linux-loongson/arch/arm64/kvm/hyp/nvhe/pkvm.c
Fuad Tabba 5db1bef933 KVM: arm64: Track SVE state in the hypervisor vcpu structure
When dealing with a guest with SVE enabled, make sure the host SVE
state is pinned at EL2 S1, and that the hypervisor vCPU state is
correctly initialised (and then unpinned on teardown).

Co-authored-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20250416152648.2982950-2-qperret@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-04-28 09:23:46 +01:00

800 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2021 Google LLC
* Author: Fuad Tabba <tabba@google.com>
*/
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <asm/kvm_emulate.h>
#include <nvhe/mem_protect.h>
#include <nvhe/memory.h>
#include <nvhe/pkvm.h>
#include <nvhe/trap_handler.h>
/* Used by icache_is_aliasing(). */
unsigned long __icache_flags;
/* Used by kvm_get_vttbr(). */
unsigned int kvm_arm_vmid_bits;
unsigned int kvm_host_sve_max_vl;
/*
* The currently loaded hyp vCPU for each physical CPU. Used only when
* protected KVM is enabled, but for both protected and non-protected VMs.
*/
static DEFINE_PER_CPU(struct pkvm_hyp_vcpu *, loaded_hyp_vcpu);
static void pkvm_vcpu_reset_hcr(struct kvm_vcpu *vcpu)
{
vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS;
if (has_hvhe())
vcpu->arch.hcr_el2 |= HCR_E2H;
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
/* route synchronous external abort exceptions to EL2 */
vcpu->arch.hcr_el2 |= HCR_TEA;
/* trap error record accesses */
vcpu->arch.hcr_el2 |= HCR_TERR;
}
if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
vcpu->arch.hcr_el2 |= HCR_FWB;
if (cpus_have_final_cap(ARM64_HAS_EVT) &&
!cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0) == read_cpuid(CTR_EL0))
vcpu->arch.hcr_el2 |= HCR_TID4;
else
vcpu->arch.hcr_el2 |= HCR_TID2;
if (vcpu_has_ptrauth(vcpu))
vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
if (kvm_has_mte(vcpu->kvm))
vcpu->arch.hcr_el2 |= HCR_ATA;
}
static void pvm_init_traps_hcr(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
u64 val = vcpu->arch.hcr_el2;
/* No support for AArch32. */
val |= HCR_RW;
/*
* Always trap:
* - Feature id registers: to control features exposed to guests
* - Implementation-defined features
*/
val |= HCR_TACR | HCR_TIDCP | HCR_TID3 | HCR_TID1;
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) {
val |= HCR_TERR | HCR_TEA;
val &= ~(HCR_FIEN);
}
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
val &= ~(HCR_AMVOFFEN);
if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, IMP)) {
val |= HCR_TID5;
val &= ~(HCR_DCT | HCR_ATA);
}
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP))
val |= HCR_TLOR;
vcpu->arch.hcr_el2 = val;
}
static void pvm_init_traps_mdcr(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
u64 val = vcpu->arch.mdcr_el2;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP)) {
val |= MDCR_EL2_TPM | MDCR_EL2_TPMCR;
val &= ~(MDCR_EL2_HPME | MDCR_EL2_MTPME | MDCR_EL2_HPMN_MASK);
}
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DebugVer, IMP))
val |= MDCR_EL2_TDRA | MDCR_EL2_TDA;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP))
val |= MDCR_EL2_TDOSA;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP)) {
val |= MDCR_EL2_TPMS;
val &= ~MDCR_EL2_E2PB_MASK;
}
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP))
val |= MDCR_EL2_TTRF;
if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, ExtTrcBuff, IMP))
val |= MDCR_EL2_E2TB_MASK;
/* Trap Debug Communications Channel registers */
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, FGT, IMP))
val |= MDCR_EL2_TDCC;
vcpu->arch.mdcr_el2 = val;
}
/*
* Check that cpu features that are neither trapped nor supported are not
* enabled for protected VMs.
*/
static int pkvm_check_pvm_cpu_features(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
/* Protected KVM does not support AArch32 guests. */
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL0, AARCH32) ||
kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL1, AARCH32))
return -EINVAL;
/*
* Linux guests assume support for floating-point and Advanced SIMD. Do
* not change the trapping behavior for these from the KVM default.
*/
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, FP, IMP) ||
!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AdvSIMD, IMP))
return -EINVAL;
/* No SME support in KVM right now. Check to catch if it changes. */
if (kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP))
return -EINVAL;
return 0;
}
/*
* Initialize trap register values in protected mode.
*/
static int pkvm_vcpu_init_traps(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
int ret;
vcpu->arch.mdcr_el2 = 0;
pkvm_vcpu_reset_hcr(vcpu);
if ((!pkvm_hyp_vcpu_is_protected(hyp_vcpu))) {
struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu;
/* Trust the host for non-protected vcpu features. */
vcpu->arch.hcrx_el2 = host_vcpu->arch.hcrx_el2;
return 0;
}
ret = pkvm_check_pvm_cpu_features(vcpu);
if (ret)
return ret;
pvm_init_traps_hcr(vcpu);
pvm_init_traps_mdcr(vcpu);
vcpu_set_hcrx(vcpu);
return 0;
}
/*
* Start the VM table handle at the offset defined instead of at 0.
* Mainly for sanity checking and debugging.
*/
#define HANDLE_OFFSET 0x1000
static unsigned int vm_handle_to_idx(pkvm_handle_t handle)
{
return handle - HANDLE_OFFSET;
}
static pkvm_handle_t idx_to_vm_handle(unsigned int idx)
{
return idx + HANDLE_OFFSET;
}
/*
* Spinlock for protecting state related to the VM table. Protects writes
* to 'vm_table', 'nr_table_entries', and other per-vm state on initialization.
* Also protects reads and writes to 'last_hyp_vcpu_lookup'.
*/
DEFINE_HYP_SPINLOCK(vm_table_lock);
/*
* The table of VM entries for protected VMs in hyp.
* Allocated at hyp initialization and setup.
*/
static struct pkvm_hyp_vm **vm_table;
void pkvm_hyp_vm_table_init(void *tbl)
{
WARN_ON(vm_table);
vm_table = tbl;
}
/*
* Return the hyp vm structure corresponding to the handle.
*/
static struct pkvm_hyp_vm *get_vm_by_handle(pkvm_handle_t handle)
{
unsigned int idx = vm_handle_to_idx(handle);
if (unlikely(idx >= KVM_MAX_PVMS))
return NULL;
return vm_table[idx];
}
struct pkvm_hyp_vcpu *pkvm_load_hyp_vcpu(pkvm_handle_t handle,
unsigned int vcpu_idx)
{
struct pkvm_hyp_vcpu *hyp_vcpu = NULL;
struct pkvm_hyp_vm *hyp_vm;
/* Cannot load a new vcpu without putting the old one first. */
if (__this_cpu_read(loaded_hyp_vcpu))
return NULL;
hyp_spin_lock(&vm_table_lock);
hyp_vm = get_vm_by_handle(handle);
if (!hyp_vm || hyp_vm->kvm.created_vcpus <= vcpu_idx)
goto unlock;
hyp_vcpu = hyp_vm->vcpus[vcpu_idx];
if (!hyp_vcpu)
goto unlock;
/* Ensure vcpu isn't loaded on more than one cpu simultaneously. */
if (unlikely(hyp_vcpu->loaded_hyp_vcpu)) {
hyp_vcpu = NULL;
goto unlock;
}
hyp_vcpu->loaded_hyp_vcpu = this_cpu_ptr(&loaded_hyp_vcpu);
hyp_page_ref_inc(hyp_virt_to_page(hyp_vm));
unlock:
hyp_spin_unlock(&vm_table_lock);
if (hyp_vcpu)
__this_cpu_write(loaded_hyp_vcpu, hyp_vcpu);
return hyp_vcpu;
}
void pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
hyp_spin_lock(&vm_table_lock);
hyp_vcpu->loaded_hyp_vcpu = NULL;
__this_cpu_write(loaded_hyp_vcpu, NULL);
hyp_page_ref_dec(hyp_virt_to_page(hyp_vm));
hyp_spin_unlock(&vm_table_lock);
}
struct pkvm_hyp_vcpu *pkvm_get_loaded_hyp_vcpu(void)
{
return __this_cpu_read(loaded_hyp_vcpu);
}
struct pkvm_hyp_vm *get_pkvm_hyp_vm(pkvm_handle_t handle)
{
struct pkvm_hyp_vm *hyp_vm;
hyp_spin_lock(&vm_table_lock);
hyp_vm = get_vm_by_handle(handle);
if (hyp_vm)
hyp_page_ref_inc(hyp_virt_to_page(hyp_vm));
hyp_spin_unlock(&vm_table_lock);
return hyp_vm;
}
void put_pkvm_hyp_vm(struct pkvm_hyp_vm *hyp_vm)
{
hyp_spin_lock(&vm_table_lock);
hyp_page_ref_dec(hyp_virt_to_page(hyp_vm));
hyp_spin_unlock(&vm_table_lock);
}
struct pkvm_hyp_vm *get_np_pkvm_hyp_vm(pkvm_handle_t handle)
{
struct pkvm_hyp_vm *hyp_vm = get_pkvm_hyp_vm(handle);
if (hyp_vm && pkvm_hyp_vm_is_protected(hyp_vm)) {
put_pkvm_hyp_vm(hyp_vm);
hyp_vm = NULL;
}
return hyp_vm;
}
static void pkvm_init_features_from_host(struct pkvm_hyp_vm *hyp_vm, const struct kvm *host_kvm)
{
struct kvm *kvm = &hyp_vm->kvm;
unsigned long host_arch_flags = READ_ONCE(host_kvm->arch.flags);
DECLARE_BITMAP(allowed_features, KVM_VCPU_MAX_FEATURES);
/* CTR_EL0 is always under host control, even for protected VMs. */
hyp_vm->kvm.arch.ctr_el0 = host_kvm->arch.ctr_el0;
if (test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &host_kvm->arch.flags))
set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
/* No restrictions for non-protected VMs. */
if (!kvm_vm_is_protected(kvm)) {
hyp_vm->kvm.arch.flags = host_arch_flags;
bitmap_copy(kvm->arch.vcpu_features,
host_kvm->arch.vcpu_features,
KVM_VCPU_MAX_FEATURES);
if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &host_arch_flags))
hyp_vm->kvm.arch.midr_el1 = host_kvm->arch.midr_el1;
return;
}
bitmap_zero(allowed_features, KVM_VCPU_MAX_FEATURES);
set_bit(KVM_ARM_VCPU_PSCI_0_2, allowed_features);
if (kvm_pvm_ext_allowed(KVM_CAP_ARM_PMU_V3))
set_bit(KVM_ARM_VCPU_PMU_V3, allowed_features);
if (kvm_pvm_ext_allowed(KVM_CAP_ARM_PTRAUTH_ADDRESS))
set_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, allowed_features);
if (kvm_pvm_ext_allowed(KVM_CAP_ARM_PTRAUTH_GENERIC))
set_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, allowed_features);
if (kvm_pvm_ext_allowed(KVM_CAP_ARM_SVE)) {
set_bit(KVM_ARM_VCPU_SVE, allowed_features);
kvm->arch.flags |= host_arch_flags & BIT(KVM_ARCH_FLAG_GUEST_HAS_SVE);
}
bitmap_and(kvm->arch.vcpu_features, host_kvm->arch.vcpu_features,
allowed_features, KVM_VCPU_MAX_FEATURES);
}
static void unpin_host_vcpu(struct kvm_vcpu *host_vcpu)
{
if (host_vcpu)
hyp_unpin_shared_mem(host_vcpu, host_vcpu + 1);
}
static void unpin_host_sve_state(struct pkvm_hyp_vcpu *hyp_vcpu)
{
void *sve_state;
if (!vcpu_has_feature(&hyp_vcpu->vcpu, KVM_ARM_VCPU_SVE))
return;
sve_state = kern_hyp_va(hyp_vcpu->vcpu.arch.sve_state);
hyp_unpin_shared_mem(sve_state,
sve_state + vcpu_sve_state_size(&hyp_vcpu->vcpu));
}
static void unpin_host_vcpus(struct pkvm_hyp_vcpu *hyp_vcpus[],
unsigned int nr_vcpus)
{
int i;
for (i = 0; i < nr_vcpus; i++) {
struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vcpus[i];
if (!hyp_vcpu)
continue;
unpin_host_vcpu(hyp_vcpu->host_vcpu);
unpin_host_sve_state(hyp_vcpu);
}
}
static void init_pkvm_hyp_vm(struct kvm *host_kvm, struct pkvm_hyp_vm *hyp_vm,
unsigned int nr_vcpus)
{
hyp_vm->host_kvm = host_kvm;
hyp_vm->kvm.created_vcpus = nr_vcpus;
hyp_vm->kvm.arch.mmu.vtcr = host_mmu.arch.mmu.vtcr;
hyp_vm->kvm.arch.pkvm.enabled = READ_ONCE(host_kvm->arch.pkvm.enabled);
hyp_vm->kvm.arch.flags = 0;
pkvm_init_features_from_host(hyp_vm, host_kvm);
}
static int pkvm_vcpu_init_sve(struct pkvm_hyp_vcpu *hyp_vcpu, struct kvm_vcpu *host_vcpu)
{
struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu;
unsigned int sve_max_vl;
size_t sve_state_size;
void *sve_state;
int ret = 0;
if (!vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE)) {
vcpu_clear_flag(vcpu, VCPU_SVE_FINALIZED);
return 0;
}
/* Limit guest vector length to the maximum supported by the host. */
sve_max_vl = min(READ_ONCE(host_vcpu->arch.sve_max_vl), kvm_host_sve_max_vl);
sve_state_size = sve_state_size_from_vl(sve_max_vl);
sve_state = kern_hyp_va(READ_ONCE(host_vcpu->arch.sve_state));
if (!sve_state || !sve_state_size) {
ret = -EINVAL;
goto err;
}
ret = hyp_pin_shared_mem(sve_state, sve_state + sve_state_size);
if (ret)
goto err;
vcpu->arch.sve_state = sve_state;
vcpu->arch.sve_max_vl = sve_max_vl;
return 0;
err:
clear_bit(KVM_ARM_VCPU_SVE, vcpu->kvm->arch.vcpu_features);
return ret;
}
static int init_pkvm_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu,
struct pkvm_hyp_vm *hyp_vm,
struct kvm_vcpu *host_vcpu)
{
int ret = 0;
if (hyp_pin_shared_mem(host_vcpu, host_vcpu + 1))
return -EBUSY;
hyp_vcpu->host_vcpu = host_vcpu;
hyp_vcpu->vcpu.kvm = &hyp_vm->kvm;
hyp_vcpu->vcpu.vcpu_id = READ_ONCE(host_vcpu->vcpu_id);
hyp_vcpu->vcpu.vcpu_idx = READ_ONCE(host_vcpu->vcpu_idx);
hyp_vcpu->vcpu.arch.hw_mmu = &hyp_vm->kvm.arch.mmu;
hyp_vcpu->vcpu.arch.cflags = READ_ONCE(host_vcpu->arch.cflags);
hyp_vcpu->vcpu.arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
if (pkvm_hyp_vcpu_is_protected(hyp_vcpu))
kvm_init_pvm_id_regs(&hyp_vcpu->vcpu);
ret = pkvm_vcpu_init_traps(hyp_vcpu);
if (ret)
goto done;
ret = pkvm_vcpu_init_sve(hyp_vcpu, host_vcpu);
done:
if (ret)
unpin_host_vcpu(host_vcpu);
return ret;
}
static int find_free_vm_table_entry(struct kvm *host_kvm)
{
int i;
for (i = 0; i < KVM_MAX_PVMS; ++i) {
if (!vm_table[i])
return i;
}
return -ENOMEM;
}
/*
* Allocate a VM table entry and insert a pointer to the new vm.
*
* Return a unique handle to the protected VM on success,
* negative error code on failure.
*/
static pkvm_handle_t insert_vm_table_entry(struct kvm *host_kvm,
struct pkvm_hyp_vm *hyp_vm)
{
struct kvm_s2_mmu *mmu = &hyp_vm->kvm.arch.mmu;
int idx;
hyp_assert_lock_held(&vm_table_lock);
/*
* Initializing protected state might have failed, yet a malicious
* host could trigger this function. Thus, ensure that 'vm_table'
* exists.
*/
if (unlikely(!vm_table))
return -EINVAL;
idx = find_free_vm_table_entry(host_kvm);
if (idx < 0)
return idx;
hyp_vm->kvm.arch.pkvm.handle = idx_to_vm_handle(idx);
/* VMID 0 is reserved for the host */
atomic64_set(&mmu->vmid.id, idx + 1);
mmu->arch = &hyp_vm->kvm.arch;
mmu->pgt = &hyp_vm->pgt;
vm_table[idx] = hyp_vm;
return hyp_vm->kvm.arch.pkvm.handle;
}
/*
* Deallocate and remove the VM table entry corresponding to the handle.
*/
static void remove_vm_table_entry(pkvm_handle_t handle)
{
hyp_assert_lock_held(&vm_table_lock);
vm_table[vm_handle_to_idx(handle)] = NULL;
}
static size_t pkvm_get_hyp_vm_size(unsigned int nr_vcpus)
{
return size_add(sizeof(struct pkvm_hyp_vm),
size_mul(sizeof(struct pkvm_hyp_vcpu *), nr_vcpus));
}
static void *map_donated_memory_noclear(unsigned long host_va, size_t size)
{
void *va = (void *)kern_hyp_va(host_va);
if (!PAGE_ALIGNED(va))
return NULL;
if (__pkvm_host_donate_hyp(hyp_virt_to_pfn(va),
PAGE_ALIGN(size) >> PAGE_SHIFT))
return NULL;
return va;
}
static void *map_donated_memory(unsigned long host_va, size_t size)
{
void *va = map_donated_memory_noclear(host_va, size);
if (va)
memset(va, 0, size);
return va;
}
static void __unmap_donated_memory(void *va, size_t size)
{
kvm_flush_dcache_to_poc(va, size);
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(va),
PAGE_ALIGN(size) >> PAGE_SHIFT));
}
static void unmap_donated_memory(void *va, size_t size)
{
if (!va)
return;
memset(va, 0, size);
__unmap_donated_memory(va, size);
}
static void unmap_donated_memory_noclear(void *va, size_t size)
{
if (!va)
return;
__unmap_donated_memory(va, size);
}
/*
* Initialize the hypervisor copy of the protected VM state using the
* memory donated by the host.
*
* Unmaps the donated memory from the host at stage 2.
*
* host_kvm: A pointer to the host's struct kvm.
* vm_hva: The host va of the area being donated for the VM state.
* Must be page aligned.
* pgd_hva: The host va of the area being donated for the stage-2 PGD for
* the VM. Must be page aligned. Its size is implied by the VM's
* VTCR.
*
* Return a unique handle to the protected VM on success,
* negative error code on failure.
*/
int __pkvm_init_vm(struct kvm *host_kvm, unsigned long vm_hva,
unsigned long pgd_hva)
{
struct pkvm_hyp_vm *hyp_vm = NULL;
size_t vm_size, pgd_size;
unsigned int nr_vcpus;
void *pgd = NULL;
int ret;
ret = hyp_pin_shared_mem(host_kvm, host_kvm + 1);
if (ret)
return ret;
nr_vcpus = READ_ONCE(host_kvm->created_vcpus);
if (nr_vcpus < 1) {
ret = -EINVAL;
goto err_unpin_kvm;
}
vm_size = pkvm_get_hyp_vm_size(nr_vcpus);
pgd_size = kvm_pgtable_stage2_pgd_size(host_mmu.arch.mmu.vtcr);
ret = -ENOMEM;
hyp_vm = map_donated_memory(vm_hva, vm_size);
if (!hyp_vm)
goto err_remove_mappings;
pgd = map_donated_memory_noclear(pgd_hva, pgd_size);
if (!pgd)
goto err_remove_mappings;
init_pkvm_hyp_vm(host_kvm, hyp_vm, nr_vcpus);
hyp_spin_lock(&vm_table_lock);
ret = insert_vm_table_entry(host_kvm, hyp_vm);
if (ret < 0)
goto err_unlock;
ret = kvm_guest_prepare_stage2(hyp_vm, pgd);
if (ret)
goto err_remove_vm_table_entry;
hyp_spin_unlock(&vm_table_lock);
return hyp_vm->kvm.arch.pkvm.handle;
err_remove_vm_table_entry:
remove_vm_table_entry(hyp_vm->kvm.arch.pkvm.handle);
err_unlock:
hyp_spin_unlock(&vm_table_lock);
err_remove_mappings:
unmap_donated_memory(hyp_vm, vm_size);
unmap_donated_memory(pgd, pgd_size);
err_unpin_kvm:
hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
return ret;
}
/*
* Initialize the hypervisor copy of the protected vCPU state using the
* memory donated by the host.
*
* handle: The handle for the protected vm.
* host_vcpu: A pointer to the corresponding host vcpu.
* vcpu_hva: The host va of the area being donated for the vcpu state.
* Must be page aligned. The size of the area must be equal to
* the page-aligned size of 'struct pkvm_hyp_vcpu'.
* Return 0 on success, negative error code on failure.
*/
int __pkvm_init_vcpu(pkvm_handle_t handle, struct kvm_vcpu *host_vcpu,
unsigned long vcpu_hva)
{
struct pkvm_hyp_vcpu *hyp_vcpu;
struct pkvm_hyp_vm *hyp_vm;
unsigned int idx;
int ret;
hyp_vcpu = map_donated_memory(vcpu_hva, sizeof(*hyp_vcpu));
if (!hyp_vcpu)
return -ENOMEM;
hyp_spin_lock(&vm_table_lock);
hyp_vm = get_vm_by_handle(handle);
if (!hyp_vm) {
ret = -ENOENT;
goto unlock;
}
ret = init_pkvm_hyp_vcpu(hyp_vcpu, hyp_vm, host_vcpu);
if (ret)
goto unlock;
idx = hyp_vcpu->vcpu.vcpu_idx;
if (idx >= hyp_vm->kvm.created_vcpus) {
ret = -EINVAL;
goto unlock;
}
if (hyp_vm->vcpus[idx]) {
ret = -EINVAL;
goto unlock;
}
hyp_vm->vcpus[idx] = hyp_vcpu;
unlock:
hyp_spin_unlock(&vm_table_lock);
if (ret)
unmap_donated_memory(hyp_vcpu, sizeof(*hyp_vcpu));
return ret;
}
static void
teardown_donated_memory(struct kvm_hyp_memcache *mc, void *addr, size_t size)
{
size = PAGE_ALIGN(size);
memset(addr, 0, size);
for (void *start = addr; start < addr + size; start += PAGE_SIZE)
push_hyp_memcache(mc, start, hyp_virt_to_phys);
unmap_donated_memory_noclear(addr, size);
}
int __pkvm_teardown_vm(pkvm_handle_t handle)
{
struct kvm_hyp_memcache *mc, *stage2_mc;
struct pkvm_hyp_vm *hyp_vm;
struct kvm *host_kvm;
unsigned int idx;
size_t vm_size;
int err;
hyp_spin_lock(&vm_table_lock);
hyp_vm = get_vm_by_handle(handle);
if (!hyp_vm) {
err = -ENOENT;
goto err_unlock;
}
if (WARN_ON(hyp_page_count(hyp_vm))) {
err = -EBUSY;
goto err_unlock;
}
host_kvm = hyp_vm->host_kvm;
/* Ensure the VMID is clean before it can be reallocated */
__kvm_tlb_flush_vmid(&hyp_vm->kvm.arch.mmu);
remove_vm_table_entry(handle);
hyp_spin_unlock(&vm_table_lock);
/* Reclaim guest pages (including page-table pages) */
mc = &host_kvm->arch.pkvm.teardown_mc;
stage2_mc = &host_kvm->arch.pkvm.stage2_teardown_mc;
reclaim_pgtable_pages(hyp_vm, stage2_mc);
unpin_host_vcpus(hyp_vm->vcpus, hyp_vm->kvm.created_vcpus);
/* Push the metadata pages to the teardown memcache */
for (idx = 0; idx < hyp_vm->kvm.created_vcpus; ++idx) {
struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vm->vcpus[idx];
struct kvm_hyp_memcache *vcpu_mc;
if (!hyp_vcpu)
continue;
vcpu_mc = &hyp_vcpu->vcpu.arch.pkvm_memcache;
while (vcpu_mc->nr_pages) {
void *addr = pop_hyp_memcache(vcpu_mc, hyp_phys_to_virt);
push_hyp_memcache(stage2_mc, addr, hyp_virt_to_phys);
unmap_donated_memory_noclear(addr, PAGE_SIZE);
}
teardown_donated_memory(mc, hyp_vcpu, sizeof(*hyp_vcpu));
}
vm_size = pkvm_get_hyp_vm_size(hyp_vm->kvm.created_vcpus);
teardown_donated_memory(mc, hyp_vm, vm_size);
hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
return 0;
err_unlock:
hyp_spin_unlock(&vm_table_lock);
return err;
}