linux-loongson/drivers/gpu/drm/amd/amdkfd/kfd_device.c
Emily Deng 54f7a24e14 drm/amdkfd: Move the process suspend and resume out of full access
For the suspend and resume process, exclusive access is not required.
Therefore, it can be moved out of the full access section to reduce the
duration of exclusive access.

v3:
Move suspend processes before hardware fini.
Remove twice call for bare metal.

v4:
Refine code

Signed-off-by: Emily Deng <Emily.Deng@amd.com>
Acked-by: Lijo Lazar <lijo.lazar@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2025-06-18 12:19:19 -04:00

1676 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/bsearch.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_pm4_headers_vi.h"
#include "kfd_pm4_headers_aldebaran.h"
#include "cwsr_trap_handler.h"
#include "amdgpu_amdkfd.h"
#include "kfd_smi_events.h"
#include "kfd_svm.h"
#include "kfd_migrate.h"
#include "amdgpu.h"
#include "amdgpu_xcp.h"
#define MQD_SIZE_ALIGNED 768
/*
* kfd_locked is used to lock the kfd driver during suspend or reset
* once locked, kfd driver will stop any further GPU execution.
* create process (open) will return -EAGAIN.
*/
static int kfd_locked;
#ifdef CONFIG_DRM_AMDGPU_CIK
extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
#endif
extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
extern const struct kfd2kgd_calls arcturus_kfd2kgd;
extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size);
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
static int kfd_resume(struct kfd_node *kfd);
static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
{
uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
switch (sdma_version) {
case IP_VERSION(4, 0, 0):/* VEGA10 */
case IP_VERSION(4, 0, 1):/* VEGA12 */
case IP_VERSION(4, 1, 0):/* RAVEN */
case IP_VERSION(4, 1, 1):/* RAVEN */
case IP_VERSION(4, 1, 2):/* RENOIR */
case IP_VERSION(5, 2, 1):/* VANGOGH */
case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
kfd->device_info.num_sdma_queues_per_engine = 2;
break;
case IP_VERSION(4, 2, 0):/* VEGA20 */
case IP_VERSION(4, 2, 2):/* ARCTURUS */
case IP_VERSION(4, 4, 0):/* ALDEBARAN */
case IP_VERSION(4, 4, 2):
case IP_VERSION(4, 4, 5):
case IP_VERSION(4, 4, 4):
case IP_VERSION(5, 0, 0):/* NAVI10 */
case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
case IP_VERSION(5, 0, 2):/* NAVI14 */
case IP_VERSION(5, 0, 5):/* NAVI12 */
case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
case IP_VERSION(6, 0, 0):
case IP_VERSION(6, 0, 1):
case IP_VERSION(6, 0, 2):
case IP_VERSION(6, 0, 3):
case IP_VERSION(6, 1, 0):
case IP_VERSION(6, 1, 1):
case IP_VERSION(6, 1, 2):
case IP_VERSION(6, 1, 3):
case IP_VERSION(7, 0, 0):
case IP_VERSION(7, 0, 1):
kfd->device_info.num_sdma_queues_per_engine = 8;
break;
default:
dev_warn(kfd_device,
"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
sdma_version);
kfd->device_info.num_sdma_queues_per_engine = 8;
}
bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
switch (sdma_version) {
case IP_VERSION(6, 0, 0):
case IP_VERSION(6, 0, 1):
case IP_VERSION(6, 0, 2):
case IP_VERSION(6, 0, 3):
case IP_VERSION(6, 1, 0):
case IP_VERSION(6, 1, 1):
case IP_VERSION(6, 1, 2):
case IP_VERSION(6, 1, 3):
case IP_VERSION(7, 0, 0):
case IP_VERSION(7, 0, 1):
/* Reserve 1 for paging and 1 for gfx */
kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
kfd->adev->sdma.num_instances *
kfd->device_info.num_reserved_sdma_queues_per_engine);
break;
default:
break;
}
}
static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
{
uint32_t gc_version = KFD_GC_VERSION(kfd);
switch (gc_version) {
case IP_VERSION(9, 0, 1): /* VEGA10 */
case IP_VERSION(9, 1, 0): /* RAVEN */
case IP_VERSION(9, 2, 1): /* VEGA12 */
case IP_VERSION(9, 2, 2): /* RAVEN */
case IP_VERSION(9, 3, 0): /* RENOIR */
case IP_VERSION(9, 4, 0): /* VEGA20 */
case IP_VERSION(9, 4, 1): /* ARCTURUS */
case IP_VERSION(9, 4, 2): /* ALDEBARAN */
kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
break;
case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
case IP_VERSION(9, 5, 0): /* GC 9.5.0 */
kfd->device_info.event_interrupt_class =
&event_interrupt_class_v9_4_3;
break;
case IP_VERSION(10, 3, 1): /* VANGOGH */
case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
case IP_VERSION(10, 1, 4):
case IP_VERSION(10, 1, 10): /* NAVI10 */
case IP_VERSION(10, 1, 2): /* NAVI12 */
case IP_VERSION(10, 1, 1): /* NAVI14 */
case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
break;
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 2):
case IP_VERSION(11, 0, 3):
case IP_VERSION(11, 0, 4):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 5, 1):
case IP_VERSION(11, 5, 2):
case IP_VERSION(11, 5, 3):
kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
break;
case IP_VERSION(12, 0, 0):
case IP_VERSION(12, 0, 1):
/* GFX12_TODO: Change to v12 version. */
kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
break;
default:
dev_warn(kfd_device, "v9 event interrupt handler is set due to "
"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
}
}
static void kfd_device_info_init(struct kfd_dev *kfd,
bool vf, uint32_t gfx_target_version)
{
uint32_t gc_version = KFD_GC_VERSION(kfd);
uint32_t asic_type = kfd->adev->asic_type;
kfd->device_info.max_pasid_bits = 16;
kfd->device_info.max_no_of_hqd = 24;
kfd->device_info.num_of_watch_points = 4;
kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
kfd->device_info.gfx_target_version = gfx_target_version;
if (KFD_IS_SOC15(kfd)) {
kfd->device_info.doorbell_size = 8;
kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
kfd->device_info.supports_cwsr = true;
kfd_device_info_set_sdma_info(kfd);
kfd_device_info_set_event_interrupt_class(kfd);
if (gc_version < IP_VERSION(11, 0, 0)) {
/* Navi2x+, Navi1x+ */
if (gc_version == IP_VERSION(10, 3, 6))
kfd->device_info.no_atomic_fw_version = 14;
else if (gc_version == IP_VERSION(10, 3, 7))
kfd->device_info.no_atomic_fw_version = 3;
else if (gc_version >= IP_VERSION(10, 3, 0))
kfd->device_info.no_atomic_fw_version = 92;
else if (gc_version >= IP_VERSION(10, 1, 1))
kfd->device_info.no_atomic_fw_version = 145;
/* Navi1x+ */
if (gc_version >= IP_VERSION(10, 1, 1))
kfd->device_info.needs_pci_atomics = true;
} else if (gc_version < IP_VERSION(12, 0, 0)) {
/*
* PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
* MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
* PCIe atomics support.
*/
kfd->device_info.needs_pci_atomics = true;
kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
} else if (gc_version < IP_VERSION(13, 0, 0)) {
kfd->device_info.needs_pci_atomics = true;
kfd->device_info.no_atomic_fw_version = 2090;
} else {
kfd->device_info.needs_pci_atomics = true;
}
} else {
kfd->device_info.doorbell_size = 4;
kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
kfd->device_info.num_sdma_queues_per_engine = 2;
if (asic_type != CHIP_KAVERI &&
asic_type != CHIP_HAWAII &&
asic_type != CHIP_TONGA)
kfd->device_info.supports_cwsr = true;
if (asic_type != CHIP_HAWAII && !vf)
kfd->device_info.needs_pci_atomics = true;
}
}
struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
{
struct kfd_dev *kfd = NULL;
const struct kfd2kgd_calls *f2g = NULL;
uint32_t gfx_target_version = 0;
switch (adev->asic_type) {
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_KAVERI:
gfx_target_version = 70000;
if (!vf)
f2g = &gfx_v7_kfd2kgd;
break;
#endif
case CHIP_CARRIZO:
gfx_target_version = 80001;
if (!vf)
f2g = &gfx_v8_kfd2kgd;
break;
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_HAWAII:
gfx_target_version = 70001;
if (!amdgpu_exp_hw_support)
pr_info(
"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
);
else if (!vf)
f2g = &gfx_v7_kfd2kgd;
break;
#endif
case CHIP_TONGA:
gfx_target_version = 80002;
if (!vf)
f2g = &gfx_v8_kfd2kgd;
break;
case CHIP_FIJI:
case CHIP_POLARIS10:
gfx_target_version = 80003;
f2g = &gfx_v8_kfd2kgd;
break;
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
gfx_target_version = 80003;
if (!vf)
f2g = &gfx_v8_kfd2kgd;
break;
default:
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
/* Vega 10 */
case IP_VERSION(9, 0, 1):
gfx_target_version = 90000;
f2g = &gfx_v9_kfd2kgd;
break;
/* Raven */
case IP_VERSION(9, 1, 0):
case IP_VERSION(9, 2, 2):
gfx_target_version = 90002;
if (!vf)
f2g = &gfx_v9_kfd2kgd;
break;
/* Vega12 */
case IP_VERSION(9, 2, 1):
gfx_target_version = 90004;
if (!vf)
f2g = &gfx_v9_kfd2kgd;
break;
/* Renoir */
case IP_VERSION(9, 3, 0):
gfx_target_version = 90012;
if (!vf)
f2g = &gfx_v9_kfd2kgd;
break;
/* Vega20 */
case IP_VERSION(9, 4, 0):
gfx_target_version = 90006;
if (!vf)
f2g = &gfx_v9_kfd2kgd;
break;
/* Arcturus */
case IP_VERSION(9, 4, 1):
gfx_target_version = 90008;
f2g = &arcturus_kfd2kgd;
break;
/* Aldebaran */
case IP_VERSION(9, 4, 2):
gfx_target_version = 90010;
f2g = &aldebaran_kfd2kgd;
break;
case IP_VERSION(9, 4, 3):
case IP_VERSION(9, 4, 4):
gfx_target_version = 90402;
f2g = &gc_9_4_3_kfd2kgd;
break;
case IP_VERSION(9, 5, 0):
gfx_target_version = 90500;
f2g = &gc_9_4_3_kfd2kgd;
break;
/* Navi10 */
case IP_VERSION(10, 1, 10):
gfx_target_version = 100100;
if (!vf)
f2g = &gfx_v10_kfd2kgd;
break;
/* Navi12 */
case IP_VERSION(10, 1, 2):
gfx_target_version = 100101;
f2g = &gfx_v10_kfd2kgd;
break;
/* Navi14 */
case IP_VERSION(10, 1, 1):
gfx_target_version = 100102;
if (!vf)
f2g = &gfx_v10_kfd2kgd;
break;
/* Cyan Skillfish */
case IP_VERSION(10, 1, 3):
case IP_VERSION(10, 1, 4):
gfx_target_version = 100103;
if (!vf)
f2g = &gfx_v10_kfd2kgd;
break;
/* Sienna Cichlid */
case IP_VERSION(10, 3, 0):
gfx_target_version = 100300;
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Navy Flounder */
case IP_VERSION(10, 3, 2):
gfx_target_version = 100301;
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Van Gogh */
case IP_VERSION(10, 3, 1):
gfx_target_version = 100303;
if (!vf)
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Dimgrey Cavefish */
case IP_VERSION(10, 3, 4):
gfx_target_version = 100302;
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Beige Goby */
case IP_VERSION(10, 3, 5):
gfx_target_version = 100304;
f2g = &gfx_v10_3_kfd2kgd;
break;
/* Yellow Carp */
case IP_VERSION(10, 3, 3):
gfx_target_version = 100305;
if (!vf)
f2g = &gfx_v10_3_kfd2kgd;
break;
case IP_VERSION(10, 3, 6):
case IP_VERSION(10, 3, 7):
gfx_target_version = 100306;
if (!vf)
f2g = &gfx_v10_3_kfd2kgd;
break;
case IP_VERSION(11, 0, 0):
gfx_target_version = 110000;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 4):
gfx_target_version = 110003;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 0, 2):
gfx_target_version = 110002;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 0, 3):
/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
gfx_target_version = 110001;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 5, 0):
gfx_target_version = 110500;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 5, 1):
gfx_target_version = 110501;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 5, 2):
gfx_target_version = 110502;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(11, 5, 3):
gfx_target_version = 110503;
f2g = &gfx_v11_kfd2kgd;
break;
case IP_VERSION(12, 0, 0):
gfx_target_version = 120000;
f2g = &gfx_v12_kfd2kgd;
break;
case IP_VERSION(12, 0, 1):
gfx_target_version = 120001;
f2g = &gfx_v12_kfd2kgd;
break;
default:
break;
}
break;
}
if (!f2g) {
if (amdgpu_ip_version(adev, GC_HWIP, 0))
dev_info(kfd_device,
"GC IP %06x %s not supported in kfd\n",
amdgpu_ip_version(adev, GC_HWIP, 0),
vf ? "VF" : "");
else
dev_info(kfd_device, "%s %s not supported in kfd\n",
amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
return NULL;
}
kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
if (!kfd)
return NULL;
kfd->adev = adev;
kfd_device_info_init(kfd, vf, gfx_target_version);
kfd->init_complete = false;
kfd->kfd2kgd = f2g;
atomic_set(&kfd->compute_profile, 0);
mutex_init(&kfd->doorbell_mutex);
ida_init(&kfd->doorbell_ida);
return kfd;
}
static void kfd_cwsr_init(struct kfd_dev *kfd)
{
if (cwsr_enable && kfd->device_info.supports_cwsr) {
if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx8_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_arcturus_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 5, 0)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_5_0_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_gfx9_5_0_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_5_0_hex);
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx9_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_nv1x_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx10_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
/* The gfx11 cwsr trap handler must fit inside a single
page. */
BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_gfx11_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
} else {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
> KFD_CWSR_TMA_OFFSET);
kfd->cwsr_isa = cwsr_trap_gfx12_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
}
kfd->cwsr_enabled = true;
}
}
static int kfd_gws_init(struct kfd_node *node)
{
int ret = 0;
struct kfd_dev *kfd = node->kfd;
uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
return 0;
if (hws_gws_support || (KFD_IS_SOC15(node) &&
((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
&& kfd->mec2_fw_version >= 0x81b3) ||
(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
&& kfd->mec2_fw_version >= 0x1b3) ||
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
&& kfd->mec2_fw_version >= 0x30) ||
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
&& kfd->mec2_fw_version >= 0x28) ||
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
(KFD_GC_VERSION(node) == IP_VERSION(9, 5, 0)) ||
(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
&& kfd->mec2_fw_version >= 0x6b) ||
(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
&& mes_rev >= 68) ||
(KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))))) {
if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
node->adev->gds.gws_size = 64;
ret = amdgpu_amdkfd_alloc_gws(node->adev,
node->adev->gds.gws_size, &node->gws);
}
return ret;
}
static void kfd_smi_init(struct kfd_node *dev)
{
INIT_LIST_HEAD(&dev->smi_clients);
spin_lock_init(&dev->smi_lock);
}
static int kfd_init_node(struct kfd_node *node)
{
int err = -1;
if (kfd_interrupt_init(node)) {
dev_err(kfd_device, "Error initializing interrupts\n");
goto kfd_interrupt_error;
}
node->dqm = device_queue_manager_init(node);
if (!node->dqm) {
dev_err(kfd_device, "Error initializing queue manager\n");
goto device_queue_manager_error;
}
if (kfd_gws_init(node)) {
dev_err(kfd_device, "Could not allocate %d gws\n",
node->adev->gds.gws_size);
goto gws_error;
}
if (kfd_resume(node))
goto kfd_resume_error;
if (kfd_topology_add_device(node)) {
dev_err(kfd_device, "Error adding device to topology\n");
goto kfd_topology_add_device_error;
}
kfd_smi_init(node);
return 0;
kfd_topology_add_device_error:
kfd_resume_error:
gws_error:
device_queue_manager_uninit(node->dqm);
device_queue_manager_error:
kfd_interrupt_exit(node);
kfd_interrupt_error:
if (node->gws)
amdgpu_amdkfd_free_gws(node->adev, node->gws);
/* Cleanup the node memory here */
kfree(node);
return err;
}
static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
{
struct kfd_node *knode;
unsigned int i;
/*
* flush_work ensures that there are no outstanding
* work-queue items that will access interrupt_ring. New work items
* can't be created because we stopped interrupt handling above.
*/
flush_workqueue(kfd->ih_wq);
destroy_workqueue(kfd->ih_wq);
for (i = 0; i < num_nodes; i++) {
knode = kfd->nodes[i];
device_queue_manager_uninit(knode->dqm);
kfd_interrupt_exit(knode);
kfd_topology_remove_device(knode);
if (knode->gws)
amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
kfree(knode);
kfd->nodes[i] = NULL;
}
}
static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
unsigned int kfd_node_idx)
{
struct amdgpu_device *adev = node->adev;
uint32_t xcc_mask = node->xcc_mask;
uint32_t xcc, mapped_xcc;
/*
* Interrupt bitmap is setup for processing interrupts from
* different XCDs and AIDs.
* Interrupt bitmap is defined as follows:
* 1. Bits 0-15 - correspond to the NodeId field.
* Each bit corresponds to NodeId number. For example, if
* a KFD node has interrupt bitmap set to 0x7, then this
* KFD node will process interrupts with NodeId = 0, 1 and 2
* in the IH cookie.
* 2. Bits 16-31 - unused.
*
* Please note that the kfd_node_idx argument passed to this
* function is not related to NodeId field received in the
* IH cookie.
*
* In CPX mode, a KFD node will process an interrupt if:
* - the Node Id matches the corresponding bit set in
* Bits 0-15.
* - AND VMID reported in the interrupt lies within the
* VMID range of the node.
*/
for_each_inst(xcc, xcc_mask) {
mapped_xcc = GET_INST(GC, xcc);
node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
}
dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
node->interrupt_bitmap);
}
bool kgd2kfd_device_init(struct kfd_dev *kfd,
const struct kgd2kfd_shared_resources *gpu_resources)
{
unsigned int size, map_process_packet_size, i;
struct kfd_node *node;
uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
unsigned int max_proc_per_quantum;
int partition_mode;
int xcp_idx;
kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
KGD_ENGINE_MEC1);
kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
KGD_ENGINE_MEC2);
kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
KGD_ENGINE_SDMA1);
kfd->shared_resources = *gpu_resources;
kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
if (kfd->num_nodes == 0) {
dev_err(kfd_device,
"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
kfd->adev->gfx.num_xcc_per_xcp);
goto out;
}
/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
* 32 and 64-bit requests are possible and must be
* supported.
*/
kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
if (!kfd->pci_atomic_requested &&
kfd->device_info.needs_pci_atomics &&
(!kfd->device_info.no_atomic_fw_version ||
kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
dev_info(kfd_device,
"skipped device %x:%x, PCI rejects atomics %d<%d\n",
kfd->adev->pdev->vendor, kfd->adev->pdev->device,
kfd->mec_fw_version,
kfd->device_info.no_atomic_fw_version);
return false;
}
first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
/* For multi-partition capable GPUs, we need special handling for VMIDs
* depending on partition mode.
* In CPX mode, the VMID range needs to be shared between XCDs.
* Additionally, there are 13 VMIDs (3-15) available for KFD. To
* divide them equally, we change starting VMID to 4 and not use
* VMID 3.
* If the VMID range changes for multi-partition capable GPUs, then
* this code MUST be revisited.
*/
if (kfd->adev->xcp_mgr) {
partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
AMDGPU_XCP_FL_LOCKED);
if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
kfd->num_nodes != 1) {
vmid_num_kfd /= 2;
first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
}
}
/* Verify module parameters regarding mapped process number*/
if (hws_max_conc_proc >= 0)
max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
else
max_proc_per_quantum = vmid_num_kfd;
/* calculate max size of mqds needed for queues */
size = max_num_of_queues_per_device *
kfd->device_info.mqd_size_aligned;
/*
* calculate max size of runlist packet.
* There can be only 2 packets at once
*/
map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
sizeof(struct pm4_mes_map_process_aldebaran) :
sizeof(struct pm4_mes_map_process);
size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
+ sizeof(struct pm4_mes_runlist)) * 2;
/* Add size of HIQ & DIQ */
size += KFD_KERNEL_QUEUE_SIZE * 2;
/* add another 512KB for all other allocations on gart (HPD, fences) */
size += 512 * 1024;
if (amdgpu_amdkfd_alloc_gtt_mem(
kfd->adev, size, &kfd->gtt_mem,
&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
false)) {
dev_err(kfd_device, "Could not allocate %d bytes\n", size);
goto alloc_gtt_mem_failure;
}
dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
/* Initialize GTT sa with 512 byte chunk size */
if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
goto kfd_gtt_sa_init_error;
}
if (kfd_doorbell_init(kfd)) {
dev_err(kfd_device,
"Error initializing doorbell aperture\n");
goto kfd_doorbell_error;
}
if (amdgpu_use_xgmi_p2p)
kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
/*
* For multi-partition capable GPUs, the KFD abstracts all partitions
* within a socket as xGMI connected in the topology so assign a unique
* hive id per device based on the pci device location if device is in
* PCIe mode.
*/
if (!kfd->hive_id && kfd->num_nodes > 1)
kfd->hive_id = pci_dev_id(kfd->adev->pdev);
kfd->noretry = kfd->adev->gmc.noretry;
kfd_cwsr_init(kfd);
dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
kfd->num_nodes);
/* Allocate the KFD nodes */
for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
if (!node)
goto node_alloc_error;
node->node_id = i;
node->adev = kfd->adev;
node->kfd = kfd;
node->kfd2kgd = kfd->kfd2kgd;
node->vm_info.vmid_num_kfd = vmid_num_kfd;
node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
/* TODO : Check if error handling is needed */
if (node->xcp) {
amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
&node->xcc_mask);
++xcp_idx;
} else {
node->xcc_mask =
(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
}
if (node->xcp) {
dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
node->node_id, node->xcp->mem_id,
KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
}
if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
kfd->num_nodes != 1) {
/* For multi-partition capable GPUs and CPX mode, first
* XCD gets VMID range 4-9 and second XCD gets VMID
* range 10-15.
*/
node->vm_info.first_vmid_kfd = (i%2 == 0) ?
first_vmid_kfd :
first_vmid_kfd+vmid_num_kfd;
node->vm_info.last_vmid_kfd = (i%2 == 0) ?
last_vmid_kfd-vmid_num_kfd :
last_vmid_kfd;
node->compute_vmid_bitmap =
((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
} else {
node->vm_info.first_vmid_kfd = first_vmid_kfd;
node->vm_info.last_vmid_kfd = last_vmid_kfd;
node->compute_vmid_bitmap =
gpu_resources->compute_vmid_bitmap;
}
node->max_proc_per_quantum = max_proc_per_quantum;
atomic_set(&node->sram_ecc_flag, 0);
amdgpu_amdkfd_get_local_mem_info(kfd->adev,
&node->local_mem_info, node->xcp);
if (kfd->adev->xcp_mgr)
kfd_setup_interrupt_bitmap(node, i);
/* Initialize the KFD node */
if (kfd_init_node(node)) {
dev_err(kfd_device, "Error initializing KFD node\n");
goto node_init_error;
}
spin_lock_init(&node->watch_points_lock);
kfd->nodes[i] = node;
}
svm_range_set_max_pages(kfd->adev);
kfd->init_complete = true;
dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
kfd->adev->pdev->device);
pr_debug("Starting kfd with the following scheduling policy %d\n",
node->dqm->sched_policy);
goto out;
node_init_error:
node_alloc_error:
kfd_cleanup_nodes(kfd, i);
kfd_doorbell_fini(kfd);
kfd_doorbell_error:
kfd_gtt_sa_fini(kfd);
kfd_gtt_sa_init_error:
amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
alloc_gtt_mem_failure:
dev_err(kfd_device,
"device %x:%x NOT added due to errors\n",
kfd->adev->pdev->vendor, kfd->adev->pdev->device);
out:
return kfd->init_complete;
}
void kgd2kfd_device_exit(struct kfd_dev *kfd)
{
if (kfd->init_complete) {
/* Cleanup KFD nodes */
kfd_cleanup_nodes(kfd, kfd->num_nodes);
/* Cleanup common/shared resources */
kfd_doorbell_fini(kfd);
ida_destroy(&kfd->doorbell_ida);
kfd_gtt_sa_fini(kfd);
amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
}
kfree(kfd);
}
int kgd2kfd_pre_reset(struct kfd_dev *kfd,
struct amdgpu_reset_context *reset_context)
{
struct kfd_node *node;
int i;
if (!kfd->init_complete)
return 0;
for (i = 0; i < kfd->num_nodes; i++) {
node = kfd->nodes[i];
kfd_smi_event_update_gpu_reset(node, false, reset_context);
}
kgd2kfd_suspend(kfd, true);
for (i = 0; i < kfd->num_nodes; i++)
kfd_signal_reset_event(kfd->nodes[i]);
return 0;
}
/*
* Fix me. KFD won't be able to resume existing process for now.
* We will keep all existing process in a evicted state and
* wait the process to be terminated.
*/
int kgd2kfd_post_reset(struct kfd_dev *kfd)
{
int ret;
struct kfd_node *node;
int i;
if (!kfd->init_complete)
return 0;
for (i = 0; i < kfd->num_nodes; i++) {
ret = kfd_resume(kfd->nodes[i]);
if (ret)
return ret;
}
mutex_lock(&kfd_processes_mutex);
--kfd_locked;
mutex_unlock(&kfd_processes_mutex);
for (i = 0; i < kfd->num_nodes; i++) {
node = kfd->nodes[i];
atomic_set(&node->sram_ecc_flag, 0);
kfd_smi_event_update_gpu_reset(node, true, NULL);
}
return 0;
}
bool kfd_is_locked(struct kfd_dev *kfd)
{
uint8_t id = 0;
struct kfd_node *dev;
lockdep_assert_held(&kfd_processes_mutex);
/* check reset/suspend lock */
if (kfd_locked > 0)
return true;
if (kfd)
return kfd->kfd_dev_lock > 0;
/* check lock on all cgroup accessible devices */
while (kfd_topology_enum_kfd_devices(id++, &dev) == 0) {
if (!dev || kfd_devcgroup_check_permission(dev))
continue;
if (dev->kfd->kfd_dev_lock > 0)
return true;
}
return false;
}
void kgd2kfd_suspend(struct kfd_dev *kfd, bool suspend_proc)
{
struct kfd_node *node;
int i;
if (!kfd->init_complete)
return;
if (suspend_proc)
kgd2kfd_suspend_process(kfd);
for (i = 0; i < kfd->num_nodes; i++) {
node = kfd->nodes[i];
node->dqm->ops.stop(node->dqm);
}
}
int kgd2kfd_resume(struct kfd_dev *kfd, bool resume_proc)
{
int ret, i;
if (!kfd->init_complete)
return 0;
for (i = 0; i < kfd->num_nodes; i++) {
ret = kfd_resume(kfd->nodes[i]);
if (ret)
return ret;
}
if (resume_proc)
ret = kgd2kfd_resume_process(kfd);
return ret;
}
void kgd2kfd_suspend_process(struct kfd_dev *kfd)
{
if (!kfd->init_complete)
return;
mutex_lock(&kfd_processes_mutex);
/* For first KFD device suspend all the KFD processes */
if (++kfd_locked == 1)
kfd_suspend_all_processes();
mutex_unlock(&kfd_processes_mutex);
}
int kgd2kfd_resume_process(struct kfd_dev *kfd)
{
int ret = 0;
if (!kfd->init_complete)
return 0;
mutex_lock(&kfd_processes_mutex);
if (--kfd_locked == 0)
ret = kfd_resume_all_processes();
WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
mutex_unlock(&kfd_processes_mutex);
return ret;
}
static int kfd_resume(struct kfd_node *node)
{
int err = 0;
err = node->dqm->ops.start(node->dqm);
if (err)
dev_err(kfd_device,
"Error starting queue manager for device %x:%x\n",
node->adev->pdev->vendor, node->adev->pdev->device);
return err;
}
/* This is called directly from KGD at ISR. */
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
{
uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
bool is_patched = false;
unsigned long flags;
struct kfd_node *node;
if (!kfd->init_complete)
return;
if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
dev_err_once(kfd_device, "Ring entry too small\n");
return;
}
for (i = 0; i < kfd->num_nodes; i++) {
node = kfd->nodes[i];
spin_lock_irqsave(&node->interrupt_lock, flags);
if (node->interrupts_active
&& interrupt_is_wanted(node, ih_ring_entry,
patched_ihre, &is_patched)
&& enqueue_ih_ring_entry(node,
is_patched ? patched_ihre : ih_ring_entry)) {
queue_work(node->kfd->ih_wq, &node->interrupt_work);
spin_unlock_irqrestore(&node->interrupt_lock, flags);
return;
}
spin_unlock_irqrestore(&node->interrupt_lock, flags);
}
}
int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
{
struct kfd_process *p;
int r;
/* Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are
* running so the lookup function increments the process ref count.
*/
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ESRCH;
WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
r = kfd_process_evict_queues(p, trigger);
kfd_unref_process(p);
return r;
}
int kgd2kfd_resume_mm(struct mm_struct *mm)
{
struct kfd_process *p;
int r;
/* Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are
* running so the lookup function increments the process ref count.
*/
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ESRCH;
r = kfd_process_restore_queues(p);
kfd_unref_process(p);
return r;
}
/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
* prepare for safe eviction of KFD BOs that belong to the specified
* process.
*
* @mm: mm_struct that identifies the specified KFD process
* @fence: eviction fence attached to KFD process BOs
*
*/
int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
struct dma_fence *fence)
{
struct kfd_process *p;
unsigned long active_time;
unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
if (!fence)
return -EINVAL;
if (dma_fence_is_signaled(fence))
return 0;
p = kfd_lookup_process_by_mm(mm);
if (!p)
return -ENODEV;
if (fence->seqno == p->last_eviction_seqno)
goto out;
p->last_eviction_seqno = fence->seqno;
/* Avoid KFD process starvation. Wait for at least
* PROCESS_ACTIVE_TIME_MS before evicting the process again
*/
active_time = get_jiffies_64() - p->last_restore_timestamp;
if (delay_jiffies > active_time)
delay_jiffies -= active_time;
else
delay_jiffies = 0;
/* During process initialization eviction_work.dwork is initialized
* to kfd_evict_bo_worker
*/
WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
p->lead_thread->pid, delay_jiffies);
schedule_delayed_work(&p->eviction_work, delay_jiffies);
out:
kfd_unref_process(p);
return 0;
}
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size)
{
if (WARN_ON(buf_size < chunk_size))
return -EINVAL;
if (WARN_ON(buf_size == 0))
return -EINVAL;
if (WARN_ON(chunk_size == 0))
return -EINVAL;
kfd->gtt_sa_chunk_size = chunk_size;
kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
GFP_KERNEL);
if (!kfd->gtt_sa_bitmap)
return -ENOMEM;
pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
mutex_init(&kfd->gtt_sa_lock);
return 0;
}
static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
{
mutex_destroy(&kfd->gtt_sa_lock);
bitmap_free(kfd->gtt_sa_bitmap);
}
static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return start_addr + bit_num * chunk_size;
}
static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
}
int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
struct kfd_mem_obj **mem_obj)
{
unsigned int found, start_search, cur_size;
struct kfd_dev *kfd = node->kfd;
if (size == 0)
return -EINVAL;
if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
return -ENOMEM;
*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
if (!(*mem_obj))
return -ENOMEM;
pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
start_search = 0;
mutex_lock(&kfd->gtt_sa_lock);
kfd_gtt_restart_search:
/* Find the first chunk that is free */
found = find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks,
start_search);
pr_debug("Found = %d\n", found);
/* If there wasn't any free chunk, bail out */
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Update fields of mem_obj */
(*mem_obj)->range_start = found;
(*mem_obj)->range_end = found;
(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
kfd->gtt_start_gpu_addr,
found,
kfd->gtt_sa_chunk_size);
(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
kfd->gtt_start_cpu_ptr,
found,
kfd->gtt_sa_chunk_size);
pr_debug("gpu_addr = %p, cpu_addr = %p\n",
(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
/* If we need only one chunk, mark it as allocated and get out */
if (size <= kfd->gtt_sa_chunk_size) {
pr_debug("Single bit\n");
__set_bit(found, kfd->gtt_sa_bitmap);
goto kfd_gtt_out;
}
/* Otherwise, try to see if we have enough contiguous chunks */
cur_size = size - kfd->gtt_sa_chunk_size;
do {
(*mem_obj)->range_end =
find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks, ++found);
/*
* If next free chunk is not contiguous than we need to
* restart our search from the last free chunk we found (which
* wasn't contiguous to the previous ones
*/
if ((*mem_obj)->range_end != found) {
start_search = found;
goto kfd_gtt_restart_search;
}
/*
* If we reached end of buffer, bail out with error
*/
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Check if we don't need another chunk */
if (cur_size <= kfd->gtt_sa_chunk_size)
cur_size = 0;
else
cur_size -= kfd->gtt_sa_chunk_size;
} while (cur_size > 0);
pr_debug("range_start = %d, range_end = %d\n",
(*mem_obj)->range_start, (*mem_obj)->range_end);
/* Mark the chunks as allocated */
bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
(*mem_obj)->range_end - (*mem_obj)->range_start + 1);
kfd_gtt_out:
mutex_unlock(&kfd->gtt_sa_lock);
return 0;
kfd_gtt_no_free_chunk:
pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(*mem_obj);
return -ENOMEM;
}
int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
{
struct kfd_dev *kfd = node->kfd;
/* Act like kfree when trying to free a NULL object */
if (!mem_obj)
return 0;
pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
mem_obj, mem_obj->range_start, mem_obj->range_end);
mutex_lock(&kfd->gtt_sa_lock);
/* Mark the chunks as free */
bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
mem_obj->range_end - mem_obj->range_start + 1);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(mem_obj);
return 0;
}
void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
{
/*
* TODO: Currently update SRAM ECC flag for first node.
* This needs to be updated later when we can
* identify SRAM ECC error on other nodes also.
*/
if (kfd)
atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
}
void kfd_inc_compute_active(struct kfd_node *node)
{
if (atomic_inc_return(&node->kfd->compute_profile) == 1)
amdgpu_amdkfd_set_compute_idle(node->adev, false);
}
void kfd_dec_compute_active(struct kfd_node *node)
{
int count = atomic_dec_return(&node->kfd->compute_profile);
if (count == 0)
amdgpu_amdkfd_set_compute_idle(node->adev, true);
WARN_ONCE(count < 0, "Compute profile ref. count error");
}
static bool kfd_compute_active(struct kfd_node *node)
{
if (atomic_read(&node->kfd->compute_profile))
return true;
return false;
}
void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
{
/*
* TODO: For now, raise the throttling event only on first node.
* This will need to change after we are able to determine
* which node raised the throttling event.
*/
if (kfd && kfd->init_complete)
kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
throttle_bitmask);
}
/* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
* kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
* When the device has more than two engines, we reserve two for PCIe to enable
* full-duplex and the rest are used as XGMI.
*/
unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
{
/* If XGMI is not supported, all SDMA engines are PCIe */
if (!node->adev->gmc.xgmi.supported)
return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
}
unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
{
/* After reserved for PCIe, the rest of engines are XGMI */
return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
kfd_get_num_sdma_engines(node);
}
int kgd2kfd_check_and_lock_kfd(struct kfd_dev *kfd)
{
struct kfd_process *p;
int r = 0, temp, idx;
mutex_lock(&kfd_processes_mutex);
if (hash_empty(kfd_processes_table) && !kfd_is_locked(kfd))
goto out;
/* fail under system reset/resume or kfd device is partition switching. */
if (kfd_is_locked(kfd)) {
r = -EBUSY;
goto out;
}
/*
* ensure all running processes are cgroup excluded from device before mode switch.
* i.e. no pdd was created on the process socket.
*/
idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
int i;
for (i = 0; i < p->n_pdds; i++) {
if (p->pdds[i]->dev->kfd != kfd)
continue;
r = -EBUSY;
goto proc_check_unlock;
}
}
proc_check_unlock:
srcu_read_unlock(&kfd_processes_srcu, idx);
out:
if (!r)
++kfd->kfd_dev_lock;
mutex_unlock(&kfd_processes_mutex);
return r;
}
void kgd2kfd_unlock_kfd(struct kfd_dev *kfd)
{
mutex_lock(&kfd_processes_mutex);
--kfd->kfd_dev_lock;
mutex_unlock(&kfd_processes_mutex);
}
int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
{
struct kfd_node *node;
int ret;
if (!kfd->init_complete)
return 0;
if (node_id >= kfd->num_nodes) {
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
node_id, kfd->num_nodes - 1);
return -EINVAL;
}
node = kfd->nodes[node_id];
ret = node->dqm->ops.unhalt(node->dqm);
if (ret)
dev_err(kfd_device, "Error in starting scheduler\n");
return ret;
}
int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
{
struct kfd_node *node;
if (!kfd->init_complete)
return 0;
if (node_id >= kfd->num_nodes) {
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
node_id, kfd->num_nodes - 1);
return -EINVAL;
}
node = kfd->nodes[node_id];
return node->dqm->ops.halt(node->dqm);
}
bool kgd2kfd_compute_active(struct kfd_dev *kfd, uint32_t node_id)
{
struct kfd_node *node;
if (!kfd->init_complete)
return false;
if (node_id >= kfd->num_nodes) {
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
node_id, kfd->num_nodes - 1);
return false;
}
node = kfd->nodes[node_id];
return kfd_compute_active(node);
}
/**
* kgd2kfd_vmfault_fast_path() - KFD vm page fault interrupt handling fast path for gmc v9
* @adev: amdgpu device
* @entry: vm fault interrupt vector
* @retry_fault: if this is retry fault
*
* retry fault -
* with CAM enabled, adev primary ring
* | gmc_v9_0_process_interrupt()
* adev soft_ring
* | gmc_v9_0_process_interrupt() worker failed to recover page fault
* KFD node ih_fifo
* | KFD interrupt_wq worker
* kfd_signal_vm_fault_event
*
* without CAM, adev primary ring1
* | gmc_v9_0_process_interrupt worker failed to recvoer page fault
* KFD node ih_fifo
* | KFD interrupt_wq worker
* kfd_signal_vm_fault_event
*
* no-retry fault -
* adev primary ring
* | gmc_v9_0_process_interrupt()
* KFD node ih_fifo
* | KFD interrupt_wq worker
* kfd_signal_vm_fault_event
*
* fast path - After kfd_signal_vm_fault_event, gmc_v9_0_process_interrupt drop the page fault
* of same process, don't copy interrupt to KFD node ih_fifo.
* With gdb debugger enabled, need convert the retry fault to no-retry fault for
* debugger, cannot use the fast path.
*
* Return:
* true - use the fast path to handle this fault
* false - use normal path to handle it
*/
bool kgd2kfd_vmfault_fast_path(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry,
bool retry_fault)
{
struct kfd_process *p;
u32 cam_index;
if (entry->ih == &adev->irq.ih_soft || entry->ih == &adev->irq.ih1) {
p = kfd_lookup_process_by_pasid(entry->pasid, NULL);
if (!p)
return true;
if (p->gpu_page_fault && !p->debug_trap_enabled) {
if (retry_fault && adev->irq.retry_cam_enabled) {
cam_index = entry->src_data[2] & 0x3ff;
WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index);
}
kfd_unref_process(p);
return true;
}
/*
* This is the first page fault, set flag and then signal user space
*/
p->gpu_page_fault = true;
kfd_unref_process(p);
}
return false;
}
#if defined(CONFIG_DEBUG_FS)
/* This function will send a package to HIQ to hang the HWS
* which will trigger a GPU reset and bring the HWS back to normal state
*/
int kfd_debugfs_hang_hws(struct kfd_node *dev)
{
if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
pr_err("HWS is not enabled");
return -EINVAL;
}
if (dev->kfd->shared_resources.enable_mes) {
dev_err(dev->adev->dev, "Inducing MES hang is not supported\n");
return -EINVAL;
}
return dqm_debugfs_hang_hws(dev->dqm);
}
#endif