When {rt, cfs}_rq or dl task is throttled, since cookied tasks
are not dequeued from the core tree, So sched_core_find() and
sched_core_next() may return throttled task, which may
cause throttled task to run on the CPU.
So we add checks in sched_core_find() and sched_core_next()
to make sure that the return is a runnable task that is
not throttled.
Co-developed-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230316081806.69544-1-jiahao.os@bytedance.com
Remove the capacity inversion detection which is now handled by
util_fits_cpu() returning -1 when we need to continue to look for a
potential CPU with better performance.
This ends up almost reverting patches below except for some comments:
commit da07d2f9c1 ("sched/fair: Fixes for capacity inversion detection")
commit aa69c36f31 ("sched/fair: Consider capacity inversion in util_fits_cpu()")
commit 44c7b80bff ("sched/fair: Detect capacity inversion")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230201143628.270912-3-vincent.guittot@linaro.org
With a modified container_of() that preserves constness, the compiler
finds some pointers which should have been marked as const. task_of()
also needs to become const-preserving for the !FAIR_GROUP_SCHED case so
that cfs_rq_of() can take a const argument. No change to generated code.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221212144946.2657785-1-willy@infradead.org
This feature allows the scheduler to expose a per-memory map concurrency
ID to user-space. This concurrency ID is within the possible cpus range,
and is temporarily (and uniquely) assigned while threads are actively
running within a memory map. If a memory map has fewer threads than
cores, or is limited to run on few cores concurrently through sched
affinity or cgroup cpusets, the concurrency IDs will be values close
to 0, thus allowing efficient use of user-space memory for per-cpu
data structures.
This feature is meant to be exposed by a new rseq thread area field.
The primary purpose of this feature is to do the heavy-lifting needed
by memory allocators to allow them to use per-cpu data structures
efficiently in the following situations:
- Single-threaded applications,
- Multi-threaded applications on large systems (many cores) with limited
cpu affinity mask,
- Multi-threaded applications on large systems (many cores) with
restricted cgroup cpuset per container.
One of the key concern from scheduler maintainers is the overhead
associated with additional spin locks or atomic operations in the
scheduler fast-path. This is why the following optimization is
implemented.
On context switch between threads belonging to the same memory map,
transfer the mm_cid from prev to next without any atomic ops. This
takes care of use-cases involving frequent context switch between
threads belonging to the same memory map.
Additional optimizations can be done if the spin locks added when
context switching between threads belonging to different memory maps end
up being a performance bottleneck. Those are left out of this patch
though. A performance impact would have to be clearly demonstrated to
justify the added complexity.
The credit goes to Paul Turner (Google) for the original virtual cpu id
idea. This feature is implemented based on the discussions with Paul
Turner and Peter Oskolkov (Google), but I took the liberty to implement
scheduler fast-path optimizations and my own NUMA-awareness scheme. The
rumor has it that Google have been running a rseq vcpu_id extension
internally in production for a year. The tcmalloc source code indeed has
comments hinting at a vcpu_id prototype extension to the rseq system
call [1].
The following benchmarks do not show any significant overhead added to
the scheduler context switch by this feature:
* perf bench sched messaging (process)
Baseline: 86.5±0.3 ms
With mm_cid: 86.7±2.6 ms
* perf bench sched messaging (threaded)
Baseline: 84.3±3.0 ms
With mm_cid: 84.7±2.6 ms
* hackbench (process)
Baseline: 82.9±2.7 ms
With mm_cid: 82.9±2.9 ms
* hackbench (threaded)
Baseline: 85.2±2.6 ms
With mm_cid: 84.4±2.9 ms
[1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
CFS bandwidth currently distributes new runtime and unthrottles cfs_rq's
inline in an hrtimer callback. Runtime distribution is a per-cpu
operation, and unthrottling is a per-cgroup operation, since a tg walk
is required. On machines with a large number of cpus and large cgroup
hierarchies, this cpus*cgroups work can be too much to do in a single
hrtimer callback: since IRQ are disabled, hard lockups may easily occur.
Specifically, we've found this scalability issue on configurations with
256 cpus, O(1000) cgroups in the hierarchy being throttled, and high
memory bandwidth usage.
To fix this, we can instead unthrottle cfs_rq's asynchronously via a
CSD. Each cpu is responsible for unthrottling itself, thus sharding the
total work more fairly across the system, and avoiding hard lockups.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221117005418.3499691-1-joshdon@google.com
It was found that the user requested affinity via sched_setaffinity()
can be easily overwritten by other kernel subsystems without an easy way
to reset it back to what the user requested. For example, any change
to the current cpuset hierarchy may reset the cpumask of the tasks in
the affected cpusets to the default cpuset value even if those tasks
have pre-existing user requested affinity. That is especially easy to
trigger under a cgroup v2 environment where writing "+cpuset" to the
root cgroup's cgroup.subtree_control file will reset the cpus affinity
of all the processes in the system.
That is problematic in a nohz_full environment where the tasks running
in the nohz_full CPUs usually have their cpus affinity explicitly set
and will behave incorrectly if cpus affinity changes.
Fix this problem by looking at user_cpus_ptr in __set_cpus_allowed_ptr()
and use it to restrcit the given cpumask unless there is no overlap. In
that case, it will fallback to the given one. The SCA_USER flag is
reused to indicate intent to set user_cpus_ptr and so user_cpus_ptr
masking should be skipped. In addition, masking should also be skipped
if any of the SCA_MIGRATE_* flag is set.
All callers of set_cpus_allowed_ptr() will be affected by this change.
A scratch cpumask is added to percpu runqueues structure for doing
additional masking when user_cpus_ptr is set.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-4-longman@redhat.com
Unconditionally preserve the user requested cpumask on
sched_setaffinity() calls. This allows using it outside of the fairly
narrow restrict_cpus_allowed_ptr() use-case and fix some cpuset issues
that currently suffer destruction of cpumasks.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-3-longman@redhat.com
In order to prepare for passing through additional data through the
affinity call-chains, convert the mask and flags argument into a
structure.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-5-longman@redhat.com
Check each performance domain to see if thermal pressure is causing its
capacity to be lower than another performance domain.
We assume that each performance domain has CPUs with the same
capacities, which is similar to an assumption made in energy_model.c
We also assume that thermal pressure impacts all CPUs in a performance
domain equally.
If there're multiple performance domains with the same capacity_orig, we
will trigger a capacity inversion if the domain is under thermal
pressure.
The new cpu_in_capacity_inversion() should help users to know when
information about capacity_orig are not reliable and can opt in to use
the inverted capacity as the 'actual' capacity_orig.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-9-qais.yousef@arm.com
As reported by Yun Hsiang [1], if a task has its uclamp_min >= 0.8 * 1024,
it'll always pick the previous CPU because fits_capacity() will always
return false in this case.
The new util_fits_cpu() logic should handle this correctly for us beside
more corner cases where similar failures could occur, like when using
UCLAMP_MAX.
We open code uclamp_rq_util_with() except for the clamp() part,
util_fits_cpu() needs the 'raw' values to be passed to it.
Also introduce uclamp_rq_{set, get}() shorthand accessors to get uclamp
value for the rq. Makes the code more readable and ensures the right
rules (use READ_ONCE/WRITE_ONCE) are respected transparently.
[1] https://lists.linaro.org/pipermail/eas-dev/2020-July/001488.html
Fixes: 1d42509e47 ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Reported-by: Yun Hsiang <hsiang023167@gmail.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-4-qais.yousef@arm.com
So that the new uclamp rules in regard to migration margin and capacity
pressure are taken into account correctly.
Fixes: a7008c07a5 ("sched/fair: Make task_fits_capacity() consider uclamp restrictions")
Co-developed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-3-qais.yousef@arm.com
Introduce distinct struct balance_callback instead of performing function
pointer casting which will trip CFI. Avoids warnings as found by Clang's
future -Wcast-function-type-strict option:
In file included from kernel/sched/core.c:84:
kernel/sched/sched.h:1755:15: warning: cast from 'void (*)(struct rq *)' to 'void (*)(struct callback_head *)' converts to incompatible function type [-Wcast-function-type-strict]
head->func = (void (*)(struct callback_head *))func;
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
No binary differences result from this change.
This patch is a cleanup based on Brad Spengler/PaX Team's modifications
to sched code in their last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code
are mine and don't reflect the original grsecurity/PaX code.
Reported-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/1724
Link: https://lkml.kernel.org/r/20221008000758.2957718-1-keescook@chromium.org
In commit 97886d9dcd ("sched: Migration changes for core scheduling"),
sched_group_cookie_match() was added to help determine if a cookie
matches the core state.
However, while it iterates the SMT group, it fails to actually use the
RQ for each of the CPUs iterated, use cpu_rq(cpu) instead of rq to fix
things.
Fixes: 97886d9dcd ("sched: Migration changes for core scheduling")
Signed-off-by: Lin Shengwang <linshengwang1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221008022709.642-1-linshengwang1@huawei.com
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
sched_nr_migrate_break is set to a fix value and never changes so we can
replace it by a define SCHED_NR_MIGRATE_BREAK.
Also, we adjust SCHED_NR_MIGRATE_BREAK to be aligned with the init value
of sysctl_sched_nr_migrate which can be init to different values.
Then, use SCHED_NR_MIGRATE_BREAK to init sysctl_sched_nr_migrate.
The behavior stays unchanged unless you modify sysctl_sched_nr_migrate
trough debugfs.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220825122726.20819-3-vincent.guittot@linaro.org
Patch series "memory tiering: hot page selection", v4.
To optimize page placement in a memory tiering system with NUMA balancing,
the hot pages in the slow memory nodes need to be identified.
Essentially, the original NUMA balancing implementation selects the mostly
recently accessed (MRU) pages to promote. But this isn't a perfect
algorithm to identify the hot pages. Because the pages with quite low
access frequency may be accessed eventually given the NUMA balancing page
table scanning period could be quite long (e.g. 60 seconds). So in this
patchset, we implement a new hot page identification algorithm based on
the latency between NUMA balancing page table scanning and hint page
fault. Which is a kind of mostly frequently accessed (MFU) algorithm.
In NUMA balancing memory tiering mode, if there are hot pages in slow
memory node and cold pages in fast memory node, we need to promote/demote
hot/cold pages between the fast and cold memory nodes.
A choice is to promote/demote as fast as possible. But the CPU cycles and
memory bandwidth consumed by the high promoting/demoting throughput will
hurt the latency of some workload because of accessing inflating and slow
memory bandwidth contention.
A way to resolve this issue is to restrict the max promoting/demoting
throughput. It will take longer to finish the promoting/demoting. But
the workload latency will be better. This is implemented in this patchset
as the page promotion rate limit mechanism.
The promotion hot threshold is workload and system configuration
dependent. So in this patchset, a method to adjust the hot threshold
automatically is implemented. The basic idea is to control the number of
the candidate promotion pages to match the promotion rate limit.
We used the pmbench memory accessing benchmark tested the patchset on a
2-socket server system with DRAM and PMEM installed. The test results are
as follows,
pmbench score promote rate
(accesses/s) MB/s
------------- ------------
base 146887704.1 725.6
hot selection 165695601.2 544.0
rate limit 162814569.8 165.2
auto adjustment 170495294.0 136.9
From the results above,
With hot page selection patch [1/3], the pmbench score increases about
12.8%, and promote rate (overhead) decreases about 25.0%, compared with
base kernel.
With rate limit patch [2/3], pmbench score decreases about 1.7%, and
promote rate decreases about 69.6%, compared with hot page selection
patch.
With threshold auto adjustment patch [3/3], pmbench score increases about
4.7%, and promote rate decrease about 17.1%, compared with rate limit
patch.
Baolin helped to test the patchset with MySQL on a machine which contains
1 DRAM node (30G) and 1 PMEM node (126G).
sysbench /usr/share/sysbench/oltp_read_write.lua \
......
--tables=200 \
--table-size=1000000 \
--report-interval=10 \
--threads=16 \
--time=120
The tps can be improved about 5%.
This patch (of 3):
To optimize page placement in a memory tiering system with NUMA balancing,
the hot pages in the slow memory node need to be identified. Essentially,
the original NUMA balancing implementation selects the mostly recently
accessed (MRU) pages to promote. But this isn't a perfect algorithm to
identify the hot pages. Because the pages with quite low access frequency
may be accessed eventually given the NUMA balancing page table scanning
period could be quite long (e.g. 60 seconds). The most frequently
accessed (MFU) algorithm is better.
So, in this patch we implemented a better hot page selection algorithm.
Which is based on NUMA balancing page table scanning and hint page fault
as follows,
- When the page tables of the processes are scanned to change PTE/PMD
to be PROT_NONE, the current time is recorded in struct page as scan
time.
- When the page is accessed, hint page fault will occur. The scan
time is gotten from the struct page. And The hint page fault
latency is defined as
hint page fault time - scan time
The shorter the hint page fault latency of a page is, the higher the
probability of their access frequency to be higher. So the hint page
fault latency is a better estimation of the page hot/cold.
It's hard to find some extra space in struct page to hold the scan time.
Fortunately, we can reuse some bits used by the original NUMA balancing.
NUMA balancing uses some bits in struct page to store the page accessing
CPU and PID (referring to page_cpupid_xchg_last()). Which is used by the
multi-stage node selection algorithm to avoid to migrate pages shared
accessed by the NUMA nodes back and forth. But for pages in the slow
memory node, even if they are shared accessed by multiple NUMA nodes, as
long as the pages are hot, they need to be promoted to the fast memory
node. So the accessing CPU and PID information are unnecessary for the
slow memory pages. We can reuse these bits in struct page to record the
scan time. For the fast memory pages, these bits are used as before.
For the hot threshold, the default value is 1 second, which works well in
our performance test. All pages with hint page fault latency < hot
threshold will be considered hot.
It's hard for users to determine the hot threshold. So we don't provide a
kernel ABI to set it, just provide a debugfs interface for advanced users
to experiment. We will continue to work on a hot threshold automatic
adjustment mechanism.
The downside of the above method is that the response time to the workload
hot spot changing may be much longer. For example,
- A previous cold memory area becomes hot
- The hint page fault will be triggered. But the hint page fault
latency isn't shorter than the hot threshold. So the pages will
not be promoted.
- When the memory area is scanned again, maybe after a scan period,
the hint page fault latency measured will be shorter than the hot
threshold and the pages will be promoted.
To mitigate this, if there are enough free space in the fast memory node,
the hot threshold will not be used, all pages will be promoted upon the
hint page fault for fast response.
Thanks Zhong Jiang reported and tested the fix for a bug when disabling
memory tiering mode dynamically.
Link: https://lkml.kernel.org/r/20220713083954.34196-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220713083954.34196-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: osalvador <osalvador@suse.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There is some ambiguity about task_running() in that it is unrelated
to TASK_RUNNING but instead tests ->on_cpu. As such, rename the thing
task_on_cpu().
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/Yxhkhn55uHZx+NGl@hirez.programming.kicks-ass.net
Wrap repeated code in helper function update_current_exec_runtime for
update the exec time of the current.
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220824082856.15674-1-shangxiaojing@huawei.com
We use cpu_cgrp_subsys->fork() to set task group for the new fair task
in cgroup_post_fork().
Since commit b1e8206582 ("sched: Fix yet more sched_fork() races")
has already set_task_rq() for the new fair task in sched_cgroup_fork(),
so cpu_cgrp_subsys->fork() can be removed.
cgroup_can_fork() --> pin parent's sched_task_group
sched_cgroup_fork()
__set_task_cpu()
set_task_rq()
cgroup_post_fork()
ss->fork() := cpu_cgroup_fork()
sched_change_group(..., TASK_SET_GROUP)
task_set_group_fair()
set_task_rq() --> can be removed
After this patch's change, task_change_group_fair() only need to
care about task cgroup migration, make the code much simplier.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220818124805.601-3-zhouchengming@bytedance.com
Previously we only maintain task se depth in task_move_group_fair(),
if a !fair task change task group, its se depth will not be updated,
so commit eb7a59b2c8 ("sched/fair: Reset se-depth when task switched to FAIR")
fix the problem by updating se depth in switched_to_fair() too.
Then commit daa59407b5 ("sched/fair: Unify switched_{from,to}_fair()
and task_move_group_fair()") unified these two functions, moved se.depth
setting to attach_task_cfs_rq(), which further into attach_entity_cfs_rq()
with commit df217913e7 ("sched/fair: Factorize attach/detach entity").
This patch move task se depth maintenance from attach_entity_cfs_rq()
to set_task_rq(), which will be called when CPU/cgroup change, so its
depth will always be correct.
This patch is preparation for the next patch.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220818124805.601-2-zhouchengming@bytedance.com
There's no good reason to crash a user's system with a BUG_ON(),
chances are high that they'll never even see the crash message on
Xorg, and it won't make it into the syslog either.
By using a WARN_ON_ONCE() we at least give the user a chance to report
any bugs triggered here - instead of getting silent hangs.
None of these WARN_ON_ONCE()s are supposed to trigger, ever - so we ignore
cases where a NULL check is done via a BUG_ON() and we let a NULL
pointer through after a WARN_ON_ONCE().
There's one exception: WARN_ON_ONCE() arguments with side-effects,
such as locking - in this case we use the return value of the
WARN_ON_ONCE(), such as in:
- BUG_ON(!lock_task_sighand(p, &flags));
+ if (WARN_ON_ONCE(!lock_task_sighand(p, &flags)))
+ return;
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/YvSsKcAXISmshtHo@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLuvmwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gONQ/+KkkPTeKgGDvrahTfeYZlmRyvcI1R78r9
yooa8v+DtifznBW2eXDBc8WTruzqr78VyUY+1YSjfKS6FRQWYMficJ3qk3hxgBru
998KZbvl3jXBBlRkqgGeFlF5Ty2KaryEZgX97a7IF/0xWDgpm972jFkJ/KCo/YTY
WSQrzutz2FKe71EjK4cAplYxPZIiy/zo2hSGTbsso4M7bO5VLc1Y4qMtFGcCZ7JB
s9JYkj2Rfz+AS5wioDRcGuec4A4SrroxKszZA6QDDBuhMJukqexO02xs/fxZ2W4Z
DF4U5MFOrtz9AWSGsf1P6XXbgJO8qTgQXZchFsEcJwypV13w8U0IViXQfD/Pvx2X
y+WHdnZVIO2sDwOJ15ew7IuoJZ2LsVygrBNFJJaIFOtIz3RzprI0BJN7LeWFALOa
IPmbtiY8hVwhKmjRgMHWDwJhMEHLuhGx3idiD89w1pknzTUnKDiwLyEUtyynxeGd
ft9uCvPefrYQVx9AiH7wf0W+fg334FCccC+0f8LyduyftUyQCfZIZY6LUSKuKded
Odm7k0ngLDPbdZwAHs0Nf/ilRwd91Z7b6hGt5U3ptx+8BPMKB+/k1VoKog7OISPc
zGaP7DrtuC4sEdX4X6bqX+mEQhpkLcQw15gVGxhKoHqygWNSZrV634aSSXwfVXJx
eT5m/K9a7L0=
=CYl5
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
"Various fixes: a deadline scheduler fix, a migration fix, a Sparse fix
and a comment fix"
* tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Do not requeue task on CPU excluded from cpus_mask
sched/rt: Fix Sparse warnings due to undefined rt.c declarations
exit: Fix typo in comment: s/sub-theads/sub-threads
sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
There are several symbols defined in kernel/sched/sched.h but get wrapped
in CONFIG_CGROUP_SCHED, even though dummy versions get built in rt.c and
therefore trigger Sparse warnings:
kernel/sched/rt.c:309:6: warning: symbol 'unregister_rt_sched_group' was not declared. Should it be static?
kernel/sched/rt.c:311:6: warning: symbol 'free_rt_sched_group' was not declared. Should it be static?
kernel/sched/rt.c:313:5: warning: symbol 'alloc_rt_sched_group' was not declared. Should it be static?
Fix this by moving them outside the CONFIG_CGROUP_SCHED block.
[ mingo: Refreshed to the latest scheduler tree, tweaked changelog. ]
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220721145155.358366-1-ben-linux@fluff.org
This pull request contains the following branches:
doc.2022.06.21a: Documentation updates.
fixes.2022.07.19a: Miscellaneous fixes.
nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to
be offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS
and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel
boot parameter prevents offloaded callbacks from interfering
with real-time workloads and with energy-efficiency mechanisms.
poll.2022.07.21a: Polled grace-period updates, perhaps most notably
making these APIs account for both normal and expedited grace
periods.
rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing
the CPU overhead of RCU tasks trace grace periods by more than
a factor of two on a system with 15,000 tasks. The reduction
is expected to increase with the number of tasks, so it seems
reasonable to hypothesize that a system with 150,000 tasks might
see a 20-fold reduction in CPU overhead.
torture.2022.06.21a: Torture-test updates.
ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into
context tracking, thus reducing the overhead of transitioning to
kernel mode from either idle or nohz_full userspace execution
for kernels that track context independently of RCU. This is
expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m
g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq
k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt
0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL
kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5
7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0
Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc
JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL
PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc
egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y
ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r
vX60+QNxvUBLwA==
=vUNm
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS and
Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
parameter prevents offloaded callbacks from interfering with
real-time workloads and with energy-efficiency mechanisms
- Polled grace-period updates, perhaps most notably making these APIs
account for both normal and expedited grace periods
- Tasks RCU updates, perhaps most notably reducing the CPU overhead of
RCU tasks trace grace periods by more than a factor of two on a
system with 15,000 tasks.
The reduction is expected to increase with the number of tasks, so it
seems reasonable to hypothesize that a system with 150,000 tasks
might see a 20-fold reduction in CPU overhead
- Torture-test updates
- Updates that merge RCU's dyntick-idle tracking into context tracking,
thus reducing the overhead of transitioning to kernel mode from
either idle or nohz_full userspace execution for kernels that track
context independently of RCU.
This is expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y
* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
rcu: Diagnose extended sync_rcu_do_polled_gp() loops
rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
rcutorture: Test polled expedited grace-period primitives
rcu: Add polled expedited grace-period primitives
rcutorture: Verify that polled GP API sees synchronous grace periods
rcu: Make Tiny RCU grace periods visible to polled APIs
rcu: Make polled grace-period API account for expedited grace periods
rcu: Switch polled grace-period APIs to ->gp_seq_polled
rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
rcu/nocb: Add option to opt rcuo kthreads out of RT priority
rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
rcu/nocb: Add an option to offload all CPUs on boot
rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
rcu/nocb: Add/del rdp to iterate from rcuog itself
rcu/tree: Add comment to describe GP-done condition in fqs loop
rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
rcu/kvfree: Remove useless monitor_todo flag
rcu: Cleanup RCU urgency state for offline CPU
...
Save a multiplication in dl_task_fits_capacity() by using already
maintained per-sched_dl_entity (i.e. per-task) `dl_runtime/dl_deadline`
(dl_density).
cap_scale(dl_deadline, cap) >= dl_runtime
dl_deadline * cap >> SCHED_CAPACITY_SHIFT >= dl_runtime
cap >= dl_runtime << SCHED_CAPACITY_SHIFT / dl_deadline
cap >= (dl_runtime << BW_SHIFT / dl_deadline) >>
BW_SHIFT - SCHED_CAPACITY_SHIFT
cap >= dl_density >> BW_SHIFT - SCHED_CAPACITY_SHIFT
__sched_setscheduler()->__checkparam_dl() ensures that the 2 corner
cases (if conditions) `runtime == RUNTIME_INF (-1)` and `period == 0`
of to_ratio(deadline, runtime) are not met when setting dl_density in
__sched_setscheduler()-> __setscheduler_params()->__setparam_dl().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220729111305.1275158-4-dietmar.eggemann@arm.com
Create an inline helper for conditional code to be only executed on
asymmetric CPU capacity systems. This makes these (currently ~10 and
future) conditions a lot more readable.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220729111305.1275158-2-dietmar.eggemann@arm.com
Load-balancing improvements:
============================
- Improve NUMA balancing on AMD Zen systems for affine workloads.
- Improve the handling of reduced-capacity CPUs in load-balancing.
- Energy Model improvements: fix & refine all the energy fairness metrics (PELT),
and remove the conservative threshold requiring 6% energy savings to
migrate a task. Doing this improves power efficiency for most workloads,
and also increases the reliability of energy-efficiency scheduling.
- Optimize/tweak select_idle_cpu() to spend (much) less time searching
for an idle CPU on overloaded systems. There's reports of several
milliseconds spent there on large systems with large workloads ...
[ Since the search logic changed, there might be behavioral side effects. ]
- Improve NUMA imbalance behavior. On certain systems
with spare capacity, initial placement of tasks is non-deterministic,
and such an artificial placement imbalance can persist for a long time,
hurting (and sometimes helping) performance.
The fix is to make fork-time task placement consistent with runtime
NUMA balancing placement.
Note that some performance regressions were reported against this,
caused by workloads that are not memory bandwith limited, which benefit
from the artificial locality of the placement bug(s). Mel Gorman's
conclusion, with which we concur, was that consistency is better than
random workload benefits from non-deterministic bugs:
"Given there is no crystal ball and it's a tradeoff, I think it's
better to be consistent and use similar logic at both fork time
and runtime even if it doesn't have universal benefit."
- Improve core scheduling by fixing a bug in sched_core_update_cookie() that
caused unnecessary forced idling.
- Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly
woken tasks.
- Fix a newidle balancing bug that introduced unnecessary wakeup latencies.
ABI improvements/fixes:
=======================
- Do not check capabilities and do not issue capability check denial messages
when a scheduler syscall doesn't require privileges. (Such as increasing niceness.)
- Add forced-idle accounting to cgroups too.
- Fix/improve the RSEQ ABI to not just silently accept unknown flags.
(No existing tooling is known to have learned to rely on the previous behavior.)
- Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags.
Optimizations:
==============
- Optimize & simplify leaf_cfs_rq_list()
- Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg().
Misc fixes & cleanups:
======================
- Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems.
- Fix a full-NOHZ bug that can in some cases result in the tick not being
re-enabled when the last SCHED_RT task is gone from a runqueue but there's
still SCHED_OTHER tasks around.
- Various PREEMPT_RT related fixes.
- Misc cleanups & smaller fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLn2ywRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iNfxAAhPJMwM4tYCpIM6PhmxKiHl6kkiT2tt42
HhEmiJVLjczLybWaWwmGA2dSFkv1f4+hG7nqdZTm9QYn0Pqat2UTSRcwoKQc+gpB
x85Hwt2IUmnUman52fRl5r1miH9LTdCI6agWaFLQae5ds1XmOugFo52t2ahax+Gn
dB8LxS2fa/GrKj229EhkJSPWAK4Y94asoTProwpKLuKEeXhDkqUNrOWbKhz+wEnA
pVZySpA9uEOdNLVSr1s0VB6mZoh5/z6yQefj5YSNntsG71XWo9jxKCIm5buVdk2U
wjdn6UzoTThOy/5Ygm64eYRexMHG71UamF1JYUdmvDeUJZ5fhG6RD0FECUQNVcJB
Msu2fce6u1AV0giZGYtiooLGSawB/+e6MoDkjTl8guFHi/peve9CezKX1ZgDWPfE
eGn+EbYkUS9RMafXCKuEUBAC1UUqAavGN9sGGN1ufyR4za6ogZplOqAFKtTRTGnT
/Ne3fHTtvv73DLGW9ohO5vSS2Rp7zhAhB6FunhibhxCWlt7W6hA4Ze2vU9hf78Yn
SJDLAJjOEilLaKUkRG/d9uM3FjKJM1tqxuT76+sUbM0MNxdyiKcviQlP1b8oq5Um
xE1KNZUevnr/WXqOTGDKHH/HNPFgwxbwavMiP7dNFn8h/hEk4t9dkf5siDmVHtn4
nzDVOob1LgE=
=xr2b
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Load-balancing improvements:
- Improve NUMA balancing on AMD Zen systems for affine workloads.
- Improve the handling of reduced-capacity CPUs in load-balancing.
- Energy Model improvements: fix & refine all the energy fairness
metrics (PELT), and remove the conservative threshold requiring 6%
energy savings to migrate a task. Doing this improves power
efficiency for most workloads, and also increases the reliability
of energy-efficiency scheduling.
- Optimize/tweak select_idle_cpu() to spend (much) less time
searching for an idle CPU on overloaded systems. There's reports of
several milliseconds spent there on large systems with large
workloads ...
[ Since the search logic changed, there might be behavioral side
effects. ]
- Improve NUMA imbalance behavior. On certain systems with spare
capacity, initial placement of tasks is non-deterministic, and such
an artificial placement imbalance can persist for a long time,
hurting (and sometimes helping) performance.
The fix is to make fork-time task placement consistent with runtime
NUMA balancing placement.
Note that some performance regressions were reported against this,
caused by workloads that are not memory bandwith limited, which
benefit from the artificial locality of the placement bug(s). Mel
Gorman's conclusion, with which we concur, was that consistency is
better than random workload benefits from non-deterministic bugs:
"Given there is no crystal ball and it's a tradeoff, I think
it's better to be consistent and use similar logic at both fork
time and runtime even if it doesn't have universal benefit."
- Improve core scheduling by fixing a bug in
sched_core_update_cookie() that caused unnecessary forced idling.
- Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs
for newly woken tasks.
- Fix a newidle balancing bug that introduced unnecessary wakeup
latencies.
ABI improvements/fixes:
- Do not check capabilities and do not issue capability check denial
messages when a scheduler syscall doesn't require privileges. (Such
as increasing niceness.)
- Add forced-idle accounting to cgroups too.
- Fix/improve the RSEQ ABI to not just silently accept unknown flags.
(No existing tooling is known to have learned to rely on the
previous behavior.)
- Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags.
Optimizations:
- Optimize & simplify leaf_cfs_rq_list()
- Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg().
Misc fixes & cleanups:
- Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems.
- Fix a full-NOHZ bug that can in some cases result in the tick not
being re-enabled when the last SCHED_RT task is gone from a
runqueue but there's still SCHED_OTHER tasks around.
- Various PREEMPT_RT related fixes.
- Misc cleanups & smaller fixes"
* tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
rseq: Kill process when unknown flags are encountered in ABI structures
rseq: Deprecate RSEQ_CS_FLAG_NO_RESTART_ON_* flags
sched/core: Fix the bug that task won't enqueue into core tree when update cookie
nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt()
sched/core: Always flush pending blk_plug
sched/fair: fix case with reduced capacity CPU
sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling
sched/core: add forced idle accounting for cgroups
sched/fair: Remove the energy margin in feec()
sched/fair: Remove task_util from effective utilization in feec()
sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu()
sched/fair: Rename select_idle_mask to select_rq_mask
sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util()
sched/fair: Decay task PELT values during wakeup migration
sched/fair: Provide u64 read for 32-bits arch helper
sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg
sched: only perform capability check on privileged operation
sched: Remove unused function group_first_cpu()
sched/fair: Remove redundant word " *"
selftests/rseq: check if libc rseq support is registered
...
The RCU dynticks counter is going to be merged into the context tracking
subsystem. Start with moving the idle extended quiescent states
entrypoints to context tracking. For now those are dumb redirections to
existing RCU calls.
[ paulmck: Apply kernel test robot feedback. ]
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
effective_cpu_util() already has a `int cpu' parameter which allows to
retrieve the CPU capacity scale factor (or maximum CPU capacity) inside
this function via an arch_scale_cpu_capacity(cpu).
A lot of code calling effective_cpu_util() (or the shim
sched_cpu_util()) needs the maximum CPU capacity, i.e. it will call
arch_scale_cpu_capacity() already.
But not having to pass it into effective_cpu_util() will make the EAS
wake-up code easier, especially when the maximum CPU capacity reduced
by the thermal pressure is passed through the EAS wake-up functions.
Due to the asymmetric CPU capacity support of arm/arm64 architectures,
arch_scale_cpu_capacity(int cpu) is a per-CPU variable read access via
per_cpu(cpu_scale, cpu) on such a system.
On all other architectures it is a a compile-time constant
(SCHED_CAPACITY_SCALE).
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20220621090414.433602-4-vdonnefort@google.com
Before being migrated to a new CPU, a task sees its PELT values
synchronized with rq last_update_time. Once done, that same task will also
have its sched_avg last_update_time reset. This means the time between
the migration and the last clock update will not be accounted for in
util_avg and a discontinuity will appear. This issue is amplified by the
PELT clock scaling. It takes currently one tick after the CPU being idle
to let clock_pelt catching up clock_task.
This is especially problematic for asymmetric CPU capacity systems which
need stable util_avg signals for task placement and energy estimation.
Ideally, this problem would be solved by updating the runqueue clocks
before the migration. But that would require taking the runqueue lock
which is quite expensive [1]. Instead estimate the missing time and update
the task util_avg with that value.
To that end, we need sched_clock_cpu() but it is a costly function. Limit
the usage to the case where the source CPU is idle as we know this is when
the clock is having the biggest risk of being outdated.
See comment in migrate_se_pelt_lag() for more details about how the PELT
value is estimated. Notice though this estimation doesn't take into account
IRQ and Paravirt time.
[1] https://lkml.kernel.org/r/20190709115759.10451-1-chris.redpath@arm.com
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20220621090414.433602-3-vdonnefort@google.com
Introducing macro helpers u64_u32_{store,load}() to factorize lockless
accesses to u64 variables for 32-bits architectures.
Users are for now cfs_rq.min_vruntime and sched_avg.last_update_time. To
accommodate the later where the copy lies outside of the structure
(cfs_rq.last_udpate_time_copy instead of sched_avg.last_update_time_copy),
use the _copy() version of those helpers.
Those new helpers encapsulate smp_rmb() and smp_wmb() synchronization and
therefore, have a small penalty for 32-bits machines in set_task_rq_fair()
and init_cfs_rq().
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20220621090414.433602-2-vdonnefort@google.com
Wakelist can help avoid cache bouncing and offload the overhead of waker
cpu. So far, using wakelist within the same llc only happens on
WF_ON_CPU, and this limitation could be removed to further improve
wakeup performance.
The commit 518cd62341 ("sched: Only queue remote wakeups when
crossing cache boundaries") disabled queuing tasks on wakelist when
the cpus share llc. This is because, at that time, the scheduler must
send IPIs to do ttwu_queue_wakelist. Nowadays, ttwu_queue_wakelist also
supports TIF_POLLING, so this is not a problem now when the wakee cpu is
in idle polling.
Benefits:
Queuing the task on idle cpu can help improving performance on waker cpu
and utilization on wakee cpu, and further improve locality because
the wakee cpu can handle its own rq. This patch helps improving rt on
our real java workloads where wakeup happens frequently.
Consider the normal condition (CPU0 and CPU1 share same llc)
Before this patch:
CPU0 CPU1
select_task_rq() idle
rq_lock(CPU1->rq)
enqueue_task(CPU1->rq)
notify CPU1 (by sending IPI or CPU1 polling)
resched()
After this patch:
CPU0 CPU1
select_task_rq() idle
add to wakelist of CPU1
notify CPU1 (by sending IPI or CPU1 polling)
rq_lock(CPU1->rq)
enqueue_task(CPU1->rq)
resched()
We see CPU0 can finish its work earlier. It only needs to put task to
wakelist and return.
While CPU1 is idle, so let itself handle its own runqueue data.
This patch brings no difference about IPI.
This patch only takes effect when the wakee cpu is:
1) idle polling
2) idle not polling
For 1), there will be no IPI with or without this patch.
For 2), there will always be an IPI before or after this patch.
Before this patch: waker cpu will enqueue task and check preempt. Since
"idle" will be sure to be preempted, waker cpu must send a resched IPI.
After this patch: waker cpu will put the task to the wakelist of wakee
cpu, and send an IPI.
Benchmark:
We've tested schbench, unixbench, and hachbench on both x86 and arm64.
On x86 (Intel Xeon Platinum 8269CY):
schbench -m 2 -t 8
Latency percentiles (usec) before after
50.0000th: 8 6
75.0000th: 10 7
90.0000th: 11 8
95.0000th: 12 8
*99.0000th: 13 10
99.5000th: 15 11
99.9000th: 18 14
Unixbench with full threads (104)
before after
Dhrystone 2 using register variables 3011862938 3009935994 -0.06%
Double-Precision Whetstone 617119.3 617298.5 0.03%
Execl Throughput 27667.3 27627.3 -0.14%
File Copy 1024 bufsize 2000 maxblocks 785871.4 784906.2 -0.12%
File Copy 256 bufsize 500 maxblocks 210113.6 212635.4 1.20%
File Copy 4096 bufsize 8000 maxblocks 2328862.2 2320529.1 -0.36%
Pipe Throughput 145535622.8 145323033.2 -0.15%
Pipe-based Context Switching 3221686.4 3583975.4 11.25%
Process Creation 101347.1 103345.4 1.97%
Shell Scripts (1 concurrent) 120193.5 123977.8 3.15%
Shell Scripts (8 concurrent) 17233.4 17138.4 -0.55%
System Call Overhead 5300604.8 5312213.6 0.22%
hackbench -g 1 -l 100000
before after
Time 3.246 2.251
On arm64 (Ampere Altra):
schbench -m 2 -t 8
Latency percentiles (usec) before after
50.0000th: 14 10
75.0000th: 19 14
90.0000th: 22 16
95.0000th: 23 16
*99.0000th: 24 17
99.5000th: 24 17
99.9000th: 28 25
Unixbench with full threads (80)
before after
Dhrystone 2 using register variables 3536194249 3537019613 0.02%
Double-Precision Whetstone 629383.6 629431.6 0.01%
Execl Throughput 65920.5 65846.2 -0.11%
File Copy 1024 bufsize 2000 maxblocks 1063722.8 1064026.8 0.03%
File Copy 256 bufsize 500 maxblocks 322684.5 318724.5 -1.23%
File Copy 4096 bufsize 8000 maxblocks 2348285.3 2328804.8 -0.83%
Pipe Throughput 133542875.3 131619389.8 -1.44%
Pipe-based Context Switching 3215356.1 3576945.1 11.25%
Process Creation 108520.5 120184.6 10.75%
Shell Scripts (1 concurrent) 122636.3 121888 -0.61%
Shell Scripts (8 concurrent) 17462.1 17381.4 -0.46%
System Call Overhead 4429998.9 4435006.7 0.11%
hackbench -g 1 -l 100000
before after
Time 4.217 2.916
Our patch has improvement on schbench, hackbench
and Pipe-based Context Switching of unixbench
when there exists idle cpus,
and no obvious regression on other tests of unixbench.
This can help improve rt in scenes where wakeup happens frequently.
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-3-dtcccc@linux.alibaba.com
The purpose of balance_push() is to act as a filter on task selection
in the case of CPU hotplug, specifically when taking the CPU out.
It does this by (ab)using the balance callback infrastructure, with
the express purpose of keeping all the unlikely/odd cases in a single
place.
In order to serve its purpose, the balance_push_callback needs to be
(exclusively) on the callback list at all times (noting that the
callback always places itself back on the list the moment it runs,
also noting that when the CPU goes down, regular balancing concerns
are moot, so ignoring them is fine).
And here-in lies the problem, __sched_setscheduler()'s use of
splice_balance_callbacks() takes the callbacks off the list across a
lock-break, making it possible for, an interleaving, __schedule() to
see an empty list and not get filtered.
Fixes: ae79270232 ("sched: Optimize finish_lock_switch()")
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Link: https://lkml.kernel.org/r/20220519134706.GH2578@worktop.programming.kicks-ass.net
For two kernel releases now kernel/sysctl.c has been being cleaned up
slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and
all this caused merge conflicts with one susbystem or another.
This tree was put together to help try to avoid conflicts with these cleanups
going on different trees at time. So nothing exciting on this pull request,
just cleanups.
I actually had this sysctl-next tree up since v5.18 but I missed sending a
pull request for it on time during the last merge window. And so these changes
have been being soaking up on sysctl-next and so linux-next for a while.
The last change was merged May 4th.
Most of the compile issues were reported by 0day and fixed.
To help avoid a conflict with bpf folks at Daniel Borkmann's request
I merged bpf-next/pr/bpf-sysctl into sysctl-next to get the effor which
moves the BPF sysctls from kernel/sysctl.c to BPF core.
Possible merge conflicts and known resolutions as per linux-next:
bfp:
https://lkml.kernel.org/r/20220414112812.652190b5@canb.auug.org.au
rcu:
https://lkml.kernel.org/r/20220420153746.4790d532@canb.auug.org.au
powerpc:
https://lkml.kernel.org/r/20220520154055.7f964b76@canb.auug.org.au
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmKOq8ASHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinDAkQAJVo5YVM9f74UwYp4PQhTpjxJBCjRoZD
z1u9bp5rMj2ujTC8Fr7VmzKaHrb8+r1C1WvCvZtIzemYNB4lZUrHpVDYfXuXiPRB
ihPmEjhlPO5PFBx6cVCpI3cu9bEhG00rLc1QXnABx/pXwNPcOTJAGZJVamZvqubk
chjgZrb7N+adHPfvS55v1+zpwdeKfpp5U3zuu5qlT/nn0GS0HCVzOj5fj4oC4wtJ
IqfUubo+FX50Ga58yQABWNrjaPD9Crykz5ohVazy3ElQl0hJ4VsK65ct3blqc2vz
1Bb8kPpWuv6aZ5nr1lCVE8qvF4ZIL33ySvpg5BSdWLQEDrBbSpzvJe9Yn7wgR+eq
y7fhpO24+zRM82EoDMEvyxX9u1n1RsvoXRtf3ds9BGf63MUxk8a1cgjlU6vuyO2U
JhDmfM1xzdKvPoY4COOnHzcAiIqzItTqKd09N5y0cahmYstROU8lvp9huhTAHqk1
SjQMbLIZG7OnX8ZeQcR1EB8sq/IOPZT48ejj0iJmQ8FyMaep71MOQLYyLPAq4lgh
JHXm8P6QdB57jfJbqAeNSyZoK0qdxOUR/83Zcah7Jjns6vkju1DNatEsaEEI2y2M
4n7/rkHeZ3TyFHBUX4e9FomKvGLsAalDBRiqsuxLSOPMU8rGrNLAslOAtKwvp90X
4ht3M2VP098l
=btwh
-----END PGP SIGNATURE-----
Merge tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"For two kernel releases now kernel/sysctl.c has been being cleaned up
slowly, since the tables were grossly long, sprinkled with tons of
#ifdefs and all this caused merge conflicts with one susbystem or
another.
This tree was put together to help try to avoid conflicts with these
cleanups going on different trees at time. So nothing exciting on this
pull request, just cleanups.
Thanks a lot to the Uniontech and Huawei folks for doing some of this
nasty work"
* tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (28 commits)
sched: Fix build warning without CONFIG_SYSCTL
reboot: Fix build warning without CONFIG_SYSCTL
kernel/kexec_core: move kexec_core sysctls into its own file
sysctl: minor cleanup in new_dir()
ftrace: fix building with SYSCTL=y but DYNAMIC_FTRACE=n
fs/proc: Introduce list_for_each_table_entry for proc sysctl
mm: fix unused variable kernel warning when SYSCTL=n
latencytop: move sysctl to its own file
ftrace: fix building with SYSCTL=n but DYNAMIC_FTRACE=y
ftrace: Fix build warning
ftrace: move sysctl_ftrace_enabled to ftrace.c
kernel/do_mount_initrd: move real_root_dev sysctls to its own file
kernel/delayacct: move delayacct sysctls to its own file
kernel/acct: move acct sysctls to its own file
kernel/panic: move panic sysctls to its own file
kernel/lockdep: move lockdep sysctls to its own file
mm: move page-writeback sysctls to their own file
mm: move oom_kill sysctls to their own file
kernel/reboot: move reboot sysctls to its own file
sched: Move energy_aware sysctls to topology.c
...
Because GCC-12 is fully stupid about array bounds and it's just really
hard to get a solid array definition from a linker script, flip the
array order to avoid needing negative offsets :-/
This makes the whole relational pointer magic a little less obvious, but
alas.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/YoOLLmLG7HRTXeEm@hirez.programming.kicks-ass.net
When we use raw_spin_rq_lock() to acquire the rq lock and have to
update the rq clock while holding the lock, the kernel may issue
a WARN_DOUBLE_CLOCK warning.
Since we directly use raw_spin_rq_lock() to acquire rq lock instead of
rq_lock(), there is no corresponding change to rq->clock_update_flags.
In particular, we have obtained the rq lock of other CPUs, the
rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and
then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning.
So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid
the WARN_DOUBLE_CLOCK warning.
For the sched_rt_period_timer() and migrate_task_rq_dl() cases
we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with
rq_lock()/rq_unlock().
For the {pull,push}_{rt,dl}_task() cases, we add the
double_rq_clock_clear_update() function to clear RQCF_UPDATED of
rq->clock_update_flags, and call double_rq_clock_clear_update()
before double_lock_balance()/double_rq_lock() returns to avoid the
WARN_DOUBLE_CLOCK warning.
Some call trace reports:
Call Trace 1:
<IRQ>
sched_rt_period_timer+0x10f/0x3a0
? enqueue_top_rt_rq+0x110/0x110
__hrtimer_run_queues+0x1a9/0x490
hrtimer_interrupt+0x10b/0x240
__sysvec_apic_timer_interrupt+0x8a/0x250
sysvec_apic_timer_interrupt+0x9a/0xd0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20
Call Trace 2:
<TASK>
activate_task+0x8b/0x110
push_rt_task.part.108+0x241/0x2c0
push_rt_tasks+0x15/0x30
finish_task_switch+0xaa/0x2e0
? __switch_to+0x134/0x420
__schedule+0x343/0x8e0
? hrtimer_start_range_ns+0x101/0x340
schedule+0x4e/0xb0
do_nanosleep+0x8e/0x160
hrtimer_nanosleep+0x89/0x120
? hrtimer_init_sleeper+0x90/0x90
__x64_sys_nanosleep+0x96/0xd0
do_syscall_64+0x34/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 3:
<TASK>
deactivate_task+0x93/0xe0
pull_rt_task+0x33e/0x400
balance_rt+0x7e/0x90
__schedule+0x62f/0x8e0
do_task_dead+0x3f/0x50
do_exit+0x7b8/0xbb0
do_group_exit+0x2d/0x90
get_signal+0x9df/0x9e0
? preempt_count_add+0x56/0xa0
? __remove_hrtimer+0x35/0x70
arch_do_signal_or_restart+0x36/0x720
? nanosleep_copyout+0x39/0x50
? do_nanosleep+0x131/0x160
? audit_filter_inodes+0xf5/0x120
exit_to_user_mode_prepare+0x10f/0x1e0
syscall_exit_to_user_mode+0x17/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 4:
update_rq_clock+0x128/0x1a0
migrate_task_rq_dl+0xec/0x310
set_task_cpu+0x84/0x1e4
try_to_wake_up+0x1d8/0x5c0
wake_up_process+0x1c/0x30
hrtimer_wakeup+0x24/0x3c
__hrtimer_run_queues+0x114/0x270
hrtimer_interrupt+0xe8/0x244
arch_timer_handler_phys+0x30/0x50
handle_percpu_devid_irq+0x88/0x140
generic_handle_domain_irq+0x40/0x60
gic_handle_irq+0x48/0xe0
call_on_irq_stack+0x2c/0x60
do_interrupt_handler+0x80/0x84
Steps to reproduce:
1. Enable CONFIG_SCHED_DEBUG when compiling the kernel
2. echo 1 > /sys/kernel/debug/clear_warn_once
echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features
echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features
3. Run some rt/dl tasks that periodically work and sleep, e.g.
Create 2*n rt or dl (90% running) tasks via rt-app (on a system
with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running
on PREEMPT_RT kernel.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmJu9FYeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAyEH/16xtJSpLmLwrQzG
o+4ToQxSQ+/9UHyu0RTEvHg2THm9/8emtIuYyc/5FgdoWctcSa3AaDcveWmuWmkS
KYcdhfJsaEqjNHS3OPYXN84fmo9Hel7263shu5+IYmP/sN0DfQp6UWTryX1q4B3Q
4Pdutkuq63Uwd8nBZ5LXQBumaBrmkkuMgWEdT4+6FOo1mPzwdIGBxCuz1UsNNl5k
chLWxkQfe2eqgWbYJrgCQfrVdORXVtoU2fGilZUNrHRVGkkldXkkz5clJfapyZD3
odmZCEbrE4GPKgZwCmDERMfD1hzhZDtYKiHfOQ506szH5ykJjPBcOjHed7dA60eB
J3+wdek=
=39Ca
-----END PGP SIGNATURE-----
Merge tag 'v5.18-rc5' into sched/core to pull in fixes & to resolve a conflict
- sched/core is on a pretty old -rc1 base - refresh it to include recent fixes.
- this also allows up to resolve a (trivial) .mailmap conflict
Conflicts:
.mailmap
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A W=1 build emits more than a dozen missing prototype warnings related to
scheduler and scheduler specific includes.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.249118058@linutronix.de
Since commit 2312729688 ("sched/fair: Update scale invariance of PELT")
change to use rq_clock_pelt() instead of rq_clock_task(), we should also
use rq_clock_pelt() for throttled_clock_task_time and throttled_clock_task
accounting to get correct cfs_rq_clock_pelt() of throttled cfs_rq. And
rename throttled_clock_task(_time) to be clock_pelt rather than clock_task.
Fixes: 2312729688 ("sched/fair: Update scale invariance of PELT")
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220408115309.81603-1-zhouchengming@bytedance.com
move rr_timeslice sysctls to rt.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
move rt_period/runtime sysctls to rt.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
move child_runs_first sysctls to fair.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Steve reported that ChromeOS encounters the forceidle balancer being
ran from rt_mutex_setprio()'s balance_callback() invocation and
explodes.
Now, the forceidle balancer gets queued every time the idle task gets
selected, set_next_task(), which is strictly too often.
rt_mutex_setprio() also uses set_next_task() in the 'change' pattern:
queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
running = task_current(rq, p); /* rq->curr == p */
if (queued)
dequeue_task(...);
if (running)
put_prev_task(...);
/* change task properties */
if (queued)
enqueue_task(...);
if (running)
set_next_task(...);
However, rt_mutex_setprio() will explicitly not run this pattern on
the idle task (since priority boosting the idle task is quite insane).
Most other 'change' pattern users are pidhash based and would also not
apply to idle.
Also, the change pattern doesn't contain a __balance_callback()
invocation and hence we could have an out-of-band balance-callback,
which *should* trigger the WARN in rq_pin_lock() (which guards against
this exact anti-pattern).
So while none of that explains how this happens, it does indicate that
having it in set_next_task() might not be the most robust option.
Instead, explicitly queue the forceidle balancer from pick_next_task()
when it does indeed result in forceidle selection. Having it here,
ensures it can only be triggered under the __schedule() rq->lock
instance, and hence must be ran from that context.
This also happens to clean up the code a little, so win-win.
Fixes: d2dfa17bc7 ("sched: Trivial forced-newidle balancer")
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: T.J. Alumbaugh <talumbau@chromium.org>
Link: https://lkml.kernel.org/r/20220330160535.GN8939@worktop.programming.kicks-ass.net
Both functions are doing almost the same, that is checking if admission
control is still respected.
With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.
dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.
Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
Move the deadline bandwidth management (admission control) functions
__dl_add(), __dl_sub() and __dl_overflow() as well as the bandwidth
reclaim function __dl_update() from private task scheduler header file
to the deadline sched class source file.
The functions are only used internally so they don't have to be
exported.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-3-dietmar.eggemann@arm.com
Since commit 1724813d9f ("sched/deadline: Remove the sysctl_sched_dl
knobs") the default deadline bandwidth control structure has no purpose.
Remove it.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-2-dietmar.eggemann@arm.com
kernel/sched/sched.h is a weird mix of ad-hoc headers included
in the middle of the header.
Two of them rely on being included in the middle of kernel/sched/sched.h,
due to definitions they require:
- "stat.h" needs the rq definitions.
- "autogroup.h" needs the task_group definition.
Move the inclusion of these two files out of kernel/sched/sched.h, and
include them in all files that require them.
Move of the rest of the header dependencies to the top of the
kernel/sched/sched.h file.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Similarly to kernel/sched/build_utility.c, collect all 'scheduling policy' related
source code files into kernel/sched/build_policy.c:
kernel/sched/idle.c
kernel/sched/rt.c
kernel/sched/cpudeadline.c
kernel/sched/pelt.c
kernel/sched/cputime.c
kernel/sched/deadline.c
With the exception of fair.c, which we continue to build as a separate file
for build efficiency and parallelism reasons.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Collect all utility functionality source code files into a single kernel/sched/build_utility.c file,
via #include-ing the .c files:
kernel/sched/clock.c
kernel/sched/completion.c
kernel/sched/loadavg.c
kernel/sched/swait.c
kernel/sched/wait_bit.c
kernel/sched/wait.c
CONFIG_CPU_FREQ:
kernel/sched/cpufreq.c
CONFIG_CPU_FREQ_GOV_SCHEDUTIL:
kernel/sched/cpufreq_schedutil.c
CONFIG_CGROUP_CPUACCT:
kernel/sched/cpuacct.c
CONFIG_SCHED_DEBUG:
kernel/sched/debug.c
CONFIG_SCHEDSTATS:
kernel/sched/stats.c
CONFIG_SMP:
kernel/sched/cpupri.c
kernel/sched/stop_task.c
kernel/sched/topology.c
CONFIG_SCHED_CORE:
kernel/sched/core_sched.c
CONFIG_PSI:
kernel/sched/psi.c
CONFIG_MEMBARRIER:
kernel/sched/membarrier.c
CONFIG_CPU_ISOLATION:
kernel/sched/isolation.c
CONFIG_SCHED_AUTOGROUP:
kernel/sched/autogroup.c
The goal is to amortize the 60+ KLOC header bloat from over a dozen build units into
a single build unit.
The build time of build_utility.c also roughly matches the build time of core.c and
fair.c - allowing better load-balancing of scheduler-only rebuilds.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Use the canonical header guard naming of the full path to the header.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
The NUMA topology parameters (sched_numa_topology_type,
sched_domains_numa_levels, and sched_max_numa_distance, etc.)
identified by scheduler may be wrong for systems with CPU-less nodes.
For example, the ACPI SLIT of a system with CPU-less persistent
memory (Intel Optane DCPMM) nodes is as follows,
[000h 0000 4] Signature : "SLIT" [System Locality Information Table]
[004h 0004 4] Table Length : 0000042C
[008h 0008 1] Revision : 01
[009h 0009 1] Checksum : 59
[00Ah 0010 6] Oem ID : "XXXX"
[010h 0016 8] Oem Table ID : "XXXXXXX"
[018h 0024 4] Oem Revision : 00000001
[01Ch 0028 4] Asl Compiler ID : "INTL"
[020h 0032 4] Asl Compiler Revision : 20091013
[024h 0036 8] Localities : 0000000000000004
[02Ch 0044 4] Locality 0 : 0A 15 11 1C
[030h 0048 4] Locality 1 : 15 0A 1C 11
[034h 0052 4] Locality 2 : 11 1C 0A 1C
[038h 0056 4] Locality 3 : 1C 11 1C 0A
While the `numactl -H` output is as follows,
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
node 0 size: 64136 MB
node 0 free: 5981 MB
node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 64466 MB
node 1 free: 10415 MB
node 2 cpus:
node 2 size: 253952 MB
node 2 free: 253920 MB
node 3 cpus:
node 3 size: 253952 MB
node 3 free: 253951 MB
node distances:
node 0 1 2 3
0: 10 21 17 28
1: 21 10 28 17
2: 17 28 10 28
3: 28 17 28 10
In this system, there are only 2 sockets. In each memory controller,
both DRAM and PMEM DIMMs are installed. Although the physical NUMA
topology is simple, the logical NUMA topology becomes a little
complex. Because both the distance(0, 1) and distance (1, 3) are less
than the distance (0, 3), it appears that node 1 sits between node 0
and node 3. And the whole system appears to be a glueless mesh NUMA
topology type. But it's definitely not, there is even no CPU in node 3.
This isn't a practical problem now yet. Because the PMEM nodes (node
2 and node 3 in example system) are offlined by default during system
boot. So init_numa_topology_type() called during system boot will
ignore them and set sched_numa_topology_type to NUMA_DIRECT. And
init_numa_topology_type() is only called at runtime when a CPU of a
never-onlined-before node gets plugged in. And there's no CPU in the
PMEM nodes. But it appears better to fix this to make the code more
robust.
To test the potential problem. We have used a debug patch to call
init_numa_topology_type() when the PMEM node is onlined (in
__set_migration_target_nodes()). With that, the NUMA parameters
identified by scheduler is as follows,
sched_numa_topology_type: NUMA_GLUELESS_MESH
sched_domains_numa_levels: 4
sched_max_numa_distance: 28
To fix the issue, the CPU-less nodes are ignored when the NUMA topology
parameters are identified. Because a node may become CPU-less or not
at run time because of CPU hotplug, the NUMA topology parameters need
to be re-initialized at runtime for CPU hotplug too.
With the patch, the NUMA parameters identified for the example system
above is as follows,
sched_numa_topology_type: NUMA_DIRECT
sched_domains_numa_levels: 2
sched_max_numa_distance: 21
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220214121553.582248-1-ying.huang@intel.com
sugov_update_single_{freq, perf}() contains a 'busy' filter that ensures
we don't bring the frqeuency down if there's no idle time (CPU is busy).
The problem is that with uclamp_max we will have scenarios where a busy
task is capped to run at a lower frequency and this filter prevents
applying the capping when this task starts running.
We handle this by skipping the filter when uclamp is enabled and the rq
is being capped by uclamp_max.
We introduce a new function uclamp_rq_is_capped() to help detecting when
this capping is taking effect. Some code shuffling was required to allow
using cpu_util_{cfs, rt}() in this new function.
On 2 Core SMT2 Intel laptop I see:
Without this patch:
uclampset -M 0 sysbench --test=cpu --threads = 4 run
produces a score of ~3200 consistently. Which is the highest possible.
Compiling the kernel also results in frequency running at max 3.1GHz all
the time - running uclampset -M 400 to cap it has no effect without this
patch.
With this patch:
uclampset -M 0 sysbench --test=cpu --threads = 4 run
produces a score of ~1100 with some outliers in ~1700. Uclamp max
aggregates the performance requirements, so having high values sometimes
is expected if some other task happens to require that frequency starts
running at the same time.
When compiling the kernel with uclampset -M 400 I can see the
frequencies mostly in the ~2GHz region. Helpful to conserve power and
prevent heating when not plugged in.
Fixes: 982d9cdc22 ("sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211216225320.2957053-2-qais.yousef@arm.com
cpu_util_cfs() was created by commit d4edd662ac ("sched/cpufreq: Use
the DEADLINE utilization signal") to enable the access to CPU
utilization from the Schedutil CPUfreq governor.
Commit a07630b8b2 ("sched/cpufreq/schedutil: Use util_est for OPP
selection") added util_est support later.
The only thing cpu_util() is doing on top of what cpu_util_cfs() already
does is to clamp the return value to the [0..capacity_orig] capacity
range of the CPU. Integrating this into cpu_util_cfs() is not harming
the existing users (Schedutil and CPUfreq cooling (latter via
sched_cpu_util() wrapper)).
For straightforwardness, prefer to keep using `int cpu` as the function
parameter over using `struct rq *rq` which might avoid some calls to
cpu_rq(cpu) -> per_cpu(runqueues, cpu) -> RELOC_HIDE().
Update cfs_util()'s documentation and reuse it for cpu_util_cfs().
Remove cpu_util().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20211118164240.623551-1-dietmar.eggemann@arm.com
Adds accounting for "forced idle" time, which is time where a cookie'd
task forces its SMT sibling to idle, despite the presence of runnable
tasks.
Forced idle time is one means to measure the cost of enabling core
scheduling (ie. the capacity lost due to the need to force idle).
Forced idle time is attributed to the thread responsible for causing
the forced idle.
A few details:
- Forced idle time is displayed via /proc/PID/sched. It also requires
that schedstats is enabled.
- Forced idle is only accounted when a sibling hyperthread is held
idle despite the presence of runnable tasks. No time is charged if
a sibling is idle but has no runnable tasks.
- Tasks with 0 cookie are never charged forced idle.
- For SMT > 2, we scale the amount of forced idle charged based on the
number of forced idle siblings. Additionally, we split the time up and
evenly charge it to all running tasks, as each is equally responsible
for the forced idle.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211018203428.2025792-1-joshdon@google.com
Kevin is reporting crashes which point to a use-after-free of a cfs_rq
in update_blocked_averages(). Initial debugging revealed that we've
live cfs_rq's (on_list=1) in an about to be kfree()'d task group in
free_fair_sched_group(). However, it was unclear how that can happen.
His kernel config happened to lead to a layout of struct sched_entity
that put the 'my_q' member directly into the middle of the object
which makes it incidentally overlap with SLUB's freelist pointer.
That, in combination with SLAB_FREELIST_HARDENED's freelist pointer
mangling, leads to a reliable access violation in form of a #GP which
made the UAF fail fast.
Michal seems to have run into the same issue[1]. He already correctly
diagnosed that commit a7b359fc6a ("sched/fair: Correctly insert
cfs_rq's to list on unthrottle") is causing the preconditions for the
UAF to happen by re-adding cfs_rq's also to task groups that have no
more running tasks, i.e. also to dead ones. His analysis, however,
misses the real root cause and it cannot be seen from the crash
backtrace only, as the real offender is tg_unthrottle_up() getting
called via sched_cfs_period_timer() via the timer interrupt at an
inconvenient time.
When unregister_fair_sched_group() unlinks all cfs_rq's from the dying
task group, it doesn't protect itself from getting interrupted. If the
timer interrupt triggers while we iterate over all CPUs or after
unregister_fair_sched_group() has finished but prior to unlinking the
task group, sched_cfs_period_timer() will execute and walk the list of
task groups, trying to unthrottle cfs_rq's, i.e. re-add them to the
dying task group. These will later -- in free_fair_sched_group() -- be
kfree()'ed while still being linked, leading to the fireworks Kevin
and Michal are seeing.
To fix this race, ensure the dying task group gets unlinked first.
However, simply switching the order of unregistering and unlinking the
task group isn't sufficient, as concurrent RCU walkers might still see
it, as can be seen below:
CPU1: CPU2:
: timer IRQ:
: do_sched_cfs_period_timer():
: :
: distribute_cfs_runtime():
: rcu_read_lock();
: :
: unthrottle_cfs_rq():
sched_offline_group(): :
: walk_tg_tree_from(…,tg_unthrottle_up,…):
list_del_rcu(&tg->list); :
(1) : list_for_each_entry_rcu(child, &parent->children, siblings)
: :
(2) list_del_rcu(&tg->siblings); :
: tg_unthrottle_up():
unregister_fair_sched_group(): struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
: :
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); :
: :
: if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
(3) : list_add_leaf_cfs_rq(cfs_rq);
: :
: :
: :
: :
: :
(4) : rcu_read_unlock();
CPU 2 walks the task group list in parallel to sched_offline_group(),
specifically, it'll read the soon to be unlinked task group entry at
(1). Unlinking it on CPU 1 at (2) therefore won't prevent CPU 2 from
still passing it on to tg_unthrottle_up(). CPU 1 now tries to unlink
all cfs_rq's via list_del_leaf_cfs_rq() in
unregister_fair_sched_group(). Meanwhile CPU 2 will re-add some of
these at (3), which is the cause of the UAF later on.
To prevent this additional race from happening, we need to wait until
walk_tg_tree_from() has finished traversing the task groups, i.e.
after the RCU read critical section ends in (4). Afterwards we're safe
to call unregister_fair_sched_group(), as each new walk won't see the
dying task group any more.
On top of that, we need to wait yet another RCU grace period after
unregister_fair_sched_group() to ensure print_cfs_stats(), which might
run concurrently, always sees valid objects, i.e. not already free'd
ones.
This patch survives Michal's reproducer[2] for 8h+ now, which used to
trigger within minutes before.
[1] https://lore.kernel.org/lkml/20211011172236.11223-1-mkoutny@suse.com/
[2] https://lore.kernel.org/lkml/20211102160228.GA57072@blackbody.suse.cz/
Fixes: a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
[peterz: shuffle code around a bit]
Reported-by: Kevin Tanguy <kevin.tanguy@corp.ovh.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cross-architecture update to move task_struct::cpu back into thread_info
on arm64, x86, s390, powerpc, and riscv. All Acked by arch maintainers.
Quoting Ard Biesheuvel:
"Move task_struct::cpu back into thread_info
Keeping CPU in task_struct is problematic for architectures that define
raw_smp_processor_id() in terms of this field, as it requires
linux/sched.h to be included, which causes a lot of pain in terms of
circular dependencies (aka 'header soup')
This series moves it back into thread_info (where it came from) for all
architectures that enable THREAD_INFO_IN_TASK, addressing the header
soup issue as well as some pointless differences in the implementations
of task_cpu() and set_task_cpu()."
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmGAEPYWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJq4wEACItgLuyzPgB2eSLVMc3sHPIWcn
EUWbAWsuzJH79wmJtn2AKxW/C5OLBNGeoNjkXQvFN3ULkQDPrfCpB4x/tB6CjIQI
WRDf8kO7oaAD85ZrbSwyFl/MFfrD67f6H1HZoB9FKWAzuv/Bp2xQ0Kf06Dv4HEZp
CzprzZuWtjHB+qgyy+EpGOge3zbFmCuYPE2QpMYLWgs1rcVW9OYvoCI6AYtNefrC
6Kl6CbmBb1k6lFxkhM7wvRcIJthBl6Bajpc3Z2uL1aLb27dVpQZs3YpY859Knb6U
ZpOQCRJOMui3HOxyF3bDUI37y0XVLm6xaNM6C/7i0XS1GiFlSxkGVamg+Mp7anpI
+hdK5kqtSagaBC9CaJvRHnWIex1npQAfiyDNdyiEbrsUJ1dp6/zZcQSe4/m/XRbi
vywQPGxU9f1ASshzHsGU2TJf7Ps7qHulUsS5fKwmHU2ZjQnbYCoPN10JGO9gKjOX
yioN5xsKnbPY9j0ys3l9XBqaMJ8KAr1XspplTGIMZIVbjNMlqrfgbg8Qn8T8WGM7
oUqudMIxczilj0/iEGfGRxBeFaYAfhGQCDnxNlNX9g7Xe/gHTJgNYlHVxL55jHNu
AoPE3Gd0X8K9fbov0BCB6a21XwGJ6Wj+FSrnvuyWrRuy8JWiDFJaVKUBEcalKr7a
MhoUNQPu5M83OdC42A==
=PzvV
-----END PGP SIGNATURE-----
Merge tag 'cpu-to-thread_info-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull thread_info update to move 'cpu' back from task_struct from Kees Cook:
"Cross-architecture update to move task_struct::cpu back into
thread_info on arm64, x86, s390, powerpc, and riscv. All Acked by arch
maintainers.
Quoting Ard Biesheuvel:
'Move task_struct::cpu back into thread_info
Keeping CPU in task_struct is problematic for architectures that
define raw_smp_processor_id() in terms of this field, as it
requires linux/sched.h to be included, which causes a lot of pain
in terms of circular dependencies (aka 'header soup')
This series moves it back into thread_info (where it came from)
for all architectures that enable THREAD_INFO_IN_TASK, addressing
the header soup issue as well as some pointless differences in the
implementations of task_cpu() and set_task_cpu()'"
* tag 'cpu-to-thread_info-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
riscv: rely on core code to keep thread_info::cpu updated
powerpc: smp: remove hack to obtain offset of task_struct::cpu
sched: move CPU field back into thread_info if THREAD_INFO_IN_TASK=y
powerpc: add CPU field to struct thread_info
s390: add CPU field to struct thread_info
x86: add CPU field to struct thread_info
arm64: add CPU field to struct thread_info
- Revert the printk format based wchan() symbol resolution as it can leak
the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset and
__sched_setscheduler() introduced a new lock dependency which is now
triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/OUkTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoR/5D/9ikdGNpKg9osNqJ3GjAmxsK6kVkB29
iFe2k8pIpWDToWQf/wQRGih4Yj3Cl49QSnZcPIibh2/12EB1qrrW6iSPJkInz8Ec
/1LS5/Vewn2OyoxyXZjdvGC5gTXEodSbIazASvX7nvdMeI4gsAsL5etzrMJirT/t
aymqvr7zovvywrwMTQJrGjUMo9l4ewE8tafMNNhRu1BHU1U4ojM9yvThyRAAcmp7
3Xy49A+Yq3IgrvYI4u8FMK5Zh08KaxSFjiLhePGm/bF+wSfYmWop2TP1jY05W2Uo
ti8hfbJMUoFRYuMxAiEldkItnc0wV4M9PtWZZ/x+B71bs65Y4Zjt9cW+rxJv2+m1
vzV31EsQwGnOti072dzWN4c/cZqngVXAjaNtErvDwJUr+Tw1ayv9KUvuodMQqZY6
mu68bFUO2kV9EMe1CBOv51Uy1RGHyLj3rlNqrkw+Xp5ISE9Ad2vhUEiRp5bQx5Ci
V/XFhGZkGUluh0vccrdFlNYZwhj8cZEzkOPCnPSeZ+bq8SyZE6xuHH/lTP1CJCOy
s800rW1huM+kgV+zRN8adDkGXibAk9N3RtVGnQXmuEy8gB9LZmQg+JeM2wsc9B+6
i0gdqZnsjNAfoK+BBAG4holxptSL8/eOJsFH8ZNIoxQ+iqooyPx9tFX7yXnRTBQj
d2qWG7UvoseT+g==
=fgtS
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- Revert the printk format based wchan() symbol resolution as it can
leak the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset
and __sched_setscheduler() introduced a new lock dependency which is
now triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
* tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
sched/fair: Cleanup newidle_balance
sched/fair: Remove sysctl_sched_migration_cost condition
sched/fair: Wait before decaying max_newidle_lb_cost
sched/fair: Skip update_blocked_averages if we are defering load balance
sched/fair: Account update_blocked_averages in newidle_balance cost
x86: Fix __get_wchan() for !STACKTRACE
sched,x86: Fix L2 cache mask
sched/core: Remove rq_relock()
sched: Improve wake_up_all_idle_cpus() take #2
irq_work: Also rcuwait for !IRQ_WORK_HARD_IRQ on PREEMPT_RT
irq_work: Handle some irq_work in a per-CPU thread on PREEMPT_RT
irq_work: Allow irq_work_sync() to sleep if irq_work() no IRQ support.
sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
sched: Add cluster scheduler level for x86
sched: Add cluster scheduler level in core and related Kconfig for ARM64
topology: Represent clusters of CPUs within a die
sched: Disable -Wunused-but-set-variable
sched: Add wrapper for get_wchan() to keep task blocked
x86: Fix get_wchan() to support the ORC unwinder
proc: Use task_is_running() for wchan in /proc/$pid/stat
...
Only core.c needs blkdev.h, so move the #include statement there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210920123328.1399408-8-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Make cookie functions static as these are no longer invoked directly
by other code.
No functional change intended.
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210922085735.52812-1-zhangshaokun@hisilicon.com
There exist situations in which the load balance needs to know the
properties of the CPUs in a scheduling group. When using asymmetric
packing, for instance, the load balancer needs to know not only the
state of dst_cpu but also of its SMT siblings, if any.
Use the flags of the child scheduling domains to initialize scheduling
group flags. This will reflect the properties of the CPUs in the
group.
A subsequent changeset will make use of these new flags. No functional
changes are introduced.
Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-3-ricardo.neri-calderon@linux.intel.com
Two new statistics are introduced to show the internal of burst feature
and explain why burst helps or not.
nr_bursts: number of periods bandwidth burst occurs
burst_time: cumulative wall-time (in nanoseconds) that any cpus has
used above quota in respective periods
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210830032215.16302-2-changhuaixin@linux.alibaba.com
Use a small, non-scaled min granularity for SCHED_IDLE entities, when
competing with normal entities. This reduces the latency of getting
a normal entity back on cpu, at the expense of increased context
switch frequency of SCHED_IDLE entities.
The benefit of this change is to reduce the round-robin latency for
normal entities when competing with a SCHED_IDLE entity.
Example: on a machine with HZ=1000, spawned two threads, one of which is
SCHED_IDLE, and affined to one cpu. Without this patch, the SCHED_IDLE
thread runs for 4ms then waits for 1.4s. With this patch, it runs for
1ms and waits 340ms (as it round-robins with the other thread).
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210820010403.946838-4-joshdon@google.com
Adds cfs_rq->idle_nr_running, which accounts the number of idle entities
directly enqueued on the cfs_rq.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210820010403.946838-3-joshdon@google.com
A following patch will trigger NOHZ idle balances as a means to update
nohz.next_balance. Vincent noted that blocked load updates can have
non-negligible overhead, which should be avoided if the intent is to only
update nohz.next_balance.
Add a new NOHZ balance kick flag, NOHZ_NEXT_KICK. Gate NOHZ blocked load
update by the presence of NOHZ_STATS_KICK - currently all NOHZ balance
kicks will have the NOHZ_STATS_KICK flag set, so no change in behaviour is
expected.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210823111700.2842997-2-valentin.schneider@arm.com
THREAD_INFO_IN_TASK moved the CPU field out of thread_info, but this
causes some issues on architectures that define raw_smp_processor_id()
in terms of this field, due to the fact that #include'ing linux/sched.h
to get at struct task_struct is problematic in terms of circular
dependencies.
Given that thread_info and task_struct are the same data structure
anyway when THREAD_INFO_IN_TASK=y, let's move it back so that having
access to the type definition of struct thread_info is sufficient to
reference the CPU number of the current task.
Note that this requires THREAD_INFO_IN_TASK's definition of the
task_thread_info() helper to be updated, as task_cpu() takes a
pointer-to-const, whereas task_thread_info() (which is used to generate
lvalues as well), needs a non-const pointer. So make it a macro instead.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
- The biggest change in this cycle is scheduler support for asymmetric
scheduling affinity, to support the execution of legacy 32-bit tasks on
AArch32 systems that also have 64-bit-only CPUs.
Architectures can fill in this functionality by defining their
own task_cpu_possible_mask(p). When this is done, the scheduler will
make sure the task will only be scheduled on CPUs that support it.
(The actual arm64 specific changes are not part of this tree.)
For other architectures there will be no change in functionality.
- Add cgroup SCHED_IDLE support
- Increase node-distance flexibility & delay determining it until a CPU
is brought online. (This enables platforms where node distance isn't
final until the CPU is only.)
- Deadline scheduler enhancements & fixes
- Misc fixes & cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmEsrDgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gMxBAAmzXPnDm1pDBBUaEwc+DynNGHNxZcBO5E
CaNyfywp4GMA+OC3JzUgDg1B9uvKQRdBGtv6SZ8OcyhJMfmkEvjt5/wYUrcdtQVP
TA2lt80/Is8LQMnvcz7X0gmsLt+fXWQTF8ik1KT4wsi/k03Xw8BH11zHct6sV2QN
NNQ+7BEjqU1HA1UXJFiaoGtWF0gdh29VyE5dSzfAis79L0XUQadS512LJKin/AK0
wYz8E+L7QIrjhfX9FQdOrR6da4TK6jAXyEY6a9dpaMHnFdtxuwhT4/BPtovNTeeY
yxEZm3qSZbpghWHsMEa6Z4GIeLE6aNi3wcHt10fgdZDdotSRsNZuF6gi4A8nhRC+
6wm+fCcFGEIBCL6eE/16Wms6YMdFfuiEAgtJGNy7GGyfH3/mS6u8eylXbLZncYXn
DFHY+xUvmVZSzoPzcnYXEy4FB3kywNL7WBFxyhdXf5/EvWmmtHi4K3jVQ8jaqvhL
MDk3NX9Hd0ariff3zUltWhMY5ouj6bIbBZmWWnD3s1xQT68VvE563cq0qH15dlnr
j5M71eNRWvoOdZKzflgjRZzmdQtsZQ51tiMA6W6ZRfwYkHjb70qiia0r5GFf41X1
MYelmcaA8+RjKrQ5etxzzDjoXl0xDXiZric6gRQHjG1Y1Zm2rVaoD+vkJGD5TQJ0
2XTOGQgAxh4=
=VdGE
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- The biggest change in this cycle is scheduler support for asymmetric
scheduling affinity, to support the execution of legacy 32-bit tasks
on AArch32 systems that also have 64-bit-only CPUs.
Architectures can fill in this functionality by defining their own
task_cpu_possible_mask(p). When this is done, the scheduler will make
sure the task will only be scheduled on CPUs that support it.
(The actual arm64 specific changes are not part of this tree.)
For other architectures there will be no change in functionality.
- Add cgroup SCHED_IDLE support
- Increase node-distance flexibility & delay determining it until a CPU
is brought online. (This enables platforms where node distance isn't
final until the CPU is only.)
- Deadline scheduler enhancements & fixes
- Misc fixes & cleanups.
* tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
eventfd: Make signal recursion protection a task bit
sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED case
sched: Introduce dl_task_check_affinity() to check proposed affinity
sched: Allow task CPU affinity to be restricted on asymmetric systems
sched: Split the guts of sched_setaffinity() into a helper function
sched: Introduce task_struct::user_cpus_ptr to track requested affinity
sched: Reject CPU affinity changes based on task_cpu_possible_mask()
cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()
cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus()
cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1
sched: Introduce task_cpu_possible_mask() to limit fallback rq selection
sched: Cgroup SCHED_IDLE support
sched/topology: Skip updating masks for non-online nodes
sched: Replace deprecated CPU-hotplug functions.
sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS
sched: Fix UCLAMP_FLAG_IDLE setting
sched/deadline: Fix missing clock update in migrate_task_rq_dl()
sched/fair: Avoid a second scan of target in select_idle_cpu
sched/fair: Use prev instead of new target as recent_used_cpu
sched: Don't report SCHED_FLAG_SUGOV in sched_getattr()
...
push_rt_task() attempts to move the currently running task away if the
next runnable task has migration disabled and therefore is pinned on the
current CPU.
The current task is retrieved via get_push_task() which only checks for
nr_cpus_allowed == 1, but does not check whether the task has migration
disabled and therefore cannot be moved either. The consequence is a
pointless invocation of the migration thread which correctly observes
that the task cannot be moved.
Return NULL if the task has migration disabled and cannot be moved to
another CPU.
Fixes: a7c81556ec ("sched: Fix migrate_disable() vs rt/dl balancing")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210826133738.yiotqbtdaxzjsnfj@linutronix.de
Asymmetric systems may not offer the same level of userspace ISA support
across all CPUs, meaning that some applications cannot be executed by
some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do
not feature support for 32-bit applications on both clusters.
Although userspace can carefully manage the affinity masks for such
tasks, one place where it is particularly problematic is execve()
because the CPU on which the execve() is occurring may be incompatible
with the new application image. In such a situation, it is desirable to
restrict the affinity mask of the task and ensure that the new image is
entered on a compatible CPU. From userspace's point of view, this looks
the same as if the incompatible CPUs have been hotplugged off in the
task's affinity mask. Similarly, if a subsequent execve() reverts to
a compatible image, then the old affinity is restored if it is still
valid.
In preparation for restricting the affinity mask for compat tasks on
arm64 systems without uniform support for 32-bit applications, introduce
{force,relax}_compatible_cpus_allowed_ptr(), which respectively restrict
and restore the affinity mask for a task based on the compatible CPUs.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210730112443.23245-9-will@kernel.org
This extends SCHED_IDLE to cgroups.
Interface: cgroup/cpu.idle.
0: default behavior
1: SCHED_IDLE
Extending SCHED_IDLE to cgroups means that we incorporate the existing
aspects of SCHED_IDLE; a SCHED_IDLE cgroup will count all of its
descendant threads towards the idle_h_nr_running count of all of its
ancestor cgroups. Thus, sched_idle_rq() will work properly.
Additionally, SCHED_IDLE cgroups are configured with minimum weight.
There are two key differences between the per-task and per-cgroup
SCHED_IDLE interface:
- The cgroup interface allows tasks within a SCHED_IDLE hierarchy to
maintain their relative weights. The entity that is "idle" is the
cgroup, not the tasks themselves.
- Since the idle entity is the cgroup, our SCHED_IDLE wakeup preemption
decision is not made by comparing the current task with the woken
task, but rather by comparing their matching sched_entity.
A typical use-case for this is a user that creates an idle and a
non-idle subtree. The non-idle subtree will dominate competition vs
the idle subtree, but the idle subtree will still be high priority vs
other users on the system. The latter is accomplished via comparing
matching sched_entity in the waken preemption path (this could also be
improved by making the sched_idle_rq() decision dependent on the
perspective of a specific task).
For now, we maintain the existing SCHED_IDLE semantics. Future patches
may make improvements that extend how we treat SCHED_IDLE entities.
The per-task_group idle field is an integer that currently only holds
either a 0 or a 1. This is explicitly typed as an integer to allow for
further extensions to this API. For example, a negative value may
indicate a highly latency-sensitive cgroup that should be preferred
for preemption/placement/etc.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210730020019.1487127-2-joshdon@google.com
Eugene tripped over the case where rq_lock(), as called in a
for_each_possible_cpu() loop came apart because rq->core hadn't been
setup yet.
This is a somewhat unusual, but valid case.
Rework things such that rq->core is initialized to point at itself. IOW
initialize each CPU as a single threaded Core. CPU online will then join
the new CPU (thread) to an existing Core where needed.
For completeness sake, have CPU offline fully undo the state so as to
not presume the topology will match the next time it comes online.
Fixes: 9edeaea1bc ("sched: Core-wide rq->lock")
Reported-by: Eugene Syromiatnikov <esyr@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Don <joshdon@google.com>
Tested-by: Eugene Syromiatnikov <esyr@redhat.com>
Link: https://lkml.kernel.org/r/YR473ZGeKqMs6kw+@hirez.programming.kicks-ass.net
It is possible for sched_getattr() to incorrectly report the state of
the reset_on_fork flag when called on a deadline task.
Indeed, if the flag was set on a deadline task using sched_setattr()
with flags (SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_KEEP_PARAMS), then
p->sched_reset_on_fork will be set, but __setscheduler() will bail out
early, which means that the dl_se->flags will not get updated by
__setscheduler_params()->__setparam_dl(). Consequently, if
sched_getattr() is then called on the task, __getparam_dl() will
override kattr.sched_flags with the now out-of-date copy in dl_se->flags
and report the stale value to userspace.
To fix this, make sure to only copy the flags that are relevant to
sched_deadline to and from the dl_se->flags field.
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210727101103.2729607-2-qperret@google.com
When a task wakes up on an idle rq, uclamp_rq_util_with() would max
aggregate with rq value. But since there is no task enqueued yet, the
values are stale based on the last task that was running. When the new
task actually wakes up and enqueued, then the rq uclamp values should
reflect that of the newly woken up task effective uclamp values.
This is a problem particularly for uclamp_max because it default to
1024. If a task p with uclamp_max = 512 wakes up, then max aggregation
would ignore the capping that should apply when this task is enqueued,
which is wrong.
Fix that by ignoring max aggregation if the rq is idle since in that
case the effective uclamp value of the rq will be the ones of the task
that will wake up.
Fixes: 9d20ad7dfc ("sched/uclamp: Add uclamp_util_with()")
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
[qias: Changelog]
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Link: https://lore.kernel.org/r/20210630141204.8197-1-xuewen.yan94@gmail.com
Since commit '8a99b6833c88(sched: Move SCHED_DEBUG sysctl to debugfs)',
SCHED_DEBUG sysctls are moved to debugfs, so these extern sysctls in
include/linux/sched/sysctl.h are no longer needed for sysctl.c, even
some are no longer needed.
So move those extern sysctls that needed by kernel/sched/debug.c to
kernel/sched/sched.h, and remove others that are no longer needed.
Signed-off-by: Hailong Liu <liu.hailong6@zte.com.cn>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210606115451.26745-1-liuhailongg6@163.com
The CFS bandwidth controller limits CPU requests of a task group to
quota during each period. However, parallel workloads might be bursty
so that they get throttled even when their average utilization is under
quota. And they are latency sensitive at the same time so that
throttling them is undesired.
We borrow time now against our future underrun, at the cost of increased
interference against the other system users. All nicely bounded.
Traditional (UP-EDF) bandwidth control is something like:
(U = \Sum u_i) <= 1
This guaranteeds both that every deadline is met and that the system is
stable. After all, if U were > 1, then for every second of walltime,
we'd have to run more than a second of program time, and obviously miss
our deadline, but the next deadline will be further out still, there is
never time to catch up, unbounded fail.
This work observes that a workload doesn't always executes the full
quota; this enables one to describe u_i as a statistical distribution.
For example, have u_i = {x,e}_i, where x is the p(95) and x+e p(100)
(the traditional WCET). This effectively allows u to be smaller,
increasing the efficiency (we can pack more tasks in the system), but at
the cost of missing deadlines when all the odds line up. However, it
does maintain stability, since every overrun must be paired with an
underrun as long as our x is above the average.
That is, suppose we have 2 tasks, both specify a p(95) value, then we
have a p(95)*p(95) = 90.25% chance both tasks are within their quota and
everything is good. At the same time we have a p(5)p(5) = 0.25% chance
both tasks will exceed their quota at the same time (guaranteed deadline
fail). Somewhere in between there's a threshold where one exceeds and
the other doesn't underrun enough to compensate; this depends on the
specific CDFs.
At the same time, we can say that the worst case deadline miss, will be
\Sum e_i; that is, there is a bounded tardiness (under the assumption
that x+e is indeed WCET).
The benefit of burst is seen when testing with schbench. Default value of
kernel.sched_cfs_bandwidth_slice_us(5ms) and CONFIG_HZ(1000) is used.
mkdir /sys/fs/cgroup/cpu/test
echo $$ > /sys/fs/cgroup/cpu/test/cgroup.procs
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_quota_us
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_burst_us
./schbench -m 1 -t 3 -r 20 -c 80000 -R 10
The average CPU usage is at 80%. I run this for 10 times, and got long tail
latency for 6 times and got throttled for 8 times.
Tail latencies are shown below, and it wasn't the worst case.
Latency percentiles (usec)
50.0000th: 19872
75.0000th: 21344
90.0000th: 22176
95.0000th: 22496
*99.0000th: 22752
99.5000th: 22752
99.9000th: 22752
min=0, max=22727
rps: 9.90 p95 (usec) 22496 p99 (usec) 22752 p95/cputime 28.12% p99/cputime 28.44%
The interferenece when using burst is valued by the possibilities for
missing the deadline and the average WCET. Test results showed that when
there many cgroups or CPU is under utilized, the interference is
limited. More details are shown in:
https://lore.kernel.org/lkml/5371BD36-55AE-4F71-B9D7-B86DC32E3D2B@linux.alibaba.com/
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210621092800.23714-2-changhuaixin@linux.alibaba.com
This is a partial forward-port of Peter Ziljstra's work first posted
at:
https://lore.kernel.org/lkml/20180530142236.667774973@infradead.org/
Currently select_idle_cpu()'s proportional scheme uses the average idle
time *for when we are idle*, that is temporally challenged. When a CPU
is not at all idle, we'll happily continue using whatever value we did
see when the CPU goes idle. To fix this, introduce a separate average
idle and age it (the existing value still makes sense for things like
new-idle balancing, which happens when we do go idle).
The overall goal is to not spend more time scanning for idle CPUs than
we're idle for. Otherwise we're inhibiting work. This means that we need to
consider the cost over all the wake-ups between consecutive idle periods.
To track this, the scan cost is subtracted from the estimated average
idle time.
The impact of this patch is related to workloads that have domains that
are fully busy or overloaded. Without the patch, the scan depth may be
too high because a CPU is not reaching idle.
Due to the nature of the patch, this is a regression magnet. It
potentially wins when domains are almost fully busy or overloaded --
at that point searches are likely to fail but idle is not being aged
as CPUs are active so search depth is too large and useless. It will
potentially show regressions when there are idle CPUs and a deep search is
beneficial. This tbench result on a 2-socket broadwell machine partially
illustates the problem
5.13.0-rc2 5.13.0-rc2
vanilla sched-avgidle-v1r5
Hmean 1 445.02 ( 0.00%) 451.36 * 1.42%*
Hmean 2 830.69 ( 0.00%) 846.03 * 1.85%*
Hmean 4 1350.80 ( 0.00%) 1505.56 * 11.46%*
Hmean 8 2888.88 ( 0.00%) 2586.40 * -10.47%*
Hmean 16 5248.18 ( 0.00%) 5305.26 * 1.09%*
Hmean 32 8914.03 ( 0.00%) 9191.35 * 3.11%*
Hmean 64 10663.10 ( 0.00%) 10192.65 * -4.41%*
Hmean 128 18043.89 ( 0.00%) 18478.92 * 2.41%*
Hmean 256 16530.89 ( 0.00%) 17637.16 * 6.69%*
Hmean 320 16451.13 ( 0.00%) 17270.97 * 4.98%*
Note that 8 was a regression point where a deeper search would have helped
but it gains for high thread counts when searches are useless. Hackbench
is a more extreme example although not perfect as the tasks idle rapidly
hackbench-process-pipes
5.13.0-rc2 5.13.0-rc2
vanilla sched-avgidle-v1r5
Amean 1 0.3950 ( 0.00%) 0.3887 ( 1.60%)
Amean 4 0.9450 ( 0.00%) 0.9677 ( -2.40%)
Amean 7 1.4737 ( 0.00%) 1.4890 ( -1.04%)
Amean 12 2.3507 ( 0.00%) 2.3360 * 0.62%*
Amean 21 4.0807 ( 0.00%) 4.0993 * -0.46%*
Amean 30 5.6820 ( 0.00%) 5.7510 * -1.21%*
Amean 48 8.7913 ( 0.00%) 8.7383 ( 0.60%)
Amean 79 14.3880 ( 0.00%) 13.9343 * 3.15%*
Amean 110 21.2233 ( 0.00%) 19.4263 * 8.47%*
Amean 141 28.2930 ( 0.00%) 25.1003 * 11.28%*
Amean 172 34.7570 ( 0.00%) 30.7527 * 11.52%*
Amean 203 41.0083 ( 0.00%) 36.4267 * 11.17%*
Amean 234 47.7133 ( 0.00%) 42.0623 * 11.84%*
Amean 265 53.0353 ( 0.00%) 47.7720 * 9.92%*
Amean 296 60.0170 ( 0.00%) 53.4273 * 10.98%*
Stddev 1 0.0052 ( 0.00%) 0.0025 ( 51.57%)
Stddev 4 0.0357 ( 0.00%) 0.0370 ( -3.75%)
Stddev 7 0.0190 ( 0.00%) 0.0298 ( -56.64%)
Stddev 12 0.0064 ( 0.00%) 0.0095 ( -48.38%)
Stddev 21 0.0065 ( 0.00%) 0.0097 ( -49.28%)
Stddev 30 0.0185 ( 0.00%) 0.0295 ( -59.54%)
Stddev 48 0.0559 ( 0.00%) 0.0168 ( 69.92%)
Stddev 79 0.1559 ( 0.00%) 0.0278 ( 82.17%)
Stddev 110 1.1728 ( 0.00%) 0.0532 ( 95.47%)
Stddev 141 0.7867 ( 0.00%) 0.0968 ( 87.69%)
Stddev 172 1.0255 ( 0.00%) 0.0420 ( 95.91%)
Stddev 203 0.8106 ( 0.00%) 0.1384 ( 82.92%)
Stddev 234 1.1949 ( 0.00%) 0.1328 ( 88.89%)
Stddev 265 0.9231 ( 0.00%) 0.0820 ( 91.11%)
Stddev 296 1.0456 ( 0.00%) 0.1327 ( 87.31%)
Again, higher thread counts benefit and the standard deviation
shows that results are also a lot more stable when the idle
time is aged.
The patch potentially matters when a socket was multiple LLCs as the
maximum search depth is lower. However, some of the test results were
suspiciously good (e.g. specjbb2005 gaining 50% on a Zen1 machine) and
other results were not dramatically different to other mcahines.
Given the nature of the patch, Peter's full series is not being forward
ported as each part should stand on its own. Preferably they would be
merged at different times to reduce the risk of false bisections.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210615111611.GH30378@techsingularity.net
Make:
struct dl_rq::dl_nr_migratory
struct dl_rq::dl_nr_running
struct rt_rq::rt_nr_boosted
struct rt_rq::rt_nr_migratory
struct rt_rq::rt_nr_total
struct rq::nr_uninterruptible
32-bit.
If total number of tasks can't exceed 2**32 (and less due to futex pid
limits), then per-runqueue counters can't as well.
This patchset has been sponsored by REX Prefix Eradication Society.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210422200228.1423391-4-adobriyan@gmail.com
In order to not have to use pid_struct, create a new, smaller,
structure to manage task cookies for core scheduling.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.919768100@infradead.org
- Don't migrate if there is a cookie mismatch
Load balance tries to move task from busiest CPU to the
destination CPU. When core scheduling is enabled, if the
task's cookie does not match with the destination CPU's
core cookie, this task may be skipped by this CPU. This
mitigates the forced idle time on the destination CPU.
- Select cookie matched idle CPU
In the fast path of task wakeup, select the first cookie matched
idle CPU instead of the first idle CPU.
- Find cookie matched idlest CPU
In the slow path of task wakeup, find the idlest CPU whose core
cookie matches with task's cookie
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.860083871@infradead.org
When a sibling is forced-idle to match the core-cookie; search for
matching tasks to fill the core.
rcu_read_unlock() can incur an infrequent deadlock in
sched_core_balance(). Fix this by using the RCU-sched flavor instead.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.800048269@infradead.org
During force-idle, we end up doing cross-cpu comparison of vruntimes
during pick_next_task. If we simply compare (vruntime-min_vruntime)
across CPUs, and if the CPUs only have 1 task each, we will always
end up comparing 0 with 0 and pick just one of the tasks all the time.
This starves the task that was not picked. To fix this, take a snapshot
of the min_vruntime when entering force idle and use it for comparison.
This min_vruntime snapshot will only be used for cross-CPU vruntime
comparison, and nothing else.
A note about the min_vruntime snapshot and force idling:
During selection:
When we're not fi, we need to update snapshot.
when we're fi and we were not fi, we must update snapshot.
When we're fi and we were already fi, we must not update snapshot.
Which gives:
fib fi update
0 0 1
0 1 1
1 0 1
1 1 0
Where:
fi: force-idled now
fib: force-idled before
So the min_vruntime snapshot needs to be updated when: !(fib && fi).
Also, the cfs_prio_less() function needs to be aware of whether the
core is in force idle or not, since it will be use this information to
know whether to advance a cfs_rq's min_vruntime_fi in the hierarchy.
So pass this information along via pick_task() -> prio_less().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.738542617@infradead.org
If there is only one long running local task and the sibling is
forced idle, it might not get a chance to run until a schedule
event happens on any cpu in the core.
So we check for this condition during a tick to see if a sibling
is starved and then give it a chance to schedule.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.617407840@infradead.org
Instead of only selecting a local task, select a task for all SMT
siblings for every reschedule on the core (irrespective which logical
CPU does the reschedule).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.557559654@infradead.org
Introduce task_struct::core_cookie as an opaque identifier for core
scheduling. When enabled; core scheduling will only allow matching
task to be on the core; where idle matches everything.
When task_struct::core_cookie is set (and core scheduling is enabled)
these tasks are indexed in a second RB-tree, first on cookie value
then on scheduling function, such that matching task selection always
finds the most elegible match.
NOTE: *shudder* at the overhead...
NOTE: *sigh*, a 3rd copy of the scheduling function; the alternative
is per class tracking of cookies and that just duplicates a lot of
stuff for no raisin (the 2nd copy lives in the rt-mutex PI code).
[Joel: folded fixes]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.496975854@infradead.org
Because sched_class::pick_next_task() also implies
sched_class::set_next_task() (and possibly put_prev_task() and
newidle_balance) it is not state invariant. This makes it unsuitable
for remote task selection.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[Vineeth: folded fixes]
Signed-off-by: Vineeth Remanan Pillai <viremana@linux.microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.437092775@infradead.org
rq_lockp() includes a static_branch(), which is asm-goto, which is
asm volatile which defeats regular CSE. This means that:
if (!static_branch(&foo))
return simple;
if (static_branch(&foo) && cond)
return complex;
Doesn't fold and we get horrible code. Introduce __rq_lockp() without
the static_branch() on.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.316696988@infradead.org
Introduce the basic infrastructure to have a core wide rq->lock.
This relies on the rq->__lock order being in increasing CPU number
(inside a core). It is also constrained to SMT8 per lockdep (and
SMT256 per preempt_count).
Luckily SMT8 is the max supported SMT count for Linux (Mips, Sparc and
Power are known to have this).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/YJUNfzSgptjX7tG6@hirez.programming.kicks-ass.net
When switching on core-sched, CPUs need to agree which lock to use for
their RQ.
The new rule will be that rq->core_enabled will be toggled while
holding all rq->__locks that belong to a core. This means we need to
double check the rq->core_enabled value after each lock acquire and
retry if it changed.
This also has implications for those sites that take multiple RQ
locks, they need to be careful that the second lock doesn't end up
being the first lock.
Verify the lock pointer after acquiring the first lock, because if
they're on the same core, holding any of the rq->__lock instances will
pin the core state.
While there, change the rq->__lock order to CPU number, instead of rq
address, this greatly simplifies the next patch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/YJUNY0dmrJMD/BIm@hirez.programming.kicks-ass.net
In preparation of playing games with rq->lock, abstract the thing
using an accessor.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.136465446@infradead.org
In prepration for playing games with rq->lock, add some rq_lock
wrappers.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.075967879@infradead.org
CPU scheduler marks need_resched flag to signal a schedule() on a
particular CPU. But, schedule() may not happen immediately in cases
where the current task is executing in the kernel mode (no
preemption state) for extended periods of time.
This patch adds a warn_on if need_resched is pending for more than the
time specified in sysctl resched_latency_warn_ms. If it goes off, it is
likely that there is a missing cond_resched() somewhere. Monitoring is
done via the tick and the accuracy is hence limited to jiffy scale. This
also means that we won't trigger the warning if the tick is disabled.
This feature (LATENCY_WARN) is default disabled.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210416212936.390566-1-joshdon@google.com
CONFIG_SCHED_DEBUG is the build-time Kconfig knob, the boot param
sched_debug and the /debug/sched/debug_enabled knobs control the
sched_debug_enabled variable, but what they really do is make
SCHED_DEBUG more verbose, so rename the lot.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Move the #ifdef SCHED_DEBUG bits to kernel/sched/debug.c in order to
collect all the debugfs bits.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.353833279@infradead.org
Stop polluting sysctl with undocumented knobs that really are debug
only, move them all to /debug/sched/ along with the existing
/debug/sched_* files that already exist.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.287610138@infradead.org
Use the new cpu_dying() state to simplify and fix the balance_push()
vs CPU hotplug rollback state.
Specifically, we currently rely on notifiers sched_cpu_dying() /
sched_cpu_activate() to terminate balance_push, however if the
cpu_down() fails when we're past sched_cpu_deactivate(), it should
terminate balance_push at that point and not wait until we hit
sched_cpu_activate().
Similarly, when cpu_up() fails and we're going back down, balance_push
should be active, where it currently is not.
So instead, make sure balance_push is enabled below SCHED_AP_ACTIVE
(when !cpu_active()), and gate it's utility with cpu_dying().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/YHgAYef83VQhKdC2@hirez.programming.kicks-ass.net
Fix ~42 single-word typos in scheduler code comments.
We have accumulated a few fun ones over the years. :-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-kernel@vger.kernel.org
A significant portion of __calc_delta() time is spent in the loop
shifting a u64 by 32 bits. Use `fls` instead of iterating.
This is ~7x faster on benchmarks.
The generic `fls` implementation (`generic_fls`) is still ~4x faster
than the loop.
Architectures that have a better implementation will make use of it. For
example, on x86 we get an additional factor 2 in speed without dedicated
implementation.
On GCC, the asm versions of `fls` are about the same speed as the
builtin. On Clang, the versions that use fls are more than twice as
slow as the builtin. This is because the way the `fls` function is
written, clang puts the value in memory:
https://godbolt.org/z/EfMbYe. This bug is filed at
https://bugs.llvm.org/show_bug.cgi?idI406.
```
name cpu/op
BM_Calc<__calc_delta_loop> 9.57ms Â=B112%
BM_Calc<__calc_delta_generic_fls> 2.36ms Â=B113%
BM_Calc<__calc_delta_asm_fls> 2.45ms Â=B113%
BM_Calc<__calc_delta_asm_fls_nomem> 1.66ms Â=B112%
BM_Calc<__calc_delta_asm_fls64> 2.46ms Â=B113%
BM_Calc<__calc_delta_asm_fls64_nomem> 1.34ms Â=B115%
BM_Calc<__calc_delta_builtin> 1.32ms Â=B111%
```
Signed-off-by: Clement Courbet <courbet@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210303224653.2579656-1-joshdon@google.com
Syzbot reported a handful of occurrences where an sd->nr_balance_failed can
grow to much higher values than one would expect.
A successful load_balance() resets it to 0; a failed one increments
it. Once it gets to sd->cache_nice_tries + 3, this *should* trigger an
active balance, which will either set it to sd->cache_nice_tries+1 or reset
it to 0. However, in case the to-be-active-balanced task is not allowed to
run on env->dst_cpu, then the increment is done without any further
modification.
This could then be repeated ad nauseam, and would explain the absurdly high
values reported by syzbot (86, 149). VincentG noted there is value in
letting sd->cache_nice_tries grow, so the shift itself should be
fixed. That means preventing:
"""
If the value of the right operand is negative or is greater than or equal
to the width of the promoted left operand, the behavior is undefined.
"""
Thus we need to cap the shift exponent to
BITS_PER_TYPE(typeof(lefthand)) - 1.
I had a look around for other similar cases via coccinelle:
@expr@
position pos;
expression E1;
expression E2;
@@
(
E1 >> E2@pos
|
E1 >> E2@pos
)
@cst depends on expr@
position pos;
expression expr.E1;
constant cst;
@@
(
E1 >> cst@pos
|
E1 << cst@pos
)
@script:python depends on !cst@
pos << expr.pos;
exp << expr.E2;
@@
# Dirty hack to ignore constexpr
if exp.upper() != exp:
coccilib.report.print_report(pos[0], "Possible UB shift here")
The only other match in kernel/sched is rq_clock_thermal() which employs
sched_thermal_decay_shift, and that exponent is already capped to 10, so
that one is fine.
Fixes: 5a7f555904 ("sched/fair: Relax constraint on task's load during load balance")
Reported-by: syzbot+d7581744d5fd27c9fbe1@syzkaller.appspotmail.com
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lore.kernel.org/r/000000000000ffac1205b9a2112f@google.com
Instead of waking up a random and already idle CPU, we can take advantage
of this_cpu being about to enter idle to run the ILB and update the
blocked load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-7-vincent.guittot@linaro.org
The HRTICK feature has traditionally been servicing configurations that
need precise preemptions point for NORMAL tasks. More recently, the
feature has been extended to also service DEADLINE tasks with stringent
runtime enforcement needs (e.g., runtime < 1ms with HZ=1000).
Enabling HRTICK sched feature currently enables the additional timer and
task tick for both classes, which might introduced undesired overhead
for no additional benefit if one needed it only for one of the cases.
Separate HRTICK sched feature in two (and leave the traditional case
name unmodified) so that it can be selectively enabled when needed.
With:
$ echo HRTICK > /sys/kernel/debug/sched_features
the NORMAL/fair hrtick gets enabled.
With:
$ echo HRTICK_DL > /sys/kernel/debug/sched_features
the DEADLINE hrtick gets enabled.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210208073554.14629-3-juri.lelli@redhat.com
Hung tasks and RCU stall cases were reported on systems which were not
100% busy. Investigation of such unexpected cases (no sign of potential
starvation caused by tasks hogging the system) pointed out that the
periodic sched tick timer wasn't serviced anymore after a certain point
and that caused all machinery that depends on it (timers, RCU, etc.) to
stop working as well. This issues was however only reproducible if
HRTICK was enabled.
Looking at core dumps it was found that the rbtree of the hrtimer base
used also for the hrtick was corrupted (i.e. next as seen from the base
root and actual leftmost obtained by traversing the tree are different).
Same base is also used for periodic tick hrtimer, which might get "lost"
if the rbtree gets corrupted.
Much alike what described in commit 1f71addd34 ("tick/sched: Do not
mess with an enqueued hrtimer") there is a race window between
hrtimer_set_expires() in hrtick_start and hrtimer_start_expires() in
__hrtick_restart() in which the former might be operating on an already
queued hrtick hrtimer, which might lead to corruption of the base.
Use hrtick_start() (which removes the timer before enqueuing it back) to
ensure hrtick hrtimer reprogramming is entirely guarded by the base
lock, so that no race conditions can occur.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210208073554.14629-2-juri.lelli@redhat.com
The only remaining use of MAX_USER_PRIO (and USER_PRIO) is the
SCALE_PRIO() definition in the PowerPC Cell architecture's Synergistic
Processor Unit (SPU) scheduler. TASK_USER_PRIO isn't used anymore.
Commit fe443ef2ac ("[POWERPC] spusched: Dynamic timeslicing for
SCHED_OTHER") copied SCALE_PRIO() from the task scheduler in v2.6.23.
Commit a4ec24b48d ("sched: tidy up SCHED_RR") removed it from the task
scheduler in v2.6.24.
Commit 3ee237dddc ("sched/prio: Add 3 macros of MAX_NICE, MIN_NICE and
NICE_WIDTH in prio.h") introduced NICE_WIDTH much later.
With:
MAX_USER_PRIO = USER_PRIO(MAX_PRIO)
= MAX_PRIO - MAX_RT_PRIO
MAX_PRIO = MAX_RT_PRIO + NICE_WIDTH
MAX_USER_PRIO = MAX_RT_PRIO + NICE_WIDTH - MAX_RT_PRIO
MAX_USER_PRIO = NICE_WIDTH
MAX_USER_PRIO can be replaced by NICE_WIDTH to be able to remove all the
{*_}USER_PRIO defines.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210128131040.296856-3-dietmar.eggemann@arm.com
In preparation of using the balance_push state in ttwu() we need it to
provide a reliable and consistent state.
The immediate problem is that rq->balance_callback gets cleared every
schedule() and then re-set in the balance_push_callback() itself. This
is not a reliable signal, so add a variable that stays set during the
entire time.
Also move setting it before the synchronize_rcu() in
sched_cpu_deactivate(), such that we get guaranteed visibility to
ttwu(), which is a preempt-disable region.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103506.966069627@infradead.org
There is nothing schedutil specific in schedutil_cpu_util(), rename it
to effective_cpu_util(). Also create and expose another wrapper
sched_cpu_util() which can be used by other parts of the kernel, like
thermal core (that will be done in a later commit).
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/db011961fb3bb8bef1c0eda5cd64564637d3ef31.1607400596.git.viresh.kumar@linaro.org
The kernel test robot measured a -1.6% performance regression on
will-it-scale/sched_yield due to commit:
2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Even though we were careful to replace a single load with another
single load from the same cacheline.
Restore finish_lock_switch() to the exact state before the offending
patch and solve the problem differently.
Fixes: 2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201210161408.GX3021@hirez.programming.kicks-ass.net
Now that the scheduler can deal with migrate disable properly, there is no
real compelling reason to make it only available for RT.
There are quite some code pathes which needlessly disable preemption in
order to prevent migration and some constructs like kmap_atomic() enforce
it implicitly.
Making it available independent of RT allows to provide a preemptible
variant of kmap_atomic() and makes the code more consistent in general.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Grudgingly-Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.269943012@linutronix.de
Only select_task_rq_fair() uses that parameter to do an actual domain
search, other classes only care about what kind of wakeup is happening
(fork, exec, or "regular") and thus just translate the flag into a wakeup
type.
WF_TTWU and WF_EXEC have just been added, use these along with WF_FORK to
encode the wakeup types we care about. For select_task_rq_fair(), we can
simply use the shiny new WF_flag : SD_flag mapping.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201102184514.2733-3-valentin.schneider@arm.com
To remove the sd_flag parameter of select_task_rq(), we need another way of
encoding wakeup types. There already is a WF_FORK flag, add the missing two.
With that said, we still need an easy way to turn WF_foo into
SD_bar (e.g. WF_TTWU into SD_BALANCE_WAKE). As suggested by Peter, let's
make our lives easier and make them match exactly, and throw in some
compile-time checks for good measure.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201102184514.2733-2-valentin.schneider@arm.com
In order to minimize the interference of migrate_disable() on lower
priority tasks, which can be deprived of runtime due to being stuck
below a higher priority task. Teach the RT/DL balancers to push away
these higher priority tasks when a lower priority task gets selected
to run on a freshly demoted CPU (pull).
This adds migration interference to the higher priority task, but
restores bandwidth to system that would otherwise be irrevocably lost.
Without this it would be possible to have all tasks on the system
stuck on a single CPU, each task preempted in a migrate_disable()
section with a single high priority task running.
This way we can still approximate running the M highest priority tasks
on the system.
Migrating the top task away is (ofcourse) still subject to
migrate_disable() too, which means the lower task is subject to an
interference equivalent to the worst case migrate_disable() section.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102347.499155098@infradead.org
On CPU unplug tasks which are in a migrate disabled region cannot be pushed
to a different CPU until they returned to migrateable state.
Account the number of tasks on a runqueue which are in a migrate disabled
section and make the hotplug wait mechanism respect that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102347.067278757@infradead.org
Add the base migrate_disable() support (under protest).
While migrate_disable() is (currently) required for PREEMPT_RT, it is
also one of the biggest flaws in the system.
Notably this is just the base implementation, it is broken vs
sched_setaffinity() and hotplug, both solved in additional patches for
ease of review.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.818170844@infradead.org
Thread a u32 flags word through the *set_cpus_allowed*() callchain.
This will allow adding behavioural tweaks for future users.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.729082820@infradead.org
RT kernels need to ensure that all tasks which are not per CPU kthreads
have left the outgoing CPU to guarantee that no tasks are force migrated
within a migrate disabled section.
There is also some desire to (ab)use fine grained CPU hotplug control to
clear a CPU from active state to force migrate tasks which are not per CPU
kthreads away for power control purposes.
Add a mechanism which waits until all tasks which should leave the CPU
after the CPU active flag is cleared have moved to a different online CPU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.377836842@infradead.org
In preparation for migrate_disable(), make sure only per-cpu kthreads
are allowed to run on !active CPUs.
This is ran (as one of the very first steps) from the cpu-hotplug
task which is a per-cpu kthread and completion of the hotplug
operation only requires such tasks.
This constraint enables the migrate_disable() implementation to wait
for completion of all migrate_disable regions on this CPU at hotplug
time without fear of any new ones starting.
This replaces the unlikely(rq->balance_callbacks) test at the tail of
context_switch with an unlikely(rq->balance_work), the fast path is
not affected.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.292709163@infradead.org
The intent of balance_callback() has always been to delay executing
balancing operations until the end of the current rq->lock section.
This is because balance operations must often drop rq->lock, and that
isn't safe in general.
However, as noted by Scott, there were a few holes in that scheme;
balance_callback() was called after rq->lock was dropped, which means
another CPU can interleave and touch the callback list.
Rework code to call the balance callbacks before dropping rq->lock
where possible, and otherwise splice the balance list onto a local
stack.
This guarantees that the balance list must be empty when we take
rq->lock. IOW, we'll only ever run our own balance callbacks.
Reported-by: Scott Wood <swood@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.203901269@infradead.org
Florian reported that all of kernel/sched/ is rebuild when
CONFIG_BLK_DEV_INITRD is changed, which, while not a bug is
unexpected. This is due to us including vmlinux.lds.h.
Jakub explained that the problem is that we put the alignment
requirement on the type instead of on a variable. Type alignment is a
minimum, the compiler is free to pick any larger alignment for a
specific instance of the type (eg. the variable).
So force the type alignment on all individual variable definitions and
remove the undesired dependency on vmlinux.lds.h.
Fixes: 85c2ce9104 ("sched, vmlinux.lds: Increase STRUCT_ALIGNMENT to 64 bytes for GCC-4.9")
Reported-by: Florian Fainelli <f.fainelli@gmail.com>
Suggested-by: Jakub Jelinek <jakub@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
When change sched_rt_{runtime, period}_us, we validate that the new
settings should at least accommodate the currently allocated -dl
bandwidth:
sched_rt_handler()
--> sched_dl_bandwidth_validate()
{
new_bw = global_rt_runtime()/global_rt_period();
for_each_possible_cpu(cpu) {
dl_b = dl_bw_of(cpu);
if (new_bw < dl_b->total_bw) <-------
ret = -EBUSY;
}
}
But under CONFIG_SMP, dl_bw is per root domain , but not per CPU,
dl_b->total_bw is the allocated bandwidth of the whole root domain.
Instead, we should compare dl_b->total_bw against "cpus*new_bw",
where 'cpus' is the number of CPUs of the root domain.
Also, below annotation(in kernel/sched/sched.h) implied implementation
only appeared in SCHED_DEADLINE v2[1], then deadline scheduler kept
evolving till got merged(v9), but the annotation remains unchanged,
meaningless and misleading, update it.
* With respect to SMP, the bandwidth is given on a per-CPU basis,
* meaning that:
* - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
* - dl_total_bw array contains, in the i-eth element, the currently
* allocated bandwidth on the i-eth CPU.
[1]: https://lore.kernel.org/lkml/1267385230.13676.101.camel@Palantir/
Fixes: 332ac17ef5 ("sched/deadline: Add bandwidth management for SCHED_DEADLINE tasks")
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/db6bbda316048cda7a1bbc9571defde193a8d67e.1602171061.git.iwtbavbm@gmail.com
Under CONFIG_SMP, dl_bw is per root domain, but not per CPU.
When checking or updating dl_bw, currently iterating every CPU is
overdoing, just need iterate each root domain once.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/78d21ee792cc48ff79e8cd62a5f26208463684d6.1602171061.git.iwtbavbm@gmail.com
Commit:
765cc3a4b2 ("sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds")
made sched features static for !CONFIG_SCHED_DEBUG configurations, but
overlooked the CONFIG_SCHED_DEBUG=y and !CONFIG_JUMP_LABEL cases.
For the latter echoing changes to /sys/kernel/debug/sched_features has
the nasty effect of effectively changing what sched_features reports,
but without actually changing the scheduler behaviour (since different
translation units get different sysctl_sched_features).
Fix CONFIG_SCHED_DEBUG=y and !CONFIG_JUMP_LABEL configurations by properly
restructuring ifdefs.
Fixes: 765cc3a4b2 ("sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds")
Co-developed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Patrick Bellasi <patrick.bellasi@matbug.net>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20201013053114.160628-1-juri.lelli@redhat.com
In the following commit:
04f5c362ec: ("sched/fair: Replace zero-length array with flexible-array")
a zero-length array cpumask[0] has been replaced with cpumask[].
But there is still a cpumask[0] in 'struct sched_group_capacity'
which was missed.
The point of using [] instead of [0] is that with [] the compiler will
generate a build warning if it isn't the last member of a struct.
[ mingo: Rewrote the changelog. ]
Signed-off-by: zhuguangqing <zhuguangqing@xiaomi.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20201014140220.11384-1-zhuguangqing83@gmail.com
The count field is meant to tell if an update to nr_running
is an add or a subtract. Make it do so by adding the missing
minus sign.
Fixes: 9d246053a6 ("sched: Add a tracepoint to track rq->nr_running")
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200805203138.1411-1-pauld@redhat.com
Rather that hide their purpose in some dark, damp corner of Documentation/,
add some documentation to the default implementations.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200731192016.7484-2-valentin.schneider@arm.com
In sched_update_tick_dependency() there's two calls that check
whether nohz_full is enabled: tick_nohz_full_cpu() does it
implicitly, while there's also an explicit call to tick_nohz_full_enabled().
Remove the duplicated, open coded check.
[ mingo: Amended the changelog. ]
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/1595935075-14223-1-git-send-email-linmiaohe@huawei.com
Dave hit the problem fixed by commit:
b6e13e8582 ("sched/core: Fix ttwu() race")
and failed to understand much of the code involved. Per his request a
few comments to (hopefully) clarify things.
Requested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200702125211.GQ4800@hirez.programming.kicks-ass.net
Add a bare tracepoint trace_sched_update_nr_running_tp which tracks
->nr_running CPU's rq. This is used to accurately trace this data and
provide a visualization of scheduler imbalances in, for example, the
form of a heat map. The tracepoint is accessed by loading an external
kernel module. An example module (forked from Qais' module and including
the pelt related tracepoints) can be found at:
https://github.com/auldp/tracepoints-helpers.git
A script to turn the trace-cmd report output into a heatmap plot can be
found at:
https://github.com/jirvoz/plot-nr-running
The tracepoints are added to add_nr_running() and sub_nr_running() which
are in kernel/sched/sched.h. In order to avoid CREATE_TRACE_POINTS in
the header a wrapper call is used and the trace/events/sched.h include
is moved before sched.h in kernel/sched/core.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200629192303.GC120228@lorien.usersys.redhat.com
There is a report that when uclamp is enabled, a netperf UDP test
regresses compared to a kernel compiled without uclamp.
https://lore.kernel.org/lkml/20200529100806.GA3070@suse.de/
While investigating the root cause, there were no sign that the uclamp
code is doing anything particularly expensive but could suffer from bad
cache behavior under certain circumstances that are yet to be
understood.
https://lore.kernel.org/lkml/20200616110824.dgkkbyapn3io6wik@e107158-lin/
To reduce the pressure on the fast path anyway, add a static key that is
by default will skip executing uclamp logic in the
enqueue/dequeue_task() fast path until it's needed.
As soon as the user start using util clamp by:
1. Changing uclamp value of a task with sched_setattr()
2. Modifying the default sysctl_sched_util_clamp_{min, max}
3. Modifying the default cpu.uclamp.{min, max} value in cgroup
We flip the static key now that the user has opted to use util clamp.
Effectively re-introducing uclamp logic in the enqueue/dequeue_task()
fast path. It stays on from that point forward until the next reboot.
This should help minimize the effect of util clamp on workloads that
don't need it but still allow distros to ship their kernels with uclamp
compiled in by default.
SCHED_WARN_ON() in uclamp_rq_dec_id() was removed since now we can end
up with unbalanced call to uclamp_rq_dec_id() if we flip the key while
a task is running in the rq. Since we know it is harmless we just
quietly return if we attempt a uclamp_rq_dec_id() when
rq->uclamp[].bucket[].tasks is 0.
In schedutil, we introduce a new uclamp_is_enabled() helper which takes
the static key into account to ensure RT boosting behavior is retained.
The following results demonstrates how this helps on 2 Sockets Xeon E5
2x10-Cores system.
nouclamp uclamp uclamp-static-key
Hmean send-64 162.43 ( 0.00%) 157.84 * -2.82%* 163.39 * 0.59%*
Hmean send-128 324.71 ( 0.00%) 314.78 * -3.06%* 326.18 * 0.45%*
Hmean send-256 641.55 ( 0.00%) 628.67 * -2.01%* 648.12 * 1.02%*
Hmean send-1024 2525.28 ( 0.00%) 2448.26 * -3.05%* 2543.73 * 0.73%*
Hmean send-2048 4836.14 ( 0.00%) 4712.08 * -2.57%* 4867.69 * 0.65%*
Hmean send-3312 7540.83 ( 0.00%) 7425.45 * -1.53%* 7621.06 * 1.06%*
Hmean send-4096 9124.53 ( 0.00%) 8948.82 * -1.93%* 9276.25 * 1.66%*
Hmean send-8192 15589.67 ( 0.00%) 15486.35 * -0.66%* 15819.98 * 1.48%*
Hmean send-16384 26386.47 ( 0.00%) 25752.25 * -2.40%* 26773.74 * 1.47%*
The perf diff between nouclamp and uclamp-static-key when uclamp is
disabled in the fast path:
8.73% -1.55% [kernel.kallsyms] [k] try_to_wake_up
0.07% +0.04% [kernel.kallsyms] [k] deactivate_task
0.13% -0.02% [kernel.kallsyms] [k] activate_task
The diff between nouclamp and uclamp-static-key when uclamp is enabled
in the fast path:
8.73% -0.72% [kernel.kallsyms] [k] try_to_wake_up
0.13% +0.39% [kernel.kallsyms] [k] activate_task
0.07% +0.38% [kernel.kallsyms] [k] deactivate_task
Fixes: 69842cba9a ("sched/uclamp: Add CPU's clamp buckets refcounting")
Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20200630112123.12076-3-qais.yousef@arm.com
For some mysterious reason GCC-4.9 has a 64 byte section alignment for
structures, all other GCC versions (and Clang) tested (including 4.8
and 5.0) are fine with the 32 bytes alignment.
Getting this right is important for the new SCHED_DATA macro that
creates an explicitly ordered array of 'struct sched_class' in the
linker script and expect pointer arithmetic to work.
Fixes: c3a340f7e7 ("sched: Have sched_class_highest define by vmlinux.lds.h")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200630144905.GX4817@hirez.programming.kicks-ass.net
Use a better name for this poorly named flag, to avoid confusion...
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200622100825.785115830@infradead.org
Now that the sched_class descriptors are defined in order via the linker
script vmlinux.lds.h, there's no reason to have a "next" pointer to the
previous priroity structure. The order of the sturctures can be aligned as
an array, and used to index and find the next sched_class descriptor.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191219214558.845353593@goodmis.org
Now that the sched_class descriptors are defined by the linker script, and
this needs to be aware of the existance of stop_sched_class when SMP is
enabled or not, as it is used as the "highest" priority when defined. Move
the declaration of sched_class_highest to the same location in the linker
script that inserts stop_sched_class, and this will also make it easier to
see what should be defined as the highest class, as this linker script
location defines the priorities as well.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191219214558.682913590@goodmis.org
The current SCHED_DEADLINE (DL) scheduler uses a global EDF scheduling
algorithm w/o considering CPU capacity or task utilization.
This works well on homogeneous systems where DL tasks are guaranteed
to have a bounded tardiness but presents issues on heterogeneous
systems.
A DL task can migrate to a CPU which does not have enough CPU capacity
to correctly serve the task (e.g. a task w/ 70ms runtime and 100ms
period on a CPU w/ 512 capacity).
Add the DL fitness function dl_task_fits_capacity() for DL admission
control on heterogeneous systems. A task fits onto a CPU if:
CPU original capacity / 1024 >= task runtime / task deadline
Use this function on heterogeneous systems to try to find a CPU which
meets this criterion during task wakeup, push and offline migration.
On homogeneous systems the original behavior of the DL admission
control should be retained.
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-5-dietmar.eggemann@arm.com
The current SCHED_DEADLINE (DL) admission control ensures that
sum of reserved CPU bandwidth < x * M
where
x = /proc/sys/kernel/sched_rt_{runtime,period}_us
M = # CPUs in root domain.
DL admission control works well for homogeneous systems where the
capacity of all CPUs are equal (1024). I.e. bounded tardiness for DL
and non-starvation of non-DL tasks is guaranteed.
But on heterogeneous systems where capacity of CPUs are different it
could fail by over-allocating CPU time on smaller capacity CPUs.
On an Arm big.LITTLE/DynamIQ system DL tasks can easily starve other
tasks making it unusable.
Fix this by explicitly considering the CPU capacity in the DL admission
test by replacing M with the root domain CPU capacity sum.
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-4-dietmar.eggemann@arm.com
Commit 6d1cafd8b5 ("sched: Resched proper CPU on yield_to()") moved
the code to resched the CPU from yield_to_task_fair() to yield_to()
making the preempt parameter in sched_class->yield_to_task()
unnecessary. Remove it. No other sched_class implements yield_to_task().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-3-dietmar.eggemann@arm.com
The recent commit: 90b5363acd ("sched: Clean up scheduler_ipi()")
got smp_call_function_single_async() subtly wrong. Even though it will
return -EBUSY when trying to re-use a csd, that condition is not
atomic and still requires external serialization.
The change in ttwu_queue_remote() got this wrong.
While on first reading ttwu_queue_remote() has an atomic test-and-set
that appears to serialize the use, the matching 'release' is not in
the right place to actually guarantee this serialization.
The actual race is vs the sched_ttwu_pending() call in the idle loop;
that can run the wakeup-list without consuming the CSD.
Instead of trying to chain the lists, merge them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161908.129371594@infradead.org
In preparation of removing rq->wake_list, replace the
!list_empty(rq->wake_list) with rq->ttwu_pending. This is not fully
equivalent as this new variable is racy.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161908.070399698@infradead.org
Just like the ttwu_queue_remote() IPI, make use of _TIF_POLLING_NRFLAG
to avoid sending IPIs to idle CPUs.
[ mingo: Fix UP build bug. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161907.953304789@infradead.org
The recent commit: 90b5363acd ("sched: Clean up scheduler_ipi()")
got smp_call_function_single_async() subtly wrong. Even though it will
return -EBUSY when trying to re-use a csd, that condition is not
atomic and still requires external serialization.
The change in kick_ilb() got this wrong.
While on first reading kick_ilb() has an atomic test-and-set that
appears to serialize the use, the matching 'release' is not in the
right place to actually guarantee this serialization.
Rework the nohz_idle_balance() trigger so that the release is in the
IPI callback and thus guarantees the required serialization for the
CSD.
Fixes: 90b5363acd ("sched: Clean up scheduler_ipi()")
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: mgorman@techsingularity.net
Link: https://lore.kernel.org/r/20200526161907.778543557@infradead.org
The previous commit:
c6e7bd7afa: ("sched/core: Optimize ttwu() spinning on p->on_cpu")
avoids spinning on p->on_rq when the task is descheduling, but only if the
wakee is on a CPU that does not share cache with the waker.
This patch offloads the activation of the wakee to the CPU that is about to
go idle if the task is the only one on the runqueue. This potentially allows
the waker task to continue making progress when the wakeup is not strictly
synchronous.
This is very obvious with netperf UDP_STREAM running on localhost. The
waker is sending packets as quickly as possible without waiting for any
reply. It frequently wakes the server for the processing of packets and
when netserver is using local memory, it quickly completes the processing
and goes back to idle. The waker often observes that netserver is on_rq
and spins excessively leading to a drop in throughput.
This is a comparison of 5.7-rc6 against "sched: Optimize ttwu() spinning
on p->on_cpu" and against this patch labeled vanilla, optttwu-v1r1 and
localwakelist-v1r2 respectively.
5.7.0-rc6 5.7.0-rc6 5.7.0-rc6
vanilla optttwu-v1r1 localwakelist-v1r2
Hmean send-64 251.49 ( 0.00%) 258.05 * 2.61%* 305.59 * 21.51%*
Hmean send-128 497.86 ( 0.00%) 519.89 * 4.43%* 600.25 * 20.57%*
Hmean send-256 944.90 ( 0.00%) 997.45 * 5.56%* 1140.19 * 20.67%*
Hmean send-1024 3779.03 ( 0.00%) 3859.18 * 2.12%* 4518.19 * 19.56%*
Hmean send-2048 7030.81 ( 0.00%) 7315.99 * 4.06%* 8683.01 * 23.50%*
Hmean send-3312 10847.44 ( 0.00%) 11149.43 * 2.78%* 12896.71 * 18.89%*
Hmean send-4096 13436.19 ( 0.00%) 13614.09 ( 1.32%) 15041.09 * 11.94%*
Hmean send-8192 22624.49 ( 0.00%) 23265.32 * 2.83%* 24534.96 * 8.44%*
Hmean send-16384 34441.87 ( 0.00%) 36457.15 * 5.85%* 35986.21 * 4.48%*
Note that this benefit is not universal to all wakeups, it only applies
to the case where the waker often spins on p->on_rq.
The impact can be seen from a "perf sched latency" report generated from
a single iteration of one packet size:
-----------------------------------------------------------------------------------------------------------------
Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |
-----------------------------------------------------------------------------------------------------------------
vanilla
netperf:4337 | 21709.193 ms | 2932 | avg: 0.002 ms | max: 0.041 ms | max at: 112.154512 s
netserver:4338 | 14629.459 ms | 5146990 | avg: 0.001 ms | max: 1615.864 ms | max at: 140.134496 s
localwakelist-v1r2
netperf:4339 | 29789.717 ms | 2460 | avg: 0.002 ms | max: 0.059 ms | max at: 138.205389 s
netserver:4340 | 18858.767 ms | 7279005 | avg: 0.001 ms | max: 0.362 ms | max at: 135.709683 s
-----------------------------------------------------------------------------------------------------------------
Note that the average wakeup delay is quite small on both the vanilla
kernel and with the two patches applied. However, there are significant
outliers with the vanilla kernel with the maximum one measured as 1615
milliseconds with a vanilla kernel but never worse than 0.362 ms with
both patches applied and a much higher rate of context switching.
Similarly a separate profile of cycles showed that 2.83% of all cycles
were spent in try_to_wake_up() with almost half of the cycles spent
on spinning on p->on_rq. With the two patches, the percentage of cycles
spent in try_to_wake_up() drops to 1.13%
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jirka Hladky <jhladky@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: valentin.schneider@arm.com
Cc: Hillf Danton <hdanton@sina.com>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lore.kernel.org/r/20200524202956.27665-3-mgorman@techsingularity.net
When users write some huge number into cpu.cfs_quota_us or
cpu.rt_runtime_us, overflow might happen during to_ratio() shifts of
schedulable checks.
to_ratio() could be altered to avoid unnecessary internal overflow, but
min_cfs_quota_period is less than 1 << BW_SHIFT, so a cutoff would still
be needed. Set a cap MAX_BW for cfs_quota_us and rt_runtime_us to
prevent overflow.
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Link: https://lkml.kernel.org/r/20200425105248.60093-1-changhuaixin@linux.alibaba.com
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200507192141.GA16183@embeddedor
The scheduler IPI has grown weird and wonderful over the years, time
for spring cleaning.
Move all the non-trivial stuff out of it and into a regular smp function
call IPI. This then reduces the schedule_ipi() to most of it's former NOP
glory and ensures to keep the interrupt vector lean and mean.
Aside of that avoiding the full irq_enter() in the x86 IPI implementation
is incorrect as scheduler_ipi() can be instrumented. To work around that
scheduler_ipi() had an irq_enter/exit() hack when heavy work was
pending. This is gone now.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134058.361859938@linutronix.de
After Commit 6e2df0581f ("sched: Fix pick_next_task() vs 'change'
pattern race"), there is no need to expose newidle_balance() as it
is only used within fair.c file. Change this function back to static again.
No functional change.
Reported-by: kbuild test robot <lkp@intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/83cd3030b031ca5d646cd5e225be10e7a0fdd8f5.1587464698.git.yu.c.chen@intel.com
This is mostly a revert of commit:
baa9be4ffb ("sched/fair: Fix throttle_list starvation with low CFS quota")
The primary use of distribute_running was to determine whether to add
throttled entities to the head or the tail of the throttled list. Now
that we always add to the tail, we can remove this field.
The other use of distribute_running is in the slack_timer, so that we
don't start a distribution while one is already running. However, even
in the event that this race occurs, it is fine to have two distributions
running (especially now that distribute grabs the cfs_b->lock to
determine remaining quota before assigning).
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Tested-by: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/20200410225208.109717-3-joshdon@google.com
The following commit:
5e83eafbfd ("sched/fair: Remove the rq->cpu_load[] update code")
eliminated the last use case for rq->last_load_update_tick, so remove
the field as well.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1584710495-308969-1-git-send-email-vincent.donnefort@arm.com
sched/core.c uses update_avg() for rq->avg_idle and sched/fair.c uses an
open-coded version (with the exact same decay factor) for
rq->avg_scan_cost. On top of that, select_idle_cpu() expects to be able to
compare these two fields.
The only difference between the two is that rq->avg_scan_cost is computed
using a pure division rather than a shift. Turns out it actually matters,
first of all because the shifted value can be negative, and the standard
has this to say about it:
"""
The result of E1 >> E2 is E1 right-shifted E2 bit positions. [...] If E1
has a signed type and a negative value, the resulting value is
implementation-defined.
"""
Not only this, but (arithmetic) right shifting a negative value (using 2's
complement) is *not* equivalent to dividing it by the corresponding power
of 2. Let's look at a few examples:
-4 -> 0xF..FC
-4 >> 3 -> 0xF..FF == -1 != -4 / 8
-8 -> 0xF..F8
-8 >> 3 -> 0xF..FF == -1 == -8 / 8
-9 -> 0xF..F7
-9 >> 3 -> 0xF..FE == -2 != -9 / 8
Make update_avg() use a division, and export it to the private scheduler
header to reuse it where relevant. Note that this still lets compilers use
a shift here, but should prevent any unwanted surprise. The disassembly of
select_idle_cpu() remains unchanged on arm64, and ttwu_do_wakeup() gains 2
instructions; the diff sort of looks like this:
- sub x1, x1, x0
+ subs x1, x1, x0 // set condition codes
+ add x0, x1, #0x7
+ csel x0, x0, x1, mi // x0 = x1 < 0 ? x0 : x1
add x0, x3, x0, asr #3
which does the right thing (i.e. gives us the expected result while still
using an arithmetic shift)
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200330090127.16294-1-valentin.schneider@arm.com
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low level
functions cpu_up/down() are now confined to the core code and not
longer accessible from random code.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B9VQTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodCyD/0WFYAe7LkOfNjkbLa0IeuyLjF9rnCi
ilcSXMLpaVwwoQvm7MopwkXUDdmEIyeJ0B641j3mC3AKCRap4+O36H2IEg2byrj7
twOvQNCfxpVVmCCD11FTH9aQa74LEB6AikTgjevhrRWj6eHsal7c2Ak26AzCgrt+
0eEkOAOWJbLAlbIiPdHlCZ3TMldcs3gg+lRSYd5QCGQVkZFnwpXzyOvpyJEUGGbb
R/JuvwJoLhRMiYAJDILoQQQg/J07ODuivse/R8PWaH2djkn+2NyRGrD794PhyyOg
QoTU0ZrYD3Z48ACXv+N3jLM7wXMcFzjYtr1vW1E3O/YGA7GVIC6XHGbMQ7tEihY0
ajtwq8DcnpKtuouviYnf7NuKgqdmJXkaZjz3Gms6n8nLXqqSVwuQELWV2CXkxNe6
9kgnnKK+xXMOGI4TUhN8bejvkXqRCmKMeQJcWyf+7RA9UIhAJw5o7WGo8gXfQWUx
tazCqDy/inYjqGxckW615fhi2zHfemlYTbSzIGOuMB1TEPKFcrgYAii/VMsYHQVZ
5amkYUXGQ5brlCOzOn38lzp5OkALBnFzD7xgvOcQgWT3ynVpdqADfBytXiEEHh4J
KSkSgSSRcS58397nIxnDcJgJouHLvAWYyPZ4UC6mfynuQIic31qMHGVqwdbEKMY3
4M5dGgqIfOBgYw==
=jwCg
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core SMP updates from Thomas Gleixner:
"CPU (hotplug) updates:
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low
level functions cpu_up/down() are now confined to the core code and
not longer accessible from random code"
* tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
cpu/hotplug: Ignore pm_wakeup_pending() for disable_nonboot_cpus()
cpu/hotplug: Hide cpu_up/down()
cpu/hotplug: Move bringup of secondary CPUs out of smp_init()
torture: Replace cpu_up/down() with add/remove_cpu()
firmware: psci: Replace cpu_up/down() with add/remove_cpu()
xen/cpuhotplug: Replace cpu_up/down() with device_online/offline()
parisc: Replace cpu_up/down() with add/remove_cpu()
sparc: Replace cpu_up/down() with add/remove_cpu()
powerpc: Replace cpu_up/down() with add/remove_cpu()
x86/smp: Replace cpu_up/down() with add/remove_cpu()
arm64: hibernate: Use bringup_hibernate_cpu()
cpu/hotplug: Provide bringup_hibernate_cpu()
arm64: Use reboot_cpu instead of hardconding it to 0
arm64: Don't use disable_nonboot_cpus()
ARM: Use reboot_cpu instead of hardcoding it to 0
ARM: Don't use disable_nonboot_cpus()
ia64: Replace cpu_down() with smp_shutdown_nonboot_cpus()
cpu/hotplug: Create a new function to shutdown nonboot cpus
cpu/hotplug: Add new {add,remove}_cpu() functions
sched/core: Remove rq.hrtick_csd_pending
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Various NUMA scheduling updates: harmonize the load-balancer and
NUMA placement logic to not work against each other. The intended
result is better locality, better utilization and fewer migrations.
- Introduce Thermal Pressure tracking and optimizations, to improve
task placement on thermally overloaded systems.
- Implement frequency invariant scheduler accounting on (some) x86
CPUs. This is done by observing and sampling the 'recent' CPU
frequency average at ~tick boundaries. The CPU provides this data
via the APERF/MPERF MSRs. This hopefully makes our capacity
estimates more precise and keeps tasks on the same CPU better even
if it might seem overloaded at a lower momentary frequency. (As
usual, turbo mode is a complication that we resolve by observing
the maximum frequency and renormalizing to it.)
- Add asymmetric CPU capacity wakeup scan to improve capacity
utilization on asymmetric topologies. (big.LITTLE systems)
- PSI fixes and optimizations.
- RT scheduling capacity awareness fixes & improvements.
- Optimize the CONFIG_RT_GROUP_SCHED constraints code.
- Misc fixes, cleanups and optimizations - see the changelog for
details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
threads: Update PID limit comment according to futex UAPI change
sched/fair: Fix condition of avg_load calculation
sched/rt: cpupri_find: Trigger a full search as fallback
kthread: Do not preempt current task if it is going to call schedule()
sched/fair: Improve spreading of utilization
sched: Avoid scale real weight down to zero
psi: Move PF_MEMSTALL out of task->flags
MAINTAINERS: Add maintenance information for psi
psi: Optimize switching tasks inside shared cgroups
psi: Fix cpu.pressure for cpu.max and competing cgroups
sched/core: Distribute tasks within affinity masks
sched/fair: Fix enqueue_task_fair warning
thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code
sched/rt: Remove unnecessary push for unfit tasks
sched/rt: Allow pulling unfitting task
sched/rt: Optimize cpupri_find() on non-heterogenous systems
sched/rt: Re-instate old behavior in select_task_rq_rt()
sched/rt: cpupri_find: Implement fallback mechanism for !fit case
sched/fair: Fix reordering of enqueue/dequeue_task_fair()
sched/fair: Fix runnable_avg for throttled cfs
...
As a preparation to use simple wait queues for completions:
- Provide swake_up_all_locked() to support complete_all()
- Make __prepare_to_swait() public available
This is done to enable the usage of complete() within truly atomic contexts
on a PREEMPT_RT enabled kernel.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200321113242.228481202@linutronix.de
During our testing, we found a case that shares no longer
working correctly, the cgroup topology is like:
/sys/fs/cgroup/cpu/A (shares=102400)
/sys/fs/cgroup/cpu/A/B (shares=2)
/sys/fs/cgroup/cpu/A/B/C (shares=1024)
/sys/fs/cgroup/cpu/D (shares=1024)
/sys/fs/cgroup/cpu/D/E (shares=1024)
/sys/fs/cgroup/cpu/D/E/F (shares=1024)
The same benchmark is running in group C & F, no other tasks are
running, the benchmark is capable to consumed all the CPUs.
We suppose the group C will win more CPU resources since it could
enjoy all the shares of group A, but it's F who wins much more.
The reason is because we have group B with shares as 2, since
A->cfs_rq.load.weight == B->se.load.weight == B->shares/nr_cpus,
so A->cfs_rq.load.weight become very small.
And in calc_group_shares() we calculate shares as:
load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
shares = (tg_shares * load) / tg_weight;
Since the 'cfs_rq->load.weight' is too small, the load become 0
after scale down, although 'tg_shares' is 102400, shares of the se
which stand for group A on root cfs_rq become 2.
While the se of D on root cfs_rq is far more bigger than 2, so it
wins the battle.
Thus when scale_load_down() scale real weight down to 0, it's no
longer telling the real story, the caller will have the wrong
information and the calculation will be buggy.
This patch add check in scale_load_down(), so the real weight will
be >= MIN_SHARES after scale, after applied the group C wins as
expected.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Michael Wang <yun.wang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/38e8e212-59a1-64b2-b247-b6d0b52d8dc1@linux.alibaba.com
Now smp_call_function_single_async() provides the protection that
we'll return with -EBUSY if the csd object is still pending, then we
don't need the rq.hrtick_csd_pending any more.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20191216213125.9536-4-peterx@redhat.com
Since commit 06a76fe08d ("sched/deadline: Move DL related code
from sched/core.c to sched/deadline.c"), DL related code moved to
deadline.c.
Make the following two functions static since they're only used in
deadline.c:
dl_change_utilization()
init_dl_rq_bw_ratio()
Signed-off-by: Yu Chen <chen.yu@easystack.cn>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200228100329.16927-1-chen.yu@easystack.cn
Thermal pressure follows pelt signals which means the decay period for
thermal pressure is the default pelt decay period. Depending on SoC
characteristics and thermal activity, it might be beneficial to decay
thermal pressure slower, but still in-tune with the pelt signals. One way
to achieve this is to provide a command line parameter to set a decay
shift parameter to an integer between 0 and 10.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-10-thara.gopinath@linaro.org
Extrapolating on the existing framework to track rt/dl utilization using
pelt signals, add a similar mechanism to track thermal pressure. The
difference here from rt/dl utilization tracking is that, instead of
tracking time spent by a CPU running a RT/DL task through util_avg, the
average thermal pressure is tracked through load_avg. This is because
thermal pressure signal is weighted time "delta" capacity unlike util_avg
which is binary. "delta capacity" here means delta between the actual
capacity of a CPU and the decreased capacity a CPU due to a thermal event.
In order to track average thermal pressure, a new sched_avg variable
avg_thermal is introduced. Function update_thermal_load_avg can be called
to do the periodic bookkeeping (accumulate, decay and average) of the
thermal pressure.
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-2-thara.gopinath@linaro.org
Now that runnable_load_avg has been removed, we can replace it by a new
signal that will highlight the runnable pressure on a cfs_rq. This signal
track the waiting time of tasks on rq and can help to better define the
state of rqs.
At now, only util_avg is used to define the state of a rq:
A rq with more that around 80% of utilization and more than 1 tasks is
considered as overloaded.
But the util_avg signal of a rq can become temporaly low after that a task
migrated onto another rq which can bias the classification of the rq.
When tasks compete for the same rq, their runnable average signal will be
higher than util_avg as it will include the waiting time and we can use
this signal to better classify cfs_rqs.
The new runnable_avg will track the runnable time of a task which simply
adds the waiting time to the running time. The runnable _avg of cfs_rq
will be the /Sum of se's runnable_avg and the runnable_avg of group entity
will follow the one of the rq similarly to util_avg.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>"
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-9-mgorman@techsingularity.net
Now that runnable_load_avg is no more used, we can remove it to make
space for a new signal.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>"
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-8-mgorman@techsingularity.net
The last remaining user of this macro has just been removed, get rid of it.
Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lkml.kernel.org/r/20200206191957.12325-4-valentin.schneider@arm.com
The following XFS commit:
8ab39f11d9 ("xfs: prevent CIL push holdoff in log recovery")
changed the logic from using bound workqueues to using unbound
workqueues. Functionally this makes sense but it was observed at the
time that the dbench performance dropped quite a lot and CPU migrations
were increased.
The current pattern of the task migration is straight-forward. With XFS,
an IO issuer delegates work to xlog_cil_push_work ()on an unbound kworker.
This runs on a nearby CPU and on completion, dbench wakes up on its old CPU
as it is still idle and no migration occurs. dbench then queues the real
IO on the blk_mq_requeue_work() work item which runs on a bound kworker
which is forced to run on the same CPU as dbench. When IO completes,
the bound kworker wakes dbench but as the kworker is a bound but,
real task, the CPU is not considered idle and dbench gets migrated by
select_idle_sibling() to a new CPU. dbench may ping-pong between two CPUs
for a while but ultimately it starts a round-robin of all CPUs sharing
the same LLC. High-frequency migration on each IO completion has poor
performance overall. It has negative implications both in commication
costs and power management. mpstat confirmed that at low thread counts
that all CPUs sharing an LLC has low level of activity.
Note that even if the CIL patch was reverted, there still would
be migrations but the impact is less noticeable. It turns out that
individually the scheduler, XFS, blk-mq and workqueues all made sensible
decisions but in combination, the overall effect was sub-optimal.
This patch special cases the IO issue/completion pattern and allows
a bound kworker waker and a task wakee to stack on the same CPU if
there is a strong chance they are directly related. The expectation
is that the kworker is likely going back to sleep shortly. This is not
guaranteed as the IO could be queued asynchronously but there is a very
strong relationship between the task and kworker in this case that would
justify stacking on the same CPU instead of migrating. There should be
few concerns about kworker starvation given that the special casing is
only when the kworker is the waker.
DBench on XFS
MMTests config: io-dbench4-async modified to run on a fresh XFS filesystem
UMA machine with 8 cores sharing LLC
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack
Amean 1 22.63 ( 0.00%) 20.54 * 9.23%*
Amean 2 25.56 ( 0.00%) 23.40 * 8.44%*
Amean 4 28.63 ( 0.00%) 27.85 * 2.70%*
Amean 8 37.66 ( 0.00%) 37.68 ( -0.05%)
Amean 64 469.47 ( 0.00%) 468.26 ( 0.26%)
Stddev 1 1.00 ( 0.00%) 0.72 ( 28.12%)
Stddev 2 1.62 ( 0.00%) 1.97 ( -21.54%)
Stddev 4 2.53 ( 0.00%) 3.58 ( -41.19%)
Stddev 8 5.30 ( 0.00%) 5.20 ( 1.92%)
Stddev 64 86.36 ( 0.00%) 94.53 ( -9.46%)
NUMA machine, 48 CPUs total, 24 CPUs share cache
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack-v1r2
Amean 1 58.69 ( 0.00%) 30.21 * 48.53%*
Amean 2 60.90 ( 0.00%) 35.29 * 42.05%*
Amean 4 66.77 ( 0.00%) 46.55 * 30.28%*
Amean 8 81.41 ( 0.00%) 68.46 * 15.91%*
Amean 16 113.29 ( 0.00%) 107.79 * 4.85%*
Amean 32 199.10 ( 0.00%) 198.22 * 0.44%*
Amean 64 478.99 ( 0.00%) 477.06 * 0.40%*
Amean 128 1345.26 ( 0.00%) 1372.64 * -2.04%*
Stddev 1 2.64 ( 0.00%) 4.17 ( -58.08%)
Stddev 2 4.35 ( 0.00%) 5.38 ( -23.73%)
Stddev 4 6.77 ( 0.00%) 6.56 ( 3.00%)
Stddev 8 11.61 ( 0.00%) 10.91 ( 6.04%)
Stddev 16 18.63 ( 0.00%) 19.19 ( -3.01%)
Stddev 32 38.71 ( 0.00%) 38.30 ( 1.06%)
Stddev 64 100.28 ( 0.00%) 91.24 ( 9.02%)
Stddev 128 186.87 ( 0.00%) 160.34 ( 14.20%)
Dbench has been modified to report the time to complete a single "load
file". This is a more meaningful metric for dbench that a throughput
metric as the benchmark makes many different system calls that are not
throughput-related
Patch shows a 9.23% and 48.53% reduction in the time to process a load
file with the difference partially explained by the number of CPUs sharing
a LLC. In a separate run, task migrations were almost eliminated by the
patch for low client counts. In case people have issue with the metric
used for the benchmark, this is a comparison of the throughputs as
reported by dbench on the NUMA machine.
dbench4 Throughput (misleading but traditional)
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack-v1r2
Hmean 1 321.41 ( 0.00%) 617.82 * 92.22%*
Hmean 2 622.87 ( 0.00%) 1066.80 * 71.27%*
Hmean 4 1134.56 ( 0.00%) 1623.74 * 43.12%*
Hmean 8 1869.96 ( 0.00%) 2212.67 * 18.33%*
Hmean 16 2673.11 ( 0.00%) 2806.13 * 4.98%*
Hmean 32 3032.74 ( 0.00%) 3039.54 ( 0.22%)
Hmean 64 2514.25 ( 0.00%) 2498.96 * -0.61%*
Hmean 128 1778.49 ( 0.00%) 1746.05 * -1.82%*
Note that this is somewhat specific to XFS and ext4 shows no performance
difference as it does not rely on kworkers in the same way. No major
problem was observed running other workloads on different machines although
not all tests have completed yet.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200128154006.GD3466@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement arch_scale_freq_capacity() for 'modern' x86. This function
is used by the scheduler to correctly account usage in the face of
DVFS.
The present patch addresses Intel processors specifically and has positive
performance and performance-per-watt implications for the schedutil cpufreq
governor, bringing it closer to, if not on-par with, the powersave governor
from the intel_pstate driver/framework.
Large performance gains are obtained when the machine is lightly loaded and
no regression are observed at saturation. The benchmarks with the largest
gains are kernel compilation, tbench (the networking version of dbench) and
shell-intensive workloads.
1. FREQUENCY INVARIANCE: MOTIVATION
* Without it, a task looks larger if the CPU runs slower
2. PECULIARITIES OF X86
* freq invariance accounting requires knowing the ratio freq_curr/freq_max
2.1 CURRENT FREQUENCY
* Use delta_APERF / delta_MPERF * freq_base (a.k.a "BusyMHz")
2.2 MAX FREQUENCY
* It varies with time (turbo). As an approximation, we set it to a
constant, i.e. 4-cores turbo frequency.
3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
* The invariant schedutil's formula has no feedback loop and reacts faster
to utilization changes
4. KNOWN LIMITATIONS
* In some cases tasks can't reach max util despite how hard they try
5. PERFORMANCE TESTING
5.1 MACHINES
* Skylake, Broadwell, Haswell
5.2 SETUP
* baseline Linux v5.2 w/ non-invariant schedutil. Tested freq_max = 1-2-3-4-8-12
active cores turbo w/ invariant schedutil, and intel_pstate/powersave
5.3 BENCHMARK RESULTS
5.3.1 NEUTRAL BENCHMARKS
* NAS Parallel Benchmark (HPC), hackbench
5.3.2 NON-NEUTRAL BENCHMARKS
* tbench (10-30% better), kernbench (10-15% better),
shell-intensive-scripts (30-50% better)
* no regressions
5.3.3 SELECTION OF DETAILED RESULTS
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
* dbench (5% worse on one machine), kernbench (3% worse),
tbench (5-10% better), shell-intensive-scripts (10-40% better)
6. MICROARCH'ES ADDRESSED HERE
* Xeon Core before Scalable Performance processors line (Xeon Gold/Platinum
etc have different MSRs semantic for querying turbo levels)
7. REFERENCES
* MMTests performance testing framework, github.com/gormanm/mmtests
+-------------------------------------------------------------------------+
| 1. FREQUENCY INVARIANCE: MOTIVATION
+-------------------------------------------------------------------------+
For example; suppose a CPU has two frequencies: 500 and 1000 Mhz. When
running a task that would consume 1/3rd of a CPU at 1000 MHz, it would
appear to consume 2/3rd (or 66.6%) when running at 500 MHz, giving the
false impression this CPU is almost at capacity, even though it can go
faster [*]. In a nutshell, without frequency scale-invariance tasks look
larger just because the CPU is running slower.
[*] (footnote: this assumes a linear frequency/performance relation; which
everybody knows to be false, but given realities its the best approximation
we can make.)
+-------------------------------------------------------------------------+
| 2. PECULIARITIES OF X86
+-------------------------------------------------------------------------+
Accounting for frequency changes in PELT signals requires the computation of
the ratio freq_curr / freq_max. On x86 neither of those terms is readily
available.
2.1 CURRENT FREQUENCY
====================
Since modern x86 has hardware control over the actual frequency we run
at (because amongst other things, Turbo-Mode), we cannot simply use
the frequency as requested through cpufreq.
Instead we use the APERF/MPERF MSRs to compute the effective frequency
over the recent past. Also, because reading MSRs is expensive, don't
do so every time we need the value, but amortize the cost by doing it
every tick.
2.2 MAX FREQUENCY
=================
Obtaining freq_max is also non-trivial because at any time the hardware can
provide a frequency boost to a selected subset of cores if the package has
enough power to spare (eg: Turbo Boost). This means that the maximum frequency
available to a given core changes with time.
The approach taken in this change is to arbitrarily set freq_max to a constant
value at boot. The value chosen is the "4-cores (4C) turbo frequency" on most
microarchitectures, after evaluating the following candidates:
* 1-core (1C) turbo frequency (the fastest turbo state available)
* around base frequency (a.k.a. max P-state)
* something in between, such as 4C turbo
To interpret these options, consider that this is the denominator in
freq_curr/freq_max, and that ratio will be used to scale PELT signals such as
util_avg and load_avg. A large denominator will undershoot (util_avg looks a
bit smaller than it really is), viceversa with a smaller denominator PELT
signals will tend to overshoot. Given that PELT drives frequency selection
in the schedutil governor, we will have:
freq_max set to | effect on DVFS
--------------------+------------------
1C turbo | power efficiency (lower freq choices)
base freq | performance (higher util_avg, higher freq requests)
4C turbo | a bit of both
4C turbo proves to be a good compromise in a number of benchmarks (see below).
+-------------------------------------------------------------------------+
| 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
+-------------------------------------------------------------------------+
Once an architecture implements a frequency scale-invariant utilization (the
PELT signal util_avg), schedutil switches its frequency selection formula from
freq_next = 1.25 * freq_curr * util [non-invariant util signal]
to
freq_next = 1.25 * freq_max * util [invariant util signal]
where, in the second formula, freq_max is set to the 1C turbo frequency (max
turbo). The advantage of the second formula, whose usage we unlock with this
patch, is that freq_next doesn't depend on the current frequency in an
iterative fashion, but can jump to any frequency in a single update. This
absence of feedback in the formula makes it quicker to react to utilization
changes and more robust against pathological instabilities.
Compare it to the update formula of intel_pstate/powersave:
freq_next = 1.25 * freq_max * Busy%
where again freq_max is 1C turbo and Busy% is the percentage of time not spent
idling (calculated with delta_MPERF / delta_TSC); essentially the same as
invariant schedutil, and largely responsible for intel_pstate/powersave good
reputation. The non-invariant schedutil formula is derived from the invariant
one by approximating util_inv with util_raw * freq_curr / freq_max, but this
has limitations.
Testing shows improved performances due to better frequency selections when
the machine is lightly loaded, and essentially no change in behaviour at
saturation / overutilization.
+-------------------------------------------------------------------------+
| 4. KNOWN LIMITATIONS
+-------------------------------------------------------------------------+
It's been shown that it is possible to create pathological scenarios where a
CPU-bound task cannot reach max utilization, if the normalizing factor
freq_max is fixed to a constant value (see [Lelli-2018]).
If freq_max is set to 4C turbo as we do here, one needs to peg at least 5
cores in a package doing some busywork, and observe that none of those task
will ever reach max util (1024) because they're all running at less than the
4C turbo frequency.
While this concern still applies, we believe the performance benefit of
frequency scale-invariant PELT signals outweights the cost of this limitation.
[Lelli-2018]
https://lore.kernel.org/lkml/20180517150418.GF22493@localhost.localdomain/
+-------------------------------------------------------------------------+
| 5. PERFORMANCE TESTING
+-------------------------------------------------------------------------+
5.1 MACHINES
============
We tested the patch on three machines, with Skylake, Broadwell and Haswell
CPUs. The details are below, together with the available turbo ratios as
reported by the appropriate MSRs.
* 8x-SKYLAKE-UMA:
Single socket E3-1240 v5, Skylake 4 cores/8 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 800 |********
BASE 3500 |***********************************
4C 3700 |*************************************
3C 3800 |**************************************
2C 3900 |***************************************
1C 3900 |***************************************
* 80x-BROADWELL-NUMA:
Two sockets E5-2698 v4, 2x Broadwell 20 cores/40 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2200 |**********************
8C 2900 |*****************************
7C 3000 |******************************
6C 3100 |*******************************
5C 3200 |********************************
4C 3300 |*********************************
3C 3400 |**********************************
2C 3600 |************************************
1C 3600 |************************************
* 48x-HASWELL-NUMA
Two sockets E5-2670 v3, 2x Haswell 12 cores/24 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2300 |***********************
12C 2600 |**************************
11C 2600 |**************************
10C 2600 |**************************
9C 2600 |**************************
8C 2600 |**************************
7C 2600 |**************************
6C 2600 |**************************
5C 2700 |***************************
4C 2800 |****************************
3C 2900 |*****************************
2C 3100 |*******************************
1C 3100 |*******************************
5.2 SETUP
=========
* The baseline is Linux v5.2 with schedutil (non-invariant) and the intel_pstate
driver in passive mode.
* The rationale for choosing the various freq_max values to test have been to
try all the 1-2-3-4C turbo levels (note that 1C and 2C turbo are identical
on all machines), plus one more value closer to base_freq but still in the
turbo range (8C turbo for both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA).
* In addition we've run all tests with intel_pstate/powersave for comparison.
* The filesystem is always XFS, the userspace is openSUSE Leap 15.1.
* 8x-SKYLAKE-UMA is capable of HWP (Hardware-Managed P-States), so the runs
with active intel_pstate on this machine use that.
This gives, in terms of combinations tested on each machine:
* 8x-SKYLAKE-UMA
* Baseline: Linux v5.2, non-invariant schedutil, intel_pstate passive
* intel_pstate active + powersave + HWP
* invariant schedutil, freq_max = 1C turbo
* invariant schedutil, freq_max = 3C turbo
* invariant schedutil, freq_max = 4C turbo
* both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA
* [same as 8x-SKYLAKE-UMA, but no HWP capable]
* invariant schedutil, freq_max = 8C turbo
(which on 48x-HASWELL-NUMA is the same as 12C turbo, or "all cores turbo")
5.3 BENCHMARK RESULTS
=====================
5.3.1 NEUTRAL BENCHMARKS
------------------------
Tests that didn't show any measurable difference in performance on any of the
test machines between non-invariant schedutil and our patch are:
* NAS Parallel Benchmarks (NPB) using either MPI or openMP for IPC, any
computational kernel
* flexible I/O (FIO)
* hackbench (using threads or processes, and using pipes or sockets)
5.3.2 NON-NEUTRAL BENCHMARKS
----------------------------
What follow are summary tables where each benchmark result is given a score.
* A tilde (~) means a neutral result, i.e. no difference from baseline.
* Scores are computed with the ratio result_new / result_baseline, so a tilde
means a score of 1.00.
* The results in the score ratio are the geometric means of results running
the benchmark with different parameters (eg: for kernbench: using 1, 2, 4,
... number of processes; for pgbench: varying the number of clients, and so
on).
* The first three tables show higher-is-better kind of tests (i.e. measured in
operations/second), the subsequent three show lower-is-better kind of tests
(i.e. the workload is fixed and we measure elapsed time, think kernbench).
* "gitsource" is a name we made up for the test consisting in running the
entire unit tests suite of the Git SCM and measuring how long it takes. We
take it as a typical example of shell-intensive serialized workload.
* In the "I_PSTATE" column we have the results for intel_pstate/powersave. Other
columns show invariant schedutil for different values of freq_max. 4C turbo
is circled as it's the value we've chosen for the final implementation.
80x-BROADWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.14 ~ ~ | 1.11 | 1.14
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.06 ~ 1.06 | 1.05 | 1.07
netperf-tcp ~ 1.03 ~ | 1.01 | 1.02
tbench4 1.57 1.18 1.22 | 1.30 | 1.56
+------+
8x-SKYLAKE-UMA (comparison ratio; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.30 1.14 1.14 | 1.16 |
+------+
48x-HASWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.15 ~ ~ | 1.06 | 1.16
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.05 0.97 1.04 | 1.04 | 1.02
netperf-tcp 0.96 1.01 1.01 | 1.01 | 1.01
tbench4 1.50 1.05 1.13 | 1.13 | 1.25
+------+
In the table above we see that active intel_pstate is slightly better than our
4C-turbo patch (both in reference to the baseline non-invariant schedutil) on
read-only pgbench and much better on tbench. Both cases are notable in which
it shows that lowering our freq_max (to 8C-turbo and 12C-turbo on
80x-BROADWELL-NUMA and 48x-HASWELL-NUMA respectively) helps invariant
schedutil to get closer.
If we ignore active intel_pstate and focus on the comparison with baseline
alone, there are several instances of double-digit performance improvement.
80x-BROADWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 1.23 0.95 0.95 | 0.95 | 0.95
kernbench 0.93 0.83 0.83 | 0.83 | 0.82
gitsource 0.98 0.49 0.49 | 0.49 | 0.48
+------+
8x-SKYLAKE-UMA (comparison ratio; lower is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
dbench4 ~ ~ ~ | ~ |
kernbench ~ ~ ~ | ~ |
gitsource 0.92 0.55 0.55 | 0.55 |
+------+
48x-HASWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 ~ ~ ~ | ~ | ~
kernbench 0.94 0.90 0.89 | 0.90 | 0.90
gitsource 0.97 0.69 0.69 | 0.69 | 0.69
+------+
dbench is not very remarkable here, unless we notice how poorly active
intel_pstate is performing on 80x-BROADWELL-NUMA: 23% regression versus
non-invariant schedutil. We repeated that run getting consistent results. Out
of scope for the patch at hand, but deserving future investigation. Other than
that, we previously ran this campaign with Linux v5.0 and saw the patch doing
better on dbench a the time. We haven't checked closely and can only speculate
at this point.
On the NUMA boxes kernbench gets 10-15% improvements on average; we'll see in
the detailed tables that the gains concentrate on low process counts (lightly
loaded machines).
The test we call "gitsource" (running the git unit test suite, a long-running
single-threaded shell script) appears rather spectacular in this table (gains
of 30-50% depending on the machine). It is to be noted, however, that
gitsource has no adjustable parameters (such as the number of jobs in
kernbench, which we average over in order to get a single-number summary
score) and is exactly the kind of low-parallelism workload that benefits the
most from this patch. When looking at the detailed tables of kernbench or
tbench4, at low process or client counts one can see similar numbers.
5.3.3 SELECTION OF DETAILED RESULTS
-----------------------------------
Machine : 48x-HASWELL-NUMA
Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback)
Varying parameter : number of clients
Unit : MB/sec (higher is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 126.73 +- 0.31% ( ) 315.91 +- 0.66% ( 149.28%) 125.03 +- 0.76% ( -1.34%)
Hmean 2 258.04 +- 0.62% ( ) 614.16 +- 0.51% ( 138.01%) 269.58 +- 1.45% ( 4.47%)
Hmean 4 514.30 +- 0.67% ( ) 1146.58 +- 0.54% ( 122.94%) 533.84 +- 1.99% ( 3.80%)
Hmean 8 1111.38 +- 2.52% ( ) 2159.78 +- 0.38% ( 94.33%) 1359.92 +- 1.56% ( 22.36%)
Hmean 16 2286.47 +- 1.36% ( ) 3338.29 +- 0.21% ( 46.00%) 2720.20 +- 0.52% ( 18.97%)
Hmean 32 4704.84 +- 0.35% ( ) 4759.03 +- 0.43% ( 1.15%) 4774.48 +- 0.30% ( 1.48%)
Hmean 64 7578.04 +- 0.27% ( ) 7533.70 +- 0.43% ( -0.59%) 7462.17 +- 0.65% ( -1.53%)
Hmean 128 6998.52 +- 0.16% ( ) 6987.59 +- 0.12% ( -0.16%) 6909.17 +- 0.14% ( -1.28%)
Hmean 192 6901.35 +- 0.25% ( ) 6913.16 +- 0.10% ( 0.17%) 6855.47 +- 0.21% ( -0.66%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 12C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 128.43 +- 0.28% ( 1.34%) 130.64 +- 3.81% ( 3.09%) 153.71 +- 5.89% ( 21.30%)
Hmean 2 311.70 +- 6.15% ( 20.79%) 281.66 +- 3.40% ( 9.15%) 305.08 +- 5.70% ( 18.23%)
Hmean 4 641.98 +- 2.32% ( 24.83%) 623.88 +- 5.28% ( 21.31%) 906.84 +- 4.65% ( 76.32%)
Hmean 8 1633.31 +- 1.56% ( 46.96%) 1714.16 +- 0.93% ( 54.24%) 2095.74 +- 0.47% ( 88.57%)
Hmean 16 3047.24 +- 0.42% ( 33.27%) 3155.02 +- 0.30% ( 37.99%) 3634.58 +- 0.15% ( 58.96%)
Hmean 32 4734.31 +- 0.60% ( 0.63%) 4804.38 +- 0.23% ( 2.12%) 4674.62 +- 0.27% ( -0.64%)
Hmean 64 7699.74 +- 0.35% ( 1.61%) 7499.72 +- 0.34% ( -1.03%) 7659.03 +- 0.25% ( 1.07%)
Hmean 128 6935.18 +- 0.15% ( -0.91%) 6942.54 +- 0.10% ( -0.80%) 7004.85 +- 0.12% ( 0.09%)
Hmean 192 6901.62 +- 0.12% ( 0.00%) 6856.93 +- 0.10% ( -0.64%) 6978.74 +- 0.10% ( 1.12%)
This is one of the cases where the patch still can't surpass active
intel_pstate, not even when freq_max is as low as 12C-turbo. Otherwise, gains are
visible up to 16 clients and the saturated scenario is the same as baseline.
The scores in the summary table from the previous sections are ratios of
geometric means of the results over different clients, as seen in this table.
Machine : 80x-BROADWELL-NUMA
Benchmark : kernbench (kernel compilation)
Varying parameter : number of jobs
Unit : seconds (lower is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 379.68 +- 0.06% ( ) 330.20 +- 0.43% ( 13.03%) 285.93 +- 0.07% ( 24.69%)
Amean 4 200.15 +- 0.24% ( ) 175.89 +- 0.22% ( 12.12%) 153.78 +- 0.25% ( 23.17%)
Amean 8 106.20 +- 0.31% ( ) 95.54 +- 0.23% ( 10.03%) 86.74 +- 0.10% ( 18.32%)
Amean 16 56.96 +- 1.31% ( ) 53.25 +- 1.22% ( 6.50%) 48.34 +- 1.73% ( 15.13%)
Amean 32 34.80 +- 2.46% ( ) 33.81 +- 0.77% ( 2.83%) 30.28 +- 1.59% ( 12.99%)
Amean 64 26.11 +- 1.63% ( ) 25.04 +- 1.07% ( 4.10%) 22.41 +- 2.37% ( 14.16%)
Amean 128 24.80 +- 1.36% ( ) 23.57 +- 1.23% ( 4.93%) 21.44 +- 1.37% ( 13.55%)
Amean 160 24.85 +- 0.56% ( ) 23.85 +- 1.17% ( 4.06%) 21.25 +- 1.12% ( 14.49%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 8C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 284.08 +- 0.13% ( 25.18%) 283.96 +- 0.51% ( 25.21%) 285.05 +- 0.21% ( 24.92%)
Amean 4 153.18 +- 0.22% ( 23.47%) 154.70 +- 1.64% ( 22.71%) 153.64 +- 0.30% ( 23.24%)
Amean 8 87.06 +- 0.28% ( 18.02%) 86.77 +- 0.46% ( 18.29%) 86.78 +- 0.22% ( 18.28%)
Amean 16 48.03 +- 0.93% ( 15.68%) 47.75 +- 1.99% ( 16.17%) 47.52 +- 1.61% ( 16.57%)
Amean 32 30.23 +- 1.20% ( 13.14%) 30.08 +- 1.67% ( 13.57%) 30.07 +- 1.67% ( 13.60%)
Amean 64 22.59 +- 2.02% ( 13.50%) 22.63 +- 0.81% ( 13.32%) 22.42 +- 0.76% ( 14.12%)
Amean 128 21.37 +- 0.67% ( 13.82%) 21.31 +- 1.15% ( 14.07%) 21.17 +- 1.93% ( 14.63%)
Amean 160 21.68 +- 0.57% ( 12.76%) 21.18 +- 1.74% ( 14.77%) 21.22 +- 1.00% ( 14.61%)
The patch outperform active intel_pstate (and baseline) by a considerable
margin; the summary table from the previous section says 4C turbo and active
intel_pstate are 0.83 and 0.93 against baseline respectively, so 4C turbo is
0.83/0.93=0.89 against intel_pstate (~10% better on average). There is no
noticeable difference with regard to the value of freq_max.
Machine : 8x-SKYLAKE-UMA
Benchmark : gitsource (time to run the git unit test suite)
Varying parameter : none
Unit : seconds (lower is better)
5.2.0 vanilla 5.2.0 intel_pstate/hwp 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 858.85 +- 1.16% ( ) 791.94 +- 0.21% ( 7.79%) 474.95 ( 44.70%)
5.2.0 3C-turbo 5.2.0 4C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 475.26 +- 0.20% ( 44.66%) 474.34 +- 0.13% ( 44.77%)
In this test, which is of interest as representing shell-intensive
(i.e. fork-intensive) serialized workloads, invariant schedutil outperforms
intel_pstate/powersave by a whopping 40% margin.
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
---------------------------------------------
The following table shows average power consumption in watt for each
benchmark. Data comes from turbostat (package average), which in turn is read
from the RAPL interface on CPUs. We know the patch affects CPU frequencies so
it's reasonable to ignore other power consumers (such as memory or I/O). Also,
we don't have a power meter available in the lab so RAPL is the best we have.
turbostat sampled average power every 10 seconds for the entire duration of
each benchmark. We took all those values and averaged them (i.e. with don't
have detail on a per-parameter granularity, only on whole benchmarks).
80x-BROADWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 130.01 142.77 131.11 132.45 | 134.65 | 136.84
pgbench-rw 68.30 60.83 71.45 71.70 | 71.65 | 72.54
dbench4 90.25 59.06 101.43 99.89 | 101.10 | 102.94
netperf-udp 65.70 69.81 66.02 68.03 | 68.27 | 68.95
netperf-tcp 88.08 87.96 88.97 88.89 | 88.85 | 88.20
tbench4 142.32 176.73 153.02 163.91 | 165.58 | 176.07
kernbench 92.94 101.95 114.91 115.47 | 115.52 | 115.10
gitsource 40.92 41.87 75.14 75.20 | 75.40 | 75.70
+--------+
8x-SKYLAKE-UMA (power consumption, watts)
+--------+
BASELINE I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro 46.49 46.68 46.56 46.59 | 46.52 |
pgbench-rw 29.34 31.38 30.98 31.00 | 31.00 |
dbench4 27.28 27.37 27.49 27.41 | 27.38 |
netperf-udp 22.33 22.41 22.36 22.35 | 22.36 |
netperf-tcp 27.29 27.29 27.30 27.31 | 27.33 |
tbench4 41.13 45.61 43.10 43.33 | 43.56 |
kernbench 42.56 42.63 43.01 43.01 | 43.01 |
gitsource 13.32 13.69 17.33 17.30 | 17.35 |
+--------+
48x-HASWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 128.84 136.04 129.87 132.43 | 132.30 | 134.86
pgbench-rw 37.68 37.92 37.17 37.74 | 37.73 | 37.31
dbench4 28.56 28.73 28.60 28.73 | 28.70 | 28.79
netperf-udp 56.70 60.44 56.79 57.42 | 57.54 | 57.52
netperf-tcp 75.49 75.27 75.87 76.02 | 76.01 | 75.95
tbench4 115.44 139.51 119.53 123.07 | 123.97 | 130.22
kernbench 83.23 91.55 95.58 95.69 | 95.72 | 96.04
gitsource 36.79 36.99 39.99 40.34 | 40.35 | 40.23
+--------+
A lower power consumption isn't necessarily better, it depends on what is done
with that energy. Here are tables with the ratio of performance-per-watt on
each machine and benchmark. Higher is always better; a tilde (~) means a
neutral ratio (i.e. 1.00).
80x-BROADWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.04 1.06 0.94 | 1.07 | 1.08
pgbench-rw 1.10 0.97 0.96 | 0.96 | 0.97
dbench4 1.24 0.94 0.95 | 0.94 | 0.92
netperf-udp ~ 1.02 1.02 | ~ | 1.02
netperf-tcp ~ 1.02 ~ | ~ | 1.02
tbench4 1.26 1.10 1.06 | 1.12 | 1.26
kernbench 0.98 0.97 0.97 | 0.97 | 0.98
gitsource ~ 1.11 1.11 | 1.11 | 1.13
+------+
8x-SKYLAKE-UMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw 0.95 0.97 0.96 | 0.96 |
dbench4 ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.17 1.09 1.08 | 1.10 |
kernbench ~ ~ ~ | ~ |
gitsource 1.06 1.40 1.40 | 1.40 |
+------+
48x-HASWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.09 ~ 1.09 | 1.03 | 1.11
pgbench-rw ~ 0.86 ~ | ~ | 0.86
dbench4 ~ 1.02 1.02 | 1.02 | ~
netperf-udp ~ 0.97 1.03 | 1.02 | ~
netperf-tcp 0.96 ~ ~ | ~ | ~
tbench4 1.24 ~ 1.06 | 1.05 | 1.11
kernbench 0.97 0.97 0.98 | 0.97 | 0.96
gitsource 1.03 1.33 1.32 | 1.32 | 1.33
+------+
These results are overall pleasing: in plenty of cases we observe
performance-per-watt improvements. The few regressions (read/write pgbench and
dbench on the Broadwell machine) are of small magnitude. kernbench loses a few
percentage points (it has a 10-15% performance improvement, but apparently the
increase in power consumption is larger than that). tbench4 and gitsource, which
benefit the most from the patch, keep a positive score in this table which is
a welcome surprise; that suggests that in those particular workloads the
non-invariant schedutil (and active intel_pstate, too) makes some rather
suboptimal frequency selections.
+-------------------------------------------------------------------------+
| 6. MICROARCH'ES ADDRESSED HERE
+-------------------------------------------------------------------------+
The patch addresses Xeon Core processors that use MSR_PLATFORM_INFO and
MSR_TURBO_RATIO_LIMIT to advertise their base frequency and turbo frequencies
respectively. This excludes the recent Xeon Scalable Performance processors
line (Xeon Gold, Platinum etc) whose MSRs have to be parsed differently.
Subsequent patches will address:
* Xeon Scalable Performance processors and Atom Goldmont/Goldmont Plus
* Xeon Phi (Knights Landing, Knights Mill)
* Atom Silvermont
+-------------------------------------------------------------------------+
| 7. REFERENCES
+-------------------------------------------------------------------------+
Tests have been run with the help of the MMTests performance testing
framework, see github.com/gormanm/mmtests. The configuration file names for
the benchmark used are:
db-pgbench-timed-ro-small-xfs
db-pgbench-timed-rw-small-xfs
io-dbench4-async-xfs
network-netperf-unbound
network-tbench
scheduler-unbound
workload-kerndevel-xfs
workload-shellscripts-xfs
hpc-nas-c-class-mpi-full-xfs
hpc-nas-c-class-omp-full
All those benchmarks are generally available on the web:
pgbench: https://www.postgresql.org/docs/10/pgbench.html
netperf: https://hewlettpackard.github.io/netperf/
dbench/tbench: https://dbench.samba.org/
gitsource: git unit test suite, github.com/git/git
NAS Parallel Benchmarks: https://www.nas.nasa.gov/publications/npb.html
hackbench: https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-2-ggherdovich@suse.cz
The current helper returns (CPU) rq utilization with uclamp restrictions
taken into account. A uclamp task utilization helper would be quite
helpful, but this requires some renaming.
Prepare the code for the introduction of a uclamp_task_util() by renaming
the existing uclamp_util_with() to uclamp_rq_util_with().
Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191211113851.24241-4-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vincent pointed out recently that the canonical type for utilization
values is 'unsigned long'. Internally uclamp uses 'unsigned int' values for
cache optimization, but this doesn't have to be exported to its users.
Make the uclamp helpers that deal with utilization use and return unsigned
long values.
Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191211113851.24241-3-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The sole user of uclamp_util(), schedutil_cpu_util(), was made to use
uclamp_util_with() instead in commit:
af24bde8df ("sched/uclamp: Add uclamp support to energy_compute()")
From then on, uclamp_util() has remained unused. Being a simple wrapper
around uclamp_util_with(), we can get rid of it and win back a few lines.
Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com>
Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191211113851.24241-2-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some uclamp helpers had their return type changed from 'unsigned int' to
'enum uclamp_id' by commit
0413d7f33e ("sched/uclamp: Always use 'enum uclamp_id' for clamp_id values")
but it happens that some do return a value in the [0, SCHED_CAPACITY_SCALE]
range, which should really be unsigned int. The affected helpers are
uclamp_none(), uclamp_rq_max_value() and uclamp_eff_value(). Fix those up.
Note that this doesn't lead to any obj diff using a relatively recent
aarch64 compiler (8.3-2019.03). The current code of e.g. uclamp_eff_value()
properly returns an 11 bit value (bits_per(1024)) and doesn't seem to do
anything funny. I'm still marking this as fixing the above commit to be on
the safe side.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: patrick.bellasi@matbug.net
Cc: qperret@google.com
Cc: surenb@google.com
Cc: tj@kernel.org
Fixes: 0413d7f33e ("sched/uclamp: Always use 'enum uclamp_id' for clamp_id values")
Link: https://lkml.kernel.org/r/20191115103908.27610-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ever since we moved the sched_class definitions into their own files,
the constant expression {fair,idle}_sched_class.pick_next_task() is
not in fact a compile time constant anymore and results in an indirect
call (barring LTO).
Fix that by exposing pick_next_task_{fair,idle}() directly, this gets
rid of the indirect call (and RETPOLINE) on the fast path.
Also remove the unlikely() from the idle case, it is in fact /the/ way
we select idle -- and that is a very common thing to do.
Performance for will-it-scale/sched_yield improves by 2% (as reported
by 0-day).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.603037345@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 67692435c4 ("sched: Rework pick_next_task() slow-path")
inadvertly introduced a race because it changed a previously
unexplored dependency between dropping the rq->lock and
sched_class::put_prev_task().
The comments about dropping rq->lock, in for example
newidle_balance(), only mentions the task being current and ->on_cpu
being set. But when we look at the 'change' pattern (in for example
sched_setnuma()):
queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
running = task_current(rq, p); /* rq->curr == p */
if (queued)
dequeue_task(...);
if (running)
put_prev_task(...);
/* change task properties */
if (queued)
enqueue_task(...);
if (running)
set_next_task(...);
It becomes obvious that if we do this after put_prev_task() has
already been called on @p, things go sideways. This is exactly what
the commit in question allows to happen when it does:
prev->sched_class->put_prev_task(rq, prev, rf);
if (!rq->nr_running)
newidle_balance(rq, rf);
The newidle_balance() call will drop rq->lock after we've called
put_prev_task() and that allows the above 'change' pattern to
interleave and mess up the state.
Furthermore, it turns out we lost the RT-pull when we put the last DL
task.
Fix both problems by extracting the balancing from put_prev_task() and
doing a multi-class balance() pass before put_prev_task().
Fixes: 67692435c4 ("sched: Rework pick_next_task() slow-path")
Reported-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Quentin Perret <qperret@google.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
The membarrier_state field is located within the mm_struct, which
is not guaranteed to exist when used from runqueue-lock-free iteration
on runqueues by the membarrier system call.
Copy the membarrier_state from the mm_struct into the scheduler runqueue
when the scheduler switches between mm.
When registering membarrier for mm, after setting the registration bit
in the mm membarrier state, issue a synchronize_rcu() to ensure the
scheduler observes the change. In order to take care of the case
where a runqueue keeps executing the target mm without swapping to
other mm, iterate over each runqueue and issue an IPI to copy the
membarrier_state from the mm_struct into each runqueue which have the
same mm which state has just been modified.
Move the mm membarrier_state field closer to pgd in mm_struct to use
a cache line already touched by the scheduler switch_mm.
The membarrier_execve() (now membarrier_exec_mmap) hook now needs to
clear the runqueue's membarrier state in addition to clear the mm
membarrier state, so move its implementation into the scheduler
membarrier code so it can access the runqueue structure.
Add memory barrier in membarrier_exec_mmap() prior to clearing
the membarrier state, ensuring memory accesses executed prior to exec
are not reordered with the stores clearing the membarrier state.
As suggested by Linus, move all membarrier.c RCU read-side locks outside
of the for each cpu loops.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190919173705.2181-5-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The supported clamp indexes are defined in 'enum clamp_id', however, because
of the code logic in some of the first utilization clamping series version,
sometimes we needed to use 'unsigned int' to represent indices.
This is not more required since the final version of the uclamp_* APIs can
always use the proper enum uclamp_id type.
Fix it with a bulk rename now that we have all the bits merged.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-7-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to properly support hierarchical resources control, the cgroup
delegation model requires that attribute writes from a child group never
fail but still are locally consistent and constrained based on parent's
assigned resources. This requires to properly propagate and aggregate
parent attributes down to its descendants.
Implement this mechanism by adding a new "effective" clamp value for each
task group. The effective clamp value is defined as the smaller value
between the clamp value of a group and the effective clamp value of its
parent. This is the actual clamp value enforced on tasks in a task group.
Since it's possible for a cpu.uclamp.min value to be bigger than the
cpu.uclamp.max value, ensure local consistency by restricting each
"protection" (i.e. min utilization) with the corresponding "limit"
(i.e. max utilization).
Do that at effective clamps propagation to ensure all user-space write
never fails while still always tracking the most restrictive values.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cgroup CPU bandwidth controller allows to assign a specified
(maximum) bandwidth to the tasks of a group. However this bandwidth is
defined and enforced only on a temporal base, without considering the
actual frequency a CPU is running on. Thus, the amount of computation
completed by a task within an allocated bandwidth can be very different
depending on the actual frequency the CPU is running that task.
The amount of computation can be affected also by the specific CPU a
task is running on, especially when running on asymmetric capacity
systems like Arm's big.LITTLE.
With the availability of schedutil, the scheduler is now able
to drive frequency selections based on actual task utilization.
Moreover, the utilization clamping support provides a mechanism to
bias the frequency selection operated by schedutil depending on
constraints assigned to the tasks currently RUNNABLE on a CPU.
Giving the mechanisms described above, it is now possible to extend the
cpu controller to specify the minimum (or maximum) utilization which
should be considered for tasks RUNNABLE on a cpu.
This makes it possible to better defined the actual computational
power assigned to task groups, thus improving the cgroup CPU bandwidth
controller which is currently based just on time constraints.
Extend the CPU controller with a couple of new attributes uclamp.{min,max}
which allow to enforce utilization boosting and capping for all the
tasks in a group.
Specifically:
- uclamp.min: defines the minimum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run at least at a
minimum frequency which corresponds to the uclamp.min
utilization
- uclamp.max: defines the maximum utilization which should be considered
i.e. the RUNNABLE tasks of this group will run up to a
maximum frequency which corresponds to the uclamp.max
utilization
These attributes:
a) are available only for non-root nodes, both on default and legacy
hierarchies, while system wide clamps are defined by a generic
interface which does not depends on cgroups. This system wide
interface enforces constraints on tasks in the root node.
b) enforce effective constraints at each level of the hierarchy which
are a restriction of the group requests considering its parent's
effective constraints. Root group effective constraints are defined
by the system wide interface.
This mechanism allows each (non-root) level of the hierarchy to:
- request whatever clamp values it would like to get
- effectively get only up to the maximum amount allowed by its parent
c) have higher priority than task-specific clamps, defined via
sched_setattr(), thus allowing to control and restrict task requests.
Add two new attributes to the cpu controller to collect "requested"
clamp values. Allow that at each non-root level of the hierarchy.
Keep it simple by not caring now about "effective" values computation
and propagation along the hierarchy.
Update sysctl_sched_uclamp_handler() to use the newly introduced
uclamp_mutex so that we serialize system default updates with cgroup
relate updates.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoid the RETRY_TASK case in the pick_next_task() slow path.
By doing the put_prev_task() early, we get the rt/deadline pull done,
and by testing rq->nr_running we know if we need newidle_balance().
This then gives a stable state to pick a task from.
Since the fast-path is fair only; it means the other classes will
always have pick_next_task(.prev=NULL, .rf=NULL) and we can simplify.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/aa34d24b36547139248f32a30138791ac6c02bd6.1559129225.git.vpillai@digitalocean.com
Currently the pick_next_task() loop is convoluted and ugly because of
how it can drop the rq->lock and needs to restart the picking.
For the RT/Deadline classes, it is put_prev_task() where we do
balancing, and we could do this before the picking loop. Make this
possible.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/e4519f6850477ab7f3d257062796e6425ee4ba7c.1559129225.git.vpillai@digitalocean.com
For pick_next_task_fair() it is the newidle balance that requires
dropping the rq->lock; provided we do put_prev_task() early, we can
also detect the condition for doing newidle early.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/9e3eb1859b946f03d7e500453a885725b68957ba.1559129225.git.vpillai@digitalocean.com
In preparation of further separating pick_next_task() and
set_curr_task() we have to pass the actual task into it, while there,
rename the thing to better pair with put_prev_task().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
Link: https://lkml.kernel.org/r/a96d1bcdd716db4a4c5da2fece647a1456c0ed78.1559129225.git.vpillai@digitalocean.com
The CPU hotplug task selection is the only place where we used
put_prev_task() on a task that is not current. While looking at that,
it occured to me that we can simplify all that by by using a custom
pick loop.
Since we don't need to put current, we can do away with the fake task
too.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Lu <aaron.lwe@gmail.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: mingo@kernel.org
Cc: Phil Auld <pauld@redhat.com>
Cc: Julien Desfossez <jdesfossez@digitalocean.com>
Cc: Nishanth Aravamudan <naravamudan@digitalocean.com>
It has been observed, that highly-threaded, non-cpu-bound applications
running under cpu.cfs_quota_us constraints can hit a high percentage of
periods throttled while simultaneously not consuming the allocated
amount of quota. This use case is typical of user-interactive non-cpu
bound applications, such as those running in kubernetes or mesos when
run on multiple cpu cores.
This has been root caused to cpu-local run queue being allocated per cpu
bandwidth slices, and then not fully using that slice within the period.
At which point the slice and quota expires. This expiration of unused
slice results in applications not being able to utilize the quota for
which they are allocated.
The non-expiration of per-cpu slices was recently fixed by
'commit 512ac999d2 ("sched/fair: Fix bandwidth timer clock drift
condition")'. Prior to that it appears that this had been broken since
at least 'commit 51f2176d74 ("sched/fair: Fix unlocked reads of some
cfs_b->quota/period")' which was introduced in v3.16-rc1 in 2014. That
added the following conditional which resulted in slices never being
expired.
if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
/* extend local deadline, drift is bounded above by 2 ticks */
cfs_rq->runtime_expires += TICK_NSEC;
Because this was broken for nearly 5 years, and has recently been fixed
and is now being noticed by many users running kubernetes
(https://github.com/kubernetes/kubernetes/issues/67577) it is my opinion
that the mechanisms around expiring runtime should be removed
altogether.
This allows quota already allocated to per-cpu run-queues to live longer
than the period boundary. This allows threads on runqueues that do not
use much CPU to continue to use their remaining slice over a longer
period of time than cpu.cfs_period_us. However, this helps prevent the
above condition of hitting throttling while also not fully utilizing
your cpu quota.
This theoretically allows a machine to use slightly more than its
allotted quota in some periods. This overflow would be bounded by the
remaining quota left on each per-cpu runqueueu. This is typically no
more than min_cfs_rq_runtime=1ms per cpu. For CPU bound tasks this will
change nothing, as they should theoretically fully utilize all of their
quota in each period. For user-interactive tasks as described above this
provides a much better user/application experience as their cpu
utilization will more closely match the amount they requested when they
hit throttling. This means that cpu limits no longer strictly apply per
period for non-cpu bound applications, but that they are still accurate
over longer timeframes.
This greatly improves performance of high-thread-count, non-cpu bound
applications with low cfs_quota_us allocation on high-core-count
machines. In the case of an artificial testcase (10ms/100ms of quota on
80 CPU machine), this commit resulted in almost 30x performance
improvement, while still maintaining correct cpu quota restrictions.
That testcase is available at https://github.com/indeedeng/fibtest.
Fixes: 512ac999d2 ("sched/fair: Fix bandwidth timer clock drift condition")
Signed-off-by: Dave Chiluk <chiluk+linux@indeed.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: John Hammond <jhammond@indeed.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kyle Anderson <kwa@yelp.com>
Cc: Gabriel Munos <gmunoz@netflix.com>
Cc: Peter Oskolkov <posk@posk.io>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Brendan Gregg <bgregg@netflix.com>
Link: https://lkml.kernel.org/r/1563900266-19734-2-git-send-email-chiluk+linux@indeed.com
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.
Switch the preemption code, scheduler and init task over to use
CONFIG_PREEMPTION.
That's the first step towards RT in that area. The more complex changes are
coming separately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the topology of root domains is modified by CPUset or CPUhotplug
operations information about the current deadline bandwidth held in the
root domain is lost.
This patch addresses the issue by recalculating the lost deadline
bandwidth information by circling through the deadline tasks held in
CPUsets and adding their current load to the root domain they are
associated with.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
[ Various additional modifications. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-4-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In real product setup, there will be houseeking CPUs in each nodes, it
is prefer to do housekeeping from local node, fallback to global online
cpumask if failed to find houseeking CPU from local node.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1561711901-4755-2-git-send-email-wanpengli@tencent.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Energy Aware Scheduler (EAS) estimates the energy impact of waking
up a task on a given CPU. This estimation is based on:
a) an (active) power consumption defined for each CPU frequency
b) an estimation of which frequency will be used on each CPU
c) an estimation of the busy time (utilization) of each CPU
Utilization clamping can affect both b) and c).
A CPU is expected to run:
- on an higher than required frequency, but for a shorter time, in case
its estimated utilization will be smaller than the minimum utilization
enforced by uclamp
- on a smaller than required frequency, but for a longer time, in case
its estimated utilization is bigger than the maximum utilization
enforced by uclamp
While compute_energy() already accounts clamping effects on busy time,
the clamping effects on frequency selection are currently ignored.
Fix it by considering how CPU clamp values will be affected by a
task waking up and being RUNNABLE on that CPU.
Do that by refactoring schedutil_freq_util() to take an additional
task_struct* which allows EAS to evaluate the impact on clamp values of
a task being eventually queued in a CPU. Clamp values are applied to the
RT+CFS utilization only when a FREQUENCY_UTIL is required by
compute_energy().
Do note that switching from ENERGY_UTIL to FREQUENCY_UTIL in the
computation of the cpu_util signal implies that we are more likely to
estimate the highest OPP when a RT task is running in another CPU of
the same performance domain. This can have an impact on energy
estimation but:
- it's not easy to say which approach is better, since it depends on
the use case
- the original approach could still be obtained by setting a smaller
task-specific util_min whenever required
Since we are at that:
- rename schedutil_freq_util() into schedutil_cpu_util(),
since it's not only used for frequency selection.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-12-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So far uclamp_util() allows to clamp a specified utilization considering
the clamp values requested by RUNNABLE tasks in a CPU. For the Energy
Aware Scheduler (EAS) it is interesting to test how clamp values will
change when a task is becoming RUNNABLE on a given CPU.
For example, EAS is interested in comparing the energy impact of
different scheduling decisions and the clamp values can play a role on
that.
Add uclamp_util_with() which allows to clamp a given utilization by
considering the possible impact on CPU clamp values of a specified task.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-11-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Each time a frequency update is required via schedutil, a frequency is
selected to (possibly) satisfy the utilization reported by each
scheduling class and irqs. However, when utilization clamping is in use,
the frequency selection should consider userspace utilization clamping
hints. This will allow, for example, to:
- boost tasks which are directly affecting the user experience
by running them at least at a minimum "requested" frequency
- cap low priority tasks not directly affecting the user experience
by running them only up to a maximum "allowed" frequency
These constraints are meant to support a per-task based tuning of the
frequency selection thus supporting a fine grained definition of
performance boosting vs energy saving strategies in kernel space.
Add support to clamp the utilization of RUNNABLE FAIR and RT tasks
within the boundaries defined by their aggregated utilization clamp
constraints.
Do that by considering the max(min_util, max_util) to give boosted tasks
the performance they need even when they happen to be co-scheduled with
other capped tasks.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-10-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task sleeps it removes its max utilization clamp from its CPU.
However, the blocked utilization on that CPU can be higher than the max
clamp value enforced while the task was running. This allows undesired
CPU frequency increases while a CPU is idle, for example, when another
CPU on the same frequency domain triggers a frequency update, since
schedutil can now see the full not clamped blocked utilization of the
idle CPU.
Fix this by using:
uclamp_rq_dec_id(p, rq, UCLAMP_MAX)
uclamp_rq_max_value(rq, UCLAMP_MAX, clamp_value)
to detect when a CPU has no more RUNNABLE clamped tasks and to flag this
condition.
Don't track any minimum utilization clamps since an idle CPU never
requires a minimum frequency. The decay of the blocked utilization is
good enough to reduce the CPU frequency.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Utilization clamping allows to clamp the CPU's utilization within a
[util_min, util_max] range, depending on the set of RUNNABLE tasks on
that CPU. Each task references two "clamp buckets" defining its minimum
and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp
bucket is active if there is at least one RUNNABLE tasks enqueued on
that CPU and refcounting that bucket.
When a task is {en,de}queued {on,from} a rq, the set of active clamp
buckets on that CPU can change. If the set of active clamp buckets
changes for a CPU a new "aggregated" clamp value is computed for that
CPU. This is because each clamp bucket enforces a different utilization
clamp value.
Clamp values are always MAX aggregated for both util_min and util_max.
This ensures that no task can affect the performance of other
co-scheduled tasks which are more boosted (i.e. with higher util_min
clamp) or less capped (i.e. with higher util_max clamp).
A task has:
task_struct::uclamp[clamp_id]::bucket_id
to track the "bucket index" of the CPU's clamp bucket it refcounts while
enqueued, for each clamp index (clamp_id).
A runqueue has:
rq::uclamp[clamp_id]::bucket[bucket_id].tasks
to track how many RUNNABLE tasks on that CPU refcount each
clamp bucket (bucket_id) of a clamp index (clamp_id).
It also has a:
rq::uclamp[clamp_id]::bucket[bucket_id].value
to track the clamp value of each clamp bucket (bucket_id) of a clamp
index (clamp_id).
The rq::uclamp::bucket[clamp_id][] array is scanned every time it's
needed to find a new MAX aggregated clamp value for a clamp_id. This
operation is required only when it's dequeued the last task of a clamp
bucket tracking the current MAX aggregated clamp value. In this case,
the CPU is either entering IDLE or going to schedule a less boosted or
more clamped task.
The expected number of different clamp values configured at build time
is small enough to fit the full unordered array into a single cache
line, for configurations of up to 7 buckets.
Add to struct rq the basic data structures required to refcount the
number of RUNNABLE tasks for each clamp bucket. Add also the max
aggregation required to update the rq's clamp value at each
enqueue/dequeue event.
Use a simple linear mapping of clamp values into clamp buckets.
Pre-compute and cache bucket_id to avoid integer divisions at
enqueue/dequeue time.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a cfs_rq sleeps and returns its quota, we delay for 5ms before
waking any throttled cfs_rqs to coalesce with other cfs_rqs going to
sleep, as this has to be done outside of the rq lock we hold.
The current code waits for 5ms without any sleeps, instead of waiting
for 5ms from the first sleep, which can delay the unthrottle more than
we want. Switch this around so that we can't push this forward forever.
This requires an extra flag rather than using hrtimer_active, since we
need to start a new timer if the current one is in the process of
finishing.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Xunlei Pang <xlpang@linux.alibaba.com>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/xm26a7euy6iq.fsf_-_@bsegall-linux.svl.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx]
any more.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-2-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CFS class is the only one maintaining and using the CPU wide load
(rq->load(.weight)). The last use case of the CPU wide load in CFS's
set_next_entity() can be replaced by using the load of the CFS class
(rq->cfs.load(.weight)) instead.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190424084556.604-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This fixes the following sparse errors in sched/fair.c:
fair.c:6506:14: error: incompatible types in comparison expression
fair.c:8642:21: error: incompatible types in comparison expression
Using __rcu will also help sparse catch any future bugs.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ From an RCU perspective. ]
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Cc: kernel-hardening@lists.openwall.com
Cc: kernel-team@android.com
Link: https://lkml.kernel.org/r/20190321003426.160260-5-joel@joelfernandes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Recently I added an RCU annotation check to rcu_assign_pointer(). All
pointers assigned to RCU protected data are to be annotated with __rcu
inorder to be able to use rcu_assign_pointer() similar to checks in
other RCU APIs.
This resulted in a sparse error:
kernel//sched/cpufreq.c:41:9: sparse: error: incompatible types in comparison expression (different address spaces)
Fix this by annotating cpufreq_update_util_data pointer with __rcu. This
will also help sparse catch any future RCU misuage bugs.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ From an RCU perspective. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Cc: kernel-hardening@lists.openwall.com
Cc: kernel-team@android.com
Link: https://lkml.kernel.org/r/20190321003426.160260-2-joel@joelfernandes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- refcount conversions
- Solve the rq->leaf_cfs_rq_list can of worms for real.
- improve power-aware scheduling
- add sysctl knob for Energy Aware Scheduling
- documentation updates
- misc other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
kthread: Do not use TIMER_IRQSAFE
kthread: Convert worker lock to raw spinlock
sched/fair: Use non-atomic cpumask_{set,clear}_cpu()
sched/fair: Remove unused 'sd' parameter from select_idle_smt()
sched/wait: Use freezable_schedule() when possible
sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block
sched/fair: Explain LLC nohz kick condition
sched/fair: Simplify nohz_balancer_kick()
sched/topology: Fix percpu data types in struct sd_data & struct s_data
sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument
sched/fair: Fix O(nr_cgroups) in the load balancing path
sched/fair: Optimize update_blocked_averages()
sched/fair: Fix insertion in rq->leaf_cfs_rq_list
sched/fair: Add tmp_alone_branch assertion
sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock()
sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK
sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity
sched/fair: Update scale invariance of PELT
sched/fair: Move the rq_of() helper function
sched/core: Convert task_struct.stack_refcount to refcount_t
...
Since commit:
d03266910a ("sched/fair: Fix task group initialization")
the utilization of a sched entity representing a task group is no longer
initialized to any other value than 0. So post_init_entity_util_avg() is
only used for tasks, not for sched_entities.
Make this clear by calling it with a task_struct pointer argument which
also eliminates the entity_is_task(se) if condition in the fork path and
get rid of the stale comment in remove_entity_load_avg() accordingly.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190122162501.12000-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
move_queued_task() synchronizes with task_rq_lock() as follows:
move_queued_task() task_rq_lock()
[S] ->on_rq = MIGRATING [L] rq = task_rq()
WMB (__set_task_cpu()) ACQUIRE (rq->lock);
[S] ->cpu = new_cpu [L] ->on_rq
where "[L] rq = task_rq()" is ordered before "ACQUIRE (rq->lock)" by an
address dependency and, in turn, "ACQUIRE (rq->lock)" is ordered before
"[L] ->on_rq" by the ACQUIRE itself.
Use READ_ONCE() to load ->cpu in task_rq() (c.f., task_cpu()) to honor
this address dependency. Also, mark the accesses to ->cpu and ->on_rq
with READ_ONCE()/WRITE_ONCE() to comply with the LKMM.
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190121155240.27173-1-andrea.parri@amarulasolutions.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
util_est is mainly meant to be a lower-bound for tasks utilization.
That's why task_util_est() returns the actual util_avg when it's higher
than the estimated utilization.
With new invaraince signal and without any special check on samples
collection, if a task is limited because of thermal capping for
example, we could end up overestimating its utilization and thus
perhaps generating an unwanted frequency spike when the capping is
relaxed... and (even worst) it will take some more activations for the
estimated utilization to converge back to the actual utilization.
Since we cannot easily know if there is idle time in a CPU when a task
completes an activation with a utilization higher then the CPU capacity,
we skip the sampling when utilization is higher than CPU's capacity.
Suggested-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current implementation of load tracking invariance scales the
contribution with current frequency and uarch performance (only for
utilization) of the CPU. One main result of this formula is that the
figures are capped by current capacity of CPU. Another one is that the
load_avg is not invariant because not scaled with uarch.
The util_avg of a periodic task that runs r time slots every p time slots
varies in the range :
U * (1-y^r)/(1-y^p) * y^i < Utilization < U * (1-y^r)/(1-y^p)
with U is the max util_avg value = SCHED_CAPACITY_SCALE
At a lower capacity, the range becomes:
U * C * (1-y^r')/(1-y^p) * y^i' < Utilization < U * C * (1-y^r')/(1-y^p)
with C reflecting the compute capacity ratio between current capacity and
max capacity.
so C tries to compensate changes in (1-y^r') but it can't be accurate.
Instead of scaling the contribution value of PELT algo, we should scale the
running time. The PELT signal aims to track the amount of computation of
tasks and/or rq so it seems more correct to scale the running time to
reflect the effective amount of computation done since the last update.
In order to be fully invariant, we need to apply the same amount of
running time and idle time whatever the current capacity. Because running
at lower capacity implies that the task will run longer, we have to ensure
that the same amount of idle time will be applied when system becomes idle
and no idle time has been "stolen". But reaching the maximum utilization
value (SCHED_CAPACITY_SCALE) means that the task is seen as an
always-running task whatever the capacity of the CPU (even at max compute
capacity). In this case, we can discard this "stolen" idle times which
becomes meaningless.
In order to achieve this time scaling, a new clock_pelt is created per rq.
The increase of this clock scales with current capacity when something
is running on rq and synchronizes with clock_task when rq is idle. With
this mechanism, we ensure the same running and idle time whatever the
current capacity. This also enables to simplify the pelt algorithm by
removing all references of uarch and frequency and applying the same
contribution to utilization and loads. Furthermore, the scaling is done
only once per update of clock (update_rq_clock_task()) instead of during
each update of sched_entities and cfs/rt/dl_rq of the rq like the current
implementation. This is interesting when cgroup are involved as shown in
the results below:
On a hikey (octo Arm64 platform).
Performance cpufreq governor and only shallowest c-state to remove variance
generated by those power features so we only track the impact of pelt algo.
each test runs 16 times:
./perf bench sched pipe
(higher is better)
kernel tip/sched/core + patch
ops/seconds ops/seconds diff
cgroup
root 59652(+/- 0.18%) 59876(+/- 0.24%) +0.38%
level1 55608(+/- 0.27%) 55923(+/- 0.24%) +0.57%
level2 52115(+/- 0.29%) 52564(+/- 0.22%) +0.86%
hackbench -l 1000
(lower is better)
kernel tip/sched/core + patch
duration(sec) duration(sec) diff
cgroup
root 4.453(+/- 2.37%) 4.383(+/- 2.88%) -1.57%
level1 4.859(+/- 8.50%) 4.830(+/- 7.07%) -0.60%
level2 5.063(+/- 9.83%) 4.928(+/- 9.66%) -2.66%
Then, the responsiveness of PELT is improved when CPU is not running at max
capacity with this new algorithm. I have put below some examples of
duration to reach some typical load values according to the capacity of the
CPU with current implementation and with this patch. These values has been
computed based on the geometric series and the half period value:
Util (%) max capacity half capacity(mainline) half capacity(w/ patch)
972 (95%) 138ms not reachable 276ms
486 (47.5%) 30ms 138ms 60ms
256 (25%) 13ms 32ms 26ms
On my hikey (octo Arm64 platform) with schedutil governor, the time to
reach max OPP when starting from a null utilization, decreases from 223ms
with current scale invariance down to 121ms with the new algorithm.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: patrick.bellasi@arm.com
Cc: pjt@google.com
Cc: pkondeti@codeaurora.org
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Link: https://lkml.kernel.org/r/1548257214-13745-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All that fancy new Energy-Aware scheduling foo is hidden behind a
static_key, which is awesome if you have the stuff enabled in your
config.
However, when you lack all the prerequisites it doesn't make any sense
to pretend we'll ever actually run this, so provide a little more clue
to the compiler so it can more agressively delete the code.
text data bss dec hex filename
50297 976 96 51369 c8a9 defconfig-build/kernel/sched/fair.o
49227 944 96 50267 c45b defconfig-build/kernel/sched/fair.o
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that call_rcu()'s callback is not invoked until after all
preempt-disable regions of code have completed (in addition to explicitly
marked RCU read-side critical sections), call_rcu() can be used in place
of call_rcu_sched(). This commit therefore makes that change.
While in the area, this commit also updates an outdated header comment
for for_each_domain().
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".
The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.
Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Energy-aware scheduling is only meant to be active while the system is
_not_ over-utilized. That is, there are spare cycles available to shift
tasks around based on their actual utilization to get a more
energy-efficient task distribution without depriving any tasks. When
above the tipping point task placement is done the traditional way based
on load_avg, spreading the tasks across as many cpus as possible based
on priority scaled load to preserve smp_nice. Below the tipping point we
want to use util_avg instead. We need to define a criteria for when we
make the switch.
The util_avg for each cpu converges towards 100% regardless of how many
additional tasks we may put on it. If we define over-utilized as:
sum_{cpus}(rq.cfs.avg.util_avg) + margin > sum_{cpus}(rq.capacity)
some individual cpus may be over-utilized running multiple tasks even
when the above condition is false. That should be okay as long as we try
to spread the tasks out to avoid per-cpu over-utilization as much as
possible and if all tasks have the _same_ priority. If the latter isn't
true, we have to consider priority to preserve smp_nice.
For example, we could have n_cpus nice=-10 util_avg=55% tasks and
n_cpus/2 nice=0 util_avg=60% tasks. Balancing based on util_avg we are
likely to end up with nice=-10 tasks sharing cpus and nice=0 tasks
getting their own as we 1.5*n_cpus tasks in total and 55%+55% is less
over-utilized than 55%+60% for those cpus that have to be shared. The
system utilization is only 85% of the system capacity, but we are
breaking smp_nice.
To be sure not to break smp_nice, we have defined over-utilization
conservatively as when any cpu in the system is fully utilized at its
highest frequency instead:
cpu_rq(any).cfs.avg.util_avg + margin > cpu_rq(any).capacity
IOW, as soon as one cpu is (nearly) 100% utilized, we switch to load_avg
to factor in priority to preserve smp_nice.
With this definition, we can skip periodic load-balance as no cpu has an
always-running task when the system is not over-utilized. All tasks will
be periodic and we can balance them at wake-up. This conservative
condition does however mean that some scenarios that could benefit from
energy-aware decisions even if one cpu is fully utilized would not get
those benefits.
For systems where some cpus might have reduced capacity on some cpus
(RT-pressure and/or big.LITTLE), we want periodic load-balance checks as
soon a just a single cpu is fully utilized as it might one of those with
reduced capacity and in that case we want to migrate it.
[ peterz: Added a comment explaining why new tasks are not accounted during
overutilization detection. ]
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: adharmap@codeaurora.org
Cc: chris.redpath@arm.com
Cc: currojerez@riseup.net
Cc: dietmar.eggemann@arm.com
Cc: edubezval@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: javi.merino@kernel.org
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: patrick.bellasi@arm.com
Cc: pkondeti@codeaurora.org
Cc: rjw@rjwysocki.net
Cc: skannan@codeaurora.org
Cc: smuckle@google.com
Cc: srinivas.pandruvada@linux.intel.com
Cc: thara.gopinath@linaro.org
Cc: tkjos@google.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/20181203095628.11858-13-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
::smt_gain is used to compute the capacity of CPUs of a SMT core with the
constraint 1 < ::smt_gain < 2 in order to be able to compute number of CPUs
per core. The field has_free_capacity of struct numa_stat, which was the
last user of this computation of number of CPUs per core, has been removed
by:
2d4056fafa ("sched/numa: Remove numa_has_capacity()")
We can now remove this constraint on core capacity and use the defautl value
SCHED_CAPACITY_SCALE for SMT CPUs. With this remove, SCHED_CAPACITY_SCALE
becomes the maximum compute capacity of CPUs on every systems. This should
help to simplify some code and remove fields like rd->max_cpu_capacity
Furthermore, arch_scale_cpu_capacity() is used with a NULL sd in several other
places in the code when it wants the capacity of a CPUs to scale
some metrics like in pelt, deadline or schedutil. In case on SMT, the value
returned is not the capacity of SMT CPUs but default SCHED_CAPACITY_SCALE.
So remove it.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1535548752-4434-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Go over the scheduler source code and fix common typos
in comments - and a typo in an actual variable name.
No change in functionality intended.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make the scheduler's 'sched_smt_present' static key globaly available, so
it can be used in the x86 speculation control code.
Provide a query function and a stub for the CONFIG_SMP=n case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185004.430168326@linutronix.de
There is no point in keeping the conditional statement of the #if block
outside of the #ifdef block, while all of its body is contained within
the #ifdef block.
Move the conditional statement under the #ifdef block as well.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/78cbd78a615d6f9fdcd3327f1ead68470f92593e.1541482935.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We already have task_has_rt_policy() and task_has_dl_policy() helpers,
create task_has_idle_policy() as well and update sched core to start
using it.
While at it, use task_has_dl_policy() at one more place.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/ce3915d5b490fc81af926a3b6bfb775e7188e005.1541416894.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills. In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.
In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.
A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively. Stall states are aggregate versions of the per-task delay
accounting delays:
cpu: some tasks are runnable but not executing on a CPU
memory: tasks are reclaiming, or waiting for swapin or thrashing cache
io: tasks are waiting for io completions
These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit. They can also indicate when the system
is approaching lockup scenarios and OOMs.
To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states. Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime. A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).
[hannes@cmpxchg.org: doc fixlet, per Randy]
Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_sched_yield() disables IRQs, looks up this_rq() and locks it. The next
patch is adding another site with the same pattern, so provide a
convenience function for it.
Link: http://lkml.kernel.org/r/20180828172258.3185-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kernel/sched/sched.h includes "stats.h" half-way through the file. The
next patch introduces users of sched.h's rq locking functions and
update_rq_clock() in kernel/sched/stats.h. Move those definitions up in
the file so they are available in stats.h.
Link: http://lkml.kernel.org/r/20180828172258.3185-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 mm updates from Ingo Molnar:
"Lots of changes in this cycle:
- Lots of CPA (change page attribute) optimizations and related
cleanups (Thomas Gleixner, Peter Zijstra)
- Make lazy TLB mode even lazier (Rik van Riel)
- Fault handler cleanups and improvements (Dave Hansen)
- kdump, vmcore: Enable kdumping encrypted memory with AMD SME
enabled (Lianbo Jiang)
- Clean up VM layout documentation (Baoquan He, Ingo Molnar)
- ... plus misc other fixes and enhancements"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
x86/stackprotector: Remove the call to boot_init_stack_canary() from cpu_startup_entry()
x86/mm: Kill stray kernel fault handling comment
x86/mm: Do not warn about PCI BIOS W+X mappings
resource: Clean it up a bit
resource: Fix find_next_iomem_res() iteration issue
resource: Include resource end in walk_*() interfaces
x86/kexec: Correct KEXEC_BACKUP_SRC_END off-by-one error
x86/mm: Remove spurious fault pkey check
x86/mm/vsyscall: Consider vsyscall page part of user address space
x86/mm: Add vsyscall address helper
x86/mm: Fix exception table comments
x86/mm: Add clarifying comments for user addr space
x86/mm: Break out user address space handling
x86/mm: Break out kernel address space handling
x86/mm: Clarify hardware vs. software "error_code"
x86/mm/tlb: Make lazy TLB mode lazier
x86/mm/tlb: Add freed_tables element to flush_tlb_info
x86/mm/tlb: Add freed_tables argument to flush_tlb_mm_range
smp,cpumask: introduce on_each_cpu_cond_mask
smp: use __cpumask_set_cpu in on_each_cpu_cond
...
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- Migrate CPU-intense 'misfit' tasks on asymmetric capacity systems,
to better utilize (much) faster 'big core' CPUs. (Morten Rasmussen,
Valentin Schneider)
- Topology handling improvements, in particular when CPU capacity
changes and related load-balancing fixes/improvements (Morten
Rasmussen)
- ... plus misc other improvements, fixes and updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
sched/completions/Documentation: Add recommendation for dynamic and ONSTACK completions
sched/completions/Documentation: Clean up the document some more
sched/completions/Documentation: Fix a couple of punctuation nits
cpu/SMT: State SMT is disabled even with nosmt and without "=force"
sched/core: Fix comment regarding nr_iowait_cpu() and get_iowait_load()
sched/fair: Remove setting task's se->runnable_weight during PELT update
sched/fair: Disable LB_BIAS by default
sched/pelt: Fix warning and clean up IRQ PELT config
sched/topology: Make local variables static
sched/debug: Use symbolic names for task state constants
sched/numa: Remove unused numa_stats::nr_running field
sched/numa: Remove unused code from update_numa_stats()
sched/debug: Explicitly cast sched_feat() to bool
sched/core: Disable SD_PREFER_SIBLING on asymmetric CPU capacity domains
sched/fair: Don't move tasks to lower capacity CPUs unless necessary
sched/fair: Set rq->rd->overload when misfit
sched/fair: Wrap rq->rd->overload accesses with READ/WRITE_ONCE()
sched/core: Change root_domain->overload type to int
sched/fair: Change 'prefer_sibling' type to bool
sched/fair: Kick nohz balance if rq->misfit_task_load
...
The following commit:
d7880812b3 ("idle: Add the stack canary init to cpu_startup_entry()")
... added an x86 specific boot_init_stack_canary() call to the generic
cpu_startup_entry() as a temporary hack, with the intention to remove
the #ifdef CONFIG_X86 later.
More than 5 years later let's finally realize that plan! :-)
While implementing stack protector support for PowerPC, we found
that calling boot_init_stack_canary() is also needed for PowerPC
which uses per task (TLS) stack canary like the X86.
However, calling boot_init_stack_canary() would break architectures
using a global stack canary (ARM, SH, MIPS and XTENSA).
Instead of modifying the #ifdef CONFIG_X86 to an even messier:
#if defined(CONFIG_X86) || defined(CONFIG_PPC)
PowerPC implemented the call to boot_init_stack_canary() in the function
calling cpu_startup_entry().
Let's try the same cleanup on the x86 side as well.
On x86 we have two functions calling cpu_startup_entry():
- start_secondary()
- cpu_bringup_and_idle()
start_secondary() already calls boot_init_stack_canary(), so
it's good, and this patch adds the call to boot_init_stack_canary()
in cpu_bringup_and_idle().
I.e. now x86 catches up to the rest of the world and the ugly init
sequence in init/main.c can be removed from cpu_startup_entry().
As a final benefit we can also remove the <linux/stackprotector.h>
dependency from <linux/sched.h>.
[ mingo: Improved the changelog a bit, added language explaining x86 borkage and sched.h change. ]
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181020072649.5B59310483E@pc16082vm.idsi0.si.c-s.fr
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With a very low cpu.cfs_quota_us setting, such as the minimum of 1000,
distribute_cfs_runtime may not empty the throttled_list before it runs
out of runtime to distribute. In that case, due to the change from
c06f04c704 to put throttled entries at the head of the list, later entries
on the list will starve. Essentially, the same X processes will get pulled
off the list, given CPU time and then, when expired, get put back on the
head of the list where distribute_cfs_runtime will give runtime to the same
set of processes leaving the rest.
Fix the issue by setting a bit in struct cfs_bandwidth when
distribute_cfs_runtime is running, so that the code in throttle_cfs_rq can
decide to put the throttled entry on the tail or the head of the list. The
bit is set/cleared by the callers of distribute_cfs_runtime while they hold
cfs_bandwidth->lock.
This is easy to reproduce with a handful of CPU consumers. I use 'crash' on
the live system. In some cases you can simply look at the throttled list and
see the later entries are not changing:
crash> list cfs_rq.throttled_list -H 0xffff90b54f6ade40 -s cfs_rq.runtime_remaining | paste - - | awk '{print $1" "$4}' | pr -t -n3
1 ffff90b56cb2d200 -976050
2 ffff90b56cb2cc00 -484925
3 ffff90b56cb2bc00 -658814
4 ffff90b56cb2ba00 -275365
5 ffff90b166a45600 -135138
6 ffff90b56cb2da00 -282505
7 ffff90b56cb2e000 -148065
8 ffff90b56cb2fa00 -872591
9 ffff90b56cb2c000 -84687
10 ffff90b56cb2f000 -87237
11 ffff90b166a40a00 -164582
crash> list cfs_rq.throttled_list -H 0xffff90b54f6ade40 -s cfs_rq.runtime_remaining | paste - - | awk '{print $1" "$4}' | pr -t -n3
1 ffff90b56cb2d200 -994147
2 ffff90b56cb2cc00 -306051
3 ffff90b56cb2bc00 -961321
4 ffff90b56cb2ba00 -24490
5 ffff90b166a45600 -135138
6 ffff90b56cb2da00 -282505
7 ffff90b56cb2e000 -148065
8 ffff90b56cb2fa00 -872591
9 ffff90b56cb2c000 -84687
10 ffff90b56cb2f000 -87237
11 ffff90b166a40a00 -164582
Sometimes it is easier to see by finding a process getting starved and looking
at the sched_info:
crash> task ffff8eb765994500 sched_info
PID: 7800 TASK: ffff8eb765994500 CPU: 16 COMMAND: "cputest"
sched_info = {
pcount = 8,
run_delay = 697094208,
last_arrival = 240260125039,
last_queued = 240260327513
},
crash> task ffff8eb765994500 sched_info
PID: 7800 TASK: ffff8eb765994500 CPU: 16 COMMAND: "cputest"
sched_info = {
pcount = 8,
run_delay = 697094208,
last_arrival = 240260125039,
last_queued = 240260327513
},
Signed-off-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: c06f04c704 ("sched: Fix potential near-infinite distribute_cfs_runtime() loop")
Link: http://lkml.kernel.org/r/20181008143639.GA4019@pauld.bos.csb
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Create a config for enabling irq load tracking in the scheduler.
irq load tracking is useful only when irq or paravirtual time is
accounted but it's only possible with SMP for now.
Also use __maybe_unused to remove the compilation warning in
update_rq_clock_task() that has been introduced by:
2e62c4743a ("sched/fair: Remove #ifdefs from scale_rt_capacity()")
Suggested-by: Ingo Molnar <mingo@redhat.com>
Reported-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reported-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: dou_liyang@163.com
Fixes: 2e62c4743a ("sched/fair: Remove #ifdefs from scale_rt_capacity()")
Link: http://lkml.kernel.org/r/1537867062-27285-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
LLVM has a warning that tags expressions like:
if (foo && non-bool-const)
This pattern triggers for CONFIG_SCHED_DEBUG=n where sched_feat() ends
up being whatever bit we select. Avoid the warning with an explicit
cast to bool.
Reported-by: Philipp Klocke <philipp97kl@gmail.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Idle balance is a great opportunity to pull a misfit task. However,
there are scenarios where misfit tasks are present but idle balance is
prevented by the overload flag.
A good example of this is a workload of n identical tasks. Let's suppose
we have a 2+2 Arm big.LITTLE system. We then spawn 4 fairly
CPU-intensive tasks - for the sake of simplicity let's say they are just
CPU hogs, even when running on big CPUs.
They are identical tasks, so on an SMP system they should all end at
(roughly) the same time. However, in our case the LITTLE CPUs are less
performing than the big CPUs, so tasks running on the LITTLEs will have
a longer completion time.
This means that the big CPUs will complete their work earlier, at which
point they should pull the tasks from the LITTLEs. What we want to
happen is summarized as follows:
a,b,c,d are our CPU-hogging tasks _ signifies idling
LITTLE_0 | a a a a _ _
LITTLE_1 | b b b b _ _
---------|-------------
big_0 | c c c c a a
big_1 | d d d d b b
^
^
Tasks end on the big CPUs, idle balance happens
and the misfit tasks are pulled straight away
This however won't happen, because currently the overload flag is only
set when there is any CPU that has more than one runnable task - which
may very well not be the case here if our CPU-hogging workload is all
there is to run.
As such, this commit sets the overload flag in update_sg_lb_stats when
a group is flagged as having a misfit task.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-10-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This variable can be read and set locklessly within update_sd_lb_stats().
As such, READ/WRITE_ONCE() are added to make sure nothing terribly wrong
can happen because of the compiler.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-9-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sizeof(_Bool) is implementation defined, so let's just go with 'int' as
is done for other structures e.g. sched_domain_shared->has_idle_cores.
The local 'overload' variable used in update_sd_lb_stats can remain
bool, as it won't impact any struct layout and can be assigned to the
root_domain field.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-8-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current sg->min_capacity tracks the lowest per-CPU compute capacity
available in the sched_group when rt/irq pressure is taken into account.
Minimum capacity isn't the ideal metric for tracking if a sched_group
needs offloading to another sched_group for some scenarios, e.g. a
sched_group with multiple CPUs if only one is under heavy pressure.
Tracking maximum capacity isn't perfect either but a better choice for
some situations as it indicates that the sched_group definitely compute
capacity constrained either due to rt/irq pressure on all CPUs or
asymmetric CPU capacities (e.g. big.LITTLE).
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-4-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To maximize throughput in systems with asymmetric CPU capacities (e.g.
ARM big.LITTLE) load-balancing has to consider task and CPU utilization
as well as per-CPU compute capacity when load-balancing in addition to
the current average load based load-balancing policy. Tasks with high
utilization that are scheduled on a lower capacity CPU need to be
identified and migrated to a higher capacity CPU if possible to maximize
throughput.
To implement this additional policy an additional group_type
(load-balance scenario) is added: 'group_misfit_task'. This represents
scenarios where a sched_group has one or more tasks that are not
suitable for its per-CPU capacity. 'group_misfit_task' is only considered
if the system is not overloaded or imbalanced ('group_imbalanced' or
'group_overloaded').
Identifying misfit tasks requires the rq lock to be held. To avoid
taking remote rq locks to examine source sched_groups for misfit tasks,
each CPU is responsible for tracking misfit tasks themselves and update
the rq->misfit_task flag. This means checking task utilization when
tasks are scheduled and on sched_tick.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The existing asymmetric CPU capacity code should cause minimal overhead
for others. Putting it behind a static_key, it has been done for SMT
optimizations, would make it easier to extend and improve without
causing harm to others moving forward.
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: gaku.inami.xh@renesas.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1530699470-29808-2-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are checks in migrate_swap_stop() that check if the task/CPU
combination is as per migrate_swap_arg before migrating.
However atleast one of the two tasks to be swapped by migrate_swap() could
have migrated to a completely different CPU before updating the
migrate_swap_arg. The new CPU where the task is currently running could
be a different node too. If the task has migrated, numa balancer might
end up placing a task in a wrong node. Instead of achieving node
consolidation, it may end up spreading the load across nodes.
To avoid that pass the CPUs as additional parameters.
While here, place migrate_swap under CONFIG_NUMA_BALANCING.
Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS LAST_PATCH WITH_PATCH %CHANGE
16 25377.3 25226.6 -0.59
1 72287 73326 1.437
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-10-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reuse cpu_util_irq() that has been defined for schedutil and set irq util
to 0 when !CONFIG_IRQ_TIME_ACCOUNTING.
But the compiler is not able to optimize the sequence (at least with
aarch64 GCC 7.2.1):
free *= (max - irq);
free /= max;
when irq is fixed to 0
Add a new inline function scale_irq_capacity() that will scale utilization
when irq is accounted. Reuse this funciton in schedutil which applies
similar formula.
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/1532001606-6689-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>