/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ /* * Copyright (C) 2024-2025 Intel Corporation */ #include #include #include #include "iwl-drv.h" #include "iwl-utils.h" #ifdef CONFIG_INET int iwl_tx_tso_segment(struct sk_buff *skb, unsigned int num_subframes, netdev_features_t netdev_flags, struct sk_buff_head *mpdus_skbs) { struct sk_buff *tmp, *next; struct ieee80211_hdr *hdr = (void *)skb->data; char cb[sizeof(skb->cb)]; u16 i = 0; unsigned int tcp_payload_len; unsigned int mss = skb_shinfo(skb)->gso_size; bool ipv4 = (skb->protocol == htons(ETH_P_IP)); bool qos = ieee80211_is_data_qos(hdr->frame_control); u16 ip_base_id = ipv4 ? ntohs(ip_hdr(skb)->id) : 0; skb_shinfo(skb)->gso_size = num_subframes * mss; memcpy(cb, skb->cb, sizeof(cb)); next = skb_gso_segment(skb, netdev_flags); skb_shinfo(skb)->gso_size = mss; skb_shinfo(skb)->gso_type = ipv4 ? SKB_GSO_TCPV4 : SKB_GSO_TCPV6; if (IS_ERR(next) && PTR_ERR(next) == -ENOMEM) return -ENOMEM; if (WARN_ONCE(IS_ERR(next), "skb_gso_segment error: %d\n", (int)PTR_ERR(next))) return PTR_ERR(next); if (next) consume_skb(skb); skb_list_walk_safe(next, tmp, next) { memcpy(tmp->cb, cb, sizeof(tmp->cb)); /* * Compute the length of all the data added for the A-MSDU. * This will be used to compute the length to write in the TX * command. We have: SNAP + IP + TCP for n -1 subframes and * ETH header for n subframes. */ tcp_payload_len = skb_tail_pointer(tmp) - skb_transport_header(tmp) - tcp_hdrlen(tmp) + tmp->data_len; if (ipv4) ip_hdr(tmp)->id = htons(ip_base_id + i * num_subframes); if (tcp_payload_len > mss) { skb_shinfo(tmp)->gso_size = mss; skb_shinfo(tmp)->gso_type = ipv4 ? SKB_GSO_TCPV4 : SKB_GSO_TCPV6; } else { if (qos) { u8 *qc; if (ipv4) ip_send_check(ip_hdr(tmp)); qc = ieee80211_get_qos_ctl((void *)tmp->data); *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; } skb_shinfo(tmp)->gso_size = 0; } skb_mark_not_on_list(tmp); __skb_queue_tail(mpdus_skbs, tmp); i++; } return 0; } IWL_EXPORT_SYMBOL(iwl_tx_tso_segment); #endif /* CONFIG_INET */ static u32 iwl_div_by_db(u32 value, u8 db) { /* * 2^32 * 10**(i / 10) for i = [1, 10], skipping 0 and simply stopping * at 10 dB and looping instead of using a much larger table. * * Using 64 bit math is overkill, but means the helper does not require * a limit on the input range. */ static const u32 db_to_val[] = { 0xcb59185e, 0xa1866ba8, 0x804dce7a, 0x65ea59fe, 0x50f44d89, 0x404de61f, 0x331426af, 0x2892c18b, 0x203a7e5b, 0x1999999a, }; while (value && db > 0) { u8 change = min_t(u8, db, ARRAY_SIZE(db_to_val)); value = (((u64)value) * db_to_val[change - 1]) >> 32; db -= change; } return value; } s8 iwl_average_neg_dbm(const u8 *neg_dbm_values, u8 len) { int average_magnitude; u32 average_factor; int sum_magnitude = -128; u32 sum_factor = 0; int i, count = 0; /* * To properly average the decibel values (signal values given in dBm) * we need to do the math in linear space. Doing a linear average of * dB (dBm) values is a bit annoying though due to the large range of * at least -10 to -110 dBm that will not fit into a 32 bit integer. * * A 64 bit integer should be sufficient, but then we still have the * problem that there are no directly usable utility functions * available. * * So, lets not deal with that and instead do much of the calculation * with a 16.16 fixed point integer along with a base in dBm. 16.16 bit * gives us plenty of head-room for adding up a few values and even * doing some math on it. And the tail should be accurate enough too * (1/2^16 is somewhere around -48 dB, so effectively zero). * * i.e. the real value of sum is: * sum = sum_factor / 2^16 * 10^(sum_magnitude / 10) mW * * However, that does mean we need to be able to bring two values to * a common base, so we need a helper for that. * * Note that this function takes an input with unsigned negative dBm * values but returns a signed dBm (i.e. a negative value). */ for (i = 0; i < len; i++) { int val_magnitude; u32 val_factor; /* Assume invalid */ if (neg_dbm_values[i] == 0xff) continue; val_factor = 0x10000; val_magnitude = -neg_dbm_values[i]; if (val_magnitude <= sum_magnitude) { u8 div_db = sum_magnitude - val_magnitude; val_factor = iwl_div_by_db(val_factor, div_db); val_magnitude = sum_magnitude; } else { u8 div_db = val_magnitude - sum_magnitude; sum_factor = iwl_div_by_db(sum_factor, div_db); sum_magnitude = val_magnitude; } sum_factor += val_factor; count++; } /* No valid noise measurement, return a very high noise level */ if (count == 0) return 0; average_magnitude = sum_magnitude; average_factor = sum_factor / count; /* * average_factor will be a number smaller than 1.0 (0x10000) at this * point. What we need to do now is to adjust average_magnitude so that * average_factor is between -0.5 dB and 0.5 dB. * * Just do -1 dB steps and find the point where * -0.5 dB * -i dB = 0x10000 * 10^(-0.5/10) / i dB * = div_by_db(0xe429, i) * is smaller than average_factor. */ for (i = 0; average_factor < iwl_div_by_db(0xe429, i); i++) { /* nothing */ } return clamp(average_magnitude - i, -128, 0); } IWL_EXPORT_SYMBOL(iwl_average_neg_dbm);