mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-08-31 14:13:39 +00:00

Disable GuC communication on Xe micro controller hardware initialization error. Closes: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/4917 Reviewed-by: Jonathan Cavitt <jonathan.cavitt@intel.com> Reviewed-by: Matthew Brost <matthew.brost@intel.com> Signed-off-by: Zhanjun Dong <zhanjun.dong@intel.com> Signed-off-by: Matthew Brost <matthew.brost@intel.com> Link: https://lore.kernel.org/r/20250707231108.3217573-1-zhanjun.dong@intel.com
1675 lines
42 KiB
C
1675 lines
42 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2022 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_guc.h"
|
|
|
|
#include <drm/drm_managed.h>
|
|
|
|
#include <generated/xe_wa_oob.h>
|
|
|
|
#include "abi/guc_actions_abi.h"
|
|
#include "abi/guc_errors_abi.h"
|
|
#include "regs/xe_gt_regs.h"
|
|
#include "regs/xe_gtt_defs.h"
|
|
#include "regs/xe_guc_regs.h"
|
|
#include "regs/xe_irq_regs.h"
|
|
#include "xe_bo.h"
|
|
#include "xe_device.h"
|
|
#include "xe_force_wake.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_printk.h"
|
|
#include "xe_gt_sriov_vf.h"
|
|
#include "xe_gt_throttle.h"
|
|
#include "xe_guc_ads.h"
|
|
#include "xe_guc_buf.h"
|
|
#include "xe_guc_capture.h"
|
|
#include "xe_guc_ct.h"
|
|
#include "xe_guc_db_mgr.h"
|
|
#include "xe_guc_engine_activity.h"
|
|
#include "xe_guc_hwconfig.h"
|
|
#include "xe_guc_klv_helpers.h"
|
|
#include "xe_guc_log.h"
|
|
#include "xe_guc_pc.h"
|
|
#include "xe_guc_relay.h"
|
|
#include "xe_guc_submit.h"
|
|
#include "xe_memirq.h"
|
|
#include "xe_mmio.h"
|
|
#include "xe_platform_types.h"
|
|
#include "xe_sriov.h"
|
|
#include "xe_uc.h"
|
|
#include "xe_uc_fw.h"
|
|
#include "xe_wa.h"
|
|
#include "xe_wopcm.h"
|
|
|
|
static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
|
|
struct xe_bo *bo)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
u32 addr;
|
|
|
|
/*
|
|
* For most BOs, the address on the allocating tile is fine. However for
|
|
* some, e.g. G2G CTB, the address on a specific tile is required as it
|
|
* might be different for each tile. So, just always ask for the address
|
|
* on the target GuC.
|
|
*/
|
|
addr = __xe_bo_ggtt_addr(bo, gt_to_tile(guc_to_gt(guc))->id);
|
|
|
|
/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
|
|
xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
|
|
xe_assert(xe, addr < GUC_GGTT_TOP);
|
|
xe_assert(xe, xe_bo_size(bo) <= GUC_GGTT_TOP - addr);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static u32 guc_ctl_debug_flags(struct xe_guc *guc)
|
|
{
|
|
u32 level = xe_guc_log_get_level(&guc->log);
|
|
u32 flags = 0;
|
|
|
|
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
|
|
flags |= GUC_LOG_DISABLED;
|
|
else
|
|
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
|
|
GUC_LOG_VERBOSITY_SHIFT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_feature_flags(struct xe_guc *guc)
|
|
{
|
|
u32 flags = GUC_CTL_ENABLE_LITE_RESTORE;
|
|
|
|
if (!guc_to_xe(guc)->info.skip_guc_pc)
|
|
flags |= GUC_CTL_ENABLE_SLPC;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
|
|
{
|
|
u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
|
|
u32 flags;
|
|
|
|
#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
|
|
#define LOG_UNIT SZ_1M
|
|
#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
|
|
#else
|
|
#define LOG_UNIT SZ_4K
|
|
#define LOG_FLAG 0
|
|
#endif
|
|
|
|
#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
|
|
#define CAPTURE_UNIT SZ_1M
|
|
#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
|
|
#else
|
|
#define CAPTURE_UNIT SZ_4K
|
|
#define CAPTURE_FLAG 0
|
|
#endif
|
|
|
|
BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
|
|
BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
|
|
BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
|
|
BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
|
|
|
|
BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
|
|
(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
|
|
BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
|
|
(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
|
|
BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
|
|
(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
|
|
|
|
flags = GUC_LOG_VALID |
|
|
GUC_LOG_NOTIFY_ON_HALF_FULL |
|
|
CAPTURE_FLAG |
|
|
LOG_FLAG |
|
|
((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
|
|
((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
|
|
((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
|
|
GUC_LOG_CAPTURE_SHIFT) |
|
|
(offset << GUC_LOG_BUF_ADDR_SHIFT);
|
|
|
|
#undef LOG_UNIT
|
|
#undef LOG_FLAG
|
|
#undef CAPTURE_UNIT
|
|
#undef CAPTURE_FLAG
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_ads_flags(struct xe_guc *guc)
|
|
{
|
|
u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
|
|
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static bool needs_wa_dual_queue(struct xe_gt *gt)
|
|
{
|
|
/*
|
|
* The DUAL_QUEUE_WA tells the GuC to not allow concurrent submissions
|
|
* on RCS and CCSes with different address spaces, which on DG2 is
|
|
* required as a WA for an HW bug.
|
|
*/
|
|
if (XE_WA(gt, 22011391025))
|
|
return true;
|
|
|
|
/*
|
|
* On newer platforms, the HW has been updated to not allow parallel
|
|
* execution of different address spaces, so the RCS/CCS will stall the
|
|
* context switch if one of the other RCS/CCSes is busy with a different
|
|
* address space. While functionally correct, having a submission
|
|
* stalled on the HW limits the GuC ability to shuffle things around and
|
|
* can cause complications if the non-stalled submission runs for a long
|
|
* time, because the GuC doesn't know that the stalled submission isn't
|
|
* actually running and might declare it as hung. Therefore, we enable
|
|
* the DUAL_QUEUE_WA on all newer platforms on GTs that have CCS engines
|
|
* to move management back to the GuC.
|
|
*/
|
|
if (CCS_MASK(gt) && GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static u32 guc_ctl_wa_flags(struct xe_guc *guc)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
u32 flags = 0;
|
|
|
|
if (XE_WA(gt, 22012773006))
|
|
flags |= GUC_WA_POLLCS;
|
|
|
|
if (XE_WA(gt, 14014475959))
|
|
flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
|
|
|
|
if (needs_wa_dual_queue(gt))
|
|
flags |= GUC_WA_DUAL_QUEUE;
|
|
|
|
/*
|
|
* Wa_22011802037: FIXME - there's more to be done than simply setting
|
|
* this flag: make sure each CS is stopped when preparing for GT reset
|
|
* and wait for pending MI_FW.
|
|
*/
|
|
if (GRAPHICS_VERx100(xe) < 1270)
|
|
flags |= GUC_WA_PRE_PARSER;
|
|
|
|
if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
|
|
flags |= GUC_WA_CONTEXT_ISOLATION;
|
|
|
|
if (XE_WA(gt, 18020744125) &&
|
|
!xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
|
|
flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
|
|
|
|
if (XE_WA(gt, 1509372804))
|
|
flags |= GUC_WA_RENDER_RST_RC6_EXIT;
|
|
|
|
if (XE_WA(gt, 14018913170))
|
|
flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_devid(struct xe_guc *guc)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
|
|
return (((u32)xe->info.devid) << 16) | xe->info.revid;
|
|
}
|
|
|
|
static void guc_print_params(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
u32 *params = guc->params;
|
|
int i;
|
|
|
|
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
|
|
BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
|
|
}
|
|
|
|
static void guc_init_params(struct xe_guc *guc)
|
|
{
|
|
u32 *params = guc->params;
|
|
|
|
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
|
|
params[GUC_CTL_FEATURE] = 0;
|
|
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
|
|
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
|
|
params[GUC_CTL_WA] = 0;
|
|
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
|
|
|
|
guc_print_params(guc);
|
|
}
|
|
|
|
static void guc_init_params_post_hwconfig(struct xe_guc *guc)
|
|
{
|
|
u32 *params = guc->params;
|
|
|
|
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
|
|
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
|
|
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
|
|
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
|
|
params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
|
|
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
|
|
|
|
guc_print_params(guc);
|
|
}
|
|
|
|
/*
|
|
* Initialize the GuC parameter block before starting the firmware
|
|
* transfer. These parameters are read by the firmware on startup
|
|
* and cannot be changed thereafter.
|
|
*/
|
|
static void guc_write_params(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
int i;
|
|
|
|
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
|
|
|
|
xe_mmio_write32(>->mmio, SOFT_SCRATCH(0), 0);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
xe_mmio_write32(>->mmio, SOFT_SCRATCH(1 + i), guc->params[i]);
|
|
}
|
|
|
|
static int guc_action_register_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev,
|
|
u32 desc_addr, u32 buff_addr, u32 size)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 action[] = {
|
|
XE_GUC_ACTION_REGISTER_G2G,
|
|
FIELD_PREP(XE_G2G_REGISTER_SIZE, size / SZ_4K - 1) |
|
|
FIELD_PREP(XE_G2G_REGISTER_TYPE, type) |
|
|
FIELD_PREP(XE_G2G_REGISTER_TILE, dst_tile) |
|
|
FIELD_PREP(XE_G2G_REGISTER_DEVICE, dst_dev),
|
|
desc_addr,
|
|
buff_addr,
|
|
};
|
|
|
|
xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
|
|
xe_assert(xe, !(size % SZ_4K));
|
|
|
|
return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static int guc_action_deregister_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 action[] = {
|
|
XE_GUC_ACTION_DEREGISTER_G2G,
|
|
FIELD_PREP(XE_G2G_DEREGISTER_TYPE, type) |
|
|
FIELD_PREP(XE_G2G_DEREGISTER_TILE, dst_tile) |
|
|
FIELD_PREP(XE_G2G_DEREGISTER_DEVICE, dst_dev),
|
|
};
|
|
|
|
xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
|
|
|
|
return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
#define G2G_DEV(gt) (((gt)->info.type == XE_GT_TYPE_MAIN) ? 0 : 1)
|
|
|
|
#define G2G_BUFFER_SIZE (SZ_4K)
|
|
#define G2G_DESC_SIZE (64)
|
|
#define G2G_DESC_AREA_SIZE (SZ_4K)
|
|
|
|
/*
|
|
* Generate a unique id for each bi-directional CTB for each pair of
|
|
* near and far tiles/devices. The id can then be used as an index into
|
|
* a single allocation that is sub-divided into multiple CTBs.
|
|
*
|
|
* For example, with two devices per tile and two tiles, the table should
|
|
* look like:
|
|
* Far <tile>.<dev>
|
|
* 0.0 0.1 1.0 1.1
|
|
* N 0.0 --/-- 00/01 02/03 04/05
|
|
* e 0.1 01/00 --/-- 06/07 08/09
|
|
* a 1.0 03/02 07/06 --/-- 10/11
|
|
* r 1.1 05/04 09/08 11/10 --/--
|
|
*
|
|
* Where each entry is Rx/Tx channel id.
|
|
*
|
|
* So GuC #3 (tile 1, dev 1) talking to GuC #2 (tile 1, dev 0) would
|
|
* be reading from channel #11 and writing to channel #10. Whereas,
|
|
* GuC #2 talking to GuC #3 would be read on #10 and write to #11.
|
|
*/
|
|
static unsigned int g2g_slot(u32 near_tile, u32 near_dev, u32 far_tile, u32 far_dev,
|
|
u32 type, u32 max_inst, bool have_dev)
|
|
{
|
|
u32 near = near_tile, far = far_tile;
|
|
u32 idx = 0, x, y, direction;
|
|
int i;
|
|
|
|
if (have_dev) {
|
|
near = (near << 1) | near_dev;
|
|
far = (far << 1) | far_dev;
|
|
}
|
|
|
|
/* No need to send to one's self */
|
|
if (far == near)
|
|
return -1;
|
|
|
|
if (far > near) {
|
|
/* Top right table half */
|
|
x = far;
|
|
y = near;
|
|
|
|
/* T/R is 'forwards' direction */
|
|
direction = type;
|
|
} else {
|
|
/* Bottom left table half */
|
|
x = near;
|
|
y = far;
|
|
|
|
/* B/L is 'backwards' direction */
|
|
direction = (1 - type);
|
|
}
|
|
|
|
/* Count the rows prior to the target */
|
|
for (i = y; i > 0; i--)
|
|
idx += max_inst - i;
|
|
|
|
/* Count this row up to the target */
|
|
idx += (x - 1 - y);
|
|
|
|
/* Slots are in Rx/Tx pairs */
|
|
idx *= 2;
|
|
|
|
/* Pick Rx/Tx direction */
|
|
idx += direction;
|
|
|
|
return idx;
|
|
}
|
|
|
|
static int guc_g2g_register(struct xe_guc *near_guc, struct xe_gt *far_gt, u32 type, bool have_dev)
|
|
{
|
|
struct xe_gt *near_gt = guc_to_gt(near_guc);
|
|
struct xe_device *xe = gt_to_xe(near_gt);
|
|
struct xe_bo *g2g_bo;
|
|
u32 near_tile = gt_to_tile(near_gt)->id;
|
|
u32 near_dev = G2G_DEV(near_gt);
|
|
u32 far_tile = gt_to_tile(far_gt)->id;
|
|
u32 far_dev = G2G_DEV(far_gt);
|
|
u32 max = xe->info.gt_count;
|
|
u32 base, desc, buf;
|
|
int slot;
|
|
|
|
/* G2G is not allowed between different cards */
|
|
xe_assert(xe, xe == gt_to_xe(far_gt));
|
|
|
|
g2g_bo = near_guc->g2g.bo;
|
|
xe_assert(xe, g2g_bo);
|
|
|
|
slot = g2g_slot(near_tile, near_dev, far_tile, far_dev, type, max, have_dev);
|
|
xe_assert(xe, slot >= 0);
|
|
|
|
base = guc_bo_ggtt_addr(near_guc, g2g_bo);
|
|
desc = base + slot * G2G_DESC_SIZE;
|
|
buf = base + G2G_DESC_AREA_SIZE + slot * G2G_BUFFER_SIZE;
|
|
|
|
xe_assert(xe, (desc - base + G2G_DESC_SIZE) <= G2G_DESC_AREA_SIZE);
|
|
xe_assert(xe, (buf - base + G2G_BUFFER_SIZE) <= xe_bo_size(g2g_bo));
|
|
|
|
return guc_action_register_g2g_buffer(near_guc, type, far_tile, far_dev,
|
|
desc, buf, G2G_BUFFER_SIZE);
|
|
}
|
|
|
|
static void guc_g2g_deregister(struct xe_guc *guc, u32 far_tile, u32 far_dev, u32 type)
|
|
{
|
|
guc_action_deregister_g2g_buffer(guc, type, far_tile, far_dev);
|
|
}
|
|
|
|
static u32 guc_g2g_size(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
unsigned int count = xe->info.gt_count;
|
|
u32 num_channels = (count * (count - 1)) / 2;
|
|
|
|
xe_assert(xe, num_channels * XE_G2G_TYPE_LIMIT * G2G_DESC_SIZE <= G2G_DESC_AREA_SIZE);
|
|
|
|
return num_channels * XE_G2G_TYPE_LIMIT * G2G_BUFFER_SIZE + G2G_DESC_AREA_SIZE;
|
|
}
|
|
|
|
static bool xe_guc_g2g_wanted(struct xe_device *xe)
|
|
{
|
|
/* Can't do GuC to GuC communication if there is only one GuC */
|
|
if (xe->info.gt_count <= 1)
|
|
return false;
|
|
|
|
/* No current user */
|
|
return false;
|
|
}
|
|
|
|
static int guc_g2g_alloc(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
struct xe_bo *bo;
|
|
u32 g2g_size;
|
|
|
|
if (guc->g2g.bo)
|
|
return 0;
|
|
|
|
if (gt->info.id != 0) {
|
|
struct xe_gt *root_gt = xe_device_get_gt(xe, 0);
|
|
struct xe_guc *root_guc = &root_gt->uc.guc;
|
|
struct xe_bo *bo;
|
|
|
|
bo = xe_bo_get(root_guc->g2g.bo);
|
|
if (!bo)
|
|
return -ENODEV;
|
|
|
|
guc->g2g.bo = bo;
|
|
guc->g2g.owned = false;
|
|
return 0;
|
|
}
|
|
|
|
g2g_size = guc_g2g_size(guc);
|
|
bo = xe_managed_bo_create_pin_map(xe, tile, g2g_size,
|
|
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
|
|
XE_BO_FLAG_GGTT |
|
|
XE_BO_FLAG_GGTT_ALL |
|
|
XE_BO_FLAG_GGTT_INVALIDATE |
|
|
XE_BO_FLAG_PINNED_NORESTORE);
|
|
if (IS_ERR(bo))
|
|
return PTR_ERR(bo);
|
|
|
|
xe_map_memset(xe, &bo->vmap, 0, 0, g2g_size);
|
|
guc->g2g.bo = bo;
|
|
guc->g2g.owned = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_g2g_fini(struct xe_guc *guc)
|
|
{
|
|
if (!guc->g2g.bo)
|
|
return;
|
|
|
|
/* Unpinning the owned object is handled by generic shutdown */
|
|
if (!guc->g2g.owned)
|
|
xe_bo_put(guc->g2g.bo);
|
|
|
|
guc->g2g.bo = NULL;
|
|
}
|
|
|
|
static int guc_g2g_start(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *far_gt, *gt = guc_to_gt(guc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
unsigned int i, j;
|
|
int t, err;
|
|
bool have_dev;
|
|
|
|
if (!guc->g2g.bo) {
|
|
int ret;
|
|
|
|
ret = guc_g2g_alloc(guc);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* GuC interface will need extending if more GT device types are ever created. */
|
|
xe_gt_assert(gt, (gt->info.type == XE_GT_TYPE_MAIN) || (gt->info.type == XE_GT_TYPE_MEDIA));
|
|
|
|
/* Channel numbering depends on whether there are multiple GTs per tile */
|
|
have_dev = xe->info.gt_count > xe->info.tile_count;
|
|
|
|
for_each_gt(far_gt, xe, i) {
|
|
u32 far_tile, far_dev;
|
|
|
|
if (far_gt->info.id == gt->info.id)
|
|
continue;
|
|
|
|
far_tile = gt_to_tile(far_gt)->id;
|
|
far_dev = G2G_DEV(far_gt);
|
|
|
|
for (t = 0; t < XE_G2G_TYPE_LIMIT; t++) {
|
|
err = guc_g2g_register(guc, far_gt, t, have_dev);
|
|
if (err) {
|
|
while (--t >= 0)
|
|
guc_g2g_deregister(guc, far_tile, far_dev, t);
|
|
goto err_deregister;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_deregister:
|
|
for_each_gt(far_gt, xe, j) {
|
|
u32 tile, dev;
|
|
|
|
if (far_gt->info.id == gt->info.id)
|
|
continue;
|
|
|
|
if (j >= i)
|
|
break;
|
|
|
|
tile = gt_to_tile(far_gt)->id;
|
|
dev = G2G_DEV(far_gt);
|
|
|
|
for (t = 0; t < XE_G2G_TYPE_LIMIT; t++)
|
|
guc_g2g_deregister(guc, tile, dev, t);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __guc_opt_in_features_enable(struct xe_guc *guc, u64 addr, u32 num_dwords)
|
|
{
|
|
u32 action[] = {
|
|
XE_GUC_ACTION_OPT_IN_FEATURE_KLV,
|
|
lower_32_bits(addr),
|
|
upper_32_bits(addr),
|
|
num_dwords
|
|
};
|
|
|
|
return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
static bool supports_dynamic_ics(struct xe_guc *guc)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
|
|
/* Dynamic ICS is available for PVC and Xe2 and newer platforms. */
|
|
if (xe->info.platform != XE_PVC && GRAPHICS_VER(xe) < 20)
|
|
return false;
|
|
|
|
/*
|
|
* The feature is currently not compatible with multi-lrc, so the GuC
|
|
* does not support it at all on the media engines (which are the main
|
|
* users of mlrc). On the primary GT side, to avoid it being used in
|
|
* conjunction with mlrc, we only enable it if we are in single CCS
|
|
* mode.
|
|
*/
|
|
if (xe_gt_is_media_type(gt) || gt->ccs_mode > 1)
|
|
return false;
|
|
|
|
/*
|
|
* Dynamic ICS requires GuC v70.40.1, which maps to compatibility
|
|
* version v1.18.4.
|
|
*/
|
|
return GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 18, 4);
|
|
}
|
|
|
|
#define OPT_IN_MAX_DWORDS 16
|
|
int xe_guc_opt_in_features_enable(struct xe_guc *guc)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
CLASS(xe_guc_buf, buf)(&guc->buf, OPT_IN_MAX_DWORDS);
|
|
u32 count = 0;
|
|
u32 *klvs;
|
|
int ret;
|
|
|
|
if (!xe_guc_buf_is_valid(buf))
|
|
return -ENOBUFS;
|
|
|
|
klvs = xe_guc_buf_cpu_ptr(buf);
|
|
|
|
/*
|
|
* The extra CAT error type opt-in was added in GuC v70.17.0, which maps
|
|
* to compatibility version v1.7.0.
|
|
* Note that the GuC allows enabling this KLV even on platforms that do
|
|
* not support the extra type; in such case the returned type variable
|
|
* will be set to a known invalid value which we can check against.
|
|
*/
|
|
if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 7, 0))
|
|
klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_EXT_CAT_ERR_TYPE);
|
|
|
|
if (supports_dynamic_ics(guc))
|
|
klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_DYNAMIC_INHIBIT_CONTEXT_SWITCH);
|
|
|
|
if (count) {
|
|
xe_assert(xe, count <= OPT_IN_MAX_DWORDS);
|
|
|
|
ret = __guc_opt_in_features_enable(guc, xe_guc_buf_flush(buf), count);
|
|
if (ret < 0) {
|
|
xe_gt_err(guc_to_gt(guc),
|
|
"failed to enable GuC opt-in features: %pe\n",
|
|
ERR_PTR(ret));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void guc_fini_hw(void *arg)
|
|
{
|
|
struct xe_guc *guc = arg;
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
unsigned int fw_ref;
|
|
|
|
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
|
|
xe_uc_sanitize_reset(&guc_to_gt(guc)->uc);
|
|
xe_force_wake_put(gt_to_fw(gt), fw_ref);
|
|
|
|
guc_g2g_fini(guc);
|
|
}
|
|
|
|
/**
|
|
* xe_guc_comm_init_early - early initialization of GuC communication
|
|
* @guc: the &xe_guc to initialize
|
|
*
|
|
* Must be called prior to first MMIO communication with GuC firmware.
|
|
*/
|
|
void xe_guc_comm_init_early(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
|
|
if (xe_gt_is_media_type(gt))
|
|
guc->notify_reg = MED_GUC_HOST_INTERRUPT;
|
|
else
|
|
guc->notify_reg = GUC_HOST_INTERRUPT;
|
|
}
|
|
|
|
static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
|
|
{
|
|
struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
int ret;
|
|
|
|
if (!IS_DGFX(guc_to_xe(guc)))
|
|
return 0;
|
|
|
|
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vf_guc_init_noalloc(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
int err;
|
|
|
|
err = xe_gt_sriov_vf_bootstrap(gt);
|
|
if (err)
|
|
return err;
|
|
|
|
err = xe_gt_sriov_vf_query_config(gt);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xe_guc_init_noalloc(struct xe_guc *guc)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
int ret;
|
|
|
|
xe_guc_comm_init_early(guc);
|
|
|
|
ret = xe_guc_ct_init_noalloc(&guc->ct);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = xe_guc_relay_init(&guc->relay);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (IS_SRIOV_VF(xe)) {
|
|
ret = vf_guc_init_noalloc(guc);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
|
|
return ret;
|
|
}
|
|
|
|
int xe_guc_init(struct xe_guc *guc)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
int ret;
|
|
|
|
guc->fw.type = XE_UC_FW_TYPE_GUC;
|
|
ret = xe_uc_fw_init(&guc->fw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!xe_uc_fw_is_enabled(&guc->fw))
|
|
return 0;
|
|
|
|
if (IS_SRIOV_VF(xe)) {
|
|
ret = xe_guc_ct_init(&guc->ct);
|
|
if (ret)
|
|
goto out;
|
|
return 0;
|
|
}
|
|
|
|
ret = xe_guc_log_init(&guc->log);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = xe_guc_capture_init(guc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = xe_guc_ads_init(&guc->ads);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = xe_guc_ct_init(&guc->ct);
|
|
if (ret)
|
|
goto out;
|
|
|
|
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
|
|
|
|
ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
|
|
if (ret)
|
|
goto out;
|
|
|
|
guc_init_params(guc);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
|
|
return ret;
|
|
}
|
|
|
|
static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
|
|
{
|
|
int err;
|
|
|
|
err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
|
|
if (err)
|
|
return err;
|
|
|
|
err = xe_guc_buf_cache_init(&guc->buf);
|
|
if (err)
|
|
return err;
|
|
|
|
/* XXX xe_guc_db_mgr_init not needed for now */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
|
|
* @guc: The GuC object
|
|
*
|
|
* Return: 0 on success, negative error code on error.
|
|
*/
|
|
int xe_guc_init_post_hwconfig(struct xe_guc *guc)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_SRIOV_VF(guc_to_xe(guc)))
|
|
return vf_guc_init_post_hwconfig(guc);
|
|
|
|
ret = xe_guc_realloc_post_hwconfig(guc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
guc_init_params_post_hwconfig(guc);
|
|
|
|
ret = xe_guc_submit_init(guc, ~0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_guc_pc_init(&guc->pc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_guc_engine_activity_init(guc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_guc_buf_cache_init(&guc->buf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return xe_guc_ads_init_post_hwconfig(&guc->ads);
|
|
}
|
|
|
|
int xe_guc_post_load_init(struct xe_guc *guc)
|
|
{
|
|
int ret;
|
|
|
|
xe_guc_ads_populate_post_load(&guc->ads);
|
|
|
|
ret = xe_guc_opt_in_features_enable(guc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (xe_guc_g2g_wanted(guc_to_xe(guc))) {
|
|
ret = guc_g2g_start(guc);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
guc->submission_state.enabled = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xe_guc_reset(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_mmio *mmio = >->mmio;
|
|
u32 guc_status, gdrst;
|
|
int ret;
|
|
|
|
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
|
|
|
|
if (IS_SRIOV_VF(gt_to_xe(gt)))
|
|
return xe_gt_sriov_vf_bootstrap(gt);
|
|
|
|
xe_mmio_write32(mmio, GDRST, GRDOM_GUC);
|
|
|
|
ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
|
|
if (ret) {
|
|
xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
|
|
goto err_out;
|
|
}
|
|
|
|
guc_status = xe_mmio_read32(mmio, GUC_STATUS);
|
|
if (!(guc_status & GS_MIA_IN_RESET)) {
|
|
xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
|
|
guc_status);
|
|
ret = -EIO;
|
|
goto err_out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void guc_prepare_xfer(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_mmio *mmio = >->mmio;
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
|
|
GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
|
|
GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
|
|
GUC_ENABLE_MIA_CLOCK_GATING;
|
|
|
|
if (GRAPHICS_VERx100(xe) < 1250)
|
|
shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
|
|
GUC_ENABLE_MIA_CACHING;
|
|
|
|
if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
|
|
shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
|
|
|
|
/* Must program this register before loading the ucode with DMA */
|
|
xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags);
|
|
|
|
xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
|
|
|
|
/* Make sure GuC receives ARAT interrupts */
|
|
xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
|
|
}
|
|
|
|
/*
|
|
* Supporting MMIO & in memory RSA
|
|
*/
|
|
static int guc_xfer_rsa(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
u32 rsa[UOS_RSA_SCRATCH_COUNT];
|
|
size_t copied;
|
|
int i;
|
|
|
|
if (guc->fw.rsa_size > 256) {
|
|
u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
|
|
xe_uc_fw_rsa_offset(&guc->fw);
|
|
xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
|
|
return 0;
|
|
}
|
|
|
|
copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
|
|
if (copied < sizeof(rsa))
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
|
|
xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(i), rsa[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check a previously read GuC status register (GUC_STATUS) looking for
|
|
* known terminal states (either completion or failure) of either the
|
|
* microkernel status field or the boot ROM status field. Returns +1 for
|
|
* successful completion, -1 for failure and 0 for any intermediate state.
|
|
*/
|
|
static int guc_load_done(u32 status)
|
|
{
|
|
u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
|
|
u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
|
|
|
|
switch (uk_val) {
|
|
case XE_GUC_LOAD_STATUS_READY:
|
|
return 1;
|
|
|
|
case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
|
|
case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
|
|
case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
|
|
case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
|
|
case XE_GUC_LOAD_STATUS_DPC_ERROR:
|
|
case XE_GUC_LOAD_STATUS_EXCEPTION:
|
|
case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
|
|
case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
|
|
case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
|
|
return -1;
|
|
}
|
|
|
|
switch (br_val) {
|
|
case XE_BOOTROM_STATUS_NO_KEY_FOUND:
|
|
case XE_BOOTROM_STATUS_RSA_FAILED:
|
|
case XE_BOOTROM_STATUS_PAVPC_FAILED:
|
|
case XE_BOOTROM_STATUS_WOPCM_FAILED:
|
|
case XE_BOOTROM_STATUS_LOADLOC_FAILED:
|
|
case XE_BOOTROM_STATUS_JUMP_FAILED:
|
|
case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
|
|
case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
|
|
case XE_BOOTROM_STATUS_EXCEPTION:
|
|
case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
|
|
{
|
|
u32 freq;
|
|
int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
|
|
|
|
return ret ? ret : freq;
|
|
}
|
|
|
|
/*
|
|
* Wait for the GuC to start up.
|
|
*
|
|
* Measurements indicate this should take no more than 20ms (assuming the GT
|
|
* clock is at maximum frequency). However, thermal throttling and other issues
|
|
* can prevent the clock hitting max and thus making the load take significantly
|
|
* longer. Allow up to 200ms as a safety margin for real world worst case situations.
|
|
*
|
|
* However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
|
|
* lead to even longer times. E.g. if the GT is clamped to minimum frequency then
|
|
* the load times can be in the seconds range. So the timeout is increased for debug
|
|
* builds to ensure that problems can be correctly analysed. For release builds, the
|
|
* timeout is kept short so that users don't wait forever to find out that there is a
|
|
* problem. In either case, if the load took longer than is reasonable even with some
|
|
* 'sensible' throttling, then flag a warning because something is not right.
|
|
*
|
|
* Note that there is a limit on how long an individual usleep_range() can wait for,
|
|
* hence longer waits require wrapping a shorter wait in a loop.
|
|
*
|
|
* Note that the only reason an end user should hit the shorter timeout is in case of
|
|
* extreme thermal throttling. And a system that is that hot during boot is probably
|
|
* dead anyway!
|
|
*/
|
|
#if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
|
|
#define GUC_LOAD_RETRY_LIMIT 20
|
|
#else
|
|
#define GUC_LOAD_RETRY_LIMIT 3
|
|
#endif
|
|
#define GUC_LOAD_TIME_WARN_MS 200
|
|
|
|
static void guc_wait_ucode(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_mmio *mmio = >->mmio;
|
|
struct xe_guc_pc *guc_pc = >->uc.guc.pc;
|
|
ktime_t before, after, delta;
|
|
int load_done;
|
|
u32 status = 0;
|
|
int count = 0;
|
|
u64 delta_ms;
|
|
u32 before_freq;
|
|
|
|
before_freq = xe_guc_pc_get_act_freq(guc_pc);
|
|
before = ktime_get();
|
|
/*
|
|
* Note, can't use any kind of timing information from the call to xe_mmio_wait.
|
|
* It could return a thousand intermediate stages at random times. Instead, must
|
|
* manually track the total time taken and locally implement the timeout.
|
|
*/
|
|
do {
|
|
u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
|
|
int ret;
|
|
|
|
/*
|
|
* Wait for any change (intermediate or terminal) in the status register.
|
|
* Note, the return value is a don't care. The only failure code is timeout
|
|
* but the timeouts need to be accumulated over all the intermediate partial
|
|
* timeouts rather than allowing a huge timeout each time. So basically, need
|
|
* to treat a timeout no different to a value change.
|
|
*/
|
|
ret = xe_mmio_wait32_not(mmio, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
|
|
last_status, 1000 * 1000, &status, false);
|
|
if (ret < 0)
|
|
count++;
|
|
after = ktime_get();
|
|
delta = ktime_sub(after, before);
|
|
delta_ms = ktime_to_ms(delta);
|
|
|
|
load_done = guc_load_done(status);
|
|
if (load_done != 0)
|
|
break;
|
|
|
|
if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
|
|
break;
|
|
|
|
xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
|
|
count, xe_guc_pc_get_act_freq(guc_pc),
|
|
guc_pc_get_cur_freq(guc_pc), status,
|
|
REG_FIELD_GET(GS_BOOTROM_MASK, status),
|
|
REG_FIELD_GET(GS_UKERNEL_MASK, status));
|
|
} while (1);
|
|
|
|
if (load_done != 1) {
|
|
u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
|
|
u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
|
|
|
|
xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
|
|
status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
|
|
guc_pc_get_cur_freq(guc_pc), load_done);
|
|
xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
|
|
REG_FIELD_GET(GS_MIA_IN_RESET, status),
|
|
bootrom, ukernel,
|
|
REG_FIELD_GET(GS_MIA_MASK, status),
|
|
REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
|
|
|
|
switch (bootrom) {
|
|
case XE_BOOTROM_STATUS_NO_KEY_FOUND:
|
|
xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
|
|
xe_mmio_read32(mmio, GUC_HEADER_INFO));
|
|
break;
|
|
|
|
case XE_BOOTROM_STATUS_RSA_FAILED:
|
|
xe_gt_err(gt, "firmware signature verification failed\n");
|
|
break;
|
|
|
|
case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
|
|
xe_gt_err(gt, "firmware production part check failure\n");
|
|
break;
|
|
}
|
|
|
|
switch (ukernel) {
|
|
case XE_GUC_LOAD_STATUS_EXCEPTION:
|
|
xe_gt_err(gt, "firmware exception. EIP: %#x\n",
|
|
xe_mmio_read32(mmio, SOFT_SCRATCH(13)));
|
|
break;
|
|
|
|
case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
|
|
xe_gt_err(gt, "illegal register in save/restore workaround list\n");
|
|
break;
|
|
|
|
case XE_GUC_LOAD_STATUS_HWCONFIG_START:
|
|
xe_gt_err(gt, "still extracting hwconfig table.\n");
|
|
break;
|
|
}
|
|
|
|
xe_device_declare_wedged(gt_to_xe(gt));
|
|
} else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
|
|
xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
|
|
delta_ms, status, count);
|
|
xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
|
|
xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
|
|
before_freq, xe_gt_throttle_get_limit_reasons(gt));
|
|
} else {
|
|
xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
|
|
delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
|
|
before_freq, status, count);
|
|
}
|
|
}
|
|
|
|
static int __xe_guc_upload(struct xe_guc *guc)
|
|
{
|
|
int ret;
|
|
|
|
/* Raise GT freq to speed up HuC/GuC load */
|
|
xe_guc_pc_raise_unslice(&guc->pc);
|
|
|
|
guc_write_params(guc);
|
|
guc_prepare_xfer(guc);
|
|
|
|
/*
|
|
* Note that GuC needs the CSS header plus uKernel code to be copied
|
|
* by the DMA engine in one operation, whereas the RSA signature is
|
|
* loaded separately, either by copying it to the UOS_RSA_SCRATCH
|
|
* register (if key size <= 256) or through a ggtt-pinned vma (if key
|
|
* size > 256). The RSA size and therefore the way we provide it to the
|
|
* HW is fixed for each platform and hard-coded in the bootrom.
|
|
*/
|
|
ret = guc_xfer_rsa(guc);
|
|
if (ret)
|
|
goto out;
|
|
/*
|
|
* Current uCode expects the code to be loaded at 8k; locations below
|
|
* this are used for the stack.
|
|
*/
|
|
ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Wait for authentication */
|
|
guc_wait_ucode(guc);
|
|
|
|
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
|
|
return 0;
|
|
|
|
out:
|
|
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
|
|
return 0 /* FIXME: ret, don't want to stop load currently */;
|
|
}
|
|
|
|
static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
int ret;
|
|
|
|
ret = xe_guc_hwconfig_init(guc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_guc_enable_communication(guc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_gt_sriov_vf_connect(gt);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ret = xe_gt_sriov_vf_query_runtime(gt);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
xe_guc_sanitize(guc);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
|
|
* @guc: The GuC object
|
|
*
|
|
* This function uploads a minimal GuC that does not support submissions but
|
|
* in a state where the hwconfig table can be read. Next, it reads and parses
|
|
* the hwconfig table so it can be used for subsequent steps in the driver load.
|
|
* Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
|
|
*
|
|
* Return: 0 on success, negative error code on error.
|
|
*/
|
|
int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_SRIOV_VF(guc_to_xe(guc)))
|
|
return vf_guc_min_load_for_hwconfig(guc);
|
|
|
|
xe_guc_ads_populate_minimal(&guc->ads);
|
|
|
|
xe_guc_pc_init_early(&guc->pc);
|
|
|
|
ret = __xe_guc_upload(guc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_guc_hwconfig_init(guc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = xe_guc_enable_communication(guc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xe_guc_upload(struct xe_guc *guc)
|
|
{
|
|
xe_guc_ads_populate(&guc->ads);
|
|
|
|
return __xe_guc_upload(guc);
|
|
}
|
|
|
|
static void guc_handle_mmio_msg(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
u32 msg;
|
|
|
|
if (IS_SRIOV_VF(guc_to_xe(guc)))
|
|
return;
|
|
|
|
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
|
|
|
|
msg = xe_mmio_read32(>->mmio, SOFT_SCRATCH(15));
|
|
msg &= XE_GUC_RECV_MSG_EXCEPTION |
|
|
XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
|
|
xe_mmio_write32(>->mmio, SOFT_SCRATCH(15), 0);
|
|
|
|
if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
|
|
xe_gt_err(gt, "Received early GuC crash dump notification!\n");
|
|
|
|
if (msg & XE_GUC_RECV_MSG_EXCEPTION)
|
|
xe_gt_err(gt, "Received early GuC exception notification!\n");
|
|
}
|
|
|
|
static void guc_enable_irq(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
u32 events = xe_gt_is_media_type(gt) ?
|
|
REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) :
|
|
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
|
|
|
|
/* Primary GuC and media GuC share a single enable bit */
|
|
xe_mmio_write32(>->mmio, GUC_SG_INTR_ENABLE,
|
|
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
|
|
|
|
/*
|
|
* There are separate mask bits for primary and media GuCs, so use
|
|
* a RMW operation to avoid clobbering the other GuC's setting.
|
|
*/
|
|
xe_mmio_rmw32(>->mmio, GUC_SG_INTR_MASK, events, 0);
|
|
}
|
|
|
|
int xe_guc_enable_communication(struct xe_guc *guc)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
int err;
|
|
|
|
if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
|
|
err = xe_memirq_init_guc(&tile->memirq, guc);
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
guc_enable_irq(guc);
|
|
}
|
|
|
|
err = xe_guc_ct_enable(&guc->ct);
|
|
if (err)
|
|
return err;
|
|
|
|
guc_handle_mmio_msg(guc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xe_guc_suspend(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
u32 action[] = {
|
|
XE_GUC_ACTION_CLIENT_SOFT_RESET,
|
|
};
|
|
int ret;
|
|
|
|
ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
|
|
if (ret) {
|
|
xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
|
|
return ret;
|
|
}
|
|
|
|
xe_guc_sanitize(guc);
|
|
return 0;
|
|
}
|
|
|
|
void xe_guc_notify(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
const u32 default_notify_data = 0;
|
|
|
|
/*
|
|
* Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
|
|
* additional payload data to the GuC but this capability is not
|
|
* used by the firmware yet. Use default value in the meantime.
|
|
*/
|
|
xe_mmio_write32(>->mmio, guc->notify_reg, default_notify_data);
|
|
}
|
|
|
|
int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
|
|
{
|
|
u32 action[] = {
|
|
XE_GUC_ACTION_AUTHENTICATE_HUC,
|
|
rsa_addr
|
|
};
|
|
|
|
return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
|
|
u32 len, u32 *response_buf)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_mmio *mmio = >->mmio;
|
|
u32 header, reply;
|
|
struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
|
|
MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
|
|
const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
|
|
bool lost = false;
|
|
int ret;
|
|
int i;
|
|
|
|
BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
|
|
|
|
xe_assert(xe, len);
|
|
xe_assert(xe, len <= VF_SW_FLAG_COUNT);
|
|
xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
|
|
xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
|
|
GUC_HXG_ORIGIN_HOST);
|
|
xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
|
|
GUC_HXG_TYPE_REQUEST);
|
|
|
|
retry:
|
|
/* Not in critical data-path, just do if else for GT type */
|
|
if (xe_gt_is_media_type(gt)) {
|
|
for (i = 0; i < len; ++i)
|
|
xe_mmio_write32(mmio, MED_VF_SW_FLAG(i),
|
|
request[i]);
|
|
xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX));
|
|
} else {
|
|
for (i = 0; i < len; ++i)
|
|
xe_mmio_write32(mmio, VF_SW_FLAG(i),
|
|
request[i]);
|
|
xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX));
|
|
}
|
|
|
|
xe_guc_notify(guc);
|
|
|
|
ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN,
|
|
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
|
|
50000, &reply, false);
|
|
if (ret) {
|
|
/* scratch registers might be cleared during FLR, try once more */
|
|
if (!reply && !lost) {
|
|
xe_gt_dbg(gt, "GuC mmio request %#x: lost, trying again\n", request[0]);
|
|
lost = true;
|
|
goto retry;
|
|
}
|
|
timeout:
|
|
xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
|
|
request[0], reply);
|
|
return ret;
|
|
}
|
|
|
|
header = xe_mmio_read32(mmio, reply_reg);
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
|
|
GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
|
|
/*
|
|
* Once we got a BUSY reply we must wait again for the final
|
|
* response but this time we can't use ORIGIN mask anymore.
|
|
* To spot a right change in the reply, we take advantage that
|
|
* response SUCCESS and FAILURE differ only by the single bit
|
|
* and all other bits are set and can be used as a new mask.
|
|
*/
|
|
u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
|
|
u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
|
|
|
|
BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
|
|
BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
|
|
|
|
ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask,
|
|
1000000, &header, false);
|
|
|
|
if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
|
|
GUC_HXG_ORIGIN_GUC))
|
|
goto proto;
|
|
if (unlikely(ret)) {
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
|
|
GUC_HXG_TYPE_NO_RESPONSE_BUSY)
|
|
goto proto;
|
|
goto timeout;
|
|
}
|
|
}
|
|
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
|
|
GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
|
|
u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
|
|
|
|
xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
|
|
request[0], reason);
|
|
goto retry;
|
|
}
|
|
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
|
|
GUC_HXG_TYPE_RESPONSE_FAILURE) {
|
|
u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
|
|
u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
|
|
|
|
xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
|
|
request[0], error, hint);
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
|
|
GUC_HXG_TYPE_RESPONSE_SUCCESS) {
|
|
proto:
|
|
xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
|
|
request[0], header);
|
|
return -EPROTO;
|
|
}
|
|
|
|
/* Just copy entire possible message response */
|
|
if (response_buf) {
|
|
response_buf[0] = header;
|
|
|
|
for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
|
|
reply_reg.addr += sizeof(u32);
|
|
response_buf[i] = xe_mmio_read32(mmio, reply_reg);
|
|
}
|
|
}
|
|
|
|
/* Use data from the GuC response as our return value */
|
|
return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
|
|
}
|
|
ALLOW_ERROR_INJECTION(xe_guc_mmio_send_recv, ERRNO);
|
|
|
|
int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
|
|
{
|
|
return xe_guc_mmio_send_recv(guc, request, len, NULL);
|
|
}
|
|
|
|
static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
|
|
{
|
|
struct xe_device *xe = guc_to_xe(guc);
|
|
u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
|
|
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
|
|
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
|
|
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
|
|
GUC_ACTION_HOST2GUC_SELF_CFG),
|
|
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
|
|
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
|
|
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
|
|
lower_32_bits(val)),
|
|
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
|
|
upper_32_bits(val)),
|
|
};
|
|
int ret;
|
|
|
|
xe_assert(xe, len <= 2);
|
|
xe_assert(xe, len != 1 || !upper_32_bits(val));
|
|
|
|
/* Self config must go over MMIO */
|
|
ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
|
|
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
if (unlikely(ret > 1))
|
|
return -EPROTO;
|
|
if (unlikely(!ret))
|
|
return -ENOKEY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
|
|
{
|
|
return guc_self_cfg(guc, key, 1, val);
|
|
}
|
|
|
|
int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
|
|
{
|
|
return guc_self_cfg(guc, key, 2, val);
|
|
}
|
|
|
|
static void xe_guc_sw_0_irq_handler(struct xe_guc *guc)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
|
|
if (IS_SRIOV_VF(gt_to_xe(gt)))
|
|
xe_gt_sriov_vf_migrated_event_handler(gt);
|
|
}
|
|
|
|
void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
|
|
{
|
|
if (iir & GUC_INTR_GUC2HOST)
|
|
xe_guc_ct_irq_handler(&guc->ct);
|
|
|
|
if (iir & GUC_INTR_SW_INT_0)
|
|
xe_guc_sw_0_irq_handler(guc);
|
|
}
|
|
|
|
void xe_guc_sanitize(struct xe_guc *guc)
|
|
{
|
|
xe_uc_fw_sanitize(&guc->fw);
|
|
xe_guc_ct_disable(&guc->ct);
|
|
guc->submission_state.enabled = false;
|
|
}
|
|
|
|
int xe_guc_reset_prepare(struct xe_guc *guc)
|
|
{
|
|
return xe_guc_submit_reset_prepare(guc);
|
|
}
|
|
|
|
void xe_guc_reset_wait(struct xe_guc *guc)
|
|
{
|
|
xe_guc_submit_reset_wait(guc);
|
|
}
|
|
|
|
void xe_guc_stop_prepare(struct xe_guc *guc)
|
|
{
|
|
if (!IS_SRIOV_VF(guc_to_xe(guc))) {
|
|
int err;
|
|
|
|
err = xe_guc_pc_stop(&guc->pc);
|
|
xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
|
|
ERR_PTR(err));
|
|
}
|
|
}
|
|
|
|
void xe_guc_stop(struct xe_guc *guc)
|
|
{
|
|
xe_guc_ct_stop(&guc->ct);
|
|
|
|
xe_guc_submit_stop(guc);
|
|
}
|
|
|
|
int xe_guc_start(struct xe_guc *guc)
|
|
{
|
|
return xe_guc_submit_start(guc);
|
|
}
|
|
|
|
void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
unsigned int fw_ref;
|
|
u32 status;
|
|
int i;
|
|
|
|
xe_uc_fw_print(&guc->fw, p);
|
|
|
|
if (!IS_SRIOV_VF(gt_to_xe(gt))) {
|
|
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
|
|
if (!fw_ref)
|
|
return;
|
|
|
|
status = xe_mmio_read32(>->mmio, GUC_STATUS);
|
|
|
|
drm_printf(p, "\nGuC status 0x%08x:\n", status);
|
|
drm_printf(p, "\tBootrom status = 0x%x\n",
|
|
REG_FIELD_GET(GS_BOOTROM_MASK, status));
|
|
drm_printf(p, "\tuKernel status = 0x%x\n",
|
|
REG_FIELD_GET(GS_UKERNEL_MASK, status));
|
|
drm_printf(p, "\tMIA Core status = 0x%x\n",
|
|
REG_FIELD_GET(GS_MIA_MASK, status));
|
|
drm_printf(p, "\tLog level = %d\n",
|
|
xe_guc_log_get_level(&guc->log));
|
|
|
|
drm_puts(p, "\nScratch registers:\n");
|
|
for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
|
|
drm_printf(p, "\t%2d: \t0x%x\n",
|
|
i, xe_mmio_read32(>->mmio, SOFT_SCRATCH(i)));
|
|
}
|
|
|
|
xe_force_wake_put(gt_to_fw(gt), fw_ref);
|
|
}
|
|
|
|
drm_puts(p, "\n");
|
|
xe_guc_ct_print(&guc->ct, p, false);
|
|
|
|
drm_puts(p, "\n");
|
|
xe_guc_submit_print(guc, p);
|
|
}
|
|
|
|
/**
|
|
* xe_guc_declare_wedged() - Declare GuC wedged
|
|
* @guc: the GuC object
|
|
*
|
|
* Wedge the GuC which stops all submission, saves desired debug state, and
|
|
* cleans up anything which could timeout.
|
|
*/
|
|
void xe_guc_declare_wedged(struct xe_guc *guc)
|
|
{
|
|
xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
|
|
|
|
xe_guc_reset_prepare(guc);
|
|
xe_guc_ct_stop(&guc->ct);
|
|
xe_guc_submit_wedge(guc);
|
|
}
|