mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-09-01 23:46:45 +00:00

The expected flow of operations when using PXP is to query the PXP status and wait for it to transition to "ready" before attempting to create an exec_queue. This flow is followed by the Mesa driver, but there is no guarantee that an incorrectly coded (or malicious) app will not attempt to create the queue first without querying the status. Therefore, we need to clarify what the expected behavior of the queue creation ioctl is in this scenario. Currently, the ioctl always fails with an -EBUSY code no matter the error, but for consistency it is better to distinguish between "failed to init" (-EIO) and "not ready" (-EBUSY), the same way the query ioctl does. Note that, while this is a change in the return code of an ioctl, the behavior of the ioctl in this particular corner case was not clearly spec'd, so no one should have been relying on it (and we know that Mesa, which is the only known userspace for this, didn't). v2: Minor rework of the doc (Rodrigo) Fixes:72d479601d
("drm/xe/pxp/uapi: Add userspace and LRC support for PXP-using queues") Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Cc: John Harrison <John.C.Harrison@Intel.com> Cc: José Roberto de Souza <jose.souza@intel.com> Reviewed-by: José Roberto de Souza <jose.souza@intel.com> Reviewed-by: John Harrison <John.C.Harrison@Intel.com> Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Link: https://lore.kernel.org/r/20250522225401.3953243-7-daniele.ceraolospurio@intel.com (cherry picked from commit21784ca960
) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
949 lines
24 KiB
C
949 lines
24 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright(c) 2024 Intel Corporation.
|
|
*/
|
|
|
|
#include "xe_pxp.h"
|
|
|
|
#include <drm/drm_managed.h>
|
|
#include <uapi/drm/xe_drm.h>
|
|
|
|
#include "xe_bo.h"
|
|
#include "xe_bo_types.h"
|
|
#include "xe_device_types.h"
|
|
#include "xe_exec_queue.h"
|
|
#include "xe_force_wake.h"
|
|
#include "xe_guc_submit.h"
|
|
#include "xe_gsc_proxy.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_types.h"
|
|
#include "xe_huc.h"
|
|
#include "xe_mmio.h"
|
|
#include "xe_pm.h"
|
|
#include "xe_pxp_submit.h"
|
|
#include "xe_pxp_types.h"
|
|
#include "xe_uc_fw.h"
|
|
#include "regs/xe_irq_regs.h"
|
|
#include "regs/xe_pxp_regs.h"
|
|
|
|
/**
|
|
* DOC: PXP
|
|
*
|
|
* PXP (Protected Xe Path) allows execution and flip to display of protected
|
|
* (i.e. encrypted) objects. This feature is currently only supported in
|
|
* integrated parts.
|
|
*/
|
|
|
|
#define ARB_SESSION DRM_XE_PXP_HWDRM_DEFAULT_SESSION /* shorter define */
|
|
|
|
/*
|
|
* A submission to GSC can take up to 250ms to complete, so use a 300ms
|
|
* timeout for activation where only one of those is involved. Termination
|
|
* additionally requires a submission to VCS and an interaction with KCR, so
|
|
* bump the timeout to 500ms for that.
|
|
*/
|
|
#define PXP_ACTIVATION_TIMEOUT_MS 300
|
|
#define PXP_TERMINATION_TIMEOUT_MS 500
|
|
|
|
bool xe_pxp_is_supported(const struct xe_device *xe)
|
|
{
|
|
return xe->info.has_pxp && IS_ENABLED(CONFIG_INTEL_MEI_GSC_PROXY);
|
|
}
|
|
|
|
bool xe_pxp_is_enabled(const struct xe_pxp *pxp)
|
|
{
|
|
return pxp;
|
|
}
|
|
|
|
static bool pxp_prerequisites_done(const struct xe_pxp *pxp)
|
|
{
|
|
struct xe_gt *gt = pxp->gt;
|
|
unsigned int fw_ref;
|
|
bool ready;
|
|
|
|
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
|
|
|
|
/*
|
|
* If force_wake fails we could falsely report the prerequisites as not
|
|
* done even if they are; the consequence of this would be that the
|
|
* callers won't go ahead with using PXP, but if force_wake doesn't work
|
|
* the GT is very likely in a bad state so not really a problem to abort
|
|
* PXP. Therefore, we can just log the force_wake error and not escalate
|
|
* it.
|
|
*/
|
|
XE_WARN_ON(!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL));
|
|
|
|
/* PXP requires both HuC authentication via GSC and GSC proxy initialized */
|
|
ready = xe_huc_is_authenticated(>->uc.huc, XE_HUC_AUTH_VIA_GSC) &&
|
|
xe_gsc_proxy_init_done(>->uc.gsc);
|
|
|
|
xe_force_wake_put(gt_to_fw(gt), fw_ref);
|
|
|
|
return ready;
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_get_readiness_status - check whether PXP is ready for userspace use
|
|
* @pxp: the xe_pxp pointer (can be NULL if PXP is disabled)
|
|
*
|
|
* Returns: 0 if PXP is not ready yet, 1 if it is ready, a negative errno value
|
|
* if PXP is not supported/enabled or if something went wrong in the
|
|
* initialization of the prerequisites. Note that the return values of this
|
|
* function follow the uapi (see drm_xe_query_pxp_status), so they can be used
|
|
* directly in the query ioctl.
|
|
*/
|
|
int xe_pxp_get_readiness_status(struct xe_pxp *pxp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return -ENODEV;
|
|
|
|
/* if the GSC or HuC FW are in an error state, PXP will never work */
|
|
if (xe_uc_fw_status_to_error(pxp->gt->uc.huc.fw.status) ||
|
|
xe_uc_fw_status_to_error(pxp->gt->uc.gsc.fw.status))
|
|
return -EIO;
|
|
|
|
xe_pm_runtime_get(pxp->xe);
|
|
|
|
/* PXP requires both HuC loaded and GSC proxy initialized */
|
|
if (pxp_prerequisites_done(pxp))
|
|
ret = 1;
|
|
|
|
xe_pm_runtime_put(pxp->xe);
|
|
return ret;
|
|
}
|
|
|
|
static bool pxp_session_is_in_play(struct xe_pxp *pxp, u32 id)
|
|
{
|
|
struct xe_gt *gt = pxp->gt;
|
|
|
|
return xe_mmio_read32(>->mmio, KCR_SIP) & BIT(id);
|
|
}
|
|
|
|
static int pxp_wait_for_session_state(struct xe_pxp *pxp, u32 id, bool in_play)
|
|
{
|
|
struct xe_gt *gt = pxp->gt;
|
|
u32 mask = BIT(id);
|
|
|
|
return xe_mmio_wait32(>->mmio, KCR_SIP, mask, in_play ? mask : 0,
|
|
250, NULL, false);
|
|
}
|
|
|
|
static void pxp_invalidate_queues(struct xe_pxp *pxp);
|
|
|
|
static int pxp_terminate_hw(struct xe_pxp *pxp)
|
|
{
|
|
struct xe_gt *gt = pxp->gt;
|
|
unsigned int fw_ref;
|
|
int ret = 0;
|
|
|
|
drm_dbg(&pxp->xe->drm, "Terminating PXP\n");
|
|
|
|
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
|
|
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT)) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* terminate the hw session */
|
|
ret = xe_pxp_submit_session_termination(pxp, ARB_SESSION);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = pxp_wait_for_session_state(pxp, ARB_SESSION, false);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Trigger full HW cleanup */
|
|
xe_mmio_write32(>->mmio, KCR_GLOBAL_TERMINATE, 1);
|
|
|
|
/* now we can tell the GSC to clean up its own state */
|
|
ret = xe_pxp_submit_session_invalidation(&pxp->gsc_res, ARB_SESSION);
|
|
|
|
out:
|
|
xe_force_wake_put(gt_to_fw(gt), fw_ref);
|
|
return ret;
|
|
}
|
|
|
|
static void mark_termination_in_progress(struct xe_pxp *pxp)
|
|
{
|
|
lockdep_assert_held(&pxp->mutex);
|
|
|
|
reinit_completion(&pxp->termination);
|
|
pxp->status = XE_PXP_TERMINATION_IN_PROGRESS;
|
|
}
|
|
|
|
static void pxp_terminate(struct xe_pxp *pxp)
|
|
{
|
|
int ret = 0;
|
|
struct xe_device *xe = pxp->xe;
|
|
|
|
if (!wait_for_completion_timeout(&pxp->activation,
|
|
msecs_to_jiffies(PXP_ACTIVATION_TIMEOUT_MS)))
|
|
drm_err(&xe->drm, "failed to wait for PXP start before termination\n");
|
|
|
|
mutex_lock(&pxp->mutex);
|
|
|
|
if (pxp->status == XE_PXP_ACTIVE)
|
|
pxp->key_instance++;
|
|
|
|
/*
|
|
* we'll mark the status as needing termination on resume, so no need to
|
|
* emit a termination now.
|
|
*/
|
|
if (pxp->status == XE_PXP_SUSPENDED) {
|
|
mutex_unlock(&pxp->mutex);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we have a termination already in progress, we need to wait for
|
|
* it to complete before queueing another one. Once the first
|
|
* termination is completed we'll set the state back to
|
|
* NEEDS_TERMINATION and leave it to the pxp start code to issue it.
|
|
*/
|
|
if (pxp->status == XE_PXP_TERMINATION_IN_PROGRESS) {
|
|
pxp->status = XE_PXP_NEEDS_ADDITIONAL_TERMINATION;
|
|
mutex_unlock(&pxp->mutex);
|
|
return;
|
|
}
|
|
|
|
mark_termination_in_progress(pxp);
|
|
|
|
mutex_unlock(&pxp->mutex);
|
|
|
|
pxp_invalidate_queues(pxp);
|
|
|
|
ret = pxp_terminate_hw(pxp);
|
|
if (ret) {
|
|
drm_err(&xe->drm, "PXP termination failed: %pe\n", ERR_PTR(ret));
|
|
mutex_lock(&pxp->mutex);
|
|
pxp->status = XE_PXP_ERROR;
|
|
complete_all(&pxp->termination);
|
|
mutex_unlock(&pxp->mutex);
|
|
}
|
|
}
|
|
|
|
static void pxp_terminate_complete(struct xe_pxp *pxp)
|
|
{
|
|
/*
|
|
* We expect PXP to be in one of 3 states when we get here:
|
|
* - XE_PXP_TERMINATION_IN_PROGRESS: a single termination event was
|
|
* requested and it is now completing, so we're ready to start.
|
|
* - XE_PXP_NEEDS_ADDITIONAL_TERMINATION: a second termination was
|
|
* requested while the first one was still being processed.
|
|
* - XE_PXP_SUSPENDED: PXP is now suspended, so we defer everything to
|
|
* when we come back on resume.
|
|
*/
|
|
mutex_lock(&pxp->mutex);
|
|
|
|
switch (pxp->status) {
|
|
case XE_PXP_TERMINATION_IN_PROGRESS:
|
|
pxp->status = XE_PXP_READY_TO_START;
|
|
break;
|
|
case XE_PXP_NEEDS_ADDITIONAL_TERMINATION:
|
|
pxp->status = XE_PXP_NEEDS_TERMINATION;
|
|
break;
|
|
case XE_PXP_SUSPENDED:
|
|
/* Nothing to do */
|
|
break;
|
|
default:
|
|
drm_err(&pxp->xe->drm,
|
|
"PXP termination complete while status was %u\n",
|
|
pxp->status);
|
|
}
|
|
|
|
complete_all(&pxp->termination);
|
|
|
|
mutex_unlock(&pxp->mutex);
|
|
}
|
|
|
|
static void pxp_irq_work(struct work_struct *work)
|
|
{
|
|
struct xe_pxp *pxp = container_of(work, typeof(*pxp), irq.work);
|
|
struct xe_device *xe = pxp->xe;
|
|
u32 events = 0;
|
|
|
|
spin_lock_irq(&xe->irq.lock);
|
|
events = pxp->irq.events;
|
|
pxp->irq.events = 0;
|
|
spin_unlock_irq(&xe->irq.lock);
|
|
|
|
if (!events)
|
|
return;
|
|
|
|
/*
|
|
* If we're processing a termination irq while suspending then don't
|
|
* bother, we're going to re-init everything on resume anyway.
|
|
*/
|
|
if ((events & PXP_TERMINATION_REQUEST) && !xe_pm_runtime_get_if_active(xe))
|
|
return;
|
|
|
|
if (events & PXP_TERMINATION_REQUEST) {
|
|
events &= ~PXP_TERMINATION_COMPLETE;
|
|
pxp_terminate(pxp);
|
|
}
|
|
|
|
if (events & PXP_TERMINATION_COMPLETE)
|
|
pxp_terminate_complete(pxp);
|
|
|
|
if (events & PXP_TERMINATION_REQUEST)
|
|
xe_pm_runtime_put(xe);
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_irq_handler - Handles PXP interrupts.
|
|
* @xe: the xe_device structure
|
|
* @iir: interrupt vector
|
|
*/
|
|
void xe_pxp_irq_handler(struct xe_device *xe, u16 iir)
|
|
{
|
|
struct xe_pxp *pxp = xe->pxp;
|
|
|
|
if (!xe_pxp_is_enabled(pxp)) {
|
|
drm_err(&xe->drm, "PXP irq 0x%x received with PXP disabled!\n", iir);
|
|
return;
|
|
}
|
|
|
|
lockdep_assert_held(&xe->irq.lock);
|
|
|
|
if (unlikely(!iir))
|
|
return;
|
|
|
|
if (iir & (KCR_PXP_STATE_TERMINATED_INTERRUPT |
|
|
KCR_APP_TERMINATED_PER_FW_REQ_INTERRUPT))
|
|
pxp->irq.events |= PXP_TERMINATION_REQUEST;
|
|
|
|
if (iir & KCR_PXP_STATE_RESET_COMPLETE_INTERRUPT)
|
|
pxp->irq.events |= PXP_TERMINATION_COMPLETE;
|
|
|
|
if (pxp->irq.events)
|
|
queue_work(pxp->irq.wq, &pxp->irq.work);
|
|
}
|
|
|
|
static int kcr_pxp_set_status(const struct xe_pxp *pxp, bool enable)
|
|
{
|
|
u32 val = enable ? _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES) :
|
|
_MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES);
|
|
unsigned int fw_ref;
|
|
|
|
fw_ref = xe_force_wake_get(gt_to_fw(pxp->gt), XE_FW_GT);
|
|
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT))
|
|
return -EIO;
|
|
|
|
xe_mmio_write32(&pxp->gt->mmio, KCR_INIT, val);
|
|
xe_force_wake_put(gt_to_fw(pxp->gt), fw_ref);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kcr_pxp_enable(const struct xe_pxp *pxp)
|
|
{
|
|
return kcr_pxp_set_status(pxp, true);
|
|
}
|
|
|
|
static int kcr_pxp_disable(const struct xe_pxp *pxp)
|
|
{
|
|
return kcr_pxp_set_status(pxp, false);
|
|
}
|
|
|
|
static void pxp_fini(void *arg)
|
|
{
|
|
struct xe_pxp *pxp = arg;
|
|
|
|
destroy_workqueue(pxp->irq.wq);
|
|
xe_pxp_destroy_execution_resources(pxp);
|
|
|
|
/* no need to explicitly disable KCR since we're going to do an FLR */
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_init - initialize PXP support
|
|
* @xe: the xe_device structure
|
|
*
|
|
* Initialize the HW state and allocate the objects required for PXP support.
|
|
* Note that some of the requirement for PXP support (GSC proxy init, HuC auth)
|
|
* are performed asynchronously as part of the GSC init. PXP can only be used
|
|
* after both this function and the async worker have completed.
|
|
*
|
|
* Returns 0 if PXP is not supported or if PXP initialization is successful,
|
|
* other errno value if there is an error during the init.
|
|
*/
|
|
int xe_pxp_init(struct xe_device *xe)
|
|
{
|
|
struct xe_gt *gt = xe->tiles[0].media_gt;
|
|
struct xe_pxp *pxp;
|
|
int err;
|
|
|
|
if (!xe_pxp_is_supported(xe))
|
|
return 0;
|
|
|
|
/* we only support PXP on single tile devices with a media GT */
|
|
if (xe->info.tile_count > 1 || !gt)
|
|
return 0;
|
|
|
|
/* The GSCCS is required for submissions to the GSC FW */
|
|
if (!(gt->info.engine_mask & BIT(XE_HW_ENGINE_GSCCS0)))
|
|
return 0;
|
|
|
|
/* PXP requires both GSC and HuC firmwares to be available */
|
|
if (!xe_uc_fw_is_loadable(>->uc.gsc.fw) ||
|
|
!xe_uc_fw_is_loadable(>->uc.huc.fw)) {
|
|
drm_info(&xe->drm, "skipping PXP init due to missing FW dependencies");
|
|
return 0;
|
|
}
|
|
|
|
pxp = drmm_kzalloc(&xe->drm, sizeof(struct xe_pxp), GFP_KERNEL);
|
|
if (!pxp) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&pxp->queues.list);
|
|
spin_lock_init(&pxp->queues.lock);
|
|
INIT_WORK(&pxp->irq.work, pxp_irq_work);
|
|
pxp->xe = xe;
|
|
pxp->gt = gt;
|
|
|
|
pxp->key_instance = 1;
|
|
pxp->last_suspend_key_instance = 1;
|
|
|
|
/*
|
|
* we'll use the completions to check if there is an action pending,
|
|
* so we start them as completed and we reinit it when an action is
|
|
* triggered.
|
|
*/
|
|
init_completion(&pxp->activation);
|
|
init_completion(&pxp->termination);
|
|
complete_all(&pxp->termination);
|
|
complete_all(&pxp->activation);
|
|
|
|
mutex_init(&pxp->mutex);
|
|
|
|
pxp->irq.wq = alloc_ordered_workqueue("pxp-wq", 0);
|
|
if (!pxp->irq.wq) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
err = kcr_pxp_enable(pxp);
|
|
if (err)
|
|
goto out_wq;
|
|
|
|
err = xe_pxp_allocate_execution_resources(pxp);
|
|
if (err)
|
|
goto out_kcr_disable;
|
|
|
|
xe->pxp = pxp;
|
|
|
|
return devm_add_action_or_reset(xe->drm.dev, pxp_fini, pxp);
|
|
|
|
out_kcr_disable:
|
|
kcr_pxp_disable(pxp);
|
|
out_wq:
|
|
destroy_workqueue(pxp->irq.wq);
|
|
out_free:
|
|
drmm_kfree(&xe->drm, pxp);
|
|
out:
|
|
drm_err(&xe->drm, "PXP initialization failed: %pe\n", ERR_PTR(err));
|
|
return err;
|
|
}
|
|
|
|
static int __pxp_start_arb_session(struct xe_pxp *pxp)
|
|
{
|
|
int ret;
|
|
unsigned int fw_ref;
|
|
|
|
fw_ref = xe_force_wake_get(gt_to_fw(pxp->gt), XE_FW_GT);
|
|
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FW_GT))
|
|
return -EIO;
|
|
|
|
if (pxp_session_is_in_play(pxp, ARB_SESSION)) {
|
|
ret = -EEXIST;
|
|
goto out_force_wake;
|
|
}
|
|
|
|
ret = xe_pxp_submit_session_init(&pxp->gsc_res, ARB_SESSION);
|
|
if (ret) {
|
|
drm_err(&pxp->xe->drm, "Failed to init PXP arb session: %pe\n", ERR_PTR(ret));
|
|
goto out_force_wake;
|
|
}
|
|
|
|
ret = pxp_wait_for_session_state(pxp, ARB_SESSION, true);
|
|
if (ret) {
|
|
drm_err(&pxp->xe->drm, "PXP ARB session failed to go in play%pe\n", ERR_PTR(ret));
|
|
goto out_force_wake;
|
|
}
|
|
|
|
drm_dbg(&pxp->xe->drm, "PXP ARB session is active\n");
|
|
|
|
out_force_wake:
|
|
xe_force_wake_put(gt_to_fw(pxp->gt), fw_ref);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_exec_queue_set_type - Mark a queue as using PXP
|
|
* @pxp: the xe->pxp pointer (it will be NULL if PXP is disabled)
|
|
* @q: the queue to mark as using PXP
|
|
* @type: the type of PXP session this queue will use
|
|
*
|
|
* Returns 0 if the selected PXP type is supported, -ENODEV otherwise.
|
|
*/
|
|
int xe_pxp_exec_queue_set_type(struct xe_pxp *pxp, struct xe_exec_queue *q, u8 type)
|
|
{
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return -ENODEV;
|
|
|
|
/* we only support HWDRM sessions right now */
|
|
xe_assert(pxp->xe, type == DRM_XE_PXP_TYPE_HWDRM);
|
|
|
|
q->pxp.type = type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __exec_queue_add(struct xe_pxp *pxp, struct xe_exec_queue *q)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* A queue can be added to the list only if the PXP is in active status,
|
|
* otherwise the termination might not handle it correctly.
|
|
*/
|
|
mutex_lock(&pxp->mutex);
|
|
|
|
if (pxp->status == XE_PXP_ACTIVE) {
|
|
spin_lock_irq(&pxp->queues.lock);
|
|
list_add_tail(&q->pxp.link, &pxp->queues.list);
|
|
spin_unlock_irq(&pxp->queues.lock);
|
|
} else if (pxp->status == XE_PXP_ERROR || pxp->status == XE_PXP_SUSPENDED) {
|
|
ret = -EIO;
|
|
} else {
|
|
ret = -EBUSY; /* try again later */
|
|
}
|
|
|
|
mutex_unlock(&pxp->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pxp_start(struct xe_pxp *pxp, u8 type)
|
|
{
|
|
int ret = 0;
|
|
bool restart = false;
|
|
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return -ENODEV;
|
|
|
|
/* we only support HWDRM sessions right now */
|
|
xe_assert(pxp->xe, type == DRM_XE_PXP_TYPE_HWDRM);
|
|
|
|
/* get_readiness_status() returns 0 for in-progress and 1 for done */
|
|
ret = xe_pxp_get_readiness_status(pxp);
|
|
if (ret <= 0)
|
|
return ret ?: -EBUSY;
|
|
|
|
ret = 0;
|
|
|
|
wait_for_idle:
|
|
/*
|
|
* if there is an action in progress, wait for it. We need to wait
|
|
* outside the lock because the completion is done from within the lock.
|
|
* Note that the two actions should never be pending at the same time.
|
|
*/
|
|
if (!wait_for_completion_timeout(&pxp->termination,
|
|
msecs_to_jiffies(PXP_TERMINATION_TIMEOUT_MS)))
|
|
return -ETIMEDOUT;
|
|
|
|
if (!wait_for_completion_timeout(&pxp->activation,
|
|
msecs_to_jiffies(PXP_ACTIVATION_TIMEOUT_MS)))
|
|
return -ETIMEDOUT;
|
|
|
|
mutex_lock(&pxp->mutex);
|
|
|
|
/* If PXP is not already active, turn it on */
|
|
switch (pxp->status) {
|
|
case XE_PXP_ERROR:
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
case XE_PXP_ACTIVE:
|
|
goto out_unlock;
|
|
case XE_PXP_READY_TO_START:
|
|
pxp->status = XE_PXP_START_IN_PROGRESS;
|
|
reinit_completion(&pxp->activation);
|
|
break;
|
|
case XE_PXP_START_IN_PROGRESS:
|
|
/* If a start is in progress then the completion must not be done */
|
|
XE_WARN_ON(completion_done(&pxp->activation));
|
|
restart = true;
|
|
goto out_unlock;
|
|
case XE_PXP_NEEDS_TERMINATION:
|
|
mark_termination_in_progress(pxp);
|
|
break;
|
|
case XE_PXP_TERMINATION_IN_PROGRESS:
|
|
case XE_PXP_NEEDS_ADDITIONAL_TERMINATION:
|
|
/* If a termination is in progress then the completion must not be done */
|
|
XE_WARN_ON(completion_done(&pxp->termination));
|
|
restart = true;
|
|
goto out_unlock;
|
|
case XE_PXP_SUSPENDED:
|
|
default:
|
|
drm_err(&pxp->xe->drm, "unexpected state during PXP start: %u\n", pxp->status);
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
|
|
mutex_unlock(&pxp->mutex);
|
|
|
|
if (!completion_done(&pxp->termination)) {
|
|
ret = pxp_terminate_hw(pxp);
|
|
if (ret) {
|
|
drm_err(&pxp->xe->drm, "PXP termination failed before start\n");
|
|
mutex_lock(&pxp->mutex);
|
|
pxp->status = XE_PXP_ERROR;
|
|
|
|
goto out_unlock;
|
|
}
|
|
|
|
goto wait_for_idle;
|
|
}
|
|
|
|
/* All the cases except for start should have exited earlier */
|
|
XE_WARN_ON(completion_done(&pxp->activation));
|
|
ret = __pxp_start_arb_session(pxp);
|
|
|
|
mutex_lock(&pxp->mutex);
|
|
|
|
complete_all(&pxp->activation);
|
|
|
|
/*
|
|
* Any other process should wait until the state goes away from
|
|
* XE_PXP_START_IN_PROGRESS, so if the state is not that something went
|
|
* wrong. Mark the status as needing termination and try again.
|
|
*/
|
|
if (pxp->status != XE_PXP_START_IN_PROGRESS) {
|
|
drm_err(&pxp->xe->drm, "unexpected state after PXP start: %u\n", pxp->status);
|
|
pxp->status = XE_PXP_NEEDS_TERMINATION;
|
|
restart = true;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* If everything went ok, update the status and add the queue to the list */
|
|
if (!ret)
|
|
pxp->status = XE_PXP_ACTIVE;
|
|
else
|
|
pxp->status = XE_PXP_ERROR;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&pxp->mutex);
|
|
|
|
if (restart)
|
|
goto wait_for_idle;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_exec_queue_add - add a queue to the PXP list
|
|
* @pxp: the xe->pxp pointer (it will be NULL if PXP is disabled)
|
|
* @q: the queue to add to the list
|
|
*
|
|
* If PXP is enabled and the prerequisites are done, start the PXP default
|
|
* session (if not already running) and add the queue to the PXP list.
|
|
*
|
|
* Returns 0 if the PXP session is running and the queue is in the list,
|
|
* -ENODEV if PXP is disabled, -EBUSY if the PXP prerequisites are not done,
|
|
* other errno value if something goes wrong during the session start.
|
|
*/
|
|
int xe_pxp_exec_queue_add(struct xe_pxp *pxp, struct xe_exec_queue *q)
|
|
{
|
|
int ret;
|
|
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Runtime suspend kills PXP, so we take a reference to prevent it from
|
|
* happening while we have active queues that use PXP
|
|
*/
|
|
xe_pm_runtime_get(pxp->xe);
|
|
|
|
start:
|
|
ret = pxp_start(pxp, q->pxp.type);
|
|
|
|
if (!ret) {
|
|
ret = __exec_queue_add(pxp, q);
|
|
if (ret == -EBUSY)
|
|
goto start;
|
|
}
|
|
|
|
/*
|
|
* in the successful case the PM ref is released from
|
|
* xe_pxp_exec_queue_remove
|
|
*/
|
|
if (ret)
|
|
xe_pm_runtime_put(pxp->xe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __pxp_exec_queue_remove(struct xe_pxp *pxp, struct xe_exec_queue *q, bool lock)
|
|
{
|
|
bool need_pm_put = false;
|
|
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return;
|
|
|
|
if (lock)
|
|
spin_lock_irq(&pxp->queues.lock);
|
|
|
|
if (!list_empty(&q->pxp.link)) {
|
|
list_del_init(&q->pxp.link);
|
|
need_pm_put = true;
|
|
}
|
|
|
|
q->pxp.type = DRM_XE_PXP_TYPE_NONE;
|
|
|
|
if (lock)
|
|
spin_unlock_irq(&pxp->queues.lock);
|
|
|
|
if (need_pm_put)
|
|
xe_pm_runtime_put(pxp->xe);
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_exec_queue_remove - remove a queue from the PXP list
|
|
* @pxp: the xe->pxp pointer (it will be NULL if PXP is disabled)
|
|
* @q: the queue to remove from the list
|
|
*
|
|
* If PXP is enabled and the exec_queue is in the list, the queue will be
|
|
* removed from the list and its PM reference will be released. It is safe to
|
|
* call this function multiple times for the same queue.
|
|
*/
|
|
void xe_pxp_exec_queue_remove(struct xe_pxp *pxp, struct xe_exec_queue *q)
|
|
{
|
|
__pxp_exec_queue_remove(pxp, q, true);
|
|
}
|
|
|
|
static void pxp_invalidate_queues(struct xe_pxp *pxp)
|
|
{
|
|
struct xe_exec_queue *tmp, *q;
|
|
LIST_HEAD(to_clean);
|
|
|
|
spin_lock_irq(&pxp->queues.lock);
|
|
|
|
list_for_each_entry_safe(q, tmp, &pxp->queues.list, pxp.link) {
|
|
q = xe_exec_queue_get_unless_zero(q);
|
|
if (!q)
|
|
continue;
|
|
|
|
list_move_tail(&q->pxp.link, &to_clean);
|
|
}
|
|
spin_unlock_irq(&pxp->queues.lock);
|
|
|
|
list_for_each_entry_safe(q, tmp, &to_clean, pxp.link) {
|
|
xe_exec_queue_kill(q);
|
|
|
|
/*
|
|
* We hold a ref to the queue so there is no risk of racing with
|
|
* the calls to exec_queue_remove coming from exec_queue_destroy.
|
|
*/
|
|
__pxp_exec_queue_remove(pxp, q, false);
|
|
|
|
xe_exec_queue_put(q);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_key_assign - mark a BO as using the current PXP key iteration
|
|
* @pxp: the xe->pxp pointer (it will be NULL if PXP is disabled)
|
|
* @bo: the BO to mark
|
|
*
|
|
* Returns: -ENODEV if PXP is disabled, 0 otherwise.
|
|
*/
|
|
int xe_pxp_key_assign(struct xe_pxp *pxp, struct xe_bo *bo)
|
|
{
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return -ENODEV;
|
|
|
|
xe_assert(pxp->xe, !bo->pxp_key_instance);
|
|
|
|
/*
|
|
* Note that the PXP key handling is inherently racey, because the key
|
|
* can theoretically change at any time (although it's unlikely to do
|
|
* so without triggers), even right after we copy it. Taking a lock
|
|
* wouldn't help because the value might still change as soon as we
|
|
* release the lock.
|
|
* Userspace needs to handle the fact that their BOs can go invalid at
|
|
* any point.
|
|
*/
|
|
bo->pxp_key_instance = pxp->key_instance;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_bo_key_check - check if the key used by a xe_bo is valid
|
|
* @pxp: the xe->pxp pointer (it will be NULL if PXP is disabled)
|
|
* @bo: the BO we want to check
|
|
*
|
|
* Checks whether a BO was encrypted with the current key or an obsolete one.
|
|
*
|
|
* Returns: 0 if the key is valid, -ENODEV if PXP is disabled, -EINVAL if the
|
|
* BO is not using PXP, -ENOEXEC if the key is not valid.
|
|
*/
|
|
int xe_pxp_bo_key_check(struct xe_pxp *pxp, struct xe_bo *bo)
|
|
{
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return -ENODEV;
|
|
|
|
if (!xe_bo_is_protected(bo))
|
|
return -EINVAL;
|
|
|
|
xe_assert(pxp->xe, bo->pxp_key_instance);
|
|
|
|
/*
|
|
* Note that the PXP key handling is inherently racey, because the key
|
|
* can theoretically change at any time (although it's unlikely to do
|
|
* so without triggers), even right after we check it. Taking a lock
|
|
* wouldn't help because the value might still change as soon as we
|
|
* release the lock.
|
|
* We mitigate the risk by checking the key at multiple points (on each
|
|
* submission involving the BO and right before flipping it on the
|
|
* display), but there is still a very small chance that we could
|
|
* operate on an invalid BO for a single submission or a single frame
|
|
* flip. This is a compromise made to protect the encrypted data (which
|
|
* is what the key termination is for).
|
|
*/
|
|
if (bo->pxp_key_instance != pxp->key_instance)
|
|
return -ENOEXEC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_obj_key_check - check if the key used by a drm_gem_obj is valid
|
|
* @obj: the drm_gem_obj we want to check
|
|
*
|
|
* Checks whether a drm_gem_obj was encrypted with the current key or an
|
|
* obsolete one.
|
|
*
|
|
* Returns: 0 if the key is valid, -ENODEV if PXP is disabled, -EINVAL if the
|
|
* obj is not using PXP, -ENOEXEC if the key is not valid.
|
|
*/
|
|
int xe_pxp_obj_key_check(struct drm_gem_object *obj)
|
|
{
|
|
struct xe_bo *bo = gem_to_xe_bo(obj);
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
struct xe_pxp *pxp = xe->pxp;
|
|
|
|
return xe_pxp_bo_key_check(pxp, bo);
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_pm_suspend - prepare PXP for HW suspend
|
|
* @pxp: the xe->pxp pointer (it will be NULL if PXP is disabled)
|
|
*
|
|
* Makes sure all PXP actions have completed and invalidates all PXP queues
|
|
* and objects before we go into a suspend state.
|
|
*
|
|
* Returns: 0 if successful, a negative errno value otherwise.
|
|
*/
|
|
int xe_pxp_pm_suspend(struct xe_pxp *pxp)
|
|
{
|
|
bool needs_queue_inval = false;
|
|
int ret = 0;
|
|
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return 0;
|
|
|
|
wait_for_activation:
|
|
if (!wait_for_completion_timeout(&pxp->activation,
|
|
msecs_to_jiffies(PXP_ACTIVATION_TIMEOUT_MS)))
|
|
ret = -ETIMEDOUT;
|
|
|
|
mutex_lock(&pxp->mutex);
|
|
|
|
switch (pxp->status) {
|
|
case XE_PXP_ERROR:
|
|
case XE_PXP_READY_TO_START:
|
|
case XE_PXP_SUSPENDED:
|
|
case XE_PXP_TERMINATION_IN_PROGRESS:
|
|
case XE_PXP_NEEDS_ADDITIONAL_TERMINATION:
|
|
/*
|
|
* If PXP is not running there is nothing to cleanup. If there
|
|
* is a termination pending then no need to issue another one.
|
|
*/
|
|
break;
|
|
case XE_PXP_START_IN_PROGRESS:
|
|
mutex_unlock(&pxp->mutex);
|
|
goto wait_for_activation;
|
|
case XE_PXP_NEEDS_TERMINATION:
|
|
/* If PXP was never used we can skip the cleanup */
|
|
if (pxp->key_instance == pxp->last_suspend_key_instance)
|
|
break;
|
|
fallthrough;
|
|
case XE_PXP_ACTIVE:
|
|
pxp->key_instance++;
|
|
needs_queue_inval = true;
|
|
break;
|
|
default:
|
|
drm_err(&pxp->xe->drm, "unexpected state during PXP suspend: %u",
|
|
pxp->status);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We set this even if we were in error state, hoping the suspend clears
|
|
* the error. Worse case we fail again and go in error state again.
|
|
*/
|
|
pxp->status = XE_PXP_SUSPENDED;
|
|
|
|
mutex_unlock(&pxp->mutex);
|
|
|
|
if (needs_queue_inval)
|
|
pxp_invalidate_queues(pxp);
|
|
|
|
/*
|
|
* if there is a termination in progress, wait for it.
|
|
* We need to wait outside the lock because the completion is done from
|
|
* within the lock
|
|
*/
|
|
if (!wait_for_completion_timeout(&pxp->termination,
|
|
msecs_to_jiffies(PXP_TERMINATION_TIMEOUT_MS)))
|
|
ret = -ETIMEDOUT;
|
|
|
|
pxp->last_suspend_key_instance = pxp->key_instance;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_pxp_pm_resume - re-init PXP after HW suspend
|
|
* @pxp: the xe->pxp pointer (it will be NULL if PXP is disabled)
|
|
*/
|
|
void xe_pxp_pm_resume(struct xe_pxp *pxp)
|
|
{
|
|
int err;
|
|
|
|
if (!xe_pxp_is_enabled(pxp))
|
|
return;
|
|
|
|
err = kcr_pxp_enable(pxp);
|
|
|
|
mutex_lock(&pxp->mutex);
|
|
|
|
xe_assert(pxp->xe, pxp->status == XE_PXP_SUSPENDED);
|
|
|
|
if (err)
|
|
pxp->status = XE_PXP_ERROR;
|
|
else
|
|
pxp->status = XE_PXP_NEEDS_TERMINATION;
|
|
|
|
mutex_unlock(&pxp->mutex);
|
|
}
|