linux-loongson/drivers/gpu/drm/display/drm_hdmi_helper.c
Jani Nikula 1174bf15bd drm/connector: move HDR sink metadata to display info
Information parsed from the display EDID should be stored in display
info. Move HDR sink metadata there.

Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20250519112900.1383997-1-jani.nikula@intel.com
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2025-06-23 21:44:55 +03:00

428 lines
13 KiB
C

// SPDX-License-Identifier: MIT
#include <linux/export.h>
#include <linux/module.h>
#include <drm/display/drm_hdmi_helper.h>
#include <drm/drm_connector.h>
#include <drm/drm_edid.h>
#include <drm/drm_modes.h>
#include <drm/drm_print.h>
#include <drm/drm_property.h>
static inline bool is_eotf_supported(u8 output_eotf, u8 sink_eotf)
{
return sink_eotf & BIT(output_eotf);
}
/**
* drm_hdmi_infoframe_set_hdr_metadata() - fill an HDMI DRM infoframe with
* HDR metadata from userspace
* @frame: HDMI DRM infoframe
* @conn_state: Connector state containing HDR metadata
*
* Return: 0 on success or a negative error code on failure.
*/
int drm_hdmi_infoframe_set_hdr_metadata(struct hdmi_drm_infoframe *frame,
const struct drm_connector_state *conn_state)
{
struct drm_connector *connector;
struct hdr_output_metadata *hdr_metadata;
int err;
if (!frame || !conn_state)
return -EINVAL;
connector = conn_state->connector;
if (!conn_state->hdr_output_metadata)
return -EINVAL;
hdr_metadata = conn_state->hdr_output_metadata->data;
if (!hdr_metadata || !connector)
return -EINVAL;
/* Sink EOTF is Bit map while infoframe is absolute values */
if (!is_eotf_supported(hdr_metadata->hdmi_metadata_type1.eotf,
connector->display_info.hdr_sink_metadata.hdmi_type1.eotf))
DRM_DEBUG_KMS("Unknown EOTF %d\n", hdr_metadata->hdmi_metadata_type1.eotf);
err = hdmi_drm_infoframe_init(frame);
if (err < 0)
return err;
frame->eotf = hdr_metadata->hdmi_metadata_type1.eotf;
frame->metadata_type = hdr_metadata->hdmi_metadata_type1.metadata_type;
BUILD_BUG_ON(sizeof(frame->display_primaries) !=
sizeof(hdr_metadata->hdmi_metadata_type1.display_primaries));
BUILD_BUG_ON(sizeof(frame->white_point) !=
sizeof(hdr_metadata->hdmi_metadata_type1.white_point));
memcpy(&frame->display_primaries,
&hdr_metadata->hdmi_metadata_type1.display_primaries,
sizeof(frame->display_primaries));
memcpy(&frame->white_point,
&hdr_metadata->hdmi_metadata_type1.white_point,
sizeof(frame->white_point));
frame->max_display_mastering_luminance =
hdr_metadata->hdmi_metadata_type1.max_display_mastering_luminance;
frame->min_display_mastering_luminance =
hdr_metadata->hdmi_metadata_type1.min_display_mastering_luminance;
frame->max_fall = hdr_metadata->hdmi_metadata_type1.max_fall;
frame->max_cll = hdr_metadata->hdmi_metadata_type1.max_cll;
return 0;
}
EXPORT_SYMBOL(drm_hdmi_infoframe_set_hdr_metadata);
/* HDMI Colorspace Spec Definitions */
#define FULL_COLORIMETRY_MASK 0x1FF
#define NORMAL_COLORIMETRY_MASK 0x3
#define EXTENDED_COLORIMETRY_MASK 0x7
#define EXTENDED_ACE_COLORIMETRY_MASK 0xF
#define C(x) ((x) << 0)
#define EC(x) ((x) << 2)
#define ACE(x) ((x) << 5)
#define HDMI_COLORIMETRY_NO_DATA 0x0
#define HDMI_COLORIMETRY_SMPTE_170M_YCC (C(1) | EC(0) | ACE(0))
#define HDMI_COLORIMETRY_BT709_YCC (C(2) | EC(0) | ACE(0))
#define HDMI_COLORIMETRY_XVYCC_601 (C(3) | EC(0) | ACE(0))
#define HDMI_COLORIMETRY_XVYCC_709 (C(3) | EC(1) | ACE(0))
#define HDMI_COLORIMETRY_SYCC_601 (C(3) | EC(2) | ACE(0))
#define HDMI_COLORIMETRY_OPYCC_601 (C(3) | EC(3) | ACE(0))
#define HDMI_COLORIMETRY_OPRGB (C(3) | EC(4) | ACE(0))
#define HDMI_COLORIMETRY_BT2020_CYCC (C(3) | EC(5) | ACE(0))
#define HDMI_COLORIMETRY_BT2020_RGB (C(3) | EC(6) | ACE(0))
#define HDMI_COLORIMETRY_BT2020_YCC (C(3) | EC(6) | ACE(0))
#define HDMI_COLORIMETRY_DCI_P3_RGB_D65 (C(3) | EC(7) | ACE(0))
#define HDMI_COLORIMETRY_DCI_P3_RGB_THEATER (C(3) | EC(7) | ACE(1))
static const u32 hdmi_colorimetry_val[] = {
[DRM_MODE_COLORIMETRY_NO_DATA] = HDMI_COLORIMETRY_NO_DATA,
[DRM_MODE_COLORIMETRY_SMPTE_170M_YCC] = HDMI_COLORIMETRY_SMPTE_170M_YCC,
[DRM_MODE_COLORIMETRY_BT709_YCC] = HDMI_COLORIMETRY_BT709_YCC,
[DRM_MODE_COLORIMETRY_XVYCC_601] = HDMI_COLORIMETRY_XVYCC_601,
[DRM_MODE_COLORIMETRY_XVYCC_709] = HDMI_COLORIMETRY_XVYCC_709,
[DRM_MODE_COLORIMETRY_SYCC_601] = HDMI_COLORIMETRY_SYCC_601,
[DRM_MODE_COLORIMETRY_OPYCC_601] = HDMI_COLORIMETRY_OPYCC_601,
[DRM_MODE_COLORIMETRY_OPRGB] = HDMI_COLORIMETRY_OPRGB,
[DRM_MODE_COLORIMETRY_BT2020_CYCC] = HDMI_COLORIMETRY_BT2020_CYCC,
[DRM_MODE_COLORIMETRY_BT2020_RGB] = HDMI_COLORIMETRY_BT2020_RGB,
[DRM_MODE_COLORIMETRY_BT2020_YCC] = HDMI_COLORIMETRY_BT2020_YCC,
};
#undef C
#undef EC
#undef ACE
/**
* drm_hdmi_avi_infoframe_colorimetry() - fill the HDMI AVI infoframe
* colorimetry information
* @frame: HDMI AVI infoframe
* @conn_state: connector state
*/
void drm_hdmi_avi_infoframe_colorimetry(struct hdmi_avi_infoframe *frame,
const struct drm_connector_state *conn_state)
{
u32 colorimetry_val;
u32 colorimetry_index = conn_state->colorspace & FULL_COLORIMETRY_MASK;
if (colorimetry_index >= ARRAY_SIZE(hdmi_colorimetry_val))
colorimetry_val = HDMI_COLORIMETRY_NO_DATA;
else
colorimetry_val = hdmi_colorimetry_val[colorimetry_index];
frame->colorimetry = colorimetry_val & NORMAL_COLORIMETRY_MASK;
/*
* ToDo: Extend it for ACE formats as well. Modify the infoframe
* structure and extend it in drivers/video/hdmi
*/
frame->extended_colorimetry = (colorimetry_val >> 2) &
EXTENDED_COLORIMETRY_MASK;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_colorimetry);
/**
* drm_hdmi_avi_infoframe_bars() - fill the HDMI AVI infoframe
* bar information
* @frame: HDMI AVI infoframe
* @conn_state: connector state
*/
void drm_hdmi_avi_infoframe_bars(struct hdmi_avi_infoframe *frame,
const struct drm_connector_state *conn_state)
{
frame->right_bar = conn_state->tv.margins.right;
frame->left_bar = conn_state->tv.margins.left;
frame->top_bar = conn_state->tv.margins.top;
frame->bottom_bar = conn_state->tv.margins.bottom;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_bars);
/**
* drm_hdmi_avi_infoframe_content_type() - fill the HDMI AVI infoframe
* content type information, based
* on correspondent DRM property.
* @frame: HDMI AVI infoframe
* @conn_state: DRM display connector state
*
*/
void drm_hdmi_avi_infoframe_content_type(struct hdmi_avi_infoframe *frame,
const struct drm_connector_state *conn_state)
{
switch (conn_state->content_type) {
case DRM_MODE_CONTENT_TYPE_GRAPHICS:
frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
break;
case DRM_MODE_CONTENT_TYPE_CINEMA:
frame->content_type = HDMI_CONTENT_TYPE_CINEMA;
break;
case DRM_MODE_CONTENT_TYPE_GAME:
frame->content_type = HDMI_CONTENT_TYPE_GAME;
break;
case DRM_MODE_CONTENT_TYPE_PHOTO:
frame->content_type = HDMI_CONTENT_TYPE_PHOTO;
break;
default:
/* Graphics is the default(0) */
frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
}
frame->itc = conn_state->content_type != DRM_MODE_CONTENT_TYPE_NO_DATA;
}
EXPORT_SYMBOL(drm_hdmi_avi_infoframe_content_type);
/**
* drm_hdmi_compute_mode_clock() - Computes the TMDS Character Rate
* @mode: Display mode to compute the clock for
* @bpc: Bits per character
* @fmt: Output Pixel Format used
*
* Returns the TMDS Character Rate for a given mode, bpc count and output format.
*
* RETURNS:
* The TMDS Character Rate, in Hertz, or 0 on error.
*/
unsigned long long
drm_hdmi_compute_mode_clock(const struct drm_display_mode *mode,
unsigned int bpc, enum hdmi_colorspace fmt)
{
unsigned long long clock = mode->clock * 1000ULL;
unsigned int vic = drm_match_cea_mode(mode);
/*
* CTA-861-G Spec, section 5.4 - Color Coding and Quantization
* mandates that VIC 1 always uses 8 bpc.
*/
if (vic == 1 && bpc != 8)
return 0;
if (fmt == HDMI_COLORSPACE_YUV422) {
/*
* HDMI 1.0 Spec, section 6.5 - Pixel Encoding states that
* YUV422 sends 24 bits over three channels, with Cb and Cr
* components being sent on odd and even pixels, respectively.
*
* If fewer than 12 bpc are sent, data are left justified.
*/
if (bpc > 12)
return 0;
/*
* HDMI 1.0 Spec, section 6.5 - Pixel Encoding
* specifies that YUV422 sends two 12-bits components over
* three TMDS channels per pixel clock, which is equivalent to
* three 8-bits components over three channels used by RGB as
* far as the clock rate goes.
*/
bpc = 8;
}
/*
* HDMI 2.0 Spec, Section 7.1 - YCbCr 4:2:0 Pixel Encoding
* specifies that YUV420 encoding is carried at a TMDS Character Rate
* equal to half the pixel clock rate.
*/
if (fmt == HDMI_COLORSPACE_YUV420)
clock = clock / 2;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
clock = clock * 2;
return DIV_ROUND_CLOSEST_ULL(clock * bpc, 8);
}
EXPORT_SYMBOL(drm_hdmi_compute_mode_clock);
struct drm_hdmi_acr_n_cts_entry {
unsigned int n;
unsigned int cts;
};
struct drm_hdmi_acr_data {
unsigned long tmds_clock_khz;
struct drm_hdmi_acr_n_cts_entry n_cts_32k,
n_cts_44k1,
n_cts_48k;
};
static const struct drm_hdmi_acr_data hdmi_acr_n_cts[] = {
{
/* "Other" entry */
.n_cts_32k = { .n = 4096, },
.n_cts_44k1 = { .n = 6272, },
.n_cts_48k = { .n = 6144, },
}, {
.tmds_clock_khz = 25175,
.n_cts_32k = { .n = 4576, .cts = 28125, },
.n_cts_44k1 = { .n = 7007, .cts = 31250, },
.n_cts_48k = { .n = 6864, .cts = 28125, },
}, {
.tmds_clock_khz = 25200,
.n_cts_32k = { .n = 4096, .cts = 25200, },
.n_cts_44k1 = { .n = 6272, .cts = 28000, },
.n_cts_48k = { .n = 6144, .cts = 25200, },
}, {
.tmds_clock_khz = 27000,
.n_cts_32k = { .n = 4096, .cts = 27000, },
.n_cts_44k1 = { .n = 6272, .cts = 30000, },
.n_cts_48k = { .n = 6144, .cts = 27000, },
}, {
.tmds_clock_khz = 27027,
.n_cts_32k = { .n = 4096, .cts = 27027, },
.n_cts_44k1 = { .n = 6272, .cts = 30030, },
.n_cts_48k = { .n = 6144, .cts = 27027, },
}, {
.tmds_clock_khz = 54000,
.n_cts_32k = { .n = 4096, .cts = 54000, },
.n_cts_44k1 = { .n = 6272, .cts = 60000, },
.n_cts_48k = { .n = 6144, .cts = 54000, },
}, {
.tmds_clock_khz = 54054,
.n_cts_32k = { .n = 4096, .cts = 54054, },
.n_cts_44k1 = { .n = 6272, .cts = 60060, },
.n_cts_48k = { .n = 6144, .cts = 54054, },
}, {
.tmds_clock_khz = 74176,
.n_cts_32k = { .n = 11648, .cts = 210937, }, /* and 210938 */
.n_cts_44k1 = { .n = 17836, .cts = 234375, },
.n_cts_48k = { .n = 11648, .cts = 140625, },
}, {
.tmds_clock_khz = 74250,
.n_cts_32k = { .n = 4096, .cts = 74250, },
.n_cts_44k1 = { .n = 6272, .cts = 82500, },
.n_cts_48k = { .n = 6144, .cts = 74250, },
}, {
.tmds_clock_khz = 148352,
.n_cts_32k = { .n = 11648, .cts = 421875, },
.n_cts_44k1 = { .n = 8918, .cts = 234375, },
.n_cts_48k = { .n = 5824, .cts = 140625, },
}, {
.tmds_clock_khz = 148500,
.n_cts_32k = { .n = 4096, .cts = 148500, },
.n_cts_44k1 = { .n = 6272, .cts = 165000, },
.n_cts_48k = { .n = 6144, .cts = 148500, },
}, {
.tmds_clock_khz = 296703,
.n_cts_32k = { .n = 5824, .cts = 421875, },
.n_cts_44k1 = { .n = 4459, .cts = 234375, },
.n_cts_48k = { .n = 5824, .cts = 281250, },
}, {
.tmds_clock_khz = 297000,
.n_cts_32k = { .n = 3072, .cts = 222750, },
.n_cts_44k1 = { .n = 4704, .cts = 247500, },
.n_cts_48k = { .n = 5120, .cts = 247500, },
}, {
.tmds_clock_khz = 593407,
.n_cts_32k = { .n = 5824, .cts = 843750, },
.n_cts_44k1 = { .n = 8918, .cts = 937500, },
.n_cts_48k = { .n = 5824, .cts = 562500, },
}, {
.tmds_clock_khz = 594000,
.n_cts_32k = { .n = 3072, .cts = 445500, },
.n_cts_44k1 = { .n = 9408, .cts = 990000, },
.n_cts_48k = { .n = 6144, .cts = 594000, },
},
};
static int drm_hdmi_acr_find_tmds_entry(unsigned long tmds_clock_khz)
{
int i;
/* skip the "other" entry */
for (i = 1; i < ARRAY_SIZE(hdmi_acr_n_cts); i++) {
if (hdmi_acr_n_cts[i].tmds_clock_khz == tmds_clock_khz)
return i;
}
return 0;
}
/**
* drm_hdmi_acr_get_n_cts() - get N and CTS values for Audio Clock Regeneration
*
* @tmds_char_rate: TMDS clock (char rate) as used by the HDMI connector
* @sample_rate: audio sample rate
* @out_n: a pointer to write the N value
* @out_cts: a pointer to write the CTS value
*
* Get the N and CTS values (either by calculating them or by returning data
* from the tables. This follows the HDMI 1.4b Section 7.2 "Audio Sample Clock
* Capture and Regeneration".
*
* Note, @sample_rate corresponds to the Fs value, see sections 7.2.4 - 7.2.6
* on how to select Fs for non-L-PCM formats.
*/
void
drm_hdmi_acr_get_n_cts(unsigned long long tmds_char_rate,
unsigned int sample_rate,
unsigned int *out_n,
unsigned int *out_cts)
{
/* be a bit more tolerant, especially for the 1.001 entries */
unsigned long tmds_clock_khz = DIV_ROUND_CLOSEST_ULL(tmds_char_rate, 1000);
const struct drm_hdmi_acr_n_cts_entry *entry;
unsigned int n, cts, mult;
int tmds_idx;
tmds_idx = drm_hdmi_acr_find_tmds_entry(tmds_clock_khz);
/*
* Don't change the order, 192 kHz is divisible by 48k and 32k, but it
* should use 48k entry.
*/
if (sample_rate % 48000 == 0) {
entry = &hdmi_acr_n_cts[tmds_idx].n_cts_48k;
mult = sample_rate / 48000;
} else if (sample_rate % 44100 == 0) {
entry = &hdmi_acr_n_cts[tmds_idx].n_cts_44k1;
mult = sample_rate / 44100;
} else if (sample_rate % 32000 == 0) {
entry = &hdmi_acr_n_cts[tmds_idx].n_cts_32k;
mult = sample_rate / 32000;
} else {
entry = NULL;
}
if (entry) {
n = entry->n * mult;
cts = entry->cts;
} else {
/* Recommended optimal value, HDMI 1.4b, Section 7.2.1 */
n = 128 * sample_rate / 1000;
cts = 0;
}
if (!cts)
cts = DIV_ROUND_CLOSEST_ULL(tmds_char_rate * n,
128 * sample_rate);
*out_n = n;
*out_cts = cts;
}
EXPORT_SYMBOL(drm_hdmi_acr_get_n_cts);