Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211811.828443100@infradead.org
Pick up the EEVDF work into the main branch - it's looking good so far.
Conflicts:
kernel/sched/features.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CFS bandwidth limits and NOHZ full don't play well together. Tasks
can easily run well past their quotas before a remote tick does
accounting. This leads to long, multi-period stalls before such
tasks can run again. Currently, when presented with these conflicting
requirements the scheduler is favoring nohz_full and letting the tick
be stopped. However, nohz tick stopping is already best-effort, there
are a number of conditions that can prevent it, whereas cfs runtime
bandwidth is expected to be enforced.
Make the scheduler favor bandwidth over stopping the tick by setting
TICK_DEP_BIT_SCHED when the only running task is a cfs task with
runtime limit enabled. We use cfs_b->hierarchical_quota to
determine if the task requires the tick.
Add check in pick_next_task_fair() as well since that is where
we have a handle on the task that is actually going to be running.
Add check in sched_can_stop_tick() to cover some edge cases such
as nr_running going from 2->1 and the 1 remains the running task.
Reviewed-By: Ben Segall <bsegall@google.com>
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230712133357.381137-3-pauld@redhat.com
In cgroupv2 cfs_b->hierarchical_quota is set to -1 for all task
groups due to the previous fix simply taking the min. It should
reflect a limit imposed at that level or by an ancestor. Even
though cgroupv2 does not require child quota to be less than or
equal to that of its ancestors the task group will still be
constrained by such a quota so this should be shown here. Cgroupv1
continues to set this correctly.
In both cases, add initialization when a new task group is created
based on the current parent's value (or RUNTIME_INF in the case of
root_task_group). Otherwise, the field is wrong until a quota is
changed after creation and __cfs_schedulable() is called.
Fixes: c53593e5cb ("sched, cgroup: Don't reject lower cpu.max on ancestors")
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230714125746.812891-1-pauld@redhat.com
EEVDF uses this tunable as the base request/slice -- make sure the
name reflects this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.205287511@infradead.org
Where CFS is currently a WFQ based scheduler with only a single knob,
the weight. The addition of a second, latency oriented parameter,
makes something like WF2Q or EEVDF based a much better fit.
Specifically, EEVDF does EDF like scheduling in the left half of the
tree -- those entities that are owed service. Except because this is a
virtual time scheduler, the deadlines are in virtual time as well,
which is what allows over-subscription.
EEVDF has two parameters:
- weight, or time-slope: which is mapped to nice just as before
- request size, or slice length: which is used to compute
the virtual deadline as: vd_i = ve_i + r_i/w_i
Basically, by setting a smaller slice, the deadline will be earlier
and the task will be more eligible and ran earlier.
Tick driven preemption is driven by request/slice completion; while
wakeup preemption is driven by the deadline.
Because the tree is now effectively an interval tree, and the
selection is no longer 'leftmost', over-scheduling is less of a
problem.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.931005524@infradead.org
With the introduction of avg_vruntime, it is possible to approximate
lag (the entire purpose of introducing it in fact). Use this to do lag
based placement over sleep+wake.
Specifically, the FAIR_SLEEPERS thing places things too far to the
left and messes up the deadline aspect of EEVDF.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.794929315@infradead.org
Add complete_on_current_cpu, wake_up_poll_on_current_cpu helpers to wake
up tasks on the current CPU.
These two helpers are useful when the task needs to make a synchronous context
switch to another task. In this context, synchronous means it wakes up the
target task and falls asleep right after that.
One example of such workloads is seccomp user notifies. This mechanism allows
the supervisor process handles system calls on behalf of a target process.
While the supervisor is handling an intercepted system call, the target process
will be blocked in the kernel, waiting for a response to come back.
On-CPU context switches are much faster than regular ones.
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-4-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Add WF_CURRENT_CPU wake flag that advices the scheduler to
move the wakee to the current CPU. This is useful for fast on-CPU
context switching use cases.
In addition, make ttwu external rather than static so that
the flag could be passed to it from outside of sched/core.c.
Signed-off-by: Peter Oskolkov <posk@google.com>
Signed-off-by: Andrei Vagin <avagin@google.com>
Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230308073201.3102738-3-avagin@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
As core scheduling introduced, a new state of idle is defined as
force idle, running idle task but nr_running greater than zero.
If a cpu is in force idle state, idle_cpu() will return zero. This
result makes sense in some scenarios, e.g., load balance,
showacpu when dumping, and judge the RCU boost kthread is starving.
But this will cause error in other scenarios, e.g., tick_irq_exit():
When force idle, rq->curr == rq->idle but rq->nr_running > 0, results
that idle_cpu() returns 0. In function tick_irq_exit(), if idle_cpu()
is 0, tick_nohz_irq_exit() will not be called, and ts->idle_active will
not become 1, which became 0 in tick_nohz_irq_enter().
ts->idle_sleeptime won't update in function update_ts_time_stats(), if
ts->idle_active is 0, which should be 1. And this bug will result that
ts->idle_sleeptime is less than the actual value, and finally will
result that the idle time in /proc/stat is less than the actual value.
To solve this problem, we introduce sched_core_idle_cpu(), which
returns 1 when force idle. We audit all users of idle_cpu(), and
change idle_cpu() into sched_core_idle_cpu() in function
tick_irq_exit().
v2-->v3: Only replace idle_cpu() with sched_core_idle_cpu() in
function tick_irq_exit(). And modify the corresponding commit log.
Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes <joel@joelfernandes.org>
Link: https://lore.kernel.org/r/1688011324-42406-1-git-send-email-CruzZhao@linux.alibaba.com
We currently export the total throttled time for cgroups that are given
a bandwidth limit. This patch extends this accounting to also account
the total time that each children cgroup has been throttled.
This is useful to understand the degree to which children have been
affected by the throttling control. Children which are not runnable
during the entire throttled period, for example, will not show any
self-throttling time during this period.
Expose this in a new interface, 'cpu.stat.local', which is similar to
how non-hierarchical events are accounted in 'memory.events.local'.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230620183247.737942-2-joshdon@google.com
* Whenever cpuset needs to rebuild sched_domain, it walked all tasks looking
for DEADLINE tasks as they need to be accounted on the new domain. Walking
all tasks can be expensive and there may not be any DEADLINE tasks at all.
Task iteration is now omitted if there are no DEADLINE tasks.
* Fixes DEADLINE bandwidth misaccounting after task migration failures.
* When no controller is enabled, -Wstringop-overflow warning is triggered.
The fix patch added an early exit which is too eager and got reverted for
now. Will fix later.
* Everything else are minor cleanups.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZJoRHw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGZatAQCKTv8pb5HEgochph4n26laSdVZs6ce3Y+s7V1T
rum+3QD/TyJFmCkZSMscolZGFuafpg41sjPbmc4SexeuAMYCMgY=
=nioD
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
- Whenever cpuset needs to rebuild sched_domain, it walked all tasks
looking for DEADLINE tasks as they need to be accounted on the new
domain. Walking all tasks can be expensive and there may not be any
DEADLINE tasks at all. Task iteration is now omitted if there are no
DEADLINE tasks
- Fixes DEADLINE bandwidth misaccounting after task migration failures
- When no controller is enabled, -Wstringop-overflow warning is
triggered. The fix patch added an early exit which is too eager and
got reverted for now. Will fix later
- Everything else is minor cleanups
* tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
Revert "cgroup: Avoid -Wstringop-overflow warnings"
cgroup/misc: Expose misc.current on cgroup v2 root
cgroup: Avoid -Wstringop-overflow warnings
cgroup: remove obsolete comment on cgroup_on_dfl()
cgroup: remove unused task_cgroup_path()
cgroup/cpuset: remove unneeded header files
cgroup: make cgroup_is_threaded() and cgroup_is_thread_root() static
rdmacg: fix kernel-doc warnings in rdmacg
cgroup: Replace the css_set call with cgroup_get
cgroup: remove unused macro for_each_e_css()
cgroup: Update out-of-date comment in cgroup_migrate()
cgroup: Replace all non-returning strlcpy with strscpy
cgroup/cpuset: remove unneeded header files
cgroup/cpuset: Free DL BW in case can_attach() fails
sched/deadline: Create DL BW alloc, free & check overflow interface
cgroup/cpuset: Iterate only if DEADLINE tasks are present
sched/cpuset: Keep track of SCHED_DEADLINE task in cpusets
sched/cpuset: Bring back cpuset_mutex
cgroup/cpuset: Rename functions dealing with DEADLINE accounting
* Concurrency-managed per-cpu work items that hog CPUs and delay the
execution of other work items are now automatically detected and excluded
from concurrency management. Reporting on such work items can also be
enabled through a config option.
* Added tools/workqueue/wq_monitor.py which improves visibility into
workqueue usages and behaviors.
* Includes Arnd's minimal fix for gcc-13 enum warning on 32bit compiles.
This conflicts with afa4bb778e ("workqueue: clean up WORK_* constant
types, clarify masking") in master. Can be resolved by picking the master
version.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZJoGvw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGZu0AP9IGK2opAzO9i3i1/Ys81b3sHi9PwrYWH3g252T
Oe3O6QD/Wh0wYBVl0o7IdW6BGdd5iNwIEs420G53UmmPrATqsgQ=
=TffY
-----END PGP SIGNATURE-----
Merge tag 'wq-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo:
- Concurrency-managed per-cpu work items that hog CPUs and delay the
execution of other work items are now automatically detected and
excluded from concurrency management. Reporting on such work items
can also be enabled through a config option.
- Added tools/workqueue/wq_monitor.py which improves visibility into
workqueue usages and behaviors.
- Arnd's minimal fix for gcc-13 enum warning on 32bit compiles,
superseded by commit afa4bb778e in mainline.
* tag 'wq-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Disable per-cpu CPU hog detection when wq_cpu_intensive_thresh_us is 0
workqueue: Fix WARN_ON_ONCE() triggers in worker_enter_idle()
workqueue: fix enum type for gcc-13
workqueue: Track and monitor per-workqueue CPU time usage
workqueue: Report work funcs that trigger automatic CPU_INTENSIVE mechanism
workqueue: Automatically mark CPU-hogging work items CPU_INTENSIVE
workqueue: Improve locking rule description for worker fields
workqueue: Move worker_set/clr_flags() upwards
workqueue: Re-order struct worker fields
workqueue: Add pwq->stats[] and a monitoring script
Further upgrade queue_work_on() comment
- Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of higher-frequency
SMT cores and lower-frequency non-SMT cores), under the old code
lower-priority CPUs pulled tasks from the higher-priority cores if
more than one SMT sibling was busy - resulting in many unnecessary
task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores with more
than one busy sibling and allows lower-priority CPUs to pull tasks, which
avoids superfluous migrations and lets lower-priority cores inspect all SMT
siblings for the busiest queue.
- Implement the 'runnable boosting' feature in the EAS balancer: consider CPU
contention in frequency, EAS max util & load-balance busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves other key
workloads unchanged.
- Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it
into the build_sched_topology() helper function and building
it dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
- Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations.
- Fix task_struct::saved_state handling.
- Fix various rq clock update bugs, unearthed by turning on the rq clock
debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger by
creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
- Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation
to (maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSatWQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j62xAAuGOx1LcDfRGC6WGQzp1zOdlsVQtnDvlS
qL58zYSHgizprpVQ3j87SBaG4CHCdvd2Bo36yW0lNZS4nd203qdq7fkrMb3hPP/w
egUQUzMegf5fF6BWldKeMjuHSt+twFQz/ZAKK8iSbAir6CHNAqbNst1oL0i/+Tyk
o33hBs1hT5tnbFb1NSVZkX4k+qT3LzTW4K2QgjjGtkScr6yHh2BdEVefyigWOjdo
9s02d00ll9a2r+F5txlN7Dnw6TN7rmTXGMOJU5bZvBE90/anNiAorMXHJdEKCyUR
u9+JtBdJWiCplGa/tSRcxT16ZW1VdtTnd9q66TDhXREd2UNDFqBEyg5Wl77K4Tlf
vKFajmj/to+cTbuv6m6TVR+zyXpdEpdL6F04P44U3qiJvDobBqeDNKHHIqpmbHXl
AXUXcPWTVAzXX1Ce5M+BeAgTBQ1T7C5tELILrTNQHJvO1s9VVBRFZ/l65Ps4vu7T
wIZ781IFuopk0zWqHovNvgKrJ7oFmOQQZFttQEe8n6nafkjI7u+IZ8FayiGaUMRr
4GawFGUCEdYh8z9qyslGKe8Q/Rphfk6hxMFRYUJpDmubQ0PkMeDjDGq77jDGl1PF
VqwSDEyOaBJs7Gqf/mem00JtzBmXhkhm1SEjggHMI2IQbr/eeBXoLQOn3CDapO/N
PiDbtX760ic=
=EWQA
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of
higher-frequency SMT cores and lower-frequency non-SMT cores),
under the old code lower-priority CPUs pulled tasks from the
higher-priority cores if more than one SMT sibling was busy -
resulting in many unnecessary task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores
with more than one busy sibling and allows lower-priority CPUs
to pull tasks, which avoids superfluous migrations and lets
lower-priority cores inspect all SMT siblings for the busiest
queue.
- Implement the 'runnable boosting' feature in the EAS balancer:
consider CPU contention in frequency, EAS max util & load-balance
busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves
other key workloads unchanged.
Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it into
the build_sched_topology() helper function and building it
dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations
- Fix task_struct::saved_state handling
- Fix various rq clock update bugs, unearthed by turning on the rq
clock debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger
by creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or
CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation to
(maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings"
* tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop()
sched/core: Fixed missing rq clock update before calling set_rq_offline()
sched/deadline: Update GRUB description in the documentation
sched/deadline: Fix bandwidth reclaim equation in GRUB
sched/wait: Fix a kthread_park race with wait_woken()
sched/topology: Mark set_sched_topology() __init
sched/fair: Rename variable cpu_util eff_util
arm64/arch_timer: Fix MMIO byteswap
sched/fair, cpufreq: Introduce 'runnable boosting'
sched/fair: Refactor CPU utilization functions
cpuidle: Use local_clock_noinstr()
sched/clock: Provide local_clock_noinstr()
x86/tsc: Provide sched_clock_noinstr()
clocksource: hyper-v: Provide noinstr sched_clock()
clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX
x86/vdso: Fix gettimeofday masking
math64: Always inline u128 version of mul_u64_u64_shr()
s390/time: Provide sched_clock_noinstr()
loongarch: Provide noinstr sched_clock_read()
...
There is a double update_rq_clock() invocation:
__balance_push_cpu_stop()
update_rq_clock()
__migrate_task()
update_rq_clock()
Sadly select_fallback_rq() also needs update_rq_clock() for
__do_set_cpus_allowed(), it is not possible to remove the update from
__balance_push_cpu_stop(). So remove it from __migrate_task() and
ensure all callers of this function call update_rq_clock() prior to
calling it.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20230613082012.49615-3-jiahao.os@bytedance.com
When using a cpufreq governor that uses
cpufreq_add_update_util_hook(), it is possible to trigger a missing
update_rq_clock() warning for the CPU hotplug path:
rq_attach_root()
set_rq_offline()
rq_offline_rt()
__disable_runtime()
sched_rt_rq_enqueue()
enqueue_top_rt_rq()
cpufreq_update_util()
data->func(data, rq_clock(rq), flags)
Move update_rq_clock() from sched_cpu_deactivate() (one of it's
callers) into set_rq_offline() such that it covers all
set_rq_offline() usage.
Additionally change rq_attach_root() to use rq_lock_irqsave() so that
it will properly manage the runqueue clock flags.
Suggested-by: Ben Segall <bsegall@google.com>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20230613082012.49615-2-jiahao.os@bytedance.com
With the introduction of task_struct::saved_state in commit
5f220be214 ("sched/wakeup: Prepare for RT sleeping spin/rwlocks")
matching the task state has gotten more complicated. That same commit
changed try_to_wake_up() to consider both states, but
wait_task_inactive() has been neglected.
Sebastian noted that the wait_task_inactive() usage in
ptrace_check_attach() can misbehave when ptrace_stop() is blocked on
the tasklist_lock after it sets TASK_TRACED.
Therefore extract a common helper from ttwu_state_match() and use that
to teach wait_task_inactive() about the PREEMPT_RT locks.
Originally-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20230601091234.GW83892@hirez.programming.kicks-ass.net
While modifying wait_task_inactive() for PREEMPT_RT; the build robot
noted that UP got broken. This led to audit and consideration of the
UP implementation of wait_task_inactive().
It looks like the UP implementation is also broken for PREEMPT;
consider task_current_syscall() getting preempted between the two
calls to wait_task_inactive().
Therefore move the wait_task_inactive() implementation out of
CONFIG_SMP and unconditionally use it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230602103731.GA630648%40hirez.programming.kicks-ass.net
If a per-cpu work item hogs the CPU, it can prevent other work items from
starting through concurrency management. A per-cpu workqueue which intends
to host such CPU-hogging work items can choose to not participate in
concurrency management by setting %WQ_CPU_INTENSIVE; however, this can be
error-prone and difficult to debug when missed.
This patch adds an automatic CPU usage based detection. If a
concurrency-managed work item consumes more CPU time than the threshold
(10ms by default) continuously without intervening sleeps, wq_worker_tick()
which is called from scheduler_tick() will detect the condition and
automatically mark it CPU_INTENSIVE.
The mechanism isn't foolproof:
* Detection depends on tick hitting the work item. Getting preempted at the
right timings may allow a violating work item to evade detection at least
temporarily.
* nohz_full CPUs may not be running ticks and thus can fail detection.
* Even when detection is working, the 10ms detection delays can add up if
many CPU-hogging work items are queued at the same time.
However, in vast majority of cases, this should be able to detect violations
reliably and provide reasonable protection with a small increase in code
complexity.
If some work items trigger this condition repeatedly, the bigger problem
likely is the CPU being saturated with such per-cpu work items and the
solution would be making them UNBOUND. The next patch will add a debug
mechanism to help spot such cases.
v4: Documentation for workqueue.cpu_intensive_thresh_us added to
kernel-parameters.txt.
v3: Switch to use wq_worker_tick() instead of hooking into preemptions as
suggested by Peter.
v2: Lai pointed out that wq_worker_stopping() also needs to be called from
preemption and rtlock paths and an earlier patch was updated
accordingly. This patch adds a comment describing the risk of infinte
recursions and how they're avoided.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
cpuset_can_attach() can fail. Postpone DL BW allocation until all tasks
have been checked. DL BW is not allocated per-task but as a sum over
all DL tasks migrating.
If multiple controllers are attached to the cgroup next to the cpuset
controller a non-cpuset can_attach() can fail. In this case free DL BW
in cpuset_cancel_attach().
Finally, update cpuset DL task count (nr_deadline_tasks) only in
cpuset_attach().
Suggested-by: Waiman Long <longman@redhat.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
While moving a set of tasks between exclusive cpusets,
cpuset_can_attach() -> task_can_attach() calls dl_cpu_busy(..., p) for
DL BW overflow checking and per-task DL BW allocation on the destination
root_domain for the DL tasks in this set.
This approach has the issue of not freeing already allocated DL BW in
the following error cases:
(1) The set of tasks includes multiple DL tasks and DL BW overflow
checking fails for one of the subsequent DL tasks.
(2) Another controller next to the cpuset controller which is attached
to the same cgroup fails in its can_attach().
To address this problem rework dl_cpu_busy():
(1) Split it into dl_bw_check_overflow() & dl_bw_alloc() and add a
dedicated dl_bw_free().
(2) dl_bw_alloc() & dl_bw_free() take a `u64 dl_bw` parameter instead of
a `struct task_struct *p` used in dl_cpu_busy(). This allows to
allocate DL BW for a set of tasks too rather than only for a single
task.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Turns out percpu_cpuset_rwsem - commit 1243dc518c ("cgroup/cpuset:
Convert cpuset_mutex to percpu_rwsem") - wasn't such a brilliant idea,
as it has been reported to cause slowdowns in workloads that need to
change cpuset configuration frequently and it is also not implementing
priority inheritance (which causes troubles with realtime workloads).
Convert percpu_cpuset_rwsem back to regular cpuset_mutex. Also grab it
only for SCHED_DEADLINE tasks (other policies don't care about stable
cpusets anyway).
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix kernel-doc warnings for cid_lock and use_cid_lock.
These comments are not in kernel-doc format.
kernel/sched/core.c:11496: warning: Cannot understand * @cid_lock: Guarantee forward-progress of cid allocation.
on line 11496 - I thought it was a doc line
kernel/sched/core.c:11505: warning: Cannot understand * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
on line 11505 - I thought it was a doc line
Fixes: 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230428031111.322-1-rdunlap@infradead.org
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some
major architectures it's not even consistently available.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK438RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jJ5Q/5AZ0HGpyqwdFK8GmGznyu5qjP5HwV9pPq
gZQScqSy4tZEeza4TFMi83CoXSg9uJ7GlYJqqQMKm78LGEPomnZtXXC7oWvTA9M5
M/jAvzytmvZloSCXV6kK7jzSejMHhag97J/BjTYhZYQpJ9T+hNC87XO6J6COsKr9
lPIYqkFrIkQNr6B0U11AQfFejRYP1ics2fnbnZL86G/zZAc6x8EveM3KgSer2iHl
KbrO+xcYyGY8Ef9P2F72HhEGFfM3WslpT1yzqR3sm4Y+fuMG0oW3qOQuMJx0ZhxT
AloterY0uo6gJwI0P9k/K4klWgz81Tf/zLb0eBAtY2uJV9Fo3YhPHuZC7jGPGAy3
JusW2yNYqc8erHVEMAKDUsl/1KN4TE2uKlkZy98wno+KOoMufK5MA2e2kPPqXvUi
Jk9RvFolnWUsexaPmCftti0OCv3YFiviVAJ/t0pchfmvvJA2da0VC9hzmEXpLJVF
25nBTV/1uAOrWvOpCyo3ElrC2CkQVkFmK5rXMDdvf6ib0Nid4vFcCkCSLVfu+ePB
11mi7QYro+CcnOug1K+yKogUDmsZgV/u1kUwgQzTIpZ05Kkb49gUiXw9L2RGcBJh
yoDoiI66KPR7PWQ2qBdQoXug4zfEEtWG0O9HNLB0FFRC3hu7I+HHyiUkBWs9jasK
PA5+V7HcQRk=
=Wp7f
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to cond_resched(),
this resolves livepatching busy-loop stalls with certain CPU-bound kthreads.
- Improve sched_move_task() performance on autogroup configs.
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK39cRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hXPhAAk2WqOV2cW4BjSCHjWWE05IfTb0HMn8si
mFGBAnr1GIkJRvICAusAwDU3FcmP5mWyXA+LK110d3x4fKJP15vCD5ru5lHnBfX7
fSD+Ml8uM4Xlp8iUoQspilbQwmWkQSwhudbDs3Nj7XGUzJCvNgm1sM3xPRDlqSJ5
6zumfVOPTfzSGcZY3a8sMuJnCepZHLRR6NkLzo/DuI1NMy2Jw1dK43dh77AO1mBF
M53PF2IQgm6Wu/67p2k5eDq4c0AKL4PyIb4dRTGOPyljWMf41n28jwMv1tjlvu+Y
uT0JD8MJSrFiylyT41x7Asr7orAGXj3cPhShK5R0vrutx/SbqBiaaE1MO9U3aC3B
7xVXEORHWD6KIDqTvzmWGrMBkIdyWB6CLk6EJKr3MqM9hUtP2ift7bkAgIad9h+4
G9DdVePGoCyh/TQtJ9EPIULAYeu9mmDZe8rTQ8C5MCSg//05/CTMgBbb0NiFWhnd
0JQl1B0nNUA87whVUxK8Hfu4DLh7m9jrzgQr9Ww8/FwQ6tQHBOKWgDdbv45ckkaG
cJIQt/+vLilddazc8u8E+BGaD5w2uIYF0uL7kvG6Q5oARX06AZ5dj1m06vhZe/Ym
laOVZEpJsbQnxviY6jwj1n+CSB9aK7feiQfDePBPbpJGGUHyZoKrnLN6wmW2se+H
VCHtdgsEl5I=
=Hgci
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to
cond_resched(). This resolves livepatching busy-loop stalls with
certain CPU-bound kthreads
- Improve sched_move_task() performance on autogroup configs
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements
* tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock: Fix local_clock() before sched_clock_init()
sched/rt: Fix bad task migration for rt tasks
sched: Fix performance regression introduced by mm_cid
sched/core: Make sched_dynamic_mutex static
sched/psi: Allow unprivileged polling of N*2s period
sched/psi: Extract update_triggers side effect
sched/psi: Rename existing poll members in preparation
sched/psi: Rearrange polling code in preparation
sched/fair: Fix inaccurate tally of ttwu_move_affine
vhost: Fix livepatch timeouts in vhost_worker()
livepatch,sched: Add livepatch task switching to cond_resched()
livepatch: Skip task_call_func() for current task
livepatch: Convert stack entries array to percpu
sched: Interleave cfs bandwidth timers for improved single thread performance at low utilization
sched/core: Reduce cost of sched_move_task when config autogroup
sched/core: Avoid selecting the task that is throttled to run when core-sched enable
sched/topology: Make sched_energy_mutex,update static
- updates to scripts/gdb from Glenn Washburn
- kexec cleanups from Bjorn Helgaas
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr+6wAKCRDdBJ7gKXxA
jn4NAP4u/hj/kR2dxYehcVLuQqJspCRZZBZlAReFJyHNQO6voAEAk0NN9rtG2+/E
r0G29CJhK+YL0W6mOs8O1yo9J1rZnAM=
=2CUV
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2023-04-27-16-01' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
"Mainly singleton patches all over the place.
Series of note are:
- updates to scripts/gdb from Glenn Washburn
- kexec cleanups from Bjorn Helgaas"
* tag 'mm-nonmm-stable-2023-04-27-16-01' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (50 commits)
mailmap: add entries for Paul Mackerras
libgcc: add forward declarations for generic library routines
mailmap: add entry for Oleksandr
ocfs2: reduce ioctl stack usage
fs/proc: add Kthread flag to /proc/$pid/status
ia64: fix an addr to taddr in huge_pte_offset()
checkpatch: introduce proper bindings license check
epoll: rename global epmutex
scripts/gdb: add GDB convenience functions $lx_dentry_name() and $lx_i_dentry()
scripts/gdb: create linux/vfs.py for VFS related GDB helpers
uapi/linux/const.h: prefer ISO-friendly __typeof__
delayacct: track delays from IRQ/SOFTIRQ
scripts/gdb: timerlist: convert int chunks to str
scripts/gdb: print interrupts
scripts/gdb: raise error with reduced debugging information
scripts/gdb: add a Radix Tree Parser
lib/rbtree: use '+' instead of '|' for setting color.
proc/stat: remove arch_idle_time()
checkpatch: check for misuse of the link tags
checkpatch: allow Closes tags with links
...
Introduce per-mm/cpu current concurrency id (mm_cid) to fix a PostgreSQL
sysbench regression reported by Aaron Lu.
Keep track of the currently allocated mm_cid for each mm/cpu rather than
freeing them immediately on context switch. This eliminates most atomic
operations when context switching back and forth between threads
belonging to different memory spaces in multi-threaded scenarios (many
processes, each with many threads). The per-mm/per-cpu mm_cid values are
serialized by their respective runqueue locks.
Thread migration is handled by introducing invocation to
sched_mm_cid_migrate_to() (with destination runqueue lock held) in
activate_task() for migrating tasks. If the destination cpu's mm_cid is
unset, and if the source runqueue is not actively using its mm_cid, then
the source cpu's mm_cid is moved to the destination cpu on migration.
Introduce a task-work executed periodically, similarly to NUMA work,
which delays reclaim of cid values when they are unused for a period of
time.
Keep track of the allocation time for each per-cpu cid, and let the task
work clear them when they are observed to be older than
SCHED_MM_CID_PERIOD_NS and unused. This task work also clears all
mm_cids which are greater or equal to the Hamming weight of the mm
cidmask to keep concurrency ids compact.
Because we want to ensure the mm_cid converges towards the smaller
values as migrations happen, the prior optimization that was done when
context switching between threads belonging to the same mm is removed,
because it could delay the lazy release of the destination runqueue
mm_cid after it has been replaced by a migration. Removing this prior
optimization is not an issue performance-wise because the introduced
per-mm/per-cpu mm_cid tracking also covers this more specific case.
Fixes: af7f588d8f ("sched: Introduce per-memory-map concurrency ID")
Reported-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Link: https://lore.kernel.org/lkml/20230327080502.GA570847@ziqianlu-desk2/
Delay accounting does not track the delay of IRQ/SOFTIRQ. While
IRQ/SOFTIRQ could have obvious impact on some workloads productivity, such
as when workloads are running on system which is busy handling network
IRQ/SOFTIRQ.
Get the delay of IRQ/SOFTIRQ could help users to reduce such delay. Such
as setting interrupt affinity or task affinity, using kernel thread for
NAPI etc. This is inspired by "sched/psi: Add PSI_IRQ to track
IRQ/SOFTIRQ pressure"[1]. Also fix some code indent problems of older
code.
And update tools/accounting/getdelays.c:
/ # ./getdelays -p 156 -di
print delayacct stats ON
printing IO accounting
PID 156
CPU count real total virtual total delay total delay average
15 15836008 16218149 275700790 18.380ms
IO count delay total delay average
0 0 0.000ms
SWAP count delay total delay average
0 0 0.000ms
RECLAIM count delay total delay average
0 0 0.000ms
THRASHING count delay total delay average
0 0 0.000ms
COMPACT count delay total delay average
0 0 0.000ms
WPCOPY count delay total delay average
36 7586118 0.211ms
IRQ count delay total delay average
42 929161 0.022ms
[1] commit 52b1364ba0b1("sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure")
Link: https://lkml.kernel.org/r/202304081728353557233@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: Jiang Xuexin <jiang.xuexin@zte.com.cn>
Cc: wangyong <wang.yong12@zte.com.cn>
Cc: junhua huang <huang.junhua@zte.com.cn>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The sched_dynamic_mutex is only used within the file. Make it static.
Fixes: e3ff7c609f ("livepatch,sched: Add livepatch task switching to cond_resched()")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/oe-kbuild-all/202304062335.tNuUjgsl-lkp@intel.com/
Add explicit _lazy_tlb annotated functions for lazy tlb mm refcounting.
This makes the lazy tlb mm references more obvious, and allows the
refcounting scheme to be modified in later changes. There is no
functional change with this patch.
Link: https://lkml.kernel.org/r/20230203071837.1136453-3-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Context
=======
The newly-introduced ipi_send_cpumask tracepoint has a "callback" parameter
which so far has only been fed with NULL.
While CSD_TYPE_SYNC/ASYNC and CSD_TYPE_IRQ_WORK share a similar backing
struct layout (meaning their callback func can be accessed without caring
about the actual CSD type), CSD_TYPE_TTWU doesn't even have a function
attached to its struct. This means we need to check the type of a CSD
before eventually dereferencing its associated callback.
This isn't as trivial as it sounds: the CSD type is stored in
__call_single_node.u_flags, which get cleared right before the callback is
executed via csd_unlock(). This implies checking the CSD type before it is
enqueued on the call_single_queue, as the target CPU's queue can be flushed
before we get to sending an IPI.
Furthermore, send_call_function_single_ipi() only has a CPU parameter, and
would need to have an additional argument to trickle down the invoked
function. This is somewhat silly, as the extra argument will always be
pushed down to the function even when nothing is being traced, which is
unnecessary overhead.
Changes
=======
send_call_function_single_ipi() is only used by smp.c, and is defined in
sched/core.c as it contains scheduler-specific ops (set_nr_if_polling() of
a CPU's idle task).
Split it into two parts: the scheduler bits remain in sched/core.c, and the
actual IPI emission is moved into smp.c. This lets us define an
__always_inline helper function that can take the related callback as
parameter without creating useless register pressure in the non-traced path
which only gains a (disabled) static branch.
Do the same thing for the multi IPI case.
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230307143558.294354-8-vschneid@redhat.com
send_call_function_single_ipi() is the thing that sends IPIs at the bottom
of smp_call_function*() via either generic_exec_single() or
smp_call_function_many_cond(). Give it an IPI-related tracepoint.
Note that this ends up tracing any IPI sent via __smp_call_single_queue(),
which covers __ttwu_queue_wakelist() and irq_work_queue_on() "for free".
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230307143558.294354-3-vschneid@redhat.com
Some sched_move_task calls are useless because that
task_struct->sched_task_group maybe not changed (equals task_group
of cpu_cgroup) when system enable autogroup. So do some checks in
sched_move_task.
sched_move_task eg:
task A belongs to cpu_cgroup0 and autogroup0, it will always belong
to cpu_cgroup0 when do_exit. So there is no need to do {de|en}queue.
The call graph is as follow.
do_exit
sched_autogroup_exit_task
sched_move_task
dequeue_task
sched_change_group
A.sched_task_group = sched_get_task_group (=cpu_cgroup0)
enqueue_task
Performance results:
===========================
1. env
cpu: bogomips=4600.00
kernel: 6.3.0-rc3
cpu_cgroup: 6:cpu,cpuacct:/user.slice
2. cmds
do_exit script:
for i in {0..10000}; do
sleep 0 &
done
wait
Run the above script, then use the following bpftrace cmd to get
the cost of sched_move_task:
bpftrace -e 'k:sched_move_task { @ts[tid] = nsecs; }
kr:sched_move_task /@ts[tid]/
{ @ns += nsecs - @ts[tid]; delete(@ts[tid]); }'
3. cost time(ns):
without patch: 43528033
with patch: 18541416
diff:-24986617 -57.4%
As the result show, the patch will save 57.4% in the scenario.
Signed-off-by: wuchi <wuchi.zero@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230321064459.39421-1-wuchi.zero@gmail.com
When {rt, cfs}_rq or dl task is throttled, since cookied tasks
are not dequeued from the core tree, So sched_core_find() and
sched_core_next() may return throttled task, which may
cause throttled task to run on the CPU.
So we add checks in sched_core_find() and sched_core_next()
to make sure that the return is a runnable task that is
not throttled.
Co-developed-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230316081806.69544-1-jiahao.os@bytedance.com
Commit 829c1651e9 ("sched/fair: sanitize vruntime of entity being placed")
fixes an overflowing bug, but ignore a case that se->exec_start is reset
after a migration.
For fixing this case, we delay the reset of se->exec_start after
placing the entity which se->exec_start to detect long sleeping task.
In order to take into account a possible divergence between the clock_task
of 2 rqs, we increase the threshold to around 104 days.
Fixes: 829c1651e9 ("sched/fair: sanitize vruntime of entity being placed")
Originally-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Link: https://lore.kernel.org/r/20230317160810.107988-1-vincent.guittot@linaro.org
The getaffinity() system call uses 'cpumask_size()' to decide how big
the CPU mask is - so far so good. It is indeed the allocation size of a
cpumask.
But the code also assumes that the whole allocation is initialized
without actually doing so itself. That's wrong, because we might have
fixed-size allocations (making copying and clearing more efficient), but
not all of it is then necessarily used if 'nr_cpu_ids' is smaller.
Having checked other users of 'cpumask_size()', they all seem to be ok,
either using it purely for the allocation size, or explicitly zeroing
the cpumask before using the size in bytes to copy it.
See for example the ublk_ctrl_get_queue_affinity() function that uses
the proper 'zalloc_cpumask_var()' to make sure that the whole mask is
cleared, whether the storage is on the stack or if it was an external
allocation.
Fix this by just zeroing the allocation before using it. Do the same
for the compat version of sched_getaffinity(), which had the same logic.
Also, for consistency, make sched_getaffinity() use 'cpumask_bits()' to
access the bits. For a cpumask_var_t, it ends up being a pointer to the
same data either way, but it's just a good idea to treat it like you
would a 'cpumask_t'. The compat case already did that.
Reported-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/lkml/7d026744-6bd6-6827-0471-b5e8eae0be3f@arm.com/
Cc: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This pull request contains the following branches:
doc.2023.01.05a: Documentation updates.
fixes.2023.01.23a: Miscellaneous fixes, perhaps most notably:
o Throttling callback invocation based on the number of callbacks
that are now ready to invoke instead of on the total number
of callbacks.
o Several patches that suppress false-positive boot-time
diagnostics, for example, due to lockdep not yet being
initialized.
o Make expedited RCU CPU stall warnings dump stacks of any tasks
that are blocking the stalled grace period. (Normal RCU CPU
stall warnings have doen this for mnay years.)
o Lazy-callback fixes to avoid delays during boot, suspend, and
resume. (Note that lazy callbacks must be explicitly enabled,
so this should not (yet) affect production use cases.)
kvfree.2023.01.03a: Cause kfree_rcu() and friends to take advantage of
polled grace periods, thus reducing memory footprint by almost
two orders of magnitude, admittedly on a microbenchmark.
This series also begins the transition from kfree_rcu(p) to
kfree_rcu_mightsleep(p). This transition was motivated by bugs
where kfree_rcu(p), which can block, was typed instead of the
intended kfree_rcu(p, rh).
srcu.2023.01.03a: SRCU updates, perhaps most notably fixing a bug that
causes SRCU to fail when booted on a system with a non-zero boot
CPU. This surprising situation actually happens for kdump kernels
on the powerpc architecture. It also adds an srcu_down_read()
and srcu_up_read(), which act like srcu_read_lock() and
srcu_read_unlock(), but allow an SRCU read-side critical section
to be handed off from one task to another.
srcu-always.2023.02.02a: Cleans up the now-useless SRCU Kconfig option.
There are a few more commits that are not yet acked or pulled
into maintainer trees, and these will be in a pull request for
a later merge window.
tasks.2023.01.03a: RCU-tasks updates, perhaps most notably these fixes:
o A strange interaction between PID-namespace unshare and the
RCU-tasks grace period that results in a low-probability but
very real hang.
o A race between an RCU tasks rude grace period on a single-CPU
system and CPU-hotplug addition of the second CPU that can result
in a too-short grace period.
o A race between shrinking RCU tasks down to a single callback list
and queuing a new callback to some other CPU, but where that
queuing is delayed for more than an RCU grace period. This can
result in that callback being stranded on the non-boot CPU.
torture.2023.01.05a: Torture-test updates and fixes.
torturescript.2023.01.03a: Torture-test scripting updates and fixes.
stall.2023.01.09a: Provide additional RCU CPU stall-warning information
in kernels built with CONFIG_RCU_CPU_STALL_CPUTIME=y, and
restore the full five-minute timeout limit for expedited RCU
CPU stall warnings.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmPq29UTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jAhVEACEAKJY1VJ9IUqz7CwzAYkzgRJfiygh
oDUXmlqtm6ew9pr2GdLUVCVsUSldzBc0K7Djb/G1niv4JPs+v7YwupIV33+UbStU
Qxt6ztTdxc4lKospLm1+2vF9ZdzVEmiP4wVCc4iDarv5FM3FpWSTNc8+L7qmlC+X
myjv+GqMTxkXZBvYJOgJGFjDwN8noTd7Fr3mCCVLFm3PXMDa7tcwD6HRP5AqD2N8
qC5M6LEqepKVGmz0mYMLlSN1GPaqIsEcexIFEazRsPEivPh/iafyQCQ/cqxwhXmV
vEt7u+dXGZT/oiDq9cJ+/XRDS2RyKIS6dUE14TiiHolDCn1ONESahfA/gXWKykC2
BaGPfjWXrWv/hwbeZ+8xEdkAvTIV92tGpXir9Fby1Z5PjP3balvrnn6hs5AnQBJb
NdhRPLzy/dCnEF+CweAYYm1qvTo8cd5nyiNwBZHn7rEAIu3Axrecag1rhFl3AJ07
cpVMQXZtkQVa2X8aIRTUC+ijX6yIqNaHlu0HqNXgIUTDzL4nv5cMjOMzpNQP9/dZ
FwAMZYNiOk9IlMiKJ8ZiVcxeiA8ouIBlkYM3k6vGrmiONZ7a/EV/mSHoJqI8bvqr
AxUIJ2Ayhg3bxPboL5oKgCiLql0A7ZVvz6quX6McitWGMgaSvel1fDzT3TnZd41e
4AFBFd/+VedUGg==
=bBYK
-----END PGP SIGNATURE-----
Merge tag 'rcu.2023.02.10a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes, perhaps most notably:
- Throttling callback invocation based on the number of callbacks
that are now ready to invoke instead of on the total number of
callbacks
- Several patches that suppress false-positive boot-time
diagnostics, for example, due to lockdep not yet being
initialized
- Make expedited RCU CPU stall warnings dump stacks of any tasks
that are blocking the stalled grace period. (Normal RCU CPU
stall warnings have done this for many years)
- Lazy-callback fixes to avoid delays during boot, suspend, and
resume. (Note that lazy callbacks must be explicitly enabled, so
this should not (yet) affect production use cases)
- Make kfree_rcu() and friends take advantage of polled grace periods,
thus reducing memory footprint by almost two orders of magnitude,
admittedly on a microbenchmark
This also begins the transition from kfree_rcu(p) to
kfree_rcu_mightsleep(p). This transition was motivated by bugs where
kfree_rcu(p), which can block, was typed instead of the intended
kfree_rcu(p, rh)
- SRCU updates, perhaps most notably fixing a bug that causes SRCU to
fail when booted on a system with a non-zero boot CPU. This
surprising situation actually happens for kdump kernels on the
powerpc architecture
This also adds an srcu_down_read() and srcu_up_read(), which act like
srcu_read_lock() and srcu_read_unlock(), but allow an SRCU read-side
critical section to be handed off from one task to another
- Clean up the now-useless SRCU Kconfig option
There are a few more commits that are not yet acked or pulled into
maintainer trees, and these will be in a pull request for a later
merge window
- RCU-tasks updates, perhaps most notably these fixes:
- A strange interaction between PID-namespace unshare and the
RCU-tasks grace period that results in a low-probability but
very real hang
- A race between an RCU tasks rude grace period on a single-CPU
system and CPU-hotplug addition of the second CPU that can
result in a too-short grace period
- A race between shrinking RCU tasks down to a single callback
list and queuing a new callback to some other CPU, but where
that queuing is delayed for more than an RCU grace period. This
can result in that callback being stranded on the non-boot CPU
- Torture-test updates and fixes
- Torture-test scripting updates and fixes
- Provide additional RCU CPU stall-warning information in kernels built
with CONFIG_RCU_CPU_STALL_CPUTIME=y, and restore the full five-minute
timeout limit for expedited RCU CPU stall warnings
* tag 'rcu.2023.02.10a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (80 commits)
rcu/kvfree: Add kvfree_rcu_mightsleep() and kfree_rcu_mightsleep()
kernel/notifier: Remove CONFIG_SRCU
init: Remove "select SRCU"
fs/quota: Remove "select SRCU"
fs/notify: Remove "select SRCU"
fs/btrfs: Remove "select SRCU"
fs: Remove CONFIG_SRCU
drivers/pci/controller: Remove "select SRCU"
drivers/net: Remove "select SRCU"
drivers/md: Remove "select SRCU"
drivers/hwtracing/stm: Remove "select SRCU"
drivers/dax: Remove "select SRCU"
drivers/base: Remove CONFIG_SRCU
rcu: Disable laziness if lazy-tracking says so
rcu: Track laziness during boot and suspend
rcu: Remove redundant call to rcu_boost_kthread_setaffinity()
rcu: Allow up to five minutes expedited RCU CPU stall-warning timeouts
rcu: Align the output of RCU CPU stall warning messages
rcu: Add RCU stall diagnosis information
sched: Add helper nr_context_switches_cpu()
...
- Improve the scalability of the CFS bandwidth unthrottling logic
with large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with
the generic scheduler code. Add __cpuidle methods as noinstr to
objtool's noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS,
to query previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period,
to improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- ... Misc other cleanups, fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmPzbJwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iIvA//ZcEaB8Z6ChLRQjM+bsaudKJu3pdLQbPK
iYbP8Da+LsAfxbEfYuGV3m+jIp0LlBOtsI/EezxQrXV+V7FvNyAX9Y00eEu/zlj8
7Jn3LMy/DBYTwH7LwVdcU0MyIVI8ZPc6WNnkx0LOtGZn8n+qfHPSDzcP3CW+a5AV
UvllPYpYyEmsX0Eby7CF4Ue8mSmbViw/xR3rNr8ZSve0c25XzKabw8O9kE3jiHxP
d/zERJoAYeDyYUEuZqhfn5dTlB4an4IjNEkAfRE5SQ09RA8Gkxsa5Ar8gob9e9M1
eQsdd4/bdhnrkM8L5qDZczqmgCTZ2bukQrxkBXhRDhLgoFxwAn77b+2ZjmIW3Lae
AyGqRcDSg1q2oxaYm5ZiuO/t26aDOZu9vPHyHRDGt95EGbZlrp+GgeePyfCigJYz
UmPdZAAcHdSymnnnlcvdG37WVvaVkpgWZzd8LbtBi23QR+Zc4WQ2IlgnUS5WKNNf
VOBcAcP6E1IslDotZDQCc2dPFFQoQQEssVooyUc5oMytm7BsvxXLOeHG+Ncu/8uc
H+U8Qn8jnqTxJbC5hkWQIJlhVKCq2FJrHxxySYTKROfUNcDgCmxboFeAcXTCIU1K
T0S+sdoTS/CvtLklRkG0j6B8N4N98mOd9cFwUV3tX+/gMLMep3hCQs5L76JagvC5
skkQXoONNaM=
=l1nN
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve the scalability of the CFS bandwidth unthrottling logic with
large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with the
generic scheduler code. Add __cpuidle methods as noinstr to objtool's
noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query
previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period, to
improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- Misc other cleanups, fixes
* tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
sched/rt: pick_next_rt_entity(): check list_entry
sched/deadline: Add more reschedule cases to prio_changed_dl()
sched/fair: sanitize vruntime of entity being placed
sched/fair: Remove capacity inversion detection
sched/fair: unlink misfit task from cpu overutilized
objtool: mem*() are not uaccess safe
cpuidle: Fix poll_idle() noinstr annotation
sched/clock: Make local_clock() noinstr
sched/clock/x86: Mark sched_clock() noinstr
x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read()
x86/atomics: Always inline arch_atomic64*()
cpuidle: tracing, preempt: Squash _rcuidle tracing
cpuidle: tracing: Warn about !rcu_is_watching()
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
cpuidle: drivers: firmware: psci: Dont instrument suspend code
KVM: selftests: Fix build of rseq test
exit: Detect and fix irq disabled state in oops
cpuidle, arm64: Fix the ARM64 cpuidle logic
cpuidle: mvebu: Fix duplicate flags assignment
sched/fair: Limit sched slice duration
...
Since commit 8f9ea86fdf ("sched: Always preserve the user requested
cpumask"), a successful call to sched_setaffinity() should always save
the user requested cpu affinity mask in a task's user_cpus_ptr. However,
when the given cpu mask is the same as the current one, user_cpus_ptr
is not updated. Fix this by saving the user mask in this case too.
Fixes: 8f9ea86fdf ("sched: Always preserve the user requested cpumask")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230203181849.221943-1-longman@redhat.com
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmPW7E8eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGf7MIAI0JnHN9WvtEukSZ
E6j6+cEGWxsvD6q0g3GPolaKOCw7hlv0pWcFJFcUAt0jebspMdxV2oUGJ8RYW7Lg
nCcHvEVswGKLAQtQSWw52qotW6fUfMPsNYYB5l31sm1sKH4Cgss0W7l2HxO/1LvG
TSeNHX53vNAZ8pVnFYEWCSXC9bzrmU/VALF2EV00cdICmfvjlgkELGXoLKJJWzUp
s63fBHYGGURSgwIWOKStoO6HNo0j/F/wcSMx8leY8qDUtVKHj4v24EvSgxUSDBER
ch3LiSQ6qf4sw/z7pqruKFthKOrlNmcc0phjiES0xwwGiNhLv0z3rAhc4OM2cgYh
SDc/Y/c=
=zpaD
-----END PGP SIGNATURE-----
Merge tag 'v6.2-rc6' into sched/core, to pick up fixes
Pick up fixes before merging another batch of cpuidle updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kernel commit 9a5418bc48 ("sched/core: Use kfree_rcu() in
do_set_cpus_allowed()") introduces a bug for kernels built with non-SMP
configs. Calling sched_setaffinity() on such a uniprocessor kernel will
cause cpumask_copy() to be called with a NULL pointer leading to general
protection fault. This is not really a problem in real use cases as
there aren't that many uniprocessor kernel configs in use and calling
sched_setaffinity() on such a uniprocessor system doesn't make sense.
Fix this problem by making sure cpumask_copy() will not be called in
such a case.
Fixes: 9a5418bc48 ("sched/core: Use kfree_rcu() in do_set_cpus_allowed()")
Reported-by: kernel test robot <yujie.liu@intel.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230115193122.563036-1-longman@redhat.com
Commit 851a723e45 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") may call kfree() if user_cpus_ptr was previously
set. Unfortunately, some of the callers of do_set_cpus_allowed()
may have pi_lock held when calling it. So the following splats may be
printed especially when running with a PREEMPT_RT kernel:
WARNING: possible circular locking dependency detected
BUG: sleeping function called from invalid context
To avoid these problems, kfree_rcu() is used instead. An internal
cpumask_rcuhead union is created for the sole purpose of facilitating
the use of kfree_rcu() to free the cpumask.
Since user_cpus_ptr is not being used in non-SMP configs, the newly
introduced alloc_user_cpus_ptr() helper will return NULL in this case
and sched_setaffinity() is modified to handle this special case.
Fixes: 851a723e45 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221231041120.440785-3-longman@redhat.com
Since commit 07ec77a1d4 ("sched: Allow task CPU affinity to be
restricted on asymmetric systems"), the setting and clearing of
user_cpus_ptr are done under pi_lock for arm64 architecture. However,
dup_user_cpus_ptr() accesses user_cpus_ptr without any lock
protection. Since sched_setaffinity() can be invoked from another
process, the process being modified may be undergoing fork() at
the same time. When racing with the clearing of user_cpus_ptr in
__set_cpus_allowed_ptr_locked(), it can lead to user-after-free and
possibly double-free in arm64 kernel.
Commit 8f9ea86fdf ("sched: Always preserve the user requested
cpumask") fixes this problem as user_cpus_ptr, once set, will never
be cleared in a task's lifetime. However, this bug was re-introduced
in commit 851a723e45 ("sched: Always clear user_cpus_ptr in
do_set_cpus_allowed()") which allows the clearing of user_cpus_ptr in
do_set_cpus_allowed(). This time, it will affect all arches.
Fix this bug by always clearing the user_cpus_ptr of the newly
cloned/forked task before the copying process starts and check the
user_cpus_ptr state of the source task under pi_lock.
Note to stable, this patch won't be applicable to stable releases.
Just copy the new dup_user_cpus_ptr() function over.
Fixes: 07ec77a1d4 ("sched: Allow task CPU affinity to be restricted on asymmetric systems")
Fixes: 851a723e45 ("sched: Always clear user_cpus_ptr in do_set_cpus_allowed()")
Reported-by: David Wang 王标 <wangbiao3@xiaomi.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221231041120.440785-2-longman@redhat.com
In order for the scheduler to be frequency invariant we measure the
ratio between the maximum CPU frequency and the actual CPU frequency.
During long tickless periods of time the calculations that keep track
of that might overflow, in the function scale_freq_tick():
if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
goto error;
eventually forcing the kernel to disable the feature for all CPUs,
and show the warning message:
"Scheduler frequency invariance went wobbly, disabling!".
Let's avoid that by limiting the frequency invariant calculations
to CPUs with regular tick.
Fixes: e2b0d619b4 ("x86, sched: check for counters overflow in frequency invariant accounting")
Suggested-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Yair Podemsky <ypodemsk@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Acked-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Link: https://lore.kernel.org/r/20221130125121.34407-1-ypodemsk@redhat.com
ttwu_do_activate() is used for a complete wakeup, in which we will
activate_task() and use ttwu_do_wakeup() to mark the task runnable
and perform wakeup-preemption, also call class->task_woken() callback
and update the rq->idle_stamp.
Since ttwu_runnable() is not a complete wakeup, don't need all those
done in ttwu_do_wakeup(), so we can move those to ttwu_do_activate()
to simplify ttwu_do_wakeup(), making it only mark the task runnable
to be reused in ttwu_runnable() and try_to_wake_up().
This patch should not have any functional changes.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20221223103257.4962-2-zhouchengming@bytedance.com
ttwu_runnable() is used as a fast wakeup path when the wakee task
is running on CPU or runnable on RQ, in both cases we can just
set its state to TASK_RUNNING to prevent a sleep.
If the wakee task is on_cpu running, we don't need to update_rq_clock()
or check_preempt_curr().
But if the wakee task is on_rq && !on_cpu (e.g. an IRQ hit before
the task got to schedule() and the task been preempted), we should
check_preempt_curr() to see if it can preempt the current running.
This also removes the class->task_woken() callback from ttwu_runnable(),
which wasn't required per the RT/DL implementations: any required push
operation would have been queued during class->set_next_task() when p
got preempted.
ttwu_runnable() also loses the update to rq->idle_stamp, as by definition
the rq cannot be idle in this scenario.
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20221223103257.4962-1-zhouchengming@bytedance.com
Add a function nr_context_switches_cpu() that returns number of context
switches since boot on the specified CPU. This information will be used
to diagnose RCU CPU stalls.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
sched_mm_cid_after_execve() does not expect NULL t->mm, but it may happen
if a usermodehelper kthread fails when attempting to execute a binary.
sched_mm_cid_fork() can be issued from a usermodehelper kthread, which
has t->flags PF_KTHREAD set.
Fixes: af7f588d8f ("sched: Introduce per-memory-map concurrency ID")
Reported-by: kernel test robot <yujie.liu@intel.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/oe-lkp/202212301353.5c959d72-yujie.liu@intel.com
When select_idle_capacity() starts scanning for an idle CPU, it starts
with target CPU that has already been checked in select_idle_sibling().
So we start checking from the next CPU and try the target CPU at the end.
Similarly for task_numa_assign(), we have just checked numa_migrate_on
of dst_cpu, so start from the next CPU. This also works for
steal_cookie_task(), the first scan must fail and start directly
from the next one.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20221216062406.7812-3-jiahao.os@bytedance.com
With a modified container_of() that preserves constness, the compiler
finds some pointers which should have been marked as const. task_of()
also needs to become const-preserving for the !FAIR_GROUP_SCHED case so
that cfs_rq_of() can take a const argument. No change to generated code.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221212144946.2657785-1-willy@infradead.org
This feature allows the scheduler to expose a per-memory map concurrency
ID to user-space. This concurrency ID is within the possible cpus range,
and is temporarily (and uniquely) assigned while threads are actively
running within a memory map. If a memory map has fewer threads than
cores, or is limited to run on few cores concurrently through sched
affinity or cgroup cpusets, the concurrency IDs will be values close
to 0, thus allowing efficient use of user-space memory for per-cpu
data structures.
This feature is meant to be exposed by a new rseq thread area field.
The primary purpose of this feature is to do the heavy-lifting needed
by memory allocators to allow them to use per-cpu data structures
efficiently in the following situations:
- Single-threaded applications,
- Multi-threaded applications on large systems (many cores) with limited
cpu affinity mask,
- Multi-threaded applications on large systems (many cores) with
restricted cgroup cpuset per container.
One of the key concern from scheduler maintainers is the overhead
associated with additional spin locks or atomic operations in the
scheduler fast-path. This is why the following optimization is
implemented.
On context switch between threads belonging to the same memory map,
transfer the mm_cid from prev to next without any atomic ops. This
takes care of use-cases involving frequent context switch between
threads belonging to the same memory map.
Additional optimizations can be done if the spin locks added when
context switching between threads belonging to different memory maps end
up being a performance bottleneck. Those are left out of this patch
though. A performance impact would have to be clearly demonstrated to
justify the added complexity.
The credit goes to Paul Turner (Google) for the original virtual cpu id
idea. This feature is implemented based on the discussions with Paul
Turner and Peter Oskolkov (Google), but I took the liberty to implement
scheduler fast-path optimizations and my own NUMA-awareness scheme. The
rumor has it that Google have been running a rseq vcpu_id extension
internally in production for a year. The tcmalloc source code indeed has
comments hinting at a vcpu_id prototype extension to the rseq system
call [1].
The following benchmarks do not show any significant overhead added to
the scheduler context switch by this feature:
* perf bench sched messaging (process)
Baseline: 86.5±0.3 ms
With mm_cid: 86.7±2.6 ms
* perf bench sched messaging (threaded)
Baseline: 84.3±3.0 ms
With mm_cid: 84.7±2.6 ms
* hackbench (process)
Baseline: 82.9±2.7 ms
With mm_cid: 82.9±2.9 ms
* hackbench (threaded)
Baseline: 85.2±2.6 ms
With mm_cid: 84.4±2.9 ms
[1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
- Convert flexible array members, fix -Wstringop-overflow warnings,
and fix KCFI function type mismatches that went ignored by
maintainers (Gustavo A. R. Silva, Nathan Chancellor, Kees Cook).
- Remove the remaining side-effect users of ksize() by converting
dma-buf, btrfs, and coredump to using kmalloc_size_roundup(),
add more __alloc_size attributes, and introduce full testing
of all allocator functions. Finally remove the ksize() side-effect
so that each allocation-aware checker can finally behave without
exceptions.
- Introduce oops_limit (default 10,000) and warn_limit (default off)
to provide greater granularity of control for panic_on_oops and
panic_on_warn (Jann Horn, Kees Cook).
- Introduce overflows_type() and castable_to_type() helpers for
cleaner overflow checking.
- Improve code generation for strscpy() and update str*() kern-doc.
- Convert strscpy and sigphash tests to KUnit, and expand memcpy
tests.
- Always use a non-NULL argument for prepare_kernel_cred().
- Disable structleak plugin in FORTIFY KUnit test (Anders Roxell).
- Adjust orphan linker section checking to respect CONFIG_WERROR
(Xin Li).
- Make sure siginfo is cleared for forced SIGKILL (haifeng.xu).
- Fix um vs FORTIFY warnings for always-NULL arguments.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmOZSOoWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJjAAD/0YkvpU7f03f8hcQMJK6wv//24K
AW41hEaBikq9RcmkuvkLLrJRibGgZ5O2xUkUkxRs/HxhkhrZ0kEw8sbwZe8MoWls
F4Y9+TDjsrdHmjhfcBZdLnVxwcKK5wlaEcpjZXtbsfcdhx3TbgcDA23YELl5t0K+
I11j4kYmf9SLl4CwIrSP5iACml8CBHARDh8oIMF7FT/LrjNbM8XkvBcVVT6hTbOV
yjgA8WP2e9GXvj9GzKgqvd0uE/kwPkVAeXLNFWopPi4FQ8AWjlxbBZR0gamA6/EB
d7TIs0ifpVU2JGQaTav4xO6SsFMj3ntoUI0qIrFaTxZAvV4KYGrPT/Kwz1O4SFaG
rN5lcxseQbPQSBTFNG4zFjpywTkVCgD2tZqDwz5Rrmiraz0RyIokCN+i4CD9S0Ds
oEd8JSyLBk1sRALczkuEKo0an5AyC9YWRcBXuRdIHpLo08PsbeUUSe//4pe303cw
0ApQxYOXnrIk26MLElTzSMImlSvlzW6/5XXzL9ME16leSHOIfDeerPnc9FU9Eb3z
ODv22z6tJZ9H/apSUIHZbMciMbbVTZ8zgpkfydr08o87b342N/ncYHZ5cSvQ6DWb
jS5YOIuvl46/IhMPT16qWC8p0bP5YhxoPv5l6Xr0zq0ooEj0E7keiD/SzoLvW+Qs
AHXcibguPRQBPAdiPQ==
=yaaN
-----END PGP SIGNATURE-----
Merge tag 'hardening-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull kernel hardening updates from Kees Cook:
- Convert flexible array members, fix -Wstringop-overflow warnings, and
fix KCFI function type mismatches that went ignored by maintainers
(Gustavo A. R. Silva, Nathan Chancellor, Kees Cook)
- Remove the remaining side-effect users of ksize() by converting
dma-buf, btrfs, and coredump to using kmalloc_size_roundup(), add
more __alloc_size attributes, and introduce full testing of all
allocator functions. Finally remove the ksize() side-effect so that
each allocation-aware checker can finally behave without exceptions
- Introduce oops_limit (default 10,000) and warn_limit (default off) to
provide greater granularity of control for panic_on_oops and
panic_on_warn (Jann Horn, Kees Cook)
- Introduce overflows_type() and castable_to_type() helpers for cleaner
overflow checking
- Improve code generation for strscpy() and update str*() kern-doc
- Convert strscpy and sigphash tests to KUnit, and expand memcpy tests
- Always use a non-NULL argument for prepare_kernel_cred()
- Disable structleak plugin in FORTIFY KUnit test (Anders Roxell)
- Adjust orphan linker section checking to respect CONFIG_WERROR (Xin
Li)
- Make sure siginfo is cleared for forced SIGKILL (haifeng.xu)
- Fix um vs FORTIFY warnings for always-NULL arguments
* tag 'hardening-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (31 commits)
ksmbd: replace one-element arrays with flexible-array members
hpet: Replace one-element array with flexible-array member
um: virt-pci: Avoid GCC non-NULL warning
signal: Initialize the info in ksignal
lib: fortify_kunit: build without structleak plugin
panic: Expose "warn_count" to sysfs
panic: Introduce warn_limit
panic: Consolidate open-coded panic_on_warn checks
exit: Allow oops_limit to be disabled
exit: Expose "oops_count" to sysfs
exit: Put an upper limit on how often we can oops
panic: Separate sysctl logic from CONFIG_SMP
mm/pgtable: Fix multiple -Wstringop-overflow warnings
mm: Make ksize() a reporting-only function
kunit/fortify: Validate __alloc_size attribute results
drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid()
drm/fsl-dcu: Fix return type of fsl_dcu_drm_connector_mode_valid()
driver core: Add __alloc_size hint to devm allocators
overflow: Introduce overflows_type() and castable_to_type()
coredump: Proactively round up to kmalloc bucket size
...
Only step forward on the sysctl cleanups for this cycle. This
has been on linux-next since September and this time it goes
with a "Yeah, think so, it just moves stuff around a bit" from
Peter Zijlstra.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmOYC3sSHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinVEYQAL6/3nRt854jULd3zRwrWDyJZd5yxbnc
R8jJBTt3q4CKwtMqd59uQqVYLpSqOCx/GsArfsXkmY4x7KYhlaSKcC4LHmFS8Z/u
dofyVKumIFqtXMI+hYuTyqNqfGoK9UKXUftrqYb8pK+K3h73uqYbrDgSex4G9GJo
Au0/WeDjTzLlgqt7RPN7n0PL2jMtfWVQkr3001OCQOWW9sdrOjtprn/3bDTUnW5q
KukKB5saU0CvUzrTn2DaweQiRCJxQfCQfy3DZfhDRHVuWFYMV9b1okaGEoVmQlQT
I9/urfdf3aLCdBBxCQG5W6uRxZwZ2Yb93M+rijZNWNFMC6WHrMCmSiADwz9LJzIK
iQV7LoolGe1TFTEVJbsde5xKSF6BeId0IF5mmPQuokAx3TPE9279HNgluaB/38c8
p3P4+mP6qE12mMPyhpwDwNOzEWgUnLsGSIE5n/WPwxCiGNa7UsN2lzMDP1cJejp5
NlRg1hRKmgt30d9+t9sHeKMcWhrjxyPGsyUMwBJTuMCHbjqizGyBsB8DzyK95OoF
aN66pyRqwsK0+IUivd8VfLgfriE2gDrQD5VqkJ8lfWBx9pq8RMEq7zQ1eE9IbCff
hzbfG+7k9R3o4SPfJYmCBXtp6fcq+ovjbLYSvGGCJk0zfFe6SQE21rZ3hCQPq3v5
xKFh05xUfbRF
=M48U
-----END PGP SIGNATURE-----
Merge tag 'sysctl-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"Only a small step forward on the sysctl cleanups for this cycle"
* tag 'sysctl-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
sched: Move numa_balancing sysctls to its own file
- Implement persistent user-requested affinity: introduce affinity_context::user_mask
and unconditionally preserve the user-requested CPU affinity masks, for long-lived
tasks to better interact with cpusets & CPU hotplug events over longer timespans,
without destroying the original affinity intent if the underlying topology changes.
- Uclamp updates: fix relationship between uclamp and fits_capacity()
- PSI fixes
- Misc fixes & updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmOXkmgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j/dQ//WYW/JaBpydqnVxDu6C21z0w3+fHDdlsN
nQ6jyLPlouFjI2Ink1E7i7Iq8C73sdewCgD7Jq3xGa1GhsPEJIrPAaBgacxYjOqc
x9HHZoygSkAihTfrVvzq37YttD2t/gQQxc81tBziMBVP2A+gb9z44u+ezMlxjiGz
irgE07qNfiLyTeD/dJhEU2EOsPJm/gestW3+Cd8uwYAe6pj0X4FE3n8ipmr0BzNZ
6nxFJaSspwAkREjpAIZVENEArq7XrkGqUFKgKpYqWn0HAnuTWgFcW8E2NrDw7Qbf
4aAdBuzimbWdbkqRoX9r7++r5wqc3KW+is8Y97aEUsc0zhrXHAW1Hn2w7en5XxiQ
btaPi77Boi69sHvOrfMy3i6UZ895yh2sROIkYBDT485w57BR75HsMLkk2LNIm7qE
mATrrZ65bbGAgAxZouqlnQk40BUlniIfDlfZyReyFtXkW8UH5tTNX6qtpWzzdwfy
posrm+XvgDcP96/7DIczZwT6VEJE5GBZbPvk2Vw4GNq6/QeW7g9GPhYTaV6CXzzW
lCk/MV1n+IWCUqjkGXXCTS53TIyC6WZh2ehegcsh1KYyWcVijEs42S6eqXZI9cO7
F4oU7sehg4vlhMm1uE5JgaABfYqqzzKlvZySdwXbne2Vjt4nsWlWoe6u6JAdA4EB
PRwmUDRMyEE=
=aao/
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Implement persistent user-requested affinity: introduce
affinity_context::user_mask and unconditionally preserve the
user-requested CPU affinity masks, for long-lived tasks to better
interact with cpusets & CPU hotplug events over longer timespans,
without destroying the original affinity intent if the underlying
topology changes.
- Uclamp updates: fix relationship between uclamp and fits_capacity()
- PSI fixes
- Misc fixes & updates
* tag 'sched-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Clear ttwu_pending after enqueue_task()
sched/psi: Use task->psi_flags to clear in CPU migration
sched/psi: Stop relying on timer_pending() for poll_work rescheduling
sched/psi: Fix avgs_work re-arm in psi_avgs_work()
sched/psi: Fix possible missing or delayed pending event
sched: Always clear user_cpus_ptr in do_set_cpus_allowed()
sched: Enforce user requested affinity
sched: Always preserve the user requested cpumask
sched: Introduce affinity_context
sched: Add __releases annotations to affine_move_task()
sched/fair: Check if prev_cpu has highest spare cap in feec()
sched/fair: Consider capacity inversion in util_fits_cpu()
sched/fair: Detect capacity inversion
sched/uclamp: Cater for uclamp in find_energy_efficient_cpu()'s early exit condition
sched/uclamp: Make cpu_overutilized() use util_fits_cpu()
sched/uclamp: Make asym_fits_capacity() use util_fits_cpu()
sched/uclamp: Make select_idle_capacity() use util_fits_cpu()
sched/uclamp: Fix fits_capacity() check in feec()
sched/uclamp: Make task_fits_capacity() use util_fits_cpu()
sched/uclamp: Fix relationship between uclamp and migration margin
Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll
their own warnings, and each check "panic_on_warn". Consolidate this
into a single function so that future instrumentation can be added in
a single location.
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Gow <davidgow@google.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: Jann Horn <jannh@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm@kvack.org
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org
The sysctl_numa_balancing_promote_rate_limit and sysctl_numa_balancing
are part of sched, move them to its own file.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
We found a long tail latency in schbench whem m*t is close to nr_cpus.
(e.g., "schbench -m 2 -t 16" on a machine with 32 cpus.)
This is because when the wakee cpu is idle, rq->ttwu_pending is cleared
too early, and idle_cpu() will return true until the wakee task enqueued.
This will mislead the waker when selecting idle cpu, and wake multiple
worker threads on the same wakee cpu. This situation is enlarged by
commit f3dd3f6745 ("sched: Remove the limitation of WF_ON_CPU on
wakelist if wakee cpu is idle") because it tends to use wakelist.
Here is the result of "schbench -m 2 -t 16" on a VM with 32vcpu
(Intel(R) Xeon(R) Platinum 8369B).
Latency percentiles (usec):
base base+revert_f3dd3f674555 base+this_patch
50.0000th: 9 13 9
75.0000th: 12 19 12
90.0000th: 15 22 15
95.0000th: 18 24 17
*99.0000th: 27 31 24
99.5000th: 3364 33 27
99.9000th: 12560 36 30
We also tested on unixbench and hackbench, and saw no performance
change.
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20221104023601.12844-1-dtcccc@linux.alibaba.com
There is a very narrow race between schedule() and task_call_func().
CPU0 CPU1
__schedule()
rq_lock();
prev_state = READ_ONCE(prev->__state);
if (... && prev_state) {
deactivate_tasl(rq, prev, ...)
prev->on_rq = 0;
task_call_func()
raw_spin_lock_irqsave(p->pi_lock);
state = READ_ONCE(p->__state);
smp_rmb();
if (... || p->on_rq) // false!!!
rq = __task_rq_lock()
ret = func();
next = pick_next_task();
rq = context_switch(prev, next)
prepare_lock_switch()
spin_release(&__rq_lockp(rq)->dep_map...)
So while the task is on it's way out, it still holds rq->lock for a
little while, and right then task_call_func() comes in and figures it
doesn't need rq->lock anymore (because the task is already dequeued --
but still running there) and then the __set_task_frozen() thing observes
it's holding rq->lock and yells murder.
Avoid this by waiting for p->on_cpu to get cleared, which guarantees
the task is fully finished on the old CPU.
( While arguably the fixes tag is 'wrong' -- none of the previous
task_call_func() users appears to care for this case. )
Fixes: f5d39b0208 ("freezer,sched: Rewrite core freezer logic")
Reported-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://lkml.kernel.org/r/Y1kdRNNfUeAU+FNl@hirez.programming.kicks-ass.net
The commit d583d360a6 ("psi: Fix psi state corruption when schedule()
races with cgroup move") fixed a race problem by making cgroup_move_task()
use task->psi_flags instead of looking at the scheduler state.
We can extend task->psi_flags usage to CPU migration, which should be
a minor optimization for performance and code simplicity.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220926081931.45420-1-zhouchengming@bytedance.com
The do_set_cpus_allowed() function is used by either kthread_bind() or
select_fallback_rq(). In both cases the user affinity (if any) should be
destroyed too.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-6-longman@redhat.com
It was found that the user requested affinity via sched_setaffinity()
can be easily overwritten by other kernel subsystems without an easy way
to reset it back to what the user requested. For example, any change
to the current cpuset hierarchy may reset the cpumask of the tasks in
the affected cpusets to the default cpuset value even if those tasks
have pre-existing user requested affinity. That is especially easy to
trigger under a cgroup v2 environment where writing "+cpuset" to the
root cgroup's cgroup.subtree_control file will reset the cpus affinity
of all the processes in the system.
That is problematic in a nohz_full environment where the tasks running
in the nohz_full CPUs usually have their cpus affinity explicitly set
and will behave incorrectly if cpus affinity changes.
Fix this problem by looking at user_cpus_ptr in __set_cpus_allowed_ptr()
and use it to restrcit the given cpumask unless there is no overlap. In
that case, it will fallback to the given one. The SCA_USER flag is
reused to indicate intent to set user_cpus_ptr and so user_cpus_ptr
masking should be skipped. In addition, masking should also be skipped
if any of the SCA_MIGRATE_* flag is set.
All callers of set_cpus_allowed_ptr() will be affected by this change.
A scratch cpumask is added to percpu runqueues structure for doing
additional masking when user_cpus_ptr is set.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-4-longman@redhat.com
Unconditionally preserve the user requested cpumask on
sched_setaffinity() calls. This allows using it outside of the fairly
narrow restrict_cpus_allowed_ptr() use-case and fix some cpuset issues
that currently suffer destruction of cpumasks.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-3-longman@redhat.com
In order to prepare for passing through additional data through the
affinity call-chains, convert the mask and flags argument into a
structure.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-5-longman@redhat.com
affine_move_task() assumes task_rq_lock() has been called and it does
an implicit task_rq_unlock() before returning. Add the appropriate
__releases annotations to make this clear.
A typo error in comment is also fixed.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220922180041.1768141-2-longman@redhat.com
As reported by Yun Hsiang [1], if a task has its uclamp_min >= 0.8 * 1024,
it'll always pick the previous CPU because fits_capacity() will always
return false in this case.
The new util_fits_cpu() logic should handle this correctly for us beside
more corner cases where similar failures could occur, like when using
UCLAMP_MAX.
We open code uclamp_rq_util_with() except for the clamp() part,
util_fits_cpu() needs the 'raw' values to be passed to it.
Also introduce uclamp_rq_{set, get}() shorthand accessors to get uclamp
value for the rq. Makes the code more readable and ensures the right
rules (use READ_ONCE/WRITE_ONCE) are respected transparently.
[1] https://lists.linaro.org/pipermail/eas-dev/2020-July/001488.html
Fixes: 1d42509e47 ("sched/fair: Make EAS wakeup placement consider uclamp restrictions")
Reported-by: Yun Hsiang <hsiang023167@gmail.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220804143609.515789-4-qais.yousef@arm.com
Introduce distinct struct balance_callback instead of performing function
pointer casting which will trip CFI. Avoids warnings as found by Clang's
future -Wcast-function-type-strict option:
In file included from kernel/sched/core.c:84:
kernel/sched/sched.h:1755:15: warning: cast from 'void (*)(struct rq *)' to 'void (*)(struct callback_head *)' converts to incompatible function type [-Wcast-function-type-strict]
head->func = (void (*)(struct callback_head *))func;
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
No binary differences result from this change.
This patch is a cleanup based on Brad Spengler/PaX Team's modifications
to sched code in their last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code
are mine and don't reflect the original grsecurity/PaX code.
Reported-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/1724
Link: https://lkml.kernel.org/r/20221008000758.2957718-1-keescook@chromium.org
- Various performance optimizations, resulting in a 4%-9% speedup
in the mmtests/config-scheduler-perfpipe micro-benchmark.
- New interface to turn PSI on/off on a per cgroup level.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmNJKPsRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iPmg//aovCitAQX2lLoHJDIgdQibU40oaEpKTX
wM549EGz3Dr6qmwF8+qT1U2Ge6af/hHQc5G/ZqDpKbuTjUIc3RmBkqX80dNKFLuH
uyi9UtfsSriw+ks8fWuDdjr+S4oppwW9ZoIXvK8v4bisd3F31DNGvKPTayNxt73m
lExfzJiD1oJixDxGX8MGO9QpcoywmjWjzjrB2P+J8hnTpArouHx/HOKdQOpG6wXq
ZRr9kZvju6ucDpXCTa1HJrfVRxNAh35tx/b4cDtXbBFifVAeKaPOrHapMTVsqfel
Z7T+2DymhidNYK0hrRJoGUwa/vkz+2Sm1ZLG9LlgUCXVco/9S1zw1ZuQakVvzPen
wriuxRaAkR+szCP0L8js5+/DAkGa43MjKsvQHmDVnetQtlsAD4eYnn+alQ837SXv
MP3jwFqF+e4mcWdoQcfh0OWUgGec5XZzdgRYrFkBKyTWGLB2iPivcAMNf0X/h82Q
xxv4DQJIIJ017GOQ/ho2saq+GbtFCvX8YnGYas9T47Bjjluhjo7jgTVtPTo+mhtN
RfwMdG718Ap/gvnAX7wMe/t+L/4AP8AIgDRi5L35dTRqETwOjH+LAvOYjleQFYgu
kMVtLMyzU+TGwHscuzPFRh7TnvSJ4sD48Ll1BPnyZsh3SS9u0gAs1bml7Cu7JbmW
SIZD/S/hzdI=
=91tB
-----END PGP SIGNATURE-----
Merge tag 'sched-psi-2022-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull PSI updates from Ingo Molnar:
- Various performance optimizations, resulting in a 4%-9% speedup in
the mmtests/config-scheduler-perfpipe micro-benchmark.
- New interface to turn PSI on/off on a per cgroup level.
* tag 'sched-psi-2022-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/psi: Per-cgroup PSI accounting disable/re-enable interface
sched/psi: Cache parent psi_group to speed up group iteration
sched/psi: Consolidate cgroup_psi()
sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure
sched/psi: Remove NR_ONCPU task accounting
sched/psi: Optimize task switch inside shared cgroups again
sched/psi: Move private helpers to sched/stats.h
sched/psi: Save percpu memory when !psi_cgroups_enabled
sched/psi: Don't create cgroup PSI files when psi_disabled
sched/psi: Fix periodic aggregation shut off
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
From Phil Auld:
drivers/base: Fix unsigned comparison to -1 in CPUMAP_FILE_MAX_BYTES
From me:
cpumask: cleanup nr_cpu_ids vs nr_cpumask_bits mess
This series cleans that mess and adds new config FORCE_NR_CPUS that
allows to optimize cpumask subsystem if the number of CPUs is known
at compile-time.
From me:
lib: optimize find_bit() functions
Reworks find_bit() functions based on new FIND_{FIRST,NEXT}_BIT() macros.
From me:
lib/find: add find_nth_bit()
Adds find_nth_bit(), which is ~70 times faster than bitcounting with
for_each() loop:
for_each_set_bit(bit, mask, size)
if (n-- == 0)
return bit;
Also adds bitmap_weight_and() to let people replace this pattern:
tmp = bitmap_alloc(nbits);
bitmap_and(tmp, map1, map2, nbits);
weight = bitmap_weight(tmp, nbits);
bitmap_free(tmp);
with a single bitmap_weight_and() call.
From me:
cpumask: repair cpumask_check()
After switching cpumask to use nr_cpu_ids, cpumask_check() started
generating many false-positive warnings. This series fixes it.
From Valentin Schneider:
bitmap,cpumask: Add for_each_cpu_andnot() and for_each_cpu_andnot()
Extends the API with one more function and applies it in sched/core.
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEEi8GdvG6xMhdgpu/4sUSA/TofvsgFAmNBwmUACgkQsUSA/Tof
vshPRwv+KlqnZlKtuSPgbo/Kgswworpi/7TqfnN9GWlb8AJ2uhjBKI3GFwv4TDow
7KV6wdKdXYLr4pktcIhWy3qLrT+bDDExfarHRo3QI1A1W42EJ+ZiUaGnQGcnVMzD
5q/K1YMJYq0oaesHEw5PVUh8mm6h9qRD8VbX1u+riW/VCWBj3bho9Dp4mffQ48Q6
hVy/SnMGgClQwNYp+sxkqYx38xUqUGYoU5MzeziUmoS6pZQh+4lF33MULnI3EKmc
/ehXilPPtOV/Tm0RovDWFfm3rjNapV9FXHu8Ob2z/c+1A29EgXnE3pwrBDkAx001
TQrL9qbCANRDGPLzWQHw0dwFIaXvTdrSttCsfYYfU5hI4JbnJEe0Pqkaaohy7jqm
r0dW/TlyOG5T+k8Kwdx9w9A+jKs8TbKKZ8HOaN8BpkXswVnpbzpQbj3TITZI4aeV
6YR4URBQ5UkrVLEXFXbrOzwjL2zqDdyNoBdTJmGLJ+5b/n0HHzmyMVkegNIwLLM3
GR7sMQae
=Q/+F
-----END PGP SIGNATURE-----
Merge tag 'bitmap-6.1-rc1' of https://github.com/norov/linux
Pull bitmap updates from Yury Norov:
- Fix unsigned comparison to -1 in CPUMAP_FILE_MAX_BYTES (Phil Auld)
- cleanup nr_cpu_ids vs nr_cpumask_bits mess (me)
This series cleans that mess and adds new config FORCE_NR_CPUS that
allows to optimize cpumask subsystem if the number of CPUs is known
at compile-time.
- optimize find_bit() functions (me)
Reworks find_bit() functions based on new FIND_{FIRST,NEXT}_BIT()
macros.
- add find_nth_bit() (me)
Adds find_nth_bit(), which is ~70 times faster than bitcounting with
for_each() loop:
for_each_set_bit(bit, mask, size)
if (n-- == 0)
return bit;
Also adds bitmap_weight_and() to let people replace this pattern:
tmp = bitmap_alloc(nbits);
bitmap_and(tmp, map1, map2, nbits);
weight = bitmap_weight(tmp, nbits);
bitmap_free(tmp);
with a single bitmap_weight_and() call.
- repair cpumask_check() (me)
After switching cpumask to use nr_cpu_ids, cpumask_check() started
generating many false-positive warnings. This series fixes it.
- Add for_each_cpu_andnot() and for_each_cpu_andnot() (Valentin
Schneider)
Extends the API with one more function and applies it in sched/core.
* tag 'bitmap-6.1-rc1' of https://github.com/norov/linux: (28 commits)
sched/core: Merge cpumask_andnot()+for_each_cpu() into for_each_cpu_andnot()
lib/test_cpumask: Add for_each_cpu_and(not) tests
cpumask: Introduce for_each_cpu_andnot()
lib/find_bit: Introduce find_next_andnot_bit()
cpumask: fix checking valid cpu range
lib/bitmap: add tests for for_each() loops
lib/find: optimize for_each() macros
lib/bitmap: introduce for_each_set_bit_wrap() macro
lib/find_bit: add find_next{,_and}_bit_wrap
cpumask: switch for_each_cpu{,_not} to use for_each_bit()
net: fix cpu_max_bits_warn() usage in netif_attrmask_next{,_and}
cpumask: add cpumask_nth_{,and,andnot}
lib/bitmap: remove bitmap_ord_to_pos
lib/bitmap: add tests for find_nth_bit()
lib: add find_nth{,_and,_andnot}_bit()
lib/bitmap: add bitmap_weight_and()
lib/bitmap: don't call __bitmap_weight() in kernel code
tools: sync find_bit() implementation
lib/find_bit: optimize find_next_bit() functions
lib/find_bit: create find_first_zero_bit_le()
...
- Debuggability:
- Change most occurances of BUG_ON() to WARN_ON_ONCE()
- Reorganize & fix TASK_ state comparisons, turn it into a bitmap
- Update/fix misc scheduler debugging facilities
- Load-balancing & regular scheduling:
- Improve the behavior of the scheduler in presence of lot of
SCHED_IDLE tasks - in particular they should not impact other
scheduling classes.
- Optimize task load tracking, cleanups & fixes
- Clean up & simplify misc load-balancing code
- Freezer:
- Rewrite the core freezer to behave better wrt thawing and be simpler
in general, by replacing PF_FROZEN with TASK_FROZEN & fixing/adjusting
all the fallout.
- Deadline scheduler:
- Fix the DL capacity-aware code
- Factor out dl_task_is_earliest_deadline() & replenish_dl_new_period()
- Relax/optimize locking in task_non_contending()
- Cleanups:
- Factor out the update_current_exec_runtime() helper
- Various cleanups, simplifications
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmM/01cRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1geZA/+PB4KC1T9aVxzaTHI36R03YgJYZmIdtxw
wTf02MixePmz+gQCbepJbempGOh5ST28aOcI0xhdYOql5B63MaUBBMlB0HvGUyDG
IU3zETqLMRtAbnSTdQFv8m++ECUtZYp8/x1FCel4WO7ya4ETkRu1NRfCoUepEhpZ
aVAlae9LH3NBaF9t7s0PT2lTjf3pIzMFRkddJ0ywJhbFR3VnWat05fAK+J6fGY8+
LS54coefNlJD4oDh5TY8uniL1j5SmWmmwbk9Cdj7bLU5P3dFSS0/+5FJNHJPVGDE
srGT7wstRUcDrN0CnZo48VIUBiApJCCDqTfJYi9wNYd0NAHvwY6MIJJgEIY8mKsI
L/qH26H81Wt+ezSZ/5JIlGlZ/LIeNaa6OO/fbWEYABBQogvvx3nxsRNUYKSQzumH
CnSBasBjLnjWyLlK4qARM9cI7NFSEK6NUigrEx/7h8JFu/8T4DlSy6LsF1HUyKgq
4+FJLAqG6cL0tcwB/fHYd0oRESN8dStnQhGxSojgufwLc7dlFULvCYF5JM/dX+/V
IKwbOfIOeOn6ViMtSOXAEGdII+IQ2/ZFPwr+8Z5JC7NzvTVL6xlu/3JXkLZR3L7o
yaXTSaz06h1vil7Z+GRf7RHc+wUeGkEpXh5vnarGZKXivhFdWsBdROIJANK+xR0i
TeSLCxQxXlU=
=KjMD
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Debuggability:
- Change most occurances of BUG_ON() to WARN_ON_ONCE()
- Reorganize & fix TASK_ state comparisons, turn it into a bitmap
- Update/fix misc scheduler debugging facilities
Load-balancing & regular scheduling:
- Improve the behavior of the scheduler in presence of lot of
SCHED_IDLE tasks - in particular they should not impact other
scheduling classes.
- Optimize task load tracking, cleanups & fixes
- Clean up & simplify misc load-balancing code
Freezer:
- Rewrite the core freezer to behave better wrt thawing and be
simpler in general, by replacing PF_FROZEN with TASK_FROZEN &
fixing/adjusting all the fallout.
Deadline scheduler:
- Fix the DL capacity-aware code
- Factor out dl_task_is_earliest_deadline() &
replenish_dl_new_period()
- Relax/optimize locking in task_non_contending()
Cleanups:
- Factor out the update_current_exec_runtime() helper
- Various cleanups, simplifications"
* tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
sched: Fix more TASK_state comparisons
sched: Fix TASK_state comparisons
sched/fair: Move call to list_last_entry() in detach_tasks
sched/fair: Cleanup loop_max and loop_break
sched/fair: Make sure to try to detach at least one movable task
sched: Show PF_flag holes
freezer,sched: Rewrite core freezer logic
sched: Widen TAKS_state literals
sched/wait: Add wait_event_state()
sched/completion: Add wait_for_completion_state()
sched: Add TASK_ANY for wait_task_inactive()
sched: Change wait_task_inactive()s match_state
freezer,umh: Clean up freezer/initrd interaction
freezer: Have {,un}lock_system_sleep() save/restore flags
sched: Rename task_running() to task_on_cpu()
sched/fair: Cleanup for SIS_PROP
sched/fair: Default to false in test_idle_cores()
sched/fair: Remove useless check in select_idle_core()
sched/fair: Avoid double search on same cpu
sched/fair: Remove redundant check in select_idle_smt()
...
This removes the second use of the sched_core_mask temporary mask.
Suggested-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Task state is fundamentally a bitmask; direct comparisons are probably
not working as intended. Specifically the normal wait-state have
a number of possible modifiers:
TASK_UNINTERRUPTIBLE: TASK_WAKEKILL, TASK_NOLOAD, TASK_FREEZABLE
TASK_INTERRUPTIBLE: TASK_FREEZABLE
Specifically, the addition of TASK_FREEZABLE wrecked
__wait_is_interruptible(). This however led to an audit of direct
comparisons yielding the rest of the changes.
Fixes: f5d39b0208 ("freezer,sched: Rewrite core freezer logic")
Reported-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Debugged-by: Christian Borntraeger <borntraeger@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Christian Borntraeger <borntraeger@linux.ibm.com>
To further exploit spatial locality, the aging prefers to walk page tables
to search for young PTEs and promote hot pages. A kill switch will be
added in the next patch to disable this behavior. When disabled, the
aging relies on the rmap only.
NB: this behavior has nothing similar with the page table scanning in the
2.4 kernel [1], which searches page tables for old PTEs, adds cold pages
to swapcache and unmaps them.
To avoid confusion, the term "iteration" specifically means the traversal
of an entire mm_struct list; the term "walk" will be applied to page
tables and the rmap, as usual.
An mm_struct list is maintained for each memcg, and an mm_struct follows
its owner task to the new memcg when this task is migrated. Given an
lruvec, the aging iterates lruvec_memcg()->mm_list and calls
walk_page_range() with each mm_struct on this list to promote hot pages
before it increments max_seq.
When multiple page table walkers iterate the same list, each of them gets
a unique mm_struct; therefore they can run concurrently. Page table
walkers ignore any misplaced pages, e.g., if an mm_struct was migrated,
pages it left in the previous memcg will not be promoted when its current
memcg is under reclaim. Similarly, page table walkers will not promote
pages from nodes other than the one under reclaim.
This patch uses the following optimizations when walking page tables:
1. It tracks the usage of mm_struct's between context switches so that
page table walkers can skip processes that have been sleeping since
the last iteration.
2. It uses generational Bloom filters to record populated branches so
that page table walkers can reduce their search space based on the
query results, e.g., to skip page tables containing mostly holes or
misplaced pages.
3. It takes advantage of the accessed bit in non-leaf PMD entries when
CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y.
4. It does not zigzag between a PGD table and the same PMD table
spanning multiple VMAs. IOW, it finishes all the VMAs within the
range of the same PMD table before it returns to a PGD table. This
improves the cache performance for workloads that have large
numbers of tiny VMAs [2], especially when CONFIG_PGTABLE_LEVELS=5.
Server benchmark results:
Single workload:
fio (buffered I/O): no change
Single workload:
memcached (anon): +[8, 10]%
Ops/sec KB/sec
patch1-7: 1147696.57 44640.29
patch1-8: 1245274.91 48435.66
Configurations:
no change
Client benchmark results:
kswapd profiles:
patch1-7
48.16% lzo1x_1_do_compress (real work)
8.20% page_vma_mapped_walk (overhead)
7.06% _raw_spin_unlock_irq
2.92% ptep_clear_flush
2.53% __zram_bvec_write
2.11% do_raw_spin_lock
2.02% memmove
1.93% lru_gen_look_around
1.56% free_unref_page_list
1.40% memset
patch1-8
49.44% lzo1x_1_do_compress (real work)
6.19% page_vma_mapped_walk (overhead)
5.97% _raw_spin_unlock_irq
3.13% get_pfn_folio
2.85% ptep_clear_flush
2.42% __zram_bvec_write
2.08% do_raw_spin_lock
1.92% memmove
1.44% alloc_zspage
1.36% memset
Configurations:
no change
Thanks to the following developers for their efforts [3].
kernel test robot <lkp@intel.com>
[1] https://lwn.net/Articles/23732/
[2] https://llvm.org/docs/ScudoHardenedAllocator.html
[3] https://lore.kernel.org/r/202204160827.ekEARWQo-lkp@intel.com/
Link: https://lkml.kernel.org/r/20220918080010.2920238-9-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
sched_nr_migrate_break is set to a fix value and never changes so we can
replace it by a define SCHED_NR_MIGRATE_BREAK.
Also, we adjust SCHED_NR_MIGRATE_BREAK to be aligned with the init value
of sysctl_sched_nr_migrate which can be init to different values.
Then, use SCHED_NR_MIGRATE_BREAK to init sysctl_sched_nr_migrate.
The behavior stays unchanged unless you modify sysctl_sched_nr_migrate
trough debugfs.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220825122726.20819-3-vincent.guittot@linaro.org
The promotion hot threshold is workload and system configuration
dependent. So in this patch, a method to adjust the hot threshold
automatically is implemented. The basic idea is to control the number of
the candidate promotion pages to match the promotion rate limit. If the
hint page fault latency of a page is less than the hot threshold, we will
try to promote the page, and the page is called the candidate promotion
page.
If the number of the candidate promotion pages in the statistics interval
is much more than the promotion rate limit, the hot threshold will be
decreased to reduce the number of the candidate promotion pages.
Otherwise, the hot threshold will be increased to increase the number of
the candidate promotion pages.
To make the above method works, in each statistics interval, the total
number of the pages to check (on which the hint page faults occur) and the
hot/cold distribution need to be stable. Because the page tables are
scanned linearly in NUMA balancing, but the hot/cold distribution isn't
uniform along the address usually, the statistics interval should be
larger than the NUMA balancing scan period. So in the patch, the max scan
period is used as statistics interval and it works well in our tests.
Link: https://lkml.kernel.org/r/20220713083954.34196-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: osalvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now PSI already tracked workload pressure stall information for
CPU, memory and IO. Apart from these, IRQ/SOFTIRQ could have
obvious impact on some workload productivity, such as web service
workload.
When CONFIG_IRQ_TIME_ACCOUNTING, we can get IRQ/SOFTIRQ delta time
from update_rq_clock_task(), in which we can record that delta
to CPU curr task's cgroups as PSI_IRQ_FULL status.
Note we don't use PSI_IRQ_SOME since IRQ/SOFTIRQ always happen in
the current task on the CPU, make nothing productive could run
even if it were runnable, so we only use PSI_IRQ_FULL.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220825164111.29534-8-zhouchengming@bytedance.com
Rewrite the core freezer to behave better wrt thawing and be simpler
in general.
By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is
ensured frozen tasks stay frozen until thawed and don't randomly wake
up early, as is currently possible.
As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up
two PF_flags (yay!).
Specifically; the current scheme works a little like:
freezer_do_not_count();
schedule();
freezer_count();
And either the task is blocked, or it lands in try_to_freezer()
through freezer_count(). Now, when it is blocked, the freezer
considers it frozen and continues.
However, on thawing, once pm_freezing is cleared, freezer_count()
stops working, and any random/spurious wakeup will let a task run
before its time.
That is, thawing tries to thaw things in explicit order; kernel
threads and workqueues before doing bringing SMP back before userspace
etc.. However due to the above mentioned races it is entirely possible
for userspace tasks to thaw (by accident) before SMP is back.
This can be a fatal problem in asymmetric ISA architectures (eg ARMv9)
where the userspace task requires a special CPU to run.
As said; replace this with a special task state TASK_FROZEN and add
the following state transitions:
TASK_FREEZABLE -> TASK_FROZEN
__TASK_STOPPED -> TASK_FROZEN
__TASK_TRACED -> TASK_FROZEN
The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL
(IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state
is already required to deal with spurious wakeups and the freezer
causes one such when thawing the task (since the original state is
lost).
The special __TASK_{STOPPED,TRACED} states *can* be restored since
their canonical state is in ->jobctl.
With this, frozen tasks need an explicit TASK_FROZEN wakeup and are
free of undue (early / spurious) wakeups.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
Now that wait_task_inactive()'s @match_state argument is a mask (like
ttwu()) it is possible to replace the special !match_state case with
an 'all-states' value such that any blocked state will match.
Suggested-by: Ingo Molnar (mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YxhkzfuFTvRnpUaH@hirez.programming.kicks-ass.net
Make wait_task_inactive()'s @match_state work like ttwu()'s @state.
That is, instead of an equal comparison, use it as a mask. This allows
matching multiple block conditions.
(removes the unlikely; it doesn't make sense how it's only part of the
condition)
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220822114648.856734578@infradead.org
There is some ambiguity about task_running() in that it is unrelated
to TASK_RUNNING but instead tests ->on_cpu. As such, rename the thing
task_on_cpu().
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/Yxhkhn55uHZx+NGl@hirez.programming.kicks-ass.net
The dump_cpu_task() function does not print registers on architectures
that do not support NMIs. However, registers can be useful for
debugging. Fortunately, in the case where dump_cpu_task() is invoked
from an interrupt handler and is dumping the current CPU's stack, the
get_irq_regs() function can be used to get the registers.
Therefore, this commit makes dump_cpu_task() check to see if it is being
asked to dump the current CPU's stack from within an interrupt handler,
and, if so, it uses the get_irq_regs() function to obtain the registers.
On systems that do support NMIs, this commit has the further advantage
of avoiding a self-NMI in this case.
This is an example of rcu self-detected stall on arm64, which does not
support NMIs:
[ 27.501721] rcu: INFO: rcu_preempt self-detected stall on CPU
[ 27.502238] rcu: 0-....: (1250 ticks this GP) idle=4f7/1/0x4000000000000000 softirq=2594/2594 fqs=619
[ 27.502632] (t=1251 jiffies g=2989 q=29 ncpus=4)
[ 27.503845] CPU: 0 PID: 306 Comm: test0 Not tainted 5.19.0-rc7-00009-g1c1a6c29ff99-dirty #46
[ 27.504732] Hardware name: linux,dummy-virt (DT)
[ 27.504947] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 27.504998] pc : arch_counter_read+0x18/0x24
[ 27.505301] lr : arch_counter_read+0x18/0x24
[ 27.505328] sp : ffff80000b29bdf0
[ 27.505345] x29: ffff80000b29bdf0 x28: 0000000000000000 x27: 0000000000000000
[ 27.505475] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
[ 27.505553] x23: 0000000000001f40 x22: ffff800009849c48 x21: 000000065f871ae0
[ 27.505627] x20: 00000000000025ec x19: ffff80000a6eb300 x18: ffffffffffffffff
[ 27.505654] x17: 0000000000000001 x16: 0000000000000000 x15: ffff80000a6d0296
[ 27.505681] x14: ffffffffffffffff x13: ffff80000a29bc18 x12: 0000000000000426
[ 27.505709] x11: 0000000000000162 x10: ffff80000a2f3c18 x9 : ffff80000a29bc18
[ 27.505736] x8 : 00000000ffffefff x7 : ffff80000a2f3c18 x6 : 00000000759bd013
[ 27.505761] x5 : 01ffffffffffffff x4 : 0002dc6c00000000 x3 : 0000000000000017
[ 27.505787] x2 : 00000000000025ec x1 : ffff80000b29bdf0 x0 : 0000000075a30653
[ 27.505937] Call trace:
[ 27.506002] arch_counter_read+0x18/0x24
[ 27.506171] ktime_get+0x48/0xa0
[ 27.506207] test_task+0x70/0xf0
[ 27.506227] kthread+0x10c/0x110
[ 27.506243] ret_from_fork+0x10/0x20
This is a marked improvement over the old output:
[ 27.944550] rcu: INFO: rcu_preempt self-detected stall on CPU
[ 27.944980] rcu: 0-....: (1249 ticks this GP) idle=cbb/1/0x4000000000000000 softirq=2610/2610 fqs=614
[ 27.945407] (t=1251 jiffies g=2681 q=28 ncpus=4)
[ 27.945731] Task dump for CPU 0:
[ 27.945844] task:test0 state:R running task stack: 0 pid: 306 ppid: 2 flags:0x0000000a
[ 27.946073] Call trace:
[ 27.946151] dump_backtrace.part.0+0xc8/0xd4
[ 27.946378] show_stack+0x18/0x70
[ 27.946405] sched_show_task+0x150/0x180
[ 27.946427] dump_cpu_task+0x44/0x54
[ 27.947193] rcu_dump_cpu_stacks+0xec/0x130
[ 27.947212] rcu_sched_clock_irq+0xb18/0xef0
[ 27.947231] update_process_times+0x68/0xac
[ 27.947248] tick_sched_handle+0x34/0x60
[ 27.947266] tick_sched_timer+0x4c/0xa4
[ 27.947281] __hrtimer_run_queues+0x178/0x360
[ 27.947295] hrtimer_interrupt+0xe8/0x244
[ 27.947309] arch_timer_handler_virt+0x38/0x4c
[ 27.947326] handle_percpu_devid_irq+0x88/0x230
[ 27.947342] generic_handle_domain_irq+0x2c/0x44
[ 27.947357] gic_handle_irq+0x44/0xc4
[ 27.947376] call_on_irq_stack+0x2c/0x54
[ 27.947415] do_interrupt_handler+0x80/0x94
[ 27.947431] el1_interrupt+0x34/0x70
[ 27.947447] el1h_64_irq_handler+0x18/0x24
[ 27.947462] el1h_64_irq+0x64/0x68 <--- the above backtrace is worthless
[ 27.947474] arch_counter_read+0x18/0x24
[ 27.947487] ktime_get+0x48/0xa0
[ 27.947501] test_task+0x70/0xf0
[ 27.947520] kthread+0x10c/0x110
[ 27.947538] ret_from_fork+0x10/0x20
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
The trigger_all_cpu_backtrace() function attempts to send an NMI to the
target CPU, which usually provides much better stack traces than the
dump_cpu_task() function's approach of dumping that stack from some other
CPU. So much so that most calls to dump_cpu_task() only happen after
a call to trigger_all_cpu_backtrace() has failed. And the exception to
this rule really should attempt to use trigger_all_cpu_backtrace() first.
Therefore, move the trigger_all_cpu_backtrace() invocation into
dump_cpu_task().
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
commit 7dc603c902 ("sched/fair: Fix PELT integrity for new tasks")
introduce a TASK_NEW state and an unnessary limitation that would fail
when changing cgroup of new forked task.
Because at that time, we can't handle task_change_group_fair() for new
forked fair task which hasn't been woken up by wake_up_new_task(),
which will cause detach on an unattached task sched_avg problem.
This patch delete this unnessary limitation by adding check before do
detach or attach in task_change_group_fair().
So cpu_cgrp_subsys.can_attach() has nothing to do for fair tasks,
only define it in #ifdef CONFIG_RT_GROUP_SCHED.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220818124805.601-8-zhouchengming@bytedance.com
We use cpu_cgrp_subsys->fork() to set task group for the new fair task
in cgroup_post_fork().
Since commit b1e8206582 ("sched: Fix yet more sched_fork() races")
has already set_task_rq() for the new fair task in sched_cgroup_fork(),
so cpu_cgrp_subsys->fork() can be removed.
cgroup_can_fork() --> pin parent's sched_task_group
sched_cgroup_fork()
__set_task_cpu()
set_task_rq()
cgroup_post_fork()
ss->fork() := cpu_cgroup_fork()
sched_change_group(..., TASK_SET_GROUP)
task_set_group_fair()
set_task_rq() --> can be removed
After this patch's change, task_change_group_fair() only need to
care about task cgroup migration, make the code much simplier.
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220818124805.601-3-zhouchengming@bytedance.com
There's no good reason to crash a user's system with a BUG_ON(),
chances are high that they'll never even see the crash message on
Xorg, and it won't make it into the syslog either.
By using a WARN_ON_ONCE() we at least give the user a chance to report
any bugs triggered here - instead of getting silent hangs.
None of these WARN_ON_ONCE()s are supposed to trigger, ever - so we ignore
cases where a NULL check is done via a BUG_ON() and we let a NULL
pointer through after a WARN_ON_ONCE().
There's one exception: WARN_ON_ONCE() arguments with side-effects,
such as locking - in this case we use the return value of the
WARN_ON_ONCE(), such as in:
- BUG_ON(!lock_task_sighand(p, &flags));
+ if (WARN_ON_ONCE(!lock_task_sighand(p, &flags)))
+ return;
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/YvSsKcAXISmshtHo@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLuvmwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gONQ/+KkkPTeKgGDvrahTfeYZlmRyvcI1R78r9
yooa8v+DtifznBW2eXDBc8WTruzqr78VyUY+1YSjfKS6FRQWYMficJ3qk3hxgBru
998KZbvl3jXBBlRkqgGeFlF5Ty2KaryEZgX97a7IF/0xWDgpm972jFkJ/KCo/YTY
WSQrzutz2FKe71EjK4cAplYxPZIiy/zo2hSGTbsso4M7bO5VLc1Y4qMtFGcCZ7JB
s9JYkj2Rfz+AS5wioDRcGuec4A4SrroxKszZA6QDDBuhMJukqexO02xs/fxZ2W4Z
DF4U5MFOrtz9AWSGsf1P6XXbgJO8qTgQXZchFsEcJwypV13w8U0IViXQfD/Pvx2X
y+WHdnZVIO2sDwOJ15ew7IuoJZ2LsVygrBNFJJaIFOtIz3RzprI0BJN7LeWFALOa
IPmbtiY8hVwhKmjRgMHWDwJhMEHLuhGx3idiD89w1pknzTUnKDiwLyEUtyynxeGd
ft9uCvPefrYQVx9AiH7wf0W+fg334FCccC+0f8LyduyftUyQCfZIZY6LUSKuKded
Odm7k0ngLDPbdZwAHs0Nf/ilRwd91Z7b6hGt5U3ptx+8BPMKB+/k1VoKog7OISPc
zGaP7DrtuC4sEdX4X6bqX+mEQhpkLcQw15gVGxhKoHqygWNSZrV634aSSXwfVXJx
eT5m/K9a7L0=
=CYl5
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
"Various fixes: a deadline scheduler fix, a migration fix, a Sparse fix
and a comment fix"
* tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Do not requeue task on CPU excluded from cpus_mask
sched/rt: Fix Sparse warnings due to undefined rt.c declarations
exit: Fix typo in comment: s/sub-theads/sub-threads
sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
The following warning was triggered on a large machine early in boot on
a distribution kernel but the same problem should also affect mainline.
WARNING: CPU: 439 PID: 10 at ../kernel/workqueue.c:2231 process_one_work+0x4d/0x440
Call Trace:
<TASK>
rescuer_thread+0x1f6/0x360
kthread+0x156/0x180
ret_from_fork+0x22/0x30
</TASK>
Commit c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
optimises ttwu by queueing a task that is descheduling on the wakelist,
but does not check if the task descheduling is still allowed to run on that CPU.
In this warning, the problematic task is a workqueue rescue thread which
checks if the rescue is for a per-cpu workqueue and running on the wrong CPU.
While this is early in boot and it should be possible to create workers,
the rescue thread may still used if the MAYDAY_INITIAL_TIMEOUT is reached
or MAYDAY_INTERVAL and on a sufficiently large machine, the rescue
thread is being used frequently.
Tracing confirmed that the task should have migrated properly using the
stopper thread to handle the migration. However, a parallel wakeup from udev
running on another CPU that does not share CPU cache observes p->on_cpu and
uses task_cpu(p), queues the task on the old CPU and triggers the warning.
Check that the wakee task that is descheduling is still allowed to run
on its current CPU and if not, wait for the descheduling to complete
and select an allowed CPU.
Fixes: c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220804092119.20137-1-mgorman@techsingularity.net
The load_balance_mask and select_rq_mask percpu variables are only used in
kernel/sched/fair.c.
Make them static and move their allocation into init_sched_fair_class().
Replace kzalloc_node() with zalloc_cpumask_var_node() to get rid of the
CONFIG_CPUMASK_OFFSTACK #ifdef and to align with per-cpu cpumask
allocation for RT (local_cpu_mask in init_sched_rt_class()) and DL
class (local_cpu_mask_dl in init_sched_dl_class()).
[ mingo: Tidied up changelog & touched up the code. ]
Signed-off-by: Bing Huang <huangbing@kylinos.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220722213609.3901-1-huangbing775@126.com
With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:
[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
:
[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
:
[80468.207946] Call Trace:
[80468.208947] cpuset_can_attach+0xa0/0x140
[80468.209953] cgroup_migrate_execute+0x8c/0x490
[80468.210931] cgroup_update_dfl_csses+0x254/0x270
[80468.211898] cgroup_subtree_control_write+0x322/0x400
[80468.212854] kernfs_fop_write_iter+0x11c/0x1b0
[80468.213777] new_sync_write+0x11f/0x1b0
[80468.214689] vfs_write+0x1eb/0x280
[80468.215592] ksys_write+0x5f/0xe0
[80468.216463] do_syscall_64+0x5c/0x80
[80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.
Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids.
Fixes: 7f51412a41 ("sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220803015451.2219567-1-longman@redhat.com
This pull request contains the following branches:
doc.2022.06.21a: Documentation updates.
fixes.2022.07.19a: Miscellaneous fixes.
nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to
be offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS
and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel
boot parameter prevents offloaded callbacks from interfering
with real-time workloads and with energy-efficiency mechanisms.
poll.2022.07.21a: Polled grace-period updates, perhaps most notably
making these APIs account for both normal and expedited grace
periods.
rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing
the CPU overhead of RCU tasks trace grace periods by more than
a factor of two on a system with 15,000 tasks. The reduction
is expected to increase with the number of tasks, so it seems
reasonable to hypothesize that a system with 150,000 tasks might
see a 20-fold reduction in CPU overhead.
torture.2022.06.21a: Torture-test updates.
ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into
context tracking, thus reducing the overhead of transitioning to
kernel mode from either idle or nohz_full userspace execution
for kernels that track context independently of RCU. This is
expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m
g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq
k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt
0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL
kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5
7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0
Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc
JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL
PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc
egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y
ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r
vX60+QNxvUBLwA==
=vUNm
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS and
Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
parameter prevents offloaded callbacks from interfering with
real-time workloads and with energy-efficiency mechanisms
- Polled grace-period updates, perhaps most notably making these APIs
account for both normal and expedited grace periods
- Tasks RCU updates, perhaps most notably reducing the CPU overhead of
RCU tasks trace grace periods by more than a factor of two on a
system with 15,000 tasks.
The reduction is expected to increase with the number of tasks, so it
seems reasonable to hypothesize that a system with 150,000 tasks
might see a 20-fold reduction in CPU overhead
- Torture-test updates
- Updates that merge RCU's dyntick-idle tracking into context tracking,
thus reducing the overhead of transitioning to kernel mode from
either idle or nohz_full userspace execution for kernels that track
context independently of RCU.
This is expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y
* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
rcu: Diagnose extended sync_rcu_do_polled_gp() loops
rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
rcutorture: Test polled expedited grace-period primitives
rcu: Add polled expedited grace-period primitives
rcutorture: Verify that polled GP API sees synchronous grace periods
rcu: Make Tiny RCU grace periods visible to polled APIs
rcu: Make polled grace-period API account for expedited grace periods
rcu: Switch polled grace-period APIs to ->gp_seq_polled
rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
rcu/nocb: Add option to opt rcuo kthreads out of RT priority
rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
rcu/nocb: Add an option to offload all CPUs on boot
rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
rcu/nocb: Add/del rdp to iterate from rcuog itself
rcu/tree: Add comment to describe GP-done condition in fqs loop
rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
rcu/kvfree: Remove useless monitor_todo flag
rcu: Cleanup RCU urgency state for offline CPU
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmLkm5gQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmKMD/4l3QIrLbjYIxlfrzQcHbmYuUkbQtj3SbZg
6ejbnGVhCs1P9DdXH8MgE2BxgpiXQE0CqOK7vbSoo5ep2n2UTLI2DIxAl74SMIo7
0wmJXtUJySuViKr3NYVHqlN180MkQYddBz0nGElhkQBPBCMhW8CrtPCeURr/YyHp
2RxSYBXiUx2gRyig+klnp6oPEqelcBZJUyNHdA9yVrgl/RhB/t2rKj7D++8ukQM3
Zuyh8WIkTeTfUz9hdGG7fuCEdZN4DlO2CCEc7uy0cKi6VRCKH4hYUCqClJ+/cfd2
43dUI2O7B6D1t/ObFh8AGIDXBDqVA6ePQohQU6gooRkfQiBPKkc9d0ts4yIhRqca
AjkzNM+0Eve3A01loJ8J84w8oZnvNpYEv5n8/sZVLWcyU3UIs0I88nC2OBiFtoRq
d77CtFLwOTo+r3STtAhnZOqez90rhS6BqKtqlUP346PCuFItl6/MbGtwdTbLYEFj
CVNIb2pERWSr2NxGv4lFyXaX/cRwruxojWH7yc3rRYjr4Ykevd1pe/fMGNiMAnKw
5em/3QU3qq0ZVcXLMihksKeHHFIQwGDRMuyuv/fktV10+yYXQ0t16WzkJT3aR8Xo
cqs0r8+6Jnj3uYcOMzj/FoLcpEPr21hnwAtzLto1mG1Wh4JRn/D7Nx5zqxPLxcW+
NiU6VihPOw==
=gxeV
-----END PGP SIGNATURE-----
Merge tag 'for-5.20/io_uring-2022-07-29' of git://git.kernel.dk/linux-block
Pull io_uring updates from Jens Axboe:
- As per (valid) complaint in the last merge window, fs/io_uring.c has
grown quite large these days. io_uring isn't really tied to fs
either, as it supports a wide variety of functionality outside of
that.
Move the code to io_uring/ and split it into files that either
implement a specific request type, and split some code into helpers
as well. The code is organized a lot better like this, and io_uring.c
is now < 4K LOC (me).
- Deprecate the epoll_ctl opcode. It'll still work, just trigger a
warning once if used. If we don't get any complaints on this, and I
don't expect any, then we can fully remove it in a future release
(me).
- Improve the cancel hash locking (Hao)
- kbuf cleanups (Hao)
- Efficiency improvements to the task_work handling (Dylan, Pavel)
- Provided buffer improvements (Dylan)
- Add support for recv/recvmsg multishot support. This is similar to
the accept (or poll) support for have for multishot, where a single
SQE can trigger everytime data is received. For applications that
expect to do more than a few receives on an instantiated socket, this
greatly improves efficiency (Dylan).
- Efficiency improvements for poll handling (Pavel)
- Poll cancelation improvements (Pavel)
- Allow specifiying a range for direct descriptor allocations (Pavel)
- Cleanup the cqe32 handling (Pavel)
- Move io_uring types to greatly cleanup the tracing (Pavel)
- Tons of great code cleanups and improvements (Pavel)
- Add a way to do sync cancelations rather than through the sqe -> cqe
interface, as that's a lot easier to use for some use cases (me).
- Add support to IORING_OP_MSG_RING for sending direct descriptors to a
different ring. This avoids the usually problematic SCM case, as we
disallow those. (me)
- Make the per-command alloc cache we use for apoll generic, place
limits on it, and use it for netmsg as well (me).
- Various cleanups (me, Michal, Gustavo, Uros)
* tag 'for-5.20/io_uring-2022-07-29' of git://git.kernel.dk/linux-block: (172 commits)
io_uring: ensure REQ_F_ISREG is set async offload
net: fix compat pointer in get_compat_msghdr()
io_uring: Don't require reinitable percpu_ref
io_uring: fix types in io_recvmsg_multishot_overflow
io_uring: Use atomic_long_try_cmpxchg in __io_account_mem
io_uring: support multishot in recvmsg
net: copy from user before calling __get_compat_msghdr
net: copy from user before calling __copy_msghdr
io_uring: support 0 length iov in buffer select in compat
io_uring: fix multishot ending when not polled
io_uring: add netmsg cache
io_uring: impose max limit on apoll cache
io_uring: add abstraction around apoll cache
io_uring: move apoll cache to poll.c
io_uring: consolidate hash_locked io-wq handling
io_uring: clear REQ_F_HASH_LOCKED on hash removal
io_uring: don't race double poll setting REQ_F_ASYNC_DATA
io_uring: don't miss setting REQ_F_DOUBLE_POLL
io_uring: disable multishot recvmsg
io_uring: only trace one of complete or overflow
...
Currently, the values of some fields are printed right-aligned, causing
the field value to be next to the next field name rather than next to its
own field name. So print each field value left-aligned, to make it more
readable.
Before:
stack: 0 pid: 307 ppid: 2 flags:0x00000008
After:
stack:0 pid:308 ppid:2 flags:0x0000000a
This also makes them print in the same style as the other two fields:
task:demo0 state:R running task
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220727060819.1085-1-thunder.leizhen@huawei.com
Load-balancing improvements:
============================
- Improve NUMA balancing on AMD Zen systems for affine workloads.
- Improve the handling of reduced-capacity CPUs in load-balancing.
- Energy Model improvements: fix & refine all the energy fairness metrics (PELT),
and remove the conservative threshold requiring 6% energy savings to
migrate a task. Doing this improves power efficiency for most workloads,
and also increases the reliability of energy-efficiency scheduling.
- Optimize/tweak select_idle_cpu() to spend (much) less time searching
for an idle CPU on overloaded systems. There's reports of several
milliseconds spent there on large systems with large workloads ...
[ Since the search logic changed, there might be behavioral side effects. ]
- Improve NUMA imbalance behavior. On certain systems
with spare capacity, initial placement of tasks is non-deterministic,
and such an artificial placement imbalance can persist for a long time,
hurting (and sometimes helping) performance.
The fix is to make fork-time task placement consistent with runtime
NUMA balancing placement.
Note that some performance regressions were reported against this,
caused by workloads that are not memory bandwith limited, which benefit
from the artificial locality of the placement bug(s). Mel Gorman's
conclusion, with which we concur, was that consistency is better than
random workload benefits from non-deterministic bugs:
"Given there is no crystal ball and it's a tradeoff, I think it's
better to be consistent and use similar logic at both fork time
and runtime even if it doesn't have universal benefit."
- Improve core scheduling by fixing a bug in sched_core_update_cookie() that
caused unnecessary forced idling.
- Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly
woken tasks.
- Fix a newidle balancing bug that introduced unnecessary wakeup latencies.
ABI improvements/fixes:
=======================
- Do not check capabilities and do not issue capability check denial messages
when a scheduler syscall doesn't require privileges. (Such as increasing niceness.)
- Add forced-idle accounting to cgroups too.
- Fix/improve the RSEQ ABI to not just silently accept unknown flags.
(No existing tooling is known to have learned to rely on the previous behavior.)
- Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags.
Optimizations:
==============
- Optimize & simplify leaf_cfs_rq_list()
- Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg().
Misc fixes & cleanups:
======================
- Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems.
- Fix a full-NOHZ bug that can in some cases result in the tick not being
re-enabled when the last SCHED_RT task is gone from a runqueue but there's
still SCHED_OTHER tasks around.
- Various PREEMPT_RT related fixes.
- Misc cleanups & smaller fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLn2ywRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iNfxAAhPJMwM4tYCpIM6PhmxKiHl6kkiT2tt42
HhEmiJVLjczLybWaWwmGA2dSFkv1f4+hG7nqdZTm9QYn0Pqat2UTSRcwoKQc+gpB
x85Hwt2IUmnUman52fRl5r1miH9LTdCI6agWaFLQae5ds1XmOugFo52t2ahax+Gn
dB8LxS2fa/GrKj229EhkJSPWAK4Y94asoTProwpKLuKEeXhDkqUNrOWbKhz+wEnA
pVZySpA9uEOdNLVSr1s0VB6mZoh5/z6yQefj5YSNntsG71XWo9jxKCIm5buVdk2U
wjdn6UzoTThOy/5Ygm64eYRexMHG71UamF1JYUdmvDeUJZ5fhG6RD0FECUQNVcJB
Msu2fce6u1AV0giZGYtiooLGSawB/+e6MoDkjTl8guFHi/peve9CezKX1ZgDWPfE
eGn+EbYkUS9RMafXCKuEUBAC1UUqAavGN9sGGN1ufyR4za6ogZplOqAFKtTRTGnT
/Ne3fHTtvv73DLGW9ohO5vSS2Rp7zhAhB6FunhibhxCWlt7W6hA4Ze2vU9hf78Yn
SJDLAJjOEilLaKUkRG/d9uM3FjKJM1tqxuT76+sUbM0MNxdyiKcviQlP1b8oq5Um
xE1KNZUevnr/WXqOTGDKHH/HNPFgwxbwavMiP7dNFn8h/hEk4t9dkf5siDmVHtn4
nzDVOob1LgE=
=xr2b
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Load-balancing improvements:
- Improve NUMA balancing on AMD Zen systems for affine workloads.
- Improve the handling of reduced-capacity CPUs in load-balancing.
- Energy Model improvements: fix & refine all the energy fairness
metrics (PELT), and remove the conservative threshold requiring 6%
energy savings to migrate a task. Doing this improves power
efficiency for most workloads, and also increases the reliability
of energy-efficiency scheduling.
- Optimize/tweak select_idle_cpu() to spend (much) less time
searching for an idle CPU on overloaded systems. There's reports of
several milliseconds spent there on large systems with large
workloads ...
[ Since the search logic changed, there might be behavioral side
effects. ]
- Improve NUMA imbalance behavior. On certain systems with spare
capacity, initial placement of tasks is non-deterministic, and such
an artificial placement imbalance can persist for a long time,
hurting (and sometimes helping) performance.
The fix is to make fork-time task placement consistent with runtime
NUMA balancing placement.
Note that some performance regressions were reported against this,
caused by workloads that are not memory bandwith limited, which
benefit from the artificial locality of the placement bug(s). Mel
Gorman's conclusion, with which we concur, was that consistency is
better than random workload benefits from non-deterministic bugs:
"Given there is no crystal ball and it's a tradeoff, I think
it's better to be consistent and use similar logic at both fork
time and runtime even if it doesn't have universal benefit."
- Improve core scheduling by fixing a bug in
sched_core_update_cookie() that caused unnecessary forced idling.
- Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs
for newly woken tasks.
- Fix a newidle balancing bug that introduced unnecessary wakeup
latencies.
ABI improvements/fixes:
- Do not check capabilities and do not issue capability check denial
messages when a scheduler syscall doesn't require privileges. (Such
as increasing niceness.)
- Add forced-idle accounting to cgroups too.
- Fix/improve the RSEQ ABI to not just silently accept unknown flags.
(No existing tooling is known to have learned to rely on the
previous behavior.)
- Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags.
Optimizations:
- Optimize & simplify leaf_cfs_rq_list()
- Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg().
Misc fixes & cleanups:
- Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems.
- Fix a full-NOHZ bug that can in some cases result in the tick not
being re-enabled when the last SCHED_RT task is gone from a
runqueue but there's still SCHED_OTHER tasks around.
- Various PREEMPT_RT related fixes.
- Misc cleanups & smaller fixes"
* tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
rseq: Kill process when unknown flags are encountered in ABI structures
rseq: Deprecate RSEQ_CS_FLAG_NO_RESTART_ON_* flags
sched/core: Fix the bug that task won't enqueue into core tree when update cookie
nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt()
sched/core: Always flush pending blk_plug
sched/fair: fix case with reduced capacity CPU
sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling
sched/core: add forced idle accounting for cgroups
sched/fair: Remove the energy margin in feec()
sched/fair: Remove task_util from effective utilization in feec()
sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu()
sched/fair: Rename select_idle_mask to select_rq_mask
sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util()
sched/fair: Decay task PELT values during wakeup migration
sched/fair: Provide u64 read for 32-bits arch helper
sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg
sched: only perform capability check on privileged operation
sched: Remove unused function group_first_cpu()
sched/fair: Remove redundant word " *"
selftests/rseq: check if libc rseq support is registered
...
In preparation for splitting io_uring up a bit, move it into its own
top level directory. It didn't really belong in fs/ anyway, as it's
not a file system only API.
This adds io_uring/ and moves the core files in there, and updates the
MAINTAINERS file for the new location.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
With CONFIG_PREEMPT_RT, it is possible to hit a deadlock between two
normal priority tasks (SCHED_OTHER, nice level zero):
INFO: task kworker/u8:0:8 blocked for more than 491 seconds.
Not tainted 5.15.49-rt46 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u8:0 state:D stack: 0 pid: 8 ppid: 2 flags:0x00000000
Workqueue: writeback wb_workfn (flush-7:0)
[<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134)
[<c08a3d84>] (schedule) from [<c08a65a0>] (rt_mutex_slowlock_block.constprop.0+0xb8/0x174)
[<c08a65a0>] (rt_mutex_slowlock_block.constprop.0) from [<c08a6708>]
+(rt_mutex_slowlock.constprop.0+0xac/0x174)
[<c08a6708>] (rt_mutex_slowlock.constprop.0) from [<c0374d60>] (fat_write_inode+0x34/0x54)
[<c0374d60>] (fat_write_inode) from [<c0297304>] (__writeback_single_inode+0x354/0x3ec)
[<c0297304>] (__writeback_single_inode) from [<c0297998>] (writeback_sb_inodes+0x250/0x45c)
[<c0297998>] (writeback_sb_inodes) from [<c0297c20>] (__writeback_inodes_wb+0x7c/0xb8)
[<c0297c20>] (__writeback_inodes_wb) from [<c0297f24>] (wb_writeback+0x2c8/0x2e4)
[<c0297f24>] (wb_writeback) from [<c0298c40>] (wb_workfn+0x1a4/0x3e4)
[<c0298c40>] (wb_workfn) from [<c0138ab8>] (process_one_work+0x1fc/0x32c)
[<c0138ab8>] (process_one_work) from [<c0139120>] (worker_thread+0x22c/0x2d8)
[<c0139120>] (worker_thread) from [<c013e6e0>] (kthread+0x16c/0x178)
[<c013e6e0>] (kthread) from [<c01000fc>] (ret_from_fork+0x14/0x38)
Exception stack(0xc10e3fb0 to 0xc10e3ff8)
3fa0: 00000000 00000000 00000000 00000000
3fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
3fe0: 00000000 00000000 00000000 00000000 00000013 00000000
INFO: task tar:2083 blocked for more than 491 seconds.
Not tainted 5.15.49-rt46 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:tar state:D stack: 0 pid: 2083 ppid: 2082 flags:0x00000000
[<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134)
[<c08a3d84>] (schedule) from [<c08a41b0>] (io_schedule+0x14/0x24)
[<c08a41b0>] (io_schedule) from [<c08a455c>] (bit_wait_io+0xc/0x30)
[<c08a455c>] (bit_wait_io) from [<c08a441c>] (__wait_on_bit_lock+0x54/0xa8)
[<c08a441c>] (__wait_on_bit_lock) from [<c08a44f4>] (out_of_line_wait_on_bit_lock+0x84/0xb0)
[<c08a44f4>] (out_of_line_wait_on_bit_lock) from [<c0371fb0>] (fat_mirror_bhs+0xa0/0x144)
[<c0371fb0>] (fat_mirror_bhs) from [<c0372a68>] (fat_alloc_clusters+0x138/0x2a4)
[<c0372a68>] (fat_alloc_clusters) from [<c0370b14>] (fat_alloc_new_dir+0x34/0x250)
[<c0370b14>] (fat_alloc_new_dir) from [<c03787c0>] (vfat_mkdir+0x58/0x148)
[<c03787c0>] (vfat_mkdir) from [<c0277b60>] (vfs_mkdir+0x68/0x98)
[<c0277b60>] (vfs_mkdir) from [<c027b484>] (do_mkdirat+0xb0/0xec)
[<c027b484>] (do_mkdirat) from [<c0100060>] (ret_fast_syscall+0x0/0x1c)
Exception stack(0xc2e1bfa8 to 0xc2e1bff0)
bfa0: 01ee42f0 01ee4208 01ee42f0 000041ed 00000000 00004000
bfc0: 01ee42f0 01ee4208 00000000 00000027 01ee4302 00000004 000dcb00 01ee4190
bfe0: 000dc368 bed11924 0006d4b0 b6ebddfc
Here the kworker is waiting on msdos_sb_info::s_lock which is held by
tar which is in turn waiting for a buffer which is locked waiting to be
flushed, but this operation is plugged in the kworker.
The lock is a normal struct mutex, so tsk_is_pi_blocked() will always
return false on !RT and thus the behaviour changes for RT.
It seems that the intent here is to skip blk_flush_plug() in the case
where a non-preemptible lock (such as a spinlock) has been converted to
a rtmutex on RT, which is the case covered by the SM_RTLOCK_WAIT
schedule flag. But sched_submit_work() is only called from schedule()
which is never called in this scenario, so the check can simply be
deleted.
Looking at the history of the -rt patchset, in fact this change was
present from v5.9.1-rt20 until being dropped in v5.13-rt1 as it was part
of a larger patch [1] most of which was replaced by commit b4bfa3fcfe
("sched/core: Rework the __schedule() preempt argument").
As described in [1]:
The schedule process must distinguish between blocking on a regular
sleeping lock (rwsem and mutex) and a RT-only sleeping lock (spinlock
and rwlock):
- rwsem and mutex must flush block requests (blk_schedule_flush_plug())
even if blocked on a lock. This can not deadlock because this also
happens for non-RT.
There should be a warning if the scheduling point is within a RCU read
section.
- spinlock and rwlock must not flush block requests. This will deadlock
if the callback attempts to acquire a lock which is already acquired.
Similarly to being preempted, there should be no warning if the
scheduling point is within a RCU read section.
and with the tsk_is_pi_blocked() in the scheduler path, we hit the first
issue.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git/tree/patches/0022-locking-rtmutex-Use-custom-scheduling-function-for-s.patch?h=linux-5.10.y-rt-patches
Signed-off-by: John Keeping <john@metanate.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20220708162702.1758865-1-john@metanate.com
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) != old in
set_nr_{and_not,if}_polling. x86 cmpxchg returns success in ZF flag,
so this change saves a compare after cmpxchg.
The definition of cmpxchg based fetch_or was changed in the
same way as atomic_fetch_##op definitions were changed
in e6790e4b5d.
Also declare these two functions as inline to ensure inlining. In the
case of set_nr_and_not_polling, the compiler (gcc) tries to outsmart
itself by constructing the boolean return value with logic operations
on the fetched value, and these extra operations enlarge the function
over the inlining threshold value.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220629151552.6015-1-ubizjak@gmail.com
Context tracking is going to be used not only to track user transitions
but also idle/IRQs/NMIs. The user tracking part will then become a
separate feature. Prepare Kconfig for that.
[ frederic: Apply Max Filippov feedback. ]
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
On 21/06/2022 11:04, Vincent Donnefort wrote:
> From: Dietmar Eggemann <dietmar.eggemann@arm.com>
https://lkml.kernel.org/r/202206221253.ZVyGQvPX-lkp@intel.com discovered
that this patch doesn't build anymore (on tip sched/core or linux-next)
because of commit f5b2eeb499 ("sched/fair: Consider CPU affinity when
allowing NUMA imbalance in find_idlest_group()").
New version of [PATCH v11 4/7] sched/fair: Rename select_idle_mask to
select_rq_mask below.
-- >8 --
Decouple the name of the per-cpu cpumask select_idle_mask from its usage
in select_idle_[cpu/capacity]() of the CFS run-queue selection
(select_task_rq_fair()).
This is to support the reuse of this cpumask in the Energy Aware
Scheduling (EAS) path (find_energy_efficient_cpu()) of the CFS run-queue
selection.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/250691c7-0e2b-05ab-bedf-b245c11d9400@arm.com
effective_cpu_util() already has a `int cpu' parameter which allows to
retrieve the CPU capacity scale factor (or maximum CPU capacity) inside
this function via an arch_scale_cpu_capacity(cpu).
A lot of code calling effective_cpu_util() (or the shim
sched_cpu_util()) needs the maximum CPU capacity, i.e. it will call
arch_scale_cpu_capacity() already.
But not having to pass it into effective_cpu_util() will make the EAS
wake-up code easier, especially when the maximum CPU capacity reduced
by the thermal pressure is passed through the EAS wake-up functions.
Due to the asymmetric CPU capacity support of arm/arm64 architectures,
arch_scale_cpu_capacity(int cpu) is a per-CPU variable read access via
per_cpu(cpu_scale, cpu) on such a system.
On all other architectures it is a a compile-time constant
(SCHED_CAPACITY_SCALE).
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20220621090414.433602-4-vdonnefort@google.com
sched_setattr(2) issues via kernel/sched/core.c:__sched_setscheduler()
a CAP_SYS_NICE audit event unconditionally, even when the requested
operation does not require that capability / is unprivileged, i.e. for
reducing niceness.
This is relevant in connection with SELinux, where a capability check
results in a policy decision and by default a denial message on
insufficient permission is issued.
It can lead to three undesired cases:
1. A denial message is generated, even in case the operation was an
unprivileged one and thus the syscall succeeded, creating noise.
2. To avoid the noise from 1. the policy writer adds a rule to ignore
those denial messages, hiding future syscalls, where the task
performs an actual privileged operation, leading to hidden limited
functionality of that task.
3. To avoid the noise from 1. the policy writer adds a rule to allow
the task the capability CAP_SYS_NICE, while it does not need it,
violating the principle of least privilege.
Conduct privilged/unprivileged categorization first and perform a
capable test (and at most once) only if needed.
Signed-off-by: Christian Göttsche <cgzones@googlemail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220615152505.310488-1-cgzones@googlemail.com
Currently, the RCU Tasks Trace grace-period kthread IPIs each online CPU
using smp_call_function_single() in order to track any tasks currently in
RCU Tasks Trace read-side critical sections during which the corresponding
task has neither blocked nor been preempted. These IPIs are annoying
and are also not strictly necessary because any task that blocks or is
preempted within its current RCU Tasks Trace read-side critical section
will be tracked on one of the per-CPU rcu_tasks_percpu structure's
->rtp_blkd_tasks list. So the only time that this is a problem is if
one of the CPUs runs through a long-duration RCU Tasks Trace read-side
critical section without a context switch.
Note that the task_call_func() function cannot help here because there is
no safe way to identify the target task. Of course, the task_call_func()
function will be very useful later, when processing the list of tasks,
but it needs to know the task.
This commit therefore creates a cpu_curr_snapshot() function that returns
a pointer the task_struct structure of some task that happened to be
running on the specified CPU more or less during the time that the
cpu_curr_snapshot() function was executing. If there was no context
switch during this time, this function will return a pointer to the
task_struct structure of the task that was running throughout. If there
was a context switch, then the outgoing task will be taken care of by
RCU's context-switch hook, and the incoming task was either already taken
care during some previous context switch, or it is not currently within an
RCU Tasks Trace read-side critical section. And in this latter case, the
grace period already started, so there is no need to wait on this task.
This new cpu_curr_snapshot() function is invoked on each CPU early in
the RCU Tasks Trace grace-period processing, and the resulting tasks
are queued for later quiescent-state inspection.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
Wakelist can help avoid cache bouncing and offload the overhead of waker
cpu. So far, using wakelist within the same llc only happens on
WF_ON_CPU, and this limitation could be removed to further improve
wakeup performance.
The commit 518cd62341 ("sched: Only queue remote wakeups when
crossing cache boundaries") disabled queuing tasks on wakelist when
the cpus share llc. This is because, at that time, the scheduler must
send IPIs to do ttwu_queue_wakelist. Nowadays, ttwu_queue_wakelist also
supports TIF_POLLING, so this is not a problem now when the wakee cpu is
in idle polling.
Benefits:
Queuing the task on idle cpu can help improving performance on waker cpu
and utilization on wakee cpu, and further improve locality because
the wakee cpu can handle its own rq. This patch helps improving rt on
our real java workloads where wakeup happens frequently.
Consider the normal condition (CPU0 and CPU1 share same llc)
Before this patch:
CPU0 CPU1
select_task_rq() idle
rq_lock(CPU1->rq)
enqueue_task(CPU1->rq)
notify CPU1 (by sending IPI or CPU1 polling)
resched()
After this patch:
CPU0 CPU1
select_task_rq() idle
add to wakelist of CPU1
notify CPU1 (by sending IPI or CPU1 polling)
rq_lock(CPU1->rq)
enqueue_task(CPU1->rq)
resched()
We see CPU0 can finish its work earlier. It only needs to put task to
wakelist and return.
While CPU1 is idle, so let itself handle its own runqueue data.
This patch brings no difference about IPI.
This patch only takes effect when the wakee cpu is:
1) idle polling
2) idle not polling
For 1), there will be no IPI with or without this patch.
For 2), there will always be an IPI before or after this patch.
Before this patch: waker cpu will enqueue task and check preempt. Since
"idle" will be sure to be preempted, waker cpu must send a resched IPI.
After this patch: waker cpu will put the task to the wakelist of wakee
cpu, and send an IPI.
Benchmark:
We've tested schbench, unixbench, and hachbench on both x86 and arm64.
On x86 (Intel Xeon Platinum 8269CY):
schbench -m 2 -t 8
Latency percentiles (usec) before after
50.0000th: 8 6
75.0000th: 10 7
90.0000th: 11 8
95.0000th: 12 8
*99.0000th: 13 10
99.5000th: 15 11
99.9000th: 18 14
Unixbench with full threads (104)
before after
Dhrystone 2 using register variables 3011862938 3009935994 -0.06%
Double-Precision Whetstone 617119.3 617298.5 0.03%
Execl Throughput 27667.3 27627.3 -0.14%
File Copy 1024 bufsize 2000 maxblocks 785871.4 784906.2 -0.12%
File Copy 256 bufsize 500 maxblocks 210113.6 212635.4 1.20%
File Copy 4096 bufsize 8000 maxblocks 2328862.2 2320529.1 -0.36%
Pipe Throughput 145535622.8 145323033.2 -0.15%
Pipe-based Context Switching 3221686.4 3583975.4 11.25%
Process Creation 101347.1 103345.4 1.97%
Shell Scripts (1 concurrent) 120193.5 123977.8 3.15%
Shell Scripts (8 concurrent) 17233.4 17138.4 -0.55%
System Call Overhead 5300604.8 5312213.6 0.22%
hackbench -g 1 -l 100000
before after
Time 3.246 2.251
On arm64 (Ampere Altra):
schbench -m 2 -t 8
Latency percentiles (usec) before after
50.0000th: 14 10
75.0000th: 19 14
90.0000th: 22 16
95.0000th: 23 16
*99.0000th: 24 17
99.5000th: 24 17
99.9000th: 28 25
Unixbench with full threads (80)
before after
Dhrystone 2 using register variables 3536194249 3537019613 0.02%
Double-Precision Whetstone 629383.6 629431.6 0.01%
Execl Throughput 65920.5 65846.2 -0.11%
File Copy 1024 bufsize 2000 maxblocks 1063722.8 1064026.8 0.03%
File Copy 256 bufsize 500 maxblocks 322684.5 318724.5 -1.23%
File Copy 4096 bufsize 8000 maxblocks 2348285.3 2328804.8 -0.83%
Pipe Throughput 133542875.3 131619389.8 -1.44%
Pipe-based Context Switching 3215356.1 3576945.1 11.25%
Process Creation 108520.5 120184.6 10.75%
Shell Scripts (1 concurrent) 122636.3 121888 -0.61%
Shell Scripts (8 concurrent) 17462.1 17381.4 -0.46%
System Call Overhead 4429998.9 4435006.7 0.11%
hackbench -g 1 -l 100000
before after
Time 4.217 2.916
Our patch has improvement on schbench, hackbench
and Pipe-based Context Switching of unixbench
when there exists idle cpus,
and no obvious regression on other tests of unixbench.
This can help improve rt in scenes where wakeup happens frequently.
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-3-dtcccc@linux.alibaba.com
The commit 2ebb177175 ("sched/core: Offload wakee task activation if it
the wakee is descheduling") checked rq->nr_running <= 1 to avoid task
stacking when WF_ON_CPU.
Per the ordering of writes to p->on_rq and p->on_cpu, observing p->on_cpu
(WF_ON_CPU) in ttwu_queue_cond() implies !p->on_rq, IOW p has gone through
the deactivate_task() in __schedule(), thus p has been accounted out of
rq->nr_running. As such, the task being the only runnable task on the rq
implies reading rq->nr_running == 0 at that point.
The benchmark result is in [1].
[1] https://lore.kernel.org/all/e34de686-4e85-bde1-9f3c-9bbc86b38627@linux.alibaba.com/
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-2-dtcccc@linux.alibaba.com
The purpose of balance_push() is to act as a filter on task selection
in the case of CPU hotplug, specifically when taking the CPU out.
It does this by (ab)using the balance callback infrastructure, with
the express purpose of keeping all the unlikely/odd cases in a single
place.
In order to serve its purpose, the balance_push_callback needs to be
(exclusively) on the callback list at all times (noting that the
callback always places itself back on the list the moment it runs,
also noting that when the CPU goes down, regular balancing concerns
are moot, so ignoring them is fine).
And here-in lies the problem, __sched_setscheduler()'s use of
splice_balance_callbacks() takes the callbacks off the list across a
lock-break, making it possible for, an interleaving, __schedule() to
see an empty list and not get filtered.
Fixes: ae79270232 ("sched: Optimize finish_lock_switch()")
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Link: https://lkml.kernel.org/r/20220519134706.GH2578@worktop.programming.kicks-ass.net
of Peter Zijlstra was encountering with ptrace in his freezer rewrite
I identified some cleanups to ptrace_stop that make sense on their own
and move make resolving the other problems much simpler.
The biggest issue is the habbit of the ptrace code to change task->__state
from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No
other code in the kernel does that and it is straight forward to update
signal_wake_up and friends to make that unnecessary.
Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
on the fact that all stopped states except the special stop states can
tolerate spurious wake up and recover their state.
The state of stopped and traced tasked is changed to be stored in
task->jobctl as well as in task->__state. This makes it possible for
the freezer to recover tasks in these special states, as well as
serving as a general cleanup. With a little more work in that
direction I believe TASK_STOPPED can learn to tolerate spurious wake
ups and become an ordinary stop state.
The TASK_TRACED state has to remain a special state as the registers for
a process are only reliably available when the process is stopped in
the scheduler. Fundamentally ptrace needs acess to the saved
register values of a task.
There are bunch of semi-random ptrace related cleanups that were found
while looking at these issues.
One cleanup that deserves to be called out is from commit 57b6de08b5
("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
makes a change that is technically user space visible, in the handling
of what happens to a tracee when a tracer dies unexpectedly.
According to our testing and our understanding of userspace nothing
cares that spurious SIGTRAPs can be generated in that case.
The entire discussion can be found at:
https://lkml.kernel.org/r/87a6bv6dl6.fsf_-_@email.froward.int.ebiederm.org
Eric W. Biederman (11):
signal: Rename send_signal send_signal_locked
signal: Replace __group_send_sig_info with send_signal_locked
ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
ptrace: Remove arch_ptrace_attach
signal: Use lockdep_assert_held instead of assert_spin_locked
ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
ptrace: Document that wait_task_inactive can't fail
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
ptrace: Don't change __state
ptrace: Always take siglock in ptrace_resume
Peter Zijlstra (1):
sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
arch/ia64/include/asm/ptrace.h | 4 --
arch/ia64/kernel/ptrace.c | 57 ----------------
arch/um/include/asm/thread_info.h | 2 +
arch/um/kernel/exec.c | 2 +-
arch/um/kernel/process.c | 2 +-
arch/um/kernel/ptrace.c | 8 +--
arch/um/kernel/signal.c | 4 +-
arch/x86/kernel/step.c | 3 +-
arch/xtensa/kernel/ptrace.c | 4 +-
arch/xtensa/kernel/signal.c | 4 +-
drivers/tty/tty_jobctrl.c | 4 +-
include/linux/ptrace.h | 7 --
include/linux/sched.h | 10 ++-
include/linux/sched/jobctl.h | 8 +++
include/linux/sched/signal.h | 20 ++++--
include/linux/signal.h | 3 +-
kernel/ptrace.c | 87 ++++++++---------------
kernel/sched/core.c | 5 +-
kernel/signal.c | 140 +++++++++++++++++---------------------
kernel/time/posix-cpu-timers.c | 6 +-
20 files changed, 140 insertions(+), 240 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaXaYACgkQC/v6Eiaj
j0CgoA/+JncSQ6PY2D5Jh1apvHzmnRsFXzr3DRvtv/CVx4oIebOXRQFyVDeD5tRn
TmMgB29HpBlHRDLojlmlZRGAld1HR/aPEW9j8W1D3Sy/ZFO5L8lQitv9aDHO9Ntw
4lZvlhS1M0KhATudVVBqSPixiG6CnV5SsGmixqdOyg7xcXSY6G1l2nB7Zk9I3Tat
ZlmhuZ6R5Z5qsm4MEq0vUSrnsHiGxYrpk6uQOaVz8Wkv8ZFmbutt6XgxF0tsyZNn
mHSmWSiZzIgBjTlaibEmxi8urYJTPj3vGBeJQVYHblFwLFi6+Oy7bDxQbWjQvaZh
DsgWPScfBF4Jm0+8hhCiSYpvPp8XnZuklb4LNCeok/VFr+KfSmpJTIhn00kagQ1u
vxQDqLws8YLW4qsfGydfx9uUIFCbQE/V2VDYk5J3Re3gkUNDOOR1A56hPniKv6VB
2aqGO2Fl0RdBbUa3JF+XI5Pwq5y1WrqR93EUvj+5+u5W9rZL/8WLBHBMEz6gbmfD
DhwFE0y8TG2WRlWJVEDRId+5zo3di/YvasH0vJZ5HbrxhS2RE/yIGAd+kKGx/lZO
qWDJC7IHvFJ7Mw5KugacyF0SHeNdloyBM7KZW6HeXmgKn9IMJBpmwib92uUkRZJx
D8j/bHHqD/zsgQ39nO+c4M0MmhO/DsPLG/dnGKrRCu7v1tmEnkY=
=ZUuO
-----END PGP SIGNATURE-----
Merge tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ptrace_stop cleanups from Eric Biederman:
"While looking at the ptrace problems with PREEMPT_RT and the problems
Peter Zijlstra was encountering with ptrace in his freezer rewrite I
identified some cleanups to ptrace_stop that make sense on their own
and move make resolving the other problems much simpler.
The biggest issue is the habit of the ptrace code to change
task->__state from the tracer to suppress TASK_WAKEKILL from waking up
the tracee. No other code in the kernel does that and it is straight
forward to update signal_wake_up and friends to make that unnecessary.
Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
on the fact that all stopped states except the special stop states can
tolerate spurious wake up and recover their state.
The state of stopped and traced tasked is changed to be stored in
task->jobctl as well as in task->__state. This makes it possible for
the freezer to recover tasks in these special states, as well as
serving as a general cleanup. With a little more work in that
direction I believe TASK_STOPPED can learn to tolerate spurious wake
ups and become an ordinary stop state.
The TASK_TRACED state has to remain a special state as the registers
for a process are only reliably available when the process is stopped
in the scheduler. Fundamentally ptrace needs acess to the saved
register values of a task.
There are bunch of semi-random ptrace related cleanups that were found
while looking at these issues.
One cleanup that deserves to be called out is from commit 57b6de08b5
("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
makes a change that is technically user space visible, in the handling
of what happens to a tracee when a tracer dies unexpectedly. According
to our testing and our understanding of userspace nothing cares that
spurious SIGTRAPs can be generated in that case"
* tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
ptrace: Always take siglock in ptrace_resume
ptrace: Don't change __state
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
ptrace: Document that wait_task_inactive can't fail
ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
signal: Use lockdep_assert_held instead of assert_spin_locked
ptrace: Remove arch_ptrace_attach
ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
signal: Replace __group_send_sig_info with send_signal_locked
signal: Rename send_signal send_signal_locked
For two kernel releases now kernel/sysctl.c has been being cleaned up
slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and
all this caused merge conflicts with one susbystem or another.
This tree was put together to help try to avoid conflicts with these cleanups
going on different trees at time. So nothing exciting on this pull request,
just cleanups.
I actually had this sysctl-next tree up since v5.18 but I missed sending a
pull request for it on time during the last merge window. And so these changes
have been being soaking up on sysctl-next and so linux-next for a while.
The last change was merged May 4th.
Most of the compile issues were reported by 0day and fixed.
To help avoid a conflict with bpf folks at Daniel Borkmann's request
I merged bpf-next/pr/bpf-sysctl into sysctl-next to get the effor which
moves the BPF sysctls from kernel/sysctl.c to BPF core.
Possible merge conflicts and known resolutions as per linux-next:
bfp:
https://lkml.kernel.org/r/20220414112812.652190b5@canb.auug.org.au
rcu:
https://lkml.kernel.org/r/20220420153746.4790d532@canb.auug.org.au
powerpc:
https://lkml.kernel.org/r/20220520154055.7f964b76@canb.auug.org.au
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmKOq8ASHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinDAkQAJVo5YVM9f74UwYp4PQhTpjxJBCjRoZD
z1u9bp5rMj2ujTC8Fr7VmzKaHrb8+r1C1WvCvZtIzemYNB4lZUrHpVDYfXuXiPRB
ihPmEjhlPO5PFBx6cVCpI3cu9bEhG00rLc1QXnABx/pXwNPcOTJAGZJVamZvqubk
chjgZrb7N+adHPfvS55v1+zpwdeKfpp5U3zuu5qlT/nn0GS0HCVzOj5fj4oC4wtJ
IqfUubo+FX50Ga58yQABWNrjaPD9Crykz5ohVazy3ElQl0hJ4VsK65ct3blqc2vz
1Bb8kPpWuv6aZ5nr1lCVE8qvF4ZIL33ySvpg5BSdWLQEDrBbSpzvJe9Yn7wgR+eq
y7fhpO24+zRM82EoDMEvyxX9u1n1RsvoXRtf3ds9BGf63MUxk8a1cgjlU6vuyO2U
JhDmfM1xzdKvPoY4COOnHzcAiIqzItTqKd09N5y0cahmYstROU8lvp9huhTAHqk1
SjQMbLIZG7OnX8ZeQcR1EB8sq/IOPZT48ejj0iJmQ8FyMaep71MOQLYyLPAq4lgh
JHXm8P6QdB57jfJbqAeNSyZoK0qdxOUR/83Zcah7Jjns6vkju1DNatEsaEEI2y2M
4n7/rkHeZ3TyFHBUX4e9FomKvGLsAalDBRiqsuxLSOPMU8rGrNLAslOAtKwvp90X
4ht3M2VP098l
=btwh
-----END PGP SIGNATURE-----
Merge tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"For two kernel releases now kernel/sysctl.c has been being cleaned up
slowly, since the tables were grossly long, sprinkled with tons of
#ifdefs and all this caused merge conflicts with one susbystem or
another.
This tree was put together to help try to avoid conflicts with these
cleanups going on different trees at time. So nothing exciting on this
pull request, just cleanups.
Thanks a lot to the Uniontech and Huawei folks for doing some of this
nasty work"
* tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (28 commits)
sched: Fix build warning without CONFIG_SYSCTL
reboot: Fix build warning without CONFIG_SYSCTL
kernel/kexec_core: move kexec_core sysctls into its own file
sysctl: minor cleanup in new_dir()
ftrace: fix building with SYSCTL=y but DYNAMIC_FTRACE=n
fs/proc: Introduce list_for_each_table_entry for proc sysctl
mm: fix unused variable kernel warning when SYSCTL=n
latencytop: move sysctl to its own file
ftrace: fix building with SYSCTL=n but DYNAMIC_FTRACE=y
ftrace: Fix build warning
ftrace: move sysctl_ftrace_enabled to ftrace.c
kernel/do_mount_initrd: move real_root_dev sysctls to its own file
kernel/delayacct: move delayacct sysctls to its own file
kernel/acct: move acct sysctls to its own file
kernel/panic: move panic sysctls to its own file
kernel/lockdep: move lockdep sysctls to its own file
mm: move page-writeback sysctls to their own file
mm: move oom_kill sysctls to their own file
kernel/reboot: move reboot sysctls to its own file
sched: Move energy_aware sysctls to topology.c
...
This pull request contains the following branches:
docs.2022.04.20a: Documentation updates.
fixes.2022.04.20a: Miscellaneous fixes.
nocb.2022.04.11b: Callback-offloading updates, mainly simplifications.
rcu-tasks.2022.04.11b: RCU-tasks updates, including some -rt fixups,
handling of systems with sparse CPU numbering, and a fix for a
boot-time race-condition failure.
srcu.2022.05.03a: Put SRCU on a memory diet in order to reduce the size
of the srcu_struct structure.
torture.2022.04.11b: Torture-test updates fixing some bugs in tests and
closing some testing holes.
torture-tasks.2022.04.20a: Torture-test updates for the RCU tasks flavors,
most notably ensuring that building rcutorture and friends does
not change the RCU-tasks-related Kconfig options.
torturescript.2022.04.20a: Torture-test scripting updates.
exp.2022.05.11a: Expedited grace-period updates, most notably providing
milliseconds-scale (not all that) soft real-time response from
synchronize_rcu_expedited(). This is also the first time in
almost 30 years of RCU that someone other than me has pushed
for a reduction in the RCU CPU stall-warning timeout, in this
case by more than three orders of magnitude from 21 seconds to
20 milliseconds. This tighter timeout applies only to expedited
grace periods.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmKG2zcTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jGXgD/90xtRtZyN0umlN/IOBBn8fIOM+BAMu
5k3ef6wLsXKXlLO13WTjSitypX9LEFwytTeVhEyN4ODeX0cI9mUmts6Z8/6sV92D
fN8vqTavveE7m5YfFfLRvDRfVHpB0LpLMM+V0qWPu/F8dWPDKA0225rX9IC7iICP
LkxCuNVNzJ0cLaVTvsUWlxMdHcogydXZb1gPDVRhnR6iVFWCBtL4RRpU41CoSNh4
fWRSLQak6OhZRFE7hVoLQhZyLE0GIw1fuUJgj2fCllhgGogDx78FQ8jHdDzMEhVk
cD4Yel5vUPiy2AKphGfi28bKFYcyhVBnD/Jq733VJV0/szyddxNbz0xKpEA0/8qh
w1T7IjBN6MAKHSh0uUitm6U24VN13m4r30HrUQSpp71VFZkUD4QS6TismKsaRNjR
lK4q2QKBprBb3Hv7KPAGYT1Us3aS7qLPrgPf3gzSxL1aY5QV0A5UpPP6RKTLbWPl
CEQxEno6g5LTHwKd5QD74dG8ccphg9377lDMJpeesYShBqlLNrNWCxqJoZk2HnSf
f2dTQeQWrtRJjeTGy/4cfONCGZTghE0Pch43XMzLLt3ZTuDc8FVM0t3Xs9J5Kg22
zmThQh6LRXTGjrb1vLiOrjPf5JaTnX2Sz8OUJTo/ZxwcixxP/mj8Ja+W81NjfqnK
LLZ1D6UN4a8n9A==
=4spH
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU update from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offloading updates, mainly simplifications
- RCU-tasks updates, including some -rt fixups, handling of systems
with sparse CPU numbering, and a fix for a boot-time race-condition
failure
- Put SRCU on a memory diet in order to reduce the size of the
srcu_struct structure
- Torture-test updates fixing some bugs in tests and closing some
testing holes
- Torture-test updates for the RCU tasks flavors, most notably ensuring
that building rcutorture and friends does not change the
RCU-tasks-related Kconfig options
- Torture-test scripting updates
- Expedited grace-period updates, most notably providing
milliseconds-scale (not all that) soft real-time response from
synchronize_rcu_expedited().
This is also the first time in almost 30 years of RCU that someone
other than me has pushed for a reduction in the RCU CPU stall-warning
timeout, in this case by more than three orders of magnitude from 21
seconds to 20 milliseconds. This tighter timeout applies only to
expedited grace periods
* tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (80 commits)
rcu: Move expedited grace period (GP) work to RT kthread_worker
rcu: Introduce CONFIG_RCU_EXP_CPU_STALL_TIMEOUT
srcu: Drop needless initialization of sdp in srcu_gp_start()
srcu: Prevent expedited GPs and blocking readers from consuming CPU
srcu: Add contention check to call_srcu() srcu_data ->lock acquisition
srcu: Automatically determine size-transition strategy at boot
rcutorture: Make torture.sh allow for --kasan
rcutorture: Make torture.sh refscale and rcuscale specify Tasks Trace RCU
rcutorture: Make kvm.sh allow more memory for --kasan runs
torture: Save "make allmodconfig" .config file
scftorture: Remove extraneous "scf" from per_version_boot_params
rcutorture: Adjust scenarios' Kconfig options for CONFIG_PREEMPT_DYNAMIC
torture: Enable CSD-lock stall reports for scftorture
torture: Skip vmlinux check for kvm-again.sh runs
scftorture: Adjust for TASKS_RCU Kconfig option being selected
rcuscale: Allow rcuscale without RCU Tasks Rude/Trace
rcuscale: Allow rcuscale without RCU Tasks
refscale: Allow refscale without RCU Tasks Rude/Trace
refscale: Allow refscale without RCU Tasks
rcutorture: Allow specifying per-scenario stat_interval
...
Because GCC-12 is fully stupid about array bounds and it's just really
hard to get a solid array definition from a linker script, flip the
array order to avoid needing negative offsets :-/
This makes the whole relational pointer magic a little less obvious, but
alas.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/YoOLLmLG7HRTXeEm@hirez.programming.kicks-ass.net
Commit fa2c3254d7 (sched/tracing: Don't re-read p->state when emitting
sched_switch event, 2022-01-20) added a new prev_state argument to the
sched_switch tracepoint, before the prev task_struct pointer.
This reordering of arguments broke BPF programs that use the raw
tracepoint (e.g. tp_btf programs). The type of the second argument has
changed and existing programs that assume a task_struct* argument
(e.g. for bpf_task_storage access) will now fail to verify.
If we instead append the new argument to the end, all existing programs
would continue to work and can conditionally extract the prev_state
argument on supported kernel versions.
Fixes: fa2c3254d7 (sched/tracing: Don't re-read p->state when emitting sched_switch event, 2022-01-20)
Signed-off-by: Delyan Kratunov <delyank@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/c8a6930dfdd58a4a5755fc01732675472979732b.camel@fb.com
Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace
command is executing.
Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and
implement a new jobctl flag TASK_PTRACE_FROZEN. This new flag is set
in jobctl_freeze_task and cleared when ptrace_stop is awoken or in
jobctl_unfreeze_task (when ptrace_stop remains asleep).
In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL
when the wake up is for a fatal signal. Skip adding __TASK_TRACED
when TASK_PTRACE_FROZEN is not set. This has the same effect as
changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use
TASK_KILLABLE go through signal_wake_up.
Handle a ptrace_stop being called with a pending fatal signal.
Previously it would have been handled by schedule simply failing to
sleep. As TASK_WAKEKILL is no longer part of TASK_TRACED schedule
will sleep with a fatal_signal_pending. The code in signal_wake_up
guarantees that the code will be awaked by any fatal signal that
codes after TASK_TRACED is set.
Previously the __state value of __TASK_TRACED was changed to
TASK_RUNNING when woken up or back to TASK_TRACED when the code was
left in ptrace_stop. Now when woken up ptrace_stop now clears
JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced
clears JOBCTL_PTRACE_FROZEN.
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
When we use raw_spin_rq_lock() to acquire the rq lock and have to
update the rq clock while holding the lock, the kernel may issue
a WARN_DOUBLE_CLOCK warning.
Since we directly use raw_spin_rq_lock() to acquire rq lock instead of
rq_lock(), there is no corresponding change to rq->clock_update_flags.
In particular, we have obtained the rq lock of other CPUs, the
rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and
then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning.
So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid
the WARN_DOUBLE_CLOCK warning.
For the sched_rt_period_timer() and migrate_task_rq_dl() cases
we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with
rq_lock()/rq_unlock().
For the {pull,push}_{rt,dl}_task() cases, we add the
double_rq_clock_clear_update() function to clear RQCF_UPDATED of
rq->clock_update_flags, and call double_rq_clock_clear_update()
before double_lock_balance()/double_rq_lock() returns to avoid the
WARN_DOUBLE_CLOCK warning.
Some call trace reports:
Call Trace 1:
<IRQ>
sched_rt_period_timer+0x10f/0x3a0
? enqueue_top_rt_rq+0x110/0x110
__hrtimer_run_queues+0x1a9/0x490
hrtimer_interrupt+0x10b/0x240
__sysvec_apic_timer_interrupt+0x8a/0x250
sysvec_apic_timer_interrupt+0x9a/0xd0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20
Call Trace 2:
<TASK>
activate_task+0x8b/0x110
push_rt_task.part.108+0x241/0x2c0
push_rt_tasks+0x15/0x30
finish_task_switch+0xaa/0x2e0
? __switch_to+0x134/0x420
__schedule+0x343/0x8e0
? hrtimer_start_range_ns+0x101/0x340
schedule+0x4e/0xb0
do_nanosleep+0x8e/0x160
hrtimer_nanosleep+0x89/0x120
? hrtimer_init_sleeper+0x90/0x90
__x64_sys_nanosleep+0x96/0xd0
do_syscall_64+0x34/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 3:
<TASK>
deactivate_task+0x93/0xe0
pull_rt_task+0x33e/0x400
balance_rt+0x7e/0x90
__schedule+0x62f/0x8e0
do_task_dead+0x3f/0x50
do_exit+0x7b8/0xbb0
do_group_exit+0x2d/0x90
get_signal+0x9df/0x9e0
? preempt_count_add+0x56/0xa0
? __remove_hrtimer+0x35/0x70
arch_do_signal_or_restart+0x36/0x720
? nanosleep_copyout+0x39/0x50
? do_nanosleep+0x131/0x160
? audit_filter_inodes+0xf5/0x120
exit_to_user_mode_prepare+0x10f/0x1e0
syscall_exit_to_user_mode+0x17/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 4:
update_rq_clock+0x128/0x1a0
migrate_task_rq_dl+0xec/0x310
set_task_cpu+0x84/0x1e4
try_to_wake_up+0x1d8/0x5c0
wake_up_process+0x1c/0x30
hrtimer_wakeup+0x24/0x3c
__hrtimer_run_queues+0x114/0x270
hrtimer_interrupt+0xe8/0x244
arch_timer_handler_phys+0x30/0x50
handle_percpu_devid_irq+0x88/0x140
generic_handle_domain_irq+0x40/0x60
gic_handle_irq+0x48/0xe0
call_on_irq_stack+0x2c/0x60
do_interrupt_handler+0x80/0x84
Steps to reproduce:
1. Enable CONFIG_SCHED_DEBUG when compiling the kernel
2. echo 1 > /sys/kernel/debug/clear_warn_once
echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features
echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features
3. Run some rt/dl tasks that periodically work and sleep, e.g.
Create 2*n rt or dl (90% running) tasks via rt-app (on a system
with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running
on PREEMPT_RT kernel.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com
IF CONFIG_SYSCTL is n, build warn:
kernel/sched/core.c:1782:12: warning: ‘sysctl_sched_uclamp_handler’ defined but not used [-Wunused-function]
static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
^~~~~~~~~~~~~~~~~~~~~~~~~~~
sysctl_sched_uclamp_handler() is used while CONFIG_SYSCTL enabled,
wrap all related code with CONFIG_SYSCTL to fix this.
Fixes: 3267e0156c ("sched: Move uclamp_util sysctls to core.c")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmJu9FYeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAyEH/16xtJSpLmLwrQzG
o+4ToQxSQ+/9UHyu0RTEvHg2THm9/8emtIuYyc/5FgdoWctcSa3AaDcveWmuWmkS
KYcdhfJsaEqjNHS3OPYXN84fmo9Hel7263shu5+IYmP/sN0DfQp6UWTryX1q4B3Q
4Pdutkuq63Uwd8nBZ5LXQBumaBrmkkuMgWEdT4+6FOo1mPzwdIGBxCuz1UsNNl5k
chLWxkQfe2eqgWbYJrgCQfrVdORXVtoU2fGilZUNrHRVGkkldXkkz5clJfapyZD3
odmZCEbrE4GPKgZwCmDERMfD1hzhZDtYKiHfOQ506szH5ykJjPBcOjHed7dA60eB
J3+wdek=
=39Ca
-----END PGP SIGNATURE-----
Merge tag 'v5.18-rc5' into sched/core to pull in fixes & to resolve a conflict
- sched/core is on a pretty old -rc1 base - refresh it to include recent fixes.
- this also allows up to resolve a (trivial) .mailmap conflict
Conflicts:
.mailmap
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is invoked from the stopper thread too, which is definitely not idle.
Rename it to flush_smp_call_function_queue() and fixup the callers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.305001096@linutronix.de
A W=1 build emits more than a dozen missing prototype warnings related to
scheduler and scheduler specific includes.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.249118058@linutronix.de
move uclamp_util sysctls to core.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
move rt_period/runtime sysctls to rt.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
move schedstats sysctls to core.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
CONFIG_PREEMPT{_NONE, _VOLUNTARY} designate either:
o The build-time preemption model when !PREEMPT_DYNAMIC
o The default boot-time preemption model when PREEMPT_DYNAMIC
IOW, using those on PREEMPT_DYNAMIC kernels is meaningless - the actual
model could have been set to something else by the "preempt=foo" cmdline
parameter. Same problem applies to CONFIG_PREEMPTION.
Introduce a set of helpers to determine the actual preemption model used by
the live kernel.
Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20211112185203.280040-3-valentin.schneider@arm.com
try_steal_cookie() looks at task_struct::cpus_mask to decide if the
task could be moved to `this' CPU. It ignores that the task might be in
a migration disabled section while not on the CPU. In this case the task
must not be moved otherwise per-CPU assumption are broken.
Use is_cpu_allowed(), as suggested by Peter Zijlstra, to decide if the a
task can be moved.
Fixes: d2dfa17bc7 ("sched: Trivial forced-newidle balancer")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YjNK9El+3fzGmswf@linutronix.de
Steve reported that ChromeOS encounters the forceidle balancer being
ran from rt_mutex_setprio()'s balance_callback() invocation and
explodes.
Now, the forceidle balancer gets queued every time the idle task gets
selected, set_next_task(), which is strictly too often.
rt_mutex_setprio() also uses set_next_task() in the 'change' pattern:
queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
running = task_current(rq, p); /* rq->curr == p */
if (queued)
dequeue_task(...);
if (running)
put_prev_task(...);
/* change task properties */
if (queued)
enqueue_task(...);
if (running)
set_next_task(...);
However, rt_mutex_setprio() will explicitly not run this pattern on
the idle task (since priority boosting the idle task is quite insane).
Most other 'change' pattern users are pidhash based and would also not
apply to idle.
Also, the change pattern doesn't contain a __balance_callback()
invocation and hence we could have an out-of-band balance-callback,
which *should* trigger the WARN in rq_pin_lock() (which guards against
this exact anti-pattern).
So while none of that explains how this happens, it does indicate that
having it in set_next_task() might not be the most robust option.
Instead, explicitly queue the forceidle balancer from pick_next_task()
when it does indeed result in forceidle selection. Having it here,
ensures it can only be triggered under the __schedule() rq->lock
instance, and hence must be ran from that context.
This also happens to clean up the code a little, so win-win.
Fixes: d2dfa17bc7 ("sched: Trivial forced-newidle balancer")
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: T.J. Alumbaugh <talumbau@chromium.org>
Link: https://lkml.kernel.org/r/20220330160535.GN8939@worktop.programming.kicks-ass.net
With the advent of various new memory types, some machines will have
multiple types of memory, e.g. DRAM and PMEM (persistent memory). The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are usually
different.
In such system, because of the memory accessing pattern changing etc,
some pages in the slow memory may become hot globally. So in this
patch, the NUMA balancing mechanism is enhanced to optimize the page
placement among the different memory types according to hot/cold
dynamically.
In a typical memory tiering system, there are CPUs, fast memory and slow
memory in each physical NUMA node. The CPUs and the fast memory will be
put in one logical node (called fast memory node), while the slow memory
will be put in another (faked) logical node (called slow memory node).
That is, the fast memory is regarded as local while the slow memory is
regarded as remote. So it's possible for the recently accessed pages in
the slow memory node to be promoted to the fast memory node via the
existing NUMA balancing mechanism.
The original NUMA balancing mechanism will stop to migrate pages if the
free memory of the target node becomes below the high watermark. This
is a reasonable policy if there's only one memory type. But this makes
the original NUMA balancing mechanism almost do not work to optimize
page placement among different memory types. Details are as follows.
It's the common cases that the working-set size of the workload is
larger than the size of the fast memory nodes. Otherwise, it's
unnecessary to use the slow memory at all. So, there are almost always
no enough free pages in the fast memory nodes, so that the globally hot
pages in the slow memory node cannot be promoted to the fast memory
node. To solve the issue, we have 2 choices as follows,
a. Ignore the free pages watermark checking when promoting hot pages
from the slow memory node to the fast memory node. This will
create some memory pressure in the fast memory node, thus trigger
the memory reclaiming. So that, the cold pages in the fast memory
node will be demoted to the slow memory node.
b. Define a new watermark called wmark_promo which is higher than
wmark_high, and have kswapd reclaiming pages until free pages reach
such watermark. The scenario is as follows: when we want to promote
hot-pages from a slow memory to a fast memory, but fast memory's free
pages would go lower than high watermark with such promotion, we wake
up kswapd with wmark_promo watermark in order to demote cold pages and
free us up some space. So, next time we want to promote hot-pages we
might have a chance of doing so.
The choice "a" may create high memory pressure in the fast memory node.
If the memory pressure of the workload is high, the memory pressure
may become so high that the memory allocation latency of the workload
is influenced, e.g. the direct reclaiming may be triggered.
The choice "b" works much better at this aspect. If the memory
pressure of the workload is high, the hot pages promotion will stop
earlier because its allocation watermark is higher than that of the
normal memory allocation. So in this patch, choice "b" is implemented.
A new zone watermark (WMARK_PROMO) is added. Which is larger than the
high watermark and can be controlled via watermark_scale_factor.
In addition to the original page placement optimization among sockets,
the NUMA balancing mechanism is extended to be used to optimize page
placement according to hot/cold among different memory types. So the
sysctl user space interface (numa_balancing) is extended in a backward
compatible way as follow, so that the users can enable/disable these
functionality individually.
The sysctl is converted from a Boolean value to a bits field. The
definition of the flags is,
- 0: NUMA_BALANCING_DISABLED
- 1: NUMA_BALANCING_NORMAL
- 2: NUMA_BALANCING_MEMORY_TIERING
We have tested the patch with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent
Memory Model. The test results shows that the pmbench score can
improve up to 95.9%.
Thanks Andrew Morton to help fix the document format error.
Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler build,
from the fast-headers tree - including placeholder *_api.h headers for
later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI5rg8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hGrw/+M3QOk6fH7G48wjlNnBvcOife6ls+Ni4k
ixOAcF4JKoixO8HieU5vv0A7yf/83tAa6fpeXeMf1hkCGc0NSlmLtuIux+WOmoAL
LzCyDEYfiP8KnVh0A1Tui/lK0+AkGo21O6ADhQE2gh8o2LpslOHQMzvtyekSzeeb
mVxMYQN+QH0m518xdO2D8IQv9ctOYK0eGjmkqdNfntOlytypPZHeNel/tCzwklP/
dElJUjNiSKDlUgTBPtL3DfpoLOI/0mHF2p6NEXvNyULxSOqJTu8pv9Z2ADb2kKo1
0D56iXBDngMi9MHIJLgvzsA8gKzHLFSuPbpODDqkTZCa28vaMB9NYGhJ643NtEie
IXTJEvF1rmNkcLcZlZxo0yjL0fjvPkczjw4Vj27gbrUQeEBfb4mfuI4BRmij63Ep
qEkgQTJhduCqqrQP1rVyhwWZRk1JNcVug+F6N42qWW3fg1xhj0YSrLai2c9nPez6
3Zt98H8YGS1Z/JQomSw48iGXVqfTp/ETI7uU7jqHK8QcjzQ4lFK5H4GZpwuqGBZi
NJJ1l97XMEas+rPHiwMEN7Z1DVhzJLCp8omEj12QU+tGLofxxwAuuOVat3CQWLRk
f80Oya3TLEgd22hGIKDRmHa22vdWnNQyS0S15wJotawBzQf+n3auS9Q3/rh979+t
ES/qvlGxTIs=
=Z8uT
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler
build, from the fast-headers tree - including placeholder *_api.h
headers for later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per
node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
* tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits)
sched/headers: ARM needs asm/paravirt_api_clock.h too
sched/numa: Fix boot crash on arm64 systems
headers/prep: Fix header to build standalone: <linux/psi.h>
sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
cgroup: Fix suspicious rcu_dereference_check() usage warning
sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers
sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
sched/deadline,rt: Remove unused functions for !CONFIG_SMP
sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file
sched/deadline: Remove unused def_dl_bandwidth
sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE
sched/tracing: Don't re-read p->state when emitting sched_switch event
sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
sched/cpuacct: Remove redundant RCU read lock
sched/cpuacct: Optimize away RCU read lock
sched/cpuacct: Fix charge percpu cpuusage
sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies
...
Both functions are doing almost the same, that is checking if admission
control is still respected.
With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.
dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.
Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
Since commit 1724813d9f ("sched/deadline: Remove the sysctl_sched_dl
knobs") the default deadline bandwidth control structure has no purpose.
Remove it.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-2-dietmar.eggemann@arm.com
As of commit
c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
the following sequence becomes possible:
p->__state = TASK_INTERRUPTIBLE;
__schedule()
deactivate_task(p);
ttwu()
READ !p->on_rq
p->__state=TASK_WAKING
trace_sched_switch()
__trace_sched_switch_state()
task_state_index()
return 0;
TASK_WAKING isn't in TASK_REPORT, so the task appears as TASK_RUNNING in
the trace event.
Prevent this by pushing the value read from __schedule() down the trace
event.
Reported-by: Abhijeet Dharmapurikar <adharmap@quicinc.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20220120162520.570782-2-valentin.schneider@arm.com
Use all generic headers from kernel/sched/sched.h that are required
for it to build.
Sort the sections alphabetically.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
kernel/sched/sched.h is a weird mix of ad-hoc headers included
in the middle of the header.
Two of them rely on being included in the middle of kernel/sched/sched.h,
due to definitions they require:
- "stat.h" needs the rq definitions.
- "autogroup.h" needs the task_group definition.
Move the inclusion of these two files out of kernel/sched/sched.h, and
include them in all files that require them.
Move of the rest of the header dependencies to the top of the
kernel/sched/sched.h file.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmISrYgeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGg20IAKDZr7rfSHBopjQV
Cocw744tom0XuxpvSZpp2GGOOXF+tkswcNNaRIrbGOl1mkyxA7eBZCTMpDeDS9aQ
wB0D0Gxx8QBAJp4KgB1W7TB+hIGes/rs8Ve+6iO4ulLLdCVWX/q2boI0aZ7QX9O9
qNi8OsoZQtk6falRvciZFHwV5Av1p2Sy1AW57udQ7DvJ4H98AfKf1u8/z208WWW8
1ixC+qJxQcUcM9vI+7P9Tt7NbFSKv8SvAmqjFY7P+DxQAsVw6KXoqVXykDzeOv0t
fUNOE/t0oFZafwtn8h7KBQnwS9lH03+3KkslVZs+iMFyUj/Bar+NVVyKoDhWXtVg
/PuMhEg=
=eU1o
-----END PGP SIGNATURE-----
Merge tag 'v5.17-rc5' into sched/core, to resolve conflicts
New conflicts in sched/core due to the following upstream fixes:
44585f7bc0 ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n")
a06247c680 ("psi: Fix uaf issue when psi trigger is destroyed while being polled")
Conflicts:
include/linux/psi_types.h
kernel/sched/psi.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Where an architecture selects HAVE_STATIC_CALL but not
HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline
which will either branch to a callee or return to the caller.
On such architectures, a number of constraints can conspire to make
those trampolines more complicated and potentially less useful than we'd
like. For example:
* Hardware and software control flow integrity schemes can require the
addition of "landing pad" instructions (e.g. `BTI` for arm64), which
will also be present at the "real" callee.
* Limited branch ranges can require that trampolines generate or load an
address into a register and perform an indirect branch (or at least
have a slow path that does so). This loses some of the benefits of
having a direct branch.
* Interaction with SW CFI schemes can be complicated and fragile, e.g.
requiring that we can recognise idiomatic codegen and remove
indirections understand, at least until clang proves more helpful
mechanisms for dealing with this.
For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we
really only need to enable/disable specific preemption functions. We can
achieve the same effect without a number of the pain points above by
using static keys to fold early returns into the preemption functions
themselves rather than in an out-of-line trampoline, effectively
inlining the trampoline into the start of the function.
For arm64, this results in good code generation. For example, the
dynamic_cond_resched() wrapper looks as follows when enabled. When
disabled, the first `B` is replaced with a `NOP`, resulting in an early
return.
| <dynamic_cond_resched>:
| bti c
| b <dynamic_cond_resched+0x10> // or `nop`
| mov w0, #0x0
| ret
| mrs x0, sp_el0
| ldr x0, [x0, #8]
| cbnz x0, <dynamic_cond_resched+0x8>
| paciasp
| stp x29, x30, [sp, #-16]!
| mov x29, sp
| bl <preempt_schedule_common>
| mov w0, #0x1
| ldp x29, x30, [sp], #16
| autiasp
| ret
... compared to the regular form of the function:
| <__cond_resched>:
| bti c
| mrs x0, sp_el0
| ldr x1, [x0, #8]
| cbz x1, <__cond_resched+0x18>
| mov w0, #0x0
| ret
| paciasp
| stp x29, x30, [sp, #-16]!
| mov x29, sp
| bl <preempt_schedule_common>
| mov w0, #0x1
| ldp x29, x30, [sp], #16
| autiasp
| ret
Any architecture which implements static keys should be able to use this
to implement PREEMPT_DYNAMIC with similar cost to non-inlined static
calls. Since this is likely to have greater overhead than (inlined)
static calls, PREEMPT_DYNAMIC is only defaulted to enabled when
HAVE_PREEMPT_DYNAMIC_CALL is selected.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com
Now that the enabled/disabled states for the preemption functions are
declared alongside their definitions, the core PREEMPT_DYNAMIC logic is
no longer tied to GENERIC_ENTRY, and can safely be selected so long as
an architecture provides enabled/disabled states for
irqentry_exit_cond_resched().
Make it possible to select HAVE_PREEMPT_DYNAMIC without GENERIC_ENTRY.
For existing users of HAVE_PREEMPT_DYNAMIC there should be no functional
change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-5-mark.rutland@arm.com
Currently sched_dynamic_update needs to open-code the enabled/disabled
function names for each preemption model it supports, when in practice
this is a boolean enabled/disabled state for each function.
Make this clearer and avoid repetition by defining the enabled/disabled
states at the function definition, and using helper macros to perform the
static_call_update(). Where x86 currently overrides the enabled
function, it is made to provide both the enabled and disabled states for
consistency, with defaults provided by the core code otherwise.
In subsequent patches this will allow us to support PREEMPT_DYNAMIC
without static calls.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-3-mark.rutland@arm.com
The PREEMPT_DYNAMIC logic in kernel/sched/core.c patches static calls
for a bunch of preemption functions. While most are defined prior to
this, the definition of cond_resched() is later in the file, and so we
only have its declarations from include/linux/sched.h.
In subsequent patches we'd like to define some macros alongside the
definition of each of the preemption functions, which we can use within
sched_dynamic_update(). For this to be possible, the PREEMPT_DYNAMIC
logic needs to be placed after the various preemption functions.
As a preparatory step, this patch moves the PREEMPT_DYNAMIC logic after
the various preemption functions, with no other changes -- this is
purely a move.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-2-mark.rutland@arm.com
Where commit 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an
invalid sched_task_group") fixed a fork race vs cgroup, it opened up a
race vs syscalls by not placing the task on the runqueue before it
gets exposed through the pidhash.
Commit 13765de814 ("sched/fair: Fix fault in reweight_entity") is
trying to fix a single instance of this, instead fix the whole class
of issues, effectively reverting this commit.
Fixes: 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/YgoeCbwj5mbCR0qA@hirez.programming.kicks-ass.net
Refer to housekeeping APIs using single feature types instead of flags.
This prevents from passing multiple isolation features at once to
housekeeping interfaces, which soon won't be possible anymore as each
isolation features will have their own cpumask.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-5-frederic@kernel.org
The NUMA topology parameters (sched_numa_topology_type,
sched_domains_numa_levels, and sched_max_numa_distance, etc.)
identified by scheduler may be wrong for systems with CPU-less nodes.
For example, the ACPI SLIT of a system with CPU-less persistent
memory (Intel Optane DCPMM) nodes is as follows,
[000h 0000 4] Signature : "SLIT" [System Locality Information Table]
[004h 0004 4] Table Length : 0000042C
[008h 0008 1] Revision : 01
[009h 0009 1] Checksum : 59
[00Ah 0010 6] Oem ID : "XXXX"
[010h 0016 8] Oem Table ID : "XXXXXXX"
[018h 0024 4] Oem Revision : 00000001
[01Ch 0028 4] Asl Compiler ID : "INTL"
[020h 0032 4] Asl Compiler Revision : 20091013
[024h 0036 8] Localities : 0000000000000004
[02Ch 0044 4] Locality 0 : 0A 15 11 1C
[030h 0048 4] Locality 1 : 15 0A 1C 11
[034h 0052 4] Locality 2 : 11 1C 0A 1C
[038h 0056 4] Locality 3 : 1C 11 1C 0A
While the `numactl -H` output is as follows,
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
node 0 size: 64136 MB
node 0 free: 5981 MB
node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 64466 MB
node 1 free: 10415 MB
node 2 cpus:
node 2 size: 253952 MB
node 2 free: 253920 MB
node 3 cpus:
node 3 size: 253952 MB
node 3 free: 253951 MB
node distances:
node 0 1 2 3
0: 10 21 17 28
1: 21 10 28 17
2: 17 28 10 28
3: 28 17 28 10
In this system, there are only 2 sockets. In each memory controller,
both DRAM and PMEM DIMMs are installed. Although the physical NUMA
topology is simple, the logical NUMA topology becomes a little
complex. Because both the distance(0, 1) and distance (1, 3) are less
than the distance (0, 3), it appears that node 1 sits between node 0
and node 3. And the whole system appears to be a glueless mesh NUMA
topology type. But it's definitely not, there is even no CPU in node 3.
This isn't a practical problem now yet. Because the PMEM nodes (node
2 and node 3 in example system) are offlined by default during system
boot. So init_numa_topology_type() called during system boot will
ignore them and set sched_numa_topology_type to NUMA_DIRECT. And
init_numa_topology_type() is only called at runtime when a CPU of a
never-onlined-before node gets plugged in. And there's no CPU in the
PMEM nodes. But it appears better to fix this to make the code more
robust.
To test the potential problem. We have used a debug patch to call
init_numa_topology_type() when the PMEM node is onlined (in
__set_migration_target_nodes()). With that, the NUMA parameters
identified by scheduler is as follows,
sched_numa_topology_type: NUMA_GLUELESS_MESH
sched_domains_numa_levels: 4
sched_max_numa_distance: 28
To fix the issue, the CPU-less nodes are ignored when the NUMA topology
parameters are identified. Because a node may become CPU-less or not
at run time because of CPU hotplug, the NUMA topology parameters need
to be re-initialized at runtime for CPU hotplug too.
With the patch, the NUMA parameters identified for the example system
above is as follows,
sched_numa_topology_type: NUMA_DIRECT
sched_domains_numa_levels: 2
sched_max_numa_distance: 21
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220214121553.582248-1-ying.huang@intel.com
In some places, kernel/sched code calls cpumask_weight() to check if
any bit of a given cpumask is set. We can do it more efficiently with
cpumask_empty() because cpumask_empty() stops traversing the cpumask as
soon as it finds first set bit, while cpumask_weight() counts all bits
unconditionally.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220210224933.379149-23-yury.norov@gmail.com
Syzbot found a GPF in reweight_entity. This has been bisected to
commit 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid
sched_task_group")
There is a race between sched_post_fork() and setpriority(PRIO_PGRP)
within a thread group that causes a null-ptr-deref in
reweight_entity() in CFS. The scenario is that the main process spawns
number of new threads, which then call setpriority(PRIO_PGRP, 0, -20),
wait, and exit. For each of the new threads the copy_process() gets
invoked, which adds the new task_struct and calls sched_post_fork()
for it.
In the above scenario there is a possibility that
setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread
in the group that is just being created by copy_process(), and for
which the sched_post_fork() has not been executed yet. This will
trigger a null pointer dereference in reweight_entity(), as it will
try to access the run queue pointer, which hasn't been set.
Before the mentioned change the cfs_rq pointer for the task has been
set in sched_fork(), which is called much earlier in copy_process(),
before the new task is added to the thread_group. Now it is done in
the sched_post_fork(), which is called after that. To fix the issue
the remove the update_load param from the update_load param() function
and call reweight_task() only if the task flag doesn't have the
TASK_NEW flag set.
Fixes: 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: syzbot+af7a719bc92395ee41b3@syzkaller.appspotmail.com
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220203161846.1160750-1-tadeusz.struk@linaro.org
Rename blk_flush_plug to __blk_flush_plug and add a wrapper that includes
the NULL check instead of open coding that check everywhere.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220127070549.1377856-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
blk_needs_flush_plug fails to account for the cb_list, which needs
flushing as well. Remove it and just check if there is a plug instead
of poking into the internals of the plug structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20220127070549.1377856-1-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We can't use this tracepoint in modules without having the symbol
exported first, fix that.
Fixes: 765047932f ("sched/pelt: Add support to track thermal pressure")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211028115005.873539-1-qais.yousef@arm.com
propagation in the sched hierarchies and other minor cleanups and
improvements
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHtNkcACgkQEsHwGGHe
VUru2xAAq2sJYOjb3AFQQskKDMjUqY42+Z2LnFk+zbv/2NfXPG17lGRNl8zIFWgK
en+RguHOnBDo4Lc4qcx06k02gmZmSA7YonLJVYtT/N1mwsW6zkW0wDho/W3+ssU5
5fJEFSd/y9XmoFOyFj7k+POND/Prk/sguxYcYDRMwjdw4pZoDZ4WgPU3oS3PCiBk
ISua8zqxNC+kqSnlKzDbc23K22mdcsneW/aLFK7npyaKqzypy9IvqaBL6h8tyOgb
Q7jOBavUQwmfi/J5A39JgUrYs90gMuQKMJ0wxWrix+YCgvdRLCX3gcWBvdxHwlmm
KkxmWmM3iGO4qKXUDmmTt8e8GO1c0HgR7tBiVKkG2977fIojLGXTXwZKjIz/gn7f
wg3oltKWj2JZ7X3Z3Te4TDjtWSfibUkUHhrVlm94HgZL9ZiFFY+qigBTUoa/QVAf
q1nkk/acpSDAKY2CGcjeQZtkuIcfz+5Z94n07NsV4O8OriwkEOgVWGGXkky3687C
/woT4a3iIeqiFzSQ8raJq0bdMj3J+wpDe4gmjKmx7oPjiS7FzsyGc8HckwQtiOQ3
kGTTB+9zJS9ChWEk2ViQQgNOUUaJJjAwsBoYkRQakFnQ4AhvQKHmD+MS02vSPBD7
j3k3RPkO0Gm+gUBnkgyKSRTQpAcoVY0lBwttJoEr0IlA/MUWMJ0=
=4m7x
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v5.17_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
"A bunch of fixes: forced idle time accounting, utilization values
propagation in the sched hierarchies and other minor cleanups and
improvements"
* tag 'sched_urgent_for_v5.17_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kernel/sched: Remove dl_boosted flag comment
sched: Avoid double preemption in __cond_resched_*lock*()
sched/fair: Fix all kernel-doc warnings
sched/core: Accounting forceidle time for all tasks except idle task
sched/pelt: Relax the sync of load_sum with load_avg
sched/pelt: Relax the sync of runnable_sum with runnable_avg
sched/pelt: Continue to relax the sync of util_sum with util_avg
sched/pelt: Relax the sync of util_sum with util_avg
psi: Fix uaf issue when psi trigger is destroyed while being polled
For PREEMPT/DYNAMIC_PREEMPT the *_unlock() will already trigger a
preemption, no point in then calling preempt_schedule_common()
*again*.
Use _cond_resched() instead, since this is a NOP for the preemptible
configs while it provide a preemption point for the others.
Reported-by: xuhaifeng <xuhaifeng@oppo.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YcGnvDEYBwOiV0cR@hirez.programming.kicks-ass.net
There are two types of forced idle time: forced idle time from cookie'd
task and forced idle time form uncookie'd task. The forced idle time from
uncookie'd task is actually caused by the cookie'd task in runqueue
indirectly, and it's more accurate to measure the capacity loss with the
sum of both.
Assuming cpu x and cpu y are a pair of SMT siblings, consider the
following scenarios:
1.There's a cookie'd task running on cpu x, and there're 4 uncookie'd
tasks running on cpu y. For cpu x, there will be 80% forced idle time
(from uncookie'd task); for cpu y, there will be 20% forced idle time
(from cookie'd task).
2.There's a uncookie'd task running on cpu x, and there're 4 cookie'd
tasks running on cpu y. For cpu x, there will be 80% forced idle time
(from cookie'd task); for cpu y, there will be 20% forced idle time
(from uncookie'd task).
The scenario1 can recurrent by stress-ng(scenario2 can recurrent similary):
(cookie'd)taskset -c x stress-ng -c 1 -l 100
(uncookie'd)taskset -c y stress-ng -c 4 -l 100
In the above two scenarios, the total capacity loss is 1 cpu, but in
scenario1, the cookie'd forced idle time tells us 20% cpu capacity loss, in
scenario2, the cookie'd forced idle time tells us 80% cpu capacity loss,
which are not accurate. It'll be more accurate to measure with cookie'd
forced idle time and uncookie'd forced idle time.
Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Don <joshdon@google.com>
Link: https://lore.kernel.org/r/1641894961-9241-2-git-send-email-CruzZhao@linux.alibaba.com
Pull signal/exit/ptrace updates from Eric Biederman:
"This set of changes deletes some dead code, makes a lot of cleanups
which hopefully make the code easier to follow, and fixes bugs found
along the way.
The end-game which I have not yet reached yet is for fatal signals
that generate coredumps to be short-circuit deliverable from
complete_signal, for force_siginfo_to_task not to require changing
userspace configured signal delivery state, and for the ptrace stops
to always happen in locations where we can guarantee on all
architectures that the all of the registers are saved and available on
the stack.
Removal of profile_task_ext, profile_munmap, and profile_handoff_task
are the big successes for dead code removal this round.
A bunch of small bug fixes are included, as most of the issues
reported were small enough that they would not affect bisection so I
simply added the fixes and did not fold the fixes into the changes
they were fixing.
There was a bug that broke coredumps piped to systemd-coredump. I
dropped the change that caused that bug and replaced it entirely with
something much more restrained. Unfortunately that required some
rebasing.
Some successes after this set of changes: There are few enough calls
to do_exit to audit in a reasonable amount of time. The lifetime of
struct kthread now matches the lifetime of struct task, and the
pointer to struct kthread is no longer stored in set_child_tid. The
flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
removed. Issues where task->exit_code was examined with
signal->group_exit_code should been examined were fixed.
There are several loosely related changes included because I am
cleaning up and if I don't include them they will probably get lost.
The original postings of these changes can be found at:
https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.orghttps://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.orghttps://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org
I trimmed back the last set of changes to only the obviously correct
once. Simply because there was less time for review than I had hoped"
* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
ptrace/m68k: Stop open coding ptrace_report_syscall
ptrace: Remove unused regs argument from ptrace_report_syscall
ptrace: Remove second setting of PT_SEIZED in ptrace_attach
taskstats: Cleanup the use of task->exit_code
exit: Use the correct exit_code in /proc/<pid>/stat
exit: Fix the exit_code for wait_task_zombie
exit: Coredumps reach do_group_exit
exit: Remove profile_handoff_task
exit: Remove profile_task_exit & profile_munmap
signal: clean up kernel-doc comments
signal: Remove the helper signal_group_exit
signal: Rename group_exit_task group_exec_task
coredump: Stop setting signal->group_exit_task
signal: Remove SIGNAL_GROUP_COREDUMP
signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
signal: Make coredump handling explicit in complete_signal
signal: Have prepare_signal detect coredumps using signal->core_state
signal: Have the oom killer detect coredumps using signal->core_state
exit: Move force_uaccess back into do_exit
exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
...
"Lots of cleanups and preparation; highlights:
- futex: Cleanup and remove runtime futex_cmpxchg detection
- rtmutex: Some fixes for the PREEMPT_RT locking infrastructure
- kcsan: Share owner_on_cpu() between mutex,rtmutex and rwsem and
annotate the racy owner->on_cpu access *once*.
- atomic64: Dead-Code-Elemination"
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvssACgkQEsHwGGHe
VUrbBg//VQvz5BwddIJDj9utt5AvSixNcTF5mJyFKCSIqO0S4J8nCNcvJjZ2bs4S
w1YmInFbp0WFGUhaIZiw0e6KWJUoINTng4MfHDZosS1doT2of53ZaQqXs3i81jDz
87w8ADVHL0x4+BNjdsIwbcuPSDTmJFoyFOdeXTIl9hv9ZULT8m4Mt+LJuUHNZ+vF
rS1jyseVPWkcm5y+Yie0rhip+ygzbfbt0ArsLfRcrBJsKr6oxLxV2DDF+2djXuuP
d2OgGT7VkbgAhoKpzVXUiHsT6ppR5Mn5TLSa4EZ4bPPCUFldOhKuCAImF3T6yVIa
44iX5vQN9v5VHBy6ocPbdOIBuYBYVGCMurh1t7pbpB6G+mmSxMiyta5MY37POwjv
K2JT9mC2A6a4d17gue5FT3mnJMBB4eHwVaDfAwCZs/5rRNuoTz4aY5Xy04Mq0ltI
39uarwBd5hwSugBWg44AS5E9h52E654FQ7g6iS4NtUvJuuaXBTl43EcZWx2+mnPL
zY+iOMVMgg33VIVcm/mlf/6zWL0LXPmILUiA1fp4Q9/n8u1EuOOyeA/GsC9Pl3wO
HY3KpYJA5eQpIk/JEnzKm5ZE3pCrUdH6VDC/SB4owQtafQG6OxyQVP1Gj7KYxZsD
NqqpJ4nkKooc5f5DqVEN8wrjyYsnVxEfriEG09OoR6wI3MqyUA4=
=vrYy
-----END PGP SIGNATURE-----
Merge tag 'locking_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Borislav Petkov:
"Lots of cleanups and preparation. Highlights:
- futex: Cleanup and remove runtime futex_cmpxchg detection
- rtmutex: Some fixes for the PREEMPT_RT locking infrastructure
- kcsan: Share owner_on_cpu() between mutex,rtmutex and rwsem and
annotate the racy owner->on_cpu access *once*.
- atomic64: Dead-Code-Elemination"
[ Description above by Peter Zijlstra ]
* tag 'locking_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/atomic: atomic64: Remove unusable atomic ops
futex: Fix additional regressions
locking: Allow to include asm/spinlock_types.h from linux/spinlock_types_raw.h
x86/mm: Include spinlock_t definition in pgtable.
locking: Mark racy reads of owner->on_cpu
locking: Make owner_on_cpu() into <linux/sched.h>
lockdep/selftests: Adapt ww-tests for PREEMPT_RT
lockdep/selftests: Skip the softirq related tests on PREEMPT_RT
lockdep/selftests: Unbalanced migrate_disable() & rcu_read_lock().
lockdep/selftests: Avoid using local_lock_{acquire|release}().
lockdep: Remove softirq accounting on PREEMPT_RT.
locking/rtmutex: Add rt_mutex_lock_nest_lock() and rt_mutex_lock_killable().
locking/rtmutex: Squash self-deadlock check for ww_rt_mutex.
locking: Remove rt_rwlock_is_contended().
sched: Trigger warning if ->migration_disabled counter underflows.
futex: Fix sparc32/m68k/nds32 build regression
futex: Remove futex_cmpxchg detection
futex: Ensure futex_atomic_cmpxchg_inatomic() is present
kernel/locking: Use a pointer in ww_mutex_trylock().
"Mostly minor things this time; some highlights:
- core-sched: Add 'Forced Idle' accounting; this allows to track how
much CPU time is 'lost' due to core scheduling constraints.
- psi: Fix for MEM_FULL; a task running reclaim would be counted as a
runnable task and prevent MEM_FULL from being reported.
- cpuacct: Long standing fixes for some cgroup accounting issues.
- rt: Bandwidth timer could, under unusual circumstances, be failed to
armed, leading to indefinite throttling."
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvGkACgkQEsHwGGHe
VUq3tQ/9GdaCpbo+WgtM20vo3FqzoRCWAtZZRLWm87g9G7FKE6tD1JCZ+cXn63jR
wz4nuTMGg0lHkrmMiHoeTWoRo7Brw3vPdKTbFBxRaPS3gi3qyz8gaDHSKzAHTJSx
L3j5XaTLcZnXwXV0MOphbK8ZD2W0f9PJZJjwYy1HFUrXh1AFT0WaMXL3aXuaZr8M
jYZoB8r5qXsTBgzNZR8unq5bSUXgvoDAqupFU8gvQWYvNFV4NGK9WFQLlznG1ZhE
aE7oHRbpCnb4avbv9xIm/QgLEHeCVTb/4kLBPk57nrW+aXTHX4ZTHuFtFs0nfDHS
yHSgie3hthr5lFQ/c2G4a5bi5EfPcyURmgNHpWrs2zWWtWzVtqy1WAQ//m8twd14
9cMeefQzttPUbOjykj5QNCJPqkkGgKlblz3p9j8NwUBYUBtBIejsEP0UFPoVgZuL
DjeGhPuGGeTqkVEhLD/pb9kSzUsi1ptTJtnzT9EvtBOi+EpnZnFC6jB98qcuRT19
jhlXwlFNH+SNnMrCniTjLhQK5gVEbvzbU86/nj9CHWDTNdu6DFeJv1S+ZBsjRHUe
f8dV9+laXdLK5QJKAeAubq8ciMvacW8pTf/5PJfaFCJHHDs8rgmx/Ip6TxCZzVEG
XEhNqOmMNnvbkj+9a1yk6SyD9QkVmitZrvRiqeoGayQMjsphT3E=
=H0vR
-----END PGP SIGNATURE-----
Merge tag 'sched_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Borislav Petkov:
"Mostly minor things this time; some highlights:
- core-sched: Add 'Forced Idle' accounting; this allows to track how
much CPU time is 'lost' due to core scheduling constraints.
- psi: Fix for MEM_FULL; a task running reclaim would be counted as a
runnable task and prevent MEM_FULL from being reported.
- cpuacct: Long standing fixes for some cgroup accounting issues.
- rt: Bandwidth timer could, under unusual circumstances, be failed
to armed, leading to indefinite throttling."
[ Description above by Peter Zijlstra ]
* tag 'sched_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Replace CFS internal cpu_util() with cpu_util_cfs()
sched/fair: Cleanup task_util and capacity type
sched/rt: Try to restart rt period timer when rt runtime exceeded
sched/fair: Document the slow path and fast path in select_task_rq_fair
sched/fair: Fix per-CPU kthread and wakee stacking for asym CPU capacity
sched/fair: Fix detection of per-CPU kthreads waking a task
sched/cpuacct: Make user/system times in cpuacct.stat more precise
sched/cpuacct: Fix user/system in shown cpuacct.usage*
cpuacct: Convert BUG_ON() to WARN_ON_ONCE()
cputime, cpuacct: Include guest time in user time in cpuacct.stat
psi: Fix PSI_MEM_FULL state when tasks are in memstall and doing reclaim
sched/core: Forced idle accounting
psi: Add a missing SPDX license header
psi: Remove repeated verbose comment
accesing it in order to prevent any potential data races, and convert
all users to those new accessors
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHcgFoACgkQEsHwGGHe
VUqXeRAAvcNEfFw6BvXeGfFTxKmOrsRtu2WCkAkjvamyhXMCrjBqqHlygLJFCH5i
2mc6HBohzo4vBFcgi3R5tVkGazqlthY1KUM9Jpk7rUuUzi0phTH7n/MafZOm9Es/
BHYcAAyT/NwZRbCN0geccIzBtbc4xr8kxtec7vkRfGDx8B9/uFN86xm7cKAaL62G
UDs0IquDPKEns3A7uKNuvKztILtuZWD1WcSkbOULJzXgLkb+cYKO1Lm9JK9rx8Ds
8tjezrJgOYGLQyyv0i3pWelm3jCZOKUChPslft0opvVUbrNd8piehvOm9CWopHcB
QsYOWchnULTE9o4ZAs/1PkxC0LlFEWZH8bOLxBMTDVEY+xvmDuj1PdBUpncgJbOh
dunHzsvaWproBSYUXA9nKhZWTVGl+CM8Ks7jXjl3IPynLd6cpYZ/5gyBVWEX7q3e
8htG95NzdPPo7doxMiNSKGSmSm0Np1TJ/i89vsYeGfefsvsq53Fyjhu7dIuTWHmU
2YUe6qHs6dF9x1bkHAAZz6T9Hs4BoGQBcXUnooT9JbzVdv2RfTPsrawdu8dOnzV1
RhwCFdFcll0AIEl0T9fCYzUI/Ga8ZS0roXs5NZ4wl0lwr0BGFwiU8WC1FUdGsZo9
0duaa0Tpv0OWt6rIMMB/E9QsqCDsQ4CMHuQpVVw+GOO5ux9kMms=
=v6Xn
-----END PGP SIGNATURE-----
Merge tag 'core_entry_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull thread_info flag accessor helper updates from Borislav Petkov:
"Add a set of thread_info.flags accessors which snapshot it before
accesing it in order to prevent any potential data races, and convert
all users to those new accessors"
* tag 'core_entry_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
powerpc: Snapshot thread flags
powerpc: Avoid discarding flags in system_call_exception()
openrisc: Snapshot thread flags
microblaze: Snapshot thread flags
arm64: Snapshot thread flags
ARM: Snapshot thread flags
alpha: Snapshot thread flags
sched: Snapshot thread flags
entry: Snapshot thread flags
x86: Snapshot thread flags
thread_info: Add helpers to snapshot thread flags
The point of using set_child_tid to hold the kthread pointer was that
it already did what is necessary. There are now restrictions on when
set_child_tid can be initialized and when set_child_tid can be used in
schedule_tail. Which indicates that continuing to use set_child_tid
to hold the kthread pointer is a bad idea.
Instead of continuing to use the set_child_tid field of task_struct
generalize the pf_io_worker field of task_struct and use it to hold
the kthread pointer.
Rename pf_io_worker (which is a void * pointer) to worker_private so
it can be used to store kthreads struct kthread pointer. Update the
kthread code to store the kthread pointer in the worker_private field.
Remove the places where set_child_tid had to be dealt with carefully
because kthreads also used it.
Link: https://lkml.kernel.org/r/CAHk-=wgtFAA9SbVYg0gR1tqPMC17-NYcs0GQkaYg1bGhh1uJQQ@mail.gmail.com
Link: https://lkml.kernel.org/r/87a6grvqy8.fsf_-_@email.froward.int.ebiederm.org
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Kernel threads abuse set_child_tid. Historically that has been fine
as set_child_tid was initialized after the kernel thread had been
forked. Unfortunately storing struct kthread in set_child_tid after
the thread is running makes struct kthread being unusable for storing
result codes of the thread.
When set_child_tid is set to struct kthread during fork that results
in schedule_tail writing the thread id to the beggining of struct
kthread (if put_user does not realize it is a kernel address).
Solve this by skipping the put_user for all kthreads.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lkml.kernel.org/r/YcNsG0Lp94V13whH@archlinux-ax161
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Today the rules are a bit iffy and arbitrary about which kernel
threads have struct kthread present. Both idle threads and thread
started with create_kthread want struct kthread present so that is
effectively all kernel threads. Make the rule that if PF_KTHREAD
and the task is running then struct kthread is present.
This will allow the kernel thread code to using tsk->exit_code
with different semantics from ordinary processes.
To make ensure that struct kthread is present for all
kernel threads move it's allocation into copy_process.
Add a deallocation of struct kthread in exec for processes
that were kernel threads.
Move the allocation of struct kthread for the initial thread
earlier so that it is not repeated for each additional idle
thread.
Move the initialization of struct kthread into set_kthread_struct
so that the structure is always and reliably initailized.
Clear set_child_tid in free_kthread_struct to ensure the kthread
struct is reliably freed during exec. The function
free_kthread_struct does not need to clear vfork_done during exec as
exec_mm_release called from exec_mmap has already cleared vfork_done.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
cpu_util_cfs() was created by commit d4edd662ac ("sched/cpufreq: Use
the DEADLINE utilization signal") to enable the access to CPU
utilization from the Schedutil CPUfreq governor.
Commit a07630b8b2 ("sched/cpufreq/schedutil: Use util_est for OPP
selection") added util_est support later.
The only thing cpu_util() is doing on top of what cpu_util_cfs() already
does is to clamp the return value to the [0..capacity_orig] capacity
range of the CPU. Integrating this into cpu_util_cfs() is not harming
the existing users (Schedutil and CPUfreq cooling (latter via
sched_cpu_util() wrapper)).
For straightforwardness, prefer to keep using `int cpu` as the function
parameter over using `struct rq *rq` which might avoid some calls to
cpu_rq(cpu) -> per_cpu(runqueues, cpu) -> RELOC_HIDE().
Update cfs_util()'s documentation and reuse it for cpu_util_cfs().
Remove cpu_util().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20211118164240.623551-1-dietmar.eggemann@arm.com
If migrate_enable() is used more often than its counter part then it
remains undetected and rq::nr_pinned will underflow, too.
Add a warning if migrate_enable() is attempted if without a matching a
migrate_disable().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211129174654.668506-2-bigeasy@linutronix.de
Commit d81ae8aac8 ("sched/uclamp: Fix initialization of struct
uclamp_rq") introduced a bug where uclamp_max of the rq is not reset to
match the woken up task's uclamp_max when the rq is idle.
The code was relying on rq->uclamp_max initialized to zero, so on first
enqueue
static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
enum uclamp_id clamp_id)
{
...
if (uc_se->value > READ_ONCE(uc_rq->value))
WRITE_ONCE(uc_rq->value, uc_se->value);
}
was actually resetting it. But since commit d81ae8aac8 changed the
default to 1024, this no longer works. And since rq->uclamp_flags is
also initialized to 0, neither above code path nor uclamp_idle_reset()
update the rq->uclamp_max on first wake up from idle.
This is only visible from first wake up(s) until the first dequeue to
idle after enabling the static key. And it only matters if the
uclamp_max of this task is < 1024 since only then its uclamp_max will be
effectively ignored.
Fix it by properly initializing rq->uclamp_flags = UCLAMP_FLAG_IDLE to
ensure uclamp_idle_reset() is called which then will update the rq
uclamp_max value as expected.
Fixes: d81ae8aac8 ("sched/uclamp: Fix initialization of struct uclamp_rq")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20211202112033.1705279-1-qais.yousef@arm.com
__setup() callbacks expect 1 for success and 0 for failure. Correct the
usage here to reflect that.
Fixes: 826bfeb37b ("preempt/dynamic: Support dynamic preempt with preempt= boot option")
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Halaney <ahalaney@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211203233203.133581-1-ahalaney@redhat.com
Some thread flags can be set remotely, and so even when IRQs are disabled,
the flags can change under our feet. Generally this is unlikely to cause a
problem in practice, but it is somewhat unsound, and KCSAN will
legitimately warn that there is a data race.
To avoid such issues, a snapshot of the flags has to be taken prior to
using them. Some places already use READ_ONCE() for that, others do not.
Convert them all to the new flag accessor helpers.
The READ_ONCE(ti->flags) .. cmpxchg(ti->flags) loop in
set_nr_if_polling() is left as-is for clarity.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20211129130653.2037928-4-mark.rutland@arm.com
To hot unplug a CPU, the idle task on that CPU calls a few layers of C
code before finally leaving the kernel. When KASAN is in use, poisoned
shadow is left around for each of the active stack frames, and when
shadow call stacks are in use. When shadow call stacks (SCS) are in use
the task's saved SCS SP is left pointing at an arbitrary point within
the task's shadow call stack.
When a CPU is offlined than onlined back into the kernel, this stale
state can adversely affect execution. Stale KASAN shadow can alias new
stackframes and result in bogus KASAN warnings. A stale SCS SP is
effectively a memory leak, and prevents a portion of the shadow call
stack being used. Across a number of hotplug cycles the idle task's
entire shadow call stack can become unusable.
We previously fixed the KASAN issue in commit:
e1b77c9298 ("sched/kasan: remove stale KASAN poison after hotplug")
... by removing any stale KASAN stack poison immediately prior to
onlining a CPU.
Subsequently in commit:
f1a0a376ca ("sched/core: Initialize the idle task with preemption disabled")
... the refactoring left the KASAN and SCS cleanup in one-time idle
thread initialization code rather than something invoked prior to each
CPU being onlined, breaking both as above.
We fixed SCS (but not KASAN) in commit:
63acd42c0d ("sched/scs: Reset the shadow stack when idle_task_exit")
... but as this runs in the context of the idle task being offlined it's
potentially fragile.
To fix these consistently and more robustly, reset the SCS SP and KASAN
shadow of a CPU's idle task immediately before we online that CPU in
bringup_cpu(). This ensures the idle task always has a consistent state
when it is running, and removes the need to so so when exiting an idle
task.
Whenever any thread is created, dup_task_struct() will give the task a
stack which is free of KASAN shadow, and initialize the task's SCS SP,
so there's no need to specially initialize either for idle thread within
init_idle(), as this was only necessary to handle hotplug cycles.
I've tested this on arm64 with:
* gcc 11.1.0, defconfig +KASAN_INLINE, KASAN_STACK
* clang 12.0.0, defconfig +KASAN_INLINE, KASAN_STACK, SHADOW_CALL_STACK
... offlining and onlining CPUS with:
| while true; do
| for C in /sys/devices/system/cpu/cpu*/online; do
| echo 0 > $C;
| echo 1 > $C;
| done
| done
Fixes: f1a0a376ca ("sched/core: Initialize the idle task with preemption disabled")
Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Qian Cai <quic_qiancai@quicinc.com>
Link: https://lore.kernel.org/lkml/20211115113310.35693-1-mark.rutland@arm.com/
Adds accounting for "forced idle" time, which is time where a cookie'd
task forces its SMT sibling to idle, despite the presence of runnable
tasks.
Forced idle time is one means to measure the cost of enabling core
scheduling (ie. the capacity lost due to the need to force idle).
Forced idle time is attributed to the thread responsible for causing
the forced idle.
A few details:
- Forced idle time is displayed via /proc/PID/sched. It also requires
that schedstats is enabled.
- Forced idle is only accounted when a sibling hyperthread is held
idle despite the presence of runnable tasks. No time is charged if
a sibling is idle but has no runnable tasks.
- Tasks with 0 cookie are never charged forced idle.
- For SMT > 2, we scale the amount of forced idle charged based on the
number of forced idle siblings. Additionally, we split the time up and
evenly charge it to all running tasks, as each is equally responsible
for the forced idle.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211018203428.2025792-1-joshdon@google.com
Commit c597bfddc9 ("sched: Provide Kconfig support for default dynamic
preempt mode") changed the selectable config names for the preemption
model. This means a config file must now select
CONFIG_PREEMPT_BEHAVIOUR=y
rather than
CONFIG_PREEMPT=y
to get a preemptible kernel. This means all arch config files would need to
be updated - right now they'll all end up with the default
CONFIG_PREEMPT_NONE_BEHAVIOUR.
Rather than touch a good hundred of config files, restore usage of
CONFIG_PREEMPT{_NONE, _VOLUNTARY}. Make them configure:
o The build-time preemption model when !PREEMPT_DYNAMIC
o The default boot-time preemption model when PREEMPT_DYNAMIC
Add siblings of those configs with the _BUILD suffix to unconditionally
designate the build-time preemption model (PREEMPT_DYNAMIC is built with
the "highest" preemption model it supports, aka PREEMPT). Downstream
configs should by now all be depending / selected by CONFIG_PREEMPTION
rather than CONFIG_PREEMPT, so only a few sites need patching up.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20211110202448.4054153-2-valentin.schneider@arm.com
Kevin is reporting crashes which point to a use-after-free of a cfs_rq
in update_blocked_averages(). Initial debugging revealed that we've
live cfs_rq's (on_list=1) in an about to be kfree()'d task group in
free_fair_sched_group(). However, it was unclear how that can happen.
His kernel config happened to lead to a layout of struct sched_entity
that put the 'my_q' member directly into the middle of the object
which makes it incidentally overlap with SLUB's freelist pointer.
That, in combination with SLAB_FREELIST_HARDENED's freelist pointer
mangling, leads to a reliable access violation in form of a #GP which
made the UAF fail fast.
Michal seems to have run into the same issue[1]. He already correctly
diagnosed that commit a7b359fc6a ("sched/fair: Correctly insert
cfs_rq's to list on unthrottle") is causing the preconditions for the
UAF to happen by re-adding cfs_rq's also to task groups that have no
more running tasks, i.e. also to dead ones. His analysis, however,
misses the real root cause and it cannot be seen from the crash
backtrace only, as the real offender is tg_unthrottle_up() getting
called via sched_cfs_period_timer() via the timer interrupt at an
inconvenient time.
When unregister_fair_sched_group() unlinks all cfs_rq's from the dying
task group, it doesn't protect itself from getting interrupted. If the
timer interrupt triggers while we iterate over all CPUs or after
unregister_fair_sched_group() has finished but prior to unlinking the
task group, sched_cfs_period_timer() will execute and walk the list of
task groups, trying to unthrottle cfs_rq's, i.e. re-add them to the
dying task group. These will later -- in free_fair_sched_group() -- be
kfree()'ed while still being linked, leading to the fireworks Kevin
and Michal are seeing.
To fix this race, ensure the dying task group gets unlinked first.
However, simply switching the order of unregistering and unlinking the
task group isn't sufficient, as concurrent RCU walkers might still see
it, as can be seen below:
CPU1: CPU2:
: timer IRQ:
: do_sched_cfs_period_timer():
: :
: distribute_cfs_runtime():
: rcu_read_lock();
: :
: unthrottle_cfs_rq():
sched_offline_group(): :
: walk_tg_tree_from(…,tg_unthrottle_up,…):
list_del_rcu(&tg->list); :
(1) : list_for_each_entry_rcu(child, &parent->children, siblings)
: :
(2) list_del_rcu(&tg->siblings); :
: tg_unthrottle_up():
unregister_fair_sched_group(): struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
: :
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); :
: :
: if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
(3) : list_add_leaf_cfs_rq(cfs_rq);
: :
: :
: :
: :
: :
(4) : rcu_read_unlock();
CPU 2 walks the task group list in parallel to sched_offline_group(),
specifically, it'll read the soon to be unlinked task group entry at
(1). Unlinking it on CPU 1 at (2) therefore won't prevent CPU 2 from
still passing it on to tg_unthrottle_up(). CPU 1 now tries to unlink
all cfs_rq's via list_del_leaf_cfs_rq() in
unregister_fair_sched_group(). Meanwhile CPU 2 will re-add some of
these at (3), which is the cause of the UAF later on.
To prevent this additional race from happening, we need to wait until
walk_tg_tree_from() has finished traversing the task groups, i.e.
after the RCU read critical section ends in (4). Afterwards we're safe
to call unregister_fair_sched_group(), as each new walk won't see the
dying task group any more.
On top of that, we need to wait yet another RCU grace period after
unregister_fair_sched_group() to ensure print_cfs_stats(), which might
run concurrently, always sees valid objects, i.e. not already free'd
ones.
This patch survives Michal's reproducer[2] for 8h+ now, which used to
trigger within minutes before.
[1] https://lore.kernel.org/lkml/20211011172236.11223-1-mkoutny@suse.com/
[2] https://lore.kernel.org/lkml/20211102160228.GA57072@blackbody.suse.cz/
Fixes: a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
[peterz: shuffle code around a bit]
Reported-by: Kevin Tanguy <kevin.tanguy@corp.ovh.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Nothing protects the access to the per_cpu variable sd_llc_id. When testing
the same CPU (i.e. this_cpu == that_cpu), a race condition exists with
update_top_cache_domain(). One scenario being:
CPU1 CPU2
==================================================================
per_cpu(sd_llc_id, CPUX) => 0
partition_sched_domains_locked()
detach_destroy_domains()
cpus_share_cache(CPUX, CPUX) update_top_cache_domain(CPUX)
per_cpu(sd_llc_id, CPUX) => 0
per_cpu(sd_llc_id, CPUX) = CPUX
per_cpu(sd_llc_id, CPUX) => CPUX
return false
ttwu_queue_cond() wouldn't catch smp_processor_id() == cpu and the result
is a warning triggered from ttwu_queue_wakelist().
Avoid a such race in cpus_share_cache() by always returning true when
this_cpu == that_cpu.
Fixes: 518cd62341 ("sched: Only queue remote wakeups when crossing cache boundaries")
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20211104175120.857087-1-vincent.donnefort@arm.com
- Revert the printk format based wchan() symbol resolution as it can leak
the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset and
__sched_setscheduler() introduced a new lock dependency which is now
triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/OUkTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoR/5D/9ikdGNpKg9osNqJ3GjAmxsK6kVkB29
iFe2k8pIpWDToWQf/wQRGih4Yj3Cl49QSnZcPIibh2/12EB1qrrW6iSPJkInz8Ec
/1LS5/Vewn2OyoxyXZjdvGC5gTXEodSbIazASvX7nvdMeI4gsAsL5etzrMJirT/t
aymqvr7zovvywrwMTQJrGjUMo9l4ewE8tafMNNhRu1BHU1U4ojM9yvThyRAAcmp7
3Xy49A+Yq3IgrvYI4u8FMK5Zh08KaxSFjiLhePGm/bF+wSfYmWop2TP1jY05W2Uo
ti8hfbJMUoFRYuMxAiEldkItnc0wV4M9PtWZZ/x+B71bs65Y4Zjt9cW+rxJv2+m1
vzV31EsQwGnOti072dzWN4c/cZqngVXAjaNtErvDwJUr+Tw1ayv9KUvuodMQqZY6
mu68bFUO2kV9EMe1CBOv51Uy1RGHyLj3rlNqrkw+Xp5ISE9Ad2vhUEiRp5bQx5Ci
V/XFhGZkGUluh0vccrdFlNYZwhj8cZEzkOPCnPSeZ+bq8SyZE6xuHH/lTP1CJCOy
s800rW1huM+kgV+zRN8adDkGXibAk9N3RtVGnQXmuEy8gB9LZmQg+JeM2wsc9B+6
i0gdqZnsjNAfoK+BBAG4holxptSL8/eOJsFH8ZNIoxQ+iqooyPx9tFX7yXnRTBQj
d2qWG7UvoseT+g==
=fgtS
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- Revert the printk format based wchan() symbol resolution as it can
leak the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset
and __sched_setscheduler() introduced a new lock dependency which is
now triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
* tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
sched/fair: Cleanup newidle_balance
sched/fair: Remove sysctl_sched_migration_cost condition
sched/fair: Wait before decaying max_newidle_lb_cost
sched/fair: Skip update_blocked_averages if we are defering load balance
sched/fair: Account update_blocked_averages in newidle_balance cost
x86: Fix __get_wchan() for !STACKTRACE
sched,x86: Fix L2 cache mask
sched/core: Remove rq_relock()
sched: Improve wake_up_all_idle_cpus() take #2
irq_work: Also rcuwait for !IRQ_WORK_HARD_IRQ on PREEMPT_RT
irq_work: Handle some irq_work in a per-CPU thread on PREEMPT_RT
irq_work: Allow irq_work_sync() to sleep if irq_work() no IRQ support.
sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
sched: Add cluster scheduler level for x86
sched: Add cluster scheduler level in core and related Kconfig for ARM64
topology: Represent clusters of CPUs within a die
sched: Disable -Wunused-but-set-variable
sched: Add wrapper for get_wchan() to keep task blocked
x86: Fix get_wchan() to support the ORC unwinder
proc: Use task_is_running() for wchan in /proc/$pid/stat
...
- Move futex code into kernel/futex/ and split up the kitchen sink into
seperate files to make integration of sys_futex_waitv() simpler.
- Add a new sys_futex_waitv() syscall which allows to wait on multiple
futexes. The main use case is emulating Windows' WaitForMultipleObjects
which allows Wine to improve the performance of Windows Games. Also
native Linux games can benefit from this interface as this is a common
wait pattern for this kind of applications.
- Add context to ww_mutex_trylock() to provide a path for i915 to rework
their eviction code step by step without making lockdep upset until the
final steps of rework are completed. It's also useful for regulator and
TTM to avoid dropping locks in the non contended path.
- Lockdep and might_sleep() cleanups and improvements
- A few improvements for the RT substitutions.
- The usual small improvements and cleanups.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/FTITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoVNZD/9vIm3Bu1Coz8tbNXz58AiCYq9Y/vp5
mzFgSzz+VJTkW5Vh8jo5Uel4rCKZyt+rL276EoaRPzYl8KFtWDbpK3qd3PrXKqTX
At49JO4ttAMJUHIBQ6vblEkykmfEd9YPU1uSWk5roJ+s7Jmr5VWnu0FEWHP00As5
tWOca/TM0ei9kof26V2fl5aecTGII4i4Zsvy+LPsXtI+TnmP0gSBcGAS/5UnZTtJ
vQRWTR3ojoYvh5iTmNqbaURYoQLe2j8yscn1DSW1CABWVmP12eDWs+N7jRP4b5S9
73xOv5P7vpva41wxrK2ir5iNkpsLE97VL2JOHTW8nm7orblfiuxHLTCkTjEdd2pO
h8blI2IBizEB3JYn2BMkOAaZQOSjN8hd6Ye/b2B4AMEGWeXEoEv6eVy/orYKCluQ
XDqGn47Vce/SYmo5vfTB8VMt6nANx8PKvOP3IvjHInYEQBgiT6QrlUw3RRkXBp5s
clQkjYYwjAMVIXowcCrdhoKjMROzi6STShVwHwGL8MaZXqr8Vl6BUO9ckU0pY+4C
F000Hzwxi8lGEQ9k+P+BnYOEzH5osCty8lloKiQ/7ciX6T+CZHGJPGK/iY4YL8P5
C3CJWMsHCqST7DodNFJmdfZt99UfIMmEhshMDduU9AAH0tHCn8vOu0U6WvCtpyBp
BvHj68zteAtlYg==
=RZ4x
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Thomas Gleixner:
- Move futex code into kernel/futex/ and split up the kitchen sink into
seperate files to make integration of sys_futex_waitv() simpler.
- Add a new sys_futex_waitv() syscall which allows to wait on multiple
futexes.
The main use case is emulating Windows' WaitForMultipleObjects which
allows Wine to improve the performance of Windows Games. Also native
Linux games can benefit from this interface as this is a common wait
pattern for this kind of applications.
- Add context to ww_mutex_trylock() to provide a path for i915 to
rework their eviction code step by step without making lockdep upset
until the final steps of rework are completed. It's also useful for
regulator and TTM to avoid dropping locks in the non contended path.
- Lockdep and might_sleep() cleanups and improvements
- A few improvements for the RT substitutions.
- The usual small improvements and cleanups.
* tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
locking: Remove spin_lock_flags() etc
locking/rwsem: Fix comments about reader optimistic lock stealing conditions
locking: Remove rcu_read_{,un}lock() for preempt_{dis,en}able()
locking/rwsem: Disable preemption for spinning region
docs: futex: Fix kernel-doc references
futex: Fix PREEMPT_RT build
futex2: Documentation: Document sys_futex_waitv() uAPI
selftests: futex: Test sys_futex_waitv() wouldblock
selftests: futex: Test sys_futex_waitv() timeout
selftests: futex: Add sys_futex_waitv() test
futex,arm: Wire up sys_futex_waitv()
futex,x86: Wire up sys_futex_waitv()
futex: Implement sys_futex_waitv()
futex: Simplify double_lock_hb()
futex: Split out wait/wake
futex: Split out requeue
futex: Rename mark_wake_futex()
futex: Rename: match_futex()
futex: Rename: hb_waiter_{inc,dec,pending}()
futex: Split out PI futex
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmF8KDgQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmQ2D/wO0nH3U+3+OZChi3XUwYck9Dev3o6BANCF
ClATiK/kivZY0xY1r8J4ixirZo2gcjIMpWSC3JGYZ5LdspfmYGLUbMjfZsaeU23i
lAKaX1IqfArmHN76k3IU1bKCg7B0/LFwC0q9QTFWTSwNSs8RK/EZLJ61U1hEXUb3
OfIpaMmvPiMaU7yuPqhcZK14m1cg1srrLM4rFB/PqsWWStF07pHq32WeArGDAU0e
Fe0YSnYD7qqA5Qc37KwqjCTmmxKX5YZf7etIcA6p3DNmwcuQrVNzKoCH/ZEDijaD
E2bS/BWbN1x96+rtoEZfBYEaNIrkmJzmW6+fJ53OITbJF3KqP6V66erhqNcFYCzC
mhFlRe7voXb/8AP7zQqSIhK529BUBM36sQ6nF7EiQcDrfLc1z39mq6eblUxbknIA
DDPISD5Tseik9N9x0bc7vINseKyHI1E90VAU/XKADcuGbzLvehPx+2p+Iq5ch5Ah
oa1G3RdlWWQOZxphJHWJhu1qMfo5+FP9dFZj1aoo7b8Kbc/CedyoQe71cpIE5wNh
Jj/EpWJnuyKXwuTic2VYGC+6ezM9O5DSdqCfP3YuZky95VESyvRCKJYMMgBYRVdC
/LuxhnBXIY2G8An7ZTnX0kLCCvLbapIwa0NyA98/xeOngO843coJ6wn8ZmE9LJNH
kMmpCygUrA==
=QWC+
-----END PGP SIGNATURE-----
Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- mq-deadline accounting improvements (Bart)
- blk-wbt timer fix (Andrea)
- Untangle the block layer includes (Christoph)
- Rework the poll support to be bio based, which will enable adding
support for polling for bio based drivers (Christoph)
- Block layer core support for multi-actuator drives (Damien)
- blk-crypto improvements (Eric)
- Batched tag allocation support (me)
- Request completion batching support (me)
- Plugging improvements (me)
- Shared tag set improvements (John)
- Concurrent queue quiesce support (Ming)
- Cache bdev in ->private_data for block devices (Pavel)
- bdev dio improvements (Pavel)
- Block device invalidation and block size improvements (Xie)
- Various cleanups, fixes, and improvements (Christoph, Jackie,
Masahira, Tejun, Yu, Pavel, Zheng, me)
* tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block: (174 commits)
blk-mq-debugfs: Show active requests per queue for shared tags
block: improve readability of blk_mq_end_request_batch()
virtio-blk: Use blk_validate_block_size() to validate block size
loop: Use blk_validate_block_size() to validate block size
nbd: Use blk_validate_block_size() to validate block size
block: Add a helper to validate the block size
block: re-flow blk_mq_rq_ctx_init()
block: prefetch request to be initialized
block: pass in blk_mq_tags to blk_mq_rq_ctx_init()
block: add rq_flags to struct blk_mq_alloc_data
block: add async version of bio_set_polled
block: kill DIO_MULTI_BIO
block: kill unused polling bits in __blkdev_direct_IO()
block: avoid extra iter advance with async iocb
block: Add independent access ranges support
blk-mq: don't issue request directly in case that current is to be blocked
sbitmap: silence data race warning
blk-cgroup: synchronize blkg creation against policy deactivation
block: refactor bio_iov_bvec_set()
block: add single bio async direct IO helper
...
Consolidate the various helpers into a single blk_flush_plug helper that
takes a plk_plug and the from_scheduler bool and switch all callsites to
call it directly. Checks that the plug is non-NULL must be performed by
the caller, something that most already do anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20211020144119.142582-5-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit f1a0a376ca ("sched/core: Initialize the idle task with
preemption disabled") removed the init_idle() call from
idle_thread_get(). This was the sole call-path on hotplug that resets
the Shadow Call Stack (scs) Stack Pointer (sp).
Not resetting the scs-sp leads to scs overflow after enough hotplug
cycles. Therefore add an explicit scs_task_reset() to the hotplug code
to make sure the scs-sp does get reset on hotplug.
Fixes: f1a0a376ca ("sched/core: Initialize the idle task with preemption disabled")
Signed-off-by: Woody Lin <woodylin@google.com>
[peterz: Changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20211012083521.973587-1-woodylin@google.com
Only core.c needs blkdev.h, so move the #include statement there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210920123328.1399408-8-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Having a stable wchan means the process must be blocked and for it to
stay that way while performing stack unwinding.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> [arm]
Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64]
Link: https://lkml.kernel.org/r/20211008111626.332092234@infradead.org
There is a small race between copy_process() and sched_fork()
where child->sched_task_group point to an already freed pointer.
parent doing fork() | someone moving the parent
| to another cgroup
-------------------------------+-------------------------------
copy_process()
+ dup_task_struct()<1>
parent move to another cgroup,
and free the old cgroup. <2>
+ sched_fork()
+ __set_task_cpu()<3>
+ task_fork_fair()
+ sched_slice()<4>
In the worst case, this bug can lead to "use-after-free" and
cause panic as shown above:
(1) parent copy its sched_task_group to child at <1>;
(2) someone move the parent to another cgroup and free the old
cgroup at <2>;
(3) the sched_task_group and cfs_rq that belong to the old cgroup
will be accessed at <3> and <4>, which cause a panic:
[] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0
[] Oops: 0000 [#1] SMP PTI
[] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G OE --------- - - 4.18.0.x86_64+ #1
[] RIP: 0010:sched_slice+0x84/0xc0
[] Call Trace:
[] task_fork_fair+0x81/0x120
[] sched_fork+0x132/0x240
[] copy_process.part.5+0x675/0x20e0
[] ? __handle_mm_fault+0x63f/0x690
[] _do_fork+0xcd/0x3b0
[] do_syscall_64+0x5d/0x1d0
[] entry_SYSCALL_64_after_hwframe+0x65/0xca
[] RIP: 0033:0x7f04418cd7e1
Between cgroup_can_fork() and cgroup_post_fork(), the cgroup
membership and thus sched_task_group can't change. So update child's
sched_task_group at sched_post_fork() and move task_fork() and
__set_task_cpu() (where accees the sched_task_group) from sched_fork()
to sched_post_fork().
Fixes: 8323f26ce3 ("sched: Fix race in task_group")
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
Simplify and make wake_up_if_idle() more robust, also don't iterate
the whole machine with preempt_disable() in it's caller:
wake_up_all_idle_cpus().
This prepares for another wake_up_if_idle() user that needs a full
do_idle() cycle.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929152428.769328779@infradead.org
Give try_invoke_on_locked_down_task() a saner name and have it return
an int so that the caller might distinguish between different reasons
of failure.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929152428.649944917@infradead.org
Clarify and tighten try_invoke_on_locked_down_task().
Basically the function calls @func under task_rq_lock(), except it
avoids taking rq->lock when possible.
This makes calling @func unconditional (the function will get renamed
in a later patch to remove the try).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929152428.589323576@infradead.org
Neither wq_worker_sleeping() nor io_wq_worker_sleeping() require to be invoked
with preemption disabled:
- The worker flag checks operations only need to be serialized against
the worker thread itself.
- The accounting and worker pool operations are serialized with locks.
which means that disabling preemption has neither a reason nor a
value. Remove it and update the stale comment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Link: https://lkml.kernel.org/r/8735pnafj7.ffs@tglx
Doing cleanups in the tail of schedule() is a latency punishment for the
incoming task. The point of invoking kprobes_task_flush() for a dead task
is that the instances are returned and cannot leak when __schedule() is
kprobed.
Move it into the delayed cleanup.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.537994026@linutronix.de
Batched task migrations are a source for large latencies as they keep the
scheduler from running while processing the migrations.
Limit the batch size to 8 instead of 32 when running on a RT enabled
kernel.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.425097596@linutronix.de
mmdrop() is invoked from finish_task_switch() by the incoming task to drop
the mm which was handed over by the previous task. mmdrop() can be quite
expensive which prevents an incoming real-time task from getting useful
work done.
Provide mmdrop_sched() which maps to mmdrop() on !RT kernels. On RT kernels
it delagates the eventually required invocation of __mmdrop() to RCU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.648582026@linutronix.de
Currently the boot defined preempt behaviour (aka dynamic preempt)
selects full preemption by default when the "preempt=" boot parameter
is omitted. However distros may rather want to default to either
no preemption or voluntary preemption.
To provide with this flexibility, make dynamic preemption a visible
Kconfig option and adapt the preemption behaviour selected by the user
to either static or dynamic preemption.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210914103134.11309-1-frederic@kernel.org
If we want to use the schedstats facility to trace other sched classes, we
should make it independent of fair sched class. The struct sched_statistics
is the schedular statistics of a task_struct or a task_group. So we can
move it into struct task_struct and struct task_group to achieve the goal.
After the patch, schestats are orgnized as follows,
struct task_struct {
...
struct sched_entity se;
struct sched_rt_entity rt;
struct sched_dl_entity dl;
...
struct sched_statistics stats;
...
};
Regarding the task group, schedstats is only supported for fair group
sched, and a new struct sched_entity_stats is introduced, suggested by
Peter -
struct sched_entity_stats {
struct sched_entity se;
struct sched_statistics stats;
} __no_randomize_layout;
Then with the se in a task_group, we can easily get the stats.
The sched_statistics members may be frequently modified when schedstats is
enabled, in order to avoid impacting on random data which may in the same
cacheline with them, the struct sched_statistics is defined as cacheline
aligned.
As this patch changes the core struct of scheduler, so I verified the
performance it may impact on the scheduler with 'perf bench sched
pipe', suggested by Mel. Below is the result, in which all the values
are in usecs/op.
Before After
kernel.sched_schedstats=0 5.2~5.4 5.2~5.4
kernel.sched_schedstats=1 5.3~5.5 5.3~5.5
[These data is a little difference with the earlier version, that is
because my old test machine is destroyed so I have to use a new
different test machine.]
Almost no impact on the sched performance.
No functional change.
[lkp@intel.com: reported build failure in earlier version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
Two new statistics are introduced to show the internal of burst feature
and explain why burst helps or not.
nr_bursts: number of periods bandwidth burst occurs
burst_time: cumulative wall-time (in nanoseconds) that any cpus has
used above quota in respective periods
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210830032215.16302-2-changhuaixin@linux.alibaba.com
Tao suggested a two-pass task selection to avoid the retry loop.
Not only does it avoid the retry loop, it results in *much* simpler
code.
This also fixes an issue spotted by Josh Don where, for SMT3+, we can
forget to update max on the first pass and get to do an extra round.
Suggested-by: Tao Zhou <tao.zhou@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Don <joshdon@google.com>
Reviewed-by: Vineeth Pillai (Microsoft) <vineethrp@gmail.com>
Link: https://lkml.kernel.org/r/YSS9+k1teA9oPEKl@hirez.programming.kicks-ass.net
With PREEMPT_RT enabled all hrtimers callbacks will be invoked in
softirq mode unless they are explicitly marked as HRTIMER_MODE_HARD.
During boot kthread_bind() is used for the creation of per-CPU threads
and then hangs in wait_task_inactive() if the ksoftirqd is not
yet up and running.
The hang disappeared since commit
26c7295be0 ("kthread: Do not preempt current task if it is going to call schedule()")
but enabling function trace on boot reliably leads to the freeze on boot
behaviour again.
The timer in wait_task_inactive() can not be directly used by a user
interface to abuse it and create a mass wake up of several tasks at the
same time leading to long sections with disabled interrupts.
Therefore it is safe to make the timer HRTIMER_MODE_REL_HARD.
Switch the timer to HRTIMER_MODE_REL_HARD.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210826170408.vm7rlj7odslshwch@linutronix.de
For !RT kernels RCU nest depth in __might_resched() is always expected to
be 0, but on RT kernels it can be non zero while the preempt count is
expected to be always 0.
Instead of playing magic games in interpreting the 'preempt_offset'
argument, rename it to 'offsets' and use the lower 8 bits for the expected
preempt count, allow to hand in the expected RCU nest depth in the upper
bits and adopt the __might_resched() code and related checks and printks.
The affected call sites are updated in subsequent steps.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.243232823@linutronix.de
might_sleep() output is pretty informative, but can be confusing at times
especially with PREEMPT_RCU when the check triggers due to a voluntary
sleep inside a RCU read side critical section:
BUG: sleeping function called from invalid context at kernel/test.c:110
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
Preemption disabled at: migrate_disable+0x33/0xa0
in_atomic() is 0, but it still tells that preemption was disabled at
migrate_disable(), which is completely useless because preemption is not
disabled. But the interesting information to decode the above, i.e. the RCU
nesting depth, is not printed.
That becomes even more confusing when might_sleep() is invoked from
cond_resched_lock() within a RCU read side critical section. Here the
expected preemption count is 1 and not 0.
BUG: sleeping function called from invalid context at kernel/test.c:131
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
Preemption disabled at: test_cond_lock+0xf3/0x1c0
So in_atomic() is set, which is expected as the caller holds a spinlock,
but it's unclear why this is broken and the preempt disable IP is just
pointing at the correct place, i.e. spin_lock(), which is obviously not
helpful either.
Make that more useful in general:
- Print preempt_count() and the expected value
and for the CONFIG_PREEMPT_RCU case:
- Print the RCU read side critical section nesting depth
- Print the preempt disable IP only when preempt count
does not have the expected value.
So the might_sleep() dump from a within a preemptible RCU read side
critical section becomes:
BUG: sleeping function called from invalid context at kernel/test.c:110
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
and the cond_resched_lock() case becomes:
BUG: sleeping function called from invalid context at kernel/test.c:141
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
preempt_count: 1, expected: 1
RCU nest depth: 1, expected: 0
which makes is pretty obvious what's going on. For all other cases the
preempt disable IP is still printed as before:
BUG: sleeping function called from invalid context at kernel/test.c: 156
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
Preemption disabled at:
[<ffffffff82b48326>] test_might_sleep+0xbe/0xf8
BUG: sleeping function called from invalid context at kernel/test.c: 163
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 1, expected: 0
Preemption disabled at:
[<ffffffff82b48326>] test_might_sleep+0x1e4/0x280
This also prepares to provide a better debugging output for RT enabled
kernels and their spinlock substitutions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.181022656@linutronix.de
__might_sleep() vs. ___might_sleep() is hard to distinguish. Aside of that
the three underscore variant is exposed to provide a checkpoint for
rescheduling points which are distinct from blocking points.
They are semantically a preemption point which means that scheduling is
state preserving. A real blocking operation, e.g. mutex_lock(), wait*(),
which cannot preserve a task state which is not equal to RUNNING.
While technically blocking on a "sleeping" spinlock in RT enabled kernels
falls into the voluntary scheduling category because it has to wait until
the contended spin/rw lock becomes available, the RT lock substitution code
can semantically be mapped to a voluntary preemption because the RT lock
substitution code and the scheduler are providing mechanisms to preserve
the task state and to take regular non-lock related wakeups into account.
Rename ___might_sleep() to __might_resched() to make the distinction of
these functions clear.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165357.928693482@linutronix.de
- Make sure the run-queue balance callback is invoked only on the outgoing CPU
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmE9wk4ACgkQEsHwGGHe
VUqsGw/+PxWOebjvms0Q0q7JQbp+F/nzAAA/xukjc2IXIsdDwoNYL3HI8gm7B9xz
VM5pz97+GOHsT/GramSw1coN9HbkB+k4OiDrwENx4wnxELVWPZpzyhWeMxsb5FDJ
laQVbOfsemzRAP/b1LY6Qpo0RRDo9KO0a1jpYPGOPXH+Gagj/iLSnAERFBx/JVrD
V1FCz40OHDT7lmCKAS2jb0mHqu8SwDz6nAogUmvQkTI3LlcSxrWW/83Zsx52jsjr
PZUaLHKcLRBeEoYs1aV1sPxM0LIrtpUHWDRNhMfLpHYXAMPQz5NV3acb5+nrxs4I
4VfH5oHC/AvWnqPNsD/rHdLrtRuDzxrc0QM7Hptty8q9xaLl4j9MfDieIOmu4lX/
Yg/KR77+141KT7Z2SnKMO4nUiLKsIjkHbAkKizl0xpSorLva3SHKQ+S/F8YWbXTQ
I1uYs5wnGt6STVZRc2m9zjK5TesNSnevUNIrCsqteel8msjA63Ya28tqL2TjQmYA
U/WMFGStJe3899TAHlkYk+uu0Ywa0UdwYsF7j0dOuJsJoEpu2uRcpuok0CAiY4Jd
fa/vLTAtiYhL7CpKwFg7TwApwlvQfnbkE8KDcvDn0jNBxrL7F9v8G8p+gaw3l1zW
H9CbEgVLbw/2hEDL/v1YzMkCGDF7Ye83t2buSZU/+XDNT+CpgMM=
=ExIs
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v5.15_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
- Make sure the idle timer expires in hardirq context, on PREEMPT_RT
- Make sure the run-queue balance callback is invoked only on the
outgoing CPU
* tag 'sched_urgent_for_v5.15_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Prevent balance_push() on remote runqueues
sched/idle: Make the idle timer expire in hard interrupt context
sched_setscheduler() and rt_mutex_setprio() invoke the run-queue balance
callback after changing priorities or the scheduling class of a task. The
run-queue for which the callback is invoked can be local or remote.
That's not a problem for the regular rq::push_work which is serialized with
a busy flag in the run-queue struct, but for the balance_push() work which
is only valid to be invoked on the outgoing CPU that's wrong. It not only
triggers the debug warning, but also leaves the per CPU variable push_work
unprotected, which can result in double enqueues on the stop machine list.
Remove the warning and validate that the function is invoked on the
outgoing CPU.
Fixes: ae79270232 ("sched: Optimize finish_lock_switch()")
Reported-by: Sebastian Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/87zgt1hdw7.ffs@tglx
The regular pile:
- A few improvements to the mutex code
- Documentation updates for atomics to clarify the difference between
cmpxchg() and try_cmpxchg() and to explain the forward progress
expectations.
- Simplification of the atomics fallback generator
- The addition of arch_atomic_long*() variants and generic arch_*()
bitops based on them.
- Add the missing might_sleep() invocations to the down*() operations of
semaphores.
The PREEMPT_RT locking core:
- Scheduler updates to support the state preserving mechanism for
'sleeping' spin- and rwlocks on RT. This mechanism is carefully
preserving the state of the task when blocking on a 'sleeping' spin- or
rwlock and takes regular wake-ups targeted at the same task into
account. The preserved or updated (via a regular wakeup) state is
restored when the lock has been acquired.
- Restructuring of the rtmutex code so it can be utilized and extended
for the RT specific lock variants.
- Restructuring of the ww_mutex code to allow sharing of the ww_mutex
specific functionality for rtmutex based ww_mutexes.
- Header file disentangling to allow substitution of the regular lock
implementations with the PREEMPT_RT variants without creating an
unmaintainable #ifdef mess.
- Shared base code for the PREEMPT_RT specific rw_semaphore and rwlock
implementations. Contrary to the regular rw_semaphores and rwlocks the
PREEMPT_RT implementation is writer unfair because it is infeasible to
do priority inheritance on multiple readers. Experience over the years
has shown that real-time workloads are not the typical workloads which
are sensitive to writer starvation. The alternative solution would be
to allow only a single reader which has been tried and discarded as it
is a major bottleneck especially for mmap_sem. Aside of that many of
the writer starvation critical usage sites have been converted to a
writer side mutex/spinlock and RCU read side protections in the past
decade so that the issue is less prominent than it used to be.
- The actual rtmutex based lock substitutions for PREEMPT_RT enabled
kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
rwlock_t. The spin/rw_lock*() functions disable migration across the
critical section to preserve the existing semantics vs. per CPU
variables.
- Rework of the futex REQUEUE_PI mechanism to handle the case of early
wake-ups which interleave with a re-queue operation to prevent the
situation that a task would be blocked on both the rtmutex associated
to the outer futex and the rtmutex based hash bucket spinlock.
While this situation cannot happen on !RT enabled kernels the changes
make the underlying concurrency problems easier to understand in
general. As a result the difference between !RT and RT kernels is
reduced to the handling of waiting for the critical section. !RT
kernels simply spin-wait as before and RT kernels utilize rcu_wait().
- The substitution of local_lock for PREEMPT_RT with a spinlock which
protects the critical section while staying preemptible. The CPU
locality is established by disabling migration.
The underlying concepts of this code have been in use in PREEMPT_RT for
way more than a decade. The code has been refactored several times over
the years and this final incarnation has been optimized once again to be
as non-intrusive as possible, i.e. the RT specific parts are mostly
isolated.
It has been extensively tested in the 5.14-rt patch series and it has
been verified that !RT kernels are not affected by these changes.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmEsnuMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaeWD/wLNMoAZXslS0prfr64ANjRgLXIqMFA
r6xgioiwxxaxbmZ/GNPraoLC//ENo6mwobuUovq8yKljv2oBu6AmlUkBwrmMBc8Q
nnm7jjGM3bZ1REup7rWERnjdOZfdGVSL5CUAAfthyC744XmXaepwrrrqfXG22GxJ
QwLXBTAwXFVDxKfUjDKzEo5zgLNHRvHbzc0DpTYYn6WcuDJOmlyWnhfDTu2mNG9Z
rqjqy+OgOUEUprQDgitk5hedfeic2kPm1mxxZrXkpkuPef5be2inQq2siC7GxR4g
0AKeUsMFgFmSqiD4iJTALJ+8WXkgMnD9VgooeWHk4OaqZfaGzi/iwRSnrlnf7+OV
GTmrsmX+TX/Wz2BDjB+3zylQnYqYh3quE5w4UO6uUyJXfdhlnvsjVc8bEajDFjeM
yUapaWxdAri7k2n+vjXQthAngxtYPgXtFbZPoOl109JcDcG6jJsCdM5TdenegaRs
WeUh05JqrH8+qI+Nwzc4rO+PmKHQ8on2wKdgLp11dviiPOf8OguH65nDQSGZ/fGv
7cnD9A1/MUd0sdrvc52AqkIYxh+Rp9GnCs1xA82JsTXgAPcXqAWjjR2JFPHL4neV
eW2upZekl8lMR7hkfcQbhe4MVjQIjff3iFOkQXittxMzfzFdi0tly8xB8AzpTHOx
h91MycvmMR2zRw==
=IEqE
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking and atomics updates from Thomas Gleixner:
"The regular pile:
- A few improvements to the mutex code
- Documentation updates for atomics to clarify the difference between
cmpxchg() and try_cmpxchg() and to explain the forward progress
expectations.
- Simplification of the atomics fallback generator
- The addition of arch_atomic_long*() variants and generic arch_*()
bitops based on them.
- Add the missing might_sleep() invocations to the down*() operations
of semaphores.
The PREEMPT_RT locking core:
- Scheduler updates to support the state preserving mechanism for
'sleeping' spin- and rwlocks on RT.
This mechanism is carefully preserving the state of the task when
blocking on a 'sleeping' spin- or rwlock and takes regular wake-ups
targeted at the same task into account. The preserved or updated
(via a regular wakeup) state is restored when the lock has been
acquired.
- Restructuring of the rtmutex code so it can be utilized and
extended for the RT specific lock variants.
- Restructuring of the ww_mutex code to allow sharing of the ww_mutex
specific functionality for rtmutex based ww_mutexes.
- Header file disentangling to allow substitution of the regular lock
implementations with the PREEMPT_RT variants without creating an
unmaintainable #ifdef mess.
- Shared base code for the PREEMPT_RT specific rw_semaphore and
rwlock implementations.
Contrary to the regular rw_semaphores and rwlocks the PREEMPT_RT
implementation is writer unfair because it is infeasible to do
priority inheritance on multiple readers. Experience over the years
has shown that real-time workloads are not the typical workloads
which are sensitive to writer starvation.
The alternative solution would be to allow only a single reader
which has been tried and discarded as it is a major bottleneck
especially for mmap_sem. Aside of that many of the writer
starvation critical usage sites have been converted to a writer
side mutex/spinlock and RCU read side protections in the past
decade so that the issue is less prominent than it used to be.
- The actual rtmutex based lock substitutions for PREEMPT_RT enabled
kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and
rwlock_t. The spin/rw_lock*() functions disable migration across
the critical section to preserve the existing semantics vs per-CPU
variables.
- Rework of the futex REQUEUE_PI mechanism to handle the case of
early wake-ups which interleave with a re-queue operation to
prevent the situation that a task would be blocked on both the
rtmutex associated to the outer futex and the rtmutex based hash
bucket spinlock.
While this situation cannot happen on !RT enabled kernels the
changes make the underlying concurrency problems easier to
understand in general. As a result the difference between !RT and
RT kernels is reduced to the handling of waiting for the critical
section. !RT kernels simply spin-wait as before and RT kernels
utilize rcu_wait().
- The substitution of local_lock for PREEMPT_RT with a spinlock which
protects the critical section while staying preemptible. The CPU
locality is established by disabling migration.
The underlying concepts of this code have been in use in PREEMPT_RT for
way more than a decade. The code has been refactored several times over
the years and this final incarnation has been optimized once again to be
as non-intrusive as possible, i.e. the RT specific parts are mostly
isolated.
It has been extensively tested in the 5.14-rt patch series and it has
been verified that !RT kernels are not affected by these changes"
* tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (92 commits)
locking/rtmutex: Return success on deadlock for ww_mutex waiters
locking/rtmutex: Prevent spurious EDEADLK return caused by ww_mutexes
locking/rtmutex: Dequeue waiter on ww_mutex deadlock
locking/rtmutex: Dont dereference waiter lockless
locking/semaphore: Add might_sleep() to down_*() family
locking/ww_mutex: Initialize waiter.ww_ctx properly
static_call: Update API documentation
locking/local_lock: Add PREEMPT_RT support
locking/spinlock/rt: Prepare for RT local_lock
locking/rtmutex: Add adaptive spinwait mechanism
locking/rtmutex: Implement equal priority lock stealing
preempt: Adjust PREEMPT_LOCK_OFFSET for RT
locking/rtmutex: Prevent lockdep false positive with PI futexes
futex: Prevent requeue_pi() lock nesting issue on RT
futex: Simplify handle_early_requeue_pi_wakeup()
futex: Reorder sanity checks in futex_requeue()
futex: Clarify comment in futex_requeue()
futex: Restructure futex_requeue()
futex: Correct the number of requeued waiters for PI
futex: Remove bogus condition for requeue PI
...
- The biggest change in this cycle is scheduler support for asymmetric
scheduling affinity, to support the execution of legacy 32-bit tasks on
AArch32 systems that also have 64-bit-only CPUs.
Architectures can fill in this functionality by defining their
own task_cpu_possible_mask(p). When this is done, the scheduler will
make sure the task will only be scheduled on CPUs that support it.
(The actual arm64 specific changes are not part of this tree.)
For other architectures there will be no change in functionality.
- Add cgroup SCHED_IDLE support
- Increase node-distance flexibility & delay determining it until a CPU
is brought online. (This enables platforms where node distance isn't
final until the CPU is only.)
- Deadline scheduler enhancements & fixes
- Misc fixes & cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmEsrDgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gMxBAAmzXPnDm1pDBBUaEwc+DynNGHNxZcBO5E
CaNyfywp4GMA+OC3JzUgDg1B9uvKQRdBGtv6SZ8OcyhJMfmkEvjt5/wYUrcdtQVP
TA2lt80/Is8LQMnvcz7X0gmsLt+fXWQTF8ik1KT4wsi/k03Xw8BH11zHct6sV2QN
NNQ+7BEjqU1HA1UXJFiaoGtWF0gdh29VyE5dSzfAis79L0XUQadS512LJKin/AK0
wYz8E+L7QIrjhfX9FQdOrR6da4TK6jAXyEY6a9dpaMHnFdtxuwhT4/BPtovNTeeY
yxEZm3qSZbpghWHsMEa6Z4GIeLE6aNi3wcHt10fgdZDdotSRsNZuF6gi4A8nhRC+
6wm+fCcFGEIBCL6eE/16Wms6YMdFfuiEAgtJGNy7GGyfH3/mS6u8eylXbLZncYXn
DFHY+xUvmVZSzoPzcnYXEy4FB3kywNL7WBFxyhdXf5/EvWmmtHi4K3jVQ8jaqvhL
MDk3NX9Hd0ariff3zUltWhMY5ouj6bIbBZmWWnD3s1xQT68VvE563cq0qH15dlnr
j5M71eNRWvoOdZKzflgjRZzmdQtsZQ51tiMA6W6ZRfwYkHjb70qiia0r5GFf41X1
MYelmcaA8+RjKrQ5etxzzDjoXl0xDXiZric6gRQHjG1Y1Zm2rVaoD+vkJGD5TQJ0
2XTOGQgAxh4=
=VdGE
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- The biggest change in this cycle is scheduler support for asymmetric
scheduling affinity, to support the execution of legacy 32-bit tasks
on AArch32 systems that also have 64-bit-only CPUs.
Architectures can fill in this functionality by defining their own
task_cpu_possible_mask(p). When this is done, the scheduler will make
sure the task will only be scheduled on CPUs that support it.
(The actual arm64 specific changes are not part of this tree.)
For other architectures there will be no change in functionality.
- Add cgroup SCHED_IDLE support
- Increase node-distance flexibility & delay determining it until a CPU
is brought online. (This enables platforms where node distance isn't
final until the CPU is only.)
- Deadline scheduler enhancements & fixes
- Misc fixes & cleanups.
* tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
eventfd: Make signal recursion protection a task bit
sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED case
sched: Introduce dl_task_check_affinity() to check proposed affinity
sched: Allow task CPU affinity to be restricted on asymmetric systems
sched: Split the guts of sched_setaffinity() into a helper function
sched: Introduce task_struct::user_cpus_ptr to track requested affinity
sched: Reject CPU affinity changes based on task_cpu_possible_mask()
cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()
cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus()
cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1
sched: Introduce task_cpu_possible_mask() to limit fallback rq selection
sched: Cgroup SCHED_IDLE support
sched/topology: Skip updating masks for non-online nodes
sched: Replace deprecated CPU-hotplug functions.
sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS
sched: Fix UCLAMP_FLAG_IDLE setting
sched/deadline: Fix missing clock update in migrate_task_rq_dl()
sched/fair: Avoid a second scan of target in select_idle_cpu
sched/fair: Use prev instead of new target as recent_used_cpu
sched: Don't report SCHED_FLAG_SUGOV in sched_getattr()
...
Pull RCU updates from Paul McKenney:
"RCU changes for this cycle were:
- Documentation updates
- Miscellaneous fixes
- Offloaded-callbacks updates
- Updates to the nolibc library
- Tasks-RCU updates
- In-kernel torture-test updates
- Torture-test scripting, perhaps most notably the pinning of
torture-test guest OSes so as to force differences in memory
latency. For example, in a two-socket system, a four-CPU guest OS
will have one pair of its CPUs pinned to threads in a single core
on one socket and the other pair pinned to threads in a single core
on the other socket. This approach proved able to force race
conditions that earlier testing missed. Some of these race
conditions are still being tracked down"
* 'core-rcu.2021.08.28a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (61 commits)
torture: Replace deprecated CPU-hotplug functions.
rcu: Replace deprecated CPU-hotplug functions
rcu: Print human-readable message for schedule() in RCU reader
rcu: Explain why rcu_all_qs() is a stub in preemptible TREE RCU
rcu: Use per_cpu_ptr to get the pointer of per_cpu variable
rcu: Remove useless "ret" update in rcu_gp_fqs_loop()
rcu: Mark accesses in tree_stall.h
rcu: Make rcu_gp_init() and rcu_gp_fqs_loop noinline to conserve stack
rcu: Mark lockless ->qsmask read in rcu_check_boost_fail()
srcutiny: Mark read-side data races
rcu: Start timing stall repetitions after warning complete
rcu: Do not disable GP stall detection in rcu_cpu_stall_reset()
rcu/tree: Handle VM stoppage in stall detection
rculist: Unify documentation about missing list_empty_rcu()
rcu: Mark accesses to ->rcu_read_lock_nesting
rcu: Weaken ->dynticks accesses and updates
rcu: Remove special bit at the bottom of the ->dynticks counter
rcu: Fix stall-warning deadlock due to non-release of rcu_node ->lock
rcu: Fix to include first blocked task in stall warning
torture: Make kvm-test-1-run-qemu.sh check for reboot loops
...
In preparation for restricting the affinity of a task during execve()
on arm64, introduce a new dl_task_check_affinity() helper function to
give an indication as to whether the restricted mask is admissible for
a deadline task.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lore.kernel.org/r/20210730112443.23245-10-will@kernel.org
Asymmetric systems may not offer the same level of userspace ISA support
across all CPUs, meaning that some applications cannot be executed by
some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do
not feature support for 32-bit applications on both clusters.
Although userspace can carefully manage the affinity masks for such
tasks, one place where it is particularly problematic is execve()
because the CPU on which the execve() is occurring may be incompatible
with the new application image. In such a situation, it is desirable to
restrict the affinity mask of the task and ensure that the new image is
entered on a compatible CPU. From userspace's point of view, this looks
the same as if the incompatible CPUs have been hotplugged off in the
task's affinity mask. Similarly, if a subsequent execve() reverts to
a compatible image, then the old affinity is restored if it is still
valid.
In preparation for restricting the affinity mask for compat tasks on
arm64 systems without uniform support for 32-bit applications, introduce
{force,relax}_compatible_cpus_allowed_ptr(), which respectively restrict
and restore the affinity mask for a task based on the compatible CPUs.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210730112443.23245-9-will@kernel.org
In preparation for replaying user affinity requests using a saved mask,
split sched_setaffinity() up so that the initial task lookup and
security checks are only performed when the request is coming directly
from userspace.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Link: https://lore.kernel.org/r/20210730112443.23245-8-will@kernel.org
In preparation for saving and restoring the user-requested CPU affinity
mask of a task, add a new cpumask_t pointer to 'struct task_struct'.
If the pointer is non-NULL, then the mask is copied across fork() and
freed on task exit.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Link: https://lore.kernel.org/r/20210730112443.23245-7-will@kernel.org
Reject explicit requests to change the affinity mask of a task via
set_cpus_allowed_ptr() if the requested mask is not a subset of the
mask returned by task_cpu_possible_mask(). This ensures that the
'cpus_mask' for a given task cannot contain CPUs which are incapable of
executing it, except in cases where the affinity is forced.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210730112443.23245-6-will@kernel.org
select_fallback_rq() only needs to recheck for an allowed CPU if the
affinity mask of the task has changed since the last check.
Return a 'bool' from cpuset_cpus_allowed_fallback() to indicate whether
the affinity mask was updated, and use this to elide the allowed check
when the mask has been left alone.
No functional change.
Suggested-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20210730112443.23245-5-will@kernel.org
Asymmetric systems may not offer the same level of userspace ISA support
across all CPUs, meaning that some applications cannot be executed by
some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do
not feature support for 32-bit applications on both clusters.
On such a system, we must take care not to migrate a task to an
unsupported CPU when forcefully moving tasks in select_fallback_rq()
in response to a CPU hot-unplug operation.
Introduce a task_cpu_possible_mask() hook which, given a task argument,
allows an architecture to return a cpumask of CPUs that are capable of
executing that task. The default implementation returns the
cpu_possible_mask, since sane machines do not suffer from per-cpu ISA
limitations that affect scheduling. The new mask is used when selecting
the fallback runqueue as a last resort before forcing a migration to the
first active CPU.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210730112443.23245-2-will@kernel.org
This extends SCHED_IDLE to cgroups.
Interface: cgroup/cpu.idle.
0: default behavior
1: SCHED_IDLE
Extending SCHED_IDLE to cgroups means that we incorporate the existing
aspects of SCHED_IDLE; a SCHED_IDLE cgroup will count all of its
descendant threads towards the idle_h_nr_running count of all of its
ancestor cgroups. Thus, sched_idle_rq() will work properly.
Additionally, SCHED_IDLE cgroups are configured with minimum weight.
There are two key differences between the per-task and per-cgroup
SCHED_IDLE interface:
- The cgroup interface allows tasks within a SCHED_IDLE hierarchy to
maintain their relative weights. The entity that is "idle" is the
cgroup, not the tasks themselves.
- Since the idle entity is the cgroup, our SCHED_IDLE wakeup preemption
decision is not made by comparing the current task with the woken
task, but rather by comparing their matching sched_entity.
A typical use-case for this is a user that creates an idle and a
non-idle subtree. The non-idle subtree will dominate competition vs
the idle subtree, but the idle subtree will still be high priority vs
other users on the system. The latter is accomplished via comparing
matching sched_entity in the waken preemption path (this could also be
improved by making the sched_idle_rq() decision dependent on the
perspective of a specific task).
For now, we maintain the existing SCHED_IDLE semantics. Future patches
may make improvements that extend how we treat SCHED_IDLE entities.
The per-task_group idle field is an integer that currently only holds
either a 0 or a 1. This is explicitly typed as an integer to allow for
further extensions to this API. For example, a negative value may
indicate a highly latency-sensitive cgroup that should be preferred
for preemption/placement/etc.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210730020019.1487127-2-joshdon@google.com
Eugene tripped over the case where rq_lock(), as called in a
for_each_possible_cpu() loop came apart because rq->core hadn't been
setup yet.
This is a somewhat unusual, but valid case.
Rework things such that rq->core is initialized to point at itself. IOW
initialize each CPU as a single threaded Core. CPU online will then join
the new CPU (thread) to an existing Core where needed.
For completeness sake, have CPU offline fully undo the state so as to
not presume the topology will match the next time it comes online.
Fixes: 9edeaea1bc ("sched: Core-wide rq->lock")
Reported-by: Eugene Syromiatnikov <esyr@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Don <joshdon@google.com>
Tested-by: Eugene Syromiatnikov <esyr@redhat.com>
Link: https://lkml.kernel.org/r/YR473ZGeKqMs6kw+@hirez.programming.kicks-ass.net
RT enabled kernels substitute spin/rwlocks with 'sleeping' variants based
on rtmutexes. Blocking on such a lock is similar to preemption versus:
- I/O scheduling and worker handling, because these functions might block
on another substituted lock, or come from a lock contention within these
functions.
- RCU considers this like a preemption, because the task might be in a read
side critical section.
Add a separate scheduling point for this, and hand a new scheduling mode
argument to __schedule() which allows, along with separate mode masks, to
handle this gracefully from within the scheduler, without proliferating that
to other subsystems like RCU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.372319055@linutronix.de
PREEMPT_RT needs to hand a special state into __schedule() when a task
blocks on a 'sleeping' spin/rwlock. This is required to handle
rcu_note_context_switch() correctly without having special casing in the
RCU code. From an RCU point of view the blocking on the sleeping spinlock
is equivalent to preemption, because the task might be in a read side
critical section.
schedule_debug() also has a check which would trigger with the !preempt
case, but that could be handled differently.
To avoid adding another argument and extra checks which cannot be optimized
out by the compiler, the following solution has been chosen:
- Replace the boolean 'preempt' argument with an unsigned integer
'sched_mode' argument and define constants to hand in:
(0 == no preemption, 1 = preemption).
- Add two masks to apply on that mode: one for the debug/rcu invocations,
and one for the actual scheduling decision.
For a non RT kernel these masks are UINT_MAX, i.e. all bits are set,
which allows the compiler to optimize the AND operation out, because it is
not masking out anything. IOW, it's not different from the boolean.
RT enabled kernels will define these masks separately.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.315473019@linutronix.de
Waiting for spinlocks and rwlocks on non RT enabled kernels is task::state
preserving. Any wakeup which matches the state is valid.
RT enabled kernels substitutes them with 'sleeping' spinlocks. This creates
an issue vs. task::__state.
In order to block on the lock, the task has to overwrite task::__state and a
consecutive wakeup issued by the unlocker sets the state back to
TASK_RUNNING. As a consequence the task loses the state which was set
before the lock acquire and also any regular wakeup targeted at the task
while it is blocked on the lock.
To handle this gracefully, add a 'saved_state' member to task_struct which
is used in the following way:
1) When a task blocks on a 'sleeping' spinlock, the current state is saved
in task::saved_state before it is set to TASK_RTLOCK_WAIT.
2) When the task unblocks and after acquiring the lock, it restores the saved
state.
3) When a regular wakeup happens for a task while it is blocked then the
state change of that wakeup is redirected to operate on task::saved_state.
This is also required when the task state is running because the task
might have been woken up from the lock wait and has not yet restored
the saved state.
To make it complete, provide the necessary helpers to save and restore the
saved state along with the necessary documentation how the RT lock blocking
is supposed to work.
For non-RT kernels there is no functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.258751046@linutronix.de
RT kernels have a slightly more complicated handling of wakeups due to
'sleeping' spin/rwlocks. If a task is blocked on such a lock then the
original state of the task is preserved over the blocking period, and
any regular (non lock related) wakeup has to be targeted at the
saved state to ensure that these wakeups are not lost.
Once the task acquires the lock it restores the task state from the saved state.
To avoid cluttering try_to_wake_up() with that logic, split the wakeup
state check out into an inline helper and use it at both places where
task::__state is checked against the state argument of try_to_wake_up().
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210815211302.088945085@linutronix.de
The functions get_online_cpus() and put_online_cpus() have been
deprecated during the CPU hotplug rework. They map directly to
cpus_read_lock() and cpus_read_unlock().
Replace deprecated CPU-hotplug functions with the official version.
The behavior remains unchanged.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210803141621.780504-33-bigeasy@linutronix.de
The cond_resched() function reports an RCU quiescent state only in
non-preemptible TREE RCU implementation. This commit therefore adds a
comment explaining why cond_resched() does nothing in preemptible kernels.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
SCHED_FLAG_KEEP_PARAMS can be passed to sched_setattr to specify that
the call must not touch scheduling parameters (nice or priority). This
is particularly handy for uclamp when used in conjunction with
SCHED_FLAG_KEEP_POLICY as that allows to issue a syscall that only
impacts uclamp values.
However, sched_setattr always checks whether the priorities and nice
values passed in sched_attr are valid first, even if those never get
used down the line. This is useless at best since userspace can
trivially bypass this check to set the uclamp values by specifying low
priorities. However, it is cumbersome to do so as there is no single
expression of this that skips both RT and CFS checks at once. As such,
userspace needs to query the task policy first with e.g. sched_getattr
and then set sched_attr.sched_priority accordingly. This is racy and
slower than a single call.
As the priority and nice checks are useless when SCHED_FLAG_KEEP_PARAMS
is specified, simply inherit them in this case to match the policy
inheritance of SCHED_FLAG_KEEP_POLICY.
Reported-by: Wei Wang <wvw@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Link: https://lore.kernel.org/r/20210805102154.590709-3-qperret@google.com
The UCLAMP_FLAG_IDLE flag is set on a runqueue when dequeueing the last
uclamp active task (that is, when buckets.tasks reaches 0 for all
buckets) to maintain the last uclamp.max and prevent blocked util from
suddenly becoming visible.
However, there is an asymmetry in how the flag is set and cleared which
can lead to having the flag set whilst there are active tasks on the rq.
Specifically, the flag is cleared in the uclamp_rq_inc() path, which is
called at enqueue time, but set in uclamp_rq_dec_id() which is called
both when dequeueing a task _and_ in the update_uclamp_active() path. As
a result, when both uclamp_rq_{dec,ind}_id() are called from
update_uclamp_active(), the flag ends up being set but not cleared,
hence leaving the runqueue in a broken state.
Fix this by clearing the flag in update_uclamp_active() as well.
Fixes: e496187da7 ("sched/uclamp: Enforce last task's UCLAMP_MAX")
Reported-by: Rick Yiu <rickyiu@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20210805102154.590709-2-qperret@google.com
SCHED_FLAG_SUGOV is supposed to be a kernel-only flag that userspace
cannot interact with. However, sched_getattr() currently reports it
in sched_flags if called on a sugov worker even though it is not
actually defined in a UAPI header. To avoid this, make sure to
clean-up the sched_flags field in sched_getattr() before returning to
userspace.
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210727101103.2729607-3-qperret@google.com
Double enqueues in rt runqueues (list) have been reported while running
a simple test that spawns a number of threads doing a short sleep/run
pattern while being concurrently setscheduled between rt and fair class.
WARNING: CPU: 3 PID: 2825 at kernel/sched/rt.c:1294 enqueue_task_rt+0x355/0x360
CPU: 3 PID: 2825 Comm: setsched__13
RIP: 0010:enqueue_task_rt+0x355/0x360
Call Trace:
__sched_setscheduler+0x581/0x9d0
_sched_setscheduler+0x63/0xa0
do_sched_setscheduler+0xa0/0x150
__x64_sys_sched_setscheduler+0x1a/0x30
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
list_add double add: new=ffff9867cb629b40, prev=ffff9867cb629b40,
next=ffff98679fc67ca0.
kernel BUG at lib/list_debug.c:31!
invalid opcode: 0000 [#1] PREEMPT_RT SMP PTI
CPU: 3 PID: 2825 Comm: setsched__13
RIP: 0010:__list_add_valid+0x41/0x50
Call Trace:
enqueue_task_rt+0x291/0x360
__sched_setscheduler+0x581/0x9d0
_sched_setscheduler+0x63/0xa0
do_sched_setscheduler+0xa0/0x150
__x64_sys_sched_setscheduler+0x1a/0x30
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
__sched_setscheduler() uses rt_effective_prio() to handle proper queuing
of priority boosted tasks that are setscheduled while being boosted.
rt_effective_prio() is however called twice per each
__sched_setscheduler() call: first directly by __sched_setscheduler()
before dequeuing the task and then by __setscheduler() to actually do
the priority change. If the priority of the pi_top_task is concurrently
being changed however, it might happen that the two calls return
different results. If, for example, the first call returned the same rt
priority the task was running at and the second one a fair priority, the
task won't be removed by the rt list (on_list still set) and then
enqueued in the fair runqueue. When eventually setscheduled back to rt
it will be seen as enqueued already and the WARNING/BUG be issued.
Fix this by calling rt_effective_prio() only once and then reusing the
return value. While at it refactor code as well for clarity. Concurrent
priority inheritance handling is still safe and will eventually converge
to a new state by following the inheritance chain(s).
Fixes: 0782e63bc6 ("sched: Handle priority boosted tasks proper in setscheduler()")
[squashed Peterz changes; added changelog]
Reported-by: Mark Simmons <msimmons@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210803104501.38333-1-juri.lelli@redhat.com
The Frequency Invariance Engine (FIE) is providing a frequency scaling
correction factor that helps achieve more accurate load-tracking.
Normally, this scaling factor can be obtained directly with the help of
the cpufreq drivers as they know the exact frequency the hardware is
running at. But that isn't the case for CPPC cpufreq driver.
Another way of obtaining that is using the arch specific counter
support, which is already present in kernel, but that hardware is
optional for platforms.
This patch updates the CPPC driver to register itself with the topology
core to provide its own implementation (cppc_scale_freq_tick()) of
topology_scale_freq_tick() which gets called by the scheduler on every
tick. Note that the arch specific counters have higher priority than
CPPC counters, if available, though the CPPC driver doesn't need to have
any special handling for that.
On an invocation of cppc_scale_freq_tick(), we schedule an irq work
(since we reach here from hard-irq context), which then schedules a
normal work item and cppc_scale_freq_workfn() updates the per_cpu
arch_freq_scale variable based on the counter updates since the last
tick.
To allow platforms to disable this CPPC counter-based frequency
invariance support, this is all done under CONFIG_ACPI_CPPC_CPUFREQ_FIE,
which is enabled by default.
This also exports sched_setattr_nocheck() as the CPPC driver can be
built as a module.
Cc: linux-acpi@vger.kernel.org
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com>
Tested-by: Qian Cai <quic_qiancai@quicinc.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
- Micro-optimize tick_nohz_full_cpu()
- Optimize idle exit tick restarts to be less eager
- Optimize tick_nohz_dep_set_task() to only wake up
a single CPU. This reduces IPIs and interruptions
on nohz_full CPUs.
- Optimize tick_nohz_dep_set_signal() in a similar
fashion.
- Skip IPIs in tick_nohz_kick_task() when trying
to kick a non-running task.
- Micro-optimize tick_nohz_task_switch() IRQ flags
handling to reduce context switching costs.
- Misc cleanups and fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcycRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jItRAAn1/vI0+pWQWjyWQ+CL8AMNNWTbtBpC7W
ZUR+IEtEoYEufYXH9RgcweIgopBExVlC9CWzUX5o7AuVdN2YyzcBuQbza4vlYeIm
azcdIlKCwjdgODJBTgHNH7IR0QKF/Gq+fVCGX3Xc37BlyD389CQ33HXC7X2JZLB3
Mb5wxAJoZ2HQzGGJoz4JyA0rl6lY3jYzLMK7mqxkUqIqT45xLpgw5+imRM2J1ddV
d/73P4TwFY+E8KXSLctUfgmkmCzJYISGSlH49jX3CkwAktwTY17JjWjxT9Z5b2D8
6TTpsDoLtI4tXg0U2KsBxBoDHK/a4hAwo+GnE/RMT6ghqaX5IrANrgtTVPBN9dvh
qUGVAMHVDN3Ed7wwFvCm4tPUz/iXzBsP8xPl28WPHsyV9BE9tcrk2ynzSWy47Twd
z1GVZDNTwCfdvH62WS/HvbPdGl2hHH5/oe3HaF1ROLPHq8UzaxwKEX+A0rwLJrBp
ZU8Lnvu3rPVa5cHc4z1AE7sbX7OkTTNjxY/qQzDhNKwVwfkaPcBiok9VgEIEGS7A
n3U/yuQCn307sr7SlJ6z4yu3YCw3aEJ3pTxUprmNTh3+x4yF5ZaOimqPyvzBaUVM
Hm3LYrxHIScisFJio4FiC2dghZryM37RFonvqrCAOuA+afMU2GOFnaoDruXU27SE
tqxR6c/hw+4=
=18pN
-----END PGP SIGNATURE-----
Merge tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers/nohz updates from Ingo Molnar:
- Micro-optimize tick_nohz_full_cpu()
- Optimize idle exit tick restarts to be less eager
- Optimize tick_nohz_dep_set_task() to only wake up a single CPU.
This reduces IPIs and interruptions on nohz_full CPUs.
- Optimize tick_nohz_dep_set_signal() in a similar fashion.
- Skip IPIs in tick_nohz_kick_task() when trying to kick a
non-running task.
- Micro-optimize tick_nohz_task_switch() IRQ flags handling to
reduce context switching costs.
- Misc cleanups and fixes
* tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Add myself as context tracking maintainer
tick/nohz: Call tick_nohz_task_switch() with interrupts disabled
tick/nohz: Kick only _queued_ task whose tick dependency is updated
tick/nohz: Change signal tick dependency to wake up CPUs of member tasks
tick/nohz: Only wake up a single target cpu when kicking a task
tick/nohz: Update nohz_full Kconfig help
tick/nohz: Update idle_exittime on actual idle exit
tick/nohz: Remove superflous check for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
tick/nohz: Conditionally restart tick on idle exit
tick/nohz: Evaluate the CPU expression after the static key
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow
the flexible utilization of SMT siblings, without exposing
untrusted domains to information leaks & side channels, plus
to ensure more deterministic computing performance on SMT
systems used by heterogenous workloads.
There's new prctls to set core scheduling groups, which
allows more flexible management of workloads that can share
siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve
'memcache'-like workloads.
- "Age" (decay) average idle time, to better track & improve workloads
such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked
via /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable
it at runtime if tooling needs it. Use static keys and
other optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcPoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g3yw//WfhIqy7Psa9d/MBMjQDRGbTuO4+w22Dj
vmWFU44Q4KJxQHWeIgUlrK+dzvYWvNmflUs2CUUOiDVzxFTHMIyBtL4qCBUbx4Ns
vKAcB9wsWZge2o3WzZqpProRhdoRaSKw8egUr2q7rACVBkckY7eGP/OjWxXU8BdA
b7D0LPWwuIBFfN4pFYeCDLn32Dqr9s6Chyj+ZecabdG7EE6Gu+f1diVcxy7JE/mc
4WWL0D1RqdgpGrBEuMJIxPYekdrZiuy4jtEbztz5gbTBteN1cj3BLfqn0Pc/e6rO
Vyuc5mXCAmzRVi18z6g6bsVl+IA/nrbErENB2OHOhOYtqiZxqGTd4GPWZszMyY17
5AsEO5+5pcaBsy4gyp09qURggBu9zhJnMVmOI3rIHZkmkhwzc6uUJlyhDCTiFWOz
3ZF3LjbZEyCKodMD8qMHbs3axIBpIfZqjzkvSKyFnvfXEGVytVse7NUuWtQ36u92
GnURxVeYY1TDVXvE1Y8owNKMxknKQ6YRlypP7Dtbeo/qG6hShp0xmS7qDLDi0ybZ
ZlK+bDECiVoDf3nvJo+8v5M82IJ3CBt4UYldeRJsa1YCK/FsbK8tp91fkEfnXVue
+U6LPX0AmMpXacR5HaZfb3uBIKRw/QMdP/7RFtBPhpV6jqCrEmuqHnpPQiEVtxwO
UmG7bt94Trk=
=3VDr
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler udpates from Ingo Molnar:
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow the
flexible utilization of SMT siblings, without exposing untrusted
domains to information leaks & side channels, plus to ensure more
deterministic computing performance on SMT systems used by
heterogenous workloads.
There are new prctls to set core scheduling groups, which allows
more flexible management of workloads that can share siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve 'memcache'-like
workloads.
- "Age" (decay) average idle time, to better track & improve
workloads such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked via
/sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable it at
runtime if tooling needs it. Use static keys and other
optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
* tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/doc: Update the CPU capacity asymmetry bits
sched/topology: Rework CPU capacity asymmetry detection
sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag
psi: Fix race between psi_trigger_create/destroy
sched/fair: Introduce the burstable CFS controller
sched/uclamp: Fix uclamp_tg_restrict()
sched/rt: Fix Deadline utilization tracking during policy change
sched/rt: Fix RT utilization tracking during policy change
sched: Change task_struct::state
sched,arch: Remove unused TASK_STATE offsets
sched,timer: Use __set_current_state()
sched: Add get_current_state()
sched,perf,kvm: Fix preemption condition
sched: Introduce task_is_running()
sched: Unbreak wakeups
sched/fair: Age the average idle time
sched/cpufreq: Consider reduced CPU capacity in energy calculation
sched/fair: Take thermal pressure into account while estimating energy
thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure
sched/fair: Return early from update_tg_cfs_load() if delta == 0
...
On a 128 cores AMD machine, there are 8 cores in nohz_full mode, and
the others are used for housekeeping. When many housekeeping cpus are
in idle state, we can observe huge time burn in the loop for searching
nearest busy housekeeper cpu by ftrace.
9) | get_nohz_timer_target() {
9) | housekeeping_test_cpu() {
9) 0.390 us | housekeeping_get_mask.part.1();
9) 0.561 us | }
9) 0.090 us | __rcu_read_lock();
9) 0.090 us | housekeeping_cpumask();
9) 0.521 us | housekeeping_cpumask();
9) 0.140 us | housekeeping_cpumask();
...
9) 0.500 us | housekeeping_cpumask();
9) | housekeeping_any_cpu() {
9) 0.090 us | housekeeping_get_mask.part.1();
9) 0.100 us | sched_numa_find_closest();
9) 0.491 us | }
9) 0.100 us | __rcu_read_unlock();
9) + 76.163 us | }
for_each_cpu_and() is a micro function, so in get_nohz_timer_target()
function the
for_each_cpu_and(i, sched_domain_span(sd),
housekeeping_cpumask(HK_FLAG_TIMER))
equals to below:
for (i = -1; i = cpumask_next_and(i, sched_domain_span(sd),
housekeeping_cpumask(HK_FLAG_TIMER)), i < nr_cpu_ids;)
That will cause that housekeeping_cpumask() will be invoked many times.
The housekeeping_cpumask() function returns a const value, so it is
unnecessary to invoke it every time. This patch can minimize the worst
searching time from ~76us to ~16us in my testing.
Similarly, the find_new_ilb() function has the same problem.
Co-developed-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Yuan ZhaoXiong <yuanzhaoxiong@baidu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1622985115-51007-1-git-send-email-yuanzhaoxiong@baidu.com
The CFS bandwidth controller limits CPU requests of a task group to
quota during each period. However, parallel workloads might be bursty
so that they get throttled even when their average utilization is under
quota. And they are latency sensitive at the same time so that
throttling them is undesired.
We borrow time now against our future underrun, at the cost of increased
interference against the other system users. All nicely bounded.
Traditional (UP-EDF) bandwidth control is something like:
(U = \Sum u_i) <= 1
This guaranteeds both that every deadline is met and that the system is
stable. After all, if U were > 1, then for every second of walltime,
we'd have to run more than a second of program time, and obviously miss
our deadline, but the next deadline will be further out still, there is
never time to catch up, unbounded fail.
This work observes that a workload doesn't always executes the full
quota; this enables one to describe u_i as a statistical distribution.
For example, have u_i = {x,e}_i, where x is the p(95) and x+e p(100)
(the traditional WCET). This effectively allows u to be smaller,
increasing the efficiency (we can pack more tasks in the system), but at
the cost of missing deadlines when all the odds line up. However, it
does maintain stability, since every overrun must be paired with an
underrun as long as our x is above the average.
That is, suppose we have 2 tasks, both specify a p(95) value, then we
have a p(95)*p(95) = 90.25% chance both tasks are within their quota and
everything is good. At the same time we have a p(5)p(5) = 0.25% chance
both tasks will exceed their quota at the same time (guaranteed deadline
fail). Somewhere in between there's a threshold where one exceeds and
the other doesn't underrun enough to compensate; this depends on the
specific CDFs.
At the same time, we can say that the worst case deadline miss, will be
\Sum e_i; that is, there is a bounded tardiness (under the assumption
that x+e is indeed WCET).
The benefit of burst is seen when testing with schbench. Default value of
kernel.sched_cfs_bandwidth_slice_us(5ms) and CONFIG_HZ(1000) is used.
mkdir /sys/fs/cgroup/cpu/test
echo $$ > /sys/fs/cgroup/cpu/test/cgroup.procs
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_quota_us
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_burst_us
./schbench -m 1 -t 3 -r 20 -c 80000 -R 10
The average CPU usage is at 80%. I run this for 10 times, and got long tail
latency for 6 times and got throttled for 8 times.
Tail latencies are shown below, and it wasn't the worst case.
Latency percentiles (usec)
50.0000th: 19872
75.0000th: 21344
90.0000th: 22176
95.0000th: 22496
*99.0000th: 22752
99.5000th: 22752
99.9000th: 22752
min=0, max=22727
rps: 9.90 p95 (usec) 22496 p99 (usec) 22752 p95/cputime 28.12% p99/cputime 28.44%
The interferenece when using burst is valued by the possibilities for
missing the deadline and the average WCET. Test results showed that when
there many cgroups or CPU is under utilized, the interference is
limited. More details are shown in:
https://lore.kernel.org/lkml/5371BD36-55AE-4F71-B9D7-B86DC32E3D2B@linux.alibaba.com/
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210621092800.23714-2-changhuaixin@linux.alibaba.com
Now cpu.uclamp.min acts as a protection, we need to make sure that the
uclamp request of the task is within the allowed range of the cgroup,
that is it is clamp()'ed correctly by tg->uclamp[UCLAMP_MIN] and
tg->uclamp[UCLAMP_MAX].
As reported by Xuewen [1] we can have some corner cases where there's
inversion between uclamp requested by task (p) and the uclamp values of
the taskgroup it's attached to (tg). Following table demonstrates
2 corner cases:
| p | tg | effective
-----------+-----+------+-----------
CASE 1
-----------+-----+------+-----------
uclamp_min | 60% | 0% | 60%
-----------+-----+------+-----------
uclamp_max | 80% | 50% | 50%
-----------+-----+------+-----------
CASE 2
-----------+-----+------+-----------
uclamp_min | 0% | 30% | 30%
-----------+-----+------+-----------
uclamp_max | 20% | 50% | 20%
-----------+-----+------+-----------
With this fix we get:
| p | tg | effective
-----------+-----+------+-----------
CASE 1
-----------+-----+------+-----------
uclamp_min | 60% | 0% | 50%
-----------+-----+------+-----------
uclamp_max | 80% | 50% | 50%
-----------+-----+------+-----------
CASE 2
-----------+-----+------+-----------
uclamp_min | 0% | 30% | 30%
-----------+-----+------+-----------
uclamp_max | 20% | 50% | 30%
-----------+-----+------+-----------
Additionally uclamp_update_active_tasks() must now unconditionally
update both UCLAMP_MIN/MAX because changing the tg's UCLAMP_MAX for
instance could have an impact on the effective UCLAMP_MIN of the tasks.
| p | tg | effective
-----------+-----+------+-----------
old
-----------+-----+------+-----------
uclamp_min | 60% | 0% | 50%
-----------+-----+------+-----------
uclamp_max | 80% | 50% | 50%
-----------+-----+------+-----------
*new*
-----------+-----+------+-----------
uclamp_min | 60% | 0% | *60%*
-----------+-----+------+-----------
uclamp_max | 80% |*70%* | *70%*
-----------+-----+------+-----------
[1] https://lore.kernel.org/lkml/CAB8ipk_a6VFNjiEnHRHkUMBKbA+qzPQvhtNjJ_YNzQhqV_o8Zw@mail.gmail.com/
Fixes: 0c18f2ecfc ("sched/uclamp: Fix wrong implementation of cpu.uclamp.min")
Reported-by: Xuewen Yan <xuewen.yan94@gmail.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210617165155.3774110-1-qais.yousef@arm.com
Change the type and name of task_struct::state. Drop the volatile and
shrink it to an 'unsigned int'. Rename it in order to find all uses
such that we can use READ_ONCE/WRITE_ONCE as appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
Replace a bunch of 'p->state == TASK_RUNNING' with a new helper:
task_is_running(p).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210611082838.222401495@infradead.org
This is a partial forward-port of Peter Ziljstra's work first posted
at:
https://lore.kernel.org/lkml/20180530142236.667774973@infradead.org/
Currently select_idle_cpu()'s proportional scheme uses the average idle
time *for when we are idle*, that is temporally challenged. When a CPU
is not at all idle, we'll happily continue using whatever value we did
see when the CPU goes idle. To fix this, introduce a separate average
idle and age it (the existing value still makes sense for things like
new-idle balancing, which happens when we do go idle).
The overall goal is to not spend more time scanning for idle CPUs than
we're idle for. Otherwise we're inhibiting work. This means that we need to
consider the cost over all the wake-ups between consecutive idle periods.
To track this, the scan cost is subtracted from the estimated average
idle time.
The impact of this patch is related to workloads that have domains that
are fully busy or overloaded. Without the patch, the scan depth may be
too high because a CPU is not reaching idle.
Due to the nature of the patch, this is a regression magnet. It
potentially wins when domains are almost fully busy or overloaded --
at that point searches are likely to fail but idle is not being aged
as CPUs are active so search depth is too large and useless. It will
potentially show regressions when there are idle CPUs and a deep search is
beneficial. This tbench result on a 2-socket broadwell machine partially
illustates the problem
5.13.0-rc2 5.13.0-rc2
vanilla sched-avgidle-v1r5
Hmean 1 445.02 ( 0.00%) 451.36 * 1.42%*
Hmean 2 830.69 ( 0.00%) 846.03 * 1.85%*
Hmean 4 1350.80 ( 0.00%) 1505.56 * 11.46%*
Hmean 8 2888.88 ( 0.00%) 2586.40 * -10.47%*
Hmean 16 5248.18 ( 0.00%) 5305.26 * 1.09%*
Hmean 32 8914.03 ( 0.00%) 9191.35 * 3.11%*
Hmean 64 10663.10 ( 0.00%) 10192.65 * -4.41%*
Hmean 128 18043.89 ( 0.00%) 18478.92 * 2.41%*
Hmean 256 16530.89 ( 0.00%) 17637.16 * 6.69%*
Hmean 320 16451.13 ( 0.00%) 17270.97 * 4.98%*
Note that 8 was a regression point where a deeper search would have helped
but it gains for high thread counts when searches are useless. Hackbench
is a more extreme example although not perfect as the tasks idle rapidly
hackbench-process-pipes
5.13.0-rc2 5.13.0-rc2
vanilla sched-avgidle-v1r5
Amean 1 0.3950 ( 0.00%) 0.3887 ( 1.60%)
Amean 4 0.9450 ( 0.00%) 0.9677 ( -2.40%)
Amean 7 1.4737 ( 0.00%) 1.4890 ( -1.04%)
Amean 12 2.3507 ( 0.00%) 2.3360 * 0.62%*
Amean 21 4.0807 ( 0.00%) 4.0993 * -0.46%*
Amean 30 5.6820 ( 0.00%) 5.7510 * -1.21%*
Amean 48 8.7913 ( 0.00%) 8.7383 ( 0.60%)
Amean 79 14.3880 ( 0.00%) 13.9343 * 3.15%*
Amean 110 21.2233 ( 0.00%) 19.4263 * 8.47%*
Amean 141 28.2930 ( 0.00%) 25.1003 * 11.28%*
Amean 172 34.7570 ( 0.00%) 30.7527 * 11.52%*
Amean 203 41.0083 ( 0.00%) 36.4267 * 11.17%*
Amean 234 47.7133 ( 0.00%) 42.0623 * 11.84%*
Amean 265 53.0353 ( 0.00%) 47.7720 * 9.92%*
Amean 296 60.0170 ( 0.00%) 53.4273 * 10.98%*
Stddev 1 0.0052 ( 0.00%) 0.0025 ( 51.57%)
Stddev 4 0.0357 ( 0.00%) 0.0370 ( -3.75%)
Stddev 7 0.0190 ( 0.00%) 0.0298 ( -56.64%)
Stddev 12 0.0064 ( 0.00%) 0.0095 ( -48.38%)
Stddev 21 0.0065 ( 0.00%) 0.0097 ( -49.28%)
Stddev 30 0.0185 ( 0.00%) 0.0295 ( -59.54%)
Stddev 48 0.0559 ( 0.00%) 0.0168 ( 69.92%)
Stddev 79 0.1559 ( 0.00%) 0.0278 ( 82.17%)
Stddev 110 1.1728 ( 0.00%) 0.0532 ( 95.47%)
Stddev 141 0.7867 ( 0.00%) 0.0968 ( 87.69%)
Stddev 172 1.0255 ( 0.00%) 0.0420 ( 95.91%)
Stddev 203 0.8106 ( 0.00%) 0.1384 ( 82.92%)
Stddev 234 1.1949 ( 0.00%) 0.1328 ( 88.89%)
Stddev 265 0.9231 ( 0.00%) 0.0820 ( 91.11%)
Stddev 296 1.0456 ( 0.00%) 0.1327 ( 87.31%)
Again, higher thread counts benefit and the standard deviation
shows that results are also a lot more stable when the idle
time is aged.
The patch potentially matters when a socket was multiple LLCs as the
maximum search depth is lower. However, some of the test results were
suspiciously good (e.g. specjbb2005 gaining 50% on a Zen1 machine) and
other results were not dramatically different to other mcahines.
Given the nature of the patch, Peter's full series is not being forward
ported as each part should stand on its own. Preferably they would be
merged at different times to reduce the risk of false bisections.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210615111611.GH30378@techsingularity.net
This reverts commit 4c38f2df71.
There are few races in the frequency invariance support for CPPC driver,
namely the driver doesn't stop the kthread_work and irq_work on policy
exit during suspend/resume or CPU hotplug.
A proper fix won't be possible for the 5.13-rc, as it requires a lot of
changes. Lets revert the patch instead for now.
Fixes: 4c38f2df71 ("cpufreq: CPPC: Add support for frequency invariance")
Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Revert commit 4698f88c06 ("sched/debug: Fix 'schedstats=enable'
cmdline option").
After commit 6041186a32 ("init: initialize jump labels before
command line option parsing") we can rely on jump label infra being
ready for use when setup_schedstats() is called.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20210602112108.1709635-1-eric.dumazet@gmail.com
Will reported that the 'XXX __migrate_task() can fail' in migration_cpu_stop()
can happen, and it *is* sort of a big deal. Looking at it some more, one
will note there is a glaring hole in the deferred CPU selection:
(w/ CONFIG_CPUSET=n, so that the affinity mask passed via taskset doesn't
get AND'd with cpu_online_mask)
$ taskset -pc 0-2 $PID
# offline CPUs 3-4
$ taskset -pc 3-5 $PID
`\
$PID may stay on 0-2 due to the cpumask_any_distribute() picking an
offline CPU and __migrate_task() refusing to do anything due to
cpu_is_allowed().
set_cpus_allowed_ptr() goes to some length to pick a dest_cpu that matches
the right constraints vs affinity and the online/active state of the
CPUs. Reuse that instead of discarding it in the affine_move_task() case.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210526205751.842360-2-valentin.schneider@arm.com
Extend 8fb12156b8 ("init: Pin init task to the boot CPU, initially")
to cover the new PF_NO_SETAFFINITY requirement.
While there, move wait_for_completion(&kthreadd_done) into kernel_init()
to make it absolutely clear it is the very first thing done by the init
thread.
Fixes: 570a752b7a ("lib/smp_processor_id: Use is_percpu_thread() instead of nr_cpus_allowed")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/YLS4mbKUrA3Gnb4t@hirez.programming.kicks-ass.net
fair_sched_class->next no longer exists since commit:
a87e749e8f ("sched: Remove struct sched_class::next field").
Now the sched_class order is specified by the linker script.
Rewrite the comment in a more generic way.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210519063709.323162-1-masahiroy@kernel.org
cpu_cgroup_css_online() calls cpu_util_update_eff() without holding the
uclamp_mutex or rcu_read_lock() like other call sites, which is
a mistake.
The uclamp_mutex is required to protect against concurrent reads and
writes that could update the cgroup hierarchy.
The rcu_read_lock() is required to traverse the cgroup data structures
in cpu_util_update_eff().
Surround the caller with the required locks and add some asserts to
better document the dependency in cpu_util_update_eff().
Fixes: 7226017ad3 ("sched/uclamp: Fix a bug in propagating uclamp value in new cgroups")
Reported-by: Quentin Perret <qperret@google.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210510145032.1934078-3-qais.yousef@arm.com
cpu.uclamp.min is a protection as described in cgroup-v2 Resource
Distribution Model
Documentation/admin-guide/cgroup-v2.rst
which means we try our best to preserve the minimum performance point of
tasks in this group. See full description of cpu.uclamp.min in the
cgroup-v2.rst.
But the current implementation makes it a limit, which is not what was
intended.
For example:
tg->cpu.uclamp.min = 20%
p0->uclamp[UCLAMP_MIN] = 0
p1->uclamp[UCLAMP_MIN] = 50%
Previous Behavior (limit):
p0->effective_uclamp = 0
p1->effective_uclamp = 20%
New Behavior (Protection):
p0->effective_uclamp = 20%
p1->effective_uclamp = 50%
Which is inline with how protections should work.
With this change the cgroup and per-task behaviors are the same, as
expected.
Additionally, we remove the confusing relationship between cgroup and
!user_defined flag.
We don't want for example RT tasks that are boosted by default to max to
change their boost value when they attach to a cgroup. If a cgroup wants
to limit the max performance point of tasks attached to it, then
cpu.uclamp.max must be set accordingly.
Or if they want to set different boost value based on cgroup, then
sysctl_sched_util_clamp_min_rt_default must be used to NOT boost to max
and set the right cpu.uclamp.min for each group to let the RT tasks
obtain the desired boost value when attached to that group.
As it stands the dependency on !user_defined flag adds an extra layer of
complexity that is not required now cpu.uclamp.min behaves properly as
a protection.
The propagation model of effective cpu.uclamp.min in child cgroups as
implemented by cpu_util_update_eff() is still correct. The parent
protection sets an upper limit of what the child cgroups will
effectively get.
Fixes: 3eac870a32 (sched/uclamp: Use TG's clamps to restrict TASK's clamps)
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210510145032.1934078-2-qais.yousef@arm.com
For all intents and purposes, the idle task is a per-CPU kthread. It isn't
created via the same route as other pcpu kthreads however, and as a result
it is missing a few bells and whistles: it fails kthread_is_per_cpu() and
it doesn't have PF_NO_SETAFFINITY set.
Fix the former by giving the idle task a kthread struct along with the
KTHREAD_IS_PER_CPU flag. This requires some extra iffery as init_idle()
call be called more than once on the same idle task.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210510151024.2448573-2-valentin.schneider@arm.com
Call tick_nohz_task_switch() slightly earlier after the context switch
to benefit from disabled IRQs. This way the function doesn't need to
disable them once more.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210512232924.150322-10-frederic@kernel.org
When the tick dependency of a task is updated, we want it to aknowledge
the new state and restart the tick if needed. If the task is not
running, we don't need to kick it because it will observe the new
dependency upon scheduling in. But if the task is running, we may need
to send an IPI to it so that it gets notified.
Unfortunately we don't have the means to check if a task is running
in a race free way. Checking p->on_cpu in a synchronized way against
p->tick_dep_mask would imply adding a full barrier between
prepare_task_switch() and tick_nohz_task_switch(), which we want to
avoid in this fast-path.
Therefore we blindly fire an IPI to the task's CPU.
Meanwhile we can check if the task is queued on the CPU rq because
p->on_rq is always set to TASK_ON_RQ_QUEUED _before_ schedule() and its
full barrier that precedes tick_nohz_task_switch(). And if the task is
queued on a nohz_full CPU, it also has fair chances to be running as the
isolation constraints prescribe running single tasks on full dynticks
CPUs.
So use this as a trick to check if we can spare an IPI toward a
non-running task.
NOTE: For the ordering to be correct, it is assumed that we never
deactivate a task while it is running, the only exception being the task
deactivating itself while scheduling out.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-9-frederic@kernel.org
Creating 2**32 tasks to wait in D-state is impossible and wasteful.
Return "unsigned int" and save on REX prefixes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210422200228.1423391-2-adobriyan@gmail.com
Creating 2**32 tasks is impossible due to futex pid limits and wasteful
anyway. Nobody has done it.
Bring nr_running() into 32-bit world to save on REX prefixes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210422200228.1423391-1-adobriyan@gmail.com
As pointed out by commit
de9b8f5dcb ("sched: Fix crash trying to dequeue/enqueue the idle thread")
init_idle() can and will be invoked more than once on the same idle
task. At boot time, it is invoked for the boot CPU thread by
sched_init(). Then smp_init() creates the threads for all the secondary
CPUs and invokes init_idle() on them.
As the hotplug machinery brings the secondaries to life, it will issue
calls to idle_thread_get(), which itself invokes init_idle() yet again.
In this case it's invoked twice more per secondary: at _cpu_up(), and at
bringup_cpu().
Given smp_init() already initializes the idle tasks for all *possible*
CPUs, no further initialization should be required. Now, removing
init_idle() from idle_thread_get() exposes some interesting expectations
with regards to the idle task's preempt_count: the secondary startup always
issues a preempt_disable(), requiring some reset of the preempt count to 0
between hot-unplug and hotplug, which is currently served by
idle_thread_get() -> idle_init().
Given the idle task is supposed to have preemption disabled once and never
see it re-enabled, it seems that what we actually want is to initialize its
preempt_count to PREEMPT_DISABLED and leave it there. Do that, and remove
init_idle() from idle_thread_get().
Secondary startups were patched via coccinelle:
@begone@
@@
-preempt_disable();
...
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512094636.2958515-1-valentin.schneider@arm.com
In order to not have to use pid_struct, create a new, smaller,
structure to manage task cookies for core scheduling.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.919768100@infradead.org
When a sibling is forced-idle to match the core-cookie; search for
matching tasks to fill the core.
rcu_read_unlock() can incur an infrequent deadlock in
sched_core_balance(). Fix this by using the RCU-sched flavor instead.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.800048269@infradead.org
During force-idle, we end up doing cross-cpu comparison of vruntimes
during pick_next_task. If we simply compare (vruntime-min_vruntime)
across CPUs, and if the CPUs only have 1 task each, we will always
end up comparing 0 with 0 and pick just one of the tasks all the time.
This starves the task that was not picked. To fix this, take a snapshot
of the min_vruntime when entering force idle and use it for comparison.
This min_vruntime snapshot will only be used for cross-CPU vruntime
comparison, and nothing else.
A note about the min_vruntime snapshot and force idling:
During selection:
When we're not fi, we need to update snapshot.
when we're fi and we were not fi, we must update snapshot.
When we're fi and we were already fi, we must not update snapshot.
Which gives:
fib fi update
0 0 1
0 1 1
1 0 1
1 1 0
Where:
fi: force-idled now
fib: force-idled before
So the min_vruntime snapshot needs to be updated when: !(fib && fi).
Also, the cfs_prio_less() function needs to be aware of whether the
core is in force idle or not, since it will be use this information to
know whether to advance a cfs_rq's min_vruntime_fi in the hierarchy.
So pass this information along via pick_task() -> prio_less().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.738542617@infradead.org
The rationale is as follows. In the core-wide pick logic, even if
need_sync == false, we need to go look at other CPUs (non-local CPUs)
to see if they could be running RT.
Say the RQs in a particular core look like this:
Let CFS1 and CFS2 be 2 tagged CFS tags.
Let RT1 be an untagged RT task.
rq0 rq1
CFS1 (tagged) RT1 (no tag)
CFS2 (tagged)
Say schedule() runs on rq0. Now, it will enter the above loop and
pick_task(RT) will return NULL for 'p'. It will enter the above if()
block and see that need_sync == false and will skip RT entirely.
The end result of the selection will be (say prio(CFS1) > prio(CFS2)):
rq0 rq1
CFS1 IDLE
When it should have selected:
rq0 rq1
IDLE RT
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.678425748@infradead.org
If there is only one long running local task and the sibling is
forced idle, it might not get a chance to run until a schedule
event happens on any cpu in the core.
So we check for this condition during a tick to see if a sibling
is starved and then give it a chance to schedule.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.617407840@infradead.org
Instead of only selecting a local task, select a task for all SMT
siblings for every reschedule on the core (irrespective which logical
CPU does the reschedule).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.557559654@infradead.org
Introduce task_struct::core_cookie as an opaque identifier for core
scheduling. When enabled; core scheduling will only allow matching
task to be on the core; where idle matches everything.
When task_struct::core_cookie is set (and core scheduling is enabled)
these tasks are indexed in a second RB-tree, first on cookie value
then on scheduling function, such that matching task selection always
finds the most elegible match.
NOTE: *shudder* at the overhead...
NOTE: *sigh*, a 3rd copy of the scheduling function; the alternative
is per class tracking of cookies and that just duplicates a lot of
stuff for no raisin (the 2nd copy lives in the rt-mutex PI code).
[Joel: folded fixes]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.496975854@infradead.org
Stuff the meat of sched_core_put() into a work such that we can use
sched_core_put() from atomic context.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.377455632@infradead.org
rq_lockp() includes a static_branch(), which is asm-goto, which is
asm volatile which defeats regular CSE. This means that:
if (!static_branch(&foo))
return simple;
if (static_branch(&foo) && cond)
return complex;
Doesn't fold and we get horrible code. Introduce __rq_lockp() without
the static_branch() on.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.316696988@infradead.org
Introduce the basic infrastructure to have a core wide rq->lock.
This relies on the rq->__lock order being in increasing CPU number
(inside a core). It is also constrained to SMT8 per lockdep (and
SMT256 per preempt_count).
Luckily SMT8 is the max supported SMT count for Linux (Mips, Sparc and
Power are known to have this).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/YJUNfzSgptjX7tG6@hirez.programming.kicks-ass.net
When switching on core-sched, CPUs need to agree which lock to use for
their RQ.
The new rule will be that rq->core_enabled will be toggled while
holding all rq->__locks that belong to a core. This means we need to
double check the rq->core_enabled value after each lock acquire and
retry if it changed.
This also has implications for those sites that take multiple RQ
locks, they need to be careful that the second lock doesn't end up
being the first lock.
Verify the lock pointer after acquiring the first lock, because if
they're on the same core, holding any of the rq->__lock instances will
pin the core state.
While there, change the rq->__lock order to CPU number, instead of rq
address, this greatly simplifies the next patch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/YJUNY0dmrJMD/BIm@hirez.programming.kicks-ass.net
In preparation of playing games with rq->lock, abstract the thing
using an accessor.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.136465446@infradead.org
In prepration for playing games with rq->lock, add some rq_lock
wrappers.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.075967879@infradead.org
container_of() can never return NULL - so don't check for it pointlessly.
[ mingo: Twiddled the changelog. ]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210510161522.GA32644@redhat.com
Util-clamp places tasks in different buckets based on their clamp values
for performance reasons. However, the size of buckets is currently
computed using a rounding division, which can lead to an off-by-one
error in some configurations.
For instance, with 20 buckets, the bucket size will be 1024/20=51. A
task with a clamp of 1024 will be mapped to bucket id 1024/51=20. Sadly,
correct indexes are in range [0,19], hence leading to an out of bound
memory access.
Clamp the bucket id to fix the issue.
Fixes: 69842cba9a ("sched/uclamp: Add CPU's clamp buckets refcounting")
Suggested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20210430151412.160913-1-qperret@google.com
- Clean up SCHED_DEBUG: move the decades old mess of sysctl, procfs and debugfs interfaces
to a unified debugfs interface.
- Signals: Allow caching one sigqueue object per task, to improve performance & latencies.
- Improve newidle_balance() irq-off latencies on systems with a large number of CPU cgroups.
- Improve energy-aware scheduling
- Improve the PELT metrics for certain workloads
- Reintroduce select_idle_smt() to improve load-balancing locality - but without the previous
regressions
- Add 'scheduler latency debugging': warn after long periods of pending need_resched. This
is an opt-in feature that requires the enabling of the LATENCY_WARN scheduler feature,
or the use of the resched_latency_warn_ms=xx boot parameter.
- CPU hotplug fixes for HP-rollback, and for the 'fail' interface. Fix remaining
balance_push() vs. hotplug holes/races
- PSI fixes, plus allow /proc/pressure/ files to be written by CAP_SYS_RESOURCE tasks as well
- Fix/improve various load-balancing corner cases vs. capacity margins
- Fix sched topology on systems with NUMA diameter of 3 or above
- Fix PF_KTHREAD vs to_kthread() race
- Minor rseq optimizations
- Misc cleanups, optimizations, fixes and smaller updates
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJInsRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1i5XxAArh0b+fwXlkVGzTUly7HQjhU7lFbChnmF
h6ToyNLi6pXoZ14VC/WoRIME+RzK3gmw9cEFaSLVPxbkbekTcyWS78kqmcg1/j2v
kO/20QhXobiIxVskYfoMmqSavZ5mKhMWBqtFXkCuYfxwGylas0VVdh3AZLJ7N21G
WEoFh99pVULwWnPHxM2ZQ87Ex9BkGKbsBTswxWpprCfXLqD0N2hHlABpwJP78zRf
VniWFOcC7lslILCFawb7CqGgAwbgV85nDRS4QCuCKisrkFywvjJrEeu/W+h1NfhF
d6ves/osNdEAM1DSALoxwEA42An8l8xh8NyJnl8JZV00LW0DM108O5/7pf5Zcryc
RHV3RxA7skgezBh5uThvo60QzNK+kVMatI4qpQEHxLE52CaDl/fBu1Cgb/VUxnIl
AEBfyiFbk+skHpuMFKtl30Tx3M+yJKMTzFPd4kYjHYGEDwtAcXcB3dJQW48A79i3
H3IWcDcXpk5Rjo2UZmaXdt/qlj7mP6U0xdOUq8ZK6JOC4uY9skszVGsfuNN9QQ5u
2E2YKKVrGFoQydl4C8R6A7axL2VzIJszHFZNipd8E3YOyW7PWRAkr02tOOkBTj8N
dLMcNM7aPJWqEYiEIjEzGQN20pweJ1dRA29LDuOswKh+7W2bWTQFh6F2Q8Haansc
RVg5PDzl+Mc=
=E7mz
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Clean up SCHED_DEBUG: move the decades old mess of sysctl, procfs and
debugfs interfaces to a unified debugfs interface.
- Signals: Allow caching one sigqueue object per task, to improve
performance & latencies.
- Improve newidle_balance() irq-off latencies on systems with a large
number of CPU cgroups.
- Improve energy-aware scheduling
- Improve the PELT metrics for certain workloads
- Reintroduce select_idle_smt() to improve load-balancing locality -
but without the previous regressions
- Add 'scheduler latency debugging': warn after long periods of pending
need_resched. This is an opt-in feature that requires the enabling of
the LATENCY_WARN scheduler feature, or the use of the
resched_latency_warn_ms=xx boot parameter.
- CPU hotplug fixes for HP-rollback, and for the 'fail' interface. Fix
remaining balance_push() vs. hotplug holes/races
- PSI fixes, plus allow /proc/pressure/ files to be written by
CAP_SYS_RESOURCE tasks as well
- Fix/improve various load-balancing corner cases vs. capacity margins
- Fix sched topology on systems with NUMA diameter of 3 or above
- Fix PF_KTHREAD vs to_kthread() race
- Minor rseq optimizations
- Misc cleanups, optimizations, fixes and smaller updates
* tag 'sched-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
cpumask/hotplug: Fix cpu_dying() state tracking
kthread: Fix PF_KTHREAD vs to_kthread() race
sched/debug: Fix cgroup_path[] serialization
sched,psi: Handle potential task count underflow bugs more gracefully
sched: Warn on long periods of pending need_resched
sched/fair: Move update_nohz_stats() to the CONFIG_NO_HZ_COMMON block to simplify the code & fix an unused function warning
sched/debug: Rename the sched_debug parameter to sched_verbose
sched,fair: Alternative sched_slice()
sched: Move /proc/sched_debug to debugfs
sched,debug: Convert sysctl sched_domains to debugfs
debugfs: Implement debugfs_create_str()
sched,preempt: Move preempt_dynamic to debug.c
sched: Move SCHED_DEBUG sysctl to debugfs
sched: Don't make LATENCYTOP select SCHED_DEBUG
sched: Remove sched_schedstats sysctl out from under SCHED_DEBUG
sched/numa: Allow runtime enabling/disabling of NUMA balance without SCHED_DEBUG
sched: Use cpu_dying() to fix balance_push vs hotplug-rollback
cpumask: Introduce DYING mask
cpumask: Make cpu_{online,possible,present,active}() inline
rseq: Optimise rseq_get_rseq_cs() and clear_rseq_cs()
...
- rtmutex cleanup & spring cleaning pass that removes ~400 lines of code
- Futex simplifications & cleanups
- Add debugging to the CSD code, to help track down a tenacious race (or hw problem)
- Add lockdep_assert_not_held(), to allow code to require a lock to not be held,
and propagate this into the ath10k driver
- Misc LKMM documentation updates
- Misc KCSAN updates: cleanups & documentation updates
- Misc fixes and cleanups
- Fix locktorture bugs with ww_mutexes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJDn0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hPrRAAryS4zPnuDsfkVk0smxo7a0lK5ljbH2Xo
28QUZXOl6upnEV8dzbjwG7eAjt5ZJVI5tKIeG0PV0NUJH2nsyHwESdtULGGYuPf/
4YUzNwZJa+nI/jeBnVsXCimLVxxnNCRdR7yOVOHm4ukEwa+YTNt1pvlYRmUd4YyH
Q5cCrpb3THvLka3AAamEbqnHnAdGxHKuuHYVRkODpMQ+zrQvtN8antYsuk8kJsqM
m+GZg/dVCuLEPah5k+lOACtcq/w7HCmTlxS8t4XLvD52jywFZLcCPvi1rk0+JR+k
Vd9TngC09GJ4jXuDpr42YKkU9/X6qy2Es39iA/ozCvc1Alrhspx/59XmaVSuWQGo
XYuEPx38Yuo/6w16haSgp0k4WSay15A4uhCTQ75VF4vli8Bqgg9PaxLyQH1uG8e2
xk8U90R7bDzLlhKYIx1Vu5Z0t7A1JtB5CJtgpcfg/zQLlzygo75fHzdAiU5fDBDm
3QQXSU2Oqzt7c5ZypioHWazARk7tL6th38KGN1gZDTm5zwifpaCtHi7sml6hhZ/4
ATH6zEPzIbXJL2UqumSli6H4ye5ORNjOu32r7YPqLI4IDbzpssfoSwfKYlQG4Tvn
4H1Ukirzni0gz5+wbleItzf2aeo1rocs4YQTnaT02j8NmUHUz4AzOHGOQFr5Tvh0
wk/P4MIoSb0=
=cOOk
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- rtmutex cleanup & spring cleaning pass that removes ~400 lines of
code
- Futex simplifications & cleanups
- Add debugging to the CSD code, to help track down a tenacious race
(or hw problem)
- Add lockdep_assert_not_held(), to allow code to require a lock to not
be held, and propagate this into the ath10k driver
- Misc LKMM documentation updates
- Misc KCSAN updates: cleanups & documentation updates
- Misc fixes and cleanups
- Fix locktorture bugs with ww_mutexes
* tag 'locking-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
kcsan: Fix printk format string
static_call: Relax static_call_update() function argument type
static_call: Fix unused variable warn w/o MODULE
locking/rtmutex: Clean up signal handling in __rt_mutex_slowlock()
locking/rtmutex: Restrict the trylock WARN_ON() to debug
locking/rtmutex: Fix misleading comment in rt_mutex_postunlock()
locking/rtmutex: Consolidate the fast/slowpath invocation
locking/rtmutex: Make text section and inlining consistent
locking/rtmutex: Move debug functions as inlines into common header
locking/rtmutex: Decrapify __rt_mutex_init()
locking/rtmutex: Remove pointless CONFIG_RT_MUTEXES=n stubs
locking/rtmutex: Inline chainwalk depth check
locking/rtmutex: Move rt_mutex_debug_task_free() to rtmutex.c
locking/rtmutex: Remove empty and unused debug stubs
locking/rtmutex: Consolidate rt_mutex_init()
locking/rtmutex: Remove output from deadlock detector
locking/rtmutex: Remove rtmutex deadlock tester leftovers
locking/rtmutex: Remove rt_mutex_timed_lock()
MAINTAINERS: Add myself as futex reviewer
locking/mutex: Remove repeated declaration
...
The kthread_is_per_cpu() construct relies on only being called on
PF_KTHREAD tasks (per the WARN in to_kthread). This gives rise to the
following usage pattern:
if ((p->flags & PF_KTHREAD) && kthread_is_per_cpu(p))
However, as reported by syzcaller, this is broken. The scenario is:
CPU0 CPU1 (running p)
(p->flags & PF_KTHREAD) // true
begin_new_exec()
me->flags &= ~(PF_KTHREAD|...);
kthread_is_per_cpu(p)
to_kthread(p)
WARN(!(p->flags & PF_KTHREAD) <-- *SPLAT*
Introduce __to_kthread() that omits the WARN and is sure to check both
values.
Use this to remove the problematic pattern for kthread_is_per_cpu()
and fix a number of other kthread_*() functions that have similar
issues but are currently not used in ways that would expose the
problem.
Notably kthread_func() is only ever called on 'current', while
kthread_probe_data() is only used for PF_WQ_WORKER, which implies the
task is from kthread_create*().
Fixes: ac687e6e8c ("kthread: Extract KTHREAD_IS_PER_CPU")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Link: https://lkml.kernel.org/r/YH6WJc825C4P0FCK@hirez.programming.kicks-ass.net
CPU scheduler marks need_resched flag to signal a schedule() on a
particular CPU. But, schedule() may not happen immediately in cases
where the current task is executing in the kernel mode (no
preemption state) for extended periods of time.
This patch adds a warn_on if need_resched is pending for more than the
time specified in sysctl resched_latency_warn_ms. If it goes off, it is
likely that there is a missing cond_resched() somewhere. Monitoring is
done via the tick and the accuracy is hence limited to jiffy scale. This
also means that we won't trigger the warning if the tick is disabled.
This feature (LATENCY_WARN) is default disabled.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210416212936.390566-1-joshdon@google.com
Move the #ifdef SCHED_DEBUG bits to kernel/sched/debug.c in order to
collect all the debugfs bits.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.353833279@infradead.org
Stop polluting sysctl with undocumented knobs that really are debug
only, move them all to /debug/sched/ along with the existing
/debug/sched_* files that already exist.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.287610138@infradead.org
Use the new cpu_dying() state to simplify and fix the balance_push()
vs CPU hotplug rollback state.
Specifically, we currently rely on notifiers sched_cpu_dying() /
sched_cpu_activate() to terminate balance_push, however if the
cpu_down() fails when we're past sched_cpu_deactivate(), it should
terminate balance_push at that point and not wait until we hit
sched_cpu_activate().
Similarly, when cpu_up() fails and we're going back down, balance_push
should be active, where it currently is not.
So instead, make sure balance_push is enabled below SCHED_AP_ACTIVE
(when !cpu_active()), and gate it's utility with cpu_dying().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/YHgAYef83VQhKdC2@hirez.programming.kicks-ass.net
Pull ARM cpufreq updates for v5.13 from Viresh Kumar:
"- Fix typos in s5pv210 cpufreq driver (Bhaskar Chowdhury).
- Armada 37xx: Fix cpufreq changing base CPU speed to 800 MHz from
1000 MHz (Pali Rohár and Marek Behún).
- cpufreq-dt: Return -EPROBE_DEFER on failure to add table (Quanyang
Wang).
- Minor cleanup in cppc driver (Tom Saeger).
- Add frequency invariance support for CPPC driver and generalize
freq invariance support arch-topology driver (Viresh Kumar)."
* 'cpufreq/arm/linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm:
cpufreq: armada-37xx: Fix module unloading
cpufreq: armada-37xx: Remove cur_frequency variable
cpufreq: armada-37xx: Fix determining base CPU frequency
cpufreq: armada-37xx: Fix driver cleanup when registration failed
clk: mvebu: armada-37xx-periph: Fix workaround for switching from L1 to L0
clk: mvebu: armada-37xx-periph: Fix switching CPU freq from 250 Mhz to 1 GHz
cpufreq: armada-37xx: Fix the AVS value for load L1
clk: mvebu: armada-37xx-periph: remove .set_parent method for CPU PM clock
cpufreq: armada-37xx: Fix setting TBG parent for load levels
cpufreq: dt: dev_pm_opp_of_cpumask_add_table() may return -EPROBE_DEFER
cpufreq: cppc: simplify default delay_us setting
cpufreq: Rudimentary typos fix in the file s5pv210-cpufreq.c
cpufreq: CPPC: Add support for frequency invariance
arch_topology: Export arch_freq_scale and helpers
arch_topology: Allow multiple entities to provide sched_freq_tick() callback
arch_topology: Rename freq_scale as arch_freq_scale
static_call_update() had stronger type requirements than regular C,
relax them to match. Instead of requiring the @func argument has the
exact matching type, allow any type which C is willing to promote to the
right (function) pointer type. Specifically this allows (void *)
arguments.
This cleans up a bunch of static_call_update() callers for
PREEMPT_DYNAMIC and should get around silly GCC11 warnings for free.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YFoN7nCl8OfGtpeh@hirez.programming.kicks-ass.net
-1 is -EPERM which is a somewhat odd error to return from
sched_dynamic_write(). No other callers care about which negative
value is used.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20210325004515.531631-2-linux@rasmusvillemoes.dk
Use the enum names which are also what is used in the switch() in
sched_dynamic_update().
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20210325004515.531631-1-linux@rasmusvillemoes.dk
The Frequency Invariance Engine (FIE) is providing a frequency scaling
correction factor that helps achieve more accurate load-tracking.
Normally, this scaling factor can be obtained directly with the help of
the cpufreq drivers as they know the exact frequency the hardware is
running at. But that isn't the case for CPPC cpufreq driver.
Another way of obtaining that is using the arch specific counter
support, which is already present in kernel, but that hardware is
optional for platforms.
This patch updates the CPPC driver to register itself with the topology
core to provide its own implementation (cppc_scale_freq_tick()) of
topology_scale_freq_tick() which gets called by the scheduler on every
tick. Note that the arch specific counters have higher priority than
CPPC counters, if available, though the CPPC driver doesn't need to have
any special handling for that.
On an invocation of cppc_scale_freq_tick(), we schedule an irq work
(since we reach here from hard-irq context), which then schedules a
normal work item and cppc_scale_freq_workfn() updates the per_cpu
arch_freq_scale variable based on the counter updates since the last
tick.
To allow platforms to disable this CPPC counter-based frequency
invariance support, this is all done under CONFIG_ACPI_CPPC_CPUFREQ_FIE,
which is enabled by default.
This also exports sched_setattr_nocheck() as the CPPC driver can be
built as a module.
Cc: linux-acpi@vger.kernel.org
Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com>
Tested-by: Ionela Voinescu <ionela.voinescu@arm.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Fix ~42 single-word typos in scheduler code comments.
We have accumulated a few fun ones over the years. :-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-kernel@vger.kernel.org
Since 565790d28b (sched: Fix balance_callback(), 2020-05-11), there
is no longer a need to reuse the result value of the call to finish_task_switch()
inside schedule_tail(), therefore the variable used to hold that value
(rq) is no longer needed.
Signed-off-by: Edmundo Carmona Antoranz <eantoranz@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210306210739.1370486-1-eantoranz@gmail.com
Move the reclaim detection from the timer tick to the task state
tracking machinery using the recently added ONCPU state. And we
also add task psi_flags changes checking in the psi_task_switch()
optimization to update the parents properly.
In terms of performance and cost, this ONCPU task state tracking
is not cheaper than previous timer tick in aggregate. But the code is
simpler and shorter this way, so it's a maintainability win. And
Johannes did some testing with perf bench, the performace and cost
changes would be acceptable for real workloads.
Thanks to Johannes Weiner for pointing out the psi_task_switch()
optimization things and the clearer changelog.
Co-developed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20210303034659.91735-3-zhouchengming@bytedance.com
Instead of waking up a random and already idle CPU, we can take advantage
of this_cpu being about to enter idle to run the ILB and update the
blocked load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-7-vincent.guittot@linaro.org
Now that we have set_affinity_pending::stop_pending to indicate if a
stopper is in progress, and we have the guarantee that if that stopper
exists, it will (eventually) complete our @pending we can simplify the
refcount scheme by no longer counting the stopper thread.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224131355.724130207@infradead.org
Consider:
sched_setaffinity(p, X); sched_setaffinity(p, Y);
Then the first will install p->migration_pending = &my_pending; and
issue stop_one_cpu_nowait(pending); and the second one will read
p->migration_pending and _also_ issue: stop_one_cpu_nowait(pending),
the _SAME_ @pending.
This causes stopper list corruption.
Add set_affinity_pending::stop_pending, to indicate if a stopper is in
progress.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224131355.649146419@infradead.org
When the purpose of migration_cpu_stop() is to migrate the task to
'any' valid CPU, don't migrate the task when it's already running on a
valid CPU.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224131355.569238629@infradead.org
The SCA_MIGRATE_ENABLE and task_running() cases are almost identical,
collapse them to avoid further duplication.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224131355.500108964@infradead.org
Since, when ->stop_pending, only the stopper can uninstall
p->migration_pending. This could simplify a few ifs, because:
(pending != NULL) => (pending == p->migration_pending)
Also, the fatty comment above affine_move_task() probably needs a bit
of gardening.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When affine_move_task() issues a migration_cpu_stop(), the purpose of
that function is to complete that @pending, not any random other
p->migration_pending that might have gotten installed since.
This realization much simplifies migration_cpu_stop() and allows
further necessary steps to fix all this as it provides the guarantee
that @pending's stopper will complete @pending (and not some random
other @pending).
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224131355.430014682@infradead.org
When affine_move_task(p) is called on a running task @p, which is not
otherwise already changing affinity, we'll first set
p->migration_pending and then do:
stop_one_cpu(cpu_of_rq(rq), migration_cpu_stop, &arg);
This then gets us to migration_cpu_stop() running on the CPU that was
previously running our victim task @p.
If we find that our task is no longer on that runqueue (this can
happen because of a concurrent migration due to load-balance etc.),
then we'll end up at the:
} else if (dest_cpu < 1 || pending) {
branch. Which we'll take because we set pending earlier. Here we first
check if the task @p has already satisfied the affinity constraints,
if so we bail early [A]. Otherwise we'll reissue migration_cpu_stop()
onto the CPU that is now hosting our task @p:
stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
&pending->arg, &pending->stop_work);
Except, we've never initialized pending->arg, which will be all 0s.
This then results in running migration_cpu_stop() on the next CPU with
arg->p == NULL, which gives the by now obvious result of fireworks.
The cure is to change affine_move_task() to always use pending->arg,
furthermore we can use the exact same pattern as the
SCA_MIGRATE_ENABLE case, since we'll block on the pending->done
completion anyway, no point in adding yet another completion in
stop_one_cpu().
This then gives a clear distinction between the two
migration_cpu_stop() use cases:
- sched_exec() / migrate_task_to() : arg->pending == NULL
- affine_move_task() : arg->pending != NULL;
And we can have it ignore p->migration_pending when !arg->pending. Any
stop work from sched_exec() / migrate_task_to() is in addition to stop
works from affine_move_task(), which will be sufficient to issue the
completion.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224131355.357743989@infradead.org
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU. Instead of the complex
"fast page fault" logic that is used in mmu.c, tdp_mmu.c uses an
rwlock so that page faults are concurrent, but the code that can run
against page faults is limited. Right now only page faults take the
lock for reading; in the future this will be extended to some
cases of page table destruction. I hope to switch the default MMU
around 5.12-rc3 (some testing was delayed due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmApSRgUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOc7wf9FnlinKoTFaSk7oeuuhF/CoCVwSFs
Z9+A2sNI99tWHQxFR6dyDkEFeQoXnqSxfLHtUVIdH/JnTg0FkEvFz3NK+0PzY1PF
PnGNbSoyhP58mSBG4gbBAxdF3ZJZMB8GBgYPeR62PvMX2dYbcHqVBNhlf6W4MQK4
5mAUuAnbf19O5N267sND+sIg3wwJYwOZpRZB7PlwvfKAGKf18gdBz5dQ/6Ej+apf
P7GODZITjqM5Iho7SDm/sYJlZprFZT81KqffwJQHWFMEcxFgwzrnYPx7J3gFwRTR
eeh9E61eCBDyCTPpHROLuNTVBqrAioCqXLdKOtO5gKvZI3zmomvAsZ8uXQ==
=uFZU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"x86:
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU.
Instead of the complex "fast page fault" logic that is used in
mmu.c, tdp_mmu.c uses an rwlock so that page faults are concurrent,
but the code that can run against page faults is limited. Right now
only page faults take the lock for reading; in the future this will
be extended to some cases of page table destruction. I hope to
switch the default MMU around 5.12-rc3 (some testing was delayed
due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization
unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64:
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (192 commits)
KVM: x86/xen: Explicitly pad struct compat_vcpu_info to 64 bytes
KVM: selftests: Don't bother mapping GVA for Xen shinfo test
KVM: selftests: Fix hex vs. decimal snafu in Xen test
KVM: selftests: Fix size of memslots created by Xen tests
KVM: selftests: Ignore recently added Xen tests' build output
KVM: selftests: Add missing header file needed by xAPIC IPI tests
KVM: selftests: Add operand to vmsave/vmload/vmrun in svm.c
KVM: SVM: Make symbol 'svm_gp_erratum_intercept' static
locking/arch: Move qrwlock.h include after qspinlock.h
KVM: PPC: Book3S HV: Fix host radix SLB optimisation with hash guests
KVM: PPC: Book3S HV: Ensure radix guest has no SLB entries
KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2
KVM: PPC: Book3S HV: Save and restore FSCR in the P9 path
KVM: PPC: remove unneeded semicolon
KVM: PPC: Book3S HV: Use POWER9 SLBIA IH=6 variant to clear SLB
KVM: PPC: Book3S HV: No need to clear radix host SLB before loading HPT guest
KVM: PPC: Book3S HV: Fix radix guest SLB side channel
KVM: PPC: Book3S HV: Remove support for running HPT guest on RPT host without mixed mode support
KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
KVM: PPC: Book3S HV: Add infrastructure to support 2nd DAWR
...
[ NOTE: unfortunately this tree had to be freshly rebased today,
it's a same-content tree of 82891be90f3c (-next published)
merged with v5.11.
The main reason for the rebase was an authorship misattribution
problem with a new commit, which we noticed in the last minute,
and which we didn't want to be merged upstream. The offending
commit was deep in the tree, and dependent commits had to be
rebased as well. ]
- Core scheduler updates:
- Add CONFIG_PREEMPT_DYNAMIC: this in its current form adds the
preempt=none/voluntary/full boot options (default: full),
to allow distros to build a PREEMPT kernel but fall back to
close to PREEMPT_VOLUNTARY (or PREEMPT_NONE) runtime scheduling
behavior via a boot time selection.
There's also the /debug/sched_debug switch to do this runtime.
This feature is implemented via runtime patching (a new variant of static calls).
The scope of the runtime patching can be best reviewed by looking
at the sched_dynamic_update() function in kernel/sched/core.c.
( Note that the dynamic none/voluntary mode isn't 100% identical,
for example preempt-RCU is available in all cases, plus the
preempt count is maintained in all models, which has runtime
overhead even with the code patching. )
The PREEMPT_VOLUNTARY/PREEMPT_NONE models, used by the vast majority
of distributions, are supposed to be unaffected.
- Fix ignored rescheduling after rcu_eqs_enter(). This is a bug that
was found via rcutorture triggering a hang. The bug is that
rcu_idle_enter() may wake up a NOCB kthread, but this happens after
the last generic need_resched() check. Some cpuidle drivers fix it
by chance but many others don't.
In true 2020 fashion the original bug fix has grown into a 5-patch
scheduler/RCU fix series plus another 16 RCU patches to address
the underlying issue of missed preemption events. These are the
initial fixes that should fix current incarnations of the bug.
- Clean up rbtree usage in the scheduler, by providing & using the following
consistent set of rbtree APIs:
partial-order; less() based:
- rb_add(): add a new entry to the rbtree
- rb_add_cached(): like rb_add(), but for a rb_root_cached
total-order; cmp() based:
- rb_find(): find an entry in an rbtree
- rb_find_add(): find an entry, and add if not found
- rb_find_first(): find the first (leftmost) matching entry
- rb_next_match(): continue from rb_find_first()
- rb_for_each(): iterate a sub-tree using the previous two
- Improve the SMP/NUMA load-balancer: scan for an idle sibling in a single pass.
This is a 4-commit series where each commit improves one aspect of the idle
sibling scan logic.
- Improve the cpufreq cooling driver by getting the effective CPU utilization
metrics from the scheduler
- Improve the fair scheduler's active load-balancing logic by reducing the number
of active LB attempts & lengthen the load-balancing interval. This improves
stress-ng mmapfork performance.
- Fix CFS's estimated utilization (util_est) calculation bug that can result in
too high utilization values
- Misc updates & fixes:
- Fix the HRTICK reprogramming & optimization feature
- Fix SCHED_SOFTIRQ raising race & warning in the CPU offlining code
- Reduce dl_add_task_root_domain() overhead
- Fix uprobes refcount bug
- Process pending softirqs in flush_smp_call_function_from_idle()
- Clean up task priority related defines, remove *USER_*PRIO and
USER_PRIO()
- Simplify the sched_init_numa() deduplication sort
- Documentation updates
- Fix EAS bug in update_misfit_status(), which degraded the quality
of energy-balancing
- Smaller cleanups
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmAtHBsRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1itgg/+NGed12pgPjYBzesdou60Lvx7LZLGjfOt
M1F1EnmQGn/hEH2fCY6ZoqIZQTVltm7GIcBNabzYTzlaHZsdtyuDUJBZyj19vTlk
zekcj7WVt+qvfjChaNwEJhQ9nnOM/eohMgEOHMAAJd9zlnQvve7NOLQ56UDM+kn/
9taFJ5ZPvb4avP6C5p3KivvKex6Bjof/Tl0m3utpNyPpI/qK3FyGxwdgCxU0yepT
ABWQX5ZQCufFvo1bgnBPfqyzab4MqhoM3bNKBsLQfuAlssG1xRv4KQOev4dRwrt9
pXJikV5C9yez5d2lGe5p0ltH5IZS/l9x2yI/ZQj3OUDTFyV1ic6WfFAqJgDzVF8E
i/vvA4NPQiI241Bkps+ErcCw4aVOgiY6TWli74cHjLUIX0+As6aHrFWXGSxUmiHB
WR+B8KmdfzRTTlhOxMA+cvlpZcKCfxWkJJmXzr/lDZzIuKPqM3QCE2wD9sixkfVo
JNICT0IvZghWOdbMEfZba8Psh/e2LVI9RzdpEiuYJz1ZrVlt1hO0M6jBxY0hMz9n
k54z81xODw0a8P2FHMtpmB1vhAeqCmvwA6DO8z0Oxs0DFi+KM2bLf2efHsCKafI+
Bm5v9YFaOk/55R76hJVh+aYLlyFgFkKd+P/niJTPDnxOk3SqJuXvTrql1HeGHkNr
kYgQa23dsZk=
=pyaG
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Core scheduler updates:
- Add CONFIG_PREEMPT_DYNAMIC: this in its current form adds the
preempt=none/voluntary/full boot options (default: full), to allow
distros to build a PREEMPT kernel but fall back to close to
PREEMPT_VOLUNTARY (or PREEMPT_NONE) runtime scheduling behavior via
a boot time selection.
There's also the /debug/sched_debug switch to do this runtime.
This feature is implemented via runtime patching (a new variant of
static calls).
The scope of the runtime patching can be best reviewed by looking
at the sched_dynamic_update() function in kernel/sched/core.c.
( Note that the dynamic none/voluntary mode isn't 100% identical,
for example preempt-RCU is available in all cases, plus the
preempt count is maintained in all models, which has runtime
overhead even with the code patching. )
The PREEMPT_VOLUNTARY/PREEMPT_NONE models, used by the vast
majority of distributions, are supposed to be unaffected.
- Fix ignored rescheduling after rcu_eqs_enter(). This is a bug that
was found via rcutorture triggering a hang. The bug is that
rcu_idle_enter() may wake up a NOCB kthread, but this happens after
the last generic need_resched() check. Some cpuidle drivers fix it
by chance but many others don't.
In true 2020 fashion the original bug fix has grown into a 5-patch
scheduler/RCU fix series plus another 16 RCU patches to address the
underlying issue of missed preemption events. These are the initial
fixes that should fix current incarnations of the bug.
- Clean up rbtree usage in the scheduler, by providing & using the
following consistent set of rbtree APIs:
partial-order; less() based:
- rb_add(): add a new entry to the rbtree
- rb_add_cached(): like rb_add(), but for a rb_root_cached
total-order; cmp() based:
- rb_find(): find an entry in an rbtree
- rb_find_add(): find an entry, and add if not found
- rb_find_first(): find the first (leftmost) matching entry
- rb_next_match(): continue from rb_find_first()
- rb_for_each(): iterate a sub-tree using the previous two
- Improve the SMP/NUMA load-balancer: scan for an idle sibling in a
single pass. This is a 4-commit series where each commit improves
one aspect of the idle sibling scan logic.
- Improve the cpufreq cooling driver by getting the effective CPU
utilization metrics from the scheduler
- Improve the fair scheduler's active load-balancing logic by
reducing the number of active LB attempts & lengthen the
load-balancing interval. This improves stress-ng mmapfork
performance.
- Fix CFS's estimated utilization (util_est) calculation bug that can
result in too high utilization values
Misc updates & fixes:
- Fix the HRTICK reprogramming & optimization feature
- Fix SCHED_SOFTIRQ raising race & warning in the CPU offlining code
- Reduce dl_add_task_root_domain() overhead
- Fix uprobes refcount bug
- Process pending softirqs in flush_smp_call_function_from_idle()
- Clean up task priority related defines, remove *USER_*PRIO and
USER_PRIO()
- Simplify the sched_init_numa() deduplication sort
- Documentation updates
- Fix EAS bug in update_misfit_status(), which degraded the quality
of energy-balancing
- Smaller cleanups"
* tag 'sched-core-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
sched,x86: Allow !PREEMPT_DYNAMIC
entry/kvm: Explicitly flush pending rcuog wakeup before last rescheduling point
entry: Explicitly flush pending rcuog wakeup before last rescheduling point
rcu/nocb: Trigger self-IPI on late deferred wake up before user resume
rcu/nocb: Perform deferred wake up before last idle's need_resched() check
rcu: Pull deferred rcuog wake up to rcu_eqs_enter() callers
sched/features: Distinguish between NORMAL and DEADLINE hrtick
sched/features: Fix hrtick reprogramming
sched/deadline: Reduce rq lock contention in dl_add_task_root_domain()
uprobes: (Re)add missing get_uprobe() in __find_uprobe()
smp: Process pending softirqs in flush_smp_call_function_from_idle()
sched: Harden PREEMPT_DYNAMIC
static_call: Allow module use without exposing static_call_key
sched: Add /debug/sched_preempt
preempt/dynamic: Support dynamic preempt with preempt= boot option
preempt/dynamic: Provide irqentry_exit_cond_resched() static call
preempt/dynamic: Provide preempt_schedule[_notrace]() static calls
preempt/dynamic: Provide cond_resched() and might_resched() static calls
preempt: Introduce CONFIG_PREEMPT_DYNAMIC
static_call: Provide DEFINE_STATIC_CALL_RET0()
...
The HRTICK feature has traditionally been servicing configurations that
need precise preemptions point for NORMAL tasks. More recently, the
feature has been extended to also service DEADLINE tasks with stringent
runtime enforcement needs (e.g., runtime < 1ms with HZ=1000).
Enabling HRTICK sched feature currently enables the additional timer and
task tick for both classes, which might introduced undesired overhead
for no additional benefit if one needed it only for one of the cases.
Separate HRTICK sched feature in two (and leave the traditional case
name unmodified) so that it can be selectively enabled when needed.
With:
$ echo HRTICK > /sys/kernel/debug/sched_features
the NORMAL/fair hrtick gets enabled.
With:
$ echo HRTICK_DL > /sys/kernel/debug/sched_features
the DEADLINE hrtick gets enabled.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210208073554.14629-3-juri.lelli@redhat.com
Hung tasks and RCU stall cases were reported on systems which were not
100% busy. Investigation of such unexpected cases (no sign of potential
starvation caused by tasks hogging the system) pointed out that the
periodic sched tick timer wasn't serviced anymore after a certain point
and that caused all machinery that depends on it (timers, RCU, etc.) to
stop working as well. This issues was however only reproducible if
HRTICK was enabled.
Looking at core dumps it was found that the rbtree of the hrtimer base
used also for the hrtick was corrupted (i.e. next as seen from the base
root and actual leftmost obtained by traversing the tree are different).
Same base is also used for periodic tick hrtimer, which might get "lost"
if the rbtree gets corrupted.
Much alike what described in commit 1f71addd34 ("tick/sched: Do not
mess with an enqueued hrtimer") there is a race window between
hrtimer_set_expires() in hrtick_start and hrtimer_start_expires() in
__hrtick_restart() in which the former might be operating on an already
queued hrtick hrtimer, which might lead to corruption of the base.
Use hrtick_start() (which removes the timer before enqueuing it back) to
ensure hrtick hrtimer reprogramming is entirely guarded by the base
lock, so that no race conditions can occur.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210208073554.14629-2-juri.lelli@redhat.com
Use the new EXPORT_STATIC_CALL_TRAMP() / static_call_mod() to unexport
the static_call_key for the PREEMPT_DYNAMIC calls such that modules
can no longer update these calls.
Having modules change/hi-jack the preemption calls would be horrible.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Provide static calls to control preempt_schedule[_notrace]()
(called in CONFIG_PREEMPT) so that we can override their behaviour when
preempt= is overriden.
Since the default behaviour is full preemption, both their calls are
initialized to the arch provided wrapper, if any.
[fweisbec: only define static calls when PREEMPT_DYNAMIC, make it less
dependent on x86 with __preempt_schedule_func]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210118141223.123667-7-frederic@kernel.org
Provide static calls to control cond_resched() (called in !CONFIG_PREEMPT)
and might_resched() (called in CONFIG_PREEMPT_VOLUNTARY) to that we
can override their behaviour when preempt= is overriden.
Since the default behaviour is full preemption, both their calls are
ignored when preempt= isn't passed.
[fweisbec: branch might_resched() directly to __cond_resched(), only
define static calls when PREEMPT_DYNAMIC]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210118141223.123667-6-frederic@kernel.org