task_on_rq_queued read p->on_rq without READ_ONCE, though p->on_rq is
set with WRITE_ONCE in {activate|deactivate}_task and smp_store_release
in __block_task, and also read with READ_ONCE in task_on_rq_migrating.
Make all of these accesses pair together by adding READ_ONCE in the
task_on_rq_queued.
Signed-off-by: Harshit Agarwal <harshit@nutanix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20241114210812.1836587-1-jon@nutanix.com
When steal time exceeds the measured delta when updating clock_task, we
currently try to catch up the excess in future updates.
However, this results in inaccurate run times for the future things using
clock_task, in some situations, as they end up getting additional steal
time that did not actually happen.
This is because there is a window between reading the elapsed time in
update_rq_clock() and sampling the steal time in update_rq_clock_task().
If the VCPU gets preempted between those two points, any additional
steal time is accounted to the outgoing task even though the calculated
delta did not actually contain any of that "stolen" time.
When this race happens, we can end up with steal time that exceeds the
calculated delta, and the previous code would try to catch up that excess
steal time in future clock updates, which is given to the next,
incoming task, even though it did not actually have any time stolen.
This behavior is particularly bad when steal time can be very long,
which we've seen when trying to extend steal time to contain the duration
that the host was suspended [0]. When this happens, clock_task stays
frozen, during which the running task stays running for the whole
duration, since its run time doesn't increase.
However the race can happen even under normal operation.
Ideally we would read the elapsed cpu time and the steal time atomically,
to prevent this race from happening in the first place, but doing so
is non-trivial.
Since the time between those two points isn't otherwise accounted anywhere,
neither to the outgoing task nor the incoming task (because the "end of
outgoing task" and "start of incoming task" timestamps are the same),
I would argue that the right thing to do is to simply drop any excess steal
time, in order to prevent these issues.
[0] https://lore.kernel.org/kvm/20240820043543.837914-1-suleiman@google.com/
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241118043745.1857272-1-suleiman@google.com
When running the following command:
while true; do
stress-ng --cyclic 30 --timeout 30s --minimize --quiet
done
a warning is eventually triggered:
WARNING: CPU: 43 PID: 2848 at kernel/sched/deadline.c:794
setup_new_dl_entity+0x13e/0x180
...
Call Trace:
<TASK>
? show_trace_log_lvl+0x1c4/0x2df
? enqueue_dl_entity+0x631/0x6e0
? setup_new_dl_entity+0x13e/0x180
? __warn+0x7e/0xd0
? report_bug+0x11a/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
enqueue_dl_entity+0x631/0x6e0
enqueue_task_dl+0x7d/0x120
__do_set_cpus_allowed+0xe3/0x280
__set_cpus_allowed_ptr_locked+0x140/0x1d0
__set_cpus_allowed_ptr+0x54/0xa0
migrate_enable+0x7e/0x150
rt_spin_unlock+0x1c/0x90
group_send_sig_info+0xf7/0x1a0
? kill_pid_info+0x1f/0x1d0
kill_pid_info+0x78/0x1d0
kill_proc_info+0x5b/0x110
__x64_sys_kill+0x93/0xc0
do_syscall_64+0x5c/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
RIP: 0033:0x7f0dab31f92b
This warning occurs because set_cpus_allowed dequeues and enqueues tasks
with the ENQUEUE_RESTORE flag set. If the task is boosted, the warning
is triggered. A boosted task already had its parameters set by
rt_mutex_setprio, and a new call to setup_new_dl_entity is unnecessary,
hence the WARN_ON call.
Check if we are requeueing a boosted task and avoid calling
setup_new_dl_entity if that's the case.
Fixes: 295d6d5e37 ("sched/deadline: Fix switching to -deadline")
Signed-off-by: Wander Lairson Costa <wander@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20240724142253.27145-2-wander@redhat.com
Scheduler raises a SCHED_SOFTIRQ to trigger a load balancing event on
from the IPI handler on the idle CPU. If the SMP function is invoked
from an idle CPU via flush_smp_call_function_queue() then the HARD-IRQ
flag is not set and raise_softirq_irqoff() needlessly wakes ksoftirqd
because soft interrupts are handled before ksoftirqd get on the CPU.
Adding a trace_printk() in nohz_csd_func() at the spot of raising
SCHED_SOFTIRQ and enabling trace events for sched_switch, sched_wakeup,
and softirq_entry (for SCHED_SOFTIRQ vector alone) helps observing the
current behavior:
<idle>-0 [000] dN.1.: nohz_csd_func: Raising SCHED_SOFTIRQ from nohz_csd_func
<idle>-0 [000] dN.4.: sched_wakeup: comm=ksoftirqd/0 pid=16 prio=120 target_cpu=000
<idle>-0 [000] .Ns1.: softirq_entry: vec=7 [action=SCHED]
<idle>-0 [000] .Ns1.: softirq_exit: vec=7 [action=SCHED]
<idle>-0 [000] d..2.: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=ksoftirqd/0 next_pid=16 next_prio=120
ksoftirqd/0-16 [000] d..2.: sched_switch: prev_comm=ksoftirqd/0 prev_pid=16 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
...
Use __raise_softirq_irqoff() to raise the softirq. The SMP function call
is always invoked on the requested CPU in an interrupt handler. It is
guaranteed that soft interrupts are handled at the end.
Following are the observations with the changes when enabling the same
set of events:
<idle>-0 [000] dN.1.: nohz_csd_func: Raising SCHED_SOFTIRQ for nohz_idle_balance
<idle>-0 [000] dN.1.: softirq_raise: vec=7 [action=SCHED]
<idle>-0 [000] .Ns1.: softirq_entry: vec=7 [action=SCHED]
No unnecessary ksoftirqd wakeups are seen from idle task's context to
service the softirq.
Fixes: b2a02fc43a ("smp: Optimize send_call_function_single_ipi()")
Closes: https://lore.kernel.org/lkml/fcf823f-195e-6c9a-eac3-25f870cb35ac@inria.fr/ [1]
Reported-by: Julia Lawall <julia.lawall@inria.fr>
Suggested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/20241119054432.6405-5-kprateek.nayak@amd.com
Commit b2a02fc43a ("smp: Optimize send_call_function_single_ipi()")
optimizes IPIs to idle CPUs in TIF_POLLING_NRFLAG mode by setting the
TIF_NEED_RESCHED flag in idle task's thread info and relying on
flush_smp_call_function_queue() in idle exit path to run the
call-function. A softirq raised by the call-function is handled shortly
after in do_softirq_post_smp_call_flush() but the TIF_NEED_RESCHED flag
remains set and is only cleared later when schedule_idle() calls
__schedule().
need_resched() check in _nohz_idle_balance() exists to bail out of load
balancing if another task has woken up on the CPU currently in-charge of
idle load balancing which is being processed in SCHED_SOFTIRQ context.
Since the optimization mentioned above overloads the interpretation of
TIF_NEED_RESCHED, check for idle_cpu() before going with the existing
need_resched() check which can catch a genuine task wakeup on an idle
CPU processing SCHED_SOFTIRQ from do_softirq_post_smp_call_flush(), as
well as the case where ksoftirqd needs to be preempted as a result of
new task wakeup or slice expiry.
In case of PREEMPT_RT or threadirqs, although the idle load balancing
may be inhibited in some cases on the ilb CPU, the fact that ksoftirqd
is the only fair task going back to sleep will trigger a newidle balance
on the CPU which will alleviate some imbalance if it exists if idle
balance fails to do so.
Fixes: b2a02fc43a ("smp: Optimize send_call_function_single_ipi()")
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241119054432.6405-4-kprateek.nayak@amd.com
The need_resched() check currently in nohz_csd_func() can be tracked
to have been added in scheduler_ipi() back in 2011 via commit
ca38062e57 ("sched: Use resched IPI to kick off the nohz idle balance")
Since then, it has travelled quite a bit but it seems like an idle_cpu()
check currently is sufficient to detect the need to bail out from an
idle load balancing. To justify this removal, consider all the following
case where an idle load balancing could race with a task wakeup:
o Since commit f3dd3f6745 ("sched: Remove the limitation of WF_ON_CPU
on wakelist if wakee cpu is idle") a target perceived to be idle
(target_rq->nr_running == 0) will return true for
ttwu_queue_cond(target) which will offload the task wakeup to the idle
target via an IPI.
In all such cases target_rq->ttwu_pending will be set to 1 before
queuing the wake function.
If an idle load balance races here, following scenarios are possible:
- The CPU is not in TIF_POLLING_NRFLAG mode in which case an actual
IPI is sent to the CPU to wake it out of idle. If the
nohz_csd_func() queues before sched_ttwu_pending(), the idle load
balance will bail out since idle_cpu(target) returns 0 since
target_rq->ttwu_pending is 1. If the nohz_csd_func() is queued after
sched_ttwu_pending() it should see rq->nr_running to be non-zero and
bail out of idle load balancing.
- The CPU is in TIF_POLLING_NRFLAG mode and instead of an actual IPI,
the sender will simply set TIF_NEED_RESCHED for the target to put it
out of idle and flush_smp_call_function_queue() in do_idle() will
execute the call function. Depending on the ordering of the queuing
of nohz_csd_func() and sched_ttwu_pending(), the idle_cpu() check in
nohz_csd_func() should either see target_rq->ttwu_pending = 1 or
target_rq->nr_running to be non-zero if there is a genuine task
wakeup racing with the idle load balance kick.
o The waker CPU perceives the target CPU to be busy
(targer_rq->nr_running != 0) but the CPU is in fact going idle and due
to a series of unfortunate events, the system reaches a case where the
waker CPU decides to perform the wakeup by itself in ttwu_queue() on
the target CPU but target is concurrently selected for idle load
balance (XXX: Can this happen? I'm not sure, but we'll consider the
mother of all coincidences to estimate the worst case scenario).
ttwu_do_activate() calls enqueue_task() which would increment
"rq->nr_running" post which it calls wakeup_preempt() which is
responsible for setting TIF_NEED_RESCHED (via a resched IPI or by
setting TIF_NEED_RESCHED on a TIF_POLLING_NRFLAG idle CPU) The key
thing to note in this case is that rq->nr_running is already non-zero
in case of a wakeup before TIF_NEED_RESCHED is set which would
lead to idle_cpu() check returning false.
In all cases, it seems that need_resched() check is unnecessary when
checking for idle_cpu() first since an impending wakeup racing with idle
load balancer will either set the "rq->ttwu_pending" or indicate a newly
woken task via "rq->nr_running".
Chasing the reason why this check might have existed in the first place,
I came across Peter's suggestion on the fist iteration of Suresh's
patch from 2011 [1] where the condition to raise the SCHED_SOFTIRQ was:
sched_ttwu_do_pending(list);
if (unlikely((rq->idle == current) &&
rq->nohz_balance_kick &&
!need_resched()))
raise_softirq_irqoff(SCHED_SOFTIRQ);
Since the condition to raise the SCHED_SOFIRQ was preceded by
sched_ttwu_do_pending() (which is equivalent of sched_ttwu_pending()) in
the current upstream kernel, the need_resched() check was necessary to
catch a newly queued task. Peter suggested modifying it to:
if (idle_cpu() && rq->nohz_balance_kick && !need_resched())
raise_softirq_irqoff(SCHED_SOFTIRQ);
where idle_cpu() seems to have replaced "rq->idle == current" check.
Even back then, the idle_cpu() check would have been sufficient to catch
a new task being enqueued. Since commit b2a02fc43a ("smp: Optimize
send_call_function_single_ipi()") overloads the interpretation of
TIF_NEED_RESCHED for TIF_POLLING_NRFLAG idling, remove the
need_resched() check in nohz_csd_func() to raise SCHED_SOFTIRQ based
on Peter's suggestion.
Fixes: b2a02fc43a ("smp: Optimize send_call_function_single_ipi()")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241119054432.6405-3-kprateek.nayak@amd.com
Commit 8f9ea86fdf added some logic to sched_setaffinity that included
a WARN when a per-task affinity assignment races with a cpuset update.
Specifically, we can have a race where a cpuset update results in the
task affinity no longer being a subset of the cpuset. That's fine; we
have a fallback to instead use the cpuset mask. However, we have a WARN
set up that will trigger if the cpuset mask has no overlap at all with
the requested task affinity. This shouldn't be a warning condition; its
trivial to create this condition.
Reproduced the warning by the following setup:
- $PID inside a cpuset cgroup
- another thread repeatedly switching the cpuset cpus from 1-2 to just 1
- another thread repeatedly setting the $PID affinity (via taskset) to 2
Fixes: 8f9ea86fdf ("sched: Always preserve the user requested cpumask")
Signed-off-by: Josh Don <joshdon@google.com>
Acked-and-tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Tested-by: Madadi Vineeth Reddy <vineethr@linux.ibm.com>
Link: https://lkml.kernel.org/r/20241111182738.1832953-1-joshdon@google.com
The condition in replenish_dl_new_period() that checks if a reservation
(dl_server) is deferred and is not handling a starvation case is
obviously wrong.
Fix it.
Fixes: a110a81c52 ("sched/deadline: Deferrable dl server")
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20241127063740.8278-1-juri.lelli@redhat.com
- Improve the default select_cpu() implementation making it topology aware
and handle WAKE_SYNC better.
- set_arg_maybe_null() was used to inform the verifier which ops args could
be NULL in a rather hackish way. Use the new __nullable CFI stub tags
instead.
- On Sapphire Rapids multi-socket systems, a BPF scheduler, by hammering on
the same queue across sockets, could live-lock the system to the point
where the system couldn't make reasonable forward progress. This could
lead to soft-lockup triggered resets or stalling out bypass mode switch
and thus BPF scheduler ejection for tens of minutes if not hours. After
trying a number of mitigations, the following set worked reliably:
- Injecting artificial cpu_relax() loops in two places while sched_ext is
trying to turn on the bypass mode.
- Triggering scheduler ejection when soft-lockup detection is imminent (a
quarter of threshold left).
While not the prettiest, the impact both in terms of code complexity and
overhead is minimal.
- A common complaint on the API is the overuse of the word "dispatch" and
the confusion around "consume". This is due to how the dispatch queues
became more generic over time. Rename the affected kfuncs for clarity.
Thanks to BPF's compatibility features, this change can be made in a way
that's both forward and backward compatible. The compatibility code will
be dropped in a few releases.
- Pull sched_ext/for-6.12-fixes to receive a prerequisite change. Other misc
changes.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZztuXA4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGePUAP4nFTDaUDngVlxGv5hpYz8/Gcv1bPsWEydRRmH/
3F+pNgEAmGIGAEwFYfc9Zn8Kbjf0eJAduf2RhGRatQO6F/+GSwo=
=AcyC
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext updates from Tejun Heo:
- Improve the default select_cpu() implementation making it topology
aware and handle WAKE_SYNC better.
- set_arg_maybe_null() was used to inform the verifier which ops args
could be NULL in a rather hackish way. Use the new __nullable CFI
stub tags instead.
- On Sapphire Rapids multi-socket systems, a BPF scheduler, by
hammering on the same queue across sockets, could live-lock the
system to the point where the system couldn't make reasonable forward
progress.
This could lead to soft-lockup triggered resets or stalling out
bypass mode switch and thus BPF scheduler ejection for tens of
minutes if not hours. After trying a number of mitigations, the
following set worked reliably:
- Injecting artificial cpu_relax() loops in two places while
sched_ext is trying to turn on the bypass mode.
- Triggering scheduler ejection when soft-lockup detection is
imminent (a quarter of threshold left).
While not the prettiest, the impact both in terms of code complexity
and overhead is minimal.
- A common complaint on the API is the overuse of the word "dispatch"
and the confusion around "consume". This is due to how the dispatch
queues became more generic over time. Rename the affected kfuncs for
clarity. Thanks to BPF's compatibility features, this change can be
made in a way that's both forward and backward compatible. The
compatibility code will be dropped in a few releases.
- Other misc changes
* tag 'sched_ext-for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: (21 commits)
sched_ext: Replace scx_next_task_picked() with switch_class() in comment
sched_ext: Rename scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
sched_ext: Rename scx_bpf_consume() to scx_bpf_dsq_move_to_local()
sched_ext: Rename scx_bpf_dispatch[_vtime]() to scx_bpf_dsq_insert[_vtime]()
sched_ext: scx_bpf_dispatch_from_dsq_set_*() are allowed from unlocked context
sched_ext: add a missing rcu_read_lock/unlock pair at scx_select_cpu_dfl()
sched_ext: Clarify sched_ext_ops table for userland scheduler
sched_ext: Enable the ops breather and eject BPF scheduler on softlockup
sched_ext: Avoid live-locking bypass mode switching
sched_ext: Fix incorrect use of bitwise AND
sched_ext: Do not enable LLC/NUMA optimizations when domains overlap
sched_ext: Introduce NUMA awareness to the default idle selection policy
sched_ext: Replace set_arg_maybe_null() with __nullable CFI stub tags
sched_ext: Rename CFI stubs to names that are recognized by BPF
sched_ext: Introduce LLC awareness to the default idle selection policy
sched_ext: Clarify ops.select_cpu() for single-CPU tasks
sched_ext: improve WAKE_SYNC behavior for default idle CPU selection
sched_ext: Use btf_ids to resolve task_struct
sched/ext: Use tg_cgroup() to elieminate duplicate code
sched/ext: Fix unmatch trailing comment of CONFIG_EXT_GROUP_SCHED
...
- The final step to get rid of auto-rearming posix-timers
posix-timers are currently auto-rearmed by the kernel when the signal
of the timer is ignored so that the timer signal can be delivered once
the corresponding signal is unignored.
This requires to throttle the timer to prevent a DoS by small intervals
and keeps the system pointlessly out of low power states for no value.
This is a long standing non-trivial problem due to the lock order of
posix-timer lock and the sighand lock along with life time issues as
the timer and the sigqueue have different life time rules.
Cure this by:
* Embedding the sigqueue into the timer struct to have the same life
time rules. Aside of that this also avoids the lookup of the timer
in the signal delivery and rearm path as it's just a always valid
container_of() now.
* Queuing ignored timer signals onto a seperate ignored list.
* Moving queued timer signals onto the ignored list when the signal is
switched to SIG_IGN before it could be delivered.
* Walking the ignored list when SIG_IGN is lifted and requeue the
signals to the actual signal lists. This allows the signal delivery
code to rearm the timer.
This also required to consolidate the signal delivery rules so they are
consistent across all situations. With that all self test scenarios
finally succeed.
- Core infrastructure for VFS multigrain timestamping
This is required to allow the kernel to use coarse grained time stamps
by default and switch to fine grained time stamps when inode attributes
are actively observed via getattr().
These changes have been provided to the VFS tree as well, so that the
VFS specific infrastructure could be built on top.
- Cleanup and consolidation of the sleep() infrastructure
* Move all sleep and timeout functions into one file
* Rework udelay() and ndelay() into proper documented inline functions
and replace the hardcoded magic numbers by proper defines.
* Rework the fsleep() implementation to take the reality of the timer
wheel granularity on different HZ values into account. Right now the
boundaries are hard coded time ranges which fail to provide the
requested accuracy on different HZ settings.
* Update documentation for all sleep/timeout related functions and fix
up stale documentation links all over the place
* Fixup a few usage sites
- Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks
A system can have multiple PTP clocks which are participating in
seperate and independent PTP clock domains. So far the kernel only
considers the PTP clock which is based on CLOCK TAI relevant as that's
the clock which drives the timekeeping adjustments via the various user
space daemons through adjtimex(2).
The non TAI based clock domains are accessible via the file descriptor
based posix clocks, but their usability is very limited. They can't be
accessed fast as they always go all the way out to the hardware and
they cannot be utilized in the kernel itself.
As Time Sensitive Networking (TSN) gains traction it is required to
provide fast user and kernel space access to these clocks.
The approach taken is to utilize the timekeeping and adjtimex(2)
infrastructure to provide this access in a similar way how the kernel
provides access to clock MONOTONIC, REALTIME etc.
Instead of creating a duplicated infrastructure this rework converts
timekeeping and adjtimex(2) into generic functionality which operates
on pointers to data structures instead of using static variables.
This allows to provide time accessors and adjtimex(2) functionality for
the independent PTP clocks in a subsequent step.
- Consolidate hrtimer initialization
hrtimers are set up by initializing the data structure and then
seperately setting the callback function for historical reasons.
That's an extra unnecessary step and makes Rust support less straight
forward than it should be.
Provide a new set of hrtimer_setup*() functions and convert the core
code and a few usage sites of the less frequently used interfaces over.
The bulk of the htimer_init() to hrtimer_setup() conversion is already
prepared and scheduled for the next merge window.
- Drivers:
* Ensure that the global timekeeping clocksource is utilizing the
cluster 0 timer on MIPS multi-cluster systems.
Otherwise CPUs on different clusters use their cluster specific
clocksource which is not guaranteed to be synchronized with other
clusters.
* Mostly boring cleanups, fixes, improvements and code movement
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL
tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9
6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM
EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9
8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG
bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB
DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3
UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV
Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n
AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5
JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw
hZZ4hdM9+3T7cg==
=2VC6
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"A rather large update for timekeeping and timers:
- The final step to get rid of auto-rearming posix-timers
posix-timers are currently auto-rearmed by the kernel when the
signal of the timer is ignored so that the timer signal can be
delivered once the corresponding signal is unignored.
This requires to throttle the timer to prevent a DoS by small
intervals and keeps the system pointlessly out of low power states
for no value. This is a long standing non-trivial problem due to
the lock order of posix-timer lock and the sighand lock along with
life time issues as the timer and the sigqueue have different life
time rules.
Cure this by:
- Embedding the sigqueue into the timer struct to have the same
life time rules. Aside of that this also avoids the lookup of
the timer in the signal delivery and rearm path as it's just a
always valid container_of() now.
- Queuing ignored timer signals onto a seperate ignored list.
- Moving queued timer signals onto the ignored list when the
signal is switched to SIG_IGN before it could be delivered.
- Walking the ignored list when SIG_IGN is lifted and requeue the
signals to the actual signal lists. This allows the signal
delivery code to rearm the timer.
This also required to consolidate the signal delivery rules so they
are consistent across all situations. With that all self test
scenarios finally succeed.
- Core infrastructure for VFS multigrain timestamping
This is required to allow the kernel to use coarse grained time
stamps by default and switch to fine grained time stamps when inode
attributes are actively observed via getattr().
These changes have been provided to the VFS tree as well, so that
the VFS specific infrastructure could be built on top.
- Cleanup and consolidation of the sleep() infrastructure
- Move all sleep and timeout functions into one file
- Rework udelay() and ndelay() into proper documented inline
functions and replace the hardcoded magic numbers by proper
defines.
- Rework the fsleep() implementation to take the reality of the
timer wheel granularity on different HZ values into account.
Right now the boundaries are hard coded time ranges which fail
to provide the requested accuracy on different HZ settings.
- Update documentation for all sleep/timeout related functions
and fix up stale documentation links all over the place
- Fixup a few usage sites
- Rework of timekeeping and adjtimex(2) to prepare for multiple PTP
clocks
A system can have multiple PTP clocks which are participating in
seperate and independent PTP clock domains. So far the kernel only
considers the PTP clock which is based on CLOCK TAI relevant as
that's the clock which drives the timekeeping adjustments via the
various user space daemons through adjtimex(2).
The non TAI based clock domains are accessible via the file
descriptor based posix clocks, but their usability is very limited.
They can't be accessed fast as they always go all the way out to
the hardware and they cannot be utilized in the kernel itself.
As Time Sensitive Networking (TSN) gains traction it is required to
provide fast user and kernel space access to these clocks.
The approach taken is to utilize the timekeeping and adjtimex(2)
infrastructure to provide this access in a similar way how the
kernel provides access to clock MONOTONIC, REALTIME etc.
Instead of creating a duplicated infrastructure this rework
converts timekeeping and adjtimex(2) into generic functionality
which operates on pointers to data structures instead of using
static variables.
This allows to provide time accessors and adjtimex(2) functionality
for the independent PTP clocks in a subsequent step.
- Consolidate hrtimer initialization
hrtimers are set up by initializing the data structure and then
seperately setting the callback function for historical reasons.
That's an extra unnecessary step and makes Rust support less
straight forward than it should be.
Provide a new set of hrtimer_setup*() functions and convert the
core code and a few usage sites of the less frequently used
interfaces over.
The bulk of the htimer_init() to hrtimer_setup() conversion is
already prepared and scheduled for the next merge window.
- Drivers:
- Ensure that the global timekeeping clocksource is utilizing the
cluster 0 timer on MIPS multi-cluster systems.
Otherwise CPUs on different clusters use their cluster specific
clocksource which is not guaranteed to be synchronized with
other clusters.
- Mostly boring cleanups, fixes, improvements and code movement"
* tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits)
posix-timers: Fix spurious warning on double enqueue versus do_exit()
clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties
clocksource/drivers/gpx: Remove redundant casts
clocksource/drivers/timer-ti-dm: Fix child node refcount handling
dt-bindings: timer: actions,owl-timer: convert to YAML
clocksource/drivers/ralink: Add Ralink System Tick Counter driver
clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource
clocksource/drivers/timer-ti-dm: Don't fail probe if int not found
clocksource/drivers:sp804: Make user selectable
clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions
hrtimers: Delete hrtimer_init_on_stack()
alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack()
io_uring: Switch to use hrtimer_setup_on_stack()
sched/idle: Switch to use hrtimer_setup_on_stack()
hrtimers: Delete hrtimer_init_sleeper_on_stack()
wait: Switch to use hrtimer_setup_sleeper_on_stack()
timers: Switch to use hrtimer_setup_sleeper_on_stack()
net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack()
futex: Switch to use hrtimer_setup_sleeper_on_stack()
fs/aio: Switch to use hrtimer_setup_sleeper_on_stack()
...
- Update the amd-pstate driver to set the initial scaling frequency
policy lower bound to be the lowest non-linear frequency (Dhananjay
Ugwekar).
- Enable amd-pstate by default on servers starting with newer AMD Epyc
processors (Swapnil Sapkal).
- Align more codepaths between shared memory and MSR designs in
amd-pstate (Dhananjay Ugwekar).
- Clean up amd-pstate code to rename functions and remove redundant
calls (Dhananjay Ugwekar, Mario Limonciello).
- Do other assorted fixes and cleanups in amd-pstate (Dhananjay Ugwekar
and Mario Limonciello).
- Change the Balance-performance EPP value for Granite Rapids in the
intel_pstate driver to a more performance-biased one (Srinivas
Pandruvada).
- Simplify MSR read on the boot CPU in the ACPI cpufreq driver (Chang
S. Bae).
- Ensure sugov_eas_rebuild_sd() is always called when sugov_init()
succeeds to always enforce sched domains rebuild in case EAS needs
to be enabled (Christian Loehle).
- Switch cpufreq back to platform_driver::remove() (Uwe Kleine-König).
- Use proper frequency unit names in cpufreq (Marcin Juszkiewicz).
- Add a built-in idle states table for Granite Rapids Xeon D to the
intel_idle driver (Artem Bityutskiy).
- Fix some typos in comments in the cpuidle core and drivers (Shen
Lichuan).
- Remove iowait influence from the menu cpuidle governor (Christian
Loehle).
- Add min/max available performance state limits to the Energy Model
management code (Lukasz Luba).
- Update pm-graph to v5.13 (Todd Brandt).
- Add documentation for some recently introduced cpupower utility
options (Tor Vic).
- Make cpupower inform users where cpufreq-bench.conf should be located
when opening it fails (Peng Fan).
- Allow overriding cross-compiling env params in cpupower (Peng Fan).
- Add compile_commands.json to .gitignore in cpupower (John B. Wyatt
IV).
- Improve disable c_state block in cpupower bindings and add a test to
confirm that CPU state is disabled to it (John B. Wyatt IV).
- Add Chinese Simplified translation to cpupower (Kieran Moy).
- Add checks for xgettext and msgfmt to cpupower (Siddharth Menon).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmc3r6sSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxQMUQALNEbh/Ko1d+avq0sfvyPw18BZjEiQw7
M+L0GydLW6tXLYOrD+ZTASksdDhHbK0iuFr1Gca2cZi0Dl+1XF9sy70ITTqzCDIA
8qj1JrPmRYI0KXCfiSSke0W9fU18IdxVX3I7XezVqBl0ICzsroN5wliCkmEnVOU9
LQkw0fyYr7gev4GFEGSJ7WzfPxci0d6J9pYnafFlDEE28WpKz/cyOzYuSghX5lmG
ISHIVNIM6lqNgXyQirConvhrlg60XAyw5k5jqAYZbe78T+dqhH7lr9sDi7c4XxkG
syeiOOyjpiBMZv1rSjIUapi8AfJHyqH7B6KyTgiulIy31x8Dji62925B63CSahkM
AminAq0lYkqbhIcqEr4sW0JQ/oW3iX4cZ3TJXTUL+vFByR0ZF81tgQcXufhrcvBs
ViNugcX0q1vDX3lZsm9L6UHXN2yhUb36sgreUvbGfwnE79tuR/eUnAukTWBfXau/
TWnyDiQn1CjZcfHB+YAPYZNyUHHqjoIJwzfJLwnsaHgFA80YcSwfSC9kcogCawK1
NCyfs29lAccWsrOul5iARJu8pLw1X//UfDEmVNrBD+1hveKYMrjjiQXnPoVVnNhc
J5T2q5S1QeO05+wf8WaZ7MbRNzHLj0A3gYHSVPWNclxFwsQjqCHHZS2qz8MTX+f6
W6/eZuvmMbG7
=w8QT
-----END PGP SIGNATURE-----
Merge tag 'pm-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The amd-pstate cpufreq driver gets the majority of changes this time.
They are mostly fixes and cleanups, but one of them causes it to
become the default cpufreq driver on some AMD server platforms.
Apart from that, the menu cpuidle governor is modified to not use
iowait any more, the intel_idle gets a custom C-states table for
Granite Rapids Xeon D, and the intel_pstate driver will use a more
aggressive Balance- performance default EPP value on Granite Rapids
now.
There are also some fixes, cleanups and tooling updates.
Specifics:
- Update the amd-pstate driver to set the initial scaling frequency
policy lower bound to be the lowest non-linear frequency (Dhananjay
Ugwekar)
- Enable amd-pstate by default on servers starting with newer AMD
Epyc processors (Swapnil Sapkal)
- Align more codepaths between shared memory and MSR designs in
amd-pstate (Dhananjay Ugwekar)
- Clean up amd-pstate code to rename functions and remove redundant
calls (Dhananjay Ugwekar, Mario Limonciello)
- Do other assorted fixes and cleanups in amd-pstate (Dhananjay
Ugwekar and Mario Limonciello)
- Change the Balance-performance EPP value for Granite Rapids in the
intel_pstate driver to a more performance-biased one (Srinivas
Pandruvada)
- Simplify MSR read on the boot CPU in the ACPI cpufreq driver (Chang
S. Bae)
- Ensure sugov_eas_rebuild_sd() is always called when sugov_init()
succeeds to always enforce sched domains rebuild in case EAS needs
to be enabled (Christian Loehle)
- Switch cpufreq back to platform_driver::remove() (Uwe Kleine-König)
- Use proper frequency unit names in cpufreq (Marcin Juszkiewicz)
- Add a built-in idle states table for Granite Rapids Xeon D to the
intel_idle driver (Artem Bityutskiy)
- Fix some typos in comments in the cpuidle core and drivers (Shen
Lichuan)
- Remove iowait influence from the menu cpuidle governor (Christian
Loehle)
- Add min/max available performance state limits to the Energy Model
management code (Lukasz Luba)
- Update pm-graph to v5.13 (Todd Brandt)
- Add documentation for some recently introduced cpupower utility
options (Tor Vic)
- Make cpupower inform users where cpufreq-bench.conf should be
located when opening it fails (Peng Fan)
- Allow overriding cross-compiling env params in cpupower (Peng Fan)
- Add compile_commands.json to .gitignore in cpupower (John B. Wyatt
IV)
- Improve disable c_state block in cpupower bindings and add a test
to confirm that CPU state is disabled to it (John B. Wyatt IV)
- Add Chinese Simplified translation to cpupower (Kieran Moy)
- Add checks for xgettext and msgfmt to cpupower (Siddharth Menon)"
* tag 'pm-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (38 commits)
cpufreq: intel_pstate: Update Balance-performance EPP for Granite Rapids
cpufreq: ACPI: Simplify MSR read on the boot CPU
sched/cpufreq: Ensure sd is rebuilt for EAS check
intel_idle: add Granite Rapids Xeon D support
PM: EM: Add min/max available performance state limits
cpufreq/amd-pstate: Move registration after static function call update
cpufreq/amd-pstate: Push adjust_perf vfunc init into cpu_init
cpufreq/amd-pstate: Align offline flow of shared memory and MSR based systems
cpufreq/amd-pstate: Call cppc_set_epp_perf in the reenable function
cpufreq/amd-pstate: Do not attempt to clear MSR_AMD_CPPC_ENABLE
cpufreq/amd-pstate: Rename functions that enable CPPC
cpufreq/amd-pstate-ut: Add fix for min freq unit test
amd-pstate: Switch to amd-pstate by default on some Server platforms
amd-pstate: Set min_perf to nominal_perf for active mode performance gov
cpufreq/amd-pstate: Remove the redundant amd_pstate_set_driver() call
cpufreq/amd-pstate: Remove the switch case in amd_pstate_init()
cpufreq/amd-pstate: Call amd_pstate_set_driver() in amd_pstate_register_driver()
cpufreq/amd-pstate: Call amd_pstate_register() in amd_pstate_init()
cpufreq/amd-pstate: Set the initial min_freq to lowest_nonlinear_freq
cpufreq/amd-pstate: Remove the redundant verify() function
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZzchMwAKCRCRxhvAZXjc
okICAP4h6tDl7dgTv8GkL0tgaHi/36m+ilctXbEtIe9fbkc/fQD8D5t6jYaz47gu
zVY7qOrtQOQ/diNavzxyky99Uh3dKgo=
=lwkw
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.13.usercopy' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull copy_struct_to_user helper from Christian Brauner:
"This adds a copy_struct_to_user() helper which is a companion helper
to the already widely used copy_struct_from_user().
It copies a struct from kernel space to userspace, in a way that
guarantees backwards-compatibility for struct syscall arguments as
long as future struct extensions are made such that all new fields are
appended to the old struct, and zeroed-out new fields have the same
meaning as the old struct.
The first user is sched_getattr() system call but the new extensible
pidfs ioctl will be ported to it as well"
* tag 'vfs-6.13.usercopy' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
sched_getattr: port to copy_struct_to_user
uaccess: add copy_struct_to_user helper
ops.cpu_acquire() was being invoked with the wrong kfunc mask allowing the
operation to call kfuncs which shouldn't be allowed. Fix it by using
SCX_KF_REST instead, which is trivial and low risk.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZzamXw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGRReAP4/JQ1mKkJv+9nTZkW9OcFFHGVVhrprOUEEFk5j
pmHwPAD8DTBMMS/BCQOoXDdiB9uU7ut6M8VdsIj1jmJkMja+eQI=
=942J
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12-rc7-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext fix from Tejun Heo:
"One more fix for v6.12-rc7
ops.cpu_acquire() was being invoked with the wrong kfunc mask allowing
the operation to call kfuncs which shouldn't be allowed. Fix it by
using SCX_KF_REST instead, which is trivial and low risk"
* tag 'sched_ext-for-6.12-rc7-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext:
sched_ext: ops.cpu_acquire() should be called with SCX_KF_REST
scx_next_task_picked() has been replaced with siwtch_class(), but comment
is still referencing old one, so replace it.
Signed-off-by: Zhao Mengmeng <zhaomengmeng@kylinos.cn>
Signed-off-by: Tejun Heo <tj@kernel.org>
ops.cpu_acquire() is currently called with 0 kf_maks which is interpreted as
SCX_KF_UNLOCKED which allows all unlocked kfuncs, but ops.cpu_acquire() is
called from balance_one() under the rq lock and should only be allowed call
kfuncs that are safe under the rq lock. Update it to use SCX_KF_REST.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Vernet <void@manifault.com>
Cc: Zhao Mengmeng <zhaomzhao@126.com>
Link: http://lkml.kernel.org/r/ZzYvf2L3rlmjuKzh@slm.duckdns.org
Fixes: 245254f708 ("sched_ext: Implement sched_ext_ops.cpu_acquire/release()")
Ensure sugov_eas_rebuild_sd() is always called when sugov_init()
succeeds. The out goto initialized sugov without forcing the rebuild.
Previously the missing call to sugov_eas_rebuild_sd() could lead to EAS
not being enabled on boot when it should have been, because it requires
all policies to be controlled by schedutil while they might not have
been initialized yet.
Fixes: e7a1b32e43 ("cpufreq: Rebuild sched-domains when removing cpufreq driver")
Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Link: https://patch.msgid.link/35e572d9-1152-406a-9e34-2525f7548af9@arm.com
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- The fair sched class currently has a bug where its balance() returns true
telling the sched core that it has tasks to run but then NULL from
pick_task(). This makes sched core call sched_ext's pick_task() without
preceding balance() which can lead to stalls in partial mode. For now,
work around by detecting the condition and forcing the CPU to go through
another scheduling cycle.
- Add a missing newline to an error message and fix drgn introspection tool
which went out of sync.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZzI8sw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGb5KAP40b/o6TyAFDG+Hn6GxyxQT7rcAUMXsdB2bcEpg
/IjmzQEAwbHU5KP5vQXV6XHv+2V7Rs7u6ZqFtDnL88N0A9hf3wk=
=7hL8
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext fixes from Tejun Heo:
- The fair sched class currently has a bug where its balance() returns
true telling the sched core that it has tasks to run but then NULL
from pick_task(). This makes sched core call sched_ext's pick_task()
without preceding balance() which can lead to stalls in partial mode.
For now, work around by detecting the condition and forcing the CPU
to go through another scheduling cycle.
- Add a missing newline to an error message and fix drgn introspection
tool which went out of sync.
* tag 'sched_ext-for-6.12-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext:
sched_ext: Handle cases where pick_task_scx() is called without preceding balance_scx()
sched_ext: Update scx_show_state.py to match scx_ops_bypass_depth's new type
sched_ext: Add a missing newline at the end of an error message
In sched_ext API, a repeatedly reported pain point is the overuse of the
verb "dispatch" and confusion around "consume":
- ops.dispatch()
- scx_bpf_dispatch[_vtime]()
- scx_bpf_consume()
- scx_bpf_dispatch[_vtime]_from_dsq*()
This overloading of the term is historical. Originally, there were only
built-in DSQs and moving a task into a DSQ always dispatched it for
execution. Using the verb "dispatch" for the kfuncs to move tasks into these
DSQs made sense.
Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be
able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was
from a non-local DSQ to a local DSQ and this operation was named "consume".
This was already confusing as a task could be dispatched to a user DSQ from
ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch().
Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse
as "dispatch" in this context meant moving a task to an arbitrary DSQ from a
user DSQ.
Clean up the API with the following renames:
1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]()
2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local()
3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
This patch performs the third set of renames. Compatibility is maintained
by:
- The previous kfunc names are still provided by the kernel so that old
binaries can run. Kernel generates a warning when the old names are used.
- compat.bpf.h provides wrappers for the new names which automatically fall
back to the old names when running on older kernels. They also trigger
build error if old names are used for new builds.
- scx_bpf_dispatch[_vtime]_from_dsq*() were already wrapped in __COMPAT
macros as they were introduced during v6.12 cycle. Wrap new API in
__COMPAT macros too and trigger build errors on both __COMPAT prefixed and
naked usages of the old names.
The compat features will be dropped after v6.15.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Acked-by: Johannes Bechberger <me@mostlynerdless.de>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Dan Schatzberg <dschatzberg@meta.com>
Cc: Ming Yang <yougmark94@gmail.com>
In sched_ext API, a repeatedly reported pain point is the overuse of the
verb "dispatch" and confusion around "consume":
- ops.dispatch()
- scx_bpf_dispatch[_vtime]()
- scx_bpf_consume()
- scx_bpf_dispatch[_vtime]_from_dsq*()
This overloading of the term is historical. Originally, there were only
built-in DSQs and moving a task into a DSQ always dispatched it for
execution. Using the verb "dispatch" for the kfuncs to move tasks into these
DSQs made sense.
Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be
able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was
from a non-local DSQ to a local DSQ and this operation was named "consume".
This was already confusing as a task could be dispatched to a user DSQ from
ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch().
Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse
as "dispatch" in this context meant moving a task to an arbitrary DSQ from a
user DSQ.
Clean up the API with the following renames:
1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]()
2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local()
3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
This patch performs the second rename. Compatibility is maintained by:
- The previous kfunc names are still provided by the kernel so that old
binaries can run. Kernel generates a warning when the old names are used.
- compat.bpf.h provides wrappers for the new names which automatically fall
back to the old names when running on older kernels. They also trigger
build error if old names are used for new builds.
The compat features will be dropped after v6.15.
v2: Comment and documentation updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Acked-by: Johannes Bechberger <me@mostlynerdless.de>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Dan Schatzberg <dschatzberg@meta.com>
Cc: Ming Yang <yougmark94@gmail.com>
In sched_ext API, a repeatedly reported pain point is the overuse of the
verb "dispatch" and confusion around "consume":
- ops.dispatch()
- scx_bpf_dispatch[_vtime]()
- scx_bpf_consume()
- scx_bpf_dispatch[_vtime]_from_dsq*()
This overloading of the term is historical. Originally, there were only
built-in DSQs and moving a task into a DSQ always dispatched it for
execution. Using the verb "dispatch" for the kfuncs to move tasks into these
DSQs made sense.
Later, user DSQs were added and scx_bpf_dispatch[_vtime]() updated to be
able to insert tasks into any DSQ. The only allowed DSQ to DSQ transfer was
from a non-local DSQ to a local DSQ and this operation was named "consume".
This was already confusing as a task could be dispatched to a user DSQ from
ops.enqueue() and then the DSQ would have to be consumed in ops.dispatch().
Later addition of scx_bpf_dispatch_from_dsq*() made the confusion even worse
as "dispatch" in this context meant moving a task to an arbitrary DSQ from a
user DSQ.
Clean up the API with the following renames:
1. scx_bpf_dispatch[_vtime]() -> scx_bpf_dsq_insert[_vtime]()
2. scx_bpf_consume() -> scx_bpf_dsq_move_to_local()
3. scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*()
This patch performs the first set of renames. Compatibility is maintained
by:
- The previous kfunc names are still provided by the kernel so that old
binaries can run. Kernel generates a warning when the old names are used.
- compat.bpf.h provides wrappers for the new names which automatically fall
back to the old names when running on older kernels. They also trigger
build error if old names are used for new builds.
The compat features will be dropped after v6.15.
v2: Documentation updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
Acked-by: Johannes Bechberger <me@mostlynerdless.de>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Dan Schatzberg <dschatzberg@meta.com>
Cc: Ming Yang <yougmark94@gmail.com>
sched_ext dispatches tasks from the BPF scheduler from balance_scx() and
thus every pick_task_scx() call must be preceded by balance_scx(). While
this usually holds, due to a bug, there are cases where the fair class's
balance() returns true indicating that it has tasks to run on the CPU and
thus terminating balance() calls but fails to actually find the next task to
run when pick_task() is called. In such cases, pick_task_scx() can be called
without preceding balance_scx().
Detect this condition using SCX_RQ_BAL_PENDING flags. If detected, keep
running the previous task if possible and avoid stalling from entering idle
without balancing.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/Ztj_h5c2LYsdXYbA@slm.duckdns.org
4c30f5ce4f ("sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()")
added four kfuncs for dispatching while iterating. They are allowed from the
dispatch and unlocked contexts but two of the kfuncs were only added in the
dispatch section. Add missing declarations in the unlocked section.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 4c30f5ce4f ("sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()")
Update the comments in sched_ext_ops to clarify this table is for
a BPF scheduler and a userland scheduler should also rely on the
sched_ext_ops table through the BPF scheduler.
Signed-off-by: Changwoo Min <changwoo@igalia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
On 2 x Intel Sapphire Rapids machines with 224 logical CPUs, a poorly
behaving BPF scheduler can live-lock the system by making multiple CPUs bang
on the same DSQ to the point where soft-lockup detection triggers before
SCX's own watchdog can take action. It also seems possible that the machine
can be live-locked enough to prevent scx_ops_helper, which is an RT task,
from running in a timely manner.
Implement scx_softlockup() which is called when three quarters of
soft-lockup threshold has passed. The function immediately enables the ops
breather and triggers an ops error to initiate ejection of the BPF
scheduler.
The previous and this patch combined enable the kernel to reliably recover
the system from live-lock conditions that can be triggered by a poorly
behaving BPF scheduler on Intel dual socket systems.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly
banging on the same DSQ on a large NUMA system to the point where switching
to the bypass mode can take a long time. Turning on the bypass mode requires
dequeueing and re-enqueueing currently runnable tasks, if the DSQs that they
are on are live-locked, this can take tens of seconds cascading into other
failures. This was observed on 2 x Intel Sapphire Rapids machines with 224
logical CPUs.
Inject artifical delays while the bypass mode is switching to guarantee
timely completion.
While at it, move __scx_ops_bypass_lock into scx_ops_bypass() and rename it
to bypass_lock.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Valentin Andrei <vandrei@meta.com>
Reported-by: Patrick Lu <patlu@meta.com>
Pull sched_ext/for-6.12-fixes to receive 0e7ffff1b8 ("scx: Fix raciness in
scx_ops_bypass()"). Planned updates for scx_ops_bypass() depends on it.
Signed-off-by: Tejun Heo <tj@kernel.org>
There is no reason to use a bitwise AND when checking the conditions to
enable NUMA optimization for the built-in CPU idle selection policy, so
use a logical AND instead.
Fixes: f6ce6b9493 ("sched_ext: Do not enable LLC/NUMA optimizations when domains overlap")
Reported-by: Nathan Chancellor <nathan@kernel.org>
Closes: https://lore.kernel.org/lkml/20241108181753.GA2681424@thelio-3990X/
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When the LLC and NUMA domains fully overlap, enabling both optimizations
in the built-in idle CPU selection policy is redundant, as it leads to
searching for an idle CPU within the same domain twice.
Likewise, if all online CPUs are within a single LLC domain, LLC
optimization is unnecessary.
Therefore, detect overlapping domains and enable topology optimizations
only when necessary.
Moreover, rely on the online CPUs for this detection logic, instead of
using the possible CPUs.
Fixes: 860a45219b ("sched_ext: Introduce NUMA awareness to the default idle selection policy")
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
hrtimer_setup_on_stack() takes the callback function pointer as argument
and initializes the timer completely.
Replace hrtimer_init_on_stack() and the open coded initialization of
hrtimer::function with the new setup mechanism.
The conversion was done with Coccinelle.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/17f9421fed6061df4ad26a4cc91873d2c078cb0f.1730386209.git.namcao@linutronix.de
In order to enable PREEMPT_DYNAMIC for PREEMPT_RT, remove PREEMPT_RT
from the 'Preemption Model' choice. Strictly speaking PREEMPT_RT is
not a change in how preemption works, but rather it makes a ton more
code preemptible.
Notably, take away NONE and VOLUNTARY options for PREEMPT_RT, they make
no sense (but are techincally possible).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20241007075055.441622332@infradead.org
Change fair to use resched_curr_lazy(), which, when the lazy
preemption model is selected, will set TIF_NEED_RESCHED_LAZY.
This LAZY bit will be promoted to the full NEED_RESCHED bit on tick.
As such, the average delay between setting LAZY and actually
rescheduling will be TICK_NSEC/2.
In short, Lazy preemption will delay preemption for fair class but
will function as Full preemption for all the other classes, most
notably the realtime (RR/FIFO/DEADLINE) classes.
The goal is to bridge the performance gap with Voluntary, such that we
might eventually remove that option entirely.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20241007075055.331243614@infradead.org
Add the basic infrastructure to split the TIF_NEED_RESCHED bit in two.
Either bit will cause a resched on return-to-user, but only
TIF_NEED_RESCHED will drive IRQ preemption.
No behavioural change intended.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20241007075055.219540785@infradead.org
Instead of solving the underlying problem of the double invocation of
__sched_fork() for idle tasks, sched-ext decided to hack around the issue
by partially clearing out the entity struct to preserve the already
enqueued node. A provided analysis and solution has been ignored for four
months.
Now that someone else has taken care of cleaning it up, remove the
disgusting hack and clear out the full structure. Remove the comment in the
structure declaration as well, as there is no requirement for @node being
the last element anymore.
Fixes: f0e1a0643a ("sched_ext: Implement BPF extensible scheduler class")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/87ldy82wkc.ffs@tglx
Idle tasks are initialized via __sched_fork() twice:
fork_idle()
copy_process()
sched_fork()
__sched_fork()
init_idle()
__sched_fork()
Instead of cleaning this up, sched_ext hacked around it. Even when analyis
and solution were provided in a discussion, nobody cared to clean this up.
init_idle() is also invoked from sched_init() to initialize the boot CPU's
idle task, which requires the __sched_fork() invocation. But this can be
trivially solved by invoking __sched_fork() before init_idle() in
sched_init() and removing the __sched_fork() invocation from init_idle().
Do so and clean up the comments explaining this historical leftover.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241028103142.359584747@linutronix.de
- Plug a race between pick_next_task_fair() and try_to_wake_up() where
both try to write to the same task, even though both paths hold a
runqueue lock, but obviously from different runqueues.
The problem is that the store to task::on_rq in __block_task() is
visible to try_to_wake_up() which assumes that the task is not queued.
Both sides then operate on the same task.
Cure it by rearranging __block_task() so the the store to task::on_rq is
the last operation on the task.
- Prevent a potential NULL pointer dereference in task_numa_work()
task_numa_work() iterates the VMAs of a process. A concurrent unmap of
the address space can result in a NULL pointer return from vma_next()
which is unchecked.
Add the missing NULL pointer check to prevent this.
- Operate on the correct scheduler policy in task_should_scx()
task_should_scx() returns true when a task should be handled by sched
EXT. It checks the tasks scheduling policy.
This fails when the check is done before a policy has been set.
Cure it by handing the policy into task_should_scx() so it operates
on the requested value.
- Add the missing handling of sched EXT in the delayed dequeue
mechanism. This was simply forgotten.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmcnTqATHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoX/aD/4yvskeG9i7wAj2NOdDTAs1K0gLURt+
nHDb1YkoIOXOfanaG7ZdBWb4sYnsnLX/KIhVsDQiXACFr6G0IjQ1zaN1iRtEkH79
5BfVi98gAXdFU3y+EGqyaqiAp7MFOBTmsfJi5095fX0L+2aViSAjDEvHzvvC/hXD
tmq47vFQEgIZPSxljEaKPaNmyDM+geusv5lX/lABH5MG0fYsT85VV6BQ2T1LsN1O
WFBLD/uPEOSXumyZW8nV8yE2PioLDJz8W+uSnr38/HCH99mtJApqZyskaagKtr0g
vLhOfoaYVR/j5ODUk6LExZ8zy140zDzUWzC5+RNnyb8jQf/Lx88fTNZY8/Wsm5m9
oKtoiGzkL0LG/c05Cjh/vqReK26qILK4+ynDGaowDmTlUTS2jeNZL1ABlIwWkaLP
5TDegJPkoUA1Z4YegxtRFROGHp1J+lfbqz537bghMaqdJXMaG84qjSszsPz9NbS9
F7K63JKjfXAF6N8bhKvZk4jAbD97EYf3B0o8E69TjoZxaiuKf00xK7HGWmuQD3u3
lOHkfIZzf5b7ELNgcketCYsbJvxbI4oQrp/9V425ORSr1Ih2GxCT51/x/NlFHoEH
ujIjAe2YQyLhb26M0RG8Xao3BPT7RGMR058C8lwxtPLuPNIwB8MqCsXmU9xlEypg
iexGnsj6zXTddg==
=4mie
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
- Plug a race between pick_next_task_fair() and try_to_wake_up() where
both try to write to the same task, even though both paths hold a
runqueue lock, but obviously from different runqueues.
The problem is that the store to task::on_rq in __block_task() is
visible to try_to_wake_up() which assumes that the task is not
queued. Both sides then operate on the same task.
Cure it by rearranging __block_task() so the the store to task::on_rq
is the last operation on the task.
- Prevent a potential NULL pointer dereference in task_numa_work()
task_numa_work() iterates the VMAs of a process. A concurrent unmap
of the address space can result in a NULL pointer return from
vma_next() which is unchecked.
Add the missing NULL pointer check to prevent this.
- Operate on the correct scheduler policy in task_should_scx()
task_should_scx() returns true when a task should be handled by sched
EXT. It checks the tasks scheduling policy.
This fails when the check is done before a policy has been set.
Cure it by handing the policy into task_should_scx() so it operates
on the requested value.
- Add the missing handling of sched EXT in the delayed dequeue
mechanism. This was simply forgotten.
* tag 'sched-urgent-2024-11-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/ext: Fix scx vs sched_delayed
sched: Pass correct scheduling policy to __setscheduler_class
sched/numa: Fix the potential null pointer dereference in task_numa_work()
sched: Fix pick_next_task_fair() vs try_to_wake_up() race
- Instances of scx_ops_bypass() could race each other leading to
misbehavior. Fix by protecting the operation with a spinlock.
- selftest and userspace header fixes.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZyF/5Q4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGRi+AP4+jGUz+O1LS0bCNj44Xlr0v6kci5dfJR7TlBv5
hwROcgEA84i7nRq6oJ1IkK7ItLbZYwgZyxqdn0Pgsq+oMWhgAwE=
=R766
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext fixes from Tejun Heo:
- Instances of scx_ops_bypass() could race each other leading to
misbehavior. Fix by protecting the operation with a spinlock.
- selftest and userspace header fixes
* tag 'sched_ext-for-6.12-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext:
sched_ext: Fix enq_last_no_enq_fails selftest
sched_ext: Make cast_mask() inline
scx: Fix raciness in scx_ops_bypass()
scx: Fix exit selftest to use custom DSQ
sched_ext: Fix function pointer type mismatches in BPF selftests
selftests/sched_ext: add order-only dependency of runner.o on BPFOBJ
Similarly to commit dfa4ed29b1 ("sched_ext: Introduce LLC awareness to
the default idle selection policy"), extend the built-in idle CPU
selection policy to also prioritize CPUs within the same NUMA node.
With this change applied, the built-in CPU idle selection policy follows
this logic:
- always prioritize CPUs from fully idle SMT cores,
- select the same CPU if possible,
- select a CPU within the same LLC domain,
- select a CPU within the same NUMA node.
Both NUMA and LLC awareness features are enabled only when the system
has multiple NUMA nodes or multiple LLC domains.
In the future, we may want to improve the NUMA node selection to account
the node distance from prev_cpu. Currently, the logic only tries to keep
tasks running on the same NUMA node. If all CPUs within a node are busy,
the next NUMA node is chosen randomly.
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Commit 98442f0ccd ("sched: Fix delayed_dequeue vs
switched_from_fair()") overlooked that __setscheduler_prio(), now
__setscheduler_class() relies on p->policy for task_should_scx(), and
moved the call before __setscheduler_params() updates it, causing it
to be using the old p->policy value.
Resolve this by changing task_should_scx() to take the policy itself
instead of a task pointer, such that __sched_setscheduler() can pass
in the updated policy.
Fixes: 98442f0ccd ("sched: Fix delayed_dequeue vs switched_from_fair()")
Signed-off-by: Aboorva Devarajan <aboorvad@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
What psi needs to do on each enqueue and dequeue has gotten more
subtle, and the generic sched code trying to distill this into a bool
for the callbacks is awkward.
Pass the flags directly and let psi parse them. For that to work, the
#include "stats.h" (which has the psi callback implementations) needs
to be below the flag definitions in "sched.h". Move that section
further down, next to some of the other accounting stuff.
This also puts the ENQUEUE_SAVE/RESTORE branch behind the psi jump
label, slightly reducing overhead when PSI=y but runtime disabled.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241014144358.GB1021@cmpxchg.org
When running stress-ng-vm-segv test, we found a null pointer dereference
error in task_numa_work(). Here is the backtrace:
[323676.066985] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
......
[323676.067108] CPU: 35 PID: 2694524 Comm: stress-ng-vm-se
......
[323676.067113] pstate: 23401009 (nzCv daif +PAN -UAO +TCO +DIT +SSBS BTYPE=--)
[323676.067115] pc : vma_migratable+0x1c/0xd0
[323676.067122] lr : task_numa_work+0x1ec/0x4e0
[323676.067127] sp : ffff8000ada73d20
[323676.067128] x29: ffff8000ada73d20 x28: 0000000000000000 x27: 000000003e89f010
[323676.067130] x26: 0000000000080000 x25: ffff800081b5c0d8 x24: ffff800081b27000
[323676.067133] x23: 0000000000010000 x22: 0000000104d18cc0 x21: ffff0009f7158000
[323676.067135] x20: 0000000000000000 x19: 0000000000000000 x18: ffff8000ada73db8
[323676.067138] x17: 0001400000000000 x16: ffff800080df40b0 x15: 0000000000000035
[323676.067140] x14: ffff8000ada73cc8 x13: 1fffe0017cc72001 x12: ffff8000ada73cc8
[323676.067142] x11: ffff80008001160c x10: ffff000be639000c x9 : ffff8000800f4ba4
[323676.067145] x8 : ffff000810375000 x7 : ffff8000ada73974 x6 : 0000000000000001
[323676.067147] x5 : 0068000b33e26707 x4 : 0000000000000001 x3 : ffff0009f7158000
[323676.067149] x2 : 0000000000000041 x1 : 0000000000004400 x0 : 0000000000000000
[323676.067152] Call trace:
[323676.067153] vma_migratable+0x1c/0xd0
[323676.067155] task_numa_work+0x1ec/0x4e0
[323676.067157] task_work_run+0x78/0xd8
[323676.067161] do_notify_resume+0x1ec/0x290
[323676.067163] el0_svc+0x150/0x160
[323676.067167] el0t_64_sync_handler+0xf8/0x128
[323676.067170] el0t_64_sync+0x17c/0x180
[323676.067173] Code: d2888001 910003fd f9000bf3 aa0003f3 (f9401000)
[323676.067177] SMP: stopping secondary CPUs
[323676.070184] Starting crashdump kernel...
stress-ng-vm-segv in stress-ng is used to stress test the SIGSEGV error
handling function of the system, which tries to cause a SIGSEGV error on
return from unmapping the whole address space of the child process.
Normally this program will not cause kernel crashes. But before the
munmap system call returns to user mode, a potential task_numa_work()
for numa balancing could be added and executed. In this scenario, since the
child process has no vma after munmap, the vma_next() in task_numa_work()
will return a null pointer even if the vma iterator restarts from 0.
Recheck the vma pointer before dereferencing it in task_numa_work().
Fixes: 214dbc4281 ("sched: convert to vma iterator")
Signed-off-by: Shawn Wang <shawnwang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v6.2+
Link: https://lkml.kernel.org/r/20241025022208.125527-1-shawnwang@linux.alibaba.com
ops.dispatch() and ops.yield() may be fed a NULL task_struct pointer.
set_arg_maybe_null() is used to tell the verifier that they should be NULL
checked before being dereferenced. BPF now has an a lot prettier way to
express this - tagging arguments in CFI stubs with __nullable. Replace
set_arg_maybe_null() with __nullable CFI stub tags.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
CFI stubs can be used to tag arguments with __nullable (and possibly other
tags in the future) but for that to work the CFI stubs must have names that
are recognized by BPF. Rename them.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Rely on the scheduler topology information to implement basic LLC
awareness in the sched_ext build-in idle selection policy.
This allows schedulers using the built-in policy to make more informed
decisions when selecting an idle CPU in systems with multiple LLCs, such
as NUMA systems or chiplet-based architectures, and it helps keep tasks
within the same LLC domain, thereby improving cache locality.
For efficiency, LLC awareness is applied only to tasks that can run on
all the CPUs in the system for now. If a task's affinity is modified
from user space, it's the responsibility of user space to choose the
appropriate optimized scheduling domain.
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Update ops.select_cpu() documentation to clarify that this method is not
called for tasks that are restricted to run on a single CPU, as these
tasks do not have the option to select a different CPU.
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Syzkaller robot reported KCSAN tripping over the
ASSERT_EXCLUSIVE_WRITER(p->on_rq) in __block_task().
The report noted that both pick_next_task_fair() and try_to_wake_up()
were concurrently trying to write to the same p->on_rq, violating the
assertion -- even though both paths hold rq->__lock.
The logical consequence is that both code paths end up holding a
different rq->__lock. And looking through ttwu(), this is possible
when the __block_task() 'p->on_rq = 0' store is visible to the ttwu()
'p->on_rq' load, which then assumes the task is not queued and
continues to migrate it.
Rearrange things such that __block_task() releases @p with the store
and no code thereafter will use @p again.
Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Reported-by: syzbot+0ec1e96c2cdf5c0e512a@syzkaller.appspotmail.com
Reported-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20241023093641.GE16066@noisy.programming.kicks-ass.net
In the sched_ext built-in idle CPU selection logic, when handling a
WF_SYNC wakeup, we always attempt to migrate the task to the waker's
CPU, as the waker is expected to yield the CPU after waking the task.
However, it may be preferable to keep the task on its previous CPU if
the waker's CPU is cache-affine.
The same approach is also used by the fair class and in other scx
schedulers, like scx_rusty and scx_bpfland.
Therefore, apply the same logic to the built-in idle CPU selection
policy as well.
Signed-off-by: Andrea Righi <andrea.righi@linux.dev>
Signed-off-by: Tejun Heo <tj@kernel.org>
Conflicts:
kernel/sched/ext.c
There's a context conflict between this upstream commit:
3fdb9ebcec sched_ext: Start schedulers with consistent p->scx.slice values
... and this fix in sched/urgent:
98442f0ccd sched: Fix delayed_dequeue vs switched_from_fair()
Resolve it.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- More issues reported in the enable/disable paths on large machines with
many tasks due to scx_tasks_lock being held too long. Break up the task
iterations.
- Remove ops.select_cpu() dependency in bypass mode so that a misbehaving
implementation can't live-lock the machine by pushing all tasks to few
CPUs in bypass mode.
- Other misc fixes.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZw7SMw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGU6+AQDZKNsyRw0c8+rd7eASAtCzvzBU1KGf3RPrsbNF
pb3IGgEA4/uVBlVny10ZyeKaQ4A3L2G4ROyJwNEygUvhkvbfcgk=
=z7d9
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12-rc3-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext fixes from Tejun Heo:
- More issues reported in the enable/disable paths on large machines
with many tasks due to scx_tasks_lock being held too long. Break up
the task iterations
- Remove ops.select_cpu() dependency in bypass mode so that a
misbehaving implementation can't live-lock the machine by pushing all
tasks to few CPUs in bypass mode
- Other misc fixes
* tag 'sched_ext-for-6.12-rc3-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext:
sched_ext: Remove unnecessary cpu_relax()
sched_ext: Don't hold scx_tasks_lock for too long
sched_ext: Move scx_tasks_lock handling into scx_task_iter helpers
sched_ext: bypass mode shouldn't depend on ops.select_cpu()
sched_ext: Move scx_buildin_idle_enabled check to scx_bpf_select_cpu_dfl()
sched_ext: Start schedulers with consistent p->scx.slice values
Revert "sched_ext: Use shorter slice while bypassing"
sched_ext: use correct function name in pick_task_scx() warning message
selftests: sched_ext: Add sched_ext as proper selftest target
As described in commit b07996c7ab ("sched_ext: Don't hold
scx_tasks_lock for too long"), we're doing a cond_resched() every 32
calls to scx_task_iter_next() to avoid RCU and other stalls. That commit
also added a cpu_relax() to the codepath where we drop and reacquire the
lock, but as Waiman described in [0], cpu_relax() should only be
necessary in busy loops to avoid pounding on a cacheline (or to allow a
hypertwin to more fully utilize a core).
Let's remove the unnecessary cpu_relax().
[0]: https://lore.kernel.org/all/35b3889b-904a-4d26-981f-c8aa1557a7c7@redhat.com/
Cc: Waiman Long <llong@redhat.com>
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Let's define the "scheduling context" as all the scheduler state
in task_struct for the task chosen to run, which we'll call the
donor task, and the "execution context" as all state required to
actually run the task.
Currently both are intertwined in task_struct. We want to
logically split these such that we can use the scheduling
context of the donor task selected to be scheduled, but use
the execution context of a different task to actually be run.
To this purpose, introduce rq->donor field to point to the
task_struct chosen from the runqueue by the scheduler, and will
be used for scheduler state, and preserve rq->curr to indicate
the execution context of the task that will actually be run.
This patch introduces the donor field as a union with curr, so it
doesn't cause the contexts to be split yet, but adds the logic to
handle everything separately.
[add additional comments and update more sched_class code to use
rq::proxy]
[jstultz: Rebased and resolved minor collisions, reworked to use
accessors, tweaked update_curr_common to use rq_proxy fixing rt
scheduling issues]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Metin Kaya <metin.kaya@arm.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Metin Kaya <metin.kaya@arm.com>
Link: https://lore.kernel.org/r/20241009235352.1614323-8-jstultz@google.com
As we're going to re-use the deactivation logic,
split it into a helper.
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Metin Kaya <metin.kaya@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Metin Kaya <metin.kaya@arm.com>
Link: https://lore.kernel.org/r/20241009235352.1614323-7-jstultz@google.com
This patch consolidates rt and deadline pick_*_task functions to
a task_is_pushable() helper
This patch was broken out from a larger chain migration
patch originally by Connor O'Brien.
[jstultz: split out from larger chain migration patch,
renamed helper function]
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Metin Kaya <metin.kaya@arm.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Christian Loehle <christian.loehle@arm.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Metin Kaya <metin.kaya@arm.com>
Link: https://lore.kernel.org/r/20241009235352.1614323-6-jstultz@google.com
Switch logic that deactivates, sets the task cpu,
and reactivates a task on a different rq to use a
helper that will be later extended to push entire
blocked task chains.
This patch was broken out from a larger chain migration
patch originally by Connor O'Brien.
[jstultz: split out from larger chain migration patch]
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Metin Kaya <metin.kaya@arm.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Metin Kaya <metin.kaya@arm.com>
Link: https://lore.kernel.org/r/20241009235352.1614323-5-jstultz@google.com
commit 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")
introduced a per-mm/cpu current concurrency id (mm_cid), which keeps
a reference to the concurrency id allocated for each CPU. This reference
expires shortly after a 100ms delay.
These per-CPU references keep the per-mm-cid data cache-local in
situations where threads are running at least once on each CPU within
each 100ms window, thus keeping the per-cpu reference alive.
However, intermittent workloads behaving in bursts spaced by more than
100ms on each CPU exhibit bad cache locality and degraded performance
compared to purely per-cpu data indexing, because concurrency IDs are
allocated over various CPUs and cores, therefore losing cache locality
of the associated data.
Introduce the following changes to improve per-mm-cid cache locality:
- Add a "recent_cid" field to the per-mm/cpu mm_cid structure to keep
track of which mm_cid value was last used, and use it as a hint to
attempt re-allocating the same concurrency ID the next time this
mm/cpu needs to allocate a concurrency ID,
- Add a per-mm CPUs allowed mask, which keeps track of the union of
CPUs allowed for all threads belonging to this mm. This cpumask is
only set during the lifetime of the mm, never cleared, so it
represents the union of all the CPUs allowed since the beginning of
the mm lifetime (note that the mm_cpumask() is really arch-specific
and tailored to the TLB flush needs, and is thus _not_ a viable
approach for this),
- Add a per-mm nr_cpus_allowed to keep track of the weight of the
per-mm CPUs allowed mask (for fast access),
- Add a per-mm max_nr_cid to keep track of the highest number of
concurrency IDs allocated for the mm. This is used for expanding the
concurrency ID allocation within the upper bound defined by:
min(mm->nr_cpus_allowed, mm->mm_users)
When the next unused CID value reaches this threshold, stop trying
to expand the cid allocation and use the first available cid value
instead.
Spreading allocation to use all the cid values within the range
[ 0, min(mm->nr_cpus_allowed, mm->mm_users) - 1 ]
improves cache locality while preserving mm_cid compactness within the
expected user limits,
- In __mm_cid_try_get, only return cid values within the range
[ 0, mm->nr_cpus_allowed ] rather than [ 0, nr_cpu_ids ]. This
prevents allocating cids above the number of allowed cpus in
rare scenarios where cid allocation races with a concurrent
remote-clear of the per-mm/cpu cid. This improvement is made
possible by the addition of the per-mm CPUs allowed mask,
- In sched_mm_cid_migrate_to, use mm->nr_cpus_allowed rather than
t->nr_cpus_allowed. This criterion was really meant to compare
the number of mm->mm_users to the number of CPUs allowed for the
entire mm. Therefore, the prior comparison worked fine when all
threads shared the same CPUs allowed mask, but not so much in
scenarios where those threads have different masks (e.g. each
thread pinned to a single CPU). This improvement is made
possible by the addition of the per-mm CPUs allowed mask.
* Benchmarks
Each thread increments 16kB worth of 8-bit integers in bursts, with
a configurable delay between each thread's execution. Each thread run
one after the other (no threads run concurrently). The order of
thread execution in the sequence is random. The thread execution
sequence begins again after all threads have executed. The 16kB areas
are allocated with rseq_mempool and indexed by either cpu_id, mm_cid
(not cache-local), or cache-local mm_cid. Each thread is pinned to its
own core.
Testing configurations:
8-core/1-L3: Use 8 cores within a single L3
24-core/24-L3: Use 24 cores, 1 core per L3
192-core/24-L3: Use 192 cores (all cores in the system)
384-thread/24-L3: Use 384 HW threads (all HW threads in the system)
Intermittent workload delays between threads: 200ms, 10ms.
Hardware:
CPU(s): 384
On-line CPU(s) list: 0-383
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9654 96-Core Processor
Thread(s) per core: 2
Core(s) per socket: 96
Socket(s): 2
Caches (sum of all):
L1d: 6 MiB (192 instances)
L1i: 6 MiB (192 instances)
L2: 192 MiB (192 instances)
L3: 768 MiB (24 instances)
Each result is an average of 5 test runs. The cache-local speedup
is calculated as: (cache-local mm_cid) / (mm_cid).
Intermittent workload delay: 200ms
per-cpu mm_cid cache-local mm_cid cache-local speedup
(ns) (ns) (ns)
8-core/1-L3 1374 19289 1336 14.4x
24-core/24-L3 2423 26721 1594 16.7x
192-core/24-L3 2291 15826 2153 7.3x
384-thread/24-L3 1874 13234 1907 6.9x
Intermittent workload delay: 10ms
per-cpu mm_cid cache-local mm_cid cache-local speedup
(ns) (ns) (ns)
8-core/1-L3 662 756 686 1.1x
24-core/24-L3 1378 3648 1035 3.5x
192-core/24-L3 1439 10833 1482 7.3x
384-thread/24-L3 1503 10570 1556 6.8x
[ This deprecates the prior "sched: NUMA-aware per-memory-map concurrency IDs"
patch series with a simpler and more general approach. ]
[ This patch applies on top of v6.12-rc1. ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/lkml/20240823185946.418340-1-mathieu.desnoyers@efficios.com/
The memory barrier rmb() in generic idle loop do_idle() function is not
needed, it doesn't order any load instruction, just remove it as needless
rmb() can cause performance impact.
The rmb() was introduced by the tglx/history.git commit f2f1b44c75c4
("[PATCH] Remove RCU abuse in cpu_idle()") to order the loads between
cpu_idle_map and pm_idle. It pairs with wmb() in function cpu_idle_wait().
And then with the removal of cpu_idle_state in function cpu_idle() and
wmb() in function cpu_idle_wait() in commit 783e391b7b ("x86: Simplify
cpu_idle_wait"), rmb() no longer has a reason to exist.
After that, commit d166991234 ("idle: Implement generic idle function")
implemented a generic idle function cpu_idle_loop() which resembles the
functionality found in arch/. And it retained the rmb() in generic idle
loop in file kernel/cpu/idle.c.
And at last, commit cf37b6b484 ("sched/idle: Move cpu/idle.c to
sched/idle.c") moved cpu/idle.c to sched/idle.c. And commit c1de45ca83
("sched/idle: Add support for tasks that inject idle") renamed function
cpu_idle_loop() to do_idle().
History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Signed-off-by: Zhongqiu Han <quic_zhonhan@quicinc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241009093745.9504-1-quic_zhonhan@quicinc.com
Sean noted that ever since commit 152e11f6df ("sched/fair: Implement
delayed dequeue") KVM's preemption notifiers have started
mis-classifying preemption vs blocking.
Notably p->on_rq is no longer sufficient to determine if a task is
runnable or blocked -- the aforementioned commit introduces tasks that
remain on the runqueue even through they will not run again, and
should be considered blocked for many cases.
Add the task_is_runnable() helper to classify things and audit all
external users of the p->on_rq state. Also add a few comments.
Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Reported-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20241010091843.GK33184@noisy.programming.kicks-ass.net
Since sched_delayed tasks remain queued even after blocking, the load
balancer can migrate them between runqueues while PSI considers them
to be asleep. As a result, it misreads the migration requeue followed
by a wakeup as a double queue:
psi: inconsistent task state! task=... cpu=... psi_flags=4 clear=. set=4
First, call psi_enqueue() after p->sched_class->enqueue_task(). A
wakeup will clear p->se.sched_delayed while a migration will not, so
psi can use that flag to tell them apart.
Then teach psi to migrate any "sleep" state when delayed-dequeue tasks
are being migrated.
Delayed-dequeue tasks can be revived by ttwu_runnable(), which will
call down with a new ENQUEUE_DELAYED. Instead of further complicating
the wakeup conditional in enqueue_task(), identify migration contexts
instead and default to wakeup handling for all other cases.
It's not just the warning in dmesg, the task state corruption causes a
permanent CPU pressure indication, which messes with workload/machine
health monitoring.
Debugged-by-and-original-fix-by: K Prateek Nayak <kprateek.nayak@amd.com>
Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Closes: https://lore.kernel.org/lkml/20240830123458.3557-1-spasswolf@web.de/
Closes: https://lore.kernel.org/all/cd67fbcd-d659-4822-bb90-7e8fbb40a856@molgen.mpg.de/
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lkml.kernel.org/r/20241010193712.GC181795@cmpxchg.org
psi_dequeue() in for blocked task expects psi_sched_switch() to clear
the TSK_.*RUNNING PSI flags and set the TSK_IOWAIT flags however
psi_sched_switch() uses "!task_on_rq_queued(prev)" to detect if the task
is blocked or still runnable which is no longer true with DELAY_DEQUEUE
since a blocking task can be left queued on the runqueue.
This can lead to PSI splats similar to:
psi: inconsistent task state! task=... cpu=... psi_flags=4 clear=0 set=4
when the task is requeued since the TSK_RUNNING flag was not cleared
when the task was blocked.
Explicitly communicate that the task was blocked to psi_sched_switch()
even if it was delayed and is still on the runqueue.
[ prateek: Broke off the relevant part from [1], commit message ]
Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Closes: https://lore.kernel.org/lkml/20240830123458.3557-1-spasswolf@web.de/
Closes: https://lore.kernel.org/all/cd67fbcd-d659-4822-bb90-7e8fbb40a856@molgen.mpg.de/
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/lkml/20241004123506.GR18071@noisy.programming.kicks-ass.net/ [1]
Commit 2e0199df25 ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue")
and its follow up fixes try to deal with a rather unfortunate
situation where is task is enqueued in a new class, even though it
shouldn't have been. Mostly because the existing ->switched_to/from()
hooks are in the wrong place for this case.
This all led to Paul being able to trigger failures at something like
once per 10k CPU hours of RCU torture.
For now, do the ugly thing and move the code to the right place by
ignoring the switch hooks.
Note: Clean up the whole sched_class::switch*_{to,from}() thing.
Fixes: 2e0199df25 ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241003185037.GA5594@noisy.programming.kicks-ass.net
With KASAN and PREEMPT_RT enabled, calling task_work_add() in
task_tick_mm_cid() may cause the following splat.
[ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
[ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe
[ 63.696416] preempt_count: 10001, expected: 0
[ 63.696416] RCU nest depth: 1, expected: 1
This problem is caused by the following call trace.
sched_tick() [ acquire rq->__lock ]
-> task_tick_mm_cid()
-> task_work_add()
-> __kasan_record_aux_stack()
-> kasan_save_stack()
-> stack_depot_save_flags()
-> alloc_pages_mpol_noprof()
-> __alloc_pages_noprof()
-> get_page_from_freelist()
-> rmqueue()
-> rmqueue_pcplist()
-> __rmqueue_pcplist()
-> rmqueue_bulk()
-> rt_spin_lock()
The rq lock is a raw_spinlock_t. We can't sleep while holding
it. IOW, we can't call alloc_pages() in stack_depot_save_flags().
The task_tick_mm_cid() function with its task_work_add() call was
introduced by commit 223baf9d17 ("sched: Fix performance regression
introduced by mm_cid") in v6.4 kernel.
Fortunately, there is a kasan_record_aux_stack_noalloc() variant that
calls stack_depot_save_flags() while not allowing it to allocate
new pages. To allow task_tick_mm_cid() to use task_work without
page allocation, a new TWAF_NO_ALLOC flag is added to enable calling
kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack()
if set. The task_tick_mm_cid() function is modified to add this new flag.
The possible downside is the missing stack trace in a KASAN report due
to new page allocation required when task_work_add_noallloc() is called
which should be rare.
Fixes: 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241010014432.194742-1-longman@redhat.com
The deadline server code moved one of the start_hrtick_dl() calls
but dropped the dl specific hrtick_enabled check. This causes hrticks
to get armed even when sched_feat(HRTICK_DL) is false. Fix it.
Fixes: 63ba8422f8 ("sched/deadline: Introduce deadline servers")
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20241004123729.460668-1-pauld@redhat.com
Iterating with scx_task_iter involves scx_tasks_lock and optionally the rq
lock of the task being iterated. Both locks can be released during iteration
and the iteration can be continued after re-grabbing scx_tasks_lock.
Currently, all lock handling is pushed to the caller which is a bit
cumbersome and makes it difficult to add lock-aware behaviors. Make the
scx_task_iter helpers handle scx_tasks_lock.
- scx_task_iter_init/scx_taks_iter_exit() now grabs and releases
scx_task_lock, respectively. Renamed to
scx_task_iter_start/scx_task_iter_stop() to more clearly indicate that
there are non-trivial side-effects.
- Add __ prefix to scx_task_iter_rq_unlock() to indicate that the function
is internal.
- Add scx_task_iter_unlock/relock(). The former drops both rq lock (if held)
and scx_tasks_lock and the latter re-locks only scx_tasks_lock.
This doesn't cause behavior changes and will be used to implement stall
avoidance.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Bypass mode was depending on ops.select_cpu() which can't be trusted as with
the rest of the BPF scheduler. Always enable and use scx_select_cpu_dfl() in
bypass mode.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Move the sanity check from the inner function scx_select_cpu_dfl() to the
exported kfunc scx_bpf_select_cpu_dfl(). This doesn't cause behavior
differences and will allow using scx_select_cpu_dfl() in bypass mode
regardless of scx_builtin_idle_enabled.
Signed-off-by: Tejun Heo <tj@kernel.org>
The disable path caps p->scx.slice to SCX_SLICE_DFL. As the field is already
being ignored at this stage during disable, the only effect this has is that
when the next BPF scheduler is loaded, it won't see unreasonable left-over
slices. Ultimately, this shouldn't matter but it's better to start in a
known state. Drop p->scx.slice capping from the disable path and instead
reset it to SCX_SLICE_DFL in the enable path.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
This reverts commit 6f34d8d382.
Slice length is ignored while bypassing and tasks are switched on every tick
and thus the patch does not make any difference. The perceived difference
was from test noise.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
pick_next_task_scx() was turned into pick_task_scx() since
commit 753e2836d1 ("sched_ext: Unify regular and core-sched pick
task paths"). Update the outdated message.
Signed-off-by: Honglei Wang <jameshongleiwang@126.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
- ops.enqueue() didn't have a way to tell whether select_task_rq_scx() and
thus ops.select() were skipped. Some schedulers were incorrectly using
SCX_ENQ_WAKEUP. Add SCX_ENQ_CPU_SELECTED and fix scx_qmap using it.
- Remove a spurious WARN_ON_ONCE() in scx_cgroup_exit().
- Fix error information clobbering during load.
- Add missing __weak markers to BPF helper declarations.
- Doc update.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZwWKkA4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGelnAQDTA8GSIahTEHKM0c3yXE6K1/M56zo8Spp5OOA7
kXHR3AD/Y0RcXgaCvMI13aozmQWq756gyB6/qczN0+X3jx6wZwI=
=6xbe
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext fixes from Tejun Heo:
- ops.enqueue() didn't have a way to tell whether select_task_rq_scx()
and thus ops.select() were skipped. Some schedulers were incorrectly
using SCX_ENQ_WAKEUP. Add SCX_ENQ_CPU_SELECTED and fix scx_qmap using
it.
- Remove a spurious WARN_ON_ONCE() in scx_cgroup_exit()
- Fix error information clobbering during load
- Add missing __weak markers to BPF helper declarations
- Doc update
* tag 'sched_ext-for-6.12-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext:
sched_ext: Documentation: Update instructions for running example schedulers
sched_ext, scx_qmap: Add and use SCX_ENQ_CPU_SELECTED
sched/core: Add ENQUEUE_RQ_SELECTED to indicate whether ->select_task_rq() was called
sched/core: Make select_task_rq() take the pointer to wake_flags instead of value
sched_ext: scx_cgroup_exit() may be called without successful scx_cgroup_init()
sched_ext: Improve error reporting during loading
sched_ext: Add __weak markers to BPF helper function decalarations
scx_qmap and other schedulers in the SCX repo are using SCX_ENQ_WAKEUP to
tell whether ops.select_cpu() was called. This is incorrect as
ops.select_cpu() can be skipped in the wakeup path and leads to e.g.
incorrectly skipping direct dispatch for tasks that are bound to a single
CPU.
sched core has been updated to specify ENQUEUE_RQ_SELECTED if
->select_task_rq() was called. Map it to SCX_ENQ_CPU_SELECTED and update
scx_qmap to test it instead of SCX_ENQ_WAKEUP.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Cc: Daniel Hodges <hodges.daniel.scott@gmail.com>
Cc: Changwoo Min <multics69@gmail.com>
Cc: Andrea Righi <andrea.righi@linux.dev>
Cc: Dan Schatzberg <schatzberg.dan@gmail.com>
During ttwu, ->select_task_rq() can be skipped if only one CPU is allowed or
migration is disabled. sched_ext schedulers may perform operations such as
direct dispatch from ->select_task_rq() path and it is useful for them to
know whether ->select_task_rq() was skipped in the ->enqueue_task() path.
Currently, sched_ext schedulers are using ENQUEUE_WAKEUP for this purpose
and end up assuming incorrectly that ->select_task_rq() was called for tasks
that are bound to a single CPU or migration disabled.
Make select_task_rq() indicate whether ->select_task_rq() was called by
setting WF_RQ_SELECTED in *wake_flags and make ttwu_do_activate() map that
to ENQUEUE_RQ_SELECTED for ->enqueue_task().
This will be used by sched_ext to fix ->select_task_rq() skip detection.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
This will be used to allow select_task_rq() to indicate whether
->select_task_rq() was called by modifying *wake_flags.
This makes try_to_wake_up() call all functions that take wake_flags with
WF_TTWU set. Previously, only select_task_rq() was. Using the same flags is
more consistent, and, as the flag is only tested by ->select_task_rq()
implementations, it doesn't cause any behavior differences.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
bit_wait_io_timeout has been unused since 2016's
commit 6290602709 ("mm: add PageWaiters indicating tasks are waiting for a page bit")
Remove it.
Signed-off-by: "Dr. David Alan Gilbert" <linux@treblig.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lore.kernel.org/r/20241001234016.231696-1-linux@treblig.org
We do not have RESPECT_SLICE, we only have RUN_TO_PARITY.
Change RESPECT_SLICE to RUN_TO_PARITY, makes it more clear.
Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Christoph Lameter (Ampere) <cl@linux.com>
Link: https://lkml.kernel.org/r/20241001070456.10939-1-shijie@os.amperecomputing.com
When PLACE_LAG is enabled, from the relationship:
vl_i = (W + w_i)*vl'_i / W
we know that if vl'_i(se->vlag) is zero, the vl_i is zero too.
So if se->vlag is zero, there is no need to waste cycles to
do the calculation.
Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Christoph Lameter (Ampere) <cl@linux.com>
Link: https://lkml.kernel.org/r/20241001070021.10626-1-shijie@os.amperecomputing.com
The patch "5e963f2bd46 sched/fair: Commit to EEVDF"
removed the code following the DOUBLE_TICK:
-
- if (!sched_feat(EEVDF) && cfs_rq->nr_running > 1)
- check_preempt_tick(cfs_rq, curr);
The DOUBLE_TICK feature becomes dead code now, so remove it.
Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: "Christoph Lameter (Ampere)" <cl@linux.com>
Reviewed-by: Vishal Chourasia <vishalc@linux.ibm.com>
Link: https://lore.kernel.org/r/20241001065451.10356-1-shijie@os.amperecomputing.com
wake_up_var(), wait_var_event() and related interfaces are not
documented but have important ordering requirements. This patch adds
documentation and makes these requirements explicit.
The return values for those wait_var_event_* functions which return a
value are documented. Note that these are, perhaps surprisingly,
sometimes different from comparable wait_on_bit() functions.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240925053405.3960701-4-neilb@suse.de
This patch revises the documention for wake_up_bit(),
clear_and_wake_up_bit(), and all the wait_on_bit() family of functions.
The new documentation places less emphasis on the pool of waitqueues
used (an implementation detail) and focuses instead on details of how
the functions behave.
The barriers included in the wait functions and clear_and_wake_up_bit()
and those required for wake_up_bit() are spelled out more clearly.
The error statuses returned are given explicitly.
The fact that the wait_on_bit_lock() function sets the bit is made more
obvious.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240925053405.3960701-3-neilb@suse.de
wake_up_bit() currently allows a "void *". While this isn't strictly a
problem as the address is never dereferenced, it is inconsistent with
the corresponding wait_on_bit() which requires "unsigned long *" and
does dereference the pointer.
Any code that needs to wait for a change in something other than an
unsigned long would be better served by wake_up_var()/wait_var_event().
This patch changes all related "void *" to "unsigned long *".
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240925053405.3960701-2-neilb@suse.de
568894edbe ("sched_ext: Add scx_cgroup_enabled to gate cgroup operations
and fix scx_tg_online()") assumed that scx_cgroup_exit() is only called
after scx_cgroup_init() finished successfully. This isn't true.
scx_cgroup_exit() can be called without scx_cgroup_init() being called at
all or after scx_cgroup_init() failed in the middle.
As init state is tracked per cgroup, scx_cgroup_exit() can be used safely to
clean up in all cases. Remove the incorrect WARN_ON_ONCE().
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 568894edbe ("sched_ext: Add scx_cgroup_enabled to gate cgroup operations and fix scx_tg_online()")
When the BPF scheduler fails, ops.exit() allows rich error reporting through
scx_exit_info. Use scx.exit() path consistently for all failures which can
be caused by the BPF scheduler:
- scx_ops_error() is called after ops.init() and ops.cgroup_init() failure
to record error information.
- ops.init_task() failure now uses scx_ops_error() instead of pr_err().
- The err_disable path updated to automatically trigger scx_ops_error() to
cover cases that the error message hasn't already been generated and
always return 0 indicating init success so that the error is reported
through ops.exit().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Vernet <void@manifault.com>
Cc: Daniel Hodges <hodges.daniel.scott@gmail.com>
Cc: Changwoo Min <multics69@gmail.com>
Cc: Andrea Righi <andrea.righi@linux.dev>
Cc: Dan Schatzberg <schatzberg.dan@gmail.com>
Brandon reports sporadic, non-sensical spikes in cumulative pressure
time (total=) when reading cpu.pressure at a high rate. This is due to
a race condition between reader aggregation and tasks changing states.
While it affects all states and all resources captured by PSI, in
practice it most likely triggers with CPU pressure, since scheduling
events are so frequent compared to other resource events.
The race context is the live snooping of ongoing stalls during a
pressure read. The read aggregates per-cpu records for stalls that
have concluded, but will also incorporate ad-hoc the duration of any
active state that hasn't been recorded yet. This is important to get
timely measurements of ongoing stalls. Those ad-hoc samples are
calculated on-the-fly up to the current time on that CPU; since the
stall hasn't concluded, it's expected that this is the minimum amount
of stall time that will enter the per-cpu records once it does.
The problem is that the path that concludes the state uses a CPU clock
read that is not synchronized against aggregators; the clock is read
outside of the seqlock protection. This allows aggregators to race and
snoop a stall with a longer duration than will actually be recorded.
With the recorded stall time being less than the last snapshot
remembered by the aggregator, a subsequent sample will underflow and
observe a bogus delta value, resulting in an erratic jump in pressure.
Fix this by moving the clock read of the state change into the seqlock
protection. This ensures no aggregation can snoop live stalls past the
time that's recorded when the state concludes.
Reported-by: Brandon Duffany <brandon@buildbuddy.io>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219194
Link: https://lore.kernel.org/lkml/20240827121851.GB438928@cmpxchg.org/
Fixes: df77430639 ("psi: Reduce calls to sched_clock() in psi")
Cc: stable@vger.kernel.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 85e511df3c ("sched/eevdf: Allow shorter slices to wakeup-preempt")
introduced a mechanism that a wakee with shorter slice could preempt
the current running task. It also lower the bar for the current task
to be preempted, by checking the rq->nr_running instead of cfs_rq->nr_running
when the current task has ran out of time slice. But there is a scenario
that is problematic. Say, if there is 1 cfs task and 1 rt task, before
85e511df3c, update_deadline() will not trigger a reschedule, and after
85e511df3c, since rq->nr_running is 2 and resched is true, a resched_curr()
would happen.
Some workloads (like the hackbench reported by lkp) do not like
over-scheduling. We can see that the preemption rate has been
increased by 2.2%:
1.654e+08 +2.2% 1.69e+08 hackbench.time.involuntary_context_switches
Restore its previous check criterion.
Fixes: 85e511df3c ("sched/eevdf: Allow shorter slices to wakeup-preempt")
Closes: https://lore.kernel.org/oe-lkp/202409231416.9403c2e9-oliver.sang@intel.com
Reported-by: kernel test robot <oliver.sang@intel.com>
Suggested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Honglei Wang <jameshongleiwang@126.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240925085440.358138-1-yu.c.chen@intel.com
Meeting an unfinished DELAY_DEQUEUE treated entity in unthrottle_cfs_rq()
leads to a couple terminal scenarios. Finish it first, so ENQUEUE_WAKEUP
can proceed as it would have sans DELAY_DEQUEUE treatment.
Fixes: 152e11f6df ("sched/fair: Implement delayed dequeue")
Reported-by: Venkat Rao Bagalkote <venkat88@linux.vnet.ibm.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Venkat Rao Bagalkote <venkat88@linux.vnet.ibm.com>
Link: https://lore.kernel.org/r/7515d2e64c989b9e3b828a9e21bcd959b99df06a.camel@gmx.de
The #endif trailing comment of CONFIG_EXT_GROUP_SCHED is unmatched, so fix
it.
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The enable path uses three big locks - scx_fork_rwsem, scx_cgroup_rwsem and
cpus_read_lock. Currently, the locks are grabbed together which is prone to
locking order problems.
For example, currently, there is a possible deadlock involving
scx_fork_rwsem and cpus_read_lock. cpus_read_lock has to nest inside
scx_fork_rwsem due to locking order existing in other subsystems. However,
there exists a dependency in the other direction during hotplug if hotplug
needs to fork a new task, which happens in some cases. This leads to the
following deadlock:
scx_ops_enable() hotplug
percpu_down_write(&cpu_hotplug_lock)
percpu_down_write(&scx_fork_rwsem)
block on cpu_hotplug_lock
kthread_create() waits for kthreadd
kthreadd blocks on scx_fork_rwsem
Note that this doesn't trigger lockdep because the hotplug side dependency
bounces through kthreadd.
With the preceding scx_cgroup_enabled change, this can be solved by
decoupling cpus_read_lock, which is needed for static_key manipulations,
from the other two locks.
- Move the first block of static_key manipulations outside of scx_fork_rwsem
and scx_cgroup_rwsem. This is now safe with the preceding
scx_cgroup_enabled change.
- Drop scx_cgroup_rwsem and scx_fork_rwsem between the two task iteration
blocks so that __scx_ops_enabled static_key enabling is outside the two
rwsems.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Aboorva Devarajan <aboorvad@linux.ibm.com>
Link: http://lkml.kernel.org/r/8cd0ec0c4c7c1bc0119e61fbef0bee9d5e24022d.camel@linux.ibm.com
The disable path uses three big locks - scx_fork_rwsem, scx_cgroup_rwsem and
cpus_read_lock. Currently, the locks are grabbed together which is prone to
locking order problems. With the preceding scx_cgroup_enabled change, we can
decouple them:
- As cgroup disabling no longer requires modifying a static_key which
requires cpus_read_lock(), no need to grab cpus_read_lock() before
grabbing scx_cgroup_rwsem.
- cgroup can now be independently disabled before tasks are moved back to
the fair class.
Relocate scx_cgroup_exit() invocation before scx_fork_rwsem is grabbed, drop
now unnecessary cpus_read_lock() and move static_key operations out of
scx_fork_rwsem. This decouples all three locks in the disable path.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Aboorva Devarajan <aboorvad@linux.ibm.com>
Link: http://lkml.kernel.org/r/8cd0ec0c4c7c1bc0119e61fbef0bee9d5e24022d.camel@linux.ibm.com
If the BPF scheduler does not implement ops.cgroup_init(), scx_tg_online()
didn't set SCX_TG_INITED which meant that ops.cgroup_exit(), even if
implemented, won't be called from scx_tg_offline(). This is because
SCX_HAS_OP(cgroupt_init) is used to test both whether SCX cgroup operations
are enabled and ops.cgroup_init() exists.
Fix it by introducing a separate bool scx_cgroup_enabled to gate cgroup
operations and use SCX_HAS_OP(cgroup_init) only to test whether
ops.cgroup_init() exists. Make all cgroup operations consistently use
scx_cgroup_enabled to test whether cgroup operations are enabled.
scx_cgroup_enabled is added instead of using scx_enabled() to ease planned
locking updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
scx_ops_init_task() and the follow-up scx_ops_enable_task() in the fork path
were gated by scx_enabled() test and thus __scx_ops_enabled had to be turned
on before the first scx_ops_init_task() loop in scx_ops_enable(). However,
if an external entity causes sched_class switch before the loop is complete,
tasks which are not initialized could be switched to SCX.
The following can be reproduced by running a program which keeps toggling a
process between SCHED_OTHER and SCHED_EXT using sched_setscheduler(2).
sched_ext: Invalid task state transition 0 -> 3 for fish[1623]
WARNING: CPU: 1 PID: 1650 at kernel/sched/ext.c:3392 scx_ops_enable_task+0x1a1/0x200
...
Sched_ext: simple (enabling)
RIP: 0010:scx_ops_enable_task+0x1a1/0x200
...
switching_to_scx+0x13/0xa0
__sched_setscheduler+0x850/0xa50
do_sched_setscheduler+0x104/0x1c0
__x64_sys_sched_setscheduler+0x18/0x30
do_syscall_64+0x7b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Fix it by gating scx_ops_init_task() separately using
scx_ops_init_task_enabled. __scx_ops_enabled is now set after all tasks are
finished with scx_ops_init_task().
Signed-off-by: Tejun Heo <tj@kernel.org>
scx_ops_enable() has two task iteration loops. The first one calls
scx_ops_init_task() on every task and the latter switches the eligible ones
into SCX. The first loop left the tasks in SCX_TASK_INIT state and then the
second loop switched it into READY before switching the task into SCX.
The distinction between INIT and READY is only meaningful in the fork path
where it's used to tell whether the task finished forking so that we can
tell ops.exit_task() accordingly. Leaving task in INIT state between the two
loops is incosistent with the fork path and incorrect. The following can be
triggered by running a program which keeps toggling a task between
SCHED_OTHER and SCHED_SCX while enabling a task:
sched_ext: Invalid task state transition 1 -> 3 for fish[1526]
WARNING: CPU: 2 PID: 1615 at kernel/sched/ext.c:3393 scx_ops_enable_task+0x1a1/0x200
...
Sched_ext: qmap (enabling+all)
RIP: 0010:scx_ops_enable_task+0x1a1/0x200
...
switching_to_scx+0x13/0xa0
__sched_setscheduler+0x850/0xa50
do_sched_setscheduler+0x104/0x1c0
__x64_sys_sched_setscheduler+0x18/0x30
do_syscall_64+0x7b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Fix it by transitioning to READY in the first loop right after
scx_ops_init_task() succeeds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Vernet <void@manifault.com>
scx_ops_enable() used preempt_disable() around the task iteration loop to
switch tasks into SCX to guarantee forward progress of the task which is
running scx_ops_enable(). However, in the gap between setting
__scx_ops_enabled and preeempt_disable(), an external entity can put tasks
including the enabling one into SCX prematurely, which can lead to
malfunctions including stalls.
The bypass mode can wrap the entire enabling operation and guarantee forward
progress no matter what the BPF scheduler does. Use the bypass mode instead
to guarantee forward progress while enabling.
While at it, release and regrab scx_tasks_lock between the two task
iteration locks in scx_ops_enable() for clarity as there is no reason to
keep holding the lock between them.
Signed-off-by: Tejun Heo <tj@kernel.org>
The distinction between SCX_OPS_PREPPING and SCX_OPS_ENABLING is not used
anywhere and only adds confusion. Drop SCX_OPS_PREPPING.
Signed-off-by: Tejun Heo <tj@kernel.org>
check_hotplug_seq() is used to detect CPU hotplug event which occurred while
the BPF scheduler is being loaded so that initialization can be retried if
CPU hotplug events take place before the CPU hotplug callbacks are online.
As such, the best place to call it is in the same cpu_read_lock() section
that enables the CPU hotplug ops. Currently, it is called in the next
cpus_read_lock() block in scx_ops_enable(). The side effect of this
placement is a small window in which hotplug sequence detection can trigger
unnecessarily, which isn't critical.
Move check_hotplug_seq() invocation to the same cpus_read_lock() block as
the hotplug operation enablement to close the window and get the invocation
out of the way for planned locking updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Vernet <void@manifault.com>
While bypassing, tasks are scheduled in FIFO order which favors tasks that
hog CPUs. This can slow down e.g. unloading of the BPF scheduler. While
bypassing, guaranteeing timely forward progress is the main goal. There's no
point in giving long slices. Shorten the time slice used while bypassing
from 20ms to 5ms.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
In the bypass mode, the global DSQ is used to schedule all tasks in simple
FIFO order. All tasks are queued into the global DSQ and all CPUs try to
execute tasks from it. This creates a lot of cross-node cacheline accesses
and scheduling across the node boundaries, and can lead to live-lock
conditions where the system takes tens of minutes to disable the BPF
scheduler while executing in the bypass mode.
Split the global DSQ per NUMA node. Each node has its own global DSQ. When a
task is dispatched to SCX_DSQ_GLOBAL, it's put into the global DSQ local to
the task's CPU and all CPUs in a node only consume its node-local global
DSQ.
This resolves a livelock condition which could be reliably triggered on an
2x EPYC 7642 system by running `stress-ng --race-sched 1024` together with
`stress-ng --workload 80 --workload-threads 10` while repeatedly enabling
and disabling a SCX scheduler.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
To prepare for the addition of find_global_dsq(). No functional changes.
Signed-off-by: tejun heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
SCX_DSQ_GLOBAL is special in that it can't be used as a priority queue and
is consumed implicitly, but all BPF DSQ related kfuncs could be used on it.
SCX_DSQ_GLOBAL will be split per-node for scalability and those operations
won't make sense anymore. Disallow SCX_DSQ_GLOBAL on scx_bpf_consume(),
scx_bpf_dsq_nr_queued() and bpf_iter_scx_dsq_new(). This means that
SCX_DSQ_GLOBAL can only be used as a dispatch target from BPF schedulers.
With scx_flatcg, which was using SCX_DSQ_GLOBAL as the fallback DSQ,
updated, this shouldn't affect any schedulers.
This leaves find_dsq_for_dispatch() the only user of find_non_local_dsq().
Open code and remove find_non_local_dsq().
Signed-off-by: tejun heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
move_remote_task_to_local_dsq() is only defined on SMP configs but
scx_disaptch_from_dsq() was calling move_remote_task_to_local_dsq() on UP
configs too causing build failures. Add a dummy
move_remote_task_to_local_dsq() which triggers a warning.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 4c30f5ce4f ("sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202409241108.jaocHiDJ-lkp@intel.com/
As discussed during the distro-centric session within the sched_ext
Microconference at LPC 2024, introduce a sequence counter that is
incremented every time a BPF scheduler is loaded.
This feature can help distributions in diagnosing potential performance
regressions by identifying systems where users are running (or have ran)
custom BPF schedulers.
Example:
arighi@virtme-ng~> cat /sys/kernel/sched_ext/enable_seq
0
arighi@virtme-ng~> sudo scx_simple
local=1 global=0
^CEXIT: unregistered from user space
arighi@virtme-ng~> cat /sys/kernel/sched_ext/enable_seq
1
In this way user-space tools (such as Ubuntu's apport and similar) are
able to gather and include this information in bug reports.
Cc: Giovanni Gherdovich <giovanni.gherdovich@suse.com>
Cc: Kleber Sacilotto de Souza <kleber.souza@canonical.com>
Cc: Marcelo Henrique Cerri <marcelo.cerri@canonical.com>
Cc: Phil Auld <pauld@redhat.com>
Signed-off-by: Andrea Righi <andrea.righi@linux.dev>
Signed-off-by: Tejun Heo <tj@kernel.org>
a2f4b16e73 ("sched_ext: Build fix on !CONFIG_STACKTRACE[_SUPPORT]") tried
fixing build when !CONFIG_STACKTRACE but didn't so fully. Also put
stack_trace_print() and stack_trace_save() inside CONFIG_STACKTRACE to fix
build when !CONFIG_STACKTRACE.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202409220642.fDW2OmWc-lkp@intel.com/
Disable the rq empty path when scx is enabled. SCX must consult the BPF
scheduler (via the dispatch path in balance) to determine if rq is empty.
This fixes stalls when scx is enabled.
Signed-off-by: Pat Somaru <patso@likewhatevs.io>
Fixes: 3dcac251b0 ("sched/core: Introduce SM_IDLE and an idle re-entry fast-path in __schedule()")
Signed-off-by: Tejun Heo <tj@kernel.org>
When build with CONFIG_GROUP_SCHED_WEIGHT && !CONFIG_FAIR_GROUP_SCHED,
the idle member is not defined:
kernel/sched/ext.c:3701:16: error: 'struct task_group' has no member named 'idle'
3701 | if (!tg->idle)
| ^~
Fix this by putting 'idle' under new CONFIG_GROUP_SCHED_WEIGHT.
tj: Move idle field upward to avoid breaking up CONFIG_FAIR_GROUP_SCHED block.
Fixes: e179e80c5d ("sched: Introduce CONFIG_GROUP_SCHED_WEIGHT")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202409220859.UiCAoFOW-lkp@intel.com/
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix the following error when build with CONFIG_GROUP_SCHED_WEIGHT &&
!CONFIG_FAIR_GROUP_SCHED:
kernel/sched/core.c:9634:15: error: implicit declaration of function
'sched_group_set_idle'; did you mean 'scx_group_set_idle'? [-Wimplicit-function-declaration]
9634 | ret = sched_group_set_idle(css_tg(css), idle);
| ^~~~~~~~~~~~~~~~~~~~
| scx_group_set_idle
Fixes: e179e80c5d ("sched: Introduce CONFIG_GROUP_SCHED_WEIGHT")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202409220859.UiCAoFOW-lkp@intel.com/
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This is the initial pull request of sched_ext. The v7 patchset
(https://lkml.kernel.org/r/20240618212056.2833381-1-tj@kernel.org) is
applied on top of tip/sched/core + bpf/master as of Jun 18th.
tip/sched/core 793a62823d1c ("sched/core: Drop spinlocks on contention iff kernel is preempti
ble")
bpf/master f6afdaf72a ("Merge branch 'bpf-support-resilient-split-btf'")
Since then, the following pulls were made:
- v6.11-rc1 is pulled to keep up with the mainline.
- tip/sched/core was pulled several times:
- 7b9f6c864a, 0df340ceae, 5ac998574f, 0b1777f0fa: To resolve
conflicts. See each commit for details on conflicts and their
resolutions.
- d7b01aef9d: To receive fd03c5b858 ("sched: Rework pick_next_task()")
and related commits. @prev in added to sched_class->put_prev_task() and
put_prev_task() is reordered after ->pick_task(), which makes
sched_class->switch_class() unnecessary. The follow-up commits update
sched_ext accordingly and drop sched_class->switch_class().
- bpf/master was pulled to receive baebe9aaba ("bpf: allow passing struct
bpf_iter_<type> as kfunc arguments") and related changes in preparation
for the DSQ iterator patchset
To obtain the net sched_ext changes, diff against:
git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git for-6.12-base
which is the merge of:
tip/sched/core bc9057da1a ("sched/cpufreq: Use NSEC_PER_MSEC for deadline task")
bpf/master 2ad6d23f46 ("selftests/bpf: Do not update vmlinux.h unnecessarily")
Since the v7 patchset, the following changes were made:
- cpuperf support which was a part of the v6 patchset was posted separately
and then applied after reviews.
- cgroup support which was a part of the v6 patchset was posted seprately,
iterated and then applied.
- Improve integration with sched core.
- Double locking usage in migration paths dropped. Depend on
TASK_ON_RQ_MIGRATING synchronization instead.
- The BPF scheduler couldn't directly dispatch to the local DSQ of another
CPU using a SCX_DSQ_LOCAL_ON verdict. This caused difficulties around
handling non-wakeup enqueues. Updated so that SCX_DSQ_LOCAL_ON can be used
in the enqueue path too.
- DSQ iterator which was a part of the v6 patchset was posted separately.
The iterator itself was applied after a couple revisions. The associated
selective consumption kfunc can use further improvements and is still
being worked on.
- scx_bpf_dispatch[_vtime]_from_dsq() added to increase flexibility. A task
can now be transferred between two DSQs from almost any context. This
involved significant refactoring of migration code.
- Various fixes and improvements.
As the branch is based on top of tip/sched/core + bpf/master, please merge
after both are applied.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZuOSuA4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGVZyAQDBU3WPkYKB8gl6a6YQ+/PzBXorOK7mioS9A2iJ
vBR3FgEAg1vtcss1S+2juWmVq7ItiFNWCqtXzUr/bVmL9CqqDwA=
=bOOC
-----END PGP SIGNATURE-----
Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext
Pull sched_ext support from Tejun Heo:
"This implements a new scheduler class called ‘ext_sched_class’, or
sched_ext, which allows scheduling policies to be implemented as BPF
programs.
The goals of this are:
- Ease of experimentation and exploration: Enabling rapid iteration
of new scheduling policies.
- Customization: Building application-specific schedulers which
implement policies that are not applicable to general-purpose
schedulers.
- Rapid scheduler deployments: Non-disruptive swap outs of scheduling
policies in production environments"
See individual commits for more documentation, but also the cover letter
for the latest series:
Link: https://lore.kernel.org/all/20240618212056.2833381-1-tj@kernel.org/
* tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: (110 commits)
sched: Move update_other_load_avgs() to kernel/sched/pelt.c
sched_ext: Don't trigger ops.quiescent/runnable() on migrations
sched_ext: Synchronize bypass state changes with rq lock
scx_qmap: Implement highpri boosting
sched_ext: Implement scx_bpf_dispatch[_vtime]_from_dsq()
sched_ext: Compact struct bpf_iter_scx_dsq_kern
sched_ext: Replace consume_local_task() with move_local_task_to_local_dsq()
sched_ext: Move consume_local_task() upward
sched_ext: Move sanity check and dsq_mod_nr() into task_unlink_from_dsq()
sched_ext: Reorder args for consume_local/remote_task()
sched_ext: Restructure dispatch_to_local_dsq()
sched_ext: Fix processs_ddsp_deferred_locals() by unifying DTL_INVALID handling
sched_ext: Make find_dsq_for_dispatch() handle SCX_DSQ_LOCAL_ON
sched_ext: Refactor consume_remote_task()
sched_ext: Rename scx_kfunc_set_sleepable to unlocked and relocate
sched_ext: Add missing static to scx_dump_data
sched_ext: Add missing static to scx_has_op[]
sched_ext: Temporarily work around pick_task_scx() being called without balance_scx()
sched_ext: Add a cgroup scheduler which uses flattened hierarchy
sched_ext: Add cgroup support
...
this pull request are:
"Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
consistency to the APIs and behaviour of these two core allocation
functions. This also simplifies/enables Rustification.
"Some cleanups for shmem" from Baolin Wang. No functional changes - mode
code reuse, better function naming, logic simplifications.
"mm: some small page fault cleanups" from Josef Bacik. No functional
changes - code cleanups only.
"Various memory tiering fixes" from Zi Yan. A small fix and a little
cleanup.
"mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
simplifications and .text shrinkage.
"Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This
is a feature, it adds new feilds to /proc/vmstat such as
$ grep kstack /proc/vmstat
kstack_1k 3
kstack_2k 188
kstack_4k 11391
kstack_8k 243
kstack_16k 0
which tells us that 11391 processes used 4k of stack while none at all
used 16k. Useful for some system tuning things, but partivularly useful
for "the dynamic kernel stack project".
"kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov.
Teaches kmemleak to detect leaksage of percpu memory.
"mm: memcg: page counters optimizations" from Roman Gushchin. "3
independent small optimizations of page counters".
"mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David
Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work
correctly by design rather than by accident.
"mm: remove arch_make_page_accessible()" from David Hildenbrand. Some
folio conversions which make arch_make_page_accessible() unneeded.
"mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel.
Cleans up and fixes our handling of the resetting of the cgroup/process
peak-memory-use detector.
"Make core VMA operations internal and testable" from Lorenzo Stoakes.
Rationalizaion and encapsulation of the VMA manipulation APIs. With a
view to better enable testing of the VMA functions, even from a
userspace-only harness.
"mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in
the zswap global shrinker, resulting in improved performance.
"mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in
some missing info in /proc/zoneinfo.
"mm: replace follow_page() by folio_walk" from David Hildenbrand. Code
cleanups and rationalizations (conversion to folio_walk()) resulting in
the removal of follow_page().
"improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some
tuning to improve zswap's dynamic shrinker. Significant reductions in
swapin and improvements in performance are shown.
"mm: Fix several issues with unaccepted memory" from Kirill Shutemov.
Improvements to the new unaccepted memory feature,
"mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX
PUDs. This was missing, although nobody seems to have notied yet.
"Introduce a store type enum for the Maple tree" from Sidhartha Kumar.
Cleanups and modest performance improvements for the maple tree library
code.
"memcg: further decouple v1 code from v2" from Shakeel Butt. Move more
cgroup v1 remnants away from the v2 memcg code.
"memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds
various warnings telling users that memcg v1 features are deprecated.
"mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li.
Greatly improves the success rate of the mTHP swap allocation.
"mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate
per-arch implementations of numa_memblk code into generic code.
"mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
improves the performance of munmap() of swap-filled ptes.
"support large folio swap-out and swap-in for shmem" from Baolin Wang.
With this series we no longer split shmem large folios into simgle-page
folios when swapping out shmem.
"mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance
improvements and code reductions for gigantic folios.
"support shmem mTHP collapse" from Baolin Wang. Adds support for
khugepaged's collapsing of shmem mTHP folios.
"mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
performance regression due to the addition of mseal().
"Increase the number of bits available in page_type" from Matthew Wilcox.
Increases the number of bits available in page_type!
"Simplify the page flags a little" from Matthew Wilcox. Many legacy page
flags are now folio flags, so the page-based flags and their
accessors/mutators can be removed.
"mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An
optimization which permits us to avoid writing/reading zero-filled zswap
pages to backing store.
"Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window
which occurs when a MAP_FIXED operqtion is occurring during an unrelated
vma tree walk.
"mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the
vma_merge() functionality, making ot cleaner, more testable and better
tested.
"misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor
fixups of DAMON selftests and kunit tests.
"mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code
cleanups and folio conversions.
"Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups
for shmem controls and stats.
"mm: count the number of anonymous THPs per size" from Barry Song. Expose
additional anon THP stats to userspace for improved tuning.
"mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio
conversions and removal of now-unused page-based APIs.
"replace per-quota region priorities histogram buffer with per-context
one" from SeongJae Park. DAMON histogram rationalization.
"Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae
Park. DAMON documentation updates.
"mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve
related doc and warn" from Jason Wang: fixes usage of page allocator
__GFP_NOFAIL and GFP_ATOMIC flags.
"mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this
was overprovisioning THPs in sparsely accessed memory areas.
"zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add
support for zram run-time compression algorithm tuning.
"mm: Care about shadow stack guard gap when getting an unmapped area" from
Mark Brown. Fix up the various arch_get_unmapped_area() implementations
to better respect guard areas.
"Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of
mem_cgroup_iter() and various code cleanups.
"mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
pfnmap support.
"resource: Fix region_intersects() vs add_memory_driver_managed()" from
Huang Ying. Fix a bug in region_intersects() for systems with CXL memory.
"mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a
couple more code paths to correctly recover from the encountering of
poisoned memry.
"mm: enable large folios swap-in support" from Barry Song. Support the
swapin of mTHP memory into appropriately-sized folios, rather than into
single-page folios.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA
jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7
AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo=
=s0T+
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Along with the usual shower of singleton patches, notable patch series
in this pull request are:
- "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
consistency to the APIs and behaviour of these two core allocation
functions. This also simplifies/enables Rustification.
- "Some cleanups for shmem" from Baolin Wang. No functional changes -
mode code reuse, better function naming, logic simplifications.
- "mm: some small page fault cleanups" from Josef Bacik. No
functional changes - code cleanups only.
- "Various memory tiering fixes" from Zi Yan. A small fix and a
little cleanup.
- "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
simplifications and .text shrinkage.
- "Kernel stack usage histogram" from Pasha Tatashin and Shakeel
Butt. This is a feature, it adds new feilds to /proc/vmstat such as
$ grep kstack /proc/vmstat
kstack_1k 3
kstack_2k 188
kstack_4k 11391
kstack_8k 243
kstack_16k 0
which tells us that 11391 processes used 4k of stack while none at
all used 16k. Useful for some system tuning things, but
partivularly useful for "the dynamic kernel stack project".
- "kmemleak: support for percpu memory leak detect" from Pavel
Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory.
- "mm: memcg: page counters optimizations" from Roman Gushchin. "3
independent small optimizations of page counters".
- "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from
David Hildenbrand. Improves PTE/PMD splitlock detection, makes
powerpc/8xx work correctly by design rather than by accident.
- "mm: remove arch_make_page_accessible()" from David Hildenbrand.
Some folio conversions which make arch_make_page_accessible()
unneeded.
- "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David
Finkel. Cleans up and fixes our handling of the resetting of the
cgroup/process peak-memory-use detector.
- "Make core VMA operations internal and testable" from Lorenzo
Stoakes. Rationalizaion and encapsulation of the VMA manipulation
APIs. With a view to better enable testing of the VMA functions,
even from a userspace-only harness.
- "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix
issues in the zswap global shrinker, resulting in improved
performance.
- "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill
in some missing info in /proc/zoneinfo.
- "mm: replace follow_page() by folio_walk" from David Hildenbrand.
Code cleanups and rationalizations (conversion to folio_walk())
resulting in the removal of follow_page().
- "improving dynamic zswap shrinker protection scheme" from Nhat
Pham. Some tuning to improve zswap's dynamic shrinker. Significant
reductions in swapin and improvements in performance are shown.
- "mm: Fix several issues with unaccepted memory" from Kirill
Shutemov. Improvements to the new unaccepted memory feature,
- "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on
DAX PUDs. This was missing, although nobody seems to have notied
yet.
- "Introduce a store type enum for the Maple tree" from Sidhartha
Kumar. Cleanups and modest performance improvements for the maple
tree library code.
- "memcg: further decouple v1 code from v2" from Shakeel Butt. Move
more cgroup v1 remnants away from the v2 memcg code.
- "memcg: initiate deprecation of v1 features" from Shakeel Butt.
Adds various warnings telling users that memcg v1 features are
deprecated.
- "mm: swap: mTHP swap allocator base on swap cluster order" from
Chris Li. Greatly improves the success rate of the mTHP swap
allocation.
- "mm: introduce numa_memblks" from Mike Rapoport. Moves various
disparate per-arch implementations of numa_memblk code into generic
code.
- "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
improves the performance of munmap() of swap-filled ptes.
- "support large folio swap-out and swap-in for shmem" from Baolin
Wang. With this series we no longer split shmem large folios into
simgle-page folios when swapping out shmem.
- "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice
performance improvements and code reductions for gigantic folios.
- "support shmem mTHP collapse" from Baolin Wang. Adds support for
khugepaged's collapsing of shmem mTHP folios.
- "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
performance regression due to the addition of mseal().
- "Increase the number of bits available in page_type" from Matthew
Wilcox. Increases the number of bits available in page_type!
- "Simplify the page flags a little" from Matthew Wilcox. Many legacy
page flags are now folio flags, so the page-based flags and their
accessors/mutators can be removed.
- "mm: store zero pages to be swapped out in a bitmap" from Usama
Arif. An optimization which permits us to avoid writing/reading
zero-filled zswap pages to backing store.
- "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race
window which occurs when a MAP_FIXED operqtion is occurring during
an unrelated vma tree walk.
- "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of
the vma_merge() functionality, making ot cleaner, more testable and
better tested.
- "misc fixups for DAMON {self,kunit} tests" from SeongJae Park.
Minor fixups of DAMON selftests and kunit tests.
- "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang.
Code cleanups and folio conversions.
- "Shmem mTHP controls and stats improvements" from Ryan Roberts.
Cleanups for shmem controls and stats.
- "mm: count the number of anonymous THPs per size" from Barry Song.
Expose additional anon THP stats to userspace for improved tuning.
- "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more
folio conversions and removal of now-unused page-based APIs.
- "replace per-quota region priorities histogram buffer with
per-context one" from SeongJae Park. DAMON histogram
rationalization.
- "Docs/damon: update GitHub repo URLs and maintainer-profile" from
SeongJae Park. DAMON documentation updates.
- "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and
improve related doc and warn" from Jason Wang: fixes usage of page
allocator __GFP_NOFAIL and GFP_ATOMIC flags.
- "mm: split underused THPs" from Yu Zhao. Improve THP=always policy.
This was overprovisioning THPs in sparsely accessed memory areas.
- "zram: introduce custom comp backends API" frm Sergey Senozhatsky.
Add support for zram run-time compression algorithm tuning.
- "mm: Care about shadow stack guard gap when getting an unmapped
area" from Mark Brown. Fix up the various arch_get_unmapped_area()
implementations to better respect guard areas.
- "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability
of mem_cgroup_iter() and various code cleanups.
- "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
pfnmap support.
- "resource: Fix region_intersects() vs add_memory_driver_managed()"
from Huang Ying. Fix a bug in region_intersects() for systems with
CXL memory.
- "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches
a couple more code paths to correctly recover from the encountering
of poisoned memry.
- "mm: enable large folios swap-in support" from Barry Song. Support
the swapin of mTHP memory into appropriately-sized folios, rather
than into single-page folios"
* tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits)
zram: free secondary algorithms names
uprobes: turn xol_area->pages[2] into xol_area->page
uprobes: introduce the global struct vm_special_mapping xol_mapping
Revert "uprobes: use vm_special_mapping close() functionality"
mm: support large folios swap-in for sync io devices
mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios
mm: fix swap_read_folio_zeromap() for large folios with partial zeromap
mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries
set_memory: add __must_check to generic stubs
mm/vma: return the exact errno in vms_gather_munmap_vmas()
memcg: cleanup with !CONFIG_MEMCG_V1
mm/show_mem.c: report alloc tags in human readable units
mm: support poison recovery from copy_present_page()
mm: support poison recovery from do_cow_fault()
resource, kunit: add test case for region_intersects()
resource: make alloc_free_mem_region() works for iomem_resource
mm: z3fold: deprecate CONFIG_Z3FOLD
vfio/pci: implement huge_fault support
mm/arm64: support large pfn mappings
mm/x86: support large pfn mappings
...
- Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot de Oliveira's
last major contribution to the kernel:
"SCHED_DEADLINE servers can help fixing starvation issues of low priority
tasks (e.g., SCHED_OTHER) when higher priority tasks monopolize CPU
cycles. Today we have RT Throttling; DEADLINE servers should be able to
replace and improve that."
(Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes,
Youssef Esmat, Huang Shijie)
- Preparatory changes for sched_ext integration:
- Use set_next_task(.first) where required
- Fix up set_next_task() implementations
- Clean up DL server vs. core sched
- Split up put_prev_task_balance()
- Rework pick_next_task()
- Combine the last put_prev_task() and the first set_next_task()
- Rework dl_server
- Add put_prev_task(.next)
(Peter Zijlstra, with a fix by Tejun Heo)
- Complete the EEVDF transition and refine EEVDF scheduling:
- Implement delayed dequeue
- Allow shorter slices to wakeup-preempt
- Use sched_attr::sched_runtime to set request/slice suggestion
- Document the new feature flags
- Remove unused and duplicate-functionality fields
- Simplify & unify pick_next_task_fair()
- Misc debuggability enhancements
(Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann,
Valentin Schneider and Chuyi Zhou)
- Initialize the vruntime of a new task when it is first enqueued,
resulting in significant decrease in latency of newly woken tasks.
(Zhang Qiao)
- Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
(K Prateek Nayak, Peter Zijlstra)
- Clean up and clarify the usage of Clean up usage of rt_task()
(Qais Yousef)
- Preempt SCHED_IDLE entities in strict cgroup hierarchies
(Tianchen Ding)
- Clarify the documentation of time units for deadline scheduler
parameters. (Christian Loehle)
- Remove the HZ_BW chicken-bit feature flag introduced a year ago,
the original change seems to be working fine.
(Phil Auld)
- Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie,
Peilin He, Qais Yousefm and Vincent Guittot)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmbr8qcRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gdbw/+Mj3zWfYP+dtUkfgrR2FClPAJoo1/9Dz0
LYD8XgYHu8rEJ0Aq+VbdkgYGUt9utvzUFPIxvWFDcldQl57KwhF4hp9Ir+PqJyYC
NolQ1q8ddo1hnslxnEg6SgHVzQq/4FqMM0nDNUkQETCx6zTyFFeRf+q7o/2c2m5B
uI9dSU1Wrx7XrXm2D3kB8+xP+ZRy+qhbFN5Pfuz96mhelfklylgKMfPzgAiCT/7T
JTbQhQ2HdcCNgiLoSrWsHBDy2UYpouP4zb4jyd+lDQzhSUJrj3u4Xy4vVmuTKq+y
sTgWlgKB+MTuh9UuJ4UYzSnMqg161UlMvtXeH84ABmAqDNGHRPtOKrrlcLtJ3D4x
m1SPhNnsvpjOu2pH0XLIS8al3VUesWND5S+rucHRYSq6Nvhivf4MTvRJlicXXurL
Mt2APnIlhGJuKBNWnmyZovVdtO0ZUUPlaZWfr3rCS4txAVo+HwWhsm3uhtTycQqN
gazsCiuGh6Jds90ZqA/BvdLWG+DY8J0xLlV3ex4pCXuQ/HFrabVWTyThJsULhrZ2
5mTdWIsocPctNMO9/RHMy7vJI7G7ljgHEquWVn5kiGGzXhK6VwVwKAMpfgXGw+YA
yVP6/M7a7g2yEzj69gXkcDa8k/kedMVquJ/G/8YhZM7u7sPqsMjpmaGsqsJRfnpT
ChngAzap+kA=
=TEC6
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot
de Oliveira's last major contribution to the kernel:
"SCHED_DEADLINE servers can help fixing starvation issues of low
priority tasks (e.g., SCHED_OTHER) when higher priority tasks
monopolize CPU cycles. Today we have RT Throttling; DEADLINE
servers should be able to replace and improve that."
(Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes, Youssef
Esmat, Huang Shijie)
- Preparatory changes for sched_ext integration:
- Use set_next_task(.first) where required
- Fix up set_next_task() implementations
- Clean up DL server vs. core sched
- Split up put_prev_task_balance()
- Rework pick_next_task()
- Combine the last put_prev_task() and the first set_next_task()
- Rework dl_server
- Add put_prev_task(.next)
(Peter Zijlstra, with a fix by Tejun Heo)
- Complete the EEVDF transition and refine EEVDF scheduling:
- Implement delayed dequeue
- Allow shorter slices to wakeup-preempt
- Use sched_attr::sched_runtime to set request/slice suggestion
- Document the new feature flags
- Remove unused and duplicate-functionality fields
- Simplify & unify pick_next_task_fair()
- Misc debuggability enhancements
(Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann, Valentin
Schneider and Chuyi Zhou)
- Initialize the vruntime of a new task when it is first enqueued,
resulting in significant decrease in latency of newly woken tasks
(Zhang Qiao)
- Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
(K Prateek Nayak, Peter Zijlstra)
- Clean up and clarify the usage of Clean up usage of rt_task()
(Qais Yousef)
- Preempt SCHED_IDLE entities in strict cgroup hierarchies
(Tianchen Ding)
- Clarify the documentation of time units for deadline scheduler
parameters (Christian Loehle)
- Remove the HZ_BW chicken-bit feature flag introduced a year ago,
the original change seems to be working fine (Phil Auld)
- Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie,
Peilin He, Qais Yousefm and Vincent Guittot)
* tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
sched/cpufreq: Use NSEC_PER_MSEC for deadline task
cpufreq/cppc: Use NSEC_PER_MSEC for deadline task
sched/deadline: Clarify nanoseconds in uapi
sched/deadline: Convert schedtool example to chrt
sched/debug: Fix the runnable tasks output
sched: Fix sched_delayed vs sched_core
kernel/sched: Fix util_est accounting for DELAY_DEQUEUE
kthread: Fix task state in kthread worker if being frozen
sched/pelt: Use rq_clock_task() for hw_pressure
sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c
sched/core: Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
sched: Add put_prev_task(.next)
sched: Rework dl_server
sched: Combine the last put_prev_task() and the first set_next_task()
sched: Rework pick_next_task()
sched: Split up put_prev_task_balance()
sched: Clean up DL server vs core sched
sched: Fixup set_next_task() implementations
sched: Use set_next_task(.first) where required
sched/fair: Properly deactivate sched_delayed task upon class change
...
This pull request contains the following branches:
context_tracking.15.08.24a: Rename context tracking state related
symbols and remove references to "dynticks" in various context
tracking state variables and related helpers; force
context_tracking_enabled_this_cpu() to be inlined to avoid
leaving a noinstr section.
csd.lock.15.08.24a: Enhance CSD-lock diagnostic reports; add an API
to provide an indication of ongoing CSD-lock stall.
nocb.09.09.24a: Update and simplify RCU nocb code to handle
(de-)offloading of callbacks only for offline CPUs; fix RT
throttling hrtimer being armed from offline CPU.
rcutorture.14.08.24a: Remove redundant rcu_torture_ops get_gp_completed
fields; add SRCU ->same_gp_state and ->get_comp_state
functions; add generic test for NUM_ACTIVE_*RCU_POLL* for
testing RCU and SRCU polled grace periods; add CFcommon.arch
for arch-specific Kconfig options; print number of update types
in rcu_torture_write_types();
add rcutree.nohz_full_patience_delay testing to the TREE07
scenario; add a stall_cpu_repeat module parameter to test
repeated CPU stalls; add argument to limit number of CPUs a
guest OS can use in torture.sh;
rcustall.09.09.24a: Abbreviate RCU CPU stall warnings during CSD-lock
stalls; Allow dump_cpu_task() to be called without disabling
preemption; defer printing stall-warning backtrace when holding
rcu_node lock.
srcu.12.08.24a: Make SRCU gp seq wrap-around faster; add KCSAN checks
for concurrent updates to ->srcu_n_exp_nodelay and
->reschedule_count which are used in heuristics governing
auto-expediting of normal SRCU grace periods and
grace-period-state-machine delays; mark idle SRCU-barrier
callbacks to help identify stuck SRCU-barrier callback.
rcu.tasks.14.08.24a: Remove RCU Tasks Rude asynchronous APIs as they
are no longer used; stop testing RCU Tasks Rude asynchronous
APIs; fix access to non-existent percpu regions; check
processor-ID assumptions during chosen CPU calculation for
callback enqueuing; update description of rtp->tasks_gp_seq
grace-period sequence number; add rcu_barrier_cb_is_done()
to identify whether a given rcu_barrier callback is stuck;
mark idle Tasks-RCU-barrier callbacks; add
*torture_stats_print() functions to print detailed
diagnostics for Tasks-RCU variants; capture start time of
rcu_barrier_tasks*() operation to help distinguish a hung
barrier operation from a long series of barrier operations.
rcu_scaling_tests.15.08.24a:
refscale: Add a TINY scenario to support tests of Tiny RCU
and Tiny SRCU; Optimize process_durations() operation;
rcuscale: Dump stacks of stalled rcu_scale_writer() instances;
dump grace-period statistics when rcu_scale_writer() stalls;
mark idle RCU-barrier callbacks to identify stuck RCU-barrier
callbacks; print detailed grace-period and barrier diagnostics
on rcu_scale_writer() hangs for Tasks-RCU variants; warn if
async module parameter is specified for RCU implementations
that do not have async primitives such as RCU Tasks Rude;
make all writer tasks report upon hang; tolerate repeated
GFP_KERNEL failure in rcu_scale_writer(); use special allocator
for rcu_scale_writer(); NULL out top-level pointers to heap
memory to avoid double-free bugs on modprobe failures; maintain
per-task instead of per-CPU callbacks count to avoid any issues
with migration of either tasks or callbacks; constify struct
ref_scale_ops.
fixes.12.08.24a: Use system_unbound_wq for kfree_rcu work to avoid
disturbing isolated CPUs.
misc.11.08.24a: Warn on unexpected rcu_state.srs_done_tail state;
Better define "atomic" for list_replace_rcu() and
hlist_replace_rcu() routines; annotate struct
kvfree_rcu_bulk_data with __counted_by().
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSi2tPIQIc2VEtjarIAHS7/6Z0wpQUCZt8+8wAKCRAAHS7/6Z0w
pTqoAPwPN//tlEoJx2PRs6t0q+nD1YNvnZawPaRmdzgdM8zJogD+PiSN+XhqRr80
jzyvMDU4Aa0wjUNP3XsCoaCxo7L/lQk=
=bZ9z
-----END PGP SIGNATURE-----
Merge tag 'rcu.release.v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux
Pull RCU updates from Neeraj Upadhyay:
"Context tracking:
- rename context tracking state related symbols and remove references
to "dynticks" in various context tracking state variables and
related helpers
- force context_tracking_enabled_this_cpu() to be inlined to avoid
leaving a noinstr section
CSD lock:
- enhance CSD-lock diagnostic reports
- add an API to provide an indication of ongoing CSD-lock stall
nocb:
- update and simplify RCU nocb code to handle (de-)offloading of
callbacks only for offline CPUs
- fix RT throttling hrtimer being armed from offline CPU
rcutorture:
- remove redundant rcu_torture_ops get_gp_completed fields
- add SRCU ->same_gp_state and ->get_comp_state functions
- add generic test for NUM_ACTIVE_*RCU_POLL* for testing RCU and SRCU
polled grace periods
- add CFcommon.arch for arch-specific Kconfig options
- print number of update types in rcu_torture_write_types()
- add rcutree.nohz_full_patience_delay testing to the TREE07 scenario
- add a stall_cpu_repeat module parameter to test repeated CPU stalls
- add argument to limit number of CPUs a guest OS can use in
torture.sh
rcustall:
- abbreviate RCU CPU stall warnings during CSD-lock stalls
- Allow dump_cpu_task() to be called without disabling preemption
- defer printing stall-warning backtrace when holding rcu_node lock
srcu:
- make SRCU gp seq wrap-around faster
- add KCSAN checks for concurrent updates to ->srcu_n_exp_nodelay and
->reschedule_count which are used in heuristics governing
auto-expediting of normal SRCU grace periods and
grace-period-state-machine delays
- mark idle SRCU-barrier callbacks to help identify stuck
SRCU-barrier callback
rcu tasks:
- remove RCU Tasks Rude asynchronous APIs as they are no longer used
- stop testing RCU Tasks Rude asynchronous APIs
- fix access to non-existent percpu regions
- check processor-ID assumptions during chosen CPU calculation for
callback enqueuing
- update description of rtp->tasks_gp_seq grace-period sequence
number
- add rcu_barrier_cb_is_done() to identify whether a given
rcu_barrier callback is stuck
- mark idle Tasks-RCU-barrier callbacks
- add *torture_stats_print() functions to print detailed diagnostics
for Tasks-RCU variants
- capture start time of rcu_barrier_tasks*() operation to help
distinguish a hung barrier operation from a long series of barrier
operations
refscale:
- add a TINY scenario to support tests of Tiny RCU and Tiny
SRCU
- optimize process_durations() operation
rcuscale:
- dump stacks of stalled rcu_scale_writer() instances and
grace-period statistics when rcu_scale_writer() stalls
- mark idle RCU-barrier callbacks to identify stuck RCU-barrier
callbacks
- print detailed grace-period and barrier diagnostics on
rcu_scale_writer() hangs for Tasks-RCU variants
- warn if async module parameter is specified for RCU implementations
that do not have async primitives such as RCU Tasks Rude
- make all writer tasks report upon hang
- tolerate repeated GFP_KERNEL failure in rcu_scale_writer()
- use special allocator for rcu_scale_writer()
- NULL out top-level pointers to heap memory to avoid double-free
bugs on modprobe failures
- maintain per-task instead of per-CPU callbacks count to avoid any
issues with migration of either tasks or callbacks
- constify struct ref_scale_ops
Fixes:
- use system_unbound_wq for kfree_rcu work to avoid disturbing
isolated CPUs
Misc:
- warn on unexpected rcu_state.srs_done_tail state
- better define "atomic" for list_replace_rcu() and
hlist_replace_rcu() routines
- annotate struct kvfree_rcu_bulk_data with __counted_by()"
* tag 'rcu.release.v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux: (90 commits)
rcu: Defer printing stall-warning backtrace when holding rcu_node lock
rcu/nocb: Remove superfluous memory barrier after bypass enqueue
rcu/nocb: Conditionally wake up rcuo if not already waiting on GP
rcu/nocb: Fix RT throttling hrtimer armed from offline CPU
rcu/nocb: Simplify (de-)offloading state machine
context_tracking: Tag context_tracking_enabled_this_cpu() __always_inline
context_tracking, rcu: Rename rcu_dyntick trace event into rcu_watching
rcu: Update stray documentation references to rcu_dynticks_eqs_{enter, exit}()
rcu: Rename rcu_momentary_dyntick_idle() into rcu_momentary_eqs()
rcu: Rename rcu_implicit_dynticks_qs() into rcu_watching_snap_recheck()
rcu: Rename dyntick_save_progress_counter() into rcu_watching_snap_save()
rcu: Rename struct rcu_data .exp_dynticks_snap into .exp_watching_snap
rcu: Rename struct rcu_data .dynticks_snap into .watching_snap
rcu: Rename rcu_dynticks_zero_in_eqs() into rcu_watching_zero_in_eqs()
rcu: Rename rcu_dynticks_in_eqs_since() into rcu_watching_snap_stopped_since()
rcu: Rename rcu_dynticks_in_eqs() into rcu_watching_snap_in_eqs()
rcu: Rename rcu_dynticks_eqs_online() into rcu_watching_online()
context_tracking, rcu: Rename rcu_dynticks_curr_cpu_in_eqs() into rcu_is_watching_curr_cpu()
context_tracking, rcu: Rename rcu_dynticks_task*() into rcu_task*()
refscale: Constify struct ref_scale_ops
...
- Core:
- Overhaul of posix-timers in preparation of removing the
workaround for periodic timers which have signal delivery
ignored.
- Remove the historical extra jiffie in msleep()
msleep() adds an extra jiffie to the timeout value to ensure
minimal sleep time. The timer wheel ensures minimal sleep
time since the large rewrite to a non-cascading wheel, but the
extra jiffie in msleep() remained unnoticed. Remove it.
- Make the timer slack handling correct for realtime tasks.
The procfs interface is inconsistent and does neither reflect
reality nor conforms to the man page. Show the correct 0 slack
for real time tasks and enforce it at the core level instead of
having inconsistent individual checks in various timer setup
functions.
- The usual set of updates and enhancements all over the place.
- Drivers:
- Allow the ACPI PM timer to be turned off during suspend
- No new drivers
- The usual updates and enhancements in various drivers
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmbn7jQTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYobqnD/9COlU0nwsulABI/aNIrsh6iYvnCC9v
14CcNta7Qn+157Wfw9BWOyHdNhR1/fPCXE8jJ71zTyIOeW27HV2JyTtxTwe9ZcdK
ViHAaj7YcIjcVUEC3StCoRCPnvLslEw4qJA5AOQuDyMivdQn+YVa2c0baJxKaXZt
xk4HZdMj4NAS0jRKnoZSwtKW/+Oz6rR4GAWrZo+Zs1/8ur3HfqnQfi8lJ1hJtLLW
V7XDCVRvamVi6Ah3ocYPPp/1P6yeQDA1ge9aMddqaza5STWISXRtSnFMUmYP3rbS
FaL8TyL+ilfny8pkGB2WlG6nLuSbtvogtdEh1gG1k1RmZt44kAtk8ba/KiWFPBSb
zK9cjojRMBS71f9G4kmb5F4rnXoLsg1YbD1Nzhz3wq2Cs1Z90dc2QwMren0zoQ1x
Fn56ueRyAiagBlnrSaKyso/2RvqJTNoSdi3RkpjYeAph0UoDCqvTvKjGAf1mWiw1
T/1lUWSVqWHnzZbM7XXzzajIN9bl6A7bbqlcAJ2O9vZIDt7273DG+bQym9Vh6Why
0LTGGERHxzKBsG7WRg+2Gmvv6S18UPKRo8tLtlA758rHlFuPTZCShWrIriwSNl1K
Hxon+d4BparSnm1h9W/NHPKJA574UbWRCBjdk58IkAj8DxZZY4ORD9SMP+ggkV7G
F6p9cgoDNP9KFg==
=jE0N
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Core:
- Overhaul of posix-timers in preparation of removing the workaround
for periodic timers which have signal delivery ignored.
- Remove the historical extra jiffie in msleep()
msleep() adds an extra jiffie to the timeout value to ensure
minimal sleep time. The timer wheel ensures minimal sleep time
since the large rewrite to a non-cascading wheel, but the extra
jiffie in msleep() remained unnoticed. Remove it.
- Make the timer slack handling correct for realtime tasks.
The procfs interface is inconsistent and does neither reflect
reality nor conforms to the man page. Show the correct 0 slack for
real time tasks and enforce it at the core level instead of having
inconsistent individual checks in various timer setup functions.
- The usual set of updates and enhancements all over the place.
Drivers:
- Allow the ACPI PM timer to be turned off during suspend
- No new drivers
- The usual updates and enhancements in various drivers"
* tag 'timers-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
ntp: Make sure RTC is synchronized when time goes backwards
treewide: Fix wrong singular form of jiffies in comments
cpu: Use already existing usleep_range()
timers: Rename next_expiry_recalc() to be unique
platform/x86:intel/pmc: Fix comment for the pmc_core_acpi_pm_timer_suspend_resume function
clocksource/drivers/jcore: Use request_percpu_irq()
clocksource/drivers/cadence-ttc: Add missing clk_disable_unprepare in ttc_setup_clockevent
clocksource/drivers/asm9260: Add missing clk_disable_unprepare in asm9260_timer_init
clocksource/drivers/qcom: Add missing iounmap() on errors in msm_dt_timer_init()
clocksource/drivers/ingenic: Use devm_clk_get_enabled() helpers
platform/x86:intel/pmc: Enable the ACPI PM Timer to be turned off when suspended
clocksource: acpi_pm: Add external callback for suspend/resume
clocksource/drivers/arm_arch_timer: Using for_each_available_child_of_node_scoped()
dt-bindings: timer: rockchip: Add rk3576 compatible
timers: Annotate possible non critical data race of next_expiry
timers: Remove historical extra jiffie for timeout in msleep()
hrtimer: Use and report correct timerslack values for realtime tasks
hrtimer: Annotate hrtimer_cpu_base_.*_expiry() for sparse.
timers: Add sparse annotation for timer_sync_wait_running().
signal: Replace BUG_ON()s
...
- Core:
- Remove a global lock in the affinity setting code
The lock protects a cpumask for intermediate results and the lock
causes a bottleneck on simultaneous start of multiple virtual
machines. Replace the lock and the static cpumask with a per CPU
cpumask which is nicely serialized by raw spinlock held when
executing this code.
- Provide support for giving a suffix to interrupt domain names.
That's required to support devices with subfunctions so that the
domain names are distinct even if they originate from the same
device node.
- The usual set of cleanups and enhancements all over the place
- Drivers:
- Support for longarch AVEC interrupt chip
- Refurbishment of the Armada driver so it can be extended for new
variants.
- The usual set of cleanups and enhancements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmbn5p8THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoRFtD/43eB3h5usY2OPW0JmDqrE6qnzsvjPZ
1H52BcmMcOuI6yCfTnbi/fBB52mwSEGq9Dmt1GXradyq9/CJDIqZ1ajI1rA2jzW2
YdbeTDpKm1rS2ddzfp2LT2BryrNt+7etrRO7qHn4EKSuOcNuV2f58WPbIIqasvaK
uPbUDVDPrvXxLNcjoab6SqaKrEoAaHSyKpd0MvDd80wHrtcSC/QouW7JDSUXv699
RwvLebN1OF6mQ2J8Z3DLeCQpcbAs+UT8UvID7kYUJi1g71J/ZY+xpMLoX/gHiDNr
isBtsuEAiZeNaFpksc7A6Jgu5ljZf2/aLCqbPLlHaduHFNmo94x9KUbIF2cpEMN+
rsf5Ff7AVh1otz3cUwLLsm+cFLWRRoZdLuncn7rrgB4Yg0gll7qzyLO6YGvQHr8U
Ocj1RXtvvWsMk4XzhgCt1AH/42cO6go+bhA4HspeYykNpsIldIUl1MeFbO8sWiDJ
kybuwiwHp3oaMLjEK4Lpq65u7Ll8Lju2zRde65YUJN2nbNmJFORrOLmeC1qsr6ri
dpend6n2qD9UD1oAt32ej/uXnG160nm7UKescyxiZNeTm1+ez8GW31hY128ifTY3
4R3urGS38p3gazXBsfw6eqkeKx0kEoDNoQqrO5gBvb8kowYTvoZtkwMGAN9OADwj
w6vvU0i+NIyVMA==
=JlJ2
-----END PGP SIGNATURE-----
Merge tag 'irq-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"Core:
- Remove a global lock in the affinity setting code
The lock protects a cpumask for intermediate results and the lock
causes a bottleneck on simultaneous start of multiple virtual
machines. Replace the lock and the static cpumask with a per CPU
cpumask which is nicely serialized by raw spinlock held when
executing this code.
- Provide support for giving a suffix to interrupt domain names.
That's required to support devices with subfunctions so that the
domain names are distinct even if they originate from the same
device node.
- The usual set of cleanups and enhancements all over the place
Drivers:
- Support for longarch AVEC interrupt chip
- Refurbishment of the Armada driver so it can be extended for new
variants.
- The usual set of cleanups and enhancements all over the place"
* tag 'irq-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
genirq: Use cpumask_intersects()
genirq/cpuhotplug: Use cpumask_intersects()
irqchip/apple-aic: Only access system registers on SoCs which provide them
irqchip/apple-aic: Add a new "Global fast IPIs only" feature level
irqchip/apple-aic: Skip unnecessary enabling of use_fast_ipi
dt-bindings: apple,aic: Document A7-A11 compatibles
irqdomain: Use IS_ERR_OR_NULL() in irq_domain_trim_hierarchy()
genirq/msi: Use kmemdup_array() instead of kmemdup()
genirq/proc: Change the return value for set affinity permission error
genirq/proc: Use irq_move_pending() in show_irq_affinity()
genirq/proc: Correctly set file permissions for affinity control files
genirq: Get rid of global lock in irq_do_set_affinity()
genirq: Fix typo in struct comment
irqchip/loongarch-avec: Add AVEC irqchip support
irqchip/loongson-pch-msi: Prepare get_pch_msi_handle() for AVECINTC
irqchip/loongson-eiointc: Rename CPUHP_AP_IRQ_LOONGARCH_STARTING
LoongArch: Architectural preparation for AVEC irqchip
LoongArch: Move irqchip function prototypes to irq-loongson.h
irqchip/loongson-pch-msi: Switch to MSI parent domains
softirq: Remove unused 'action' parameter from action callback
...
96fd6c65ef ("sched: Factor out update_other_load_avgs() from
__update_blocked_others()") added update_other_load_avgs() in
kernel/sched/syscalls.c right above effective_cpu_util(). This location
didn't fit that well in the first place, and with 5d871a6399 ("sched/fair:
Move effective_cpu_util() and effective_cpu_util() in fair.c") moving
effective_cpu_util() to kernel/sched/fair.c, it looks even more out of
place.
Relocate the function to kernel/sched/pelt.c where all its callees are.
No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Pull in tip/sched/core to resolve two merge conflicts:
- 96fd6c65ef ("sched: Factor out update_other_load_avgs() from __update_blocked_others()")
5d871a6399 ("sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c")
A simple context conflict. The former added __update_blocked_others() in
the same #ifdef CONFIG_SMP block that effective_cpu_util() and
sched_cpu_util() are in and the latter moved those functions to fair.c.
This makes __update_blocked_others() more out of place. Will follow up
with a patch to relocate.
- 96fd6c65ef ("sched: Factor out update_other_load_avgs() from __update_blocked_others()")
84d265281d ("sched/pelt: Use rq_clock_task() for hw_pressure")
The former factored out the body of __update_blocked_others() into
update_other_load_avgs(). The latter changed how update_hw_load_avg() is
called in the body. Resolved by applying the change to
update_other_load_avgs() instead.
Signed-off-by: Tejun Heo <tj@kernel.org>
Convert the sugov deadline task attributes to use the available
definitions to make them more readable.
No functional change.
Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20240813144348.1180344-5-christian.loehle@arm.com
A task moving across CPUs should not trigger quiescent/runnable task state
events as the task is staying runnable the whole time and just stopping and
then starting on different CPUs. Suppress quiescent/runnable task state
events if task_on_rq_migrating().
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: David Vernet <void@manifault.com>
Cc: Daniel Hodges <hodges.daniel.scott@gmail.com>
Cc: Changwoo Min <multics69@gmail.com>
Cc: Andrea Righi <andrea.righi@linux.dev>
Cc: Dan Schatzberg <schatzberg.dan@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
While the BPF scheduler is being unloaded, the following warning messages
trigger sometimes:
NOHZ tick-stop error: local softirq work is pending, handler #80!!!
This is caused by the CPU entering idle while there are pending softirqs.
The main culprit is the bypassing state assertion not being synchronized
with rq operations. As the BPF scheduler cannot be trusted in the disable
path, the first step is entering the bypass mode where the BPF scheduler is
ignored and scheduling becomes global FIFO.
This is implemented by turning scx_ops_bypassing() true. However, the
transition isn't synchronized against anything and it's possible for enqueue
and dispatch paths to have different ideas on whether bypass mode is on.
Make each rq track its own bypass state with SCX_RQ_BYPASSING which is
modified while rq is locked.
This removes most of the NOHZ tick-stop messages but not completely. I
believe the stragglers are from the sched core bug where pick_task_scx() can
be called without preceding balance_scx(). Once that bug is fixed, we should
verify that all occurrences of this error message are gone too.
v2: scx_enabled() test moved inside the for_each_possible_cpu() loop so that
the per-cpu states are always synchronized with the global state.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: David Vernet <void@manifault.com>
Remove delayed tasks from util_est even they are runnable.
Exclude delayed task which are (a) migrating between rq's or (b) in a
SAVE/RESTORE dequeue/enqueue.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/c49ef5fe-a909-43f1-b02f-a765ab9cedbf@arm.com
commit 97450eb909 ("sched/pelt: Remove shift of thermal clock")
removed the decay_shift for hw_pressure. This commit uses the
sched_clock_task() in sched_tick() while it replaces the
sched_clock_task() with rq_clock_pelt() in __update_blocked_others().
This could bring inconsistence. One possible scenario I can think of
is in ___update_load_sum():
u64 delta = now - sa->last_update_time
'now' could be calculated by rq_clock_pelt() from
__update_blocked_others(), and last_update_time was calculated by
rq_clock_task() previously from sched_tick(). Usually the former
chases after the latter, it cause a very large 'delta' and brings
unexpected behavior.
Fixes: 97450eb909 ("sched/pelt: Remove shift of thermal clock")
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20240827112607.181206-1-yu.c.chen@intel.com
Move effective_cpu_util() and sched_cpu_util() functions in fair.c file
with others utilization related functions.
No functional change.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240904092417.20660-1-vincent.guittot@linaro.org
Since commit b2a02fc43a ("smp: Optimize
send_call_function_single_ipi()") an idle CPU in TIF_POLLING_NRFLAG mode
can be pulled out of idle by setting TIF_NEED_RESCHED flag to service an
IPI without actually sending an interrupt. Even in cases where the IPI
handler does not queue a task on the idle CPU, do_idle() will call
__schedule() since need_resched() returns true in these cases.
Introduce and use SM_IDLE to identify call to __schedule() from
schedule_idle() and shorten the idle re-entry time by skipping
pick_next_task() when nr_running is 0 and the previous task is the idle
task.
With the SM_IDLE fast-path, the time taken to complete a fixed set of
IPIs using ipistorm improves noticeably. Following are the numbers
from a dual socket Intel Ice Lake Xeon server (2 x 32C/64T) and
3rd Generation AMD EPYC system (2 x 64C/128T) (boost on, C2 disabled)
running ipistorm between CPU8 and CPU16:
cmdline: insmod ipistorm.ko numipi=100000 single=1 offset=8 cpulist=8 wait=1
==================================================================
Test : ipistorm (modified)
Units : Normalized runtime
Interpretation: Lower is better
Statistic : AMean
======================= Intel Ice Lake Xeon ======================
kernel: time [pct imp]
tip:sched/core 1.00 [baseline]
tip:sched/core + SM_IDLE 0.80 [20.51%]
==================== 3rd Generation AMD EPYC =====================
kernel: time [pct imp]
tip:sched/core 1.00 [baseline]
tip:sched/core + SM_IDLE 0.90 [10.17%]
==================================================================
[ kprateek: Commit message, SM_RTLOCK_WAIT fix ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240809092240.6921-1-kprateek.nayak@amd.com
Once a task is put into a DSQ, the allowed operations are fairly limited.
Tasks in the built-in local and global DSQs are executed automatically and,
ignoring dequeue, there is only one way a task in a user DSQ can be
manipulated - scx_bpf_consume() moves the first task to the dispatching
local DSQ. This inflexibility sometimes gets in the way and is an area where
multiple feature requests have been made.
Implement scx_bpf_dispatch[_vtime]_from_dsq(), which can be called during
DSQ iteration and can move the task to any DSQ - local DSQs, global DSQ and
user DSQs. The kfuncs can be called from ops.dispatch() and any BPF context
which dosen't hold a rq lock including BPF timers and SYSCALL programs.
This is an expansion of an earlier patch which only allowed moving into the
dispatching local DSQ:
http://lkml.kernel.org/r/Zn4Cw4FDTmvXnhaf@slm.duckdns.org
v2: Remove @slice and @vtime from scx_bpf_dispatch_from_dsq[_vtime]() as
they push scx_bpf_dispatch_from_dsq_vtime() over the kfunc argument
count limit and often won't be needed anyway. Instead provide
scx_bpf_dispatch_from_dsq_set_{slice|vtime}() kfuncs which can be called
only when needed and override the specified parameter for the subsequent
dispatch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Daniel Hodges <hodges.daniel.scott@gmail.com>
Cc: David Vernet <void@manifault.com>
Cc: Changwoo Min <multics69@gmail.com>
Cc: Andrea Righi <andrea.righi@linux.dev>
Cc: Dan Schatzberg <schatzberg.dan@gmail.com>
struct scx_iter_scx_dsq is defined as 6 u64's and scx_dsq_iter_kern was
using 5 of them. We want to add two more u64 fields but it's better if we do
so while staying within scx_iter_scx_dsq to maintain binary compatibility.
The way scx_iter_scx_dsq_kern is laid out is rather inefficient - the node
field takes up three u64's but only one bit of the last u64 is used. Turn
the bool into u32 flags and only use the lower 16 bits freeing up 48 bits -
16 bits for flags, 32 bits for a u32 - for use by struct
bpf_iter_scx_dsq_kern.
This allows moving the dsq_seq and flags fields of bpf_iter_scx_dsq_kern
into the cursor field reducing the struct size by a full u64.
No behavior changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
- Rename move_task_to_local_dsq() to move_remote_task_to_local_dsq().
- Rename consume_local_task() to move_local_task_to_local_dsq() and remove
task_unlink_from_dsq() and source DSQ unlocking from it.
This is to make the migration code easier to reuse.
No functional changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
So that the local case comes first and two CONFIG_SMP blocks can be merged.
No functional changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
All task_unlink_from_dsq() users are doing dsq_mod_nr(dsq, -1). Move it into
task_unlink_from_dsq(). Also move sanity check into it.
No functional changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Reorder args for consistency in the order of:
current_rq, p, src_[rq|dsq], dst_[rq|dsq].
No functional changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that there's nothing left after the big if block, flip the if condition
and unindent the body.
No functional changes intended.
v2: Add BUG() to clarify control can't reach the end of
dispatch_to_local_dsq() in UP kernels per David.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
With the preceding update, the only return value which makes meaningful
difference is DTL_INVALID, for which one caller, finish_dispatch(), falls
back to the global DSQ and the other, process_ddsp_deferred_locals(),
doesn't do anything.
It should always fallback to the global DSQ. Move the global DSQ fallback
into dispatch_to_local_dsq() and remove the return value.
v2: Patch title and description updated to reflect the behavior fix for
process_ddsp_deferred_locals().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
find_dsq_for_dispatch() handles all DSQ IDs except SCX_DSQ_LOCAL_ON.
Instead, each caller is hanlding SCX_DSQ_LOCAL_ON before calling it. Move
SCX_DSQ_LOCAL_ON lookup into find_dsq_for_dispatch() to remove duplicate
code in direct_dispatch() and dispatch_to_local_dsq().
No functional changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
The tricky p->scx.holding_cpu handling was split across
consume_remote_task() body and move_task_to_local_dsq(). Refactor such that:
- All the tricky part is now in the new unlink_dsq_and_lock_src_rq() with
consolidated documentation.
- move_task_to_local_dsq() now implements straightforward task migration
making it easier to use in other places.
- dispatch_to_local_dsq() is another user move_task_to_local_dsq(). The
usage is updated accordingly. This makes the local and remote cases more
symmetric.
No functional changes intended.
v2: s/task_rq/src_rq/ for consistency.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Sleepables don't need to be in its own kfunc set as each is tagged with
KF_SLEEPABLE. Rename to scx_kfunc_set_unlocked indicating that rq lock is
not held and relocate right above the any set. This will be used to add
kfuncs that are allowed to be called from SYSCALL but not TRACING.
No functional changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
pick_task_scx() must be preceded by balance_scx() but there currently is a
bug where fair could say yes on balance() but no on pick_task(), which then
ends up calling pick_task_scx() without preceding balance_scx(). Work around
by dropping WARN_ON_ONCE() and ignoring cases which don't make sense.
This isn't great and can theoretically lead to stalls. However, for
switch_all cases, this happens only while a BPF scheduler is being loaded or
unloaded, and, for partial cases, fair will likely keep triggering this CPU.
This will be reverted once the fair behavior is fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Pull bpf/master to receive baebe9aaba ("bpf: allow passing struct
bpf_iter_<type> as kfunc arguments") and related changes in preparation for
the DSQ iterator patchset.
Signed-off-by: Tejun Heo <tj@kernel.org>
Add sched_ext_ops operations to init/exit cgroups, and track task migrations
and config changes. A BPF scheduler may not implement or implement only
subset of cgroup features. The implemented features can be indicated using
%SCX_OPS_HAS_CGOUP_* flags. If cgroup configuration makes use of features
that are not implemented, a warning is triggered.
While a BPF scheduler is being enabled and disabled, relevant cgroup
operations are locked out using scx_cgroup_rwsem. This avoids situations
like task prep taking place while the task is being moved across cgroups,
making things easier for BPF schedulers.
v7: - cgroup interface file visibility toggling is dropped in favor just
warning messages. Dynamically changing interface visiblity caused more
confusion than helping.
v6: - Updated to reflect the removal of SCX_KF_SLEEPABLE.
- Updated to use CONFIG_GROUP_SCHED_WEIGHT and fixes for
!CONFIG_FAIR_GROUP_SCHED && CONFIG_EXT_GROUP_SCHED.
v5: - Flipped the locking order between scx_cgroup_rwsem and
cpus_read_lock() to avoid locking order conflict w/ cpuset. Better
documentation around locking.
- sched_move_task() takes an early exit if the source and destination
are identical. This triggered the warning in scx_cgroup_can_attach()
as it left p->scx.cgrp_moving_from uncleared. Updated the cgroup
migration path so that ops.cgroup_prep_move() is skipped for identity
migrations so that its invocations always match ops.cgroup_move()
one-to-one.
v4: - Example schedulers moved into their own patches.
- Fix build failure when !CONFIG_CGROUP_SCHED, reported by Andrea Righi.
v3: - Make scx_example_pair switch all tasks by default.
- Convert to BPF inline iterators.
- scx_bpf_task_cgroup() is added to determine the current cgroup from
CPU controller's POV. This allows BPF schedulers to accurately track
CPU cgroup membership.
- scx_example_flatcg added. This demonstrates flattened hierarchy
implementation of CPU cgroup control and shows significant performance
improvement when cgroups which are nested multiple levels are under
competition.
v2: - Build fixes for different CONFIG combinations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Andrea Righi <andrea.righi@canonical.com>
sched_ext will soon add cgroup cpu.weigh support. The cgroup interface code
is currently gated behind CONFIG_FAIR_GROUP_SCHED. As the fair class and/or
SCX may implement the feature, put the interface code behind the new
CONFIG_CGROUP_SCHED_WEIGHT which is selected by CONFIG_FAIR_GROUP_SCHED.
This allows either sched class to enable the itnerface code without ading
more complex CONFIG tests.
When !CONFIG_FAIR_GROUP_SCHED, a dummy version of sched_group_set_shares()
is added to support later CONFIG_CGROUP_SCHED_WEIGHT &&
!CONFIG_FAIR_GROUP_SCHED builds.
No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Move tg_weight() upward and make cpu_shares_read_u64() use it too. This
makes the weight retrieval shared between cgroup v1 and v2 paths and will be
used to implement cgroup support for sched_ext.
No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
A new BPF extensible sched_class will use css_tg() in the init and exit
paths to visit all task_groups by walking cgroups.
v4: __setscheduler_prio() is already exposed. Dropped from this patch.
v3: Dropped SCHED_CHANGE_BLOCK() as upstream is adding more generic cleanup
mechanism.
v2: Expose SCHED_CHANGE_BLOCK() too and update the description.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
During scx_ops_enable(), SCX needs to invoke the sleepable ops.init_task()
on every task. To do this, it does get_task_struct() on each iterated task,
drop the lock and then call ops.init_task().
However, a TASK_DEAD task may already have lost all its usage count and be
waiting for RCU grace period to be freed. If get_task_struct() is called on
such task, use-after-free can happen. To avoid such situations,
scx_ops_enable() skips initialization of TASK_DEAD tasks, which seems safe
as they are never going to be scheduled again.
Unfortunately, a racing sched_setscheduler(2) can grab the task before the
task is unhashed and then continue to e.g. move the task from RT to SCX
after TASK_DEAD is set and ops_enable skipped the task. As the task hasn't
gone through scx_ops_init_task(), scx_ops_enable_task() called from
switching_to_scx() triggers the following warning:
sched_ext: Invalid task state transition 0 -> 3 for stress-ng-race-[2872]
WARNING: CPU: 6 PID: 2367 at kernel/sched/ext.c:3327 scx_ops_enable_task+0x18f/0x1f0
...
RIP: 0010:scx_ops_enable_task+0x18f/0x1f0
...
switching_to_scx+0x13/0xa0
__sched_setscheduler+0x84e/0xa50
do_sched_setscheduler+0x104/0x1c0
__x64_sys_sched_setscheduler+0x18/0x30
do_syscall_64+0x7b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
As in the ops_disable path, it just doesn't seem like a good idea to leave
any task in an inconsistent state, even when the task is dead. The root
cause is ops_enable not being able to tell reliably whether a task is truly
dead (no one else is looking at it and it's about to be freed) and was
testing TASK_DEAD instead. Fix it by testing the task's usage count
directly.
- ops_init no longer ignores TASK_DEAD tasks. As now all users iterate all
tasks, @include_dead is removed from scx_task_iter_next_locked() along
with dead task filtering.
- tryget_task_struct() is added. Tasks are skipped iff tryget_task_struct()
fails.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Vernet <void@manifault.com>
Cc: Peter Zijlstra <peterz@infradead.org>
scx_ops_disable_workfn() only switches !TASK_DEAD tasks out of SCX while
calling scx_ops_exit_task() on all tasks including dead ones. This can leave
a dead task on SCX but with SCX_TASK_NONE state, which is inconsistent.
If another task was in the process of changing the TASK_DEAD task's
scheduling class and grabs the rq lock after scx_ops_disable_workfn() is
done with the task, the task ends up calling scx_ops_disable_task() on the
dead task which is in an inconsistent state triggering a warning:
WARNING: CPU: 6 PID: 3316 at kernel/sched/ext.c:3411 scx_ops_disable_task+0x12c/0x160
...
RIP: 0010:scx_ops_disable_task+0x12c/0x160
...
Call Trace:
<TASK>
check_class_changed+0x2c/0x70
__sched_setscheduler+0x8a0/0xa50
do_sched_setscheduler+0x104/0x1c0
__x64_sys_sched_setscheduler+0x18/0x30
do_syscall_64+0x7b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f140d70ea5b
There is no reason to leave dead tasks on SCX when unloading the BPF
scheduler. Fix by making scx_ops_disable_workfn() eject all tasks including
the dead ones from SCX.
Signed-off-by: Tejun Heo <tj@kernel.org>
With sched_ext converted to use put_prev_task() for class switch detection,
there's no user of switch_class() left. Drop it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Now that put_prev_task_scx() is called with @next on task switches, there's
no reason to use sched_class.switch_class(). Rename switch_class_scx() to
switch_class() and call it from put_prev_task_scx().
Signed-off-by: Tejun Heo <tj@kernel.org>
Because the BPF scheduler's dispatch path is invoked from balance(),
sched_ext needs to invoke balance_one() on all sibling rq's before picking
the next task for core-sched.
Before the recent pick_next_task() updates, sched_ext couldn't share pick
task between regular and core-sched paths because pick_next_task() depended
on put_prev_task() being called on the current task. Tasks currently running
on sibling rq's can't be put when one rq is trying to pick the next task, so
pick_task_scx() had to have a separate mechanism to pick between a sibling
rq's current task and the first task in its local DSQ.
However, with the preceding updates, pick_next_task_scx() no longer depends
on the current task being put and can compare the current task and the next
in line statelessly, and the pick task logic should be shareable between
regular and core-sched paths.
Unify regular and core-sched pick task paths:
- There's no reason to distinguish local and sibling picks anymore. @local
is removed from balance_one().
- pick_next_task_scx() is turned into pick_task_scx() by dropping the
put_prev_set_next_task() call.
- The old pick_task_scx() is dropped.
Signed-off-by: Tejun Heo <tj@kernel.org>
SCX_TASK_BAL_KEEP is used by balance_one() to tell pick_next_task_scx() to
keep running the current task. It's not really a task property. Replace it
with SCX_RQ_BAL_KEEP which resides in rq->scx.flags and is a better fit for
the usage. Also, the existing clearing rule is unnecessarily strict and
makes it difficult to use with core-sched. Just clear it on entry to
balance_one().
Signed-off-by: Tejun Heo <tj@kernel.org>
fd03c5b858 ("sched: Rework pick_next_task()") changed the definition of
pick_next_task() from:
pick_next_task() := pick_task() + set_next_task(.first = true)
to:
pick_next_task(prev) := pick_task() + put_prev_task() + set_next_task(.first = true)
making invoking put_prev_task() pick_next_task()'s responsibility. This
reordering allows pick_task() to be shared between regular and core-sched
paths and put_prev_task() to know the next task.
sched_ext depended on put_prev_task_scx() enqueueing the current task before
pick_next_task_scx() is called. While pulling sched/core changes,
70cc76aa0d80 ("Merge branch 'tip/sched/core' into for-6.12") added an
explicit put_prev_task_scx() call for SCX tasks in pick_next_task_scx()
before picking the first task as a workaround.
Clean it up and adopt the conventions that other sched classes are
following.
The operation of keeping running the current task was spread and required
the task to be put on the local DSQ before picking:
- balance_one() used SCX_TASK_BAL_KEEP to indicate that the task is still
runnable, hasn't exhausted its slice, and thus should keep running.
- put_prev_task_scx() enqueued the task to local DSQ if SCX_TASK_BAL_KEEP
is set. It also called do_enqueue_task() with SCX_ENQ_LAST if it is the
only runnable task. do_enqueue_task() in turn decided whether to use the
local DSQ depending on SCX_OPS_ENQ_LAST.
Consolidate the logic in balance_one() as it always knows whether it is
going to keep the current task. balance_one() now considers all conditions
where the current task should be kept and uses SCX_TASK_BAL_KEEP to tell
pick_next_task_scx() to keep the current task instead of picking one from
the local DSQ. Accordingly, SCX_ENQ_LAST handling is removed from
put_prev_task_scx() and do_enqueue_task() and pick_next_task_scx() is
updated to pick the current task if SCX_TASK_BAL_KEEP is set.
The workaround put_prev_task[_scx]() calls are replaced with
put_prev_set_next_task().
This causes two behavior changes observable from the BPF scheduler:
- When a task keep running, it no longer goes through enqueue/dequeue cycle
and thus ops.stopping/running() transitions. The new behavior is better
and all the existing schedulers should be able to handle the new behavior.
- The BPF scheduler cannot keep executing the current task by enqueueing
SCX_ENQ_LAST task to the local DSQ. If SCX_OPS_ENQ_LAST is specified, the
BPF scheduler is responsible for resuming execution after each
SCX_ENQ_LAST. SCX_OPS_ENQ_LAST is mostly useful for cases where scheduling
decisions are not made on the local CPU - e.g. central or userspace-driven
schedulin - and the new behavior is more logical and shouldn't pose any
problems. SCX_OPS_ENQ_LAST demonstration from scx_qmap is dropped as it
doesn't fit that well anymore and the last task handling is moved to the
end of qmap_dispatch().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Vernet <void@manifault.com>
Cc: Andrea Righi <righi.andrea@gmail.com>
Cc: Changwoo Min <multics69@gmail.com>
Cc: Daniel Hodges <hodges.daniel.scott@gmail.com>
Cc: Dan Schatzberg <schatzberg.dan@gmail.com>
Problem statement:
Since commit fc137c0dda ("sched/numa: enhance vma scanning logic"), the
Numa vma scan overhead has been reduced a lot. Meanwhile, the reducing of
the vma scan might create less Numa page fault information. The
insufficient information makes it harder for the Numa balancer to make
decision. Later, commit b7a5b537c5 ("sched/numa: Complete scanning of
partial VMAs regardless of PID activity") and commit 84db47ca71
("sched/numa: Fix mm numa_scan_seq based unconditional scan") are found to
bring back part of the performance.
Recently when running SPECcpu omnetpp_r on a 320 CPUs/2 Sockets system, a
long duration of remote Numa node read was observed by PMU events: A few
cores having ~500MB/s remote memory access for ~20 seconds. It causes
high core-to-core variance and performance penalty. After the
investigation, it is found that many vmas are skipped due to the active
PID check. According to the trace events, in most cases,
vma_is_accessed() returns false because the history access info stored in
pids_active array has been cleared.
Proposal:
The main idea is to adjust vma_is_accessed() to let it return true easier.
Thus compare the diff between mm->numa_scan_seq and
vma->numab_state->prev_scan_seq. If the diff has exceeded the threshold,
scan the vma.
This patch especially helps the cases where there are small number of
threads, like the process-based SPECcpu. Without this patch, if the
SPECcpu process access the vma at the beginning, then sleeps for a long
time, the pid_active array will be cleared. A a result, if this process
is woken up again, it never has a chance to set prot_none anymore.
Because only the first 2 times of access is granted for vma scan:
(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2 to be
worse, no other threads within the task can help set the prot_none. This
causes information lost.
Raghavendra helped test current patch and got the positive result
on the AMD platform:
autonumabench NUMA01
base patched
Amean syst-NUMA01 194.05 ( 0.00%) 165.11 * 14.92%*
Amean elsp-NUMA01 324.86 ( 0.00%) 315.58 * 2.86%*
Duration User 380345.36 368252.04
Duration System 1358.89 1156.23
Duration Elapsed 2277.45 2213.25
autonumabench NUMA02
Amean syst-NUMA02 1.12 ( 0.00%) 1.09 * 2.93%*
Amean elsp-NUMA02 3.50 ( 0.00%) 3.56 * -1.84%*
Duration User 1513.23 1575.48
Duration System 8.33 8.13
Duration Elapsed 28.59 29.71
kernbench
Amean user-256 22935.42 ( 0.00%) 22535.19 * 1.75%*
Amean syst-256 7284.16 ( 0.00%) 7608.72 * -4.46%*
Amean elsp-256 159.01 ( 0.00%) 158.17 * 0.53%*
Duration User 68816.41 67615.74
Duration System 21873.94 22848.08
Duration Elapsed 506.66 504.55
Intel 256 CPUs/2 Sockets:
autonuma benchmark also shows improvements:
v6.10-rc5 v6.10-rc5
+patch
Amean syst-NUMA01 245.85 ( 0.00%) 230.84 * 6.11%*
Amean syst-NUMA01_THREADLOCAL 205.27 ( 0.00%) 191.86 * 6.53%*
Amean syst-NUMA02 18.57 ( 0.00%) 18.09 * 2.58%*
Amean syst-NUMA02_SMT 2.63 ( 0.00%) 2.54 * 3.47%*
Amean elsp-NUMA01 517.17 ( 0.00%) 526.34 * -1.77%*
Amean elsp-NUMA01_THREADLOCAL 99.92 ( 0.00%) 100.59 * -0.67%*
Amean elsp-NUMA02 15.81 ( 0.00%) 15.72 * 0.59%*
Amean elsp-NUMA02_SMT 13.23 ( 0.00%) 12.89 * 2.53%*
v6.10-rc5 v6.10-rc5
+patch
Duration User 1064010.16 1075416.23
Duration System 3307.64 3104.66
Duration Elapsed 4537.54 4604.73
The SPECcpu remote node access issue disappears with the patch applied.
Link: https://lkml.kernel.org/r/20240827112958.181388-1-yu.c.chen@intel.com
Fixes: fc137c0dda ("sched/numa: enhance vma scanning logic")
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Co-developed-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Yujie Liu <yujie.liu@intel.com>
Reported-by: Xiaoping Zhou <xiaoping.zhou@intel.com>
Reviewed-and-tested-by: Raghavendra K T <raghavendra.kt@amd.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: "Chen, Tim C" <tim.c.chen@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@amd.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- Resolve trivial context conflicts from dl_server clearing being moved
around.
- Add @next to put_prev_task_scx() and @prev to pick_next_task_scx() to
match sched/core.
- Merge sched_class->switch_class() addition from sched_ext with
tip/sched/core changes in __pick_next_task().
- Make pick_next_task_scx() call put_prev_task_scx() to emulate the previous
behavior where sched_class->put_prev_task() was called before
sched_class->pick_next_task().
While this makes sched_ext build and function, the behavior is not in line
with other sched classes. The follow-up patches will address the
discrepancies and remove sched_class->switch_class().
Signed-off-by: Tejun Heo <tj@kernel.org>
In order to tell the previous sched_class what the next task is, add
put_prev_task(.next).
Notable SCX will use this to:
1) determine the next task will leave the SCX sched class and push
the current task to another CPU if possible.
2) statistics on how often and which other classes preempt it
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.367421076@infradead.org
When a task is selected through a dl_server, it will have p->dl_server
set, such that it can account runtime to the dl_server, see
update_curr_task().
Currently p->dl_server is set in pick*task() whenever it goes through
the dl_server, clearing it is a bit of a mess though. The trivial
solution is clearing it on the final put (now that we have this
location).
However, this gives a problem when:
p = pick_task(rq);
if (p)
put_prev_set_next_task(rq, prev, next);
picks the same task but through a different path, notably when it goes
from picking through the dl_server to a direct pick or vice-versa. In
that case we cannot readily determine wether we should clear or
preserve p->dl_server.
An additional complication is pick_*task() setting p->dl_server for a
remote pick, it might still need to update runtime before it schedules
the core_pick.
Close all these holes and remove all the random clearing of
p->dl_server by:
- having pick_*task() manage rq->dl_server
- having the final put_prev_task() clear p->dl_server
- having the first set_next_task() set p->dl_server = rq->dl_server
- complicate the core_sched code to save/restore rq->dl_server where
appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.259853414@infradead.org
The current rule is that:
pick_next_task() := pick_task() + set_next_task(.first = true)
And many classes implement it directly as such. Change things around
to make pick_next_task() optional while also changing the definition to:
pick_next_task(prev) := pick_task() + put_prev_task() + set_next_task(.first = true)
The reason is that sched_ext would like to have a 'final' call that
knows the next task. By placing put_prev_task() right next to
set_next_task() (as it already is for sched_core) this becomes
trivial.
As a bonus, this is a nice cleanup on its own.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224016.051225657@infradead.org
Abide by the simple rule:
pick_next_task() := pick_task() + set_next_task(.first = true)
This allows us to trivially get rid of server_pick_next() and things
collapse nicely.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.837303391@infradead.org
The rule is that:
pick_next_task() := pick_task() + set_next_task(.first = true)
Turns out, there's still a few things in pick_next_task() that are
missing from that combination.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.724111109@infradead.org
Turns out the core_sched bits forgot to use the
set_next_task(.first=true) variant. Notably:
pick_next_task() := pick_task() + set_next_task(.first = true)
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240813224015.614146342@infradead.org
__sched_setscheduler() goes through an enqueue/dequeue cycle like so:
flags := DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
prev_class->dequeue_task(rq, p, flags);
new_class->enqueue_task(rq, p, flags);
when prev_class := fair_sched_class, this is followed by:
dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);
the idea being that since the task has switched classes, we need to drop
the sched_delayed logic and have that task be deactivated per its previous
dequeue_task(..., DEQUEUE_SLEEP).
Unfortunately, this leaves the task on_rq. This is missing the tail end of
dequeue_entities() that issues __block_task(), which __sched_setscheduler()
won't have done due to not using DEQUEUE_DELAYED - not that it should, as
it is pretty much a fair_sched_class specific thing.
Make switched_from_fair() properly deactivate sched_delayed tasks upon
class changes via __block_task(), as if a
dequeue_task(..., DEQUEUE_DELAYED)
had been issued.
Fixes: 2e0199df25 ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue")
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Reported-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240829135353.1524260-1-vschneid@redhat.com
In dl_server_start(), when schedstats is enabled, the following
happens:
dl_server_start()
dl_se->dl_server = 1;
enqueue_dl_entity()
update_stats_enqueue_dl()
__schedstats_from_dl_se()
dl_task_of()
BUG_ON(dl_server(dl_se));
Since only tasks have schedstats and internal entries do not, avoid
trying to update stats in this case.
Fixes: 63ba8422f8 ("sched/deadline: Introduce deadline servers")
Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20240829031111.12142-1-shijie@os.amperecomputing.com
Given that stack_not_used() is not performance critical function
uninline it.
Link: https://lkml.kernel.org/r/20240730150158.832783-4-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20240724203322.2765486-4-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Li Zhijian <lizhijian@fujitsu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If memory tiering mode is on and a folio is not in the top tier memory,
folio's cpupid field is repurposed to store page access time. Instead of
an open coded check, use a function to encapsulate the check.
Link: https://lkml.kernel.org/r/20240724130115.793641-3-ziy@nvidia.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since 3cf78c5d01 ("sched_ext: Unpin and repin rq lock from
balance_scx()"), sched_ext's balance path terminates rq_pin in the outermost
function. This is simpler and in line with what other balance functions are
doing but it loses control over rq->clock_update_flags which makes
assert_clock_udpated() trigger if other CPUs pins the rq lock.
The only place this matters is touch_core_sched() which uses the timestamp
to order tasks from sibling rq's. Switch to sched_clock_cpu(). Later, it may
be better to use per-core dispatch sequence number.
v2: Use sched_clock_cpu() instead of ktime_get_ns() per David.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 3cf78c5d01 ("sched_ext: Unpin and repin rq lock from balance_scx()")
Acked-by: David Vernet <void@manifault.com>
Cc: Peter Zijlstra <peterz@infradead.org>
When deciding whether a task can be migrated to a CPU,
dispatch_to_local_dsq() was open-coding p->cpus_allowed and scx_rq_online()
tests instead of using task_can_run_on_remote_rq(). This had two problems.
- It was missing is_migration_disabled() check and thus could try to migrate
a task which shouldn't leading to assertion and scheduling failures.
- It was testing p->cpus_ptr directly instead of using task_allowed_on_cpu()
and thus failed to consider ISA compatibility.
Update dispatch_to_local_dsq() to use task_can_run_on_remote_rq():
- Move scx_ops_error() triggering into task_can_run_on_remote_rq().
- When migration isn't allowed, fall back to the global DSQ instead of the
source DSQ by returning DTL_INVALID. This is both simpler and an overall
better behavior.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: David Vernet <void@manifault.com>
The timerslack_ns setting is used to specify how much the hardware
timers should be delayed, to potentially dispatch multiple timers in a
single interrupt. This is a performance optimization. Timers of
realtime tasks (having a realtime scheduling policy) should not be
delayed.
This logic was inconsitently applied to the hrtimers, leading to delays
of realtime tasks which used timed waits for events (e.g. condition
variables). Due to the downstream override of the slack for rt tasks,
the procfs reported incorrect (non-zero) timerslack_ns values.
This is changed by setting the timer_slack_ns task attribute to 0 for
all tasks with a rt policy. By that, downstream users do not need to
specially handle rt tasks (w.r.t. the slack), and the procfs entry
shows the correct value of "0". Setting non-zero slack values (either
via procfs or PR_SET_TIMERSLACK) on tasks with a rt policy is ignored,
as stated in "man 2 PR_SET_TIMERSLACK":
Timer slack is not applied to threads that are scheduled under a
real-time scheduling policy (see sched_setscheduler(2)).
The special handling of timerslack on rt tasks in downstream users
is removed as well.
Signed-off-by: Felix Moessbauer <felix.moessbauer@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240814121032.368444-2-felix.moessbauer@siemens.com
To receive 863ccdbb91 ("sched: Allow sched_class::dequeue_task() to fail")
which makes sched_class.dequeue_task() return bool instead of void. This
leads to compile breakage and will be fixed by a follow-up patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
When soft interrupt actions are called, they are passed a pointer to the
struct softirq action which contains the action's function pointer.
This pointer isn't useful, as the action callback already knows what
function it is. And since each callback handles a specific soft interrupt,
the callback also knows which soft interrupt number is running.
No soft interrupt action callback actually uses this parameter, so remove
it from the function pointer signature. This clarifies that soft interrupt
actions are global routines and makes it slightly cheaper to call them.
Signed-off-by: Caleb Sander Mateos <csander@purestorage.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/all/20240815171549.3260003-1-csander@purestorage.com
In the absence of an explicit cgroup slice configureation, make mixed
slice length work with cgroups by propagating the min_slice up the
hierarchy.
This ensures the cgroup entity gets timely service to service its
entities that have this timing constraint set on them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.948188417@infradead.org
Allow applications to directly set a suggested request/slice length using
sched_attr::sched_runtime.
The implementation clamps the value to: 0.1[ms] <= slice <= 100[ms]
which is 1/10 the size of HZ=1000 and 10 times the size of HZ=100.
Applications should strive to use their periodic runtime at a high
confidence interval (95%+) as the target slice. Using a smaller slice
will introduce undue preemptions, while using a larger value will
increase latency.
For all the following examples assume a scheduling quantum of 8, and for
consistency all examples have W=4:
{A,B,C,D}(w=1,r=8):
ABCD...
+---+---+---+---
t=0, V=1.5 t=1, V=3.5
A |------< A |------<
B |------< B |------<
C |------< C |------<
D |------< D |------<
---+*------+-------+--- ---+--*----+-------+---
t=2, V=5.5 t=3, V=7.5
A |------< A |------<
B |------< B |------<
C |------< C |------<
D |------< D |------<
---+----*--+-------+--- ---+------*+-------+---
Note: 4 identical tasks in FIFO order
~~~
{A,B}(w=1,r=16) C(w=2,r=16)
AACCBBCC...
+---+---+---+---
t=0, V=1.25 t=2, V=5.25
A |--------------< A |--------------<
B |--------------< B |--------------<
C |------< C |------<
---+*------+-------+--- ---+----*--+-------+---
t=4, V=8.25 t=6, V=12.25
A |--------------< A |--------------<
B |--------------< B |--------------<
C |------< C |------<
---+-------*-------+--- ---+-------+---*---+---
Note: 1 heavy task -- because q=8, double r such that the deadline of the w=2
task doesn't go below q.
Note: observe the full schedule becomes: W*max(r_i/w_i) = 4*2q = 8q in length.
Note: the period of the heavy task is half the full period at:
W*(r_i/w_i) = 4*(2q/2) = 4q
~~~
{A,C,D}(w=1,r=16) B(w=1,r=8):
BAACCBDD...
+---+---+---+---
t=0, V=1.5 t=1, V=3.5
A |--------------< A |---------------<
B |------< B |------<
C |--------------< C |--------------<
D |--------------< D |--------------<
---+*------+-------+--- ---+--*----+-------+---
t=3, V=7.5 t=5, V=11.5
A |---------------< A |---------------<
B |------< B |------<
C |--------------< C |--------------<
D |--------------< D |--------------<
---+------*+-------+--- ---+-------+--*----+---
t=6, V=13.5
A |---------------<
B |------<
C |--------------<
D |--------------<
---+-------+----*--+---
Note: 1 short task -- again double r so that the deadline of the short task
won't be below q. Made B short because its not the leftmost task, but is
eligible with the 0,1,2,3 spread.
Note: like with the heavy task, the period of the short task observes:
W*(r_i/w_i) = 4*(1q/1) = 4q
~~~
A(w=1,r=16) B(w=1,r=8) C(w=2,r=16)
BCCAABCC...
+---+---+---+---
t=0, V=1.25 t=1, V=3.25
A |--------------< A |--------------<
B |------< B |------<
C |------< C |------<
---+*------+-------+--- ---+--*----+-------+---
t=3, V=7.25 t=5, V=11.25
A |--------------< A |--------------<
B |------< B |------<
C |------< C |------<
---+------*+-------+--- ---+-------+--*----+---
t=6, V=13.25
A |--------------<
B |------<
C |------<
---+-------+----*--+---
Note: 1 heavy and 1 short task -- combine them all.
Note: both the short and heavy task end up with a period of 4q
~~~
A(w=1,r=16) B(w=2,r=16) C(w=1,r=8)
BBCAABBC...
+---+---+---+---
t=0, V=1 t=2, V=5
A |--------------< A |--------------<
B |------< B |------<
C |------< C |------<
---+*------+-------+--- ---+----*--+-------+---
t=3, V=7 t=5, V=11
A |--------------< A |--------------<
B |------< B |------<
C |------< C |------<
---+------*+-------+--- ---+-------+--*----+---
t=7, V=15
A |--------------<
B |------<
C |------<
---+-------+------*+---
Note: as before but permuted
~~~
From all this it can be deduced that, for the steady state:
- the total period (P) of a schedule is: W*max(r_i/w_i)
- the average period of a task is: W*(r_i/w_i)
- each task obtains the fair share: w_i/W of each full period P
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.842834421@infradead.org
Part of the reason to have shorter slices is to improve
responsiveness. Allow shorter slices to preempt longer slices on
wakeup.
Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Sum delay ms |
100ms massive_intr 500us cyclictest NO_PREEMPT_SHORT
1 massive_intr:(5) | 846018.956 ms | 779188 | avg: 0.273 ms | max: 58.337 ms | sum:212545.245 ms |
2 massive_intr:(5) | 853450.693 ms | 792269 | avg: 0.275 ms | max: 71.193 ms | sum:218263.588 ms |
3 massive_intr:(5) | 843888.920 ms | 771456 | avg: 0.277 ms | max: 92.405 ms | sum:213353.221 ms |
1 chromium-browse:(8) | 53015.889 ms | 131766 | avg: 0.463 ms | max: 36.341 ms | sum:60959.230 ms |
2 chromium-browse:(8) | 53864.088 ms | 136962 | avg: 0.480 ms | max: 27.091 ms | sum:65687.681 ms |
3 chromium-browse:(9) | 53637.904 ms | 132637 | avg: 0.481 ms | max: 24.756 ms | sum:63781.673 ms |
1 cyclictest:(5) | 12615.604 ms | 639689 | avg: 0.471 ms | max: 32.272 ms | sum:301351.094 ms |
2 cyclictest:(5) | 12511.583 ms | 642578 | avg: 0.448 ms | max: 44.243 ms | sum:287632.830 ms |
3 cyclictest:(5) | 12545.867 ms | 635953 | avg: 0.475 ms | max: 25.530 ms | sum:302374.658 ms |
100ms massive_intr 500us cyclictest PREEMPT_SHORT
1 massive_intr:(5) | 839843.919 ms | 837384 | avg: 0.264 ms | max: 74.366 ms | sum:221476.885 ms |
2 massive_intr:(5) | 852449.913 ms | 845086 | avg: 0.252 ms | max: 68.162 ms | sum:212595.968 ms |
3 massive_intr:(5) | 839180.725 ms | 836883 | avg: 0.266 ms | max: 69.742 ms | sum:222812.038 ms |
1 chromium-browse:(11) | 54591.481 ms | 138388 | avg: 0.458 ms | max: 35.427 ms | sum:63401.508 ms |
2 chromium-browse:(8) | 52034.541 ms | 132276 | avg: 0.436 ms | max: 31.826 ms | sum:57732.958 ms |
3 chromium-browse:(8) | 55231.771 ms | 141892 | avg: 0.469 ms | max: 27.607 ms | sum:66538.697 ms |
1 cyclictest:(5) | 13156.391 ms | 667412 | avg: 0.373 ms | max: 38.247 ms | sum:249174.502 ms |
2 cyclictest:(5) | 12688.939 ms | 665144 | avg: 0.374 ms | max: 33.548 ms | sum:248509.392 ms |
3 cyclictest:(5) | 13475.623 ms | 669110 | avg: 0.370 ms | max: 37.819 ms | sum:247673.390 ms |
As per the numbers the, this makes cyclictest (short slice) it's
max-delay more consistent and consistency drops the sum-delay. The
trade-off is that the massive_intr (long slice) gets more context
switches and a slight increase in sum-delay.
Chunxin contributed did_preempt_short() where a task that lost slice
protection from PREEMPT_SHORT gets rescheduled once it becomes
in-eligible.
[mike: numbers]
Co-Developed-by: Chunxin Zang <zangchunxin@lixiang.com>
Signed-off-by: Chunxin Zang <zangchunxin@lixiang.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: https://lkml.kernel.org/r/20240727105030.735459544@infradead.org
During OSPM24 Youssef noted that migrations are re-setting the virtual
deadline. Notably everything that does a dequeue-enqueue, like setting
nice, changing preferred numa-node, and a myriad of other random crap,
will cause this to happen.
This shouldn't be. Preserve the relative virtual deadline across such
dequeue/enqueue cycles.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.625119246@infradead.org
Note that tasks that are kept on the runqueue to burn off negative
lag, are not in fact runnable anymore, they'll get dequeued the moment
they get picked.
As such, don't count this time towards runnable.
Thanks to Valentin for spotting I had this backwards initially.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.514088302@infradead.org
'Extend' DELAY_DEQUEUE by noting that since we wanted to dequeued them
at the 0-lag point, truncate lag (eg. don't let them earn positive
lag).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.403750550@infradead.org
Extend / fix 86bfbb7ce4 ("sched/fair: Add lag based placement") by
noting that lag is fundamentally a temporal measure. It should not be
carried around indefinitely.
OTOH it should also not be instantly discarded, doing so will allow a
task to game the system by purposefully (micro) sleeping at the end of
its time quantum.
Since lag is intimately tied to the virtual time base, a wall-time
based decay is also insufficient, notably competition is required for
any of this to make sense.
Instead, delay the dequeue and keep the 'tasks' on the runqueue,
competing until they are eligible.
Strictly speaking, we only care about keeping them until the 0-lag
point, but that is a difficult proposition, instead carry them around
until they get picked again, and dequeue them at that point.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.226163742@infradead.org
Since special task states must not suffer spurious wakeups, and the
proposed delayed dequeue can cause exactly these (under some boundary
conditions), propagate this knowledge into dequeue_task() such that it
can do the right thing.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105030.110439521@infradead.org
Doing a wakeup on a delayed dequeue task is about as simple as it
sounds -- remove the delayed mark and enjoy the fact it was actually
still on the runqueue.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.888107381@infradead.org
Delayed dequeue's natural end is when it gets picked again. Ensure
pick_next_task() knows what to do with delayed tasks.
Note, this relies on the earlier patch that made pick_next_task()
state invariant -- it will restart the pick on dequeue, because
obviously the just dequeued task is no longer eligible.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.747330118@infradead.org
When dequeue_task() is delayed it becomes possible to exit a task (or
cgroup) that is still enqueued. Ensure things are dequeued before
freeing.
Thanks to Valentin for asking the obvious questions and making
switched_from_fair() less weird.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.631948434@infradead.org
Just a little sanity test..
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.486423066@infradead.org
Delayed dequeue has tasks sit around on the runqueue that are not
actually runnable -- specifically, they will be dequeued the moment
they get picked.
One side-effect is that such a task can get migrated, which leads to a
'nested' dequeue_task() scenario that messes up uclamp if we don't
take care.
Notably, dequeue_task(DEQUEUE_SLEEP) can 'fail' and keep the task on
the runqueue. This however will have removed the task from uclamp --
per uclamp_rq_dec() in dequeue_task(). So far so good.
However, if at that point the task gets migrated -- or nice adjusted
or any of a myriad of operations that does a dequeue-enqueue cycle --
we'll pass through dequeue_task()/enqueue_task() again. Without
modification this will lead to a double decrement for uclamp, which is
wrong.
Reported-by: Luis Machado <luis.machado@arm.com>
Reported-by: Hongyan Xia <hongyan.xia2@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.315205425@infradead.org
While most of the delayed dequeue code can be done inside the
sched_class itself, there is one location where we do not have an
appropriate hook, namely ttwu_runnable().
Add an ENQUEUE_DELAYED call to the on_rq path to deal with waking
delayed dequeue tasks.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.200000445@infradead.org
As a preparation for dequeue_task() failing, and a second code-path
needing to take care of the 'success' path, split out the DEQEUE_SLEEP
path from deactivate_task().
Much thanks to Libo for spotting and fixing a TASK_ON_RQ_MIGRATING
ordering fail.
Fixed-by: Libo Chen <libo.chen@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105029.086192709@infradead.org
Working towards delaying dequeue, notably also inside the hierachy,
rework dequeue_task_fair() such that it can 'resume' an interrupted
hierarchy walk.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.977256873@infradead.org
Change the function signature of sched_class::dequeue_task() to return
a boolean, allowing future patches to 'fail' dequeue.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.864630153@infradead.org
Implement pick_next_task_fair() in terms of pick_task_fair() to
de-duplicate the pick loop.
More importantly, this makes all the pick loops use the
state-invariant form, which is useful to introduce further re-try
conditions in later patches.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.725062368@infradead.org
With 4c456c9ad3 ("sched/fair: Remove unused 'curr' argument from
pick_next_entity()") curr is no longer being used, so no point in
clearing it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.614707623@infradead.org
Per 54d27365ca ("sched/fair: Prevent throttling in early
pick_next_task_fair()") the reason check_cfs_rq_runtime() is under the
'if (curr)' check is to ensure the (downward) traversal does not
result in an empty cfs_rq.
But then the pick_task_fair() 'copy' of all this made it restart the
traversal anyway, so that seems to solve the issue too.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.501679876@infradead.org
Since commit e8f331bcc2 ("sched/smp: Use lag to simplify
cross-runqueue placement") the min_vruntime_copy is no longer used.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/20240727105028.395297941@infradead.org
The commit 2d7f00b2f0 ("rcu: Suppress smp_processor_id() complaint
in synchronize_rcu_expedited_wait()") disabled preemption around
dump_cpu_task() to suppress warning on its usage within preemtible context.
Calling dump_cpu_task() doesn't required to be in non-preemptible context
except for suppressing the smp_processor_id() warning.
As the smp_processor_id() is evaluated along with in_hardirq()
to check if it's in interrupt context, this patch removes the need
for its preemtion disablement by reordering the condition so that
smp_processor_id() only gets evaluated when it's in interrupt context.
Signed-off-by: Ryo Takakura <takakura@valinux.co.jp>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
consume_remote_task() and dispatch_to_local_dsq() use
move_task_to_local_dsq() to migrate the task to the target CPU. Currently,
move_task_to_local_dsq() expects the caller to lock both the source and
destination rq's. While this may save a few lock operations while the rq's
are not contended, under contention, the double locking can exacerbate the
situation significantly (refer to the linked message below).
Update the migration path so that double locking is not used.
move_task_to_local_dsq() now expects the caller to be locking the source rq,
drops it and then acquires the destination rq lock. Code is simpler this way
and, on a 2-way NUMA machine w/ Xeon Gold 6138, 'hackbench 100 thread 5000`
shows ~3% improvement with scx_simple.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20240806082716.GP37996@noisy.programming.kicks-ass.net
Acked-by: David Vernet <void@manifault.com>
`__bpf_ops_sched_ext_ops` was missing the initialization of some struct
attributes. With
https://lore.kernel.org/all/20240722183049.2254692-4-martin.lau@linux.dev/
every single attributes need to be initialized programs (like scx_layered)
will fail to load.
05:26:48 [INFO] libbpf: struct_ops layered: member cgroup_init not found in kernel, skipping it as it's set to zero
05:26:48 [INFO] libbpf: struct_ops layered: member cgroup_exit not found in kernel, skipping it as it's set to zero
05:26:48 [INFO] libbpf: struct_ops layered: member cgroup_prep_move not found in kernel, skipping it as it's set to zero
05:26:48 [INFO] libbpf: struct_ops layered: member cgroup_move not found in kernel, skipping it as it's set to zero
05:26:48 [INFO] libbpf: struct_ops layered: member cgroup_cancel_move not found in kernel, skipping it as it's set to zero
05:26:48 [INFO] libbpf: struct_ops layered: member cgroup_set_weight not found in kernel, skipping it as it's set to zero
05:26:48 [WARN] libbpf: prog 'layered_dump': BPF program load failed: unknown error (-524)
05:26:48 [WARN] libbpf: prog 'layered_dump': -- BEGIN PROG LOAD LOG --
attach to unsupported member dump of struct sched_ext_ops
processed 0 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0
-- END PROG LOAD LOG --
05:26:48 [WARN] libbpf: prog 'layered_dump': failed to load: -524
05:26:48 [WARN] libbpf: failed to load object 'bpf_bpf'
05:26:48 [WARN] libbpf: failed to load BPF skeleton 'bpf_bpf': -524
Error: Failed to load BPF program
Signed-off-by: Manu Bretelle <chantr4@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
sched_ext currently doesn't generate messages when the BPF scheduler is
enabled and disabled unless there are errors. It is useful to have paper
trail. Improve logging around enable/disable:
- Generate info messages on enable and non-error disable.
- Update error exit message formatting so that it's consistent with
non-error message. Also, prefix ei->msg with the BPF scheduler's name to
make it clear where the message is coming from.
- Shorten scx_exit_reason() strings for SCX_EXIT_UNREG* for brevity and
consistency.
v2: Use pr_*() instead of KERN_* consistently. (David)
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Acked-by: David Vernet <void@manifault.com>
scx_rq_online() currently only tests SCX_RQ_ONLINE. This isn't fully correct
- e.g. consume_dispatch_q() uses task_run_on_remote_rq() which tests
scx_rq_online() to see whether the current rq can run the task, and, if so,
calls consume_remote_task() to migrate the task to @rq. While the test
itself was done while locking @rq, @rq can be temporarily unlocked by
consume_remote_task() and nothing prevents SCX_RQ_ONLINE from going offline
before the migration takes place.
To address the issue, add cpu_active() test to scx_rq_online(). There is a
synchronize_rcu() between cpu_active() being cleared and the rq going
offline, so if an on-going scheduling operation sees cpu_active(), the
associated rq is guaranteed to not go offline until the scheduling operation
is complete.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 60c27fb59f ("sched_ext: Implement sched_ext_ops.cpu_online/offline()")
Acked-by: David Vernet <void@manifault.com>
process_ddsp_deferred_locals() executes deferred direct dispatches to the
local DSQs of remote CPUs. It iterates the tasks on
rq->scx.ddsp_deferred_locals list, removing and calling
dispatch_to_local_dsq() on each. However, the list is protected by the rq
lock that can be dropped by dispatch_to_local_dsq() temporarily, so the list
can be modified during the iteration, which can lead to oopses and other
failures.
Fix it by popping from the head of the list instead of iterating the list.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 5b26f7b920 ("sched_ext: Allow SCX_DSQ_LOCAL_ON for direct dispatches")
Acked-by: David Vernet <void@manifault.com>
Some find the name realtime overloaded. Use rt_or_dl() as an
alternative, hopefully better, name.
Suggested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240610192018.1567075-4-qyousef@layalina.io
rt_task() checks if a task has RT priority. But depends on your
dictionary, this could mean it belongs to RT class, or is a 'realtime'
task, which includes RT and DL classes.
Since this has caused some confusion already on discussion [1], it
seemed a clean up is due.
I define the usage of rt_task() to be tasks that belong to RT class.
Make sure that it returns true only for RT class and audit the users and
replace the ones required the old behavior with the new realtime_task()
which returns true for RT and DL classes. Introduce similar
realtime_prio() to create similar distinction to rt_prio() and update
the users that required the old behavior to use the new function.
Move MAX_DL_PRIO to prio.h so it can be used in the new definitions.
Document the functions to make it more obvious what is the difference
between them. PI-boosted tasks is a factor that must be taken into
account when choosing which function to use.
Rename task_is_realtime() to realtime_task_policy() as the old name is
confusing against the new realtime_task().
No functional changes were intended.
[1] https://lore.kernel.org/lkml/20240506100509.GL40213@noisy.programming.kicks-ass.net/
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: "Steven Rostedt (Google)" <rostedt@goodmis.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/20240610192018.1567075-2-qyousef@layalina.io
This code has an integer overflow or sign extension bug which was caught
by gcc-13:
kernel/sched/debug.c:341:57: error: integer overflow in expression of
type 'long int' results in '-100663296' [-Werror=overflow]
341 | static unsigned long fair_server_period_max = (1 << 22) * NSEC_PER_USEC; /* ~4 seconds */
The result is that "fair_server_period_max" is set to 0xfffffffffa000000
(585 years) instead of instead of 0xfa000000 (4 seconds) that was
intended.
Fix this by changing the type to shift from (1 << 22) to (1UL << 22).
Closes: https://lore.kernel.org/all/CA+G9fYtE2GAbeqU+AOCffgo2oH0RTJUxU+=Pi3cFn4di_KgBAQ@mail.gmail.com/
Fixes: d741f297bc ("sched/fair: Fair server interface")
Reported-by: Linux Kernel Functional Testing <lkft@linaro.org>
Reported-by: Arnd Bergmann <arnd@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/a936b991-e464-4bdf-94ab-08e25d364986@stanley.mountain
balance_fair() skips newidle balancing if rq->nr_running - there are already
tasks on the rq, so no need to try to pull tasks. This tests the total
number of queued tasks on the CPU instead of only the fair class, but is
still correct as the rq can currently only have fair class tasks while
balance_fair() is running.
However, with the addition of sched_ext below the fair class, this will not
hold anymore and make put_prev_task_balance() skip sched_ext's balance()
incorrectly as, when a CPU has only lower priority class tasks,
rq->nr_running would still be positive and balance_fair() would return 1
even when fair doesn't have any tasks to run.
Update balance_fair() to use sched_fair_runnable() which tests
rq->cfs.nr_running which is updated by bandwidth throttling. Note that
pick_next_task_fair() already uses sched_fair_runnable() in its optimized
path for the same purpose.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/ZrFUjlCf7x3TNXB8@slm.duckdns.org
task_can_run_on_remote_rq() is similar to is_cpu_allowed() but there are
subtle differences. It currently open codes all the tests. This is
cumbersome to understand and error-prone in case the intersecting tests need
to be updated.
Factor out the common part - testing whether the task is allowed on the CPU
at all regardless of the CPU state - into task_allowed_on_cpu() and make
both is_cpu_allowed() and SCX's task_can_run_on_remote_rq() use it. As the
code is now linked between the two and each contains only the extra tests
that differ between them, it's less error-prone when the conditions need to
be updated. Also, improve the comment to explain why they are different.
v2: Replace accidental "extern inline" with "static inline" (Peter).
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: David Vernet <void@manifault.com>
scx_task_iter_next_locked() skips tasks whose sched_class is
idle_sched_class. While it has a short comment explaining why it's testing
the sched_class directly isntead of using is_idle_task(), the comment
doesn't sufficiently explain what's going on and why. Improve the comment.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: David Vernet <void@manifault.com>
On SMP, SCX performs dispatch from sched_class->balance(). As balance() was
not available in UP, it instead called the internal balance function from
put_prev_task_scx() and pick_next_task_scx() to emulate the effect, which is
rather nasty.
Enabling sched_class->balance() on UP shouldn't cause any meaningful
overhead. Enable balance() on UP and drop the ugly workaround.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: David Vernet <void@manifault.com>
update_curr_scx() is open coding runtime updates. Use update_curr_common()
instead and avoid unnecessary deviations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: David Vernet <void@manifault.com>
SCX needs its balance() invoked even when waking up from a lower priority
sched class (idle) and put_prev_task_balance() thus has the logic to promote
@start_class if it's lower than ext_sched_class. This is only needed when
SCX is enabled. Add scx_enabled() test to avoid unnecessary overhead when
SCX is disabled.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: David Vernet <void@manifault.com>
The way sched_can_stop_tick() used scx_can_stop_tick() was rather confusing
and the behavior wasn't ideal when SCX is enabled in partial mode. Simplify
it so that:
- scx_can_stop_tick() can say no if scx_enabled().
- CFS tests rq->cfs.nr_running > 1 instead of rq->nr_running.
This is easier to follow and leads to the correct answer whether SCX is
disabled, enabled in partial mode or all tasks are switched to SCX.
Peter, note that this is a bit different from your suggestion where
sched_can_stop_tick() unconditionally returns scx_can_stop_tick() iff
scx_switched_all(). The problem is that in partial mode, tick can be stopped
when there is only one SCX task even if the BPF scheduler didn't ask and
isn't ready for it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: David Vernet <void@manifault.com>
The kernel sleep profile is no longer working due to a recursive locking
bug introduced by commit 42a20f86dc ("sched: Add wrapper for get_wchan()
to keep task blocked")
Booting with the 'profile=sleep' kernel command line option added or
executing
# echo -n sleep > /sys/kernel/profiling
after boot causes the system to lock up.
Lockdep reports
kthreadd/3 is trying to acquire lock:
ffff93ac82e08d58 (&p->pi_lock){....}-{2:2}, at: get_wchan+0x32/0x70
but task is already holding lock:
ffff93ac82e08d58 (&p->pi_lock){....}-{2:2}, at: try_to_wake_up+0x53/0x370
with the call trace being
lock_acquire+0xc8/0x2f0
get_wchan+0x32/0x70
__update_stats_enqueue_sleeper+0x151/0x430
enqueue_entity+0x4b0/0x520
enqueue_task_fair+0x92/0x6b0
ttwu_do_activate+0x73/0x140
try_to_wake_up+0x213/0x370
swake_up_locked+0x20/0x50
complete+0x2f/0x40
kthread+0xfb/0x180
However, since nobody noticed this regression for more than two years,
let's remove 'profile=sleep' support based on the assumption that nobody
needs this functionality.
Fixes: 42a20f86dc ("sched: Add wrapper for get_wchan() to keep task blocked")
Cc: stable@vger.kernel.org # v5.16+
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull tip/sched/core to resolve the following four conflicts. While 2-4 are
simple context conflicts, 1 is a bit subtle and easy to resolve incorrectly.
1. 2c8d046d5d ("sched: Add normal_policy()")
vs.
faa42d2941 ("sched/fair: Make SCHED_IDLE entity be preempted in strict hierarchy")
The former converts direct test on p->policy to use the helper
normal_policy(). The latter moves the p->policy test to a different
location. Resolve by converting the test on p->plicy in the new location to
use normal_policy().
2. a7a9fc5492 ("sched_ext: Add boilerplate for extensible scheduler class")
vs.
a110a81c52 ("sched/deadline: Deferrable dl server")
Both add calls to put_prev_task_idle() and set_next_task_idle(). Simple
context conflict. Resolve by taking changes from both.
3. a7a9fc5492 ("sched_ext: Add boilerplate for extensible scheduler class")
vs.
c245910049 ("sched/core: Add clearing of ->dl_server in put_prev_task_balance()")
The former changes for_each_class() itertion to use for_each_active_class().
The latter moves away the adjacent dl_server handling code. Simple context
conflict. Resolve by taking changes from both.
4. 60c27fb59f ("sched_ext: Implement sched_ext_ops.cpu_online/offline()")
vs.
31b164e2e4 ("sched/smt: Introduce sched_smt_present_inc/dec() helper")
2f02735412 ("sched/core: Introduce sched_set_rq_on/offline() helper")
The former adds scx_rq_deactivate() call. The latter two change code around
it. Simple context conflict. Resolve by taking changes from both.
Signed-off-by: Tejun Heo <tj@kernel.org>
From 1232da7eced620537a78f19c8cf3d4a3508e2419 Mon Sep 17 00:00:00 2001
From: Tejun Heo <tj@kernel.org>
Date: Wed, 31 Jul 2024 09:14:52 -1000
p->scx.disallow provides a way for the BPF scheduler to reject certain tasks
from attaching. It's currently allowed for both the load and fork paths;
however, the latter doesn't actually work as p->sched_class is already set
by the time scx_ops_init_task() is called during fork.
This is a convenience feature which is mostly useful from the load path
anyway. Allow it only from the load path.
v2: Trigger scx_ops_error() iff @p->policy == SCHED_EXT to make it a bit
easier for the BPF scheduler (David).
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Zhangqiao (2012 lab)" <zhangqiao22@huawei.com>
Link: http://lkml.kernel.org/r/20240711110720.1285-1-zhangqiao22@huawei.com
Fixes: 7bb6f0810e ("sched_ext: Allow BPF schedulers to disallow specific tasks from joining SCHED_EXT")
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
scx_dump_task() uses stack_trace_save_tsk() which is only available when
CONFIG_STACKTRACE. Make CONFIG_SCHED_CLASS_EXT select CONFIG_STACKTRACE if
the support is available and skip capturing stack trace if
!CONFIG_STACKTRACE.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202407161844.reewQQrR-lkp@intel.com/
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We currently only allow calling sleepable scx kfuncs (i.e.
scx_bpf_create_dsq()) from BPF_PROG_TYPE_STRUCT_OPS progs. The idea here
was that we'd never have to call scx_bpf_create_dsq() outside of a
sched_ext struct_ops callback, but that might not actually be true. For
example, a scheduler could do something like the following:
1. Open and load (not yet attach) a scheduler skel
2. Synchronously call into a BPF_PROG_TYPE_SYSCALL prog from user space.
For example, to initialize an LLC domain, or some other global,
read-only state.
3. Attach the skel, which actually enables the scheduler
The advantage of doing this is that it can preclude having to do pretty
ugly boilerplate like initializing a read-only, statically sized array of
u64[]'s which the kernel consumes literally once at init time to then
create struct bpf_cpumask objects which are actually queried at runtime.
Doing the above is already possible given that we can invoke core BPF
kfuncs, such as bpf_cpumask_create(), from BPF_PROG_TYPE_SYSCALL progs. We
already allow many scx kfuncs to be called from BPF_PROG_TYPE_SYSCALL progs
(e.g. scx_bpf_kick_cpu()). Let's allow the sleepable kfuncs as well.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The throttle interaction made my brain hurt, make it consistently
about 0 transitions of h_nr_running.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Now that fair_server exists, we no longer need RT bandwidth control
unless RT_GROUP_SCHED.
Enable fair_server with parameters equivalent to RT throttling.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/14d562db55df5c3c780d91940743acb166895ef7.1716811044.git.bristot@kernel.org
* Use simple CFS pick_task for DL pick_task
DL server's pick_task calls CFS's pick_next_task_fair(), this is wrong
because core scheduling's pick_task only calls CFS's pick_task() for
evaluation / checking of the CFS task (comparing across CPUs), not for
actually affirmatively picking the next task. This causes RB tree
corruption issues in CFS that were found by syzbot.
* Make pick_task_fair clear DL server
A DL task pick might set ->dl_server, but it is possible the task will
never run (say the other HT has a stop task). If the CFS task is picked
in the future directly (say without DL server), ->dl_server will be
set. So clear it in pick_task_fair().
This fixes the KASAN issue reported by syzbot in set_next_entity().
(DL refactoring suggestions by Vineeth Pillai).
Reported-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vineeth Pillai <vineeth@bitbyteword.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/b10489ab1f03d23e08e6097acea47442e7d6466f.1716811044.git.bristot@kernel.org
In core scheduling, a DL server pick (which is CFS task) should be
given higher priority than tasks in other classes.
Not doing so causes CFS starvation. A kselftest is added later to
demonstrate this. A CFS task that is competing with RT tasks can
be completely starved without this and the DL server's boosting
completely ignored.
Fix these problems.
Reported-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vineeth Pillai <vineeth@bitbyteword.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/48b78521d86f3b33c24994d843c1aad6b987dda9.1716811044.git.bristot@kernel.org
Add an interface for fair server setup on debugfs.
Each CPU has two files under /debug/sched/fair_server/cpu{ID}:
- runtime: set runtime in ns
- period: set period in ns
This then leaves /proc/sys/kernel/sched_rt_{period,runtime}_us to set
bounds on admission control.
The interface also add the server to the dl bandwidth accounting.
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/a9ef9fc69bcedb44bddc9bc34f2b313296052819.1716811044.git.bristot@kernel.org
Among the motivations for the DL servers is the real-time throttling
mechanism. This mechanism works by throttling the rt_rq after
running for a long period without leaving space for fair tasks.
The base dl server avoids this problem by boosting fair tasks instead
of throttling the rt_rq. The point is that it boosts without waiting
for potential starvation, causing some non-intuitive cases.
For example, an IRQ dispatches two tasks on an idle system, a fair
and an RT. The DL server will be activated, running the fair task
before the RT one. This problem can be avoided by deferring the
dl server activation.
By setting the defer option, the dl_server will dispatch an
SCHED_DEADLINE reservation with replenished runtime, but throttled.
The dl_timer will be set for the defer time at (period - runtime) ns
from start time. Thus boosting the fair rq at defer time.
If the fair scheduler has the opportunity to run while waiting
for defer time, the dl server runtime will be consumed. If
the runtime is completely consumed before the defer time, the
server will be replenished while still in a throttled state. Then,
the dl_timer will be reset to the new defer time
If the fair server reaches the defer time without consuming
its runtime, the server will start running, following CBS rules
(thus without breaking SCHED_DEADLINE). Then the server will
continue the running state (without deferring) until it fair
tasks are able to execute as regular fair scheduler (end of
the starvation).
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/dd175943c72533cd9f0b87767c6499204879cc38.1716811044.git.bristot@kernel.org
Use deadline servers to service fair tasks.
This patch adds a fair_server deadline entity which acts as a container
for fair entities and can be used to fix starvation when higher priority
(wrt fair) tasks are monopolizing CPU(s).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/b6b0bcefaf25391bcf5b6ecdb9f1218de402d42e.1716811044.git.bristot@kernel.org
In case the previous pick was a DL server pick, ->dl_server might be
set. Clear it in the fast path as well.
Fixes: 63ba8422f8 ("sched/deadline: Introduce deadline servers")
Signed-off-by: Youssef Esmat <youssefesmat@google.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/7f7381ccba09efcb4a1c1ff808ed58385eccc222.1716811044.git.bristot@kernel.org
Paths using put_prev_task_balance() need to do a pick shortly
after. Make sure they also clear the ->dl_server on prev as a
part of that.
Fixes: 63ba8422f8 ("sched/deadline: Introduce deadline servers")
Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/d184d554434bedbad0581cb34656582d78655150.1716811044.git.bristot@kernel.org
Consider the following cgroup:
root
|
------------------------
| |
normal_cgroup idle_cgroup
| |
SCHED_IDLE task_A SCHED_NORMAL task_B
According to the cgroup hierarchy, A should preempt B. But current
check_preempt_wakeup_fair() treats cgroup se and task separately, so B
will preempt A unexpectedly.
Unify the wakeup logic by {c,p}se_is_idle only. This makes SCHED_IDLE of
a task a relative policy that is effective only within its own cgroup,
similar to the behavior of NICE.
Also fix se_is_idle() definition when !CONFIG_FAIR_GROUP_SCHED.
Fixes: 304000390f ("sched: Cgroup SCHED_IDLE support")
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Don <joshdon@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20240626023505.1332596-1-dtcccc@linux.alibaba.com
As a hedge against unexpected user issues commit 88c56cfeae
("sched/fair: Block nohz tick_stop when cfs bandwidth in use")
included a scheduler feature to disable the new functionality.
It's been a few releases (v6.6) and no screams, so remove it.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240515133705.3632915-1-pauld@redhat.com
nr_spread_over tracks the number of instances where the difference
between a scheduling entity's virtual runtime and the minimum virtual
runtime in the runqueue exceeds three times the scheduler latency,
indicating significant disparity in task scheduling.
Commit that removed its usage: 5e963f2bd: sched/fair: Commit to EEVDF
cfs_rq->exec_clock was used to account for time spent executing tasks.
Commit that removed its usage: 5d69eca542 sched: Unify runtime
accounting across classes
cfs_rq::nr_spread_over and cfs_rq::exec_clock are not used anymore in
eevdf. Remove them from struct cfs_rq.
Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: K Prateek Nayak <kprateek.nayak@amd.com>
Acked-by: Vishal Chourasia <vishalc@linux.ibm.com>
Link: https://lore.kernel.org/r/20240717143342.593262-1-zhouchuyi@bytedance.com
Background
==========
When repeated migrate_disable() calls are made with missing the
corresponding migrate_enable() calls, there is a risk of
'migration_disabled' going upper overflow because
'migration_disabled' is a type of unsigned short whose max value is
65535.
In PREEMPT_RT kernel, if 'migration_disabled' goes upper overflow, it may
make the migrate_disable() ineffective within local_lock_irqsave(). This
is because, during the scheduling procedure, the value of
'migration_disabled' will be checked, which can trigger CPU migration.
Consequently, the count of 'rcu_read_lock_nesting' may leak due to
local_lock_irqsave() and local_unlock_irqrestore() occurring on different
CPUs.
Usecase
========
For example, When I developed a driver, I encountered a warning like
"WARNING: CPU: 4 PID: 260 at kernel/rcu/tree_plugin.h:315
rcu_note_context_switch+0xa8/0x4e8" warning. It took me half a month
to locate this issue. Ultimately, I discovered that the lack of upper
overflow detection mechanism in migrate_disable() was the root cause,
leading to a significant amount of time spent on problem localization.
If the upper overflow detection mechanism was added to migrate_disable(),
the root cause could be very quickly and easily identified.
Effect
======
Using WARN_ON_ONCE() to check if 'migration_disabled' is upper overflow
can help developers identify the issue quickly.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Peilin He<he.peilin@zte.com.cn>
Signed-off-by: xu xin <xu.xin16@zte.com.cn>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yunkai Zhang <zhang.yunkai@zte.com.cn>
Reviewed-by: Qiang Tu <tu.qiang35@zte.com.cn>
Reviewed-by: Kun Jiang <jiang.kun2@zte.com.cn>
Reviewed-by: Fan Yu <fan.yu9@zte.com.cn>
Link: https://lkml.kernel.org/r/20240716104244764N2jD8gnBpnsLjCDnQGQ8c@zte.com.cn
When creating a new task, we initialize vruntime of the newly task at
sched_cgroup_fork(). However, the timing of executing this action is too
early and may not be accurate.
Because it uses current CPU to init the vruntime, but the new task
actually runs on the cpu which be assigned at wake_up_new_task().
To optimize this case, we pass ENQUEUE_INITIAL flag to activate_task()
in wake_up_new_task(), in this way, when place_entity is called in
enqueue_entity(), the vruntime of the new task will be initialized.
In addition, place_entity() in task_fork_fair() was introduced for two
reasons:
1. Previously, the __enqueue_entity() was in task_new_fair(),
in order to provide vruntime for enqueueing the newly task, the
vruntime assignment equation "se->vruntime = cfs_rq->min_vruntime" was
introduced by commit e9acbff648 ("sched: introduce se->vruntime").
This is the initial state of place_entity().
2. commit 4d78e7b656 ("sched: new task placement for vruntime") added
child_runs_first task placement feature which based on vruntime, this
also requires the new task's vruntime value.
After removing the child_runs_first and enqueue_entity() from
task_fork_fair(), this place_entity() no longer makes sense, so remove
it also.
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240627133359.1370598-1-zhangqiao22@huawei.com
I got the following warn report while doing stress test:
jump label: negative count!
WARNING: CPU: 3 PID: 38 at kernel/jump_label.c:263 static_key_slow_try_dec+0x9d/0xb0
Call Trace:
<TASK>
__static_key_slow_dec_cpuslocked+0x16/0x70
sched_cpu_deactivate+0x26e/0x2a0
cpuhp_invoke_callback+0x3ad/0x10d0
cpuhp_thread_fun+0x3f5/0x680
smpboot_thread_fn+0x56d/0x8d0
kthread+0x309/0x400
ret_from_fork+0x41/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
Because when cpuset_cpu_inactive() fails in sched_cpu_deactivate(),
the cpu offline failed, but sched_smt_present is decremented before
calling sched_cpu_deactivate(), it leads to unbalanced dec/inc, so
fix it by incrementing sched_smt_present in the error path.
Fixes: c5511d03ec ("sched/smt: Make sched_smt_present track topology")
Cc: stable@kernel.org
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lore.kernel.org/r/20240703031610.587047-3-yangyingliang@huaweicloud.com
In extreme test scenarios:
the 14th field utime in /proc/xx/stat is greater than sum_exec_runtime,
utime = 18446744073709518790 ns, rtime = 135989749728000 ns
In cputime_adjust() process, stime is greater than rtime due to
mul_u64_u64_div_u64() precision problem.
before call mul_u64_u64_div_u64(),
stime = 175136586720000, rtime = 135989749728000, utime = 1416780000.
after call mul_u64_u64_div_u64(),
stime = 135989949653530
unsigned reversion occurs because rtime is less than stime.
utime = rtime - stime = 135989749728000 - 135989949653530
= -199925530
= (u64)18446744073709518790
Trigger condition:
1). User task run in kernel mode most of time
2). ARM64 architecture
3). TICK_CPU_ACCOUNTING=y
CONFIG_VIRT_CPU_ACCOUNTING_NATIVE is not set
Fix mul_u64_u64_div_u64() conversion precision by reset stime to rtime
Fixes: 3dc167ba57 ("sched/cputime: Improve cputime_adjust()")
Signed-off-by: Zheng Zucheng <zhengzucheng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20240726023235.217771-1-zhengzucheng@huawei.com
Context tracking state related symbols currently use a mix of the
CONTEXT_ (e.g. CONTEXT_KERNEL) and CT_SATE_ (e.g. CT_STATE_MASK) prefixes.
Clean up the naming and make the ctx_state enum use the CT_STATE_ prefix.
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.
This patch has been generated by the following coccinelle script:
```
virtual patch
@r1@
identifier ctl, write, buffer, lenp, ppos;
identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos);
@r2@
identifier func, ctl, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos)
{ ... }
@r3@
identifier func;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int , void *, size_t *, loff_t *);
@r4@
identifier func, ctl;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int , void *, size_t *, loff_t *);
@r5@
identifier func, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int write, void *buffer, size_t *lenp, loff_t *ppos);
```
* Code formatting was adjusted in xfs_sysctl.c to comply with code
conventions. The xfs_stats_clear_proc_handler,
xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
adjusted.
* The ctl_table argument in proc_watchdog_common was const qualified.
This is called from a proc_handler itself and is calling back into
another proc_handler, making it necessary to change it as part of the
proc_handler migration.
Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
- Update Daniel Bristot de Oliveira's entry in MAINTAINERS,
and credit him in CREDITS.
- Harmonize the lock-yielding behavior on dynamically selected
preemption models with static ones.
- Reorganize the code a bit: split out sched/syscalls.c to reduce
the size of sched/core.c
- Micro-optimize psi_group_change()
- Fix set_load_weight() for SCHED_IDLE tasks
- Misc cleanups & fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmaVtVARHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iqTQ/9GLNzNBnl0oBWCiybeQjyWsZ6BiZi48R0
C1g9/RKy++OyGOjn/yqYK0Kg8cdfoGzHGioMMAucHFW1nXZwVw17xAJK127N0apF
83up7AnFJw/JGr1bI0FwuozqHAs4Z5KzHTv2KBxhYuO77lyYna6/t0liRUbF8ZUZ
I/nqav7wDB8RBIB5hEJ/uYLDX7qWdUlyFB+mcvV4ANA99yr++OgipCp6Ob3Rz3cP
O676nKJY4vpNbZ/B6bpKg8ezULRP8re2qD3GJRf2huS63uu/Z5ct7ouLVZ1DwN53
mFDBTYUMI2ToV0pseikuqwnmrjxAKcEajTyZpD3vckafd2TlWIopkQZoQ9XLLlIZ
DxO+KoekaHTSVy8FWlO8O+iE3IAdUUgECEpNveX45Pb7nFP+5dtFqqnVIdNqCq5e
zEuQvizaa5m+A1POZhZKya+z9jbLXXx+gtPCbbADTBWtuyl8azUIh3vjn0bykmv4
IVV/wvUm+BPEIhnKusZZOgB0vLtxUdntBBfUSxqoSOad9L+0/UtSKoKI6wvW00q8
ZkW+85yS3YFiN9W61276RLis2j7OAjE0eDJ96wfhooma2JRDJU4Wmg5oWg8x3WuA
JRmK0s63Qik5gpwG5rHQsR5jNqYWTj5Lp7So+M1kRfFsOM/RXQ/AneSXZu/P7d65
LnYWzbKu76c=
=lLab
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2024-07-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Update Daniel Bristot de Oliveira's entry in MAINTAINERS,
and credit him in CREDITS
- Harmonize the lock-yielding behavior on dynamically selected
preemption models with static ones
- Reorganize the code a bit: split out sched/syscalls.c to reduce
the size of sched/core.c
- Micro-optimize psi_group_change()
- Fix set_load_weight() for SCHED_IDLE tasks
- Misc cleanups & fixes
* tag 'sched-core-2024-07-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Update MAINTAINERS and CREDITS
sched/fair: set_load_weight() must also call reweight_task() for SCHED_IDLE tasks
sched/psi: Optimise psi_group_change a bit
sched/core: Drop spinlocks on contention iff kernel is preemptible
sched/core: Move preempt_model_*() helpers from sched.h to preempt.h
sched/balance: Skip unnecessary updates to idle load balancer's flags
idle: Remove stale RCU comment
sched/headers: Move struct pre-declarations to the beginning of the header
sched/core: Clean up kernel/sched/sched.h a bit
sched/core: Simplify prefetch_curr_exec_start()
sched: Fix spelling in comments
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
doc.2024.06.06a: Update Tasks RCU and Tasks Rude RCU description in
Requirements.rst and clarify rcu_assign_pointer() and
rcu_dereference() ordering properties.
fixes.2024.07.04a: Add lockdep assertions for RCU readers, limit inline
wakeups for callback-bypass synchronize_rcu(), add an
rcutree.nohz_full_patience_delay to reduce nohz_full OS jitter,
add Uladzislau Rezki as RCU maintainer, and fix a subtle
callback-migration memory-ordering issue.
mb.2024.06.28a: Remove a number of redundant memory barriers.
nocb.2024.06.03a: Remove unnecessary bypass-list lock-contention
mitigation, use parking API instead of open-coded ad-hoc
equivalent, and upgrade obsolete comments.
rcu-tasks.2024.06.06a: Revert avoidance of a deadlock that can no
longer occur and properly synchronize Tasks Trace RCU checking
of runqueues.
rcutorture.2024.06.06a: Add tests for handling of double-call_rcu()
bug, add missing MODULE_DESCRIPTION, and add a script that
histograms the number of calls to RCU updaters.
srcu.2024.06.18a: Fill out SRCU polled-grace-period API.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmaR7/QTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jGwAEACJKef2LryG6khoJdorWbvRf1V2k23H
19CxXexCE4UoGsgGST9z1/5rM8kBdNhdhQ0JB9CitW+zGlXpOM79/mO3gALKMj++
YBPw9B5EM622H2cKJGFzoHFSO4X9nM1CCMeuFCo6bVsbWfMtX3ENqsYl2IQy1JkB
pGiKqcNXGWU0mdUcZKs/8ilfLG1NhaLwrkfinlsP9V1+8z8LxxDH5Qh27AT3rIvu
W87OITTZoHlUaDVHYTautHTZoqM381xv9kNoQlS9lpH/gcFOPiO9DLj8NcLjkJ4y
S/OrxOwfQ+BGKwnk8daFQFAc3Nr9KeVAQH7CbOW7guARhj3z97J0+wPm6nZGEE2s
tDzg8zLT9LtbmUypJLurl29+wFE4fPNsnd69XDONbMFN1Ox2tJM3dd/rPCsHSUvz
kEOK9gUreHOv7/Ou6UIHlYVlHY7HHuD7TAsrhaaWk7CEmlY31UKwXG+fMl1FAnSy
F3PcBF/1M687RRFWVeMlug/+0/+ghtc+kZ1YyR79KZR6dI0C7ueQbCBGztCCtFDz
RjrHcDifS0Y2GNQO9+zAyrJvttidRATdYDeFstk+8nnta3CnYzxCp4rn5hs3Ss3N
AJVJm244jR3AcoL4V/tQwiQlYh9ZYN5tZ7qxFiASdtV50Uc8HoIrWXeP0Ar+GHiV
2z/f5fKF4+5clQ==
=7a1C
-----END PGP SIGNATURE-----
Merge tag 'rcu.2024.07.12a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Update Tasks RCU and Tasks Rude RCU description in Requirements.rst
and clarify rcu_assign_pointer() and rcu_dereference() ordering
properties
- Add lockdep assertions for RCU readers, limit inline wakeups for
callback-bypass synchronize_rcu(), add an
rcutree.nohz_full_patience_delay to reduce nohz_full OS jitter, add
Uladzislau Rezki as RCU maintainer, and fix a subtle
callback-migration memory-ordering issue
- Remove a number of redundant memory barriers
- Remove unnecessary bypass-list lock-contention mitigation, use
parking API instead of open-coded ad-hoc equivalent, and upgrade
obsolete comments
- Revert avoidance of a deadlock that can no longer occur and properly
synchronize Tasks Trace RCU checking of runqueues
- Add tests for handling of double-call_rcu() bug, add missing
MODULE_DESCRIPTION, and add a script that histograms the number of
calls to RCU updaters
- Fill out SRCU polled-grace-period API
* tag 'rcu.2024.07.12a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (29 commits)
rcu: Fix rcu_barrier() VS post CPUHP_TEARDOWN_CPU invocation
rcu: Eliminate lockless accesses to rcu_sync->gp_count
MAINTAINERS: Add Uladzislau Rezki as RCU maintainer
rcu: Add rcutree.nohz_full_patience_delay to reduce nohz_full OS jitter
rcu/exp: Remove redundant full memory barrier at the end of GP
rcu: Remove full memory barrier on RCU stall printout
rcu: Remove full memory barrier on boot time eqs sanity check
rcu/exp: Remove superfluous full memory barrier upon first EQS snapshot
rcu: Remove superfluous full memory barrier upon first EQS snapshot
rcu: Remove full ordering on second EQS snapshot
srcu: Fill out polled grace-period APIs
srcu: Update cleanup_srcu_struct() comment
srcu: Add NUM_ACTIVE_SRCU_POLL_OLDSTATE
srcu: Disable interrupts directly in srcu_gp_end()
rcu: Disable interrupts directly in rcu_gp_init()
rcu/tree: Reduce wake up for synchronize_rcu() common case
rcu/tasks: Fix stale task snaphot for Tasks Trace
tools/rcu: Add rcu-updaters.sh script
rcutorture: Add missing MODULE_DESCRIPTION() macros
rcutorture: Fix rcu_torture_fwd_cb_cr() data race
...
The type_id is defined as u32type, if(type_id<0) is invalid, hence
modified its type to s32.
./kernel/sched/ext.c:4958:5-12: WARNING: Unsigned expression compared with zero: type_id < 0.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=9523
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In ops.dispatch(), SCX_DSQ_LOCAL_ON can be used to dispatch the task to the
local DSQ of any CPU. However, during direct dispatch from ops.select_cpu()
and ops.enqueue(), this isn't allowed. This is because dispatching to the
local DSQ of a remote CPU requires locking both the task's current and new
rq's and such double locking can't be done directly from ops.enqueue().
While waking up a task, as ops.select_cpu() can pick any CPU and both
ops.select_cpu() and ops.enqueue() can use SCX_DSQ_LOCAL as the dispatch
target to dispatch to the DSQ of the picked CPU, the BPF scheduler can still
do whatever it wants to do. However, while a task is being enqueued for a
different reason, e.g. after its slice expiration, only ops.enqueue() is
called and there's no way for the BPF scheduler to directly dispatch to the
local DSQ of a remote CPU. This gap in API forces schedulers into
work-arounds which are not straightforward or optimal such as skipping
direct dispatches in such cases.
Implement deferred enqueueing to allow directly dispatching to the local DSQ
of a remote CPU from ops.select_cpu() and ops.enqueue(). Such tasks are
temporarily queued on rq->scx.ddsp_deferred_locals. When the rq lock can be
safely released, the tasks are taken off the list and queued on the target
local DSQs using dispatch_to_local_dsq().
v2: - Add missing return after queue_balance_callback() in
schedule_deferred(). (David).
- dispatch_to_local_dsq() now assumes that @rq is locked but unpinned
and thus no longer takes @rf. Updated accordingly.
- UP build warning fix.
Signed-off-by: Tejun Heo <tj@kernel.org>
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Cc: Dan Schatzberg <schatzberg.dan@gmail.com>
Cc: Changwoo Min <changwoo@igalia.com>
SCX_RQ_BALANCING is used to mark that the rq is currently in balance().
Rename it to SCX_RQ_IN_BALANCE and add SCX_RQ_IN_WAKEUP which marks whether
the rq is currently enqueueing for a wakeup. This will be used to implement
direct dispatching to local DSQ of another CPU.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
sched_ext often needs to migrate tasks across CPUs right before execution
and thus uses the balance path to dispatch tasks from the BPF scheduler.
balance_scx() is called with rq locked and pinned but is passed @rf and thus
allowed to unpin and unlock. Currently, @rf is passed down the call stack so
the rq lock is unpinned just when double locking is needed.
This creates unnecessary complications such as having to explicitly
manipulate lock pinning for core scheduling. We also want to use
dispatch_to_local_dsq_lock() from other paths which are called with rq
locked but unpinned.
rq lock handling in the dispatch path is straightforward outside the
migration implementation and extending the pinning protection down the
callstack doesn't add enough meaningful extra protection to justify the
extra complexity.
Unpin and repin rq lock from the outer balance_scx() and drop @rf passing
and lock pinning handling from the inner functions. UP is updated to call
balance_one() instead of balance_scx() to avoid adding NULL @rf handling to
balance_scx(). AS this makes balance_scx() unused in UP, it's put inside a
CONFIG_SMP block.
No functional changes intended outside of lock annotation updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Righi <righi.andrea@gmail.com>
task_linked_on_dsq() exists as a helper because it used to test both the
rbtree and list nodes. It now only tests the list node and the list node
will soon be used for something else too. The helper doesn't improve
anything materially and the naming will become confusing. Open-code the list
node testing and remove task_linked_on_dsq()
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Move struct balance_callback definition upward so that it's visible to
class-specific rq struct definitions. This will be used to embed a struct
balance_callback in struct scx_rq.
No functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
When a running task is migrated to another CPU, the stop_task is used to
preempt the running task and migrate it. This, expectedly, invokes
ops.cpu_release(). If the BPF scheduler then calls
scx_bpf_reenqueue_local(), it re-enqueues all tasks on the local DSQ
including the task which is being migrated.
This creates an unnecessary re-enqueue of a task which is about to be
deactivated and re-activated for migration anyway. It can also cause
confusion for the BPF scheduler as scx_bpf_task_cpu() of the task and its
allowed CPUs may not agree while migration is pending.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 245254f708 ("sched_ext: Implement sched_ext_ops.cpu_acquire/release()")
Acked-by: David Vernet <void@manifault.com>
scx_bpf_reenqueue_local() is used to re-enqueue tasks on the local DSQ from
ops.cpu_release(). Because the BPF scheduler may dispatch tasks to the same
local DSQ, to avoid processing the same tasks repeatedly, it first takes the
number of queued tasks and processes the task at the head of the queue that
number of times.
This is incorrect as a task can be dispatched to the same local DSQ with
SCX_ENQ_HEAD. Such a task will be processed repeatedly until the count is
exhausted and the succeeding tasks won't be processed at all.
Fix it by first moving all candidate tasks to a private list and then
processing that list. While at it, remove the WARNs. They're rather
superflous as later steps will check them anyway.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 245254f708 ("sched_ext: Implement sched_ext_ops.cpu_acquire/release()")
Acked-by: David Vernet <void@manifault.com>
DSQs are very opaque in the consumption path. The BPF scheduler has no way
of knowing which tasks are being considered and which is picked. This patch
adds BPF DSQ iterator.
- Allows iterating tasks queued on a DSQ in the dispatch order or reverse
from anywhere using bpf_for_each(scx_dsq) or calling the iterator kfuncs
directly.
- Has ordering guarantee where only tasks which were already queued when the
iteration started are visible and consumable during the iteration.
v5: - Add a comment to the naked list_empty(&dsq->list) test in
consume_dispatch_q() to explain the reasoning behind the lockless test
and by extension why nldsq_next_task() isn't used there.
- scx_qmap changes separated into its own patch.
v4: - bpf_iter_scx_dsq_new() declaration in common.bpf.h was using the wrong
type for the last argument (bool rev instead of u64 flags). Fix it.
v3: - Alexei pointed out that the iterator is too big to allocate on stack.
Added a prep patch to reduce the size of the cursor. Now
bpf_iter_scx_dsq is 48 bytes and bpf_iter_scx_dsq_kern is 40 bytes on
64bit.
- u32_before() comparison factored out.
v2: - scx_bpf_consume_task() is separated out into a separate patch.
- DSQ seq and iter flags don't need to be u64. Use u32.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: bpf@vger.kernel.org
struct scx_dsq_node contains two data structure nodes to link the containing
task to a DSQ and a flags field that is protected by the lock of the
associated DSQ. One reason why they are grouped into a struct is to use the
type independently as a cursor node when iterating tasks on a DSQ. However,
when iterating, the cursor only needs to be linked on the FIFO list and the
rb_node part ends up inflating the size of the iterator data structure
unnecessarily making it potentially too expensive to place it on stack.
Take ->priq and ->flags out of scx_dsq_node and put them in sched_ext_entity
as ->dsq_priq and ->dsq_flags, respectively. scx_dsq_node is renamed to
scx_dsq_list_node and the field names are renamed accordingly. This will
help implementing DSQ task iterator that can be allocated on stack.
No functional change intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: David Vernet <void@manifault.com>
While sched_ext was out of tree, everything sched_ext specific which can be
put in kernel/sched/ext.h was put there to ease forward porting. However,
kernel/sched/sched.h is the better location for some of them. Relocate.
- struct sched_enq_and_set_ctx, sched_deq_and_put_task() and
sched_enq_and_set_task().
- scx_enabled() and scx_switched_all().
- for_active_class_range() and for_each_active_class(). sched_class
declarations are moved above the class iterators for this.
No functional changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: David Vernet <void@manifault.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
For flexibility, sched_ext allows the BPF scheduler to select the CPU to
execute a task on at dispatch time so that e.g. a queue can be shared across
multiple CPUs. To enable this, the dispatch path is executed from balance()
so that a dispatched task can be hot-migrated to its target CPU. This means
that sched_ext needs its balance() method invoked before every
pick_next_task() even when the CPU is waking up from SCHED_IDLE.
for_balance_class_range() defined in kernel/sched/ext.h implements this
selective iteration promotion. However, the indirection obfuscates more than
helps. Open code the iteration promotion in put_prev_task_balance() and
remove for_balance_class_range().
No functional changes intended.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: David Vernet <void@manifault.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
- scx_ops_cpu_preempt is only used in kernel/sched/ext.c and doesn't need to
be global. Make it static.
- Relocate task_on_scx() so that the inline functions are located together.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
sched_domains regulate the load balancing for sched_classes. A machine can
be partitioned into multiple sections that are not load-balanced across
using either isolcpus= boot param or cpuset partitions. In such cases, tasks
that are in one partition are expected to stay within that partition.
cpuset configured partitions are always reflected in each member task's
cpumask. As SCX always honors the task cpumasks, the BPF scheduler is
automatically in compliance with the configured partitions.
However, for isolcpus= domain isolation, the isolated CPUs are simply
omitted from the top-level sched_domain[s] without further restrictions on
tasks' cpumasks, so, for example, a task currently running in an isolated
CPU may have more CPUs in its allowed cpumask while expected to remain on
the same CPU.
There is no straightforward way to enforce this partitioning preemptively on
BPF schedulers and erroring out after a violation can be surprising.
isolcpus= domain isolation is being replaced with cpuset partitions anyway,
so keep it simple and simply disallow loading a BPF scheduler if isolcpus=
domain isolation is in effect.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20240626082342.GY31592@noisy.programming.kicks-ass.net
Cc: David Vernet <void@manifault.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
When initializing p->scx.weight, scx_ops_enable_task() wasn't considering
whether the task is SCHED_IDLE. Update it to use WEIGHT_IDLEPRIO as the
source weight for SCHED_IDLE tasks. This leaves reweight_task_scx() the sole
user of set_task_scx_weight(). Open code it. @weight is going to be provided
by sched core in the future anyway.
v2: Use the newly available @lw->weight to set @p->scx.weight in
reweight_task_scx().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Vernet <void@manifault.com>
Cc: Peter Zijlstra <peterz@infradead.org>
sched_fork() returns with -EAGAIN if dl_prio(@p). a7a9fc5492 ("sched_ext:
Add boilerplate for extensible scheduler class") added scx_pre_fork() call
before it and then scx_cancel_fork() on the exit path. This is silly as the
dl_prio() block can just be moved above the scx_pre_fork() call.
Move the dl_prio() block above the scx_pre_fork() call and remove the now
unnecessary scx_cancel_fork() invocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: David Vernet <void@manifault.com>
rq contains many useful fields to implement a custom scheduler. For
example, various clock signals like clock_task and clock_pelt can be
used to track load. It also contains stats in other sched_classes, which
are useful to drive scheduling decisions in ext.
tj: Put the new helper below scx_bpf_task_*() helpers.
Signed-off-by: Hongyan Xia <hongyan.xia2@arm.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
d329605287 ("sched/fair: set_load_weight() must also call reweight_task()
for SCHED_IDLE tasks") applied to sched/core changes how reweight_task() is
called causing conflicts with e83edbf88f ("sched: Add
sched_class->reweight_task()"). Resolve the conflicts by taking
set_load_weight() changes from d329605287 and updating
sched_class->reweight_task() to take pointer to struct load_weight instead
of int prio.
Signed-off-by: Tejun Heo<tj@kernel.org>
When a task's weight is being changed, set_load_weight() is called with
@update_load set. As weight changes aren't trivial for the fair class,
set_load_weight() calls fair.c::reweight_task() for fair class tasks.
However, set_load_weight() first tests task_has_idle_policy() on entry and
skips calling reweight_task() for SCHED_IDLE tasks. This is buggy as
SCHED_IDLE tasks are just fair tasks with a very low weight and they would
incorrectly skip load, vlag and position updates.
Fix it by updating reweight_task() to take struct load_weight as idle weight
can't be expressed with prio and making set_load_weight() call
reweight_task() for SCHED_IDLE tasks too when @update_load is set.
Fixes: 9059393e4e ("sched/fair: Use reweight_entity() for set_user_nice()")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org # v4.15+
Link: http://lkml.kernel.org/r/20240624102331.GI31592@noisy.programming.kicks-ass.net
The current code loops over the psi_states only to call a helper which
then resolves back to the action needed for each state using a switch
statement. That is effectively creating a double indirection of a kind
which, given how all the states need to be explicitly listed and handled
anyway, we can simply remove. Both the for loop and the switch statement
that is.
The benefit is both in the code size and CPU time spent in this function.
YMMV but on my Steam Deck, while in a game, the patch makes the CPU usage
go from ~2.4% down to ~1.2%. Text size at the same time went from 0x323 to
0x2c1.
Signed-off-by: Tvrtko Ursulin <tursulin@ursulin.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20240625135000.38652-1-tursulin@igalia.com
alloc_exit_info() calls kcalloc() but puts in the size of the element as the
first argument which triggers the following gcc warning:
kernel/sched/ext.c:3815:32: warning: ‘kmalloc_array_noprof’ sizes
specified with ‘sizeof’ in the earlier argument and not in the later
argument [-Wcalloc-transposed-args]
Fix it by swapping the positions of the first two arguments. No functional
changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Vishal Chourasia <vishalc@linux.ibm.com>
Link: http://lkml.kernel.org/r/ZoG6zreEtQhAUr_2@linux.ibm.com
It was reported that in moving to 6.1, a larger then 10%
regression was seen in the performance of
clock_gettime(CLOCK_THREAD_CPUTIME_ID,...).
Using a simple reproducer, I found:
5.10:
100000000 calls in 24345994193 ns => 243.460 ns per call
100000000 calls in 24288172050 ns => 242.882 ns per call
100000000 calls in 24289135225 ns => 242.891 ns per call
6.1:
100000000 calls in 28248646742 ns => 282.486 ns per call
100000000 calls in 28227055067 ns => 282.271 ns per call
100000000 calls in 28177471287 ns => 281.775 ns per call
The cause of this was finally narrowed down to the addition of
psi_account_irqtime() in update_rq_clock_task(), in commit
52b1364ba0 ("sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ
pressure").
In my initial attempt to resolve this, I leaned towards moving
all accounting work out of the clock_gettime() call path, but it
wasn't very pretty, so it will have to wait for a later deeper
rework. Instead, Peter shared this approach:
Rework psi_account_irqtime() to use its own psi_irq_time base
for accounting, and move it out of the hotpath, calling it
instead from sched_tick() and __schedule().
In testing this, we found the importance of ensuring
psi_account_irqtime() is run under the rq_lock, which Johannes
Weiner helpfully explained, so also add some lockdep annotations
to make that requirement clear.
With this change the performance is back in-line with 5.10:
6.1+fix:
100000000 calls in 24297324597 ns => 242.973 ns per call
100000000 calls in 24318869234 ns => 243.189 ns per call
100000000 calls in 24291564588 ns => 242.916 ns per call
Reported-by: Jimmy Shiu <jimmyshiu@google.com>
Originally-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/r/20240618215909.4099720-1-jstultz@google.com
During the execution of the following stress test with linux-rt:
stress-ng --cyclic 30 --timeout 30 --minimize --quiet
kmemleak frequently reported a memory leak concerning the task_struct:
unreferenced object 0xffff8881305b8000 (size 16136):
comm "stress-ng", pid 614, jiffies 4294883961 (age 286.412s)
object hex dump (first 32 bytes):
02 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .@..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
debug hex dump (first 16 bytes):
53 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 S...............
backtrace:
[<00000000046b6790>] dup_task_struct+0x30/0x540
[<00000000c5ca0f0b>] copy_process+0x3d9/0x50e0
[<00000000ced59777>] kernel_clone+0xb0/0x770
[<00000000a50befdc>] __do_sys_clone+0xb6/0xf0
[<000000001dbf2008>] do_syscall_64+0x5d/0xf0
[<00000000552900ff>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
The issue occurs in start_dl_timer(), which increments the task_struct
reference count and sets a timer. The timer callback, dl_task_timer,
is supposed to decrement the reference count upon expiration. However,
if enqueue_task_dl() is called before the timer expires and cancels it,
the reference count is not decremented, leading to the leak.
This patch fixes the reference leak by ensuring the task_struct
reference count is properly decremented when the timer is canceled.
Fixes: feff2e65ef ("sched/deadline: Unthrottle PI boosted threads while enqueuing")
Signed-off-by: Wander Lairson Costa <wander@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20240620125618.11419-1-wander@redhat.com
This reverts commit b0defa7ae0.
b0defa7ae0 changed the load balancing logic to ignore env.max_loop if
all tasks examined to that point were pinned. The goal of the patch was
to make it more likely to be able to detach a task buried in a long list
of pinned tasks. However, this has the unfortunate side effect of
creating an O(n) iteration in detach_tasks(), as we now must fully
iterate every task on a cpu if all or most are pinned. Since this load
balance code is done with rq lock held, and often in softirq context, it
is very easy to trigger hard lockups. We observed such hard lockups with
a user who affined O(10k) threads to a single cpu.
When I discussed this with Vincent he initially suggested that we keep
the limit on the number of tasks to detach, but increase the number of
tasks we can search. However, after some back and forth on the mailing
list, he recommended we instead revert the original patch, as it seems
likely no one was actually getting hit by the original issue.
Fixes: b0defa7ae0 ("sched/fair: Make sure to try to detach at least one movable task")
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240620214450.316280-1-joshdon@google.com
Correct eight to weight in the description of the .set_weight()
operation in sched_ext_ops.
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The scx_bpf_cpuperf_set() kfunc allows a BPF program to set the relative
performance target of a specified CPU. Commit d86adb4fc0 ("sched_ext: Add
cpuperf support") defined the @cpu argument to be unsigned. Let's update it
to be signed to match the norm for the rest of ext.c and the kernel.
Note that the kfunc declaration of scx_bpf_cpuperf_set() in the
common.bpf.h header in tools/sched_ext already listed the cpu as signed, so
this also fixes the build for tools/sched_ext and the sched_ext selftests
due to kfunc declarations now being emitted in vmlinux.h based on BTF (thus
causing the compiler to error due to observing conflicting types).
Fixes: d86adb4fc0 ("sched_ext: Add cpuperf support")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
sched_ext currently does not integrate with schedutil. When schedutil is the
governor, frequencies are left unregulated and usually get stuck close to
the highest performance level from running RT tasks.
Add CPU performance monitoring and scaling support by integrating into
schedutil. The following kfuncs are added:
- scx_bpf_cpuperf_cap(): Query the relative performance capacity of
different CPUs in the system.
- scx_bpf_cpuperf_cur(): Query the current performance level of a CPU
relative to its max performance.
- scx_bpf_cpuperf_set(): Set the current target performance level of a CPU.
This gives direct control over CPU performance setting to the BPF scheduler.
The only changes on the schedutil side are accounting for the utilization
factor from sched_ext and disabling frequency holding heuristics as it may
not apply well to sched_ext schedulers which may have a lot weaker
connection between tasks and their current / last CPU.
With cpuperf support added, there is no reason to block uclamp. Enable while
at it.
A toy implementation of cpuperf is added to scx_qmap as a demonstration of
the feature.
v2: Ignore cpu_util_cfs_boost() when scx_switched_all() in sugov_get_util()
to avoid factoring in stale util metric. (Christian)
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Christian Loehle <christian.loehle@arm.com>
sugov_cpu_is_busy() is used to avoid decreasing performance level while the
CPU is busy and called by sugov_update_single_freq() and
sugov_update_single_perf(). Both callers repeat the same pattern to first
test for uclamp and then the business. Let's refactor so that the tests
aren't repeated.
The new helper is named sugov_hold_freq() and tests both the uclamp
exception and CPU business. No functional changes. This will make adding
more exception conditions easier.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Reviewed-by: Christian Loehle <christian.loehle@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
scx_next_task_picked() is used by sched_ext to notify the BPF scheduler when
a CPU is taken away by a task dispatched from a higher priority sched_class
so that the BPF scheduler can, e.g., punt the task[s] which was running or
were waiting for the CPU to other CPUs.
Replace the sched_ext specific hook scx_next_task_picked() with a new
sched_class operation switch_class().
The changes are straightforward and the code looks better afterwards.
However, when !CONFIG_SCHED_CLASS_EXT, this ends up adding an unused hook
which is unlikely to be useful to other sched_classes. For further
discussion on this subject, please refer to the following:
http://lkml.kernel.org/r/CAHk-=wjFPLqo7AXu8maAGEGnOy6reUg-F4zzFhVB0Kyu22h7pw@mail.gmail.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Add Documentation/scheduler/sched-ext.rst which gives a high-level overview
and pointers to the examples.
v6: - Add paragraph explaining debug dump.
v5: - Updated to reflect /sys/kernel interface change. Kconfig options
added.
v4: - README improved, reformatted in markdown and renamed to README.md.
v3: - Added tools/sched_ext/README.
- Dropped _example prefix from scheduler names.
v2: - Apply minor edits suggested by Bagas. Caveats section dropped as all
of them are addressed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Currently, a dsq is always a FIFO. A task which is dispatched earlier gets
consumed or executed earlier. While this is sufficient when dsq's are used
for simple staging areas for tasks which are ready to execute, it'd make
dsq's a lot more useful if they can implement custom ordering.
This patch adds a vtime-ordered priority queue to dsq's. When the BPF
scheduler dispatches a task with the new scx_bpf_dispatch_vtime() helper, it
can specify the vtime tha the task should be inserted at and the task is
inserted into the priority queue in the dsq which is ordered according to
time_before64() comparison of the vtime values.
A DSQ can either be a FIFO or priority queue and automatically switches
between the two depending on whether scx_bpf_dispatch() or
scx_bpf_dispatch_vtime() is used. Using the wrong variant while the DSQ
already has the other type queued is not allowed and triggers an ops error.
Built-in DSQs must always be FIFOs.
This makes it very easy for the BPF schedulers to implement proper vtime
based scheduling within each dsq very easy and efficient at a negligible
cost in terms of code complexity and overhead.
scx_simple and scx_example_flatcg are updated to default to weighted
vtime scheduling (the latter within each cgroup). FIFO scheduling can be
selected with -f option.
v4: - As allowing mixing priority queue and FIFO on the same DSQ sometimes
led to unexpected starvations, DSQs now error out if both modes are
used at the same time and the built-in DSQs are no longer allowed to
be priority queues.
- Explicit type struct scx_dsq_node added to contain fields needed to be
linked on DSQs. This will be used to implement stateful iterator.
- Tasks are now always linked on dsq->list whether the DSQ is in FIFO or
PRIQ mode. This confines PRIQ related complexities to the enqueue and
dequeue paths. Other paths only need to look at dsq->list. This will
also ease implementing BPF iterator.
- Print p->scx.dsq_flags in debug dump.
v3: - SCX_TASK_DSQ_ON_PRIQ flag is moved from p->scx.flags into its own
p->scx.dsq_flags. The flag is protected with the dsq lock unlike other
flags in p->scx.flags. This led to flag corruption in some cases.
- Add comments explaining the interaction between using consumption of
p->scx.slice to determine vtime progress and yielding.
v2: - p->scx.dsq_vtime was not initialized on load or across cgroup
migrations leading to some tasks being stalled for extended period of
time depending on how saturated the machine is. Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
The core-sched support is composed of the following parts:
- task_struct->scx.core_sched_at is added. This is a timestamp which can be
used to order tasks. Depending on whether the BPF scheduler implements
custom ordering, it tracks either global FIFO ordering of all tasks or
local-DSQ ordering within the dispatched tasks on a CPU.
- prio_less() is updated to call scx_prio_less() when comparing SCX tasks.
scx_prio_less() calls ops.core_sched_before() if available or uses the
core_sched_at timestamp. For global FIFO ordering, the BPF scheduler
doesn't need to do anything. Otherwise, it should implement
ops.core_sched_before() which reflects the ordering.
- When core-sched is enabled, balance_scx() balances all SMT siblings so
that they all have tasks dispatched if necessary before pick_task_scx() is
called. pick_task_scx() picks between the current task and the first
dispatched task on the local DSQ based on availability and the
core_sched_at timestamps. Note that FIFO ordering is expected among the
already dispatched tasks whether running or on the local DSQ, so this path
always compares core_sched_at instead of calling into
ops.core_sched_before().
qmap_core_sched_before() is added to scx_qmap. It scales the
distances from the heads of the queues to compare the tasks across different
priority queues and seems to behave as expected.
v3: Fixed build error when !CONFIG_SCHED_SMT reported by Andrea Righi.
v2: Sched core added the const qualifiers to prio_less task arguments.
Explicitly drop them for ops.core_sched_before() task arguments. BPF
enforces access control through the verifier, so the qualifier isn't
actually operative and only gets in the way when interacting with
various helpers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Reviewed-by: Josh Don <joshdon@google.com>
Cc: Andrea Righi <andrea.righi@canonical.com>
PM operations freeze userspace. Some BPF schedulers have active userspace
component and may misbehave as expected across PM events. While the system
is frozen, nothing too interesting is happening in terms of scheduling and
we can get by just fine with the fallback FIFO behavior. Let's make things
easier by always bypassing the BPF scheduler while PM events are in
progress.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Add ops.cpu_online/offline() which are invoked when CPUs come online and
offline respectively. As the enqueue path already automatically bypasses
tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed
to see tasks only on CPUs which are between online() and offline().
If the BPF scheduler doesn't implement ops.cpu_online/offline(), the
scheduler is automatically exited with SCX_ECODE_RESTART |
SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support
trivially by simply reinitializing and reloading the scheduler.
scx_qmap is updated to print out online CPUs on hotplug events. Other
schedulers are updated to restart based on ecode.
v3: - The previous implementation added @reason to
sched_class.rq_on/offline() to distinguish between CPU hotplug events
and topology updates. This was buggy and fragile as the methods are
skipped if the current state equals the target state. Instead, add
scx_rq_[de]activate() which are directly called from
sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to
sleep which can be useful.
- ops.dispatch() could be called on a CPU that the BPF scheduler was
told to be offline. The dispatch patch is updated to bypass in such
cases.
v2: - To accommodate lock ordering change between scx_cgroup_rwsem and
cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI
block and enabled eariler during scx_ope_enable() so that
cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem.
- Auto exit with ECODE added.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Scheduler classes are strictly ordered and when a higher priority class has
tasks to run, the lower priority ones lose access to the CPU. Being able to
monitor and act on these events are necessary for use cases includling
strict core-scheduling and latency management.
This patch adds two operations ops.cpu_acquire() and .cpu_release(). The
former is invoked when a CPU becomes available to the BPF scheduler and the
opposite for the latter. This patch also implements
scx_bpf_reenqueue_local() which can be called from .cpu_release() to trigger
requeueing of all tasks in the local dsq of the CPU so that the tasks can be
reassigned to other available CPUs.
scx_pair is updated to use .cpu_acquire/release() along with
%SCX_KICK_WAIT to make the pair scheduling guarantee strict even when a CPU
is preempted by a higher priority scheduler class.
scx_qmap is updated to use .cpu_acquire/release() to empty the local
dsq of a preempted CPU. A similar approach can be adopted by BPF schedulers
that want to have a tight control over latency.
v4: Use the new SCX_KICK_IDLE to wake up a CPU after re-enqueueing.
v3: Drop the const qualifier from scx_cpu_release_args.task. BPF enforces
access control through the verifier, so the qualifier isn't actually
operative and only gets in the way when interacting with various
helpers.
v2: Add p->scx.kf_mask annotation to allow calling scx_bpf_reenqueue_local()
from ops.cpu_release() nested inside ops.init() and other sleepable
operations.
Signed-off-by: David Vernet <dvernet@meta.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
If set when calling scx_bpf_kick_cpu(), the invoking CPU will busy wait for
the kicked cpu to enter the scheduler. See the following for example usage:
https://github.com/sched-ext/scx/blob/main/scheds/c/scx_pair.bpf.c
v2: - Updated to fit the updated kick_cpus_irq_workfn() implementation.
- Include SCX_KICK_WAIT related information in debug dump.
Signed-off-by: David Vernet <dvernet@meta.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
When some SCX operations are in flight, it is known that the subject task's
rq lock is held throughout which makes it safe to access certain fields of
the task - e.g. its current task_group. We want to add SCX kfunc helpers
that can make use of this guarantee - e.g. to help determining the currently
associated CPU cgroup from the task's current task_group.
As it'd be dangerous call such a helper on a task which isn't rq lock
protected, the helper should be able to verify the input task and reject
accordingly. This patch adds sched_ext_entity.kf_tasks[] that track the
tasks which are currently being operated on by a terminal SCX operation. The
new SCX_CALL_OP_[2]TASK[_RET]() can be used when invoking SCX operations
which take tasks as arguments and the scx_kf_allowed_on_arg_tasks() can be
used by kfunc helpers to verify the input task status.
Note that as sched_ext_entity.kf_tasks[] can't handle nesting, the tracking
is currently only limited to terminal SCX operations. If needed in the
future, this restriction can be removed by moving the tracking to the task
side with a couple per-task counters.
v2: Updated to reflect the addition of SCX_KF_SELECT_CPU.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Allow BPF schedulers to indicate tickless operation by setting p->scx.slice
to SCX_SLICE_INF. A CPU whose current task has infinte slice goes into
tickless operation.
scx_central is updated to use tickless operations for all tasks and
instead use a BPF timer to expire slices. This also uses the SCX_ENQ_PREEMPT
and task state tracking added by the previous patches.
Currently, there is no way to pin the timer on the central CPU, so it may
end up on one of the worker CPUs; however, outside of that, the worker CPUs
can go tickless both while running sched_ext tasks and idling.
With schbench running, scx_central shows:
root@test ~# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts
LOC: 142024 656 664 449 Local timer interrupts
LOC: 161663 663 665 449 Local timer interrupts
Without it:
root@test ~ [SIGINT]# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts
LOC: 188778 3142 3793 3993 Local timer interrupts
LOC: 198993 5314 6323 6438 Local timer interrupts
While scx_central itself is too barebone to be useful as a
production scheduler, a more featureful central scheduler can be built using
the same approach. Google's experience shows that such an approach can have
significant benefits for certain applications such as VM hosting.
v4: Allow operation even if BPF_F_TIMER_CPU_PIN is not available.
v3: Pin the central scheduler's timer on the central_cpu using
BPF_F_TIMER_CPU_PIN.
v2: Convert to BPF inline iterators.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Being able to track the task runnable and running state transitions are
useful for a variety of purposes including latency tracking and load factor
calculation.
Currently, BPF schedulers don't have a good way of tracking these
transitions. Becoming runnable can be determined from ops.enqueue() but
becoming quiescent can only be inferred from the lack of subsequent enqueue.
Also, as the local dsq can have multiple tasks and some events are handled
in the sched_ext core, it's difficult to determine when a given task starts
and stops executing.
This patch adds sched_ext_ops.runnable(), .running(), .stopping() and
.quiescent() operations to track the task runnable and running state
transitions. They're mostly self explanatory; however, we want to ensure
that running <-> stopping transitions are always contained within runnable
<-> quiescent transitions which is a bit different from how the scheduler
core behaves. This adds a bit of complication. See the comment in
dequeue_task_scx().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
The dispatch path retries if the local DSQ is still empty after
ops.dispatch() either dispatched or consumed a task. This is both out of
necessity and for convenience. It has to retry because the dispatch path
might lose the tasks to dequeue while the rq lock is released while trying
to migrate tasks across CPUs, and the retry mechanism makes ops.dispatch()
implementation easier as it only needs to make some forward progress each
iteration.
However, this makes it possible for ops.dispatch() to stall CPUs by
repeatedly dispatching ineligible tasks. If all CPUs are stalled that way,
the watchdog or sysrq handler can't run and the system can't be saved. Let's
address the issue by breaking out of the dispatch loop after 32 iterations.
It is unlikely but not impossible for ops.dispatch() to legitimately go over
the iteration limit. We want to come back to the dispatch path in such cases
as not doing so risks stalling the CPU by idling with runnable tasks
pending. As the previous task is still current in balance_scx(),
resched_curr() doesn't do anything - it will just get cleared. Let's instead
use scx_kick_bpf() which will trigger reschedule after switching to the next
task which will likely be the idle task.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
It's often useful to wake up and/or trigger reschedule on other CPUs. This
patch adds scx_bpf_kick_cpu() kfunc helper that BPF scheduler can call to
kick the target CPU into the scheduling path.
As a sched_ext task relinquishes its CPU only after its slice is depleted,
this patch also adds SCX_KICK_PREEMPT and SCX_ENQ_PREEMPT which clears the
slice of the target CPU's current task to guarantee that sched_ext's
scheduling path runs on the CPU.
If SCX_KICK_IDLE is specified, the target CPU is kicked iff the CPU is idle
to guarantee that the target CPU will go through at least one full sched_ext
scheduling cycle after the kicking. This can be used to wake up idle CPUs
without incurring unnecessary overhead if it isn't currently idle.
As a demonstration of how backward compatibility can be supported using BPF
CO-RE, tools/sched_ext/include/scx/compat.bpf.h is added. It provides
__COMPAT_scx_bpf_kick_cpu_IDLE() which uses SCX_KICK_IDLE if available or
becomes a regular kicking otherwise. This allows schedulers to use the new
SCX_KICK_IDLE while maintaining support for older kernels. The plan is to
temporarily use compat helpers to ease API updates and drop them after a few
kernel releases.
v5: - SCX_KICK_IDLE added. Note that this also adds a compat mechanism for
schedulers so that they can support kernels without SCX_KICK_IDLE.
This is useful as a demonstration of how new feature flags can be
added in a backward compatible way.
- kick_cpus_irq_workfn() reimplemented so that it touches the pending
cpumasks only as necessary to reduce kicking overhead on machines with
a lot of CPUs.
- tools/sched_ext/include/scx/compat.bpf.h added.
v4: - Move example scheduler to its own patch.
v3: - Make scx_example_central switch all tasks by default.
- Convert to BPF inline iterators.
v2: - Julia Lawall reported that scx_example_central can overflow the
dispatch buffer and malfunction. As scheduling for other CPUs can't be
handled by the automatic retry mechanism, fix by implementing an
explicit overflow and retry handling.
- Updated to use generic BPF cpumask helpers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
If a BPF scheduler triggers an error, the scheduler is aborted and the
system is reverted to the built-in scheduler. In the process, a lot of
information which may be useful for figuring out what happened can be lost.
This patch adds debug dump which captures information which may be useful
for debugging including runqueue and runnable thread states at the time of
failure. The following shows a debug dump after triggering the watchdog:
root@test ~# os/work/tools/sched_ext/build/bin/scx_qmap -t 100
stats : enq=1 dsp=0 delta=1 deq=0
stats : enq=90 dsp=90 delta=0 deq=0
stats : enq=156 dsp=156 delta=0 deq=0
stats : enq=218 dsp=218 delta=0 deq=0
stats : enq=255 dsp=255 delta=0 deq=0
stats : enq=271 dsp=271 delta=0 deq=0
stats : enq=284 dsp=284 delta=0 deq=0
stats : enq=293 dsp=293 delta=0 deq=0
DEBUG DUMP
================================================================================
kworker/u32:12[320] triggered exit kind 1026:
runnable task stall (stress[1530] failed to run for 6.841s)
Backtrace:
scx_watchdog_workfn+0x136/0x1c0
process_scheduled_works+0x2b5/0x600
worker_thread+0x269/0x360
kthread+0xeb/0x110
ret_from_fork+0x36/0x40
ret_from_fork_asm+0x1a/0x30
QMAP FIFO[0]:
QMAP FIFO[1]:
QMAP FIFO[2]: 1436
QMAP FIFO[3]:
QMAP FIFO[4]:
CPU states
----------
CPU 0 : nr_run=1 ops_qseq=244
curr=swapper/0[0] class=idle_sched_class
QMAP: dsp_idx=1 dsp_cnt=0
R stress[1530] -6841ms
scx_state/flags=3/0x1 ops_state/qseq=2/20
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=ff
QMAP: force_local=0
asm_sysvec_apic_timer_interrupt+0x16/0x20
CPU 2 : nr_run=2 ops_qseq=142
curr=swapper/2[0] class=idle_sched_class
QMAP: dsp_idx=1 dsp_cnt=0
R sshd[1703] -5905ms
scx_state/flags=3/0x9 ops_state/qseq=2/88
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=ff
QMAP: force_local=1
__x64_sys_ppoll+0xf6/0x120
do_syscall_64+0x7b/0x150
entry_SYSCALL_64_after_hwframe+0x76/0x7e
R fish[1539] -4141ms
scx_state/flags=3/0x9 ops_state/qseq=2/124
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=ff
QMAP: force_local=1
futex_wait+0x60/0xe0
do_futex+0x109/0x180
__x64_sys_futex+0x117/0x190
do_syscall_64+0x7b/0x150
entry_SYSCALL_64_after_hwframe+0x76/0x7e
CPU 3 : nr_run=2 ops_qseq=162
curr=kworker/u32:12[320] class=ext_sched_class
QMAP: dsp_idx=1 dsp_cnt=0
*R kworker/u32:12[320] +0ms
scx_state/flags=3/0xd ops_state/qseq=0/0
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=ff
QMAP: force_local=0
scx_dump_state+0x613/0x6f0
scx_ops_error_irq_workfn+0x1f/0x40
irq_work_run_list+0x82/0xd0
irq_work_run+0x14/0x30
__sysvec_irq_work+0x40/0x140
sysvec_irq_work+0x60/0x70
asm_sysvec_irq_work+0x16/0x20
scx_watchdog_workfn+0x15f/0x1c0
process_scheduled_works+0x2b5/0x600
worker_thread+0x269/0x360
kthread+0xeb/0x110
ret_from_fork+0x36/0x40
ret_from_fork_asm+0x1a/0x30
R kworker/3:2[1436] +0ms
scx_state/flags=3/0x9 ops_state/qseq=2/160
sticky/holding_cpu=-1/-1 dsq_id=(n/a)
cpus=08
QMAP: force_local=0
kthread+0xeb/0x110
ret_from_fork+0x36/0x40
ret_from_fork_asm+0x1a/0x30
CPU 7 : nr_run=0 ops_qseq=76
curr=swapper/7[0] class=idle_sched_class
================================================================================
EXIT: runnable task stall (stress[1530] failed to run for 6.841s)
It shows that CPU 3 was running the watchdog when it triggered the error
condition and the scx_qmap thread has been queued on CPU 0 for over 5
seconds but failed to run. It also prints out scx_qmap specific information
- e.g. which tasks are queued on each FIFO and so on using the dump_*() ops.
This dump has proved pretty useful for developing and debugging BPF
schedulers.
Debug dump is generated automatically when the BPF scheduler exits due to an
error. The debug buffer used in such cases is determined by
sched_ext_ops.exit_dump_len and defaults to 32k. If the debug dump overruns
the available buffer, the output is truncated and marked accordingly.
Debug dump output can also be read through the sched_ext_dump tracepoint.
When read through the tracepoint, there is no length limit.
SysRq-D can be used to trigger debug dump at any time while a BPF scheduler
is loaded. This is non-destructive - the scheduler keeps running afterwards.
The output can be read through the sched_ext_dump tracepoint.
v2: - The size of exit debug dump buffer can now be customized using
sched_ext_ops.exit_dump_len.
- sched_ext_ops.dump*() added to enable dumping of BPF scheduler
specific information.
- Tracpoint output and SysRq-D triggering added.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
It would be useful to see what the sched_ext scheduler state is, and what
scheduler is running, when we're dumping a task's stack. This patch
therefore adds a new print_scx_info() function that's called in the same
context as print_worker_info() and print_stop_info(). An example dump
follows.
BUG: kernel NULL pointer dereference, address: 0000000000000999
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 13 PID: 2047 Comm: insmod Tainted: G O 6.6.0-work-10323-gb58d4cae8e99-dirty #34
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS unknown 2/2/2022
Sched_ext: qmap (enabled+all), task: runnable_at=-17ms
RIP: 0010:init_module+0x9/0x1000 [test_module]
...
v3: - scx_ops_enable_state_str[] definition moved to an earlier patch as
it's now used by core implementation.
- Convert jiffy delta to msecs using jiffies_to_msecs() instead of
multiplying by (HZ / MSEC_PER_SEC). The conversion is implemented in
jiffies_delta_msecs().
v2: - We are now using scx_ops_enable_state_str[] outside
CONFIG_SCHED_DEBUG. Move it outside of CONFIG_SCHED_DEBUG and to the
top. This was reported by Changwoo and Andrea.
Signed-off-by: David Vernet <void@manifault.com>
Reported-by: Changwoo Min <changwoo@igalia.com>
Reported-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
BPF schedulers might not want to schedule certain tasks - e.g. kernel
threads. This patch adds p->scx.disallow which can be set by BPF schedulers
in such cases. The field can be changed anytime and setting it in
ops.prep_enable() guarantees that the task can never be scheduled by
sched_ext.
scx_qmap is updated with the -d option to disallow a specific PID:
# echo $$
1092
# grep -E '(policy)|(ext\.enabled)' /proc/self/sched
policy : 0
ext.enabled : 0
# ./set-scx 1092
# grep -E '(policy)|(ext\.enabled)' /proc/self/sched
policy : 7
ext.enabled : 0
Run "scx_qmap -p -d 1092" in another terminal.
# cat /sys/kernel/sched_ext/nr_rejected
1
# grep -E '(policy)|(ext\.enabled)' /proc/self/sched
policy : 0
ext.enabled : 0
# ./set-scx 1092
setparam failed for 1092 (Permission denied)
- v4: Refreshed on top of tip:sched/core.
- v3: Update description to reflect /sys/kernel/sched_ext interface change.
- v2: Use atomic_long_t instead of atomic64_t for scx_kick_cpus_pnt_seqs to
accommodate 32bit archs.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Barret Rhoden <brho@google.com>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
The most common and critical way that a BPF scheduler can misbehave is by
failing to run runnable tasks for too long. This patch implements a
watchdog.
* All tasks record when they become runnable.
* A watchdog work periodically scans all runnable tasks. If any task has
stayed runnable for too long, the BPF scheduler is aborted.
* scheduler_tick() monitors whether the watchdog itself is stuck. If so, the
BPF scheduler is aborted.
Because the watchdog only scans the tasks which are currently runnable and
usually very infrequently, the overhead should be negligible.
scx_qmap is updated so that it can be told to stall user and/or
kernel tasks.
A detected task stall looks like the following:
sched_ext: BPF scheduler "qmap" errored, disabling
sched_ext: runnable task stall (dbus-daemon[953] failed to run for 6.478s)
scx_check_timeout_workfn+0x10e/0x1b0
process_one_work+0x287/0x560
worker_thread+0x234/0x420
kthread+0xe9/0x100
ret_from_fork+0x1f/0x30
A detected watchdog stall:
sched_ext: BPF scheduler "qmap" errored, disabling
sched_ext: runnable task stall (watchdog failed to check in for 5.001s)
scheduler_tick+0x2eb/0x340
update_process_times+0x7a/0x90
tick_sched_timer+0xd8/0x130
__hrtimer_run_queues+0x178/0x3b0
hrtimer_interrupt+0xfc/0x390
__sysvec_apic_timer_interrupt+0xb7/0x2b0
sysvec_apic_timer_interrupt+0x90/0xb0
asm_sysvec_apic_timer_interrupt+0x1b/0x20
default_idle+0x14/0x20
arch_cpu_idle+0xf/0x20
default_idle_call+0x50/0x90
do_idle+0xe8/0x240
cpu_startup_entry+0x1d/0x20
kernel_init+0x0/0x190
start_kernel+0x0/0x392
start_kernel+0x324/0x392
x86_64_start_reservations+0x2a/0x2c
x86_64_start_kernel+0x104/0x109
secondary_startup_64_no_verify+0xce/0xdb
Note that this patch exposes scx_ops_error[_type]() in kernel/sched/ext.h to
inline scx_notify_sched_tick().
v4: - While disabling, cancel_delayed_work_sync(&scx_watchdog_work) was
being called before forward progress was guaranteed and thus could
lead to system lockup. Relocated.
- While enabling, it was comparing msecs against jiffies without
conversion leading to spurious load failures on lower HZ kernels.
Fixed.
- runnable list management is now used by core bypass logic and moved to
the patch implementing sched_ext core.
v3: - bpf_scx_init_member() was incorrectly comparing ops->timeout_ms
against SCX_WATCHDOG_MAX_TIMEOUT which is in jiffies without
conversion leading to spurious load failures in lower HZ kernels.
Fixed.
v2: - Julia Lawall noticed that the watchdog code was mixing msecs and
jiffies. Fix by using jiffies for everything.
Signed-off-by: David Vernet <dvernet@meta.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Cc: Julia Lawall <julia.lawall@inria.fr>
This enables the admin to abort the BPF scheduler and revert to CFS anytime.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Implement a new scheduler class sched_ext (SCX), which allows scheduling
policies to be implemented as BPF programs to achieve the following:
1. Ease of experimentation and exploration: Enabling rapid iteration of new
scheduling policies.
2. Customization: Building application-specific schedulers which implement
policies that are not applicable to general-purpose schedulers.
3. Rapid scheduler deployments: Non-disruptive swap outs of scheduling
policies in production environments.
sched_ext leverages BPF’s struct_ops feature to define a structure which
exports function callbacks and flags to BPF programs that wish to implement
scheduling policies. The struct_ops structure exported by sched_ext is
struct sched_ext_ops, and is conceptually similar to struct sched_class. The
role of sched_ext is to map the complex sched_class callbacks to the more
simple and ergonomic struct sched_ext_ops callbacks.
For more detailed discussion on the motivations and overview, please refer
to the cover letter.
Later patches will also add several example schedulers and documentation.
This patch implements the minimum core framework to enable implementation of
BPF schedulers. Subsequent patches will gradually add functionalities
including safety guarantee mechanisms, nohz and cgroup support.
include/linux/sched/ext.h defines struct sched_ext_ops. With the comment on
top, each operation should be self-explanatory. The followings are worth
noting:
- Both "sched_ext" and its shorthand "scx" are used. If the identifier
already has "sched" in it, "ext" is used; otherwise, "scx".
- In sched_ext_ops, only .name is mandatory. Every operation is optional and
if omitted a simple but functional default behavior is provided.
- A new policy constant SCHED_EXT is added and a task can select sched_ext
by invoking sched_setscheduler(2) with the new policy constant. However,
if the BPF scheduler is not loaded, SCHED_EXT is the same as SCHED_NORMAL
and the task is scheduled by CFS. When the BPF scheduler is loaded, all
tasks which have the SCHED_EXT policy are switched to sched_ext.
- To bridge the workflow imbalance between the scheduler core and
sched_ext_ops callbacks, sched_ext uses simple FIFOs called dispatch
queues (dsq's). By default, there is one global dsq (SCX_DSQ_GLOBAL), and
one local per-CPU dsq (SCX_DSQ_LOCAL). SCX_DSQ_GLOBAL is provided for
convenience and need not be used by a scheduler that doesn't require it.
SCX_DSQ_LOCAL is the per-CPU FIFO that sched_ext pulls from when putting
the next task on the CPU. The BPF scheduler can manage an arbitrary number
of dsq's using scx_bpf_create_dsq() and scx_bpf_destroy_dsq().
- sched_ext guarantees system integrity no matter what the BPF scheduler
does. To enable this, each task's ownership is tracked through
p->scx.ops_state and all tasks are put on scx_tasks list. The disable path
can always recover and revert all tasks back to CFS. See p->scx.ops_state
and scx_tasks.
- A task is not tied to its rq while enqueued. This decouples CPU selection
from queueing and allows sharing a scheduling queue across an arbitrary
subset of CPUs. This adds some complexities as a task may need to be
bounced between rq's right before it starts executing. See
dispatch_to_local_dsq() and move_task_to_local_dsq().
- One complication that arises from the above weak association between task
and rq is that synchronizing with dequeue() gets complicated as dequeue()
may happen anytime while the task is enqueued and the dispatch path might
need to release the rq lock to transfer the task. Solving this requires a
bit of complexity. See the logic around p->scx.sticky_cpu and
p->scx.ops_qseq.
- Both enable and disable paths are a bit complicated. The enable path
switches all tasks without blocking to avoid issues which can arise from
partially switched states (e.g. the switching task itself being starved).
The disable path can't trust the BPF scheduler at all, so it also has to
guarantee forward progress without blocking. See scx_ops_enable() and
scx_ops_disable_workfn().
- When sched_ext is disabled, static_branches are used to shut down the
entry points from hot paths.
v7: - scx_ops_bypass() was incorrectly and unnecessarily trying to grab
scx_ops_enable_mutex which can lead to deadlocks in the disable path.
Fixed.
- Fixed TASK_DEAD handling bug in scx_ops_enable() path which could lead
to use-after-free.
- Consolidated per-cpu variable usages and other cleanups.
v6: - SCX_NR_ONLINE_OPS replaced with SCX_OPI_*_BEGIN/END so that multiple
groups can be expressed. Later CPU hotplug operations are put into
their own group.
- SCX_OPS_DISABLING state is replaced with the new bypass mechanism
which allows temporarily putting the system into simple FIFO
scheduling mode bypassing the BPF scheduler. In addition to the shut
down path, this will also be used to isolate the BPF scheduler across
PM events. Enabling and disabling the bypass mode requires iterating
all runnable tasks. rq->scx.runnable_list addition is moved from the
later watchdog patch.
- ops.prep_enable() is replaced with ops.init_task() and
ops.enable/disable() are now called whenever the task enters and
leaves sched_ext instead of when the task becomes schedulable on
sched_ext and stops being so. A new operation - ops.exit_task() - is
called when the task stops being schedulable on sched_ext.
- scx_bpf_dispatch() can now be called from ops.select_cpu() too. This
removes the need for communicating local dispatch decision made by
ops.select_cpu() to ops.enqueue() via per-task storage.
SCX_KF_SELECT_CPU is added to support the change.
- SCX_TASK_ENQ_LOCAL which told the BPF scheudler that
scx_select_cpu_dfl() wants the task to be dispatched to the local DSQ
was removed. Instead, scx_bpf_select_cpu_dfl() now dispatches directly
if it finds a suitable idle CPU. If such behavior is not desired,
users can use scx_bpf_select_cpu_dfl() which returns the verdict in a
bool out param.
- scx_select_cpu_dfl() was mishandling WAKE_SYNC and could end up
queueing many tasks on a local DSQ which makes tasks to execute in
order while other CPUs stay idle which made some hackbench numbers
really bad. Fixed.
- The current state of sched_ext can now be monitored through files
under /sys/sched_ext instead of /sys/kernel/debug/sched/ext. This is
to enable monitoring on kernels which don't enable debugfs.
- sched_ext wasn't telling BPF that ops.dispatch()'s @prev argument may
be NULL and a BPF scheduler which derefs the pointer without checking
could crash the kernel. Tell BPF. This is currently a bit ugly. A
better way to annotate this is expected in the future.
- scx_exit_info updated to carry pointers to message buffers instead of
embedding them directly. This decouples buffer sizes from API so that
they can be changed without breaking compatibility.
- exit_code added to scx_exit_info. This is used to indicate different
exit conditions on non-error exits and will be used to handle e.g. CPU
hotplugs.
- The patch "sched_ext: Allow BPF schedulers to switch all eligible
tasks into sched_ext" is folded in and the interface is changed so
that partial switching is indicated with a new ops flag
%SCX_OPS_SWITCH_PARTIAL. This makes scx_bpf_switch_all() unnecessasry
and in turn SCX_KF_INIT. ops.init() is now called with
SCX_KF_SLEEPABLE.
- Code reorganized so that only the parts necessary to integrate with
the rest of the kernel are in the header files.
- Changes to reflect the BPF and other kernel changes including the
addition of bpf_sched_ext_ops.cfi_stubs.
v5: - To accommodate 32bit configs, p->scx.ops_state is now atomic_long_t
instead of atomic64_t and scx_dsp_buf_ent.qseq which uses
load_acquire/store_release is now unsigned long instead of u64.
- Fix the bug where bpf_scx_btf_struct_access() was allowing write
access to arbitrary fields.
- Distinguish kfuncs which can be called from any sched_ext ops and from
anywhere. e.g. scx_bpf_pick_idle_cpu() can now be called only from
sched_ext ops.
- Rename "type" to "kind" in scx_exit_info to make it easier to use on
languages in which "type" is a reserved keyword.
- Since cff9b2332a ("kernel/sched: Modify initial boot task idle
setup"), PF_IDLE is not set on idle tasks which haven't been online
yet which made scx_task_iter_next_filtered() include those idle tasks
in iterations leading to oopses. Update scx_task_iter_next_filtered()
to directly test p->sched_class against idle_sched_class instead of
using is_idle_task() which tests PF_IDLE.
- Other updates to match upstream changes such as adding const to
set_cpumask() param and renaming check_preempt_curr() to
wakeup_preempt().
v4: - SCHED_CHANGE_BLOCK replaced with the previous
sched_deq_and_put_task()/sched_enq_and_set_tsak() pair. This is
because upstream is adaopting a different generic cleanup mechanism.
Once that lands, the code will be adapted accordingly.
- task_on_scx() used to test whether a task should be switched into SCX,
which is confusing. Renamed to task_should_scx(). task_on_scx() now
tests whether a task is currently on SCX.
- scx_has_idle_cpus is barely used anymore and replaced with direct
check on the idle cpumask.
- SCX_PICK_IDLE_CORE added and scx_pick_idle_cpu() improved to prefer
fully idle cores.
- ops.enable() now sees up-to-date p->scx.weight value.
- ttwu_queue path is disabled for tasks on SCX to avoid confusing BPF
schedulers expecting ->select_cpu() call.
- Use cpu_smt_mask() instead of topology_sibling_cpumask() like the rest
of the scheduler.
v3: - ops.set_weight() added to allow BPF schedulers to track weight changes
without polling p->scx.weight.
- move_task_to_local_dsq() was losing SCX-specific enq_flags when
enqueueing the task on the target dsq because it goes through
activate_task() which loses the upper 32bit of the flags. Carry the
flags through rq->scx.extra_enq_flags.
- scx_bpf_dispatch(), scx_bpf_pick_idle_cpu(), scx_bpf_task_running()
and scx_bpf_task_cpu() now use the new KF_RCU instead of
KF_TRUSTED_ARGS to make it easier for BPF schedulers to call them.
- The kfunc helper access control mechanism implemented through
sched_ext_entity.kf_mask is improved. Now SCX_CALL_OP*() is always
used when invoking scx_ops operations.
v2: - balance_scx_on_up() is dropped. Instead, on UP, balance_scx() is
called from put_prev_taks_scx() and pick_next_task_scx() as necessary.
To determine whether balance_scx() should be called from
put_prev_task_scx(), SCX_TASK_DEQD_FOR_SLEEP flag is added. See the
comment in put_prev_task_scx() for details.
- sched_deq_and_put_task() / sched_enq_and_set_task() sequences replaced
with SCHED_CHANGE_BLOCK().
- Unused all_dsqs list removed. This was a left-over from previous
iterations.
- p->scx.kf_mask is added to track and enforce which kfunc helpers are
allowed. Also, init/exit sequences are updated to make some kfuncs
always safe to call regardless of the current BPF scheduler state.
Combined, this should make all the kfuncs safe.
- BPF now supports sleepable struct_ops operations. Hacky workaround
removed and operations and kfunc helpers are tagged appropriately.
- BPF now supports bitmask / cpumask helpers. scx_bpf_get_idle_cpumask()
and friends are added so that BPF schedulers can use the idle masks
with the generic helpers. This replaces the hacky kfunc helpers added
by a separate patch in V1.
- CONFIG_SCHED_CLASS_EXT can no longer be enabled if SCHED_CORE is
enabled. This restriction will be removed by a later patch which adds
core-sched support.
- Add MAINTAINERS entries and other misc changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Co-authored-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Cc: Andrea Righi <andrea.righi@canonical.com>
This adds dummy implementations of sched_ext interfaces which interact with
the scheduler core and hook them in the correct places. As they're all
dummies, this doesn't cause any behavior changes. This is split out to help
reviewing.
v2: balance_scx_on_up() dropped. This will be handled in sched_ext proper.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
A new BPF extensible sched_class will need to dynamically change how a task
picks its sched_class. For example, if the loaded BPF scheduler progs fail,
the tasks will be forced back on CFS even if the task's policy is set to the
new sched_class. To support such mapping, add normal_policy() which wraps
testing for %SCHED_NORMAL. This doesn't cause any behavior changes.
v2: Update the description with more details on the expected use.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
RT, DL, thermal and irq load and utilization metrics need to be decayed and
updated periodically and before consumption to keep the numbers reasonable.
This is currently done from __update_blocked_others() as a part of the fair
class load balance path. Let's factor it out to update_other_load_avgs().
Pure refactor. No functional changes.
This will be used by the new BPF extensible scheduling class to ensure that
the above metrics are properly maintained.
v2: Refreshed on top of tip:sched/core.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Factor out sched_weight_from/to_cgroup() which convert between scheduler
shares and cgroup weight. No functional change. The factored out functions
will be used by a new BPF extensible sched_class so that the weights can be
exposed to the BPF programs in a way which is consistent cgroup weights and
easier to interpret.
The weight conversions will be used regardless of cgroup usage. It's just
borrowing the cgroup weight range as it's more intuitive.
CGROUP_WEIGHT_MIN/DFL/MAX constants are moved outside CONFIG_CGROUPS so that
the conversion helpers can always be defined.
v2: The helpers are now defined regardless of COFNIG_CGROUPS.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
When a task switches to a new sched_class, the prev and new classes are
notified through ->switched_from() and ->switched_to(), respectively, after
the switching is done.
A new BPF extensible sched_class will have callbacks that allow the BPF
scheduler to keep track of relevant task states (like priority and cpumask).
Those callbacks aren't called while a task is on a different sched_class.
When a task comes back, we wanna tell the BPF progs the up-to-date state
before the task gets enqueued, so we need a hook which is called before the
switching is committed.
This patch adds ->switching_to() which is called during sched_class switch
through check_class_changing() before the task is restored. Also, this patch
exposes check_class_changing/changed() in kernel/sched/sched.h. They will be
used by the new BPF extensible sched_class to implement implicit sched_class
switching which is used e.g. when falling back to CFS when the BPF scheduler
fails or unloads.
This is a prep patch and doesn't cause any behavior changes. The new
operation and exposed functions aren't used yet.
v3: Refreshed on top of tip:sched/core.
v2: Improve patch description w/ details on planned use.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Currently, during a task weight change, sched core directly calls
reweight_task() defined in fair.c if @p is on CFS. Let's make it a proper
sched_class operation instead. CFS's reweight_task() is renamed to
reweight_task_fair() and now called through sched_class.
While it turns a direct call into an indirect one, set_load_weight() isn't
called from a hot path and this change shouldn't cause any noticeable
difference. This will be used to implement reweight_task for a new BPF
extensible sched_class so that it can keep its cached task weight
up-to-date.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
A new BPF extensible sched_class will need more control over the forking
process. It wants to be able to fail from sched_cgroup_fork() after the new
task's sched_task_group is initialized so that the loaded BPF program can
prepare the task with its cgroup association is established and reject fork
if e.g. allocation fails.
Allow sched_cgroup_fork() to fail by making it return int instead of void
and adding sched_cancel_fork() to undo sched_fork() in the error path.
sched_cgroup_fork() doesn't fail yet and this patch shouldn't cause any
behavior changes.
v2: Patch description updated to detail the expected use.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
Currently, sched_init() checks that the sched_class'es are in the expected
order by testing each adjacency which is a bit brittle and makes it
cumbersome to add optional sched_class'es. Instead, let's verify whether
they're in the expected order using sched_class_above() which is what
matters.
Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: David Vernet <dvernet@meta.com>
When RCU-TASKS-TRACE pre-gp takes a snapshot of the current task running
on all online CPUs, no explicit ordering synchronizes properly with a
context switch. This lack of ordering can permit the new task to miss
pre-grace-period update-side accesses. The following diagram, courtesy
of Paul, shows the possible bad scenario:
CPU 0 CPU 1
----- -----
// Pre-GP update side access
WRITE_ONCE(*X, 1);
smp_mb();
r0 = rq->curr;
RCU_INIT_POINTER(rq->curr, TASK_B)
spin_unlock(rq)
rcu_read_lock_trace()
r1 = X;
/* ignore TASK_B */
Either r0==TASK_B or r1==1 is needed but neither is guaranteed.
One possible solution to solve this is to wait for an RCU grace period
at the beginning of the RCU-tasks-trace grace period before taking the
current tasks snaphot. However this would introduce large additional
latencies to RCU-tasks-trace grace periods.
Another solution is to lock the target runqueue while taking the current
task snapshot. This ensures that the update side sees the latest context
switch and subsequent context switches will see the pre-grace-period
update side accesses.
This commit therefore adds runqueue locking to cpu_curr_snapshot().
Fixes: e386b67257 ("rcu-tasks: Eliminate RCU Tasks Trace IPIs to online CPUs")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
We observed that the overhead on trigger_load_balance(), now renamed
sched_balance_trigger(), has risen with a system's core counts.
For an OLTP workload running 6.8 kernel on a 2 socket x86 systems
having 96 cores/socket, we saw that 0.7% cpu cycles are spent in
trigger_load_balance(). On older systems with fewer cores/socket, this
function's overhead was less than 0.1%.
The cause of this overhead was that there are multiple cpus calling
kick_ilb(flags), updating the balancing work needed to a common idle
load balancer cpu. The ilb_cpu's flags field got updated unconditionally
with atomic_fetch_or(). The atomic read and writes to ilb_cpu's flags
causes much cache bouncing and cpu cycles overhead. This is seen in the
annotated profile below.
kick_ilb():
if (ilb_cpu < 0)
test %r14d,%r14d
↑ js 6c
flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
mov $0x2d600,%rdi
movslq %r14d,%r8
mov %rdi,%rdx
add -0x7dd0c3e0(,%r8,8),%rdx
arch_atomic_read():
0.01 mov 0x64(%rdx),%esi
35.58 add $0x64,%rdx
arch_atomic_fetch_or():
static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v)
{
int val = arch_atomic_read(v);
do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i));
0.03 157: mov %r12d,%ecx
arch_atomic_try_cmpxchg():
return arch_try_cmpxchg(&v->counter, old, new);
0.00 mov %esi,%eax
arch_atomic_fetch_or():
do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i));
or %esi,%ecx
arch_atomic_try_cmpxchg():
return arch_try_cmpxchg(&v->counter, old, new);
0.01 lock cmpxchg %ecx,(%rdx)
42.96 ↓ jne 2d2
kick_ilb():
With instrumentation, we found that 81% of the updates do not result in
any change in the ilb_cpu's flags. That is, multiple cpus are asking
the ilb_cpu to do the same things over and over again, before the ilb_cpu
has a chance to run NOHZ load balance.
Skip updates to ilb_cpu's flags if no new work needs to be done.
Such updates do not change ilb_cpu's NOHZ flags. This requires an extra
atomic read but it is less expensive than frequent unnecessary atomic
updates that generate cache bounces.
We saw that on the OLTP workload, cpu cycles from trigger_load_balance()
(or sched_balance_trigger()) got reduced from 0.7% to 0.2%.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240531205452.65781-1-tim.c.chen@linux.intel.com
The call of rcu_idle_enter() from within cpuidle_idle_call() was
removed in commit 1098582a0f ("sched,idle,rcu: Push rcu_idle deeper
into the idle path") which makes the comment out of place.
Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/5b936388-47df-4050-9229-6617a6c2bba5@arm.com
There's a random number of structure pre-declaration lines in
kernel/sched/sched.h, some of which are unnecessary duplicates.
Move them to the head & order them a bit for readability.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Remove unnecessary use of the address operator.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
Hi Linus,
Please pull patches for 6.10. This includes:
- topology_span_sane() optimization from Kyle Meyer;
- fns() rework from Kuan-Wei Chiu (used in
cpumask_local_spread() and other places); and
- headers cleanup from Andy.
This also adds a MAINTAINERS record for bitops API as it's unattended,
and I'd like to follow it closer.
Thanks,
Yury
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEEi8GdvG6xMhdgpu/4sUSA/TofvsgFAmZKh/kACgkQsUSA/Tof
vshtSQv/eT5+KyXg5qCY3fLaIjWYD0uch5jxkdqtib5BncfIrUMsFpZBon+E2x9C
fWu7K/nfxUjKZF0Sfgl9gVns6K0rC4F24WzHjzWRVVV7+g4idXwMC1kxSX733KQC
o+D2065Dx9EmhnzypBbmNsGQsQ09WXP1GsJLf8qSGCw0lT1zNtgqsAD5sSogFGGn
ca9ZsndThuzTst5lXPXipt1W/c26frchh6SgjVTPjzALCDAf5r9Ls5np3AL1AW8X
yR8cuV9UphT1ysBplzPbBET/Fy/AGbZl1g4u72M6NvGy/nVkQ5Ic4HZj0zIem0Ic
C60PokY8lg6hQ7tWN8da12/g6WZINgZcfUfuodKiQAzryBGUJlW0aDzDUZPcCqB/
gmV/Op4RPJeQr9sibQ6nIFx73ydKVQEmZRliahzXR0p33HJCOLTATOeYqLTXQMdi
ZwhYCqG5fNEUK0VMBy8S4+tEsUAoykU21hFD04b/Ur8A49bxxJ9RDlAUC0IEc1Pj
fiU0VPFx
=H6BQ
-----END PGP SIGNATURE-----
Merge tag 'bitmap-for-6.10v2' of https://github.com/norov/linux
Pull bitmap updates from Yury Norov:
- topology_span_sane() optimization from Kyle Meyer
- fns() rework from Kuan-Wei Chiu (used in cpumask_local_spread() and
other places)
- headers cleanup from Andy
- add a MAINTAINERS record for bitops API
* tag 'bitmap-for-6.10v2' of https://github.com/norov/linux:
usercopy: Don't use "proxy" headers
bitops: Move aligned_byte_mask() to wordpart.h
MAINTAINERS: add BITOPS API record
bitmap: relax find_nth_bit() limitation on return value
lib: make test_bitops compilable into the kernel image
bitops: Optimize fns() for improved performance
lib/test_bitops: Add benchmark test for fns()
Compiler Attributes: Add __always_used macro
sched/topology: Optimize topology_span_sane()
cpumask: Add for_each_cpu_from()
Summary
* Removed sentinel elements from ctl_table structs in kernel/*
Removing sentinels in ctl_table arrays reduces the build time size and
runtime memory consumed by ~64 bytes per array. Removals for net/, io_uring/,
mm/, ipc/ and security/ are set to go into mainline through their respective
subsystems making the next release the most likely place where the final
series that removes the check for proc_name == NULL will land. This PR adds
to removals already in arch/, drivers/ and fs/.
* Adjusted ctl_table definitions and references to allow constification
Adjustments:
- Removing unused ctl_table function arguments
- Moving non-const elements from ctl_table to ctl_table_header
- Making ctl_table pointers const in ctl_table_root structure
Making the static ctl_table structs const will increase safety by keeping the
pointers to proc_handler functions in .rodata. Though no ctl_tables where
made const in this PR, the ground work for making that possible has started
with these changes sent by Thomas Weißschuh.
Testing
* These changes went into linux-next after v6.9-rc4; giving it a good month of
testing.
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEErkcJVyXmMSXOyyeQupfNUreWQU8FAmZFvBMACgkQupfNUreW
QU/eGAv9EWeiXKxr3EVSMAsb9MWbJq7C99I/pd5hMf+qH4PgJpKDH7w/sb2e8h8+
unGiW83ikgrtph7OS4/xM3Y9r3Nvzd6C/OztqgMnNKeRFdMgP7wu9HaSNs05ordb
CqJdhvL93quc5HxrGTS9sdLK/wLJWOHwuWMXhX4qS44JNxTdPV2q10Rb7DZyHZ6O
C9qp61L2Q2CrnOBKIx8MoeCh20ynJQAo3b0pTN63ZYF4D0vqCcnYNNTPkge4ID8/
ULJoP5hAQY0vJ4g4fC4Gmooa5GECpm8MfZUf3SdgPyauqM/sm3dVdsLXAWD4Phcp
TsG2a/5KMYwnLHrUGwDW7bFfEemRU88h0Iam56+SKMl1kMlEpWaLL9ApQXoHFayG
e10izS+i/nlQiqYIHtuczCoTimT4/LGnonCLcdA//C3XzBT5MnOd7xsjuaQSpFWl
/CV9SZa4ABwzX7u2jty8ik90iihLCFQyKj1d9m1mDVbgb6r3iUOxVuHBgMtY7MF7
eyaEmV7l
=/rQW
-----END PGP SIGNATURE-----
Merge tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl
Pull sysctl updates from Joel Granados:
- Remove sentinel elements from ctl_table structs in kernel/*
Removing sentinels in ctl_table arrays reduces the build time size
and runtime memory consumed by ~64 bytes per array. Removals for
net/, io_uring/, mm/, ipc/ and security/ are set to go into mainline
through their respective subsystems making the next release the most
likely place where the final series that removes the check for
proc_name == NULL will land.
This adds to removals already in arch/, drivers/ and fs/.
- Adjust ctl_table definitions and references to allow constification
- Remove unused ctl_table function arguments
- Move non-const elements from ctl_table to ctl_table_header
- Make ctl_table pointers const in ctl_table_root structure
Making the static ctl_table structs const will increase safety by
keeping the pointers to proc_handler functions in .rodata. Though no
ctl_tables where made const in this PR, the ground work for making
that possible has started with these changes sent by Thomas
Weißschuh.
* tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
sysctl: drop now unnecessary out-of-bounds check
sysctl: move sysctl type to ctl_table_header
sysctl: drop sysctl_is_perm_empty_ctl_table
sysctl: treewide: constify argument ctl_table_root::permissions(table)
sysctl: treewide: drop unused argument ctl_table_root::set_ownership(table)
bpf: Remove the now superfluous sentinel elements from ctl_table array
delayacct: Remove the now superfluous sentinel elements from ctl_table array
kprobes: Remove the now superfluous sentinel elements from ctl_table array
printk: Remove the now superfluous sentinel elements from ctl_table array
scheduler: Remove the now superfluous sentinel elements from ctl_table array
seccomp: Remove the now superfluous sentinel elements from ctl_table array
timekeeping: Remove the now superfluous sentinel elements from ctl_table array
ftrace: Remove the now superfluous sentinel elements from ctl_table array
umh: Remove the now superfluous sentinel elements from ctl_table array
kernel misc: Remove the now superfluous sentinel elements from ctl_table array
In the cgroup v2 CPU subsystem, assuming we have a
cgroup named 'test', and we set cpu.max and cpu.max.burst:
# echo 1000000 > /sys/fs/cgroup/test/cpu.max
# echo 1000000 > /sys/fs/cgroup/test/cpu.max.burst
then we check cpu.max and cpu.max.burst:
# cat /sys/fs/cgroup/test/cpu.max
1000000 100000
# cat /sys/fs/cgroup/test/cpu.max.burst
1000000
Next we set cpu.max again and check cpu.max and
cpu.max.burst:
# echo 2000000 > /sys/fs/cgroup/test/cpu.max
# cat /sys/fs/cgroup/test/cpu.max
2000000 100000
# cat /sys/fs/cgroup/test/cpu.max.burst
1000
... we find that the cpu.max.burst value changed unexpectedly.
In cpu_max_write(), the unit of the burst value returned
by tg_get_cfs_burst() is microseconds, while in cpu_max_write(),
the burst unit used for calculation should be nanoseconds,
which leads to the bug.
To fix it, get the burst value directly from tg->cfs_bandwidth.burst.
Fixes: f4183717b3 ("sched/fair: Introduce the burstable CFS controller")
Reported-by: Qixin Liao <liaoqixin@huawei.com>
Signed-off-by: Cheng Yu <serein.chengyu@huawei.com>
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240424132438.514720-1-serein.chengyu@huawei.com
On 05/03/2024 15:05, Vincent Guittot wrote:
I'm fine with either and that was my first thought here, too, but it did seem like
the comment was mostly placed there to justify the 'unexpected' high utilization
when explicitly passing FREQUENCY_UTIL and the need to clamp it then.
So removing did feel slightly more natural to me anyway.
So alternatively:
From: Christian Loehle <christian.loehle@arm.com>
Date: Tue, 5 Mar 2024 09:34:41 +0000
Subject: [PATCH] sched/fair: Remove stale FREQUENCY_UTIL mention
effective_cpu_util() flags were removed, so remove mentioning of the
flag.
commit 9c0b4bb7f6 ("sched/cpufreq: Rework schedutil governor performance estimation")
reworked effective_cpu_util() removing enum cpu_util_type. Modify the
comment accordingly.
Signed-off-by: Christian Loehle <christian.loehle@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/0e2833ee-0939-44e0-82a2-520a585a0153@arm.com
Change se->load.weight to se_weight(se) in the calculation for the
initial util_avg to avoid unnecessarily inflating the util_avg by 1024
times.
The reason is that se->load.weight has the unit/scale as the scaled-up
load, while cfs_rg->avg.load_avg has the unit/scale as the true task
weight (as mapped directly from the task's nice/priority value). With
CONFIG_32BIT, the scaled-up load is equal to the true task weight. With
CONFIG_64BIT, the scaled-up load is 1024 times the true task weight.
Thus, the current code may inflate the util_avg by 1024 times. The
follow-up capping will not allow the util_avg value to go wild. But the
calculation should have the correct logic.
Signed-off-by: Dawei Li <daweilics@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Vishal Chourasia <vishalc@linux.ibm.com>
Link: https://lore.kernel.org/r/20240315015916.21545-1-daweilics@gmail.com
Knowing domain's level exactly can be useful when setting
relax_domain_level or cpuset.sched_relax_domain_level
Usage:
cat /debug/sched/domains/cpu0/domain1/level
to dump cpu0 domain1's level.
SDM macro is not used because sd->level is 'int' and
it would hide the type mismatch between 'int' and 'u32'.
Signed-off-by: Vitalii Bursov <vitaly@bursov.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/9489b6475f6dd6fbc67c617752d4216fa094da53.1714488502.git.vitaly@bursov.com
Change relax_domain_level checks so that it would be possible
to include or exclude all domains from newidle balancing.
This matches the behavior described in the documentation:
-1 no request. use system default or follow request of others.
0 no search.
1 search siblings (hyperthreads in a core).
"2" enables levels 0 and 1, level_max excludes the last (level_max)
level, and level_max+1 includes all levels.
Fixes: 1d3504fcf5 ("sched, cpuset: customize sched domains, core")
Signed-off-by: Vitalii Bursov <vitaly@bursov.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/bd6de28e80073c79466ec6401cdeae78f0d4423d.1714488502.git.vitaly@bursov.com
- Add cpufreq pressure feedback for the scheduler
- Rework misfit load-balancing wrt. affinity restrictions
- Clean up and simplify the code around ::overutilized and
::overload access.
- Simplify sched_balance_newidle()
- Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
handling that changed the output.
- Rework & clean up <asm/vtime.h> interactions wrt. arch_vtime_task_switch()
- Reorganize, clean up and unify most of the higher level
scheduler balancing function names around the sched_balance_*()
prefix.
- Simplify the balancing flag code (sched_balance_running)
- Miscellaneous cleanups & fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZBtA0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gQEw//WiCiV7zTlWShSiG/g8GTfoAvl53QTWXF
0jQ8TUcoIhxB5VeGgxVG1srYt8f505UXjH7L0MJLrbC3nOgRCg4NK57WiQEachKK
HORIJHT0tMMsKIwX9D5Ovo4xYJn+j7mv7j/caB+hIlzZAbWk+zZPNWcS84p0ZS/4
appY6RIcp7+cI7bisNMGUuNZS14+WMdWoX3TgoI6ekgDZ7Ky+kQvkwGEMBXsNElO
qZOj6yS/QUE4Htwz0tVfd6h5svoPM/VJMIvl0yfddPGurfNw6jEh/fjcXnLdAzZ6
9mgcosETncQbm0vfSac116lrrZIR9ygXW/yXP5S7I5dt+r+5pCrBZR2E5g7U4Ezp
GjX1+6J9U6r6y12AMLRjadFOcDvxdwtszhZq4/wAcmS3B9dvupnH/w7zqY9ho3wr
hTdtDHoAIzxJh7RNEHgeUC0/yQX3wJ9THzfYltDRIIjHTuvl4d5lHgsug+4Y9ClE
pUIQm/XKouweQN9TZz2ULle4ZhRrR9sM9QfZYfirJ/RppmuKool4riWyQFQNHLCy
mBRMjFFsTpFIOoZXU6pD4EabOpWdNrRRuND/0yg3WbDat2gBWq6jvSFv2UN1/v7i
Un5jijTuN7t8yP5lY5Tyf47kQfLlA9bUx1v56KnF9mrpI87FyiDD3MiQVhDsvpGX
rP96BIOrkSo=
=obph
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Add cpufreq pressure feedback for the scheduler
- Rework misfit load-balancing wrt affinity restrictions
- Clean up and simplify the code around ::overutilized and
::overload access.
- Simplify sched_balance_newidle()
- Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES
handling that changed the output.
- Rework & clean up <asm/vtime.h> interactions wrt arch_vtime_task_switch()
- Reorganize, clean up and unify most of the higher level
scheduler balancing function names around the sched_balance_*()
prefix
- Simplify the balancing flag code (sched_balance_running)
- Miscellaneous cleanups & fixes
* tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/pelt: Remove shift of thermal clock
sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure()
thermal/cpufreq: Remove arch_update_thermal_pressure()
sched/cpufreq: Take cpufreq feedback into account
cpufreq: Add a cpufreq pressure feedback for the scheduler
sched/fair: Fix update of rd->sg_overutilized
sched/vtime: Do not include <asm/vtime.h> header
s390/irq,nmi: Include <asm/vtime.h> header directly
s390/vtime: Remove unused __ARCH_HAS_VTIME_TASK_SWITCH leftover
sched/vtime: Get rid of generic vtime_task_switch() implementation
sched/vtime: Remove confusing arch_vtime_task_switch() declaration
sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags
sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized()
sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED
sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded()
sched/fair: Rename root_domain::overload to ::overloaded
sched/fair: Use helper functions to access root_domain::overload
sched/fair: Check root_domain::overload value before update
sched/fair: Combine EAS check with root_domain::overutilized access
sched/fair: Simplify the continue_balancing logic in sched_balance_newidle()
...
Optimize topology_span_sane() by removing duplicate comparisons.
Since topology_span_sane() is called inside of for_each_cpu(), each
previous CPU has already been compared against every other CPU. The
current CPU only needs to be compared against higher-numbered CPUs.
The total number of comparisons is reduced from N * (N - 1) to
N * (N - 1) / 2 on each non-NUMA scheduling domain level.
Signed-off-by: Kyle Meyer <kyle.meyer@hpe.com>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Yury Norov <yury.norov@gmail.com>
housekeeping_setup() checks cpumask_intersects(present, online) to ensure
that the kernel will have at least one housekeeping CPU after smp_init(),
but this doesn't work if the maxcpus= kernel parameter limits the number of
processors available after bootup.
For example, a kernel with "maxcpus=2 nohz_full=0-2" parameters crashes at
boot time on a virtual machine with 4 CPUs.
Change housekeeping_setup() to use cpumask_first_and() and check that the
returned CPU number is valid and less than setup_max_cpus.
Another corner case is "nohz_full=0" on a machine with a single CPU or with
the maxcpus=1 kernel argument. In this case non_housekeeping_mask is empty
and tick_nohz_full_setup() makes no sense. And indeed, the kernel hits the
WARN_ON(tick_nohz_full_running) in tick_sched_do_timer().
And how should the kernel interpret the "nohz_full=" parameter? It should
be silently ignored, but currently cpulist_parse() happily returns the
empty cpumask and this leads to the same problem.
Change housekeeping_setup() to check cpumask_empty(non_housekeeping_mask)
and do nothing in this case.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240413141746.GA10008@redhat.com
Documentation/timers/no_hz.rst states that the "nohz_full=" mask must not
include the boot CPU, which is no longer true after:
08ae95f4fd ("nohz_full: Allow the boot CPU to be nohz_full").
However after:
aae17ebb53 ("workqueue: Avoid using isolated cpus' timers on queue_delayed_work")
the kernel will crash at boot time in this case; housekeeping_any_cpu()
returns an invalid CPU number until smp_init() brings the first
housekeeping CPU up.
Change housekeeping_any_cpu() to check the result of cpumask_any_and() and
return smp_processor_id() in this case.
This is just the simple and backportable workaround which fixes the
symptom, but smp_processor_id() at boot time should be safe at least for
type == HK_TYPE_TIMER, this more or less matches the tick_do_timer_boot_cpu
logic.
There is no worry about cpu_down(); tick_nohz_cpu_down() will not allow to
offline tick_do_timer_cpu (the 1st online housekeeping CPU).
Fixes: aae17ebb53 ("workqueue: Avoid using isolated cpus' timers on queue_delayed_work")
Reported-by: Chris von Recklinghausen <crecklin@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240411143905.GA19288@redhat.com
Closes: https://lore.kernel.org/all/20240402105847.GA24832@redhat.com/
The optional shift of the clock used by thermal/hw load avg has been
introduced to handle case where the signal was not always a high frequency
hw signal. Now that cpufreq provides a signal for firmware and
SW pressure, we can remove this exception and always keep this PELT signal
aligned with other signals.
Mark sysctl_sched_migration_cost boot parameter as deprecated
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20240326091616.3696851-6-vincent.guittot@linaro.org
Now that cpufreq provides a pressure value to the scheduler, rename
arch_update_thermal_pressure into HW pressure to reflect that it returns
a pressure applied by HW (i.e. with a high frequency change) and not
always related to thermal mitigation but also generated by max current
limitation as an example. Such high frequency signal needs filtering to be
smoothed and provide an value that reflects the average available capacity
into the scheduler time scale.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lore.kernel.org/r/20240326091616.3696851-5-vincent.guittot@linaro.org
Aggregate the different pressures applied on the capacity of CPUs and
create a new function that returns the actual capacity of the CPU:
get_actual_cpu_capacity().
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/r/20240326091616.3696851-3-vincent.guittot@linaro.org
sg_overloaded is used instead of sg_overutilized to update
rd->sg_overutilized.
Fixes: 4475cd8bfd ("sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240404155738.2866102-1-vincent.guittot@linaro.org
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)
rm sentinel element from ctl_table arrays
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
It was possible to have pick_eevdf() return NULL, which then causes a
NULL-deref. This turned out to be due to entity_eligible() returning
falsely negative because of a s64 multiplcation overflow.
Specifically, reweight_eevdf() computes the vlag without considering
the limit placed upon vlag as update_entity_lag() does, and then the
scaling multiplication (remember that weight is 20bit fixed point) can
overflow. This then leads to the new vruntime being weird which then
causes the above entity_eligible() to go side-ways and claim nothing
is eligible.
Thus limit the range of vlag accordingly.
All this was quite rare, but fatal when it does happen.
Closes: https://lore.kernel.org/all/ZhuYyrh3mweP_Kd8@nz.home/
Closes: https://lore.kernel.org/all/CA+9S74ih+45M_2TPUY_mPPVDhNvyYfy1J1ftSix+KjiTVxg8nw@mail.gmail.com/
Closes: https://lore.kernel.org/lkml/202401301012.2ed95df0-oliver.sang@intel.com/
Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Reported-by: Sergei Trofimovich <slyich@gmail.com>
Reported-by: Igor Raits <igor@gooddata.com>
Reported-by: Breno Leitao <leitao@debian.org>
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: Yujie Liu <yujie.liu@intel.com>
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Reviewed-and-tested-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240422082238.5784-1-xuewen.yan@unisoc.com
reweight_eevdf() only keeps V unchanged inside itself. When se !=
cfs_rq->curr, it would be dequeued from rb tree first. So that V is
changed and the result is wrong. Pass the original V to reweight_eevdf()
to fix this issue.
Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
[peterz: flip if() condition for clarity]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Link: https://lkml.kernel.org/r/20240306022133.81008-3-dtcccc@linux.alibaba.com
reweight_eevdf() needs the latest V to do accurate calculation for new
ve and vd. So update V unconditionally when se is runnable.
Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Suggested-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Chen Yu <yu.c.chen@intel.com>
Link: https://lore.kernel.org/r/20240306022133.81008-2-dtcccc@linux.alibaba.com
The generic vtime_task_switch() implementation gets built only
if __ARCH_HAS_VTIME_TASK_SWITCH is not defined, but requires an
architecture to implement arch_vtime_task_switch() callback at
the same time, which is confusing.
Further, arch_vtime_task_switch() is implemented for 32-bit PowerPC
architecture only and vtime_task_switch() generic variant is rather
superfluous.
Simplify the whole vtime_task_switch() wiring by moving the existing
generic implementation to PowerPC.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/2cb6e3caada93623f6d4f78ad938ac6cd0e2fda8.1712760275.git.agordeev@linux.ibm.com
Many architectures' switch_mm() (e.g. arm64) do not have an smp_mb()
which the core scheduler code has depended upon since commit:
commit 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")
If switch_mm() doesn't call smp_mb(), sched_mm_cid_remote_clear() can
unset the actively used cid when it fails to observe active task after it
sets lazy_put.
There *is* a memory barrier between storing to rq->curr and _return to
userspace_ (as required by membarrier), but the rseq mm_cid has stricter
requirements: the barrier needs to be issued between store to rq->curr
and switch_mm_cid(), which happens earlier than:
- spin_unlock(),
- switch_to().
So it's fine when the architecture switch_mm() happens to have that
barrier already, but less so when the architecture only provides the
full barrier in switch_to() or spin_unlock().
It is a bug in the rseq switch_mm_cid() implementation. All architectures
that don't have memory barriers in switch_mm(), but rather have the full
barrier either in finish_lock_switch() or switch_to() have them too late
for the needs of switch_mm_cid().
Introduce a new smp_mb__after_switch_mm(), defined as smp_mb() in the
generic barrier.h header, and use it in switch_mm_cid() for scheduler
transitions where switch_mm() is expected to provide a memory barrier.
Architectures can override smp_mb__after_switch_mm() if their
switch_mm() implementation provides an implicit memory barrier.
Override it with a no-op on x86 which implicitly provide this memory
barrier by writing to CR3.
Fixes: 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")
Reported-by: levi.yun <yeoreum.yun@arm.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> # for arm64
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> # for x86
Cc: <stable@vger.kernel.org> # 6.4.x
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240415152114.59122-2-mathieu.desnoyers@efficios.com
SG_OVERLOADED and SG_OVERUTILIZED flags plus the sg_status bitmask are an
unnecessary complication that only make the code harder to read and slower.
We only ever set them separately:
thule:~/tip> git grep SG_OVER kernel/sched/
kernel/sched/fair.c: set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
kernel/sched/fair.c: *sg_status |= SG_OVERLOADED;
kernel/sched/fair.c: *sg_status |= SG_OVERUTILIZED;
kernel/sched/fair.c: *sg_status |= SG_OVERLOADED;
kernel/sched/fair.c: set_rd_overloaded(env->dst_rq->rd, sg_status & SG_OVERLOADED);
kernel/sched/fair.c: sg_status & SG_OVERUTILIZED);
kernel/sched/fair.c: } else if (sg_status & SG_OVERUTILIZED) {
kernel/sched/fair.c: set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
kernel/sched/sched.h:#define SG_OVERLOADED 0x1 /* More than one runnable task on a CPU. */
kernel/sched/sched.h:#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
kernel/sched/sched.h: set_rd_overloaded(rq->rd, SG_OVERLOADED);
And use them separately, which results in suboptimal code:
/* update overload indicator if we are at root domain */
set_rd_overloaded(env->dst_rq->rd, sg_status & SG_OVERLOADED);
/* Update over-utilization (tipping point, U >= 0) indicator */
set_rd_overutilized_status(env->dst_rq->rd,
Introduce separate sg_overloaded and sg_overutilized flags in update_sd_lb_stats()
and its lower level functions, and change all of them to 'bool'.
Remove the now unused SG_OVERLOADED and SG_OVERUTILIZED flags.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Tested-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Qais Yousef <qyousef@layalina.io>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/ZgVPhODZ8/nbsqbP@gmail.com
The _status() postfix has no real meaning, simplify the naming
and harmonize it with set_rd_overloaded().
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Qais Yousef <qyousef@layalina.io>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/ZgVHq65XKsOZpfgK@gmail.com
Follow the rename of the root_domain::overloaded flag.
Note that this also matches the SG_OVERUTILIZED flag better.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Qais Yousef <qyousef@layalina.io>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/ZgVHq65XKsOZpfgK@gmail.com
It is silly to use an ambiguous noun instead of a clear adjective when naming
such a flag ...
Note how root_domain::overutilized already used a proper adjective.
rd->overloaded is now set to 1 when the root domain is overloaded.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Qais Yousef <qyousef@layalina.io>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/ZgVHq65XKsOZpfgK@gmail.com
Introduce two helper functions to access & set the root_domain::overload flag:
get_rd_overload()
set_rd_overload()
To make sure code is always following READ_ONCE()/WRITE_ONCE() access methods.
No change in functionality intended.
[ mingo: Renamed the accessors to get_/set_rd_overload(), tidied up the changelog. ]
Suggested-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240325054505.201995-3-sshegde@linux.ibm.com
The root_domain::overload flag is 1 when there's any rq
in the root domain that has 2 or more running tasks. (Ie. it's overloaded.)
The root_domain structure itself is a global structure per cpuset island.
The ::overload flag is maintained the following way:
- Set when adding a second task to the runqueue.
- It is cleared in update_sd_lb_stats() during load balance,
if none of the rqs have 2 or more running tasks.
This flag is used during newidle balance to see if its worth doing a full
load balance pass, which can be an expensive operation. If it is set,
then newidle balance will try to aggressively pull a task.
Since commit:
630246a06a ("sched/fair: Clean-up update_sg_lb_stats parameters")
::overload is being written unconditionally, even if it has the same
value. The change in value of this depends on the workload, but on
typical workloads, it doesn't change all that often: a system is
either dominantly overloaded for substantial amounts of time, or not.
Extra writes to this semi-global structure cause unnecessary overhead, extra
bus traffic, etc. - so avoid it as much as possible.
Perf probe stats show that it's worth making this change (numbers are
with patch applied):
1M probe:sched_balance_newidle_L38
139 probe:update_sd_lb_stats_L53 <====== 1->0 writes
129K probe:add_nr_running_L12
74 probe:add_nr_running_L13 <====== 0->1 writes
54K probe:update_sd_lb_stats_L50 <====== reads
These numbers prove that actual change in the ::overload value is (much) less
frequent: L50 is much larger at ~54,000 accesses vs L53+L13 of 139+74.
[ mingo: Rewrote the changelog. ]
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240325054505.201995-2-sshegde@linux.ibm.com
Access to root_domainoverutilized is always used with sched_energy_enabled in
the pattern:
if (sched_energy_enabled && !overutilized)
do something
So modify the helper function to utilize this pattern. This is more
readable code as it would say, do something when root domain is not
overutilized. This function always return true when EAS is disabled.
No change in functionality intended.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240326152616.380999-1-sshegde@linux.ibm.com
newidle(CPU_NEWLY_IDLE) balancing doesn't stop the load-balancing if the
continue_balancing flag is reset, but the other two balancing (IDLE, BUSY)
cases do that.
newidle balance stops the load balancing if rq has a task or there
is wakeup pending. The same checks are present in should_we_balance for
newidle. Hence use the return value and simplify continue_balancing
mechanism for newidle. Update the comment surrounding it as well.
No change in functionality intended.
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20240325153926.274284-1-sshegde@linux.ibm.com
The root_domain::overutilized field is READ_ONCE() accessed in
multiple places, which could be simplified with a helper function.
This might also make it more apparent that it needs to be used
only in case of EAS.
No change in functionality intended.
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240307085725.444486-3-sshegde@linux.ibm.com
root_domain::overutilized is only used for EAS(energy aware scheduler)
to decide whether to do load balance or not. It is not used if EAS
not possible.
Currently enqueue_task_fair and task_tick_fair accesses, sometime updates
this field. In update_sd_lb_stats it is updated often. This causes cache
contention due to true sharing and burns a lot of cycles. ::overload and
::overutilized are part of the same cacheline. Updating it often invalidates
the cacheline. That causes access to ::overload to slow down due to
false sharing. Hence add EAS check before accessing/updating this field.
EAS check is optimized at compile time or it is a static branch.
Hence it shouldn't cost much.
With the patch, both enqueue_task_fair and newidle_balance don't show
up as hot routines in perf profile.
6.8-rc4:
7.18% swapper [kernel.vmlinux] [k] enqueue_task_fair
6.78% s [kernel.vmlinux] [k] newidle_balance
+patch:
0.14% swapper [kernel.vmlinux] [k] enqueue_task_fair
0.00% swapper [kernel.vmlinux] [k] newidle_balance
While at it: trace_sched_overutilized_tp expect that second argument to
be bool. So do a int to bool conversion for that.
Fixes: 2802bf3cd9 ("sched/fair: Add over-utilization/tipping point indicator")
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Srikar Dronamraju <srikar@linux.ibm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240307085725.444486-2-sshegde@linux.ibm.com
It is not necessarily an indication of the system being busy and
requires a backoff of the load balancer activities. But pushing it high
could mean generally delaying other misfit activities or other type of
imbalances.
Also don't pollute nr_balance_failed because of misfit failures. The
value is used for enabling cache hot migration and in migrate_util/load
types. None of which should be impacted (skewed) by misfit failures.
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240324004552.999936-5-qyousef@layalina.io
The value is no longer used as we now keep track of max_allowed_capacity
for each task instead.
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240324004552.999936-4-qyousef@layalina.io
If a misfit task is affined to a subset of the possible CPUs, we need to
verify that one of these CPUs can fit it. Otherwise the load balancer
code will continuously trigger needlessly leading the balance_interval
to increase in return and eventually end up with a situation where real
imbalances take a long time to address because of this impossible
imbalance situation.
This can happen in Android world where it's common for background tasks
to be restricted to little cores.
Similarly if we can't fit the biggest core, triggering misfit is
pointless as it is the best we can ever get on this system.
To be able to detect that; we use asym_cap_list to iterate through
capacities in the system to see if the task is able to run at a higher
capacity level based on its p->cpus_ptr. We do that when the affinity
change, a fair task is forked, or when a task switched to fair policy.
We store the max_allowed_capacity in task_struct to allow for cheap
comparison in the fast path.
Improve check_misfit_status() function by removing redundant checks.
misfit_task_load will be 0 if the task can't move to a bigger CPU. And
nohz_balancer_kick() already checks for cpu_check_capacity() before
calling check_misfit_status().
Test:
=====
Add
trace_printk("balance_interval = %lu\n", interval)
in get_sd_balance_interval().
run
if [ "$MASK" != "0" ]; then
adb shell "taskset -a $MASK cat /dev/zero > /dev/null"
fi
sleep 10
// parse ftrace buffer counting the occurrence of each valaue
Where MASK is either:
* 0: no busy task running
* 1: busy task is pinned to 1 cpu; handled today to not cause
misfit
* f: busy task pinned to little cores, simulates busy background
task, demonstrates the problem to be fixed
Results:
========
Note how occurrence of balance_interval = 128 overshoots for MASK = f.
BEFORE
------
MASK=0
1 balance_interval = 175
120 balance_interval = 128
846 balance_interval = 64
55 balance_interval = 63
215 balance_interval = 32
2 balance_interval = 31
2 balance_interval = 16
4 balance_interval = 8
1870 balance_interval = 4
65 balance_interval = 2
MASK=1
27 balance_interval = 175
37 balance_interval = 127
840 balance_interval = 64
167 balance_interval = 63
449 balance_interval = 32
84 balance_interval = 31
304 balance_interval = 16
1156 balance_interval = 8
2781 balance_interval = 4
428 balance_interval = 2
MASK=f
1 balance_interval = 175
1328 balance_interval = 128
44 balance_interval = 64
101 balance_interval = 63
25 balance_interval = 32
5 balance_interval = 31
23 balance_interval = 16
23 balance_interval = 8
4306 balance_interval = 4
177 balance_interval = 2
AFTER
-----
Note how the high values almost disappear for all MASK values. The
system has background tasks that could trigger the problem without
simulate it even with MASK=0.
MASK=0
103 balance_interval = 63
19 balance_interval = 31
194 balance_interval = 8
4827 balance_interval = 4
179 balance_interval = 2
MASK=1
131 balance_interval = 63
1 balance_interval = 31
87 balance_interval = 8
3600 balance_interval = 4
7 balance_interval = 2
MASK=f
8 balance_interval = 127
182 balance_interval = 63
3 balance_interval = 31
9 balance_interval = 16
415 balance_interval = 8
3415 balance_interval = 4
21 balance_interval = 2
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240324004552.999936-3-qyousef@layalina.io
So that we can use it to iterate through available capacities in the
system. Sort asym_cap_list in descending order as expected users are
likely to be interested on the highest capacity first.
Make the list RCU protected to allow for cheap access in hot paths.
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240324004552.999936-2-qyousef@layalina.io
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmYAlq0eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGYqwH/0fb4pRbVtULpiIK
Cs7/e/IWzRRWLBq+Jj2KVVTxwjyiKFNOq6K/CHHnljIWo1yN2CIWeOgbHfTI0WfN
xmBdJP7OtK8MCN9PwwoWhZxMLcyv4pFCERrrkGa7AD+cdN4j/ytQ3mH5V8f/21fd
rnpQSdpgGXB2SSMHd520Y+e56+gxrrTmsDXjZWM08Wt0bbqAWJrjNe58BMz5hI1t
yQtcgYRTdUuZBn5TMkT99lK9EFQslV38YCo7RUP5D0DWXS1jSfWlgnCD1Nc1ziF4
ps/xPdUMDJAc5Tslg/hgJOciSuLqgMzIUsVgZrKysuu3NhwDY1LDWGORmH1t8E8W
RC25950=
=F+01
-----END PGP SIGNATURE-----
Merge tag 'v6.9-rc1' into sched/core, to pick up fixes and to refresh the branch
Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Support for various vector-accelerated crypto routines.
* Hibernation is now enabled for portable kernel builds.
* mmap_rnd_bits_max is larger on systems with larger VAs.
* Support for fast GUP.
* Support for membarrier-based instruction cache synchronization.
* Support for the Andes hart-level interrupt controller and PMU.
* Some cleanups around unaligned access speed probing and Kconfig
settings.
* Support for ACPI LPI and CPPC.
* Various cleanus related to barriers.
* A handful of fixes.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmX9icgTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYib+UD/4xyL6UMixx6A06BVBL9UT4vOrxRvNr
JIihG5y5QNMjes9DHWL35mZTMqFtQ0tq94ViWFLmJWloV/8KRVM2C9R9KX7vplf3
M/OwvP106spxgvNHoeQbycgs42RU1t2mpqT7N1iK2hCjqieP3vLn6hsSLXWTAG0L
3gQbQw6XCLC3hPyLq+nbFY2i4faeCmpXWmixoy/IvQ5calZQrRU0LNlP6lcMBhVo
uocjG0uGAhrahw2s81jxcMZcxa3AvUCiplapdD5H5v9rBM85SkYJj2Q9SqdSorkb
xzuimRnKPI5s47yM3pTfZY0qnQUYHV7PXXuw4WujpCQVQdhaG+Ggq63UUZA61J9t
IzZK2zdcfHqICrGTtXImUzRT3dcc3oq+IFq4tTY+rEJm29hrXkAtx+qBm5xtMvax
fJz5feJ/iT0u7MDj4Oq24n+Kpl+Olm+MJaZX3m5Ovi/9V6a9iK9HXqxg9/Fs0fMO
+J/0kTgd8Vu9CYH7KNWz3uztcO9eMAH3VyzuXuab4BGj1i1Y/9EjpALQi7rDN73S
OsYQX6NnzMkBV4dvElJVLXiPlvNlMHZZwdak5CqPb48jaJu6iiIZAuvOrG6/naGP
wnQSLVA2WWWoOkl3AJhxfpa11CLhbMl9E2gYm1VtNvASXoSFIxlAq1Yv3sG8yjty
4ZT0rYFJOstYiQ==
=3dL5
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.9-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for various vector-accelerated crypto routines
- Hibernation is now enabled for portable kernel builds
- mmap_rnd_bits_max is larger on systems with larger VAs
- Support for fast GUP
- Support for membarrier-based instruction cache synchronization
- Support for the Andes hart-level interrupt controller and PMU
- Some cleanups around unaligned access speed probing and Kconfig
settings
- Support for ACPI LPI and CPPC
- Various cleanus related to barriers
- A handful of fixes
* tag 'riscv-for-linus-6.9-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (66 commits)
riscv: Fix syscall wrapper for >word-size arguments
crypto: riscv - add vector crypto accelerated AES-CBC-CTS
crypto: riscv - parallelize AES-CBC decryption
riscv: Only flush the mm icache when setting an exec pte
riscv: Use kcalloc() instead of kzalloc()
riscv/barrier: Add missing space after ','
riscv/barrier: Consolidate fence definitions
riscv/barrier: Define RISCV_FULL_BARRIER
riscv/barrier: Define __{mb,rmb,wmb}
RISC-V: defconfig: Enable CONFIG_ACPI_CPPC_CPUFREQ
cpufreq: Move CPPC configs to common Kconfig and add RISC-V
ACPI: RISC-V: Add CPPC driver
ACPI: Enable ACPI_PROCESSOR for RISC-V
ACPI: RISC-V: Add LPI driver
cpuidle: RISC-V: Move few functions to arch/riscv
riscv: Introduce set_compat_task() in asm/compat.h
riscv: Introduce is_compat_thread() into compat.h
riscv: add compile-time test into is_compat_task()
riscv: Replace direct thread flag check with is_compat_task()
riscv: Improve arch_get_mmap_end() macro
...
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is hotplugged
as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving policy
wherein we allocate memory across nodes in a weighted fashion rather
than uniformly. This is beneficial in heterogeneous memory environments
appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the process
has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown situations.
The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's series
"Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page faults.
He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction test",
Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
our handling of DAX on archiecctures which have virtually aliasing data
caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
improvements in worst-case mmap_lock hold times during certain
userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability improvements
in his series "Mitigate a vmap lock contention". It realizes a 12x
improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging of
large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages() to
an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which are
configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
=TG55
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
The 'idle_balance()' function hasn't existed for years, and there's no
load_balance_newidle() either - both are sched_balance_newidle() today.
Reported-by: Honglei Wang <jameshongleiwang@126.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/ZfAwNufbiyt/5biu@gmail.com
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Also use 'dst' instead of 'idlest', because it's not really
true that we return the 'idlest' group or CPU, we sort by
idle-exit latency and only return the idlest CPUs from the
lowest-latency set of CPUs.
The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-14-mingo@kernel.org
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Also use 'dst' instead of 'idlest', because it's not really
true that we return the 'idlest' group or CPU, we sort by
idle-exit latency and only return the idlest CPUs from the
lowest-latency set of CPUs.
The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-13-mingo@kernel.org
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Also use 'dst' instead of 'idlest': while historically correct,
today it's not really true anymore that we return the 'idlest'
group or CPU, we sort by idle-exit latency and only return the
idlest CPUs from the lowest-latency set of CPUs.
The true 'idlest' CPUs often remain idle for a long time
and are never returned as long as the system is under-loaded.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-12-mingo@kernel.org
Make two naming changes:
1)
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
2)
Similar to find_busiest_queue(), the find_busiest_group() naming
has become a bit of a misnomer: the 'busiest' qualifier to this
function was historically correct but in the current code
in quite a few cases we will not pick the 'busiest' group - but the best
(possible) group we can balance from based on a complex set of
constraints.
So name it a bit more neutrally, similar to the 'src/dst' nomenclature
we are already using when moving tasks between runqueues, and also
use the sched_balance_ prefix: sched_balance_find_src_group().
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-9-mingo@kernel.org
The find_busiest_queue() naming has two small quirks:
- Scheduler functions that deal with runqueues usually have a rq_ prefix
or _rq postfix, but this function has neither.
- Plus the 'busiest' qualifier to this function was historically
correct, but has become somewhat of a misnomer: in quite a few
cases we will not pick the busiest runqueue - but the best
(possible) runqueue we can balance tasks from. So name it a
bit more neutrally, similar to the 'src/dst' nomenclature
we are already using when moving tasks between runqueues.
To fix both quirks, and to standardize scheduler load-balancing
function names on the sched_balance_() prefix, rename the
function to sched_balance_find_src_rq().
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-7-mingo@kernel.org
Standardize scheduler load-balancing function names on the
sched_balance_() prefix.
Also load_balance() has become somewhat of a misnomer: historically
it was the first and primary load-balancing function that was called,
but with the introduction of sched domains, it's become a lower
layer function that balances runqueues.
Rename it to sched_balance_rq() accordingly.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-6-mingo@kernel.org
- Standardize on prefixing scheduler-internal functions defined
in <linux/sched.h> with sched_*() prefix. scheduler_tick() was
the only function using the scheduler_ prefix. Harmonize it.
- The other reason to rename it is the NOHZ scheduler tick
handling functions are already named sched_tick_*().
Make the 'git grep sched_tick' more meaningful.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-3-mingo@kernel.org
run_rebalance_domains() is a misnomer, as it doesn't only
run rebalance_domains(), but since the introduction of the
NOHZ code it also runs nohz_idle_balance().
Rename it to sched_balance_softirq(), reflecting its more
generic purpose and that it's a softirq handler.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308111819.1101550-2-mingo@kernel.org
The first sentence of the comment explaining run_rebalance_domains()
is historic and not true anymore:
* run_rebalance_domains is triggered when needed from the scheduler tick.
... contradicted/modified by the second sentence:
* Also triggered for NOHZ idle balancing (with NOHZ_BALANCE_KICK set).
Avoid that kind of confusion straight away and explain from what
places sched_balance_softirq() is triggered.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-9-mingo@kernel.org
Fix two typos:
- There's no such thing as 'nohz_balancing_kick', the
flag is named 'BALANCE' and is capitalized: NOHZ_BALANCE_KICK.
- Likewise there's no such thing as a 'pending nohz_balance_kick'
either, the NOHZ_BALANCE_KICK flag is all upper-case.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-8-mingo@kernel.org
So the scheduler has two such comment blocks, with '=' used as a double underline:
/*
* VRUNTIME
* ========
*
'========' also happens to be a Git conflict marker, throwing off a simple
search in an editor for this pattern.
Change them to '-------' type of underline instead - it looks just as good.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-7-mingo@kernel.org
We changed the order of definitions within 'enum cpu_idle_type',
which changed the order of [CPU_MAX_IDLE_TYPES] columns in
show_schedstat().
Suggested-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-5-mingo@kernel.org
The cpu_idle_type enum has the confusingly inverted property
that 'not idle' is 1, and 'idle' is '0'.
This resulted in a number of unnecessary complications in the code.
Reverse the order, remove the CPU_NOT_IDLE type, and convert
all code to a natural boolean form.
It's much more readable:
- enum cpu_idle_type idle = this_rq->idle_balance ?
- CPU_IDLE : CPU_NOT_IDLE;
-
+ enum cpu_idle_type idle = this_rq->idle_balance;
--------------------------------
- if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
+ if (!env->idle || !busiest->sum_nr_running)
--------------------------------
And gets rid of the double negation in these usages:
- if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
+ if (env->idle && env->src_rq->nr_running <= 1)
Furthermore, this makes code much more obvious where there's
differentiation between CPU_IDLE and CPU_NEWLY_IDLE.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-4-mingo@kernel.org
show_schedstat() output breaks and doesn't print all entries
if the ordering of the definitions in 'enum cpu_idle_type' is changed,
because show_schedstat() assumes that 'CPU_IDLE' is 0.
Fix it before we change the definition order & values.
[ mingo: Added changelog. ]
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240308105901.1096078-3-mingo@kernel.org
The 'balancing' spinlock added in:
08c183f31b ("[PATCH] sched: add option to serialize load balancing")
... is taken when the SD_SERIALIZE flag is set in a domain, but in reality it
is a glorified global atomic flag serializing the load-balancing of
those domains.
It doesn't have any explicit locking semantics per se: we just
spin_trylock() it.
Turn it into a ... global atomic flag. This makes it more
clear what is going on here, and reduces overhead and code
size a bit:
# kernel/sched/fair.o: [x86-64 defconfig]
text data bss dec hex filename
60730 2721 104 63555 f843 fair.o.before
60718 2721 104 63543 f837 fair.o.after
Also document the flag a bit.
No change in functionality intended.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Cc: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20240308105901.1096078-2-mingo@kernel.org
- The biggest change is the rework of the percpu code,
to support the 'Named Address Spaces' GCC feature,
by Uros Bizjak:
- This allows C code to access GS and FS segment relative
memory via variables declared with such attributes,
which allows the compiler to better optimize those accesses
than the previous inline assembly code.
- The series also includes a number of micro-optimizations
for various percpu access methods, plus a number of
cleanups of %gs accesses in assembly code.
- These changes have been exposed to linux-next testing for
the last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally
working handling of FPU switching - which also generates
better code.
- Propagate more RIP-relative addressing in assembly code,
to generate slightly better code.
- Rework the CPU mitigations Kconfig space to be less idiosyncratic,
to make it easier for distros to follow & maintain these options.
- Rework the x86 idle code to cure RCU violations and
to clean up the logic.
- Clean up the vDSO Makefile logic.
- Misc cleanups and fixes.
[ Please note that there's a higher number of merge commits in
this branch (three) than is usual in x86 topic trees. This happened
due to the long testing lifecycle of the percpu changes that
involved 3 merge windows, which generated a longer history
and various interactions with other core x86 changes that we
felt better about to carry in a single branch. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvB0gRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jUqRAAqnEQPiabF5acQlHrwviX+cjSobDlqtH5
9q2AQy9qaEHapzD0XMOxvFye6XIvehGOGxSPvk6CoviSxBND8rb56lvnsEZuLeBV
Bo5QSIL2x42Zrvo11iPHwgXZfTIusU90sBuKDRFkYBAxY3HK2naMDZe8MAsYCUE9
nwgHF8DDc/NYiSOXV8kosWoWpNIkoK/STyH5bvTQZMqZcwyZ49AIeP1jGZb/prbC
e/rbnlrq5Eu6brpM7xo9kELO0Vhd34urV14KrrIpdkmUKytW2KIsyvW8D6fqgDBj
NSaQLLcz0pCXbhF+8Nqvdh/1coR4L7Ymt08P1rfEjCsQgb/2WnSAGUQuC5JoGzaj
ngkbFcZllIbD9gNzMQ1n4Aw5TiO+l9zxCqPC/r58Uuvstr+K9QKlwnp2+B3Q73Ft
rojIJ04NJL6lCHdDgwAjTTks+TD2PT/eBWsDfJ/1pnUWttmv9IjMpnXD5sbHxoiU
2RGGKnYbxXczYdq/ALYDWM6JXpfnJZcXL3jJi0IDcCSsb92xRvTANYFHnTfyzGfw
EHkhbF4e4Vy9f6QOkSP3CvW5H26BmZS9DKG0J9Il5R3u2lKdfbb5vmtUmVTqHmAD
Ulo5cWZjEznlWCAYSI/aIidmBsp9OAEvYd+X7Z5SBIgTfSqV7VWHGt0BfA1heiVv
F/mednG0gGc=
=3v4F
-----END PGP SIGNATURE-----
Merge tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar:
- The biggest change is the rework of the percpu code, to support the
'Named Address Spaces' GCC feature, by Uros Bizjak:
- This allows C code to access GS and FS segment relative memory
via variables declared with such attributes, which allows the
compiler to better optimize those accesses than the previous
inline assembly code.
- The series also includes a number of micro-optimizations for
various percpu access methods, plus a number of cleanups of %gs
accesses in assembly code.
- These changes have been exposed to linux-next testing for the
last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally working handling
of FPU switching - which also generates better code
- Propagate more RIP-relative addressing in assembly code, to generate
slightly better code
- Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
make it easier for distros to follow & maintain these options
- Rework the x86 idle code to cure RCU violations and to clean up the
logic
- Clean up the vDSO Makefile logic
- Misc cleanups and fixes
* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/idle: Select idle routine only once
x86/idle: Let prefer_mwait_c1_over_halt() return bool
x86/idle: Cleanup idle_setup()
x86/idle: Clean up idle selection
x86/idle: Sanitize X86_BUG_AMD_E400 handling
sched/idle: Conditionally handle tick broadcast in default_idle_call()
x86: Increase brk randomness entropy for 64-bit systems
x86/vdso: Move vDSO to mmap region
x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
x86/retpoline: Ensure default return thunk isn't used at runtime
x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
x86/vdso: Use $(addprefix ) instead of $(foreach )
x86/vdso: Simplify obj-y addition
x86/vdso: Consolidate targets and clean-files
x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK
x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO
x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY
x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY
x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS
...
- Fix inconsistency in misfit task load-balancing
- Fix CPU isolation bugs in the task-wakeup logic
- Rework & unify the sched_use_asym_prio() and sched_asym_prefer() logic
- Clean up & simplify ->avg_* accesses
- Misc cleanups & fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXu9V0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gqWBAAvqPlJx/jwNTePiXtxsObmtTnTStnVSM8
8SRxb2uznSFjYj73RdMDUzeYOfweE48elJoUAN7IGX2fgCFjxeDgpPnAyvnU0jFE
X/gJXEO2xCCYsvDnMg1huNSxEJ1ZQl6YJgdd6eLGjBK6l75pkgLJLOSmeFfTShgw
gMk4yIaUrxd/yc/bBvK39gMW1JDXiFIwmHuzfEl0/5k+abzVOU0ZfqFir2OH/GT9
YH8ZNsKKn88i01mp2qzo9LouF7mmOH4dZYd9k0SueH+rW8Z+goSuVF8O3igodL0T
TM5sqqG7qd1WC8SN0zng+OGODmJ+PrN7soKbTZC5NsC+LvipjVZ1Y92dLyS1xhgn
Bpm+NjVNrz9ZWhZiC5LiIF+zDZHu51RDejcOgt1Va6qBIY229GFKLgxFSis/TzzD
7xFpi7ApGCS/Rp9VeIDC69V8ZVfsCPJ7D1oxo5wmLzGe17nThxMeE1AmoWOXOUp8
M9ISbvete8i/8uS8jJQQMylrFceQkzumTVK7p+LqEdlaH0fF/fNKyeH81ZLZMwpM
0pfc7OVFpxd3Rt4wq+db00ilStdfV4yKkVAJiOLfVPyh+tZusvxkKjqXIMrm3RI/
DkZu6/3KYompfVcfkVXbW57Zu+kfgi6kQVt+6yEGrnLcIPkaPR08inEB7vtf6T+R
EBncKVtt1Rs=
=3CZV
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Fix inconsistency in misfit task load-balancing
- Fix CPU isolation bugs in the task-wakeup logic
- Rework and unify the sched_use_asym_prio() and sched_asym_prefer()
logic
- Clean up and simplify ->avg_* accesses
- Misc cleanups and fixes
* tag 'sched-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/topology: Rename SD_SHARE_PKG_RESOURCES to SD_SHARE_LLC
sched/fair: Check the SD_ASYM_PACKING flag in sched_use_asym_prio()
sched/fair: Rework sched_use_asym_prio() and sched_asym_prefer()
sched/fair: Remove unused parameter from sched_asym()
sched/topology: Remove duplicate descriptions from TOPOLOGY_SD_FLAGS
sched/fair: Simplify the update_sd_pick_busiest() logic
sched/fair: Do strict inequality check for busiest misfit task group
sched/fair: Remove unnecessary goto in update_sd_lb_stats()
sched/fair: Take the scheduling domain into account in select_idle_core()
sched/fair: Take the scheduling domain into account in select_idle_smt()
sched/fair: Add READ_ONCE() and use existing helper function to access ->avg_irq
sched/fair: Use existing helper functions to access ->avg_rt and ->avg_dl
sched/core: Simplify code by removing duplicate #ifdefs
- The hierarchical timer pull model
When timer wheel timers are armed they are placed into the timer wheel
of a CPU which is likely to be busy at the time of expiry. This is done
to avoid wakeups on potentially idle CPUs.
This is wrong in several aspects:
1) The heuristics to select the target CPU are wrong by
definition as the chance to get the prediction right is close
to zero.
2) Due to #1 it is possible that timers are accumulated on a
single target CPU
3) The required computation in the enqueue path is just overhead for
dubious value especially under the consideration that the vast
majority of timer wheel timers are either canceled or rearmed
before they expire.
The timer pull model avoids the above by removing the target
computation on enqueue and queueing timers always on the CPU on which
they get armed.
This is achieved by having separate wheels for CPU pinned timers and
global timers which do not care about where they expire.
As long as a CPU is busy it handles both the pinned and the global
timers which are queued on the CPU local timer wheels.
When a CPU goes idle it evaluates its own timer wheels:
- If the first expiring timer is a pinned timer, then the global
timers can be ignored as the CPU will wake up before they expire.
- If the first expiring timer is a global timer, then the expiry time
is propagated into the timer pull hierarchy and the CPU makes sure
to wake up for the first pinned timer.
The timer pull hierarchy organizes CPUs in groups of eight at the
lowest level and at the next levels groups of eight groups up to the
point where no further aggregation of groups is required, i.e. the
number of levels is log8(NR_CPUS). The magic number of eight has been
established by experimention, but can be adjusted if needed.
In each group one busy CPU acts as the migrator. It's only one CPU to
avoid lock contention on remote timer wheels.
The migrator CPU checks in its own timer wheel handling whether there
are other CPUs in the group which have gone idle and have global timers
to expire. If there are global timers to expire, the migrator locks the
remote CPU timer wheel and handles the expiry.
Depending on the group level in the hierarchy this handling can require
to walk the hierarchy downwards to the CPU level.
Special care is taken when the last CPU goes idle. At this point the
CPU is the systemwide migrator at the top of the hierarchy and it
therefore cannot delegate to the hierarchy. It needs to arm its own
timer device to expire either at the first expiring timer in the
hierarchy or at the first CPU local timer, which ever expires first.
This completely removes the overhead from the enqueue path, which is
e.g. for networking a true hotpath and trades it for a slightly more
complex idle path.
This has been in development for a couple of years and the final series
has been extensively tested by various teams from silicon vendors and
ran through extensive CI.
There have been slight performance improvements observed on network
centric workloads and an Intel team confirmed that this allows them to
power down a die completely on a mult-die socket for the first time in
a mostly idle scenario.
There is only one outstanding ~1.5% regression on a specific overloaded
netperf test which is currently investigated, but the rest is either
positive or neutral performance wise and positive on the power
management side.
- Fixes for the timekeeping interpolation code for cross-timestamps:
cross-timestamps are used for PTP to get snapshots from hardware timers
and interpolated them back to clock MONOTONIC. The changes address a
few corner cases in the interpolation code which got the math and logic
wrong.
- Simplifcation of the clocksource watchdog retry logic to automatically
adjust to handle larger systems correctly instead of having more
incomprehensible command line parameters.
- Treewide consolidation of the VDSO data structures.
- The usual small improvements and cleanups all over the place.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuAN0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoVKXEADIR45rjR1Xtz32js7B53Y65O4WNoOQ
6/ycWcswuGzg/h4QUpPSJ6gOGVmKSWwZi4n0P/VadCiXGSPPm0aUKsoRUt9DZsPY
mtj2wjCSXKXiyhTl9OtrZME86ZAIGO1dQXa/sOHsiP5PCjgQkD0b5CYi1+B6eHDt
1/Uo2Tb9g8VAPppq20V5Uo93GrPf642oyi3FCFrR1M112Uuak5DmqHJYiDpreNcG
D5SgI+ykSiaUaVyHifvqijoJk0rYXkqEC6evl02477lJ/X0vVo2/M8XPS95BxHST
s5Iruo4rP+qeAy8QvhZpoPX59fO0m/AgA7cf77XXAtOpVdLH+bs4ILsEbouAIOtv
lsmRkcYt+TpvrZFHPAxks+6g3afuROiDtxD5sXXpVWxvofi8FwWqubdlqdsbw9MP
ZCTNyzNyKL47QeDwBfSynYUL1RSyqsphtIwk4oeQklH9rwMAnW21hi30z15hQ0pQ
FOVkmcwi79JNvl/G+jRkDzw7r8/zcHshWdSjyUM04CDjjnCDjQOFWSIjEPwbQjjz
S4HXpJKJW963dBgs9Z84/Ctw1GwoBk1qedDWDJE1257Qvmo/Wpe/7GddWcazOGnN
RRFMzGPbOqBDbjtErOKGU+iCisgNEvz2XK+TI16uRjWde7DxZpiTVYgNDrZ+/Pyh
rQ23UBms6ZRR+A==
=iQlu
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"A large set of updates and features for timers and timekeeping:
- The hierarchical timer pull model
When timer wheel timers are armed they are placed into the timer
wheel of a CPU which is likely to be busy at the time of expiry.
This is done to avoid wakeups on potentially idle CPUs.
This is wrong in several aspects:
1) The heuristics to select the target CPU are wrong by
definition as the chance to get the prediction right is
close to zero.
2) Due to #1 it is possible that timers are accumulated on
a single target CPU
3) The required computation in the enqueue path is just overhead
for dubious value especially under the consideration that the
vast majority of timer wheel timers are either canceled or
rearmed before they expire.
The timer pull model avoids the above by removing the target
computation on enqueue and queueing timers always on the CPU on
which they get armed.
This is achieved by having separate wheels for CPU pinned timers
and global timers which do not care about where they expire.
As long as a CPU is busy it handles both the pinned and the global
timers which are queued on the CPU local timer wheels.
When a CPU goes idle it evaluates its own timer wheels:
- If the first expiring timer is a pinned timer, then the global
timers can be ignored as the CPU will wake up before they
expire.
- If the first expiring timer is a global timer, then the expiry
time is propagated into the timer pull hierarchy and the CPU
makes sure to wake up for the first pinned timer.
The timer pull hierarchy organizes CPUs in groups of eight at the
lowest level and at the next levels groups of eight groups up to
the point where no further aggregation of groups is required, i.e.
the number of levels is log8(NR_CPUS). The magic number of eight
has been established by experimention, but can be adjusted if
needed.
In each group one busy CPU acts as the migrator. It's only one CPU
to avoid lock contention on remote timer wheels.
The migrator CPU checks in its own timer wheel handling whether
there are other CPUs in the group which have gone idle and have
global timers to expire. If there are global timers to expire, the
migrator locks the remote CPU timer wheel and handles the expiry.
Depending on the group level in the hierarchy this handling can
require to walk the hierarchy downwards to the CPU level.
Special care is taken when the last CPU goes idle. At this point
the CPU is the systemwide migrator at the top of the hierarchy and
it therefore cannot delegate to the hierarchy. It needs to arm its
own timer device to expire either at the first expiring timer in
the hierarchy or at the first CPU local timer, which ever expires
first.
This completely removes the overhead from the enqueue path, which
is e.g. for networking a true hotpath and trades it for a slightly
more complex idle path.
This has been in development for a couple of years and the final
series has been extensively tested by various teams from silicon
vendors and ran through extensive CI.
There have been slight performance improvements observed on network
centric workloads and an Intel team confirmed that this allows them
to power down a die completely on a mult-die socket for the first
time in a mostly idle scenario.
There is only one outstanding ~1.5% regression on a specific
overloaded netperf test which is currently investigated, but the
rest is either positive or neutral performance wise and positive on
the power management side.
- Fixes for the timekeeping interpolation code for cross-timestamps:
cross-timestamps are used for PTP to get snapshots from hardware
timers and interpolated them back to clock MONOTONIC. The changes
address a few corner cases in the interpolation code which got the
math and logic wrong.
- Simplifcation of the clocksource watchdog retry logic to
automatically adjust to handle larger systems correctly instead of
having more incomprehensible command line parameters.
- Treewide consolidation of the VDSO data structures.
- The usual small improvements and cleanups all over the place"
* tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
timer/migration: Fix quick check reporting late expiry
tick/sched: Fix build failure for CONFIG_NO_HZ_COMMON=n
vdso/datapage: Quick fix - use asm/page-def.h for ARM64
timers: Assert no next dyntick timer look-up while CPU is offline
tick: Assume timekeeping is correctly handed over upon last offline idle call
tick: Shut down low-res tick from dying CPU
tick: Split nohz and highres features from nohz_mode
tick: Move individual bit features to debuggable mask accesses
tick: Move got_idle_tick away from common flags
tick: Assume the tick can't be stopped in NOHZ_MODE_INACTIVE mode
tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING
tick: Move tick cancellation up to CPUHP_AP_TICK_DYING
tick: Start centralizing tick related CPU hotplug operations
tick/sched: Don't clear ts::next_tick again in can_stop_idle_tick()
tick/sched: Rename tick_nohz_stop_sched_tick() to tick_nohz_full_stop_tick()
tick: Use IS_ENABLED() whenever possible
tick/sched: Remove useless oneshot ifdeffery
tick/nohz: Remove duplicate between lowres and highres handlers
tick/nohz: Remove duplicate between tick_nohz_switch_to_nohz() and tick_setup_sched_timer()
hrtimer: Select housekeeping CPU during migration
...
Memoryless nodes do not have any memory to migrate to, so, as an
optimization, stop trying it.
Link: https://lkml.kernel.org/r/20240219041920.1183-1-byungchul@sk.com
Link: https://lkml.kernel.org/r/20240216111502.79759-1-byungchul@sk.com
Fixes: c574bbe917 ("NUMA balancing: optimize page placement for memory tiering system")
Signed-off-by: Byungchul Park <byungchul@sk.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Benjamin Segall <bsegall@google.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The x86 architecture has an idle routine for AMD CPUs which are affected
by erratum 400. On the affected CPUs the local APIC timer stops in the
C1E halt state.
It therefore requires tick broadcasting. The invocation of
tick_broadcast_enter()/exit() from this function violates the RCU
constraints because it can end up in lockdep or tracing, which
rightfully triggers a warning.
tick_broadcast_enter()/exit() must be invoked before ct_cpuidle_enter()
and after ct_cpuidle_exit() in default_idle_call().
Add a static branch conditional invocation of tick_broadcast_enter()/exit()
into this function to allow X86 to replace the AMD specific idle code. It's
guarded by a config switch which will be selected by x86. Otherwise it's
a NOOP.
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240229142248.266708822@linutronix.de
SD_SHARE_PKG_RESOURCES is a bit of a misnomer: its naming suggests that
it's sharing all 'package resources' - while in reality it's specifically
for sharing the LLC only.
Rename it to SD_SHARE_LLC to reduce confusion.
[ mingo: Rewrote the confusing changelog as well. ]
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-5-alexs@kernel.org
sched_use_asym_prio() checks whether CPU priorities should be used. It
makes sense to check for the SD_ASYM_PACKING() inside the function.
Since both sched_asym() and sched_group_asym() use sched_use_asym_prio(),
remove the now superfluous checks for the flag in various places.
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-4-alexs@kernel.org
sched_use_asym_prio() and sched_asym_prefer() are used together in various
places. Consolidate them into a single function sched_asym().
The existing sched_asym() function is only used when collecting statistics
of a scheduling group. Rename it as sched_group_asym(), and remove the
obsolete function description.
This makes the code easier to read. No functional changes.
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-3-alexs@kernel.org
The 'sds' argument is not used in the sched_asym() function anymore, remove it.
Fixes: c9ca07886a ("sched/fair: Do not even the number of busy CPUs via asym_packing")
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-2-alexs@kernel.org
These flags are already documented in include/linux/sched/sd_flags.h.
Also, add missing SD_CLUSTER and keep the comment on SD_ASYM_PACKING
as it is a special case.
Suggested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Alex Shi <alexs@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240210113924.1130448-1-alexs@kernel.org
When comparing the current struct sched_group with the yet-busiest
domain in update_sd_pick_busiest(), if the two groups have the same
group type, we're currently doing a bit of unnecessary work for any
group >= group_misfit_task. We're comparing the two groups, and then
returning only if false (the group in question is not the busiest).
Otherwise, we break out, do an extra unnecessary conditional check that's
vacuously false for any group type > group_fully_busy, and then always
return true.
Let's just return directly in the switch statement instead. This doesn't
change the size of vmlinux with llvm 17 (not surprising given that all
of this is inlined in load_balance()), but it does shrink load_balance()
by 88 bytes on x86. Given that it also improves readability, this seems
worth doing.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-4-void@manifault.com
In update_sd_pick_busiest(), when comparing two sched groups that are
both of type group_misfit_task, we currently consider the new group as
busier than the current busiest group even if the new group has the
same misfit task load as the current busiest group. We can avoid some
unnecessary writes if we instead only consider the newest group to be
the busiest if it has a higher load than the current busiest. This
matches the behavior of other group types where we compare load, such as
two groups that are both overloaded.
Let's update the group_misfit_task type comparison to also only update
the busiest group in the event of strict inequality.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-3-void@manifault.com
In update_sd_lb_stats(), when we're iterating over the sched groups that
comprise a sched domain, we're skipping the call to
update_sd_pick_busiest() for the sched group that contains the local /
destination CPU. We use a goto to skip the call, but we could just as
easily check !local_group, as there's no other logic that we need to
skip with the goto. Let's remove the goto, and check for !local_group in
the if statement instead.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20240206043921.850302-2-void@manifault.com
When picking a CPU on task wakeup, select_idle_core() has to take
into account the scheduling domain where the function looks for the CPU.
This is because the "isolcpus" kernel command line option can remove CPUs
from the domain to isolate them from other SMT siblings.
This change replaces the set of CPUs allowed to run the task from
p->cpus_ptr by the intersection of p->cpus_ptr and sched_domain_span(sd)
which is stored in the 'cpus' argument provided by select_idle_cpu().
Fixes: 9fe1f127b9 ("sched/fair: Merge select_idle_core/cpu()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240110131707.437301-2-keisuke.nishimura@inria.fr
When picking a CPU on task wakeup, select_idle_smt() has to take
into account the scheduling domain of @target. This is because the
"isolcpus" kernel command line option can remove CPUs from the domain to
isolate them from other SMT siblings.
This fix checks if the candidate CPU is in the target scheduling domain.
Commit:
df3cb4ea1f ("sched/fair: Fix wrong cpu selecting from isolated domain")
... originally introduced this fix by adding the check of the scheduling
domain in the loop.
However, commit:
3e6efe87cd ("sched/fair: Remove redundant check in select_idle_smt()")
... accidentally removed the check. Bring it back.
Fixes: 3e6efe87cd ("sched/fair: Remove redundant check in select_idle_smt()")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240110131707.437301-1-keisuke.nishimura@inria.fr
Use existing helper function cpu_util_irq() instead of open-coding
access to ->avg_irq.
During review it was noted that ->avg_irq could be updated by a
different CPU than the one which is trying to access it.
->avg_irq is updated with WRITE_ONCE(), use READ_ONCE to access it
in order to avoid any compiler optimizations.
Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240101154624.100981-3-sshegde@linux.vnet.ibm.com
There are helper functions called cpu_util_dl() and cpu_util_rt() which give
the average utilization of DL and RT respectively. But there are a few
places in code where access to these variables is open-coded.
Instead use the helper function so that code becomes simpler and easier to
maintain later on.
No functional changes intended.
Signed-off-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240101154624.100981-2-sshegde@linux.vnet.ibm.com
The timekeeping duty is handed over from the outgoing CPU on stop
machine, then the oneshot tick is stopped right after. Therefore it's
guaranteed that the current CPU isn't the timekeeper upon its last call
to idle.
Besides, calling tick_nohz_idle_stop_tick() while the dying CPU goes
into idle suggests that the tick is going to be stopped while it is
actually stopped already from the appropriate CPU hotplug state.
Remove the confusing call and the obsolete case handling and convert it
to a sanity check that verifies the above assumption.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240225225508.11587-16-frederic@kernel.org
The new helper function is needed to help blk-mq check if it needs to
dispatch the softirq on another CPU to match the performance level the
IO requester is running at. This is important on HMP systems where not
all CPUs have the same compute capacity.
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20240223155749.2958009-2-qyousef@layalina.io
Signed-off-by: Jens Axboe <axboe@kernel.dk>
On some systems, sys_membarrier can be very expensive, causing overall
slowdowns for everything. So put a lock on the path in order to
serialize the accesses to prevent the ability for this to be called at
too high of a frequency and saturate the machine.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-and-tested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Fixes: 22e4ebb975 ("membarrier: Provide expedited private command")
Fixes: c5f58bd58f ("membarrier: Provide GLOBAL_EXPEDITED command")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a few cases of nested #ifdefs in the scheduler code
that can be simplified:
#ifdef DEFINE_A
...code block...
#ifdef DEFINE_A <-- This is a duplicate.
...code block...
#endif
#else
#ifndef DEFINE_A <-- This is also duplicate.
...code block...
#endif
#endif
More details about the script and methods used to find these code
patterns can be found at:
https://lore.kernel.org/all/20240118080326.13137-1-sshegde@linux.ibm.com/
No change in functionality intended.
[ mingo: Clarified the changelog. ]
Signed-off-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20240216061433.535522-1-sshegde@linux.ibm.com
RISC-V uses xRET instructions on return from interrupt and to go back
to user-space; the xRET instruction is not core serializing.
Use FENCE.I for providing core serialization as follows:
- by calling sync_core_before_usermode() on return from interrupt (cf.
ipi_sync_core()),
- via switch_mm() and sync_core_before_usermode() (respectively, for
uthread->uthread and kthread->uthread transitions) before returning
to user-space.
On RISC-V, the serialization in switch_mm() is activated by resetting
the icache_stale_mask of the mm at prepare_sync_core_cmd().
Suggested-by: Palmer Dabbelt <palmer@dabbelt.com>
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/r/20240131144936.29190-5-parri.andrea@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Introduce an architecture function that architectures can use to set
up ("prepare") SYNC_CORE commands.
The function will be used by RISC-V to update its "deferred icache-
flush" data structures (icache_stale_mask).
Architectures defining prepare_sync_core_cmd() static inline need to
select ARCH_HAS_PREPARE_SYNC_CORE_CMD.
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/r/20240131144936.29190-4-parri.andrea@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
To gather the architecture requirements of the "private/global
expedited" membarrier commands. The file will be expanded to
integrate further information about the membarrier syscall (as
needed/desired in the future). While at it, amend some related
inline comments in the membarrier codebase.
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/r/20240131144936.29190-3-parri.andrea@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The membarrier system call requires a full memory barrier after storing
to rq->curr, before going back to user-space. The barrier is only
needed when switching between processes: the barrier is implied by
mmdrop() when switching from kernel to userspace, and it's not needed
when switching from userspace to kernel.
Rely on the feature/mechanism ARCH_HAS_MEMBARRIER_CALLBACKS and on the
primitive membarrier_arch_switch_mm(), already adopted by the PowerPC
architecture, to insert the required barrier.
Fixes: fab957c11e ("RISC-V: Atomic and Locking Code")
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/r/20240131144936.29190-2-parri.andrea@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Mark the task as having a cached timestamp when set assign it, so we
can efficiently check if it needs updating post being scheduled back in.
This covers both the actual schedule out case, which would've flushed
the plug, and the preemption case which doesn't touch the plugged
requests (for many reasons, one of them being then we'd need to have
preemption disabled around plug state manipulation).
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
where the CPU would remain at the lowest frequency, degrading
performance substantially.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWpM0sRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1giEg/+Mn9hdLqgE7xPPvCa8UWoJzFGTIYgTT3O
gma5Ras/kqB6cJTb1zn/HocAIj1Y2gZAsRU/U3IpOfPzklwIKQLBID1PE+d0izAc
NC9N0LuPau+XbMY5U+G0YNQZzDW+Zioe/9I6uDRKRTtLTdZAk8Plk9yh+tRtpSG8
aEswyoDOJfvkLbl7kJGymHgxDiDtmXEcz6j2pNlFtcEdHFjiSHo2Jq09DMia9sHr
W563FSvO7DVBMOosKH8sq7sSPdCBi0zshaWDiyz2M7Ry2uBsqJvx+9qxDnloafTp
Yqp5rkSVzOxtQwxjtYD+WWy+AgwQqo+O5FHsm0JmoiGVkmpB95bdhQxk2gtshSCo
IwUt2Gqsndd0JM4v5gOn4G/qCPxFUA/Tx1OMWM89nQUVp3OmIwm8z99f5gFxoSYa
DFn2P2Ku/A/fiKfWcNDOCyMgYcJNmqRKSjWEh+mfFeexiuWR3jPrQ4GKbSl9Gusw
vLmBM9pMSyGvivptu+ALXERDDm95wEVVkULgxlcUgpuT8jjpmovbtFj2xYcnzvc4
EKOgJ0FmXCM/B6QFnnbzgMzu2IThoQpL8Ud3JlMeGDRLGDvZip9AA+0RsnirURwX
+EuE7fHcDzfAA+Fv9sGosaFmxD1dUh1EJL41XrFZSYfMsZzzzlj+k9PWf9ABCE4R
6gEHuRza+rU=
=c7Ib
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2024-01-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fix from Ingo Molnar:
"Fix a cpufreq related performance regression on certain systems, where
the CPU would remain at the lowest frequency, degrading performance
substantially"
* tag 'sched-urgent-2024-01-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix frequency selection for non-invariant case
Linus reported a ~50% performance regression on single-threaded
workloads on his AMD Ryzen system, and bisected it to:
9c0b4bb7f6 ("sched/cpufreq: Rework schedutil governor performance estimation")
When frequency invariance is not enabled, get_capacity_ref_freq(policy)
is supposed to return the current frequency and the performance margin
applied by map_util_perf(), enabling the utilization to go above the
maximum compute capacity and to select a higher frequency than the current one.
After the changes in 9c0b4bb7f6, the performance margin was applied
earlier in the path to take into account utilization clampings and
we couldn't get a utilization higher than the maximum compute capacity,
and the CPU remained 'stuck' at lower frequencies.
To fix this, we must use a frequency above the current frequency to
get a chance to select a higher OPP when the current one becomes fully used.
Apply the same margin and return a frequency 25% higher than the current
one in order to switch to the next OPP before we fully use the CPU
at the current one.
[ mingo: Clarified the changelog. ]
Fixes: 9c0b4bb7f6 ("sched/cpufreq: Rework schedutil governor performance estimation")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Bisected-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Wyes Karny <wkarny@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Wyes Karny <wkarny@gmail.com>
Link: https://lore.kernel.org/r/20240114183600.135316-1-vincent.guittot@linaro.org
The goal is to get sched.h down to a type only header, so the main thing
happening in this patchset is splitting out various _types.h headers and
dependency fixups, as well as moving some things out of sched.h to
better locations.
This is prep work for the memory allocation profiling patchset which
adds new sched.h interdepencencies.
Testing - it's been in -next, and fixes from pretty much all
architectures have percolated in - nothing major.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmWfBwwACgkQE6szbY3K
bnZPwBAAmuRojXaeWxi01IPIOehSGDe68vw44PR9glEMZvxdnZuPOdvE4/+245/L
bRKU2WBCjBUokUbV9msIShwRkFTZAmEMPNfPAAsFMA+VXeDYHKB+ZRdwTggNAQ+I
SG6fZgh5m0HsewCDxU8oqVHkjVq4fXn0cy+aL6xLEd9gu67GoBzX2pDieS2Kvy6j
jnyoKTxFwb+LTQgph0P4EIpq5I2umAsdLwdSR8EJ+8e9NiNvMo1pI00Lx/ntAnFZ
JftWUJcMy3TQ5u1GkyfQN9y/yThX1bZK5GvmHS9SJ2Dkacaus5d+xaKCHtRuFS1I
7C6b8PsNgRczUMumBXus44HdlNfNs1yU3lvVxFvBIPE1qC9pYRHrkWIXXIocXLLC
oxTEJ6B2G3BQZVQgLIA4fOaxMVhmvKffi/aEZLi9vN9VVosd1a6XNKI6KbyRnXFp
GSs9qDqszhn5I3GYNlDNQTc/8UsRlhPFgS6nS0By6QnvxtGi9QkU2tBRBsXvqwCy
cLoCYIhc2tvugHvld70dz26umiJ4rnmxGlobStNoigDvIKAIUt1UmIdr1so8P8eH
xehnL9ZcOX6xnANDL0AqMFFHV6I58CJynhFdUoXfVQf/DWLGX48mpi9LVNsYBzsI
CAwVOAQ0UjGrpdWmJ9ueY/ABYqg9vRjzaDEXQ+MhAYO55CLaVsg=
=3tyT
-----END PGP SIGNATURE-----
Merge tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs
Pull header cleanups from Kent Overstreet:
"The goal is to get sched.h down to a type only header, so the main
thing happening in this patchset is splitting out various _types.h
headers and dependency fixups, as well as moving some things out of
sched.h to better locations.
This is prep work for the memory allocation profiling patchset which
adds new sched.h interdepencencies"
* tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs: (51 commits)
Kill sched.h dependency on rcupdate.h
kill unnecessary thread_info.h include
Kill unnecessary kernel.h include
preempt.h: Kill dependency on list.h
rseq: Split out rseq.h from sched.h
LoongArch: signal.c: add header file to fix build error
restart_block: Trim includes
lockdep: move held_lock to lockdep_types.h
sem: Split out sem_types.h
uidgid: Split out uidgid_types.h
seccomp: Split out seccomp_types.h
refcount: Split out refcount_types.h
uapi/linux/resource.h: fix include
x86/signal: kill dependency on time.h
syscall_user_dispatch.h: split out *_types.h
mm_types_task.h: Trim dependencies
Split out irqflags_types.h
ipc: Kill bogus dependency on spinlock.h
shm: Slim down dependencies
workqueue: Split out workqueue_types.h
...
many places. The notable patch series are:
- nilfs2 folio conversion from Matthew Wilcox in "nilfs2: Folio
conversions for file paths".
- Additional nilfs2 folio conversion from Ryusuke Konishi in "nilfs2:
Folio conversions for directory paths".
- IA64 remnant removal in Heiko Carstens's "Remove unused code after
IA-64 removal".
- Arnd Bergmann has enabled the -Wmissing-prototypes warning everywhere
in "Treewide: enable -Wmissing-prototypes". This had some followup
fixes:
- Nathan Chancellor has cleaned up the hexagon build in the series
"hexagon: Fix up instances of -Wmissing-prototypes".
- Nathan also addressed some s390 warnings in "s390: A couple of
fixes for -Wmissing-prototypes".
- Arnd Bergmann addresses the same warnings for MIPS in his series
"mips: address -Wmissing-prototypes warnings".
- Baoquan He has made kexec_file operate in a top-down-fitting manner
similar to kexec_load in the series "kexec_file: Load kernel at top of
system RAM if required"
- Baoquan He has also added the self-explanatory "kexec_file: print out
debugging message if required".
- Some checkstack maintenance work from Tiezhu Yang in the series
"Modify some code about checkstack".
- Douglas Anderson has disentangled the watchdog code's logging when
multiple reports are occurring simultaneously. The series is "watchdog:
Better handling of concurrent lockups".
- Yuntao Wang has contributed some maintenance work on the crash code in
"crash: Some cleanups and fixes".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZ2R6AAKCRDdBJ7gKXxA
juCVAP4t76qUISDOSKugB/Dn5E4Nt9wvPY9PcufnmD+xoPsgkQD+JVl4+jd9+gAV
vl6wkJDiJO5JZ3FVtBtC3DFA/xHtVgk=
=kQw+
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2024-01-09-10-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
"Quite a lot of kexec work this time around. Many singleton patches in
many places. The notable patch series are:
- nilfs2 folio conversion from Matthew Wilcox in 'nilfs2: Folio
conversions for file paths'.
- Additional nilfs2 folio conversion from Ryusuke Konishi in 'nilfs2:
Folio conversions for directory paths'.
- IA64 remnant removal in Heiko Carstens's 'Remove unused code after
IA-64 removal'.
- Arnd Bergmann has enabled the -Wmissing-prototypes warning
everywhere in 'Treewide: enable -Wmissing-prototypes'. This had
some followup fixes:
- Nathan Chancellor has cleaned up the hexagon build in the series
'hexagon: Fix up instances of -Wmissing-prototypes'.
- Nathan also addressed some s390 warnings in 's390: A couple of
fixes for -Wmissing-prototypes'.
- Arnd Bergmann addresses the same warnings for MIPS in his series
'mips: address -Wmissing-prototypes warnings'.
- Baoquan He has made kexec_file operate in a top-down-fitting manner
similar to kexec_load in the series 'kexec_file: Load kernel at top
of system RAM if required'
- Baoquan He has also added the self-explanatory 'kexec_file: print
out debugging message if required'.
- Some checkstack maintenance work from Tiezhu Yang in the series
'Modify some code about checkstack'.
- Douglas Anderson has disentangled the watchdog code's logging when
multiple reports are occurring simultaneously. The series is
'watchdog: Better handling of concurrent lockups'.
- Yuntao Wang has contributed some maintenance work on the crash code
in 'crash: Some cleanups and fixes'"
* tag 'mm-nonmm-stable-2024-01-09-10-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (157 commits)
crash_core: fix and simplify the logic of crash_exclude_mem_range()
x86/crash: use SZ_1M macro instead of hardcoded value
x86/crash: remove the unused image parameter from prepare_elf_headers()
kdump: remove redundant DEFAULT_CRASH_KERNEL_LOW_SIZE
scripts/decode_stacktrace.sh: strip unexpected CR from lines
watchdog: if panicking and we dumped everything, don't re-enable dumping
watchdog/hardlockup: use printk_cpu_sync_get_irqsave() to serialize reporting
watchdog/softlockup: use printk_cpu_sync_get_irqsave() to serialize reporting
watchdog/hardlockup: adopt softlockup logic avoiding double-dumps
kexec_core: fix the assignment to kimage->control_page
x86/kexec: fix incorrect end address passed to kernel_ident_mapping_init()
lib/trace_readwrite.c:: replace asm-generic/io with linux/io
nilfs2: cpfile: fix some kernel-doc warnings
stacktrace: fix kernel-doc typo
scripts/checkstack.pl: fix no space expression between sp and offset
x86/kexec: fix incorrect argument passed to kexec_dprintk()
x86/kexec: use pr_err() instead of kexec_dprintk() when an error occurs
nilfs2: add missing set_freezable() for freezable kthread
kernel: relay: remove relay_file_splice_read dead code, doesn't work
docs: submit-checklist: remove all of "make namespacecheck"
...
When a CPU is taken offline, the contribution of its cfs_rqs to task_groups'
load may remain and will negatively impact the calculation of the share of
the online CPUs.
To fix this bug, clear the contribution of an offlining CPU to task groups'
load and skip its contribution while it is inactive.
Here's the reproducer of the anomaly, by Imran Khan:
"So far I have encountered only one rather lengthy way of reproducing this issue,
which is as follows:
1. Take a KVM guest (booted with 4 CPUs and can be scaled up to 124 CPUs) and
create 2 custom cgroups: /sys/fs/cgroup/cpu/test_group_1 and /sys/fs/cgroup/
cpu/test_group_2
2. Assign a CPU intensive workload to each of these cgroups and start the
workload.
For my tests I am using following app:
int main(int argc, char *argv[])
{
unsigned long count, i, val;
if (argc != 2) {
printf("usage: ./a.out <number of random nums to generate> \n");
return 0;
}
count = strtoul(argv[1], NULL, 10);
printf("Generating %lu random numbers \n", count);
for (i = 0; i < count; i++) {
val = rand();
val = val % 2;
//usleep(1);
}
printf("Generated %lu random numbers \n", count);
return 0;
}
Also since the system is booted with 4 CPUs, in order to completely load the
system I am also launching 4 instances of same test app under:
/sys/fs/cgroup/cpu/
3. We can see that both of the cgroups get similar CPU time:
# systemd-cgtop --depth 1
Path Tasks %CPU Memory Input/s Output/s
/ 659 - 5.5G - -
/system.slice - - 5.7G - -
/test_group_1 4 - - - -
/test_group_2 3 - - - -
/user.slice 31 - 56.5M - -
Path Tasks %CPU Memory Input/s Output/s
/ 659 394.6 5.5G - -
/test_group_2 3 65.7 - - -
/user.slice 29 55.1 48.0M - -
/test_group_1 4 47.3 - - -
/system.slice - 2.2 5.7G - -
Path Tasks %CPU Memory Input/s Output/s
/ 659 394.8 5.5G - -
/test_group_1 4 62.9 - - -
/user.slice 28 44.9 54.2M - -
/test_group_2 3 44.7 - - -
/system.slice - 0.9 5.7G - -
Path Tasks %CPU Memory Input/s Output/s
/ 659 394.4 5.5G - -
/test_group_2 3 58.8 - - -
/test_group_1 4 51.9 - - -
/user.slice 30 39.3 59.6M - -
/system.slice - 1.9 5.7G - -
Path Tasks %CPU Memory Input/s Output/s
/ 659 394.7 5.5G - -
/test_group_1 4 60.9 - - -
/test_group_2 3 57.9 - - -
/user.slice 28 43.5 36.9M - -
/system.slice - 3.0 5.7G - -
Path Tasks %CPU Memory Input/s Output/s
/ 659 395.0 5.5G - -
/test_group_1 4 66.8 - - -
/test_group_2 3 56.3 - - -
/user.slice 29 43.1 51.8M - -
/system.slice - 0.7 5.7G - -
4. Now move systemd-udevd to one of these test groups, say test_group_1, and
perform scale up to 124 CPUs followed by scale down back to 4 CPUs from the
host side.
5. Run the same workload i.e 4 instances of CPU hogger under /sys/fs/cgroup/cpu
and one instance of CPU hogger each in /sys/fs/cgroup/cpu/test_group_1 and
/sys/fs/cgroup/test_group_2.
It can be seen that test_group_1 (the one where systemd-udevd was moved) is getting
much less CPU time than the test_group_2, even though at this point of time both of
these groups have only CPU hogger running:
# systemd-cgtop --depth 1
Path Tasks %CPU Memory Input/s Output/s
/ 1219 - 5.4G - -
/system.slice - - 5.6G - -
/test_group_1 4 - - - -
/test_group_2 3 - - - -
/user.slice 26 - 91.3M - -
Path Tasks %CPU Memory Input/s Output/s
/ 1221 394.3 5.4G - -
/test_group_2 3 82.7 - - -
/test_group_1 4 14.3 - - -
/system.slice - 0.8 5.6G - -
/user.slice 26 0.4 91.2M - -
Path Tasks %CPU Memory Input/s Output/s
/ 1221 394.6 5.4G - -
/test_group_2 3 67.4 - - -
/system.slice - 24.6 5.6G - -
/test_group_1 4 12.5 - - -
/user.slice 26 0.4 91.2M - -
Path Tasks %CPU Memory Input/s Output/s
/ 1221 395.2 5.4G - -
/test_group_2 3 60.9 - - -
/system.slice - 27.9 5.6G - -
/test_group_1 4 12.2 - - -
/user.slice 26 0.4 91.2M - -
Path Tasks %CPU Memory Input/s Output/s
/ 1221 395.2 5.4G - -
/test_group_2 3 69.4 - - -
/test_group_1 4 13.9 - - -
/user.slice 28 1.6 92.0M - -
/system.slice - 1.0 5.6G - -
Path Tasks %CPU Memory Input/s Output/s
/ 1221 395.6 5.4G - -
/test_group_2 3 59.3 - - -
/test_group_1 4 14.1 - - -
/user.slice 28 1.3 92.2M - -
/system.slice - 0.7 5.6G - -
Path Tasks %CPU Memory Input/s Output/s
/ 1221 395.5 5.4G - -
/test_group_2 3 67.2 - - -
/test_group_1 4 11.5 - - -
/user.slice 28 1.3 92.5M - -
/system.slice - 0.6 5.6G - -
Path Tasks %CPU Memory Input/s Output/s
/ 1221 395.1 5.4G - -
/test_group_2 3 76.8 - - -
/test_group_1 4 12.9 - - -
/user.slice 28 1.3 92.8M - -
/system.slice - 1.2 5.6G - -
From sched_debug data it can be seen that in bad case the load.weight of per-CPU
sched entities corresponding to test_group_1 has reduced significantly and
also load_avg of test_group_1 remains much higher than that of test_group_2,
even though systemd-udevd stopped running long time back and at this point of
time both cgroups just have the CPU hogger app as running entity."
[ mingo: Added details from the original discussion, plus minor edits to the patch. ]
Reported-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Imran Khan <imran.f.khan@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lore.kernel.org/r/20231223111545.62135-1-vincent.guittot@linaro.org
We're trying to get sched.h down to more or less just types only, not
code - rseq can live in its own header.
This helps us kill the dependency on preempt.h in sched.h.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Running N CPU-bound tasks on an N CPUs platform:
- with asymmetric CPU capacity
- not being a DynamIq system (i.e. having a PKG level sched domain
without the SD_SHARE_PKG_RESOURCES flag set)
.. might result in a task placement where two tasks run on a big CPU
and none on a little CPU. This placement could be more optimal by
using all CPUs.
Testing platform:
Juno-r2:
- 2 big CPUs (1-2), maximum capacity of 1024
- 4 little CPUs (0,3-5), maximum capacity of 383
Testing workload ([1]):
Spawn 6 CPU-bound tasks. During the first 100ms (step 1), each tasks
is affine to a CPU, except for:
- one little CPU which is left idle.
- one big CPU which has 2 tasks affine.
After the 100ms (step 2), remove the cpumask affinity.
Behavior before the patch:
During step 2, the load balancer running from the idle CPU tags sched
domains as:
- little CPUs: 'group_has_spare'. Cf. group_has_capacity() and
group_is_overloaded(), 3 CPU-bound tasks run on a 4 CPUs
sched-domain, and the idle CPU provides enough spare capacity
regarding the imbalance_pct
- big CPUs: 'group_overloaded'. Indeed, 3 tasks run on a 2 CPUs
sched-domain, so the following path is used:
group_is_overloaded()
\-if (sgs->sum_nr_running <= sgs->group_weight) return true;
The following path which would change the migration type to
'migrate_task' is not taken:
calculate_imbalance()
\-if (env->idle != CPU_NOT_IDLE && env->imbalance == 0)
as the local group has some spare capacity, so the imbalance
is not 0.
The migration type requested is 'migrate_util' and the busiest
runqueue is the big CPU's runqueue having 2 tasks (each having a
utilization of 512). The idle little CPU cannot pull one of these
task as its capacity is too small for the task. The following path
is used:
detach_tasks()
\-case migrate_util:
\-if (util > env->imbalance) goto next;
After the patch:
As the number of failed balancing attempts grows (with
'nr_balance_failed'), progressively make it easier to migrate
a big task to the idling little CPU. A similar mechanism is
used for the 'migrate_load' migration type.
Improvement:
Running the testing workload [1] with the step 2 representing
a ~10s load for a big CPU:
Before patch: ~19.3s
After patch: ~18s (-6.7%)
Similar issue reported at:
https://lore.kernel.org/lkml/20230716014125.139577-1-qyousef@layalina.io/
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/r/20231206090043.634697-1-pierre.gondois@arm.com
With UTIL_EST_FASTUP now being permanent, we can take advantage of the
fact that the ewma jumps directly to a higher utilization at dequeue to
simplify util_est and remove the enqueued field.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Alex Shi <alexs@kernel.org>
Link: https://lore.kernel.org/r/20231201161652.1241695-3-vincent.guittot@linaro.org
sched_feat(UTIL_EST_FASTUP) has been added to easily disable the feature
in order to check for possibly related regressions. After 3 years, it has
never been used and no regression has been reported. Let's remove it
and make fast increase a permanent behavior.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com>
Reviewed-by: Tang Yizhou <yizhou.tang@shopee.com>
Reviewed-by: Yanteng Si <siyanteng@loongson.cn> [for the Chinese translation]
Reviewed-by: Alex Shi <alexs@kernel.org>
Link: https://lore.kernel.org/r/20231201161652.1241695-2-vincent.guittot@linaro.org
cpuinfo.max_freq can change at runtime because of boost as an example. This
implies that the value could be different than the one that has been
used when computing the capacity of a CPU.
The new arch_scale_freq_ref() returns a fixed and coherent reference
frequency that can be used when computing a frequency based on utilization.
Use this arch_scale_freq_ref() when available and fallback to
policy otherwise.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lore.kernel.org/r/20231211104855.558096-4-vincent.guittot@linaro.org
These four functions have a normal definition for CONFIG_FAIR_GROUP_SCHED,
and empty one that is only referenced when FAIR_GROUP_SCHED is disabled
but CGROUP_SCHED is still enabled. If both are turned off, the functions
are still defined but the misisng prototype causes a W=1 warning:
kernel/sched/fair.c:12544:6: error: no previous prototype for 'free_fair_sched_group'
kernel/sched/fair.c:12546:5: error: no previous prototype for 'alloc_fair_sched_group'
kernel/sched/fair.c:12553:6: error: no previous prototype for 'online_fair_sched_group'
kernel/sched/fair.c:12555:6: error: no previous prototype for 'unregister_fair_sched_group'
Move the alternatives into the header as static inline functions with the
correct combination of #ifdef checks to avoid the warning without adding
even more complexity.
[A different patch with the same description got applied by accident
and was later reverted, but the original patch is still missing]
Link: https://lkml.kernel.org/r/20231123110506.707903-4-arnd@kernel.org
Fixes: 7aa55f2a59 ("sched/fair: Move unused stub functions to header")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nicolas Schier <nicolas@fjasle.eu>
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tudor Ambarus <tudor.ambarus@linaro.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zhihao Cheng <chengzhihao1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since reweight_entity() may have chance to change the weight of
cfs_rq->curr entity, we should also update_min_vruntime() if
this is the case
Fixes: eab03c23c2 ("sched/eevdf: Fix vruntime adjustment on reweight")
Signed-off-by: Yiwei Lin <s921975628@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Abel Wu <wuyun.abel@bytedance.com>
Link: https://lore.kernel.org/r/20231117080106.12890-1-s921975628@gmail.com
Use the max value that has already been computed inside sugov_get_util()
to cap the iowait boost and remove dependency with uclamp_rq_util_with()
which is not used anymore.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20231122133904.446032-3-vincent.guittot@linaro.org
The current method to take into account uclamp hints when estimating the
target frequency can end in a situation where the selected target
frequency is finally higher than uclamp hints, whereas there are no real
needs. Such cases mainly happen because we are currently mixing the
traditional scheduler utilization signal with the uclamp performance
hints. By adding these 2 metrics, we loose an important information when
it comes to select the target frequency, and we have to make some
assumptions which can't fit all cases.
Rework the interface between the scheduler and schedutil governor in order
to propagate all information down to the cpufreq governor.
effective_cpu_util() interface changes and now returns the actual
utilization of the CPU with 2 optional inputs:
- The minimum performance for this CPU; typically the capacity to handle
the deadline task and the interrupt pressure. But also uclamp_min
request when available.
- The maximum targeting performance for this CPU which reflects the
maximum level that we would like to not exceed. By default it will be
the CPU capacity but can be reduced because of some performance hints
set with uclamp. The value can be lower than actual utilization and/or
min performance level.
A new sugov_effective_cpu_perf() interface is also available to compute
the final performance level that is targeted for the CPU, after applying
some cpufreq headroom and taking into account all inputs.
With these 2 functions, schedutil is now able to decide when it must go
above uclamp hints. It now also has a generic way to get the min
performance level.
The dependency between energy model and cpufreq governor and its headroom
policy doesn't exist anymore.
eenv_pd_max_util() asks schedutil for the targeted performance after
applying the impact of the waking task.
[ mingo: Refined the changelog & C comments. ]
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20231122133904.446032-2-vincent.guittot@linaro.org
Lukasz Luba reported that a thread's util_est can significantly decrease as
a result of sharing the CPU with other threads.
The use case can be easily reproduced with a periodic task TA that runs 1ms
and sleeps 100us. When the task is alone on the CPU, its max utilization and
its util_est is around 888. If another similar task starts to run on the
same CPU, TA will have to share the CPU runtime and its maximum utilization
will decrease around half the CPU capacity (512) then TA's util_est will
follow this new maximum trend which is only the result of sharing the CPU
with others tasks.
Such situation can be detected with runnable_avg wich is close or
equal to util_avg when TA is alone, but increases above util_avg when TA
shares the CPU with other threads and wait on the runqueue.
[ We prefer an util_est that overestimate rather than under estimate
because in 1st case we will not provide enough performance to the
task which will remain under-provisioned, whereas in the other case we
will create some idle time which will enable to reduce contention and
as a result reduces the util_est so the overestimate will be transient
whereas the underestimate will remain. ]
[ mingo: Refined the changelog, added comments from the LKML discussion. ]
Reported-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/lkml/CAKfTPtDd-HhF-YiNTtL9i5k0PfJbF819Yxu4YquzfXgwi7voyw@mail.gmail.com/#t
Link: https://lore.kernel.org/r/20231122140119.472110-1-vincent.guittot@linaro.org
Cc: Hongyan Xia <hongyan.xia2@arm.com>
Trying to avoid that didn't bring much value after testing, add comment
about this.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lkml.kernel.org/r/20231114193840.4041-3-frederic@kernel.org
Add missing explanation concerning IRQs re-enablement constraints in
the cpuidle path against timers.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lkml.kernel.org/r/20231114193840.4041-2-frederic@kernel.org
Low priority tasks (e.g., SCHED_OTHER) can suffer starvation if tasks
with higher priority (e.g., SCHED_FIFO) monopolize CPU(s).
RT Throttling has been introduced a while ago as a (mostly debug)
countermeasure one can utilize to reserve some CPU time for low priority
tasks (usually background type of work, e.g. workqueues, timers, etc.).
It however has its own problems (see documentation) and the undesired
effect of unconditionally throttling FIFO tasks even when no lower
priority activity needs to run (there are mechanisms to fix this issue
as well, but, again, with their own problems).
Introduce deadline servers to service low priority tasks needs under
starvation conditions. Deadline servers are built extending SCHED_DEADLINE
implementation to allow 2-level scheduling (a sched_deadline entity
becomes a container for lower priority scheduling entities).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/4968601859d920335cf85822eb573a5f179f04b8.1699095159.git.bristot@kernel.org
In preparation of introducing !task sched_dl_entity; move the
bandwidth accounting into {en.de}queue_dl_entity().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/a86dccbbe44e021b8771627e1dae01a69b73466d.1699095159.git.bristot@kernel.org
Create a single function that initializes a sched_dl_entity.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lkml.kernel.org/r/51acc695eecf0a1a2f78f9a044e11ffd9b316bcf.1699095159.git.bristot@kernel.org
Now that trace_sched_stat_runtime() no longer takes a vruntime
argument, the task specific bits are identical between
update_curr_common() and update_curr().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tracing the runtime delta makes sense, observer can sum over time.
Tracing the absolute vruntime makes less sense, inconsistent:
absolute-vs-delta, but also vruntime delta can be computed from
runtime delta.
Removing the vruntime thing also makes the two tracepoint sites
identical, allowing to unify the code in a later patch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
All classes use sched_entity::exec_start to track runtime and have
copies of the exact same code around to compute runtime.
Collapse all that.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/54d148a144f26d9559698c4dd82d8859038a7380.1699095159.git.bristot@kernel.org
Since the RB-tree is now sorted by deadline, let's first try the
leftmost entity which has the earliest virtual deadline. I've done
some benchmarks to see its effectiveness.
All the benchmarks are done inside a normal cpu cgroup in a clean
environment with cpu turbo disabled, on a dual-CPU Intel Xeon(R)
Platinum 8260 with 2 NUMA nodes each of which has 24C/48T.
hackbench: process/thread + pipe/socket + 1/2/4/8 groups
netperf: TCP/UDP + STREAM/RR + 24/48/72/96/192 threads
tbench: loopback 24/48/72/96/192 threads
schbench: 1/2/4/8 mthreads
direct: cfs_rq has only one entity
parity: RUN_TO_PARITY
fast: O(1) fastpath
slow: heap search
(%) direct parity fast slow
hackbench 92.95 2.02 4.91 0.12
netperf 68.08 6.60 24.18 1.14
tbench 67.55 11.22 20.61 0.62
schbench 69.91 2.65 25.73 1.71
The above results indicate that this fastpath really makes task
selection more efficient.
Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231115033647.80785-4-wuyun.abel@bytedance.com
Sort the task timeline by virtual deadline and keep the min_vruntime
in the augmented tree, so we can avoid doubling the worst case cost
and make full use of the cached leftmost node to enable O(1) fastpath
picking in next patch.
Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231115033647.80785-3-wuyun.abel@bytedance.com
Since commit fc137c0dda ("sched/numa: enhance vma scanning logic")
NUMA Balancing allows updating PTEs to trap NUMA hinting faults if the
task had previously accessed VMA. However unconditional scan of VMAs are
allowed during initial phase of VMA creation until process's
mm numa_scan_seq reaches 2 even though current task had not accessed VMA.
Rationale:
- Without initial scan subsequent PTE update may never happen.
- Give fair opportunity to all the VMAs to be scanned and subsequently
understand the access pattern of all the VMAs.
But it has a corner case where, if a VMA is created after some time,
process's mm numa_scan_seq could be already greater than 2.
For e.g., values of mm numa_scan_seq when VMAs are created by running
mmtest autonuma benchmark briefly looks like:
start_seq=0 : 459
start_seq=2 : 138
start_seq=3 : 144
start_seq=4 : 8
start_seq=8 : 1
start_seq=9 : 1
This results in no unconditional PTE updates for those VMAs created after
some time.
Fix:
- Note down the initial value of mm numa_scan_seq in per VMA start_seq.
- Allow unconditional scan till start_seq + 2.
Result:
SUT: AMD EPYC Milan with 2 NUMA nodes 256 cpus.
base kernel: upstream 6.6-rc6 with Mels patches [1] applied.
kernbench
========== base patched %gain
Amean elsp-128 165.09 ( 0.00%) 164.78 * 0.19%*
Duration User 41404.28 41375.08
Duration System 9862.22 9768.48
Duration Elapsed 519.87 518.72
Ops NUMA PTE updates 1041416.00 831536.00
Ops NUMA hint faults 263296.00 220966.00
Ops NUMA pages migrated 258021.00 212769.00
Ops AutoNUMA cost 1328.67 1114.69
autonumabench
NUMA01_THREADLOCAL
==================
Amean elsp-NUMA01_THREADLOCAL 81.79 (0.00%) 67.74 * 17.18%*
Duration User 54832.73 47379.67
Duration System 75.00 185.75
Duration Elapsed 576.72 476.09
Ops NUMA PTE updates 394429.00 11121044.00
Ops NUMA hint faults 1001.00 8906404.00
Ops NUMA pages migrated 288.00 2998694.00
Ops AutoNUMA cost 7.77 44666.84
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/2ea7cbce80ac7c62e90cbfb9653a7972f902439f.1697816692.git.raghavendra.kt@amd.com
should_we_balance is called for the decision to do load-balancing.
When sched ticks invoke this function, only one CPU should return
true. However, in the current code, two CPUs can return true. The
following situation, where b means busy and i means idle, is an
example, because CPU 0 and CPU 2 return true.
[0, 1] [2, 3]
b b i b
This fix checks if there exists an idle CPU with busy sibling(s)
after looking for a CPU on an idle core. If some idle CPUs with busy
siblings are found, just the first one should do load-balancing.
Fixes: b1bfeab9b0 ("sched/fair: Consider the idle state of the whole core for load balance")
Signed-off-by: Keisuke Nishimura <keisuke.nishimura@inria.fr>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.vnet.ibm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20231031133821.1570861-1-keisuke.nishimura@inria.fr
vruntime of the (on_rq && !0-lag) entity needs to be adjusted when
it gets re-weighted, and the calculations can be simplified based
on the fact that re-weight won't change the w-average of all the
entities. Please check the proofs in comments.
But adjusting vruntime can also cause position change in RB-tree
hence require re-queue to fix up which might be costly. This might
be avoided by deferring adjustment to the time the entity actually
leaves tree (dequeue/pick), but that will negatively affect task
selection and probably not good enough either.
Fixes: 147f3efaa2 ("sched/fair: Implement an EEVDF-like scheduling policy")
Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231107090510.71322-2-wuyun.abel@bytedance.com
there's little I can say which isn't in the individual changelogs.
The lengthier patch series are
- "kdump: use generic functions to simplify crashkernel reservation in
arch", from Baoquan He. This is mainly cleanups and consolidation of
the "crashkernel=" kernel parameter handling.
- After much discussion, David Laight's "minmax: Relax type checks in
min() and max()" is here. Hopefully reduces some typecasting and the
use of min_t() and max_t().
- A group of patches from Oleg Nesterov which clean up and slightly fix
our handling of reads from /proc/PID/task/... and which remove
task_struct.therad_group.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZUQP9wAKCRDdBJ7gKXxA
jmOAAQDh8sxagQYocoVsSm28ICqXFeaY9Co1jzBIDdNesAvYVwD/c2DHRqJHEiS4
63BNcG3+hM9nwGJHb5lyh5m79nBMRg0=
=On4u
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2023-11-02-14-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
"As usual, lots of singleton and doubleton patches all over the tree
and there's little I can say which isn't in the individual changelogs.
The lengthier patch series are
- 'kdump: use generic functions to simplify crashkernel reservation
in arch', from Baoquan He. This is mainly cleanups and
consolidation of the 'crashkernel=' kernel parameter handling
- After much discussion, David Laight's 'minmax: Relax type checks in
min() and max()' is here. Hopefully reduces some typecasting and
the use of min_t() and max_t()
- A group of patches from Oleg Nesterov which clean up and slightly
fix our handling of reads from /proc/PID/task/... and which remove
task_struct.thread_group"
* tag 'mm-nonmm-stable-2023-11-02-14-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (64 commits)
scripts/gdb/vmalloc: disable on no-MMU
scripts/gdb: fix usage of MOD_TEXT not defined when CONFIG_MODULES=n
.mailmap: add address mapping for Tomeu Vizoso
mailmap: update email address for Claudiu Beznea
tools/testing/selftests/mm/run_vmtests.sh: lower the ptrace permissions
.mailmap: map Benjamin Poirier's address
scripts/gdb: add lx_current support for riscv
ocfs2: fix a spelling typo in comment
proc: test ProtectionKey in proc-empty-vm test
proc: fix proc-empty-vm test with vsyscall
fs/proc/base.c: remove unneeded semicolon
do_io_accounting: use sig->stats_lock
do_io_accounting: use __for_each_thread()
ocfs2: replace BUG_ON() at ocfs2_num_free_extents() with ocfs2_error()
ocfs2: fix a typo in a comment
scripts/show_delta: add __main__ judgement before main code
treewide: mark stuff as __ro_after_init
fs: ocfs2: check status values
proc: test /proc/${pid}/statm
compiler.h: move __is_constexpr() to compiler.h
...
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series "Fixes and cleanups to compaction".
- Joel Fernandes has a patchset ("Optimize mremap during mutual
alignment within PMD") which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested.
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series "Do not try to access unaccepted memory" Adrian Hunter
provides some fixups for the recently-added "unaccepted memory' feature.
To increase the feature's checking coverage. "Plug a few gaps where
RAM is exposed without checking if it is unaccepted memory".
- In the series "cleanups for lockless slab shrink" Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code.
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series "use refcount+RCU method to implement
lockless slab shrink".
- David Hildenbrand contributes some maintenance work for the rmap code
in the series "Anon rmap cleanups".
- Kefeng Wang does more folio conversions and some maintenance work in
the migration code. Series "mm: migrate: more folio conversion and
unification".
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series "Add and use bdev_getblk()".
- In the series "Use nth_page() in place of direct struct page
manipulation" Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames.
- In the series "mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO" has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of gigantic
pages are in use.
- Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
rationalization and folio conversions in the hugetlb code.
- Yin Fengwei has improved mlock()'s handling of large folios in the
series "support large folio for mlock"
- In the series "Expose swapcache stat for memcg v1" Liu Shixin has
added statistics for memcg v1 users which are available (and useful)
under memcg v2.
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named "MDWE
without inheritance".
- Kefeng Wang has provided the series "mm: convert numa balancing
functions to use a folio" which does what it says.
- In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
makes is possible for a process to propagate KSM treatment across
exec().
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use "high
bandwidth memory" in addition to Optane Data Center Persistent Memory
Modules (DCPMM). The series is named "memory tiering: calculate
abstract distance based on ACPI HMAT"
- In the series "Smart scanning mode for KSM" Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans.
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
series "mm: memcg: fix tracking of pending stats updates values".
- In the series "Implement IOCTL to get and optionally clear info about
PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
us to atomically read-then-clear page softdirty state. This is mainly
used by CRIU.
- Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
- a bunch of relatively minor maintenance tweaks to this code.
- Matthew Wilcox has increased the use of the VMA lock over file-backed
page faults in the series "Handle more faults under the VMA lock". Some
rationalizations of the fault path became possible as a result.
- In the series "mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
and folio conversions.
- In the series "various improvements to the GUP interface" Lorenzo
Stoakes has simplified and improved the GUP interface with an eye to
providing groundwork for future improvements.
- Andrey Konovalov has sent along the series "kasan: assorted fixes and
improvements" which does those things.
- Some page allocator maintenance work from Kemeng Shi in the series
"Two minor cleanups to break_down_buddy_pages".
- In thes series "New selftest for mm" Breno Leitao has developed
another MM self test which tickles a race we had between madvise() and
page faults.
- In the series "Add folio_end_read" Matthew Wilcox provides cleanups
and an optimization to the core pagecache code.
- Nhat Pham has added memcg accounting for hugetlb memory in the series
"hugetlb memcg accounting".
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series "Abstract vma_merge() and split_vma()".
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series "Fix page_owner's use of free timestamps".
- Lorenzo Stoakes has fixed the handling of new mappings of sealed files
in the series "permit write-sealed memfd read-only shared mappings".
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series "Batch hugetlb vmemmap modification operations".
- Some buffer_head folio conversions and cleanups from Matthew Wilcox in
the series "Finish the create_empty_buffers() transition".
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the series
"mm: PCP high auto-tuning".
- Roman Gushchin has contributed the patchset "mm: improve performance
of accounted kernel memory allocations" which improves their performance
by ~30% as measured by a micro-benchmark.
- folio conversions from Kefeng Wang in the series "mm: convert page
cpupid functions to folios".
- Some kmemleak fixups in Liu Shixin's series "Some bugfix about
kmemleak".
- Qi Zheng has improved our handling of memoryless nodes by keeping them
off the allocation fallback list. This is done in the series "handle
memoryless nodes more appropriately".
- khugepaged conversions from Vishal Moola in the series "Some
khugepaged folio conversions".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
FgeUPAD1oasg6CP+INZvCj34waNxwAc=
=E+Y4
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series 'Fixes and cleanups to compaction'
- Joel Fernandes has a patchset ('Optimize mremap during mutual
alignment within PMD') which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i
the following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series 'Do not try to access unaccepted memory' Adrian
Hunter provides some fixups for the recently-added 'unaccepted
memory' feature. To increase the feature's checking coverage. 'Plug
a few gaps where RAM is exposed without checking if it is
unaccepted memory'
- In the series 'cleanups for lockless slab shrink' Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series 'use refcount+RCU method to
implement lockless slab shrink'
- David Hildenbrand contributes some maintenance work for the rmap
code in the series 'Anon rmap cleanups'
- Kefeng Wang does more folio conversions and some maintenance work
in the migration code. Series 'mm: migrate: more folio conversion
and unification'
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series 'Add and use bdev_getblk()'
- In the series 'Use nth_page() in place of direct struct page
manipulation' Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames
- In the series 'mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO' has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of
gigantic pages are in use
- Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
rationalization and folio conversions in the hugetlb code
- Yin Fengwei has improved mlock()'s handling of large folios in the
series 'support large folio for mlock'
- In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
added statistics for memcg v1 users which are available (and
useful) under memcg v2
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named 'MDWE
without inheritance'
- Kefeng Wang has provided the series 'mm: convert numa balancing
functions to use a folio' which does what it says
- In the series 'mm/ksm: add fork-exec support for prctl' Stefan
Roesch makes is possible for a process to propagate KSM treatment
across exec()
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use 'high
bandwidth memory' in addition to Optane Data Center Persistent
Memory Modules (DCPMM). The series is named 'memory tiering:
calculate abstract distance based on ACPI HMAT'
- In the series 'Smart scanning mode for KSM' Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in
the series 'mm: memcg: fix tracking of pending stats updates
values'
- In the series 'Implement IOCTL to get and optionally clear info
about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
which permits us to atomically read-then-clear page softdirty
state. This is mainly used by CRIU
- Hugh Dickins contributed the series 'shmem,tmpfs: general
maintenance', a bunch of relatively minor maintenance tweaks to
this code
- Matthew Wilcox has increased the use of the VMA lock over
file-backed page faults in the series 'Handle more faults under the
VMA lock'. Some rationalizations of the fault path became possible
as a result
- In the series 'mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()' David Hildenbrand has implemented some
cleanups and folio conversions
- In the series 'various improvements to the GUP interface' Lorenzo
Stoakes has simplified and improved the GUP interface with an eye
to providing groundwork for future improvements
- Andrey Konovalov has sent along the series 'kasan: assorted fixes
and improvements' which does those things
- Some page allocator maintenance work from Kemeng Shi in the series
'Two minor cleanups to break_down_buddy_pages'
- In thes series 'New selftest for mm' Breno Leitao has developed
another MM self test which tickles a race we had between madvise()
and page faults
- In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
and an optimization to the core pagecache code
- Nhat Pham has added memcg accounting for hugetlb memory in the
series 'hugetlb memcg accounting'
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series 'Abstract vma_merge() and split_vma()'
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series 'Fix page_owner's use of free timestamps'
- Lorenzo Stoakes has fixed the handling of new mappings of sealed
files in the series 'permit write-sealed memfd read-only shared
mappings'
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series 'Batch hugetlb vmemmap modification operations'
- Some buffer_head folio conversions and cleanups from Matthew Wilcox
in the series 'Finish the create_empty_buffers() transition'
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the
series 'mm: PCP high auto-tuning'
- Roman Gushchin has contributed the patchset 'mm: improve
performance of accounted kernel memory allocations' which improves
their performance by ~30% as measured by a micro-benchmark
- folio conversions from Kefeng Wang in the series 'mm: convert page
cpupid functions to folios'
- Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
kmemleak'
- Qi Zheng has improved our handling of memoryless nodes by keeping
them off the allocation fallback list. This is done in the series
'handle memoryless nodes more appropriately'
- khugepaged conversions from Vishal Moola in the series 'Some
khugepaged folio conversions'"
[ bcachefs conflicts with the dynamically allocated shrinkers have been
resolved as per Stephen Rothwell in
https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/
with help from Qi Zheng.
The clone3 test filtering conflict was half-arsed by yours truly ]
* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
mm/damon/sysfs: update monitoring target regions for online input commit
mm/damon/sysfs: remove requested targets when online-commit inputs
selftests: add a sanity check for zswap
Documentation: maple_tree: fix word spelling error
mm/vmalloc: fix the unchecked dereference warning in vread_iter()
zswap: export compression failure stats
Documentation: ubsan: drop "the" from article title
mempolicy: migration attempt to match interleave nodes
mempolicy: mmap_lock is not needed while migrating folios
mempolicy: alloc_pages_mpol() for NUMA policy without vma
mm: add page_rmappable_folio() wrapper
mempolicy: remove confusing MPOL_MF_LAZY dead code
mempolicy: mpol_shared_policy_init() without pseudo-vma
mempolicy trivia: use pgoff_t in shared mempolicy tree
mempolicy trivia: slightly more consistent naming
mempolicy trivia: delete those ancient pr_debug()s
mempolicy: fix migrate_pages(2) syscall return nr_failed
kernfs: drop shared NUMA mempolicy hooks
hugetlbfs: drop shared NUMA mempolicy pretence
mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
...
The ia64 architecture gets its well-earned retirement as planned,
now that there is one last (mostly) working release that will
be maintained as an LTS kernel.
The architecture specific system call tables are updated for
the added map_shadow_stack() syscall and to remove references
to the long-gone sys_lookup_dcookie() syscall.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEiK/NIGsWEZVxh/FrYKtH/8kJUicFAmVC40IACgkQYKtH/8kJ
Uidhmw/9EX+aWSXGoObJ3fngaNSMw+PmrEuP8qEKBHxfKHcCdX3hc451Oh4GlhaQ
tru91pPwgNvN2/rfoKusxT+V4PemGIzfNni/04rp+P0kvmdw5otQ2yNhsQNsfVmq
XGWvkxF4P2GO6bkjjfR/1dDq7GtlyXtwwPDKeLbYb6TnJOZjtx+EAN27kkfSn1Ms
R4Sa3zJ+DfHUmHL5S9g+7UD/CZ5GfKNmIskI4Mz5GsfoUz/0iiU+Bge/9sdcdSJQ
kmbLy5YnVzfooLZ3TQmBFsO3iAMWb0s/mDdtyhqhTVmTUshLolkPYyKnPFvdupyv
shXcpEST2XJNeaDRnL2K4zSCdxdbnCZHDpjfl9wfioBg7I8NfhXKpf1jYZHH1de4
LXq8ndEFEOVQw/zSpYWfQq1sux8Jiqr+UK/ukbVeFWiGGIUs91gEWtPAf8T0AZo9
ujkJvaWGl98O1g5wmBu0/dAR6QcFJMDfVwbmlIFpU8O+MEaz6X8mM+O5/T0IyTcD
eMbAUjj4uYcU7ihKzHEv/0SS9Of38kzff67CLN5k8wOP/9NlaGZ78o1bVle9b52A
BdhrsAefFiWHp1jT6Y9Rg4HOO/TguQ9e6EWSKOYFulsiLH9LEFaB9RwZLeLytV0W
vlAgY9rUW77g1OJcb7DoNv33nRFuxsKqsnz3DEIXtgozo9CzbYI=
=H1vH
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull ia64 removal and asm-generic updates from Arnd Bergmann:
- The ia64 architecture gets its well-earned retirement as planned,
now that there is one last (mostly) working release that will be
maintained as an LTS kernel.
- The architecture specific system call tables are updated for the
added map_shadow_stack() syscall and to remove references to the
long-gone sys_lookup_dcookie() syscall.
* tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
hexagon: Remove unusable symbols from the ptrace.h uapi
asm-generic: Fix spelling of architecture
arch: Reserve map_shadow_stack() syscall number for all architectures
syscalls: Cleanup references to sys_lookup_dcookie()
Documentation: Drop or replace remaining mentions of IA64
lib/raid6: Drop IA64 support
Documentation: Drop IA64 from feature descriptions
kernel: Drop IA64 support from sig_fault handlers
arch: Remove Itanium (IA-64) architecture
- Add support for several Qualcomm SoC versions and other similar
changes (Christian Marangi, Dmitry Baryshkov, Luca Weiss, Neil
Armstrong, Richard Acayan, Robert Marko, Rohit Agarwal, Stephan
Gerhold and Varadarajan Narayanan).
- Clean up the tegra cpufreq driver (Sumit Gupta).
- Use of_property_read_reg() to parse "reg" in pmac32 driver (Rob
Herring).
- Add support for TI's am62p5 Soc (Bryan Brattlof).
- Make ARM_BRCMSTB_AVS_CPUFREQ depends on !ARM_SCMI_CPUFREQ (Florian
Fainelli).
- Update Kconfig to mention i.MX7 as well (Alexander Stein).
- Revise global turbo disable check in intel_pstate (Srinivas
Pandruvada).
- Carry out initialization of sg_cpu in the schedutil cpufreq governor
in one loop (Liao Chang).
- Simplify the condition for storing 'down_threshold' in the
conservative cpufreq governor (Liao Chang).
- Use fine-grained mutex in the userspace cpufreq governor (Liao
Chang).
- Move is_managed indicator in the userspace cpufreq governor into a
per-policy structure (Liao Chang).
- Rebuild sched-domains when removing cpufreq driver (Pierre Gondois).
- Fix buffer overflow detection in trans_stats() (Christian Marangi).
- Switch to dev_pm_opp_find_freq_(ceil/floor)_indexed() APIs to support
specific devices like UFS which handle multiple clocks through OPP
(Operating Performance Point) framework (Manivannan Sadhasivam).
- Add perf support to the Rockchip DFI (DDR Monitor Module) devfreq-
event driver:
* Generalize rockchip-dfi.c to support new RK3568/RK3588 using
different DDR type (Sascha Hauer).
* Convert DT binding document format to yaml (Sascha Hauer).
* Add perf support for DFI (a unit suitable for measuring DDR
utilization) to rockchip-dfi.c to extend DFI usage (Sascha Hauer).
- Add locking to the OPP handling code in the Mediatek CCI devfreq
driver, because the voltage of shared OPP might be changed by
multiple drivers (Mark Tseng, Dan Carpenter).
- Use device_get_match_data() in the Samsung Exynos PPMU devfreq-event
driver (Rob Herring).
- Extend support for the opp-level beyond required-opps (Ulf Hansson).
- Add dev_pm_opp_find_level_floor() (Krishna chaitanya chundru).
- dt-bindings: Allow opp-peak-kBpsfor kryo CPUs, support Qualcomm Krait
SoCs and document named opp-microvolt property (Bjorn Andersson,
Dmitry Baryshkov and Christian Marangi).
- Fix -Wunsequenced warning _of_add_opp_table_v1() (Nathan Chancellor).
- General cleanup of OPP code (Viresh Kumar).
- Use __get_safe_page() rather than touching the list in hibernation
snapshot code (Brian Geffon).
- Fix symbol export for _SIMPLE_ variants of _PM_OPS() (Raag Jadav).
- Clean up sync_read handling in snapshot_write_next() (Brian Geffon).
- Fix kerneldoc comments for swsusp_check() and swsusp_close() to
better match code (Christoph Hellwig).
- Downgrade BIOS locked limits pr_warn() in the Intel RAPL power
capping driver to pr_debug() (Ville Syrjälä).
- Change the minimum python version for the intel_pstate_tracer utility
from 2.7 to 3.6 (Doug Smythies).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmU6bqYSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxzLcP/Avv9PgVRVqZlJ1Rs2fqIcyOY+j5qrvx
xRiO3TBwdAzRy49ItnQY4W/CHk/skGY4vFhiluZE+OTUlx1fmPKeQLFpel+1+PvW
vLezQ9v18sH7d2Kd6gJO5k9xsyu5ZMHEkwiejA/tmS2vTs5ne4wB7ONTJObYx5iB
9Hrg6jLnk7MmolQqvQB6vmpej1eeWmuu7AXlg2OsXqYsCEnhS5iGBq86E35LvlKA
Pnef/B2ZP9RaFg2dVapSZwubn0FkUtd29ifhtGC7Fw5LM8WCRc/KHAWZwMe4dcMf
38uKux28xIEalGZm9zMhKO8gHGdfF/v1C46/hBvgjavwVJF3AUNXnsfc+v5SerDp
tXx1xghGyM/blbHUdTfzZc4l5TyqsjhkBMSCMEQcj9QYjsCY0pTZmwLz8F0BAv4D
0FukGf5jK987RBGvaHY90UCE+NvokOyJDckuSHQffrAZWghnhSgbZxMD5oiIjRYR
BioM5wQsL+wOxWdUGAOVhK6wKj32kf2XjBqWdEBk70qcpbvEmc0N8t1BSd+TzzoK
qM2hnyo+yxvv98wi/cglcJeZ1mbL+s1agTh7jFTkC23ap/GrZEw0EB5xdj4NbzOk
hO1OXas8J1LA1GFwL0WoLDyY0gvGDYFWkh0yeu0SUgxTVwKapyG03OMPQATN5M/y
cp+PK3ibS8Mb
=h8my
-----END PGP SIGNATURE-----
Merge tag 'pm-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add new hardware support (new Qualcomm SoC versions in cpufreq,
RK3568/RK3588 in devfreq), extend the OPP (operating performance
points) framework, improve cpufreq governors, fix issues and clean up
code (most of the changes are in cpufreq and devfreq).
Specifics:
- Add support for several Qualcomm SoC versions and other similar
changes (Christian Marangi, Dmitry Baryshkov, Luca Weiss, Neil
Armstrong, Richard Acayan, Robert Marko, Rohit Agarwal, Stephan
Gerhold and Varadarajan Narayanan)
- Clean up the tegra cpufreq driver (Sumit Gupta)
- Use of_property_read_reg() to parse "reg" in pmac32 driver (Rob
Herring)
- Add support for TI's am62p5 Soc (Bryan Brattlof)
- Make ARM_BRCMSTB_AVS_CPUFREQ depends on !ARM_SCMI_CPUFREQ (Florian
Fainelli)
- Update Kconfig to mention i.MX7 as well (Alexander Stein)
- Revise global turbo disable check in intel_pstate (Srinivas
Pandruvada)
- Carry out initialization of sg_cpu in the schedutil cpufreq
governor in one loop (Liao Chang)
- Simplify the condition for storing 'down_threshold' in the
conservative cpufreq governor (Liao Chang)
- Use fine-grained mutex in the userspace cpufreq governor (Liao
Chang)
- Move is_managed indicator in the userspace cpufreq governor into a
per-policy structure (Liao Chang)
- Rebuild sched-domains when removing cpufreq driver (Pierre Gondois)
- Fix buffer overflow detection in trans_stats() (Christian Marangi)
- Switch to dev_pm_opp_find_freq_(ceil/floor)_indexed() APIs to
support specific devices like UFS which handle multiple clocks
through OPP (Operating Performance Point) framework (Manivannan
Sadhasivam)
- Add perf support to the Rockchip DFI (DDR Monitor Module) devfreq-
event driver:
* Generalize rockchip-dfi.c to support new RK3568/RK3588 using
different DDR type (Sascha Hauer).
* Convert DT binding document format to yaml (Sascha Hauer).
* Add perf support for DFI (a unit suitable for measuring DDR
utilization) to rockchip-dfi.c to extend DFI usage (Sascha
Hauer)
- Add locking to the OPP handling code in the Mediatek CCI devfreq
driver, because the voltage of shared OPP might be changed by
multiple drivers (Mark Tseng, Dan Carpenter)
- Use device_get_match_data() in the Samsung Exynos PPMU
devfreq-event driver (Rob Herring)
- Extend support for the opp-level beyond required-opps (Ulf Hansson)
- Add dev_pm_opp_find_level_floor() (Krishna chaitanya chundru)
- dt-bindings: Allow opp-peak-kBpsfor kryo CPUs, support Qualcomm
Krait SoCs and document named opp-microvolt property (Bjorn
Andersson, Dmitry Baryshkov and Christian Marangi)
- Fix -Wunsequenced warning _of_add_opp_table_v1() (Nathan
Chancellor)
- General cleanup of OPP code (Viresh Kumar)
- Use __get_safe_page() rather than touching the list in hibernation
snapshot code (Brian Geffon)
- Fix symbol export for _SIMPLE_ variants of _PM_OPS() (Raag Jadav)
- Clean up sync_read handling in snapshot_write_next() (Brian Geffon)
- Fix kerneldoc comments for swsusp_check() and swsusp_close() to
better match code (Christoph Hellwig)
- Downgrade BIOS locked limits pr_warn() in the Intel RAPL power
capping driver to pr_debug() (Ville Syrjälä)
- Change the minimum python version for the intel_pstate_tracer
utility from 2.7 to 3.6 (Doug Smythies)"
* tag 'pm-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (82 commits)
dt-bindings: cpufreq: qcom-hw: document SM8650 CPUFREQ Hardware
cpufreq: arm: Kconfig: Add i.MX7 to supported SoC for ARM_IMX_CPUFREQ_DT
cpufreq: qcom-nvmem: add support for IPQ8064
cpufreq: qcom-nvmem: also accept operating-points-v2-krait-cpu
cpufreq: qcom-nvmem: drop pvs_ver for format a fuses
dt-bindings: cpufreq: qcom-cpufreq-nvmem: Document krait-cpu
cpufreq: qcom-nvmem: add support for IPQ6018
dt-bindings: cpufreq: qcom-cpufreq-nvmem: document IPQ6018
cpufreq: qcom-nvmem: Add MSM8909
cpufreq: qcom-nvmem: Simplify driver data allocation
powercap: intel_rapl: Downgrade BIOS locked limits pr_warn() to pr_debug()
cpufreq: stats: Fix buffer overflow detection in trans_stats()
dt-bindings: devfreq: event: rockchip,dfi: Add rk3588 support
dt-bindings: devfreq: event: rockchip,dfi: Add rk3568 support
dt-bindings: devfreq: event: convert Rockchip DFI binding to yaml
PM / devfreq: rockchip-dfi: add support for RK3588
PM / devfreq: rockchip-dfi: account for multiple DDRMON_CTRL registers
PM / devfreq: rockchip-dfi: make register stride SoC specific
PM / devfreq: rockchip-dfi: Add perf support
PM / devfreq: rockchip-dfi: give variable a better name
...
- Fair scheduler (SCHED_OTHER) improvements:
- Remove the old and now unused SIS_PROP code & option
- Scan cluster before LLC in the wake-up path
- Use candidate prev/recent_used CPU if scanning failed for cluster wakeup
- NUMA scheduling improvements:
- Improve the VMA access-PID code to better skip/scan VMAs
- Extend tracing to cover VMA-skipping decisions
- Improve/fix the recently introduced sched_numa_find_nth_cpu() code
- Generalize numa_map_to_online_node()
- Energy scheduling improvements:
- Remove the EM_MAX_COMPLEXITY limit
- Add tracepoints to track energy computation
- Make the behavior of the 'sched_energy_aware' sysctl more consistent
- Consolidate and clean up access to a CPU's max compute capacity
- Fix uclamp code corner cases
- RT scheduling improvements:
- Drive dl_rq->overloaded with dl_rq->pushable_dl_tasks updates
- Drive the ->rto_mask with rt_rq->pushable_tasks updates
- Scheduler scalability improvements:
- Rate-limit updates to tg->load_avg
- On x86 disable IBRS when CPU is offline to improve single-threaded performance
- Micro-optimize in_task() and in_interrupt()
- Micro-optimize the PSI code
- Avoid updating PSI triggers and ->rtpoll_total when there are no state changes
- Core scheduler infrastructure improvements:
- Use saved_state to reduce some spurious freezer wakeups
- Bring in a handful of fast-headers improvements to scheduler headers
- Make the scheduler UAPI headers more widely usable by user-space
- Simplify the control flow of scheduler syscalls by using lock guards
- Fix sched_setaffinity() vs. CPU hotplug race
- Scheduler debuggability improvements:
- Disallow writing invalid values to sched_rt_period_us
- Fix a race in the rq-clock debugging code triggering warnings
- Fix a warning in the bandwidth distribution code
- Micro-optimize in_atomic_preempt_off() checks
- Enforce that the tasklist_lock is held in for_each_thread()
- Print the TGID in sched_show_task()
- Remove the /proc/sys/kernel/sched_child_runs_first sysctl
- Misc cleanups & fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU8/NoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gN+xAAvKGYNZBCBG4jowxccgqAbCx81KOhhsy/
KUaOmdLPg9WaXuqjZ5sggXQCMT0wUqBYAmqV7ts53VhWcma2I1ap4dCM6Jj+RLrc
vNwkeNetsikiZtarMoCJs5NahL8ULh3liBaoAkkToPjQ5r43aZ/eKwDovEdIKc+g
+Vgn7jUY8ssIrAOKT1midSwY1y8kAU2AzWOSFDTgedkJP4PgOu9/lBl9jSJ2sYaX
N4XqONYPXTwOHUtvmzkYILxLz0k0GgJ7hmt78E8Xy2rC4taGCRwCfCMBYxREuwiP
huo3O1P/iIe5svm4/EBUvcpvf44eAWTV+CD0dnJPwOc9IvFhpSzqSZZAsyy/JQKt
Lnzmc/xmyc1PnXCYJfHuXrw2/m+MyUHaegPzh5iLJFrlqa79GavOElj0jNTAMzbZ
39fybzPtuFP+64faRfu0BBlQZfORPBNc/oWMpPKqgP58YGuveKTWaUF5rl5lM7Ne
nm07uOmq02JVR8YzPl/FcfhU2dPMawWuMwUjEr2eU+lAunY3PF88vu0FALj7iOBd
66F8qrtpDHJanOxrdEUwSJ7hgw79qY1iw66Db7cQYjMazFKZONxArQPqFUZ0ngLI
n9hVa7brg1bAQKrQflqjcIAIbpVu3SjPEl15cKpAJTB/gn5H66TQgw8uQ6HfG+h2
GtOsn1nlvuk=
=GDqb
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Fair scheduler (SCHED_OTHER) improvements:
- Remove the old and now unused SIS_PROP code & option
- Scan cluster before LLC in the wake-up path
- Use candidate prev/recent_used CPU if scanning failed for cluster
wakeup
NUMA scheduling improvements:
- Improve the VMA access-PID code to better skip/scan VMAs
- Extend tracing to cover VMA-skipping decisions
- Improve/fix the recently introduced sched_numa_find_nth_cpu() code
- Generalize numa_map_to_online_node()
Energy scheduling improvements:
- Remove the EM_MAX_COMPLEXITY limit
- Add tracepoints to track energy computation
- Make the behavior of the 'sched_energy_aware' sysctl more
consistent
- Consolidate and clean up access to a CPU's max compute capacity
- Fix uclamp code corner cases
RT scheduling improvements:
- Drive dl_rq->overloaded with dl_rq->pushable_dl_tasks updates
- Drive the ->rto_mask with rt_rq->pushable_tasks updates
Scheduler scalability improvements:
- Rate-limit updates to tg->load_avg
- On x86 disable IBRS when CPU is offline to improve single-threaded
performance
- Micro-optimize in_task() and in_interrupt()
- Micro-optimize the PSI code
- Avoid updating PSI triggers and ->rtpoll_total when there are no
state changes
Core scheduler infrastructure improvements:
- Use saved_state to reduce some spurious freezer wakeups
- Bring in a handful of fast-headers improvements to scheduler
headers
- Make the scheduler UAPI headers more widely usable by user-space
- Simplify the control flow of scheduler syscalls by using lock
guards
- Fix sched_setaffinity() vs. CPU hotplug race
Scheduler debuggability improvements:
- Disallow writing invalid values to sched_rt_period_us
- Fix a race in the rq-clock debugging code triggering warnings
- Fix a warning in the bandwidth distribution code
- Micro-optimize in_atomic_preempt_off() checks
- Enforce that the tasklist_lock is held in for_each_thread()
- Print the TGID in sched_show_task()
- Remove the /proc/sys/kernel/sched_child_runs_first sysctl
... and misc cleanups & fixes"
* tag 'sched-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits)
sched/fair: Remove SIS_PROP
sched/fair: Use candidate prev/recent_used CPU if scanning failed for cluster wakeup
sched/fair: Scan cluster before scanning LLC in wake-up path
sched: Add cpus_share_resources API
sched/core: Fix RQCF_ACT_SKIP leak
sched/fair: Remove unused 'curr' argument from pick_next_entity()
sched/nohz: Update comments about NEWILB_KICK
sched/fair: Remove duplicate #include
sched/psi: Update poll => rtpoll in relevant comments
sched: Make PELT acronym definition searchable
sched: Fix stop_one_cpu_nowait() vs hotplug
sched/psi: Bail out early from irq time accounting
sched/topology: Rename 'DIE' domain to 'PKG'
sched/psi: Delete the 'update_total' function parameter from update_triggers()
sched/psi: Avoid updating PSI triggers and ->rtpoll_total when there are no state changes
sched/headers: Remove comment referring to rq::cpu_load, since this has been removed
sched/numa: Complete scanning of inactive VMAs when there is no alternative
sched/numa: Complete scanning of partial VMAs regardless of PID activity
sched/numa: Move up the access pid reset logic
sched/numa: Trace decisions related to skipping VMAs
...
- Futex improvements:
- Add the 'futex2' syscall ABI, which is an attempt to get away from the
multiplex syscall and adds a little room for extentions, while lifting
some limitations.
- Fix futex PI recursive rt_mutex waiter state bug
- Fix inter-process shared futexes on no-MMU systems
- Use folios instead of pages
- Micro-optimizations of locking primitives:
- Improve arch_spin_value_unlocked() on asm-generic ticket spinlock
architectures, to improve lockref code generation.
- Improve the x86-32 lockref_get_not_zero() main loop by adding
build-time CMPXCHG8B support detection for the relevant lockref code,
and by better interfacing the CMPXCHG8B assembly code with the compiler.
- Introduce arch_sync_try_cmpxchg() on x86 to improve sync_try_cmpxchg()
code generation. Convert some sync_cmpxchg() users to sync_try_cmpxchg().
- Micro-optimize rcuref_put_slowpath()
- Locking debuggability improvements:
- Improve CONFIG_DEBUG_RT_MUTEXES=y to have a fast-path as well
- Enforce atomicity of sched_submit_work(), which is de-facto atomic but
was un-enforced previously.
- Extend <linux/cleanup.h>'s no_free_ptr() with __must_check semantics
- Fix ww_mutex self-tests
- Clean up const-propagation in <linux/seqlock.h> and simplify
the API-instantiation macros a bit.
- RT locking improvements:
- Provide the rt_mutex_*_schedule() primitives/helpers and use them
in the rtmutex code to avoid recursion vs. rtlock on the PI state.
- Add nested blocking lockdep asserts to rt_mutex_lock(), rtlock_lock()
and rwbase_read_lock().
- Plus misc fixes & cleanups
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU877IRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g9jw/+N7rxQ78dmFCYh4UWnLCYvuKP0/ivHErG
493JcB8MupuA2tfJHIkDdr4aM2mNq2E61w69/WlZAQWWD6pdOhwgF5Xf5eoEcJm0
vsAhWBGLxihXdtevPuMAx0dEpg3AMp2wc6i5PkN831KdPUgCNsrKq9Bfnfef7/G8
MQTSHjmtba6jxleyxfEa4tE2xe5PJX825nRfkX2e1cf+stkYua+uJFxVxUfxFWGE
4pBy70D9OC7MsJ44WWOA1gwkVtMMiBTmRPNjlP8Gz2GQ0f3ERHRwYk3jDHOPHZI6
0GNt7pE3IMXQn2UuDtfkvv9IFTd+U5qD+APnWIn2ntWXqzGLFqOlmovMrobVn7El
olYDCyweWPG71m1Qblsb1VK2QjRPQVJ9NAEg8RlDHIu2ThxHbMysDVGPVOYnPFq4
S8QFpmldzbNoPU4rDJyT1fAmoUIrusBHkl+Us3yGfC74iM+fHnDEvaSoMZbzEdY1
x/Nocj9XgKEgfXdYzrCWFmZ9xXqHkO25/wDL6yKqBdQtvaEalXuHTT6mQcYxrUPm
Xx1BPan2Jg7p4u2oOFcVtKewUtRH9KBx8qytr5S+JK4PJbrBsixMnr84HLd/3X2V
ykYkO+367T5MTYv4TnJDE5vdurzUqekKSCFPY3skPujPJfdLj1vsPzYf9iMkCLdo
hU2f/R+Wpdk=
=36Ff
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Info Molnar:
"Futex improvements:
- Add the 'futex2' syscall ABI, which is an attempt to get away from
the multiplex syscall and adds a little room for extentions, while
lifting some limitations.
- Fix futex PI recursive rt_mutex waiter state bug
- Fix inter-process shared futexes on no-MMU systems
- Use folios instead of pages
Micro-optimizations of locking primitives:
- Improve arch_spin_value_unlocked() on asm-generic ticket spinlock
architectures, to improve lockref code generation
- Improve the x86-32 lockref_get_not_zero() main loop by adding
build-time CMPXCHG8B support detection for the relevant lockref
code, and by better interfacing the CMPXCHG8B assembly code with
the compiler
- Introduce arch_sync_try_cmpxchg() on x86 to improve
sync_try_cmpxchg() code generation. Convert some sync_cmpxchg()
users to sync_try_cmpxchg().
- Micro-optimize rcuref_put_slowpath()
Locking debuggability improvements:
- Improve CONFIG_DEBUG_RT_MUTEXES=y to have a fast-path as well
- Enforce atomicity of sched_submit_work(), which is de-facto atomic
but was un-enforced previously.
- Extend <linux/cleanup.h>'s no_free_ptr() with __must_check
semantics
- Fix ww_mutex self-tests
- Clean up const-propagation in <linux/seqlock.h> and simplify the
API-instantiation macros a bit
RT locking improvements:
- Provide the rt_mutex_*_schedule() primitives/helpers and use them
in the rtmutex code to avoid recursion vs. rtlock on the PI state.
- Add nested blocking lockdep asserts to rt_mutex_lock(),
rtlock_lock() and rwbase_read_lock()
.. plus misc fixes & cleanups"
* tag 'locking-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
futex: Don't include process MM in futex key on no-MMU
locking/seqlock: Fix grammar in comment
alpha: Fix up new futex syscall numbers
locking/seqlock: Propagate 'const' pointers within read-only methods, remove forced type casts
locking/lockdep: Fix string sizing bug that triggers a format-truncation compiler-warning
locking/seqlock: Change __seqprop() to return the function pointer
locking/seqlock: Simplify SEQCOUNT_LOCKNAME()
locking/atomics: Use atomic_try_cmpxchg_release() to micro-optimize rcuref_put_slowpath()
locking/atomic, xen: Use sync_try_cmpxchg() instead of sync_cmpxchg()
locking/atomic/x86: Introduce arch_sync_try_cmpxchg()
locking/atomic: Add generic support for sync_try_cmpxchg() and its fallback
locking/seqlock: Fix typo in comment
futex/requeue: Remove unnecessary ‘NULL’ initialization from futex_proxy_trylock_atomic()
locking/local, arch: Rewrite local_add_unless() as a static inline function
locking/debug: Fix debugfs API return value checks to use IS_ERR()
locking/ww_mutex/test: Make sure we bail out instead of livelock
locking/ww_mutex/test: Fix potential workqueue corruption
locking/ww_mutex/test: Use prng instead of rng to avoid hangs at bootup
futex: Add sys_futex_requeue()
futex: Add flags2 argument to futex_requeue()
...
Merge cpufreq updates for 6.7-rc1:
- Add support for several Qualcomm SoC versions and other similar
changes (Christian Marangi, Dmitry Baryshkov, Luca Weiss, Neil
Armstrong, Richard Acayan, Robert Marko, Rohit Agarwal, Stephan
Gerhold and Varadarajan Narayanan).
- Clean up the tegra cpufreq driver (Sumit Gupta).
- Use of_property_read_reg() to parse "reg" in pmac32 driver (Rob
Herring).
- Add support for TI's am62p5 Soc (Bryan Brattlof).
- Make ARM_BRCMSTB_AVS_CPUFREQ depends on !ARM_SCMI_CPUFREQ (Florian
Fainelli).
- Update Kconfig to mention i.MX7 as well (Alexander Stein).
- Revise global turbo disable check in intel_pstate (Srinivas
Pandruvada).
- Carry out initialization of sg_cpu in the schedutil cpufreq governor
in one loop (Liao Chang).
- Simplify the condition for storing 'down_threshold' in the
conservative cpufreq governor (Liao Chang).
- Use fine-grained mutex in the userspace cpufreq governor (Liao
Chang).
- Move is_managed indicator in the userspace cpufreq governor into a
per-policy structure (Liao Chang).
- Rebuild sched-domains when removing cpufreq driver (Pierre Gondois).
- Fix buffer overflow detection in trans_stats() (Christian Marangi).
* pm-cpufreq: (32 commits)
dt-bindings: cpufreq: qcom-hw: document SM8650 CPUFREQ Hardware
cpufreq: arm: Kconfig: Add i.MX7 to supported SoC for ARM_IMX_CPUFREQ_DT
cpufreq: qcom-nvmem: add support for IPQ8064
cpufreq: qcom-nvmem: also accept operating-points-v2-krait-cpu
cpufreq: qcom-nvmem: drop pvs_ver for format a fuses
dt-bindings: cpufreq: qcom-cpufreq-nvmem: Document krait-cpu
cpufreq: qcom-nvmem: add support for IPQ6018
dt-bindings: cpufreq: qcom-cpufreq-nvmem: document IPQ6018
cpufreq: qcom-nvmem: Add MSM8909
cpufreq: qcom-nvmem: Simplify driver data allocation
cpufreq: stats: Fix buffer overflow detection in trans_stats()
dt-bindings: cpufreq: cpufreq-qcom-hw: Add SDX75 compatible
cpufreq: ARM_BRCMSTB_AVS_CPUFREQ cannot be used with ARM_SCMI_CPUFREQ
cpufreq: ti-cpufreq: Add opp support for am62p5 SoCs
cpufreq: dt-platdev: add am62p5 to blocklist
cpufreq: tegra194: remove redundant AND with cpu_online_mask
cpufreq: tegra194: use refclk delta based loop instead of udelay
cpufreq: tegra194: save CPU data to avoid repeated SMP calls
cpufreq: Rebuild sched-domains when removing cpufreq driver
cpufreq: userspace: Move is_managed indicator into per-policy structure
...
Convert to use folio_xchg_last_cpupid() in should_numa_migrate_memory().
Link: https://lkml.kernel.org/r/20231018140806.2783514-14-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert to use folio_xchg_access_time() in numa_hint_fault_latency().
Link: https://lkml.kernel.org/r/20231018140806.2783514-9-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Chen Yu reports a hackbench regression of cluster wakeup when
hackbench threads equal to the CPU number [1]. Analysis shows
it's because we wake up more on the target CPU even if the
prev_cpu is a good wakeup candidate and leads to the decrease
of the CPU utilization.
Generally if the task's prev_cpu is idle we'll wake up the task
on it without scanning. On cluster machines we'll try to wake up
the task in the same cluster of the target for better cache
affinity, so if the prev_cpu is idle but not sharing the same
cluster with the target we'll still try to find an idle CPU within
the cluster. This will improve the performance at low loads on
cluster machines. But in the issue above, if the prev_cpu is idle
but not in the cluster with the target CPU, we'll try to scan an
idle one in the cluster. But since the system is busy, we're
likely to fail the scanning and use target instead, even if
the prev_cpu is idle. Then leads to the regression.
This patch solves this in 2 steps:
o record the prev_cpu/recent_used_cpu if they're good wakeup
candidates but not sharing the cluster with the target.
o on scanning failure use the prev_cpu/recent_used_cpu if
they're recorded as idle
[1] https://lore.kernel.org/all/ZGzDLuVaHR1PAYDt@chenyu5-mobl1/
Closes: https://lore.kernel.org/all/ZGsLy83wPIpamy6x@chenyu5-mobl1/
Reported-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Tested-and-reviewed-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20231019033323.54147-4-yangyicong@huawei.com
For platforms having clusters like Kunpeng920, CPUs within the same cluster
have lower latency when synchronizing and accessing shared resources like
cache. Thus, this patch tries to find an idle cpu within the cluster of the
target CPU before scanning the whole LLC to gain lower latency. This
will be implemented in 2 steps in select_idle_sibling():
1. When the prev_cpu/recent_used_cpu are good wakeup candidates, use them
if they're sharing cluster with the target CPU. Otherwise trying to
scan for an idle CPU in the target's cluster.
2. Scanning the cluster prior to the LLC of the target CPU for an
idle CPU to wakeup.
Testing has been done on Kunpeng920 by pinning tasks to one numa and two
numa. On Kunpeng920, Each numa has 8 clusters and each cluster has 4 CPUs.
With this patch, We noticed enhancement on tbench and netperf within one
numa or cross two numa on top of tip-sched-core commit
9b46f1abc6d4 ("sched/debug: Print 'tgid' in sched_show_task()")
tbench results (node 0):
baseline patched
1: 327.2833 372.4623 ( 13.80%)
4: 1320.5933 1479.8833 ( 12.06%)
8: 2638.4867 2921.5267 ( 10.73%)
16: 5282.7133 5891.5633 ( 11.53%)
32: 9810.6733 9877.3400 ( 0.68%)
64: 7408.9367 7447.9900 ( 0.53%)
128: 6203.2600 6191.6500 ( -0.19%)
tbench results (node 0-1):
baseline patched
1: 332.0433 372.7223 ( 12.25%)
4: 1325.4667 1477.6733 ( 11.48%)
8: 2622.9433 2897.9967 ( 10.49%)
16: 5218.6100 5878.2967 ( 12.64%)
32: 10211.7000 11494.4000 ( 12.56%)
64: 13313.7333 16740.0333 ( 25.74%)
128: 13959.1000 14533.9000 ( 4.12%)
netperf results TCP_RR (node 0):
baseline patched
1: 76546.5033 90649.9867 ( 18.42%)
4: 77292.4450 90932.7175 ( 17.65%)
8: 77367.7254 90882.3467 ( 17.47%)
16: 78519.9048 90938.8344 ( 15.82%)
32: 72169.5035 72851.6730 ( 0.95%)
64: 25911.2457 25882.2315 ( -0.11%)
128: 10752.6572 10768.6038 ( 0.15%)
netperf results TCP_RR (node 0-1):
baseline patched
1: 76857.6667 90892.2767 ( 18.26%)
4: 78236.6475 90767.3017 ( 16.02%)
8: 77929.6096 90684.1633 ( 16.37%)
16: 77438.5873 90502.5787 ( 16.87%)
32: 74205.6635 88301.5612 ( 19.00%)
64: 69827.8535 71787.6706 ( 2.81%)
128: 25281.4366 25771.3023 ( 1.94%)
netperf results UDP_RR (node 0):
baseline patched
1: 96869.8400 110800.8467 ( 14.38%)
4: 97744.9750 109680.5425 ( 12.21%)
8: 98783.9863 110409.9637 ( 11.77%)
16: 99575.0235 110636.2435 ( 11.11%)
32: 95044.7250 97622.8887 ( 2.71%)
64: 32925.2146 32644.4991 ( -0.85%)
128: 12859.2343 12824.0051 ( -0.27%)
netperf results UDP_RR (node 0-1):
baseline patched
1: 97202.4733 110190.1200 ( 13.36%)
4: 95954.0558 106245.7258 ( 10.73%)
8: 96277.1958 105206.5304 ( 9.27%)
16: 97692.7810 107927.2125 ( 10.48%)
32: 79999.6702 103550.2999 ( 29.44%)
64: 80592.7413 87284.0856 ( 8.30%)
128: 27701.5770 29914.5820 ( 7.99%)
Note neither Kunpeng920 nor x86 Jacobsville supports SMT, so the SMT branch
in the code has not been tested but it supposed to work.
Chen Yu also noticed this will improve the performance of tbench and
netperf on a 24 CPUs Jacobsville machine, there are 4 CPUs in one
cluster sharing L2 Cache.
[https://lore.kernel.org/lkml/Ytfjs+m1kUs0ScSn@worktop.programming.kicks-ass.net]
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-and-reviewed-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Link: https://lkml.kernel.org/r/20231019033323.54147-3-yangyicong@huawei.com
Add cpus_share_resources() API. This is the preparation for the
optimization of select_idle_cpu() on platforms with cluster scheduler
level.
On a machine with clusters cpus_share_resources() will test whether
two cpus are within the same cluster. On a non-cluster machine it
will behaves the same as cpus_share_cache(). So we use "resources"
here for cache resources.
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-and-reviewed-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lkml.kernel.org/r/20231019033323.54147-2-yangyicong@huawei.com
Igor Raits and Bagas Sanjaya report a RQCF_ACT_SKIP leak warning.
This warning may be triggered in the following situations:
CPU0 CPU1
__schedule()
*rq->clock_update_flags <<= 1;* unregister_fair_sched_group()
pick_next_task_fair+0x4a/0x410 destroy_cfs_bandwidth()
newidle_balance+0x115/0x3e0 for_each_possible_cpu(i) *i=0*
rq_unpin_lock(this_rq, rf) __cfsb_csd_unthrottle()
raw_spin_rq_unlock(this_rq)
rq_lock(*CPU0_rq*, &rf)
rq_clock_start_loop_update()
rq->clock_update_flags & RQCF_ACT_SKIP <--
raw_spin_rq_lock(this_rq)
The purpose of RQCF_ACT_SKIP is to skip the update rq clock,
but the update is very early in __schedule(), but we clear
RQCF_*_SKIP very late, causing it to span that gap above
and triggering this warning.
In __schedule() we can clear the RQCF_*_SKIP flag immediately
after update_rq_clock() to avoid this RQCF_ACT_SKIP leak warning.
And set rq->clock_update_flags to RQCF_UPDATED to avoid
rq->clock_update_flags < RQCF_ACT_SKIP warning that may be triggered later.
Fixes: ebb83d84e4 ("sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()")
Closes: https://lore.kernel.org/all/20230913082424.73252-1-jiahao.os@bytedance.com
Reported-by: Igor Raits <igor.raits@gmail.com>
Reported-by: Bagas Sanjaya <bagasdotme@gmail.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/a5dd536d-041a-2ce9-f4b7-64d8d85c86dc@gmail.com