qsdev->input_report_hdr_addr);
if (ret)
return ret;
ret = thc_acpi_get_property(adev, &hidspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_INPUT_REP_BDY_ADDR,
ACPI_TYPE_INTEGER,
&qsdev->input_report_bdy_addr);
if (ret)
return ret;
ret = thc_acpi_get_property(adev, &hidspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_OUTPUT_REP_ADDR,
ACPI_TYPE_INTEGER,
&qsdev->output_report_addr);
if (ret)
return ret;
ret = thc_acpi_get_property(adev, &hidspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_READ_OPCODE,
ACPI_TYPE_BUFFER,
&qsdev->spi_read_opcode);
if (ret)
return ret;
ret = thc_acpi_get_property(adev, &hidspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_WRITE_OPCODE,
ACPI_TYPE_BUFFER,
&qsdev->spi_write_opcode);
if (ret)
return ret;
ret = thc_acpi_get_property(adev, &hidspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_IO_MODE,
ACPI_TYPE_INTEGER,
&qsdev->spi_read_io_mode);
if (ret)
return ret;
if (qsdev->spi_read_io_mode & SPI_WRITE_IO_MODE)
qsdev->spi_write_io_mode = FIELD_GET(SPI_IO_MODE_OPCODE, qsdev->spi_read_io_mode);
else
qsdev->spi_write_io_mode = THC_SINGLE_IO;
qsdev->spi_read_io_mode = FIELD_GET(SPI_IO_MODE_OPCODE, qsdev->spi_read_io_mode);
ret = thc_acpi_get_property(adev, &thc_quickspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_CONNECTION_SPEED,
ACPI_TYPE_INTEGER,
&qsdev->spi_freq_val);
if (ret)
return ret;
ret = thc_acpi_get_property(adev, &thc_quickspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_LIMIT_PACKET_SIZE,
ACPI_TYPE_INTEGER,
&qsdev->limit_packet_size);
if (ret)
return ret;
if (qsdev->limit_packet_size || !qsdev->driver_data)
qsdev->spi_packet_size = DEFAULT_MIN_PACKET_SIZE_VALUE;
else
qsdev->spi_packet_size = qsdev->driver_data->max_packet_size_value;
ret = thc_acpi_get_property(adev, &thc_quickspi_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_PERFORMANCE_LIMIT,
ACPI_TYPE_INTEGER,
&qsdev->performance_limit);
if (ret)
return ret;
qsdev->performance_limit = FIELD_GET(PERFORMANCE_LIMITATION, qsdev->performance_limit);
ret = thc_acpi_get_property(adev, &thc_platform_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_ACTIVE_LTR,
ACPI_TYPE_INTEGER,
&qsdev->active_ltr_val);
if (ret)
return ret;
ret = thc_acpi_get_property(adev, &thc_platform_guid,
ACPI_QUICKSPI_REVISION_NUM,
ACPI_QUICKSPI_FUNC_NUM_LP_LTR,
ACPI_TYPE_INTEGER,
&qsdev->low_power_ltr_val);
if (ret)
return ret;
return 0;
}
/**
* quickspi_irq_quick_handler - The ISR of the quickspi driver
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: IRQ_WAKE_THREAD if further process needed.
*/
static irqreturn_t quickspi_irq_quick_handler(int irq, void *dev_id)
{
struct quickspi_device *qsdev = dev_id;
if (qsdev->state == QUICKSPI_DISABLED)
return IRQ_HANDLED;
/* Disable THC interrupt before current interrupt be handled */
thc_interrupt_enable(qsdev->thc_hw, false);
return IRQ_WAKE_THREAD;
}
/**
* try_recover - Try to recovery THC and Device
* @qsdev: pointer to quickspi device
*
* This function is a error handler, called when fatal error happens.
* It try to reset Touch Device and re-configure THC to recovery
* transferring between Device and THC.
*
* Return: 0 if successful or error code on failed.
*/
static int try_recover(struct quickspi_device *qsdev)
{
int ret;
ret = reset_tic(qsdev);
if (ret) {
dev_err(qsdev->dev, "Reset touch device failed, ret = %d\n", ret);
return ret;
}
thc_dma_unconfigure(qsdev->thc_hw);
ret = thc_dma_configure(qsdev->thc_hw);
if (ret) {
dev_err(qsdev->dev, "Re-configure THC DMA failed, ret = %d\n", ret);
return ret;
}
return 0;
}
/**
* quickspi_irq_thread_handler - IRQ thread handler of quickspi driver
*
* @irq: The IRQ number
* @dev_id: pointer to the quickspi device structure
*
* Return: IRQ_HANDLED to finish this handler.
*/
static irqreturn_t quickspi_irq_thread_handler(int irq, void *dev_id)
{
struct quickspi_device *qsdev = dev_id;
size_t input_len;
int read_finished = 0;
int err_recover = 0;
int int_mask;
int ret;
if (qsdev->state == QUICKSPI_DISABLED)
return IRQ_HANDLED;
ret = pm_runtime_resume_and_get(qsdev->dev);
if (ret)
return IRQ_HANDLED;
int_mask = thc_interrupt_handler(qsdev->thc_hw);
if (int_mask & BIT(THC_FATAL_ERR_INT) || int_mask & BIT(THC_TXN_ERR_INT)) {
err_recover = 1;
goto end;
}
if (int_mask & BIT(THC_NONDMA_INT)) {
if (qsdev->state == QUICKSPI_RESETING) {
qsdev->reset_ack = true;
wake_up_interruptible(&qsdev->reset_ack_wq);
} else {
qsdev->nondma_int_received = true;
wake_up_interruptible(&qsdev->nondma_int_received_wq);
}
}
if (int_mask & BIT(THC_RXDMA2_INT)) {
while (!read_finished) {
ret = thc_rxdma_read(qsdev->thc_hw, THC_RXDMA2, qsdev->input_buf,
&input_len, &read_finished);
if (ret) {
err_recover = 1;
goto end;
}
quickspi_handle_input_data(qsdev, input_len);
}
}
end:
thc_interrupt_enable(qsdev->thc_hw, true);
if (err_recover)
if (try_recover(qsdev))
qsdev->state = QUICKSPI_DISABLED;
pm_runtime_mark_last_busy(qsdev->dev);
pm_runtime_put_autosuspend(qsdev->dev);
return IRQ_HANDLED;
}
/**
* quickspi_dev_init - Initialize quickspi device
*
* @pdev: pointer to the thc pci device
* @mem_addr: The pointer of MMIO memory address
* @id: point to pci_device_id structure
*
* Alloc quickspi device structure and initialized THC device,
* then configure THC to HIDSPI mode.
*
* If success, enable THC hardware interrupt.
*
* Return: pointer to the quickspi device structure if success
* or NULL on failed.
*/
static struct quickspi_device *quickspi_dev_init(struct pci_dev *pdev, void __iomem *mem_addr,
const struct pci_device_id *id)
{
struct device *dev = &pdev->dev;
struct quickspi_device *qsdev;
int ret;
qsdev = devm_kzalloc(dev, sizeof(struct quickspi_device), GFP_KERNEL);
if (!qsdev)
return ERR_PTR(-ENOMEM);
qsdev->pdev = pdev;
qsdev->dev = dev;
qsdev->mem_addr = mem_addr;
qsdev->state = QUICKSPI_DISABLED;
qsdev->driver_data = (struct quickspi_driver_data *)id->driver_data;
init_waitqueue_head(&qsdev->reset_ack_wq);
init_waitqueue_head(&qsdev->nondma_int_received_wq);
init_waitqueue_head(&qsdev->report_desc_got_wq);
init_waitqueue_head(&qsdev->get_report_cmpl_wq);
init_waitqueue_head(&qsdev->set_report_cmpl_wq);
/* thc hw init */
qsdev->thc_hw = thc_dev_init(qsdev->dev, qsdev->mem_addr);
if (IS_ERR(qsdev->thc_hw)) {
ret = PTR_ERR(qsdev->thc_hw);
dev_err(dev, "Failed to initialize THC device context, ret = %d.\n", ret);
return ERR_PTR(ret);
}
ret = thc_interrupt_quiesce(qsdev->thc_hw, true);
if (ret)
return ERR_PTR(ret);
ret = thc_port_select(qsdev->thc_hw, THC_PORT_TYPE_SPI);
if (ret) {
dev_err(dev, "Failed to select THC port, ret = %d.\n", ret);
return ERR_PTR(ret);
}
ret = quickspi_get_acpi_resources(qsdev);
if (ret) {
dev_err(dev, "Get ACPI resources failed, ret = %d\n", ret);
return ERR_PTR(ret);
}
/* THC config for input/output address */
thc_spi_input_output_address_config(qsdev->thc_hw,
qsdev->input_report_hdr_addr,
qsdev->input_report_bdy_addr,
qsdev->output_report_addr);
/* THC config for spi read operation */
ret = thc_spi_read_config(qsdev->thc_hw, qsdev->spi_freq_val,
qsdev->spi_read_io_mode,
qsdev->spi_read_opcode,
qsdev->spi_packet_size);
if (ret) {
dev_err(dev, "thc_spi_read_config failed, ret = %d\n", ret);
return ERR_PTR(ret);
}
/* THC config for spi write operation */
ret = thc_spi_write_config(qsdev->thc_hw, qsdev->spi_freq_val,
qsdev->spi_write_io_mode,
qsdev->spi_write_opcode,
qsdev->spi_packet_size,
qsdev->performance_limit);
if (ret) {
dev_err(dev, "thc_spi_write_config failed, ret = %d\n", ret);
return ERR_PTR(ret);
}
thc_ltr_config(qsdev->thc_hw,
qsdev->active_ltr_val,
qsdev->low_power_ltr_val);
thc_interrupt_config(qsdev->thc_hw);
thc_interrupt_enable(qsdev->thc_hw, true);
thc_wot_config(qsdev->thc_hw, &quickspi_gpios[0]);
qsdev->state = QUICKSPI_INITIATED;
return qsdev;
}
/**
* quickspi_dev_deinit - De-initialize quickspi device
*
* @qsdev: pointer to the quickspi device structure
*
* Disable THC interrupt and deinitilize THC.
*/
static void quickspi_dev_deinit(struct quickspi_device *qsdev)
{
thc_interrupt_enable(qsdev->thc_hw, false);
thc_ltr_unconfig(qsdev->thc_hw);
thc_wot_unconfig(qsdev->thc_hw);
qsdev->state = QUICKSPI_DISABLED;
}
/**
* quickspi_dma_init - Configure THC DMA for quickspi device
* @qsdev: pointer to the quickspi device structure
*
* This function uses TIC's parameters(such as max input length, max output
* length) to allocate THC DMA buffers and configure THC DMA engines.
*
* Return: 0 if successful or error code on failed.
*/
static int quickspi_dma_init(struct quickspi_device *qsdev)
{
int ret;
ret = thc_dma_set_max_packet_sizes(qsdev->thc_hw, 0,
le16_to_cpu(qsdev->dev_desc.max_input_len),
le16_to_cpu(qsdev->dev_desc.max_output_len),
0);
if (ret)
return ret;
ret = thc_dma_allocate(qsdev->thc_hw);
if (ret) {
dev_err(qsdev->dev, "Allocate THC DMA buffer failed, ret = %d\n", ret);
return ret;
}
/* Enable RxDMA */
ret = thc_dma_configure(qsdev->thc_hw);
if (ret) {
dev_err(qsdev->dev, "Configure THC DMA failed, ret = %d\n", ret);
thc_dma_unconfigure(qsdev->thc_hw);
thc_dma_release(qsdev->thc_hw);
return ret;
}
return ret;
}
/**
* quickspi_dma_deinit - Release THC DMA for quickspi device
* @qsdev: pointer to the quickspi device structure
*
* Stop THC DMA engines and release all DMA buffers.
*
*/
static void quickspi_dma_deinit(struct quickspi_device *qsdev)
{
thc_dma_unconfigure(qsdev->thc_hw);
thc_dma_release(qsdev->thc_hw);
}
/**
* quickspi_alloc_report_buf - Alloc report buffers
* @qsdev: pointer to the quickspi device structure
*
* Allocate report descriptor buffer, it will be used for restore TIC HID
* report descriptor.
*
* Allocate input report buffer, it will be used for receive HID input report
* data from TIC.
*
* Allocate output report buffer, it will be used for store HID output report,
* such as set feature.
*
* Return: 0 if successful or error code on failed.
*/
static int quickspi_alloc_report_buf(struct quickspi_device *qsdev)
{
size_t max_report_len;
size_t max_input_len;
qsdev->report_descriptor = devm_kzalloc(qsdev->dev,
le16_to_cpu(qsdev->dev_desc.rep_desc_len),
GFP_KERNEL);
if (!qsdev->report_descriptor)
return -ENOMEM;
max_input_len = max(le16_to_cpu(qsdev->dev_desc.rep_desc_len),
le16_to_cpu(qsdev->dev_desc.max_input_len));
qsdev->input_buf = devm_kzalloc(qsdev->dev, max_input_len, GFP_KERNEL);
if (!qsdev->input_buf)
return -ENOMEM;
max_report_len = max(le16_to_cpu(qsdev->dev_desc.max_output_len),
le16_to_cpu(qsdev->dev_desc.max_input_len));
qsdev->report_buf = devm_kzalloc(qsdev->dev, max_report_len, GFP_KERNEL);
if (!qsdev->report_buf)
return -ENOMEM;
return 0;
}
/*
* quickspi_probe: Quickspi driver probe function
*
* @pdev: point to pci device
* @id: point to pci_device_id structure
*
* This function initializes THC and HIDSPI device, the flow is:
* - do THC pci device initialization
* - query HIDSPI ACPI parameters
* - configure THC to HIDSPI mode
* - go through HIDSPI enumeration flow
* |- reset HIDSPI device
* |- read device descriptor
* - enable THC interrupt and DMA
* - read report descriptor
* - register HID device
* - enable runtime power management
*
* Return 0 if success or error code on failure.
*/
static int quickspi_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct quickspi_device *qsdev;
void __iomem *mem_addr;
int ret;
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "Failed to enable PCI device, ret = %d.\n", ret);
return ret;
}
pci_set_master(pdev);
mem_addr = pcim_iomap_region(pdev, 0, KBUILD_MODNAME);
ret = PTR_ERR_OR_ZERO(mem_addr);
if (ret) {
dev_err(&pdev->dev, "Failed to get PCI regions, ret = %d.\n", ret);
goto disable_pci_device;
}
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret) {
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(&pdev->dev, "No usable DMA configuration %d\n", ret);
goto disable_pci_device;
}
}
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
if (ret < 0) {
dev_err(&pdev->dev,
"Failed to allocate IRQ vectors. ret = %d\n", ret);
goto disable_pci_device;
}
pdev->irq = pci_irq_vector(pdev, 0);
qsdev = quickspi_dev_init(pdev, mem_addr, id);
if (IS_ERR(qsdev)) {
dev_err(&pdev->dev, "QuickSPI device init failed\n");
ret = PTR_ERR(qsdev);
goto disable_pci_device;
}
pci_set_drvdata(pdev, qsdev);
ret = devm_request_threaded_irq(&pdev->dev, pdev->irq,
quickspi_irq_quick_handler,
quickspi_irq_thread_handler,
IRQF_ONESHOT, KBUILD_MODNAME,
qsdev);
if (ret) {
dev_err(&pdev->dev,
"Failed to request threaded IRQ, irq = %d.\n", pdev->irq);
goto dev_deinit;
}
ret = reset_tic(qsdev);
if (ret) {
dev_err(&pdev->dev, "Reset Touch Device failed, ret = %d\n", ret);
goto dev_deinit;
}
ret = quickspi_alloc_report_buf(qsdev);
if (ret) {
dev_err(&pdev->dev, "Alloc report buffers failed, ret= %d\n", ret);
goto dev_deinit;
}
ret = quickspi_dma_init(qsdev);
if (ret) {
dev_err(&pdev->dev, "Setup THC DMA failed, ret= %d\n", ret);
goto dev_deinit;
}
ret = quickspi_get_report_descriptor(qsdev);
if (ret) {
dev_err(&pdev->dev, "Get report descriptor failed, ret = %d\n", ret);
goto dma_deinit;
}
ret = quickspi_hid_probe(qsdev);
if (ret) {
dev_err(&pdev->dev, "Failed to register HID device, ret = %d\n", ret);
goto dma_deinit;
}
qsdev->state = QUICKSPI_ENABLED;
/* Enable runtime power management */
pm_runtime_use_autosuspend(qsdev->dev);
pm_runtime_set_autosuspend_delay(qsdev->dev, DEFAULT_AUTO_SUSPEND_DELAY_MS);
pm_runtime_mark_last_busy(qsdev->dev);
pm_runtime_put_noidle(qsdev->dev);
pm_runtime_put_autosuspend(qsdev->dev);
dev_dbg(&pdev->dev, "QuickSPI probe success\n");
return 0;
dma_deinit:
quickspi_dma_deinit(qsdev);
dev_deinit:
quickspi_dev_deinit(qsdev);
disable_pci_device:
pci_clear_master(pdev);
return ret;
}
/**
* quickspi_remove - Device Removal Routine
*
* @pdev: PCI device structure
*
* This is called by the PCI subsystem to alert the driver
* that it should release a PCI device.
*/
static void quickspi_remove(struct pci_dev *pdev)
{
struct quickspi_device *qsdev;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return;
quickspi_hid_remove(qsdev);
quickspi_dma_deinit(qsdev);
pm_runtime_get_noresume(qsdev->dev);
quickspi_dev_deinit(qsdev);
pci_clear_master(pdev);
}
/**
* quickspi_shutdown - Device Shutdown Routine
*
* @pdev: PCI device structure
*
* This is called from the reboot notifier
* it's a simplified version of remove so we go down
* faster.
*/
static void quickspi_shutdown(struct pci_dev *pdev)
{
struct quickspi_device *qsdev;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return;
/* Must stop DMA before reboot to avoid DMA entering into unknown state */
quickspi_dma_deinit(qsdev);
quickspi_dev_deinit(qsdev);
}
static int quickspi_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct quickspi_device *qsdev;
int ret;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return -ENODEV;
ret = quickspi_set_power(qsdev, HIDSPI_SLEEP);
if (ret)
return ret;
ret = thc_interrupt_quiesce(qsdev->thc_hw, true);
if (ret)
return ret;
thc_interrupt_enable(qsdev->thc_hw, false);
thc_dma_unconfigure(qsdev->thc_hw);
return 0;
}
static int quickspi_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct quickspi_device *qsdev;
int ret;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return -ENODEV;
ret = thc_port_select(qsdev->thc_hw, THC_PORT_TYPE_SPI);
if (ret)
return ret;
thc_interrupt_config(qsdev->thc_hw);
thc_interrupt_enable(qsdev->thc_hw, true);
ret = thc_dma_configure(qsdev->thc_hw);
if (ret)
return ret;
ret = thc_interrupt_quiesce(qsdev->thc_hw, false);
if (ret)
return ret;
ret = quickspi_set_power(qsdev, HIDSPI_ON);
if (ret)
return ret;
return 0;
}
static int quickspi_freeze(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct quickspi_device *qsdev;
int ret;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return -ENODEV;
ret = thc_interrupt_quiesce(qsdev->thc_hw, true);
if (ret)
return ret;
thc_interrupt_enable(qsdev->thc_hw, false);
thc_dma_unconfigure(qsdev->thc_hw);
return 0;
}
static int quickspi_thaw(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct quickspi_device *qsdev;
int ret;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return -ENODEV;
ret = thc_dma_configure(qsdev->thc_hw);
if (ret)
return ret;
thc_interrupt_enable(qsdev->thc_hw, true);
ret = thc_interrupt_quiesce(qsdev->thc_hw, false);
if (ret)
return ret;
return 0;
}
static int quickspi_poweroff(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct quickspi_device *qsdev;
int ret;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return -ENODEV;
ret = thc_interrupt_quiesce(qsdev->thc_hw, true);
if (ret)
return ret;
thc_interrupt_enable(qsdev->thc_hw, false);
thc_ltr_unconfig(qsdev->thc_hw);
quickspi_dma_deinit(qsdev);
return 0;
}
static int quickspi_restore(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct quickspi_device *qsdev;
int ret;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return -ENODEV;
ret = thc_interrupt_quiesce(qsdev->thc_hw, true);
if (ret)
return ret;
/* Reconfig THC HW when back from hibernate */
ret = thc_port_select(qsdev->thc_hw, THC_PORT_TYPE_SPI);
if (ret)
return ret;
thc_spi_input_output_address_config(qsdev->thc_hw,
qsdev->input_report_hdr_addr,
qsdev->input_report_bdy_addr,
qsdev->output_report_addr);
ret = thc_spi_read_config(qsdev->thc_hw, qsdev->spi_freq_val,
qsdev->spi_read_io_mode,
qsdev->spi_read_opcode,
qsdev->spi_packet_size);
if (ret)
return ret;
ret = thc_spi_write_config(qsdev->thc_hw, qsdev->spi_freq_val,
qsdev->spi_write_io_mode,
qsdev->spi_write_opcode,
qsdev->spi_packet_size,
qsdev->performance_limit);
if (ret)
return ret;
thc_interrupt_config(qsdev->thc_hw);
thc_interrupt_enable(qsdev->thc_hw, true);
/* TIC may lose power, needs go through reset flow */
ret = reset_tic(qsdev);
if (ret)
return ret;
ret = thc_dma_configure(qsdev->thc_hw);
if (ret)
return ret;
thc_ltr_config(qsdev->thc_hw,
qsdev->active_ltr_val,
qsdev->low_power_ltr_val);
thc_change_ltr_mode(qsdev->thc_hw, THC_LTR_MODE_ACTIVE);
qsdev->state = QUICKSPI_ENABLED;
return 0;
}
static int quickspi_runtime_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct quickspi_device *qsdev;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return -ENODEV;
thc_change_ltr_mode(qsdev->thc_hw, THC_LTR_MODE_LP);
pci_save_state(pdev);
return 0;
}
static int quickspi_runtime_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct quickspi_device *qsdev;
qsdev = pci_get_drvdata(pdev);
if (!qsdev)
return -ENODEV;
thc_change_ltr_mode(qsdev->thc_hw, THC_LTR_MODE_ACTIVE);
return 0;
}
static const struct dev_pm_ops quickspi_pm_ops = {
.suspend = quickspi_suspend,
.resume = quickspi_resume,
.freeze = quickspi_freeze,
.thaw = quickspi_thaw,
.poweroff = quickspi_poweroff,
.restore = quickspi_restore,
.runtime_suspend = quickspi_runtime_suspend,
.runtime_resume = quickspi_runtime_resume,
.runtime_idle = NULL,
};
static const struct pci_device_id quickspi_pci_tbl[] = {
{PCI_DEVICE_DATA(INTEL, THC_MTL_DEVICE_ID_SPI_PORT1, &mtl), },
{PCI_DEVICE_DATA(INTEL, THC_MTL_DEVICE_ID_SPI_PORT2, &mtl), },
{PCI_DEVICE_DATA(INTEL, THC_LNL_DEVICE_ID_SPI_PORT1, &lnl), },
{PCI_DEVICE_DATA(INTEL, THC_LNL_DEVICE_ID_SPI_PORT2, &lnl), },
{PCI_DEVICE_DATA(INTEL, THC_PTL_H_DEVICE_ID_SPI_PORT1, &ptl), },
{PCI_DEVICE_DATA(INTEL, THC_PTL_H_DEVICE_ID_SPI_PORT2, &ptl), },
{PCI_DEVICE_DATA(INTEL, THC_PTL_U_DEVICE_ID_SPI_PORT1, &ptl), },
{PCI_DEVICE_DATA(INTEL, THC_PTL_U_DEVICE_ID_SPI_PORT2, &ptl), },
{}
};
MODULE_DEVICE_TABLE(pci, quickspi_pci_tbl);
static struct pci_driver quickspi_driver = {
.name = KBUILD_MODNAME,
.id_table = quickspi_pci_tbl,
.probe = quickspi_probe,
.remove = quickspi_remove,
.shutdown = quickspi_shutdown,
.driver.pm = &quickspi_pm_ops,
.driver.probe_type = PROBE_PREFER_ASYNCHRONOUS,
};
module_pci_driver(quickspi_driver);
MODULE_AUTHOR("Xinpeng Sun <xinpeng.sun@intel.com>");
MODULE_AUTHOR("Even Xu <even.xu@intel.com>");
MODULE_DESCRIPTION("Intel(R) QuickSPI Driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS("INTEL_THC");