mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-08-31 22:23:05 +00:00
loongarch-next
1760 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
3d38922abf |
mseal sysmap: uprobe mapping
Provide support to mseal the uprobe mapping. Unlike other system mappings, the uprobe mapping is not established during program startup. However, its lifetime is the same as the process's lifetime. It could be sealed from creation. Test was done with perf tool, and observe the uprobe mapping is sealed. Link: https://lkml.kernel.org/r/20250305021711.3867874-6-jeffxu@google.com Signed-off-by: Jeff Xu <jeffxu@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Reviewed-by: Kees Cook <kees@kernel.org> Cc: Adhemerval Zanella <adhemerval.zanella@linaro.org> Cc: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Anna-Maria Behnsen <anna-maria@linutronix.de> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Benjamin Berg <benjamin@sipsolutions.net> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: David S. Miller <davem@davemloft.net> Cc: Elliot Hughes <enh@google.com> Cc: Florian Faineli <f.fainelli@gmail.com> Cc: Greg Ungerer <gerg@kernel.org> Cc: Guenter Roeck <groeck@chromium.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jann Horn <jannh@google.com> Cc: Jason A. Donenfeld <jason@zx2c4.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Jorge Lucangeli Obes <jorgelo@chromium.org> Cc: Linus Waleij <linus.walleij@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: Miguel Ojeda <ojeda@kernel.org> Cc: Mike Rapoport <mike.rapoport@gmail.com> Cc: Pedro Falcato <pedro.falcato@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Stephen Röttger <sroettger@google.com> Cc: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
eb0ece1602 |
- The 6 patch series "Enable strict percpu address space checks" from
Uros Bizjak uses x86 named address space qualifiers to provide compile-time checking of percpu area accesses. This has caused a small amount of fallout - two or three issues were reported. In all cases the calling code was founf to be incorrect. - The 4 patch series "Some cleanup for memcg" from Chen Ridong implements some relatively monir cleanups for the memcontrol code. - The 17 patch series "mm: fixes for device-exclusive entries (hmm)" from David Hildenbrand fixes a boatload of issues which David found then using device-exclusive PTE entries when THP is enabled. More work is needed, but this makes thins better - our own HMM selftests now succeed. - The 2 patch series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed remove the z3fold and zbud implementations. They have been deprecated for half a year and nobody has complained. - The 5 patch series "mm: further simplify VMA merge operation" from Lorenzo Stoakes implements numerous simplifications in this area. No runtime effects are anticipated. - The 4 patch series "mm/madvise: remove redundant mmap_lock operations from process_madvise()" from SeongJae Park rationalizes the locking in the madvise() implementation. Performance gains of 20-25% were observed in one MADV_DONTNEED microbenchmark. - The 12 patch series "Tiny cleanup and improvements about SWAP code" from Baoquan He contains a number of touchups to issues which Baoquan noticed when working on the swap code. - The 2 patch series "mm: kmemleak: Usability improvements" from Catalin Marinas implements a couple of improvements to the kmemleak user-visible output. - The 2 patch series "mm/damon/paddr: fix large folios access and schemes handling" from Usama Arif provides a couple of fixes for DAMON's handling of large folios. - The 3 patch series "mm/damon/core: fix wrong and/or useless damos_walk() behaviors" from SeongJae Park fixes a few issues with the accuracy of kdamond's walking of DAMON regions. - The 3 patch series "expose mapping wrprotect, fix fb_defio use" from Lorenzo Stoakes changes the interaction between framebuffer deferred-io and core MM. No functional changes are anticipated - this is preparatory work for the future removal of page structure fields. - The 4 patch series "mm/damon: add support for hugepage_size DAMOS filter" from Usama Arif adds a DAMOS filter which permits the filtering by huge page sizes. - The 4 patch series "mm: permit guard regions for file-backed/shmem mappings" from Lorenzo Stoakes extends the guard region feature from its present "anon mappings only" state. The feature now covers shmem and file-backed mappings. - The 4 patch series "mm: batched unmap lazyfree large folios during reclamation" from Barry Song cleans up and speeds up the unmapping for pte-mapped large folios. - The 18 patch series "reimplement per-vma lock as a refcount" from Suren Baghdasaryan puts the vm_lock back into the vma. Our reasons for pulling it out were largely bogus and that change made the code more messy. This patchset provides small (0-10%) improvements on one microbenchmark. - The 5 patch series "Docs/mm/damon: misc DAMOS filters documentation fixes and improves" from SeongJae Park does some maintenance work on the DAMON docs. - The 27 patch series "hugetlb/CMA improvements for large systems" from Frank van der Linden addresses a pile of issues which have been observed when using CMA on large machines. - The 2 patch series "mm/damon: introduce DAMOS filter type for unmapped pages" from SeongJae Park enables users of DMAON/DAMOS to filter my the page's mapped/unmapped status. - The 19 patch series "zsmalloc/zram: there be preemption" from Sergey Senozhatsky teaches zram to run its compression and decompression operations preemptibly. - The 12 patch series "selftests/mm: Some cleanups from trying to run them" from Brendan Jackman fixes a pile of unrelated issues which Brendan encountered while runnimg our selftests. - The 2 patch series "fs/proc/task_mmu: add guard region bit to pagemap" from Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to determine whether a particular page is a guard page. - The 7 patch series "mm, swap: remove swap slot cache" from Kairui Song removes the swap slot cache from the allocation path - it simply wasn't being effective. - The 5 patch series "mm: cleanups for device-exclusive entries (hmm)" from David Hildenbrand implements a number of unrelated cleanups in this code. - The 5 patch series "mm: Rework generic PTDUMP configs" from Anshuman Khandual implements a number of preparatoty cleanups to the GENERIC_PTDUMP Kconfig logic. - The 8 patch series "mm/damon: auto-tune aggregation interval" from SeongJae Park implements a feedback-driven automatic tuning feature for DAMON's aggregation interval tuning. - The 5 patch series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in powerpc, sparc and x86 lazy MMU implementations. Ryan did this in preparation for implementing lazy mmu mode for arm64 to optimize vmalloc. - The 2 patch series "mm/page_alloc: Some clarifications for migratetype fallback" from Brendan Jackman reworks some commentary to make the code easier to follow. - The 3 patch series "page_counter cleanup and size reduction" from Shakeel Butt cleans up the page_counter code and fixes a size increase which we accidentally added late last year. - The 3 patch series "Add a command line option that enables control of how many threads should be used to allocate huge pages" from Thomas Prescher does that. It allows the careful operator to significantly reduce boot time by tuning the parallalization of huge page initialization. - The 3 patch series "Fix calculations in trace_balance_dirty_pages() for cgwb" from Tang Yizhou fixes the tracing output from the dirty page balancing code. - The 9 patch series "mm/damon: make allow filters after reject filters useful and intuitive" from SeongJae Park improves the handling of allow and reject filters. Behaviour is made more consistent and the documention is updated accordingly. - The 5 patch series "Switch zswap to object read/write APIs" from Yosry Ahmed updates zswap to the new object read/write APIs and thus permits the removal of some legacy code from zpool and zsmalloc. - The 6 patch series "Some trivial cleanups for shmem" from Baolin Wang does as it claims. - The 20 patch series "fs/dax: Fix ZONE_DEVICE page reference counts" from Alistair Popple regularizes the weird ZONE_DEVICE page refcount handling in DAX, permittig the removal of a number of special-case checks. - The 4 patch series "refactor mremap and fix bug" from Lorenzo Stoakes is a preparatoty refactoring and cleanup of the mremap() code. - The 20 patch series "mm: MM owner tracking for large folios (!hugetlb) + CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in which we determine whether a large folio is known to be mapped exclusively into a single MM. - The 8 patch series "mm/damon: add sysfs dirs for managing DAMOS filters based on handling layers" from SeongJae Park adds a couple of new sysfs directories to ease the management of DAMON/DAMOS filters. - The 13 patch series "arch, mm: reduce code duplication in mem_init()" from Mike Rapoport consolidates many per-arch implementations of mem_init() into code generic code, where that is practical. - The 13 patch series "mm/damon/sysfs: commit parameters online via damon_call()" from SeongJae Park continues the cleaning up of sysfs access to DAMON internal data. - The 3 patch series "mm: page_ext: Introduce new iteration API" from Luiz Capitulino reworks the page_ext initialization to fix a boot-time crash which was observed with an unusual combination of compile and cmdline options. - The 8 patch series "Buddy allocator like (or non-uniform) folio split" from Zi Yan reworks the code to split a folio into smaller folios. The main benefit is lessened memory consumption: fewer post-split folios are generated. - The 2 patch series "Minimize xa_node allocation during xarry split" from Zi Yan reduces the number of xarray xa_nodes which are generated during an xarray split. - The 2 patch series "drivers/base/memory: Two cleanups" from Gavin Shan performs some maintenance work on the drivers/base/memory code. - The 3 patch series "Add tracepoints for lowmem reserves, watermarks and totalreserve_pages" from Martin Liu adds some more tracepoints to the page allocator code. - The 4 patch series "mm/madvise: cleanup requests validations and classifications" from SeongJae Park cleans up some warts which SeongJae observed during his earlier madvise work. - The 3 patch series "mm/hwpoison: Fix regressions in memory failure handling" from Shuai Xue addresses two quite serious regressions which Shuai has observed in the memory-failure implementation. - The 5 patch series "mm: reliable huge page allocator" from Johannes Weiner makes huge page allocations cheaper and more reliable by reducing fragmentation. - The 5 patch series "Minor memcg cleanups & prep for memdescs" from Matthew Wilcox is preparatory work for the future implementation of memdescs. - The 4 patch series "track memory used by balloon drivers" from Nico Pache introduces a way to track memory used by our various balloon drivers. - The 2 patch series "mm/damon: introduce DAMOS filter type for active pages" from Nhat Pham permits users to filter for active/inactive pages, separately for file and anon pages. - The 2 patch series "Adding Proactive Memory Reclaim Statistics" from Hao Jia separates the proactive reclaim statistics from the direct reclaim statistics. - The 2 patch series "mm/vmscan: don't try to reclaim hwpoison folio" from Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim code. -----BEGIN PGP SIGNATURE----- iHQEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZ+nZaAAKCRDdBJ7gKXxA jsOWAPiP4r7CJHMZRK4eyJOkvS1a1r+TsIarrFZtjwvf/GIfAQCEG+JDxVfUaUSF Ee93qSSLR1BkNdDw+931Pu0mXfbnBw== =Pn2K -----END PGP SIGNATURE----- Merge tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "Enable strict percpu address space checks" from Uros Bizjak uses x86 named address space qualifiers to provide compile-time checking of percpu area accesses. This has caused a small amount of fallout - two or three issues were reported. In all cases the calling code was found to be incorrect. - The series "Some cleanup for memcg" from Chen Ridong implements some relatively monir cleanups for the memcontrol code. - The series "mm: fixes for device-exclusive entries (hmm)" from David Hildenbrand fixes a boatload of issues which David found then using device-exclusive PTE entries when THP is enabled. More work is needed, but this makes thins better - our own HMM selftests now succeed. - The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed remove the z3fold and zbud implementations. They have been deprecated for half a year and nobody has complained. - The series "mm: further simplify VMA merge operation" from Lorenzo Stoakes implements numerous simplifications in this area. No runtime effects are anticipated. - The series "mm/madvise: remove redundant mmap_lock operations from process_madvise()" from SeongJae Park rationalizes the locking in the madvise() implementation. Performance gains of 20-25% were observed in one MADV_DONTNEED microbenchmark. - The series "Tiny cleanup and improvements about SWAP code" from Baoquan He contains a number of touchups to issues which Baoquan noticed when working on the swap code. - The series "mm: kmemleak: Usability improvements" from Catalin Marinas implements a couple of improvements to the kmemleak user-visible output. - The series "mm/damon/paddr: fix large folios access and schemes handling" from Usama Arif provides a couple of fixes for DAMON's handling of large folios. - The series "mm/damon/core: fix wrong and/or useless damos_walk() behaviors" from SeongJae Park fixes a few issues with the accuracy of kdamond's walking of DAMON regions. - The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo Stoakes changes the interaction between framebuffer deferred-io and core MM. No functional changes are anticipated - this is preparatory work for the future removal of page structure fields. - The series "mm/damon: add support for hugepage_size DAMOS filter" from Usama Arif adds a DAMOS filter which permits the filtering by huge page sizes. - The series "mm: permit guard regions for file-backed/shmem mappings" from Lorenzo Stoakes extends the guard region feature from its present "anon mappings only" state. The feature now covers shmem and file-backed mappings. - The series "mm: batched unmap lazyfree large folios during reclamation" from Barry Song cleans up and speeds up the unmapping for pte-mapped large folios. - The series "reimplement per-vma lock as a refcount" from Suren Baghdasaryan puts the vm_lock back into the vma. Our reasons for pulling it out were largely bogus and that change made the code more messy. This patchset provides small (0-10%) improvements on one microbenchmark. - The series "Docs/mm/damon: misc DAMOS filters documentation fixes and improves" from SeongJae Park does some maintenance work on the DAMON docs. - The series "hugetlb/CMA improvements for large systems" from Frank van der Linden addresses a pile of issues which have been observed when using CMA on large machines. - The series "mm/damon: introduce DAMOS filter type for unmapped pages" from SeongJae Park enables users of DMAON/DAMOS to filter my the page's mapped/unmapped status. - The series "zsmalloc/zram: there be preemption" from Sergey Senozhatsky teaches zram to run its compression and decompression operations preemptibly. - The series "selftests/mm: Some cleanups from trying to run them" from Brendan Jackman fixes a pile of unrelated issues which Brendan encountered while runnimg our selftests. - The series "fs/proc/task_mmu: add guard region bit to pagemap" from Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to determine whether a particular page is a guard page. - The series "mm, swap: remove swap slot cache" from Kairui Song removes the swap slot cache from the allocation path - it simply wasn't being effective. - The series "mm: cleanups for device-exclusive entries (hmm)" from David Hildenbrand implements a number of unrelated cleanups in this code. - The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual implements a number of preparatoty cleanups to the GENERIC_PTDUMP Kconfig logic. - The series "mm/damon: auto-tune aggregation interval" from SeongJae Park implements a feedback-driven automatic tuning feature for DAMON's aggregation interval tuning. - The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in powerpc, sparc and x86 lazy MMU implementations. Ryan did this in preparation for implementing lazy mmu mode for arm64 to optimize vmalloc. - The series "mm/page_alloc: Some clarifications for migratetype fallback" from Brendan Jackman reworks some commentary to make the code easier to follow. - The series "page_counter cleanup and size reduction" from Shakeel Butt cleans up the page_counter code and fixes a size increase which we accidentally added late last year. - The series "Add a command line option that enables control of how many threads should be used to allocate huge pages" from Thomas Prescher does that. It allows the careful operator to significantly reduce boot time by tuning the parallalization of huge page initialization. - The series "Fix calculations in trace_balance_dirty_pages() for cgwb" from Tang Yizhou fixes the tracing output from the dirty page balancing code. - The series "mm/damon: make allow filters after reject filters useful and intuitive" from SeongJae Park improves the handling of allow and reject filters. Behaviour is made more consistent and the documention is updated accordingly. - The series "Switch zswap to object read/write APIs" from Yosry Ahmed updates zswap to the new object read/write APIs and thus permits the removal of some legacy code from zpool and zsmalloc. - The series "Some trivial cleanups for shmem" from Baolin Wang does as it claims. - The series "fs/dax: Fix ZONE_DEVICE page reference counts" from Alistair Popple regularizes the weird ZONE_DEVICE page refcount handling in DAX, permittig the removal of a number of special-case checks. - The series "refactor mremap and fix bug" from Lorenzo Stoakes is a preparatoty refactoring and cleanup of the mremap() code. - The series "mm: MM owner tracking for large folios (!hugetlb) + CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in which we determine whether a large folio is known to be mapped exclusively into a single MM. - The series "mm/damon: add sysfs dirs for managing DAMOS filters based on handling layers" from SeongJae Park adds a couple of new sysfs directories to ease the management of DAMON/DAMOS filters. - The series "arch, mm: reduce code duplication in mem_init()" from Mike Rapoport consolidates many per-arch implementations of mem_init() into code generic code, where that is practical. - The series "mm/damon/sysfs: commit parameters online via damon_call()" from SeongJae Park continues the cleaning up of sysfs access to DAMON internal data. - The series "mm: page_ext: Introduce new iteration API" from Luiz Capitulino reworks the page_ext initialization to fix a boot-time crash which was observed with an unusual combination of compile and cmdline options. - The series "Buddy allocator like (or non-uniform) folio split" from Zi Yan reworks the code to split a folio into smaller folios. The main benefit is lessened memory consumption: fewer post-split folios are generated. - The series "Minimize xa_node allocation during xarry split" from Zi Yan reduces the number of xarray xa_nodes which are generated during an xarray split. - The series "drivers/base/memory: Two cleanups" from Gavin Shan performs some maintenance work on the drivers/base/memory code. - The series "Add tracepoints for lowmem reserves, watermarks and totalreserve_pages" from Martin Liu adds some more tracepoints to the page allocator code. - The series "mm/madvise: cleanup requests validations and classifications" from SeongJae Park cleans up some warts which SeongJae observed during his earlier madvise work. - The series "mm/hwpoison: Fix regressions in memory failure handling" from Shuai Xue addresses two quite serious regressions which Shuai has observed in the memory-failure implementation. - The series "mm: reliable huge page allocator" from Johannes Weiner makes huge page allocations cheaper and more reliable by reducing fragmentation. - The series "Minor memcg cleanups & prep for memdescs" from Matthew Wilcox is preparatory work for the future implementation of memdescs. - The series "track memory used by balloon drivers" from Nico Pache introduces a way to track memory used by our various balloon drivers. - The series "mm/damon: introduce DAMOS filter type for active pages" from Nhat Pham permits users to filter for active/inactive pages, separately for file and anon pages. - The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia separates the proactive reclaim statistics from the direct reclaim statistics. - The series "mm/vmscan: don't try to reclaim hwpoison folio" from Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim code. * tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits) mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex() x86/mm: restore early initialization of high_memory for 32-bits mm/vmscan: don't try to reclaim hwpoison folio mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper cgroup: docs: add pswpin and pswpout items in cgroup v2 doc mm: vmscan: split proactive reclaim statistics from direct reclaim statistics selftests/mm: speed up split_huge_page_test selftests/mm: uffd-unit-tests support for hugepages > 2M docs/mm/damon/design: document active DAMOS filter type mm/damon: implement a new DAMOS filter type for active pages fs/dax: don't disassociate zero page entries MM documentation: add "Unaccepted" meminfo entry selftests/mm: add commentary about 9pfs bugs fork: use __vmalloc_node() for stack allocation docs/mm: Physical Memory: Populate the "Zones" section xen: balloon: update the NR_BALLOON_PAGES state hv_balloon: update the NR_BALLOON_PAGES state balloon_compaction: update the NR_BALLOON_PAGES state meminfo: add a per node counter for balloon drivers mm: remove references to folio in __memcg_kmem_uncharge_page() ... |
||
![]() |
a3c3c66670 |
perf/core: Fix child_total_time_enabled accounting bug at task exit
The perf events code fails to account for total_time_enabled of
inactive events.
Here is a failure case for accounting total_time_enabled for
CPU PMU events:
sudo ./perf stat -vvv -e armv8_pmuv3_0/event=0x08/ -e armv8_pmuv3_1/event=0x08/ -- stress-ng --pthread=2 -t 2s
...
armv8_pmuv3_0/event=0x08/: 1138698008 2289429840 2174835740
armv8_pmuv3_1/event=0x08/: 1826791390 1950025700 847648440
` ` `
` ` > total_time_running with child
` > total_time_enabled with child
> count with child
Performance counter stats for 'stress-ng --pthread=2 -t 2s':
1,138,698,008 armv8_pmuv3_0/event=0x08/ (94.99%)
1,826,791,390 armv8_pmuv3_1/event=0x08/ (43.47%)
The two events above are opened on two different CPU PMUs, for example,
each event is opened for a cluster in an Arm big.LITTLE system, they
will never run on the same CPU. In theory, the total enabled time should
be same for both events, as two events are opened and closed together.
As the result show, the two events' total enabled time including
child event is different (2289429840 vs 1950025700).
This is because child events are not accounted properly
if a event is INACTIVE state when the task exits:
perf_event_exit_event()
`> perf_remove_from_context()
`> __perf_remove_from_context()
`> perf_child_detach() -> Accumulate child_total_time_enabled
`> list_del_event() -> Update child event's time
The problem is the time accumulation happens prior to child event's
time updating. Thus, it misses to account the last period's time when
the event exits.
The perf core layer follows the rule that timekeeping is tied to state
change. To address the issue, make __perf_remove_from_context()
handle the task exit case by passing 'DETACH_EXIT' to it and
invoke perf_event_state() for state alongside with accounting the time.
Then, perf_child_detach() populates the time into the parent's time metrics.
After this patch, the bug is fixed:
sudo ./perf stat -vvv -e armv8_pmuv3_0/event=0x08/ -e armv8_pmuv3_1/event=0x08/ -- stress-ng --pthread=2 -t 10s
...
armv8_pmuv3_0/event=0x08/: 15396770398 32157963940 21898169000
armv8_pmuv3_1/event=0x08/: 22428964974 32157963940 10259794940
Performance counter stats for 'stress-ng --pthread=2 -t 10s':
15,396,770,398 armv8_pmuv3_0/event=0x08/ (68.10%)
22,428,964,974 armv8_pmuv3_1/event=0x08/ (31.90%)
[ mingo: Clarified the changelog. ]
Fixes:
|
||
![]() |
054570267d |
lsm/stable-6.15 PR 20250323
-----BEGIN PGP SIGNATURE----- iQJIBAABCAAyFiEES0KozwfymdVUl37v6iDy2pc3iXMFAmfgWgMUHHBhdWxAcGF1 bC1tb29yZS5jb20ACgkQ6iDy2pc3iXNW5RAAvCDq5gBtY0aTNlULe637EVLSh+t8 PkSzHzu/NlzU6BfjtwSm2fuML8welTGxSwUPxUzMCI91gPdkGeFktefavT3xa+QI BHWROn7fEJ/KmRZvngPeIkgLr5xhF5nBJmc/Jw71qem20zRzNgJnpzMX16d10Phx dxd2xOO1qM3bv6Z9RcIssZRGaN+PHngpWWg+0B69XuaBUso87S6NDyKNn1XPmvoz as96k+Wk/xAZGVEeCbs/+H5rBx6DLg+FfTRa06Oh4BFsqedpkDPxLrTgCJGJkA0H dsK6O/993zvjx0Jn4ZPoJ9n35S82BmkCsz4bGq1xVl6FYUiMcm3/8yO41wllS+w4 j+RlTU/RIdB7n8EKyMMl1hj1stTvt3Bi9F5Cbf7ZEv0snfR00K4KVpi17jnFjUHv kpOiEtXZb/NGQip7UAuUq0PisfqbiO4jJurYHRetDgv1WCy6+C8ufM5t6I+cnvmG VG+dlxcW+rDIn6bLRVuGi9TJRsQ6eox9ipa+qEKNNiOXgftELcgT7m74nAS5m0uv n5rDa221nPXecEB0X7d6YUFk711lly90dbelNeLrmv1w6jl8L1PpS1oBaW+UzGu9 46eGBd6pzu9otvK9WVyDEdotDOCrgH0sd7pTetqDhLJZ7KrGwyyqO2gD/JroUKcC lnxBQwPnat86iI8= =oxfV -----END PGP SIGNATURE----- Merge tag 'lsm-pr-20250323' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm Pull lsm updates from Paul Moore: - Various minor updates to the LSM Rust bindings Changes include marking trivial Rust bindings as inlines and comment tweaks to better reflect the LSM hooks. - Add LSM/SELinux access controls to io_uring_allowed() Similar to the io_uring_disabled sysctl, add a LSM hook to io_uring_allowed() to enable LSMs a simple way to enforce security policy on the use of io_uring. This pull request includes SELinux support for this new control using the io_uring/allowed permission. - Remove an unused parameter from the security_perf_event_open() hook The perf_event_attr struct parameter was not used by any currently supported LSMs, remove it from the hook. - Add an explicit MAINTAINERS entry for the credentials code We've seen problems in the past where patches to the credentials code sent by non-maintainers would often languish on the lists for multiple months as there was no one explicitly tasked with the responsibility of reviewing and/or merging credentials related code. Considering that most of the code under security/ has a vested interest in ensuring that the credentials code is well maintained, I'm volunteering to look after the credentials code and Serge Hallyn has also volunteered to step up as an official reviewer. I posted the MAINTAINERS update as a RFC to LKML in hopes that someone else would jump up with an "I'll do it!", but beyond Serge it was all crickets. - Update Stephen Smalley's old email address to prevent confusion This includes a corresponding update to the mailmap file. * tag 'lsm-pr-20250323' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm: mailmap: map Stephen Smalley's old email addresses lsm: remove old email address for Stephen Smalley MAINTAINERS: add Serge Hallyn as a credentials reviewer MAINTAINERS: add an explicit credentials entry cred,rust: mark Credential methods inline lsm,rust: reword "destroy" -> "release" in SecurityCtx lsm,rust: mark SecurityCtx methods inline perf: Remove unnecessary parameter of security check lsm: fix a missing security_uring_allowed() prototype io_uring,lsm,selinux: add LSM hooks for io_uring_setup() io_uring: refactor io_uring_allowed() |
||
![]() |
a50b4fe095 |
A treewide hrtimer timer cleanup
hrtimers are initialized with hrtimer_init() and a subsequent store to the callback pointer. This turned out to be suboptimal for the upcoming Rust integration and is obviously a silly implementation to begin with. This cleanup replaces the hrtimer_init(T); T->function = cb; sequence with hrtimer_setup(T, cb); The conversion was done with Coccinelle and a few manual fixups. Once the conversion has completely landed in mainline, hrtimer_init() will be removed and the hrtimer::function becomes a private member. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmff5jQTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoVvRD/wKtuwmiA66NJFgXC0qVq82A6fO3bY8 GBdbfysDJIbqGu5PTcULTbJ8qkqv3jeLUv6CcXvS4sZ7y/uJQl2lzf8yrD/0bbwc rLI6sHiPSZmK93kNVN4X5H7kvt7cE/DYC9nnEOgK3BY5FgKc4n9887d4aVBhL8Lv ODwVXvZ+xi351YCj7qRyPU24zt/p4tkkT1o2k4a0HBluqLI0D+V20fke9IERUL8r d1uWKlcn0TqYDesE8HXKIhbst3gx52rMJrXBJDHwFmG6v8Pj1fkTXCVpPo8QcBz8 OTVkpomN9f/Tx4+GZwhZOF86LhLL3OhxD6pT7JhFCXdmSGv+Ez8uyk1YZysM/XpV Juy/1yAcBpDIDkmhMFGdAAn48Nn9Fotty0r4je60zSEp1d/4QMXcFme29qr2JTUE iWnQ/HD6DxUjVHqy7CYvvo26Xegg1C7qgyOVt4PYZwAM1VKF5P3kzYTb4SAdxtop Tpji1sfW9QV08jqMNo6XntD32DSP9S2HqjO9LwBw700jnx2jjJ35fcJs6iodMOUn gckIZLMn3L0OoglPdyA5O7SNTbKE7aFiRKdnT/cJtR3Fa39Qu27CwC5gfiyuie9I Q+LG8GLuYSBHXAR+PBK4GWlzJ7Dn8k3eqmbnLeKpRMsU6ZzcttgA64xhaviN2wN0 iJbvLJeisXr3GA== =bYAX -----END PGP SIGNATURE----- Merge tag 'timers-cleanups-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer cleanups from Thomas Gleixner: "A treewide hrtimer timer cleanup hrtimers are initialized with hrtimer_init() and a subsequent store to the callback pointer. This turned out to be suboptimal for the upcoming Rust integration and is obviously a silly implementation to begin with. This cleanup replaces the hrtimer_init(T); T->function = cb; sequence with hrtimer_setup(T, cb); The conversion was done with Coccinelle and a few manual fixups. Once the conversion has completely landed in mainline, hrtimer_init() will be removed and the hrtimer::function becomes a private member" * tag 'timers-cleanups-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (100 commits) wifi: rt2x00: Switch to use hrtimer_update_function() io_uring: Use helper function hrtimer_update_function() serial: xilinx_uartps: Use helper function hrtimer_update_function() ASoC: fsl: imx-pcm-fiq: Switch to use hrtimer_setup() RDMA: Switch to use hrtimer_setup() virtio: mem: Switch to use hrtimer_setup() drm/vmwgfx: Switch to use hrtimer_setup() drm/xe/oa: Switch to use hrtimer_setup() drm/vkms: Switch to use hrtimer_setup() drm/msm: Switch to use hrtimer_setup() drm/i915/request: Switch to use hrtimer_setup() drm/i915/uncore: Switch to use hrtimer_setup() drm/i915/pmu: Switch to use hrtimer_setup() drm/i915/perf: Switch to use hrtimer_setup() drm/i915/gvt: Switch to use hrtimer_setup() drm/i915/huc: Switch to use hrtimer_setup() drm/amdgpu: Switch to use hrtimer_setup() stm class: heartbeat: Switch to use hrtimer_setup() i2c: Switch to use hrtimer_setup() iio: Switch to use hrtimer_setup() ... |
||
![]() |
bd2da08d93 |
perf: Clean up pmu specific data
The pmu specific data is saved in task_struct now. Remove it from event context structure. Remove swap_task_ctx() as well. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250314172700.438923-7-kan.liang@linux.intel.com |
||
![]() |
d57e94f5b8 |
perf: Supply task information to sched_task()
To save/restore LBR call stack data in system-wide mode, the task_struct information is required. Extend the parameters of sched_task() to supply task_struct information. When schedule in, the LBR call stack data for new task will be restored. When schedule out, the LBR call stack data for old task will be saved. Only need to pass the required task_struct information. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250314172700.438923-4-kan.liang@linux.intel.com |
||
![]() |
506e64e710 |
perf: attach/detach PMU specific data
The LBR call stack data has to be saved/restored during context switch to fix the shorter LBRs call stacks issue in the system-wide mode. Allocate PMU specific data and attach them to the corresponding task_struct during LBR call stack monitoring. When a LBR call stack event is accounted, the perf_ctx_data for the related tasks will be allocated/attached by attach_perf_ctx_data(). When a LBR call stack event is unaccounted, the perf_ctx_data for related tasks will be detached/freed by detach_perf_ctx_data(). The LBR call stack event could be a per-task event or a system-wide event. - For a per-task event, perf only allocates the perf_ctx_data for the current task. If the allocation fails, perf will error out. - For a system-wide event, perf has to allocate the perf_ctx_data for both the existing tasks and the upcoming tasks. The allocation for the existing tasks is done in perf_event_alloc(). If any allocation fails, perf will error out. The allocation for the new tasks will be done in perf_event_fork(). A global reader/writer semaphore, global_ctx_data_rwsem, is added to address the global race. - The perf_ctx_data only be freed by the last LBR call stack event. The number of the per-task events is tracked by refcount of each task. Since the system-wide events impact all tasks, it's not practical to go through the whole task list to update the refcount for each system-wide event. The number of system-wide events is tracked by a global variable global_ctx_data_ref. Suggested-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250314172700.438923-3-kan.liang@linux.intel.com |
||
![]() |
cb43691293 |
perf: Save PMU specific data in task_struct
Some PMU specific data has to be saved/restored during context switch, e.g. LBR call stack data. Currently, the data is saved in event context structure, but only for per-process event. For system-wide event, because of missing the LBR call stack data after context switch, LBR callstacks are always shorter in comparison to per-process mode. For example, Per-process mode: $perf record --call-graph lbr -- taskset -c 0 ./tchain_edit - 99.90% 99.86% tchain_edit tchain_edit [.] f3 99.86% _start __libc_start_main generic_start_main main f1 - f2 f3 System-wide mode: $perf record --call-graph lbr -a -- taskset -c 0 ./tchain_edit - 99.88% 99.82% tchain_edit tchain_edit [.] f3 - 62.02% main f1 f2 f3 - 28.83% f1 - f2 f3 - 28.83% f1 - f2 f3 - 8.88% generic_start_main main f1 f2 f3 It isn't practical to simply allocate the data for system-wide event in CPU context structure for all tasks. We have no idea which CPU a task will be scheduled to. The duplicated LBR data has to be maintained on every CPU context structure. That's a huge waste. Otherwise, the LBR data still lost if the task is scheduled to another CPU. Save the pmu specific data in task_struct. The size of pmu specific data is 788 bytes for LBR call stack. Usually, the overall amount of threads doesn't exceed a few thousands. For 10K threads, keeping LBR data would consume additional ~8MB. The additional space will only be allocated during LBR call stack monitoring. It will be released when the monitoring is finished. Furthermore, moving task_ctx_data from perf_event_context to task_struct can reduce complexity and make things clearer. E.g. perf doesn't need to swap task_ctx_data on optimized context switch path. This patch set is just the first step. There could be other optimization/extension on top of this patch set. E.g. for cgroup profiling, perf just needs to save/store the LBR call stack information for tasks in specific cgroup. That could reduce the additional space. Also, the LBR call stack can be available for software events, or allow even debugging use cases, like LBRs on crash later. Because of the alignment requirement of Intel Arch LBR, the Kmem cache is used to allocate the PMU specific data. It's required when child task allocates the space. Save it in struct perf_ctx_data. The refcount in struct perf_ctx_data is used to track the users of pmu specific data. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Alexey Budankov <alexey.budankov@linux.intel.com> Link: https://lore.kernel.org/r/20250314172700.438923-1-kan.liang@linux.intel.com |
||
![]() |
c96fff391c |
perf/ring_buffer: Allow the EPOLLRDNORM flag for poll
The poll man page says POLLRDNORM is equivalent to POLLIN. For poll(),
it seems that if user sets pollfd with POLLRDNORM in userspace, perf_poll
will not return until timeout even if perf_output_wakeup called,
whereas POLLIN returns.
Fixes:
|
||
![]() |
f4b07fd62d |
perf/core: Use POLLHUP for pinned events in error
Pinned performance events can enter an error state when they fail to be scheduled in the context due to a failed constraint or some other conflict or condition. In error state these events won't generate any samples anymore and are silently ignored until they are recovered by PERF_EVENT_IOC_ENABLE, or the condition can also change so that they can be scheduled in. Tooling should be allowed to know about the state change, but currently there's no mechanism to notify tooling when events enter an error state. One way to do this is to issue a POLLHUP event to poll(2) to handle this. Reading events in an error state would return 0 (EOF) and it matches to the behavior of POLLHUP according to the man page. Tooling should remove the fd of the event from pollfd after getting POLLHUP, otherwise it'll be returned repeatedly. [ mingo: Clarified the changelog ] Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250317061745.1777584-1-namhyung@kernel.org |
||
![]() |
096cbb80ab |
kernel/events/uprobes: handle device-exclusive entries correctly in __replace_page()
Ever since commit |
||
![]() |
b6ecb57f1f |
perf/core: Use sysfs_emit() instead of scnprintf()
Follow the advice in Documentation/filesystems/sysfs.rst: "- show() should only use sysfs_emit() or sysfs_emit_at() when formatting the value to be returned to user space." No change in functionality intended. [ mingo: Updated the changelog ] Signed-off-by: XieLudan <xie.ludan@zte.com.cn> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20250315141738452lXIH39UJAXlCmcATCzcBv@zte.com.cn |
||
![]() |
fd3f5d385a |
perf/core: Remove optional 'size' arguments from strscpy() calls
The 'size' parameter is optional and strscpy() automatically determines the length of the destination buffer using sizeof() if the argument is omitted. This makes the explicit sizeof() calls unnecessary. Furthermore, KSYM_NAME_LEN is equal to sizeof(name) and can also be removed. Remove them to shorten and simplify the code. Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250310192336.442994-1-thorsten.blum@linux.dev |
||
![]() |
fa6192adc3 |
uprobes/x86: Harden uretprobe syscall trampoline check
Jann reported a possible issue when trampoline_check_ip returns
address near the bottom of the address space that is allowed to
call into the syscall if uretprobes are not set up:
https://lore.kernel.org/bpf/202502081235.5A6F352985@keescook/T/#m9d416df341b8fbc11737dacbcd29f0054413cbbf
Though the mmap minimum address restrictions will typically prevent
creating mappings there, let's make sure uretprobe syscall checks
for that.
Fixes:
|
||
![]() |
da02f54e81 |
perf/core: Clean up perf_try_init_event()
Make sure that perf_try_init_event() doesn't leave event->pmu nor event->destroy set on failure. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250205102449.110145835@infradead.org |
||
![]() |
66477c7230 |
perf/core: Fix perf_mmap() failure path
When f_ops->mmap() returns failure, m_ops->close() is *not* called. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135519.248358497@infradead.org |
||
![]() |
4eabf533fb |
perf/core: Detach 'struct perf_cpu_pmu_context' and 'struct pmu' lifetimes
In prepration for being able to unregister a PMU with existing events, it becomes important to detach struct perf_cpu_pmu_context lifetimes from that of struct pmu. Notably struct perf_cpu_pmu_context embeds a struct perf_event_pmu_context that can stay referenced until the last event goes. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135518.760214287@infradead.org |
||
![]() |
0983593f32 |
perf/core: Lift event->mmap_mutex in perf_mmap()
This puts 'all' of perf_mmap() under single event->mmap_mutex. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135519.582252957@infradead.org |
||
![]() |
8eaec7bb72 |
perf/core: Remove retry loop from perf_mmap()
AFAICT there is no actual benefit from the mutex drop on re-try. The 'worst' case scenario is that we instantly re-gain the mutex without perf_mmap_close() getting it. So might as well make that the normal case. Reflow the code to make the ring buffer detach case naturally flow into the no ring buffer case. [ mingo: Forward ported it ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135519.463607258@infradead.org |
||
![]() |
0c8a4e4139 |
perf/core: Further simplify perf_mmap()
Perform CSE and such. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135519.354909594@infradead.org |
||
![]() |
954878377b |
perf/core: Simplify the perf_mmap() control flow
Identity-transform: if (c) { X1; } else { Y; goto l; } X2; l: into the simpler: if (c) { X1; X2; } else { Y; } [ mingo: Forward ported it ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135519.095904637@infradead.org |
||
![]() |
c5b9678957 |
perf/bpf: Robustify perf_event_free_bpf_prog()
Ensure perf_event_free_bpf_prog() is safe to call a second time; notably without making any references to event->pmu when there is no prog left. Note: perf_event_detach_bpf_prog() might leave a stale event->prog Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241104135518.978956692@infradead.org |
||
![]() |
adc38b4ca1 |
perf/core: Introduce perf_free_addr_filters()
Replace _free_event()'s use of perf_addr_filters_splice()s use with an explicit perf_free_addr_filters() with the explicit propery that it is able to be called a second time without ill effect. Most notable, referencing event->pmu must be avoided when there are no filters left (from eg a previous call). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135518.868460518@infradead.org |
||
![]() |
b2996f5655 |
perf/core: Add this_cpc() helper
As a preparation for adding yet another indirection. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135518.650051565@infradead.org |
||
![]() |
4baeb0687a |
perf/core: Merge struct pmu::pmu_disable_count into struct perf_cpu_pmu_context::pmu_disable_count
Because it makes no sense to have two per-cpu allocations per pmu. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135518.518730578@infradead.org |
||
![]() |
8f2221f52e |
perf/core: Simplify perf_event_alloc()
Using the previous simplifications, transition perf_event_alloc() to the cleanup way of things -- reducing error path magic. [ mingo: Ported it to recent kernels. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135518.410755241@infradead.org |
||
![]() |
caf8b765d4 |
perf/core: Simplify perf_init_event()
Use the <linux/cleanup.h> guard() and scoped_guard() infrastructure to simplify the control flow. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20241104135518.302444446@infradead.org |
||
![]() |
6c8b0b835f |
perf/core: Simplify perf_pmu_register()
Using the previously introduced perf_pmu_free() and a new IDR helper, simplify the perf_pmu_register error paths. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135518.198937277@infradead.org |
||
![]() |
8f4c4963d2 |
perf/core: Simplify the perf_pmu_register() error path
The error path of perf_pmu_register() is of course very similar to a subset of perf_pmu_unregister(). Extract this common part in perf_pmu_free() and simplify things. [ mingo: Forward ported it ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135518.090915501@infradead.org |
||
![]() |
c70ca29803 |
perf/core: Simplify the perf_event_alloc() error path
The error cleanup sequence in perf_event_alloc() is a subset of the existing _free_event() function (it must of course be). Split this out into __free_event() and simplify the error path. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20241104135517.967889521@infradead.org |
||
![]() |
061c991697 |
perf/hw_breakpoint: Return EOPNOTSUPP for unsupported breakpoint type
Currently, __reserve_bp_slot() returns -ENOSPC for unsupported breakpoint types on the architecture. For example, powerpc does not support hardware instruction breakpoints. This causes the perf_skip BPF selftest to fail, as neither ENOENT nor EOPNOTSUPP is returned by perf_event_open for unsupported breakpoint types. As a result, the test that should be skipped for this arch is not correctly identified. To resolve this, hw_breakpoint_event_init() should exit early by checking for unsupported breakpoint types using hw_breakpoint_slots_cached() and return the appropriate error (-EOPNOTSUPP). Signed-off-by: Saket Kumar Bhaskar <skb99@linux.ibm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: https://lore.kernel.org/r/20250303092451.1862862-1-skb99@linux.ibm.com |
||
![]() |
ef2f798600 |
Merge branch 'perf/urgent' into perf/core, to pick up dependent patches and fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
![]() |
003659fec9 |
perf/core: Fix perf_pmu_register() vs. perf_init_event()
There is a fairly obvious race between perf_init_event() doing idr_find() and perf_pmu_register() doing idr_alloc() with an incompletely initialized PMU pointer. Avoid by doing idr_alloc() on a NULL pointer to register the id, and swizzling the real struct pmu pointer at the end using idr_replace(). Also making sure to not set struct pmu members after publishing the struct pmu, duh. [ introduce idr_cmpxchg() in order to better handle the idr_replace() error case -- if it were to return an unexpected pointer, it will already have replaced the value and there is no going back. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20241104135517.858805880@infradead.org |
||
![]() |
2565e42539 |
perf/core: Fix pmus_lock vs. pmus_srcu ordering
Commit |
||
![]() |
9ec84f79c5 |
perf: Remove unnecessary parameter of security check
It seems that the attr parameter was never been used in security
checks since it was first introduced by:
commit
|
||
![]() |
f8c857238a |
uprobes: Remove too strict lockdep_assert() condition in hprobe_expire()
hprobe_expire() is used to atomically switch pending uretprobe instance
(struct return_instance) from being SRCU protected to be refcounted.
This can be done from background timer thread, or synchronously within
current thread when task is forked.
In the former case, return_instance has to be protected through RCU read
lock, and that's what hprobe_expire() used to check with
lockdep_assert(rcu_read_lock_held()).
But in the latter case (hprobe_expire() called from dup_utask()) there
is no RCU lock being held, and it's both unnecessary and incovenient.
Inconvenient due to the intervening memory allocations inside
dup_return_instance()'s loop. Unnecessary because dup_utask() is called
synchronously in current thread, and no uretprobe can run at that point,
so return_instance can't be freed either.
So drop rcu_read_lock_held() condition, and expand corresponding comment
to explain necessary lifetime guarantees. lockdep_assert()-detected
issue is a false positive.
Fixes:
|
||
![]() |
0d39844150 |
perf/core: Fix low freq setting via IOC_PERIOD
A low attr::freq value cannot be set via IOC_PERIOD on some platforms. The perf_event_check_period() introduced in: |
||
![]() |
bddf10d26e |
uprobes: Reject the shared zeropage in uprobe_write_opcode()
We triggered the following crash in syzkaller tests: BUG: Bad page state in process syz.7.38 pfn:1eff3 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1eff3 flags: 0x3fffff00004004(referenced|reserved|node=0|zone=1|lastcpupid=0x1fffff) raw: 003fffff00004004 ffffe6c6c07bfcc8 ffffe6c6c07bfcc8 0000000000000000 raw: 0000000000000000 0000000000000000 00000000fffffffe 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x32/0x50 bad_page+0x69/0xf0 free_unref_page_prepare+0x401/0x500 free_unref_page+0x6d/0x1b0 uprobe_write_opcode+0x460/0x8e0 install_breakpoint.part.0+0x51/0x80 register_for_each_vma+0x1d9/0x2b0 __uprobe_register+0x245/0x300 bpf_uprobe_multi_link_attach+0x29b/0x4f0 link_create+0x1e2/0x280 __sys_bpf+0x75f/0xac0 __x64_sys_bpf+0x1a/0x30 do_syscall_64+0x56/0x100 entry_SYSCALL_64_after_hwframe+0x78/0xe2 BUG: Bad rss-counter state mm:00000000452453e0 type:MM_FILEPAGES val:-1 The following syzkaller test case can be used to reproduce: r2 = creat(&(0x7f0000000000)='./file0\x00', 0x8) write$nbd(r2, &(0x7f0000000580)=ANY=[], 0x10) r4 = openat(0xffffffffffffff9c, &(0x7f0000000040)='./file0\x00', 0x42, 0x0) mmap$IORING_OFF_SQ_RING(&(0x7f0000ffd000/0x3000)=nil, 0x3000, 0x0, 0x12, r4, 0x0) r5 = userfaultfd(0x80801) ioctl$UFFDIO_API(r5, 0xc018aa3f, &(0x7f0000000040)={0xaa, 0x20}) r6 = userfaultfd(0x80801) ioctl$UFFDIO_API(r6, 0xc018aa3f, &(0x7f0000000140)) ioctl$UFFDIO_REGISTER(r6, 0xc020aa00, &(0x7f0000000100)={{&(0x7f0000ffc000/0x4000)=nil, 0x4000}, 0x2}) ioctl$UFFDIO_ZEROPAGE(r5, 0xc020aa04, &(0x7f0000000000)={{&(0x7f0000ffd000/0x1000)=nil, 0x1000}}) r7 = bpf$PROG_LOAD(0x5, &(0x7f0000000140)={0x2, 0x3, &(0x7f0000000200)=ANY=[@ANYBLOB="1800000000120000000000000000000095"], &(0x7f0000000000)='GPL\x00', 0x7, 0x0, 0x0, 0x0, 0x0, '\x00', 0x0, @fallback=0x30, 0xffffffffffffffff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x10, 0x0, @void, @value}, 0x94) bpf$BPF_LINK_CREATE_XDP(0x1c, &(0x7f0000000040)={r7, 0x0, 0x30, 0x1e, @val=@uprobe_multi={&(0x7f0000000080)='./file0\x00', &(0x7f0000000100)=[0x2], 0x0, 0x0, 0x1}}, 0x40) The cause is that zero pfn is set to the PTE without increasing the RSS count in mfill_atomic_pte_zeropage() and the refcount of zero folio does not increase accordingly. Then, the operation on the same pfn is performed in uprobe_write_opcode()->__replace_page() to unconditional decrease the RSS count and old_folio's refcount. Therefore, two bugs are introduced: 1. The RSS count is incorrect, when process exit, the check_mm() report error "Bad rss-count". 2. The reserved folio (zero folio) is freed when folio->refcount is zero, then free_pages_prepare->free_page_is_bad() report error "Bad page state". There is more, the following warning could also theoretically be triggered: __replace_page() -> ... -> folio_remove_rmap_pte() -> VM_WARN_ON_FOLIO(is_zero_folio(folio), folio) Considering that uprobe hit on the zero folio is a very rare case, just reject zero old folio immediately after get_user_page_vma_remote(). [ mingo: Cleaned up the changelog ] Fixes: |
||
![]() |
2016066c66 |
perf/core: Order the PMU list to fix warning about unordered pmu_ctx_list
Syskaller triggers a warning due to prev_epc->pmu != next_epc->pmu in
perf_event_swap_task_ctx_data(). vmcore shows that two lists have the same
perf_event_pmu_context, but not in the same order.
The problem is that the order of pmu_ctx_list for the parent is impacted by
the time when an event/PMU is added. While the order for a child is
impacted by the event order in the pinned_groups and flexible_groups. So
the order of pmu_ctx_list in the parent and child may be different.
To fix this problem, insert the perf_event_pmu_context to its proper place
after iteration of the pmu_ctx_list.
The follow testcase can trigger above warning:
# perf record -e cycles --call-graph lbr -- taskset -c 3 ./a.out &
# perf stat -e cpu-clock,cs -p xxx // xxx is the pid of a.out
test.c
void main() {
int count = 0;
pid_t pid;
printf("%d running\n", getpid());
sleep(30);
printf("running\n");
pid = fork();
if (pid == -1) {
printf("fork error\n");
return;
}
if (pid == 0) {
while (1) {
count++;
}
} else {
while (1) {
count++;
}
}
}
The testcase first opens an LBR event, so it will allocate task_ctx_data,
and then open tracepoint and software events, so the parent context will
have 3 different perf_event_pmu_contexts. On inheritance, child ctx will
insert the perf_event_pmu_context in another order and the warning will
trigger.
[ mingo: Tidied up the changelog. ]
Fixes:
|
||
![]() |
0fe8813baf |
perf/core: Add RCU read lock protection to perf_iterate_ctx()
The perf_iterate_ctx() function performs RCU list traversal but currently lacks RCU read lock protection. This causes lockdep warnings when running perf probe with unshare(1) under CONFIG_PROVE_RCU_LIST=y: WARNING: suspicious RCU usage kernel/events/core.c:8168 RCU-list traversed in non-reader section!! Call Trace: lockdep_rcu_suspicious ? perf_event_addr_filters_apply perf_iterate_ctx perf_event_exec begin_new_exec ? load_elf_phdrs load_elf_binary ? lock_acquire ? find_held_lock ? bprm_execve bprm_execve do_execveat_common.isra.0 __x64_sys_execve do_syscall_64 entry_SYSCALL_64_after_hwframe This protection was previously present but was removed in commit |
||
![]() |
8aeacf2570 |
perf/core: Move perf_event sysctls into kernel/events
Move ctl tables to two files: - perf_event_{paranoid,mlock_kb,max_sample_rate} and perf_cpu_time_max_percent into kernel/events/core.c - perf_event_max_{stack,context_per_stack} into kernel/events/callchain.c Make static variables and functions that are fully contained in core.c and callchain.cand remove them from include/linux/perf_event.h. Additionally six_hundred_forty_kb is moved to callchain.c. Two new sysctl tables are added ({callchain,events_core}_sysctl_table) with their respective sysctl registration functions. This is part of a greater effort to move ctl tables into their respective subsystems which will reduce the merge conflicts in kerenel/sysctl.c. Signed-off-by: Joel Granados <joel.granados@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20250218-jag-mv_ctltables-v1-5-cd3698ab8d29@kernel.org |
||
![]() |
e6e21a9a39 |
Merge branch 'perf/urgent' into perf/core, to pick up fixes before merging new patches
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
![]() |
022a223546 |
perf: Switch to use hrtimer_setup()
hrtimer_setup() takes the callback function pointer as argument and initializes the timer completely. Replace hrtimer_init() and the open coded initialization of hrtimer::function with the new setup mechanism. Patch was created by using Coccinelle. Signed-off-by: Nam Cao <namcao@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/f611e6d3fc6996bbcf0e19fe234f75edebe4332f.1738746821.git.namcao@linutronix.de |
||
![]() |
ec5fd50aef |
uprobes: Don't use %pK through printk
Restricted pointers ("%pK") are not meant to be used through printk(). It can unintentionally expose security sensitive, raw pointer values. Use regular pointer formatting instead. For more background, see: https://lore.kernel.org/lkml/20250113171731-dc10e3c1-da64-4af0-b767-7c7070468023@linutronix.de/ Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20250217-restricted-pointers-uprobes-v1-1-e8cbe5bb22a7@linutronix.de |
||
![]() |
8ce939a0fa |
perf: Avoid the read if the count is already updated
The event may have been updated in the PMU-specific implementation, e.g., Intel PEBS counters snapshotting. The common code should not read and overwrite the value. The PERF_SAMPLE_READ in the data->sample_type can be used to detect whether the PMU-specific value is available. If yes, avoid the pmu->read() in the common code. Add a new flag, skip_read, to track the case. Factor out a perf_pmu_read() to clean up the code. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250121152303.3128733-3-kan.liang@linux.intel.com |
||
![]() |
83179cd678 |
uprobes: Remove the spinlock within handle_singlestep()
This patch introduces a flag to track TIF_SIGPENDING is suppress temporarily during the uprobe single-step. Upon uprobe singlestep is handled and the flag is confirmed, it could resume the TIF_SIGPENDING directly without acquiring the siglock in most case, then reducing contention and improving overall performance. I've use the script developed by Andrii in [1] to run benchmark. The CPU used was Kunpeng916 (Hi1616), 4 NUMA nodes, 64 cores@2.4GHz running the kernel on next tree + the optimization for get_xol_insn_slot() [2]. before-opt ---------- uprobe-nop ( 1 cpus): 0.907 ± 0.003M/s ( 0.907M/s/cpu) uprobe-nop ( 2 cpus): 1.676 ± 0.008M/s ( 0.838M/s/cpu) uprobe-nop ( 4 cpus): 3.210 ± 0.003M/s ( 0.802M/s/cpu) uprobe-nop ( 8 cpus): 4.457 ± 0.003M/s ( 0.557M/s/cpu) uprobe-nop (16 cpus): 3.724 ± 0.011M/s ( 0.233M/s/cpu) uprobe-nop (32 cpus): 2.761 ± 0.003M/s ( 0.086M/s/cpu) uprobe-nop (64 cpus): 1.293 ± 0.015M/s ( 0.020M/s/cpu) uprobe-push ( 1 cpus): 0.883 ± 0.001M/s ( 0.883M/s/cpu) uprobe-push ( 2 cpus): 1.642 ± 0.005M/s ( 0.821M/s/cpu) uprobe-push ( 4 cpus): 3.086 ± 0.002M/s ( 0.771M/s/cpu) uprobe-push ( 8 cpus): 3.390 ± 0.003M/s ( 0.424M/s/cpu) uprobe-push (16 cpus): 2.652 ± 0.005M/s ( 0.166M/s/cpu) uprobe-push (32 cpus): 2.713 ± 0.005M/s ( 0.085M/s/cpu) uprobe-push (64 cpus): 1.313 ± 0.009M/s ( 0.021M/s/cpu) uprobe-ret ( 1 cpus): 1.774 ± 0.000M/s ( 1.774M/s/cpu) uprobe-ret ( 2 cpus): 3.350 ± 0.001M/s ( 1.675M/s/cpu) uprobe-ret ( 4 cpus): 6.604 ± 0.000M/s ( 1.651M/s/cpu) uprobe-ret ( 8 cpus): 6.706 ± 0.005M/s ( 0.838M/s/cpu) uprobe-ret (16 cpus): 5.231 ± 0.001M/s ( 0.327M/s/cpu) uprobe-ret (32 cpus): 5.743 ± 0.003M/s ( 0.179M/s/cpu) uprobe-ret (64 cpus): 4.726 ± 0.016M/s ( 0.074M/s/cpu) after-opt --------- uprobe-nop ( 1 cpus): 0.985 ± 0.002M/s ( 0.985M/s/cpu) uprobe-nop ( 2 cpus): 1.773 ± 0.005M/s ( 0.887M/s/cpu) uprobe-nop ( 4 cpus): 3.304 ± 0.001M/s ( 0.826M/s/cpu) uprobe-nop ( 8 cpus): 5.328 ± 0.002M/s ( 0.666M/s/cpu) uprobe-nop (16 cpus): 6.475 ± 0.002M/s ( 0.405M/s/cpu) uprobe-nop (32 cpus): 4.831 ± 0.082M/s ( 0.151M/s/cpu) uprobe-nop (64 cpus): 2.564 ± 0.053M/s ( 0.040M/s/cpu) uprobe-push ( 1 cpus): 0.964 ± 0.001M/s ( 0.964M/s/cpu) uprobe-push ( 2 cpus): 1.766 ± 0.002M/s ( 0.883M/s/cpu) uprobe-push ( 4 cpus): 3.290 ± 0.009M/s ( 0.823M/s/cpu) uprobe-push ( 8 cpus): 4.670 ± 0.002M/s ( 0.584M/s/cpu) uprobe-push (16 cpus): 5.197 ± 0.004M/s ( 0.325M/s/cpu) uprobe-push (32 cpus): 5.068 ± 0.161M/s ( 0.158M/s/cpu) uprobe-push (64 cpus): 2.605 ± 0.026M/s ( 0.041M/s/cpu) uprobe-ret ( 1 cpus): 1.833 ± 0.001M/s ( 1.833M/s/cpu) uprobe-ret ( 2 cpus): 3.384 ± 0.003M/s ( 1.692M/s/cpu) uprobe-ret ( 4 cpus): 6.677 ± 0.004M/s ( 1.669M/s/cpu) uprobe-ret ( 8 cpus): 6.854 ± 0.005M/s ( 0.857M/s/cpu) uprobe-ret (16 cpus): 6.508 ± 0.006M/s ( 0.407M/s/cpu) uprobe-ret (32 cpus): 5.793 ± 0.009M/s ( 0.181M/s/cpu) uprobe-ret (64 cpus): 4.743 ± 0.016M/s ( 0.074M/s/cpu) Above benchmark results demonstrates a obivious improvement in the scalability of trig-uprobe-nop and trig-uprobe-push, the peak throughput of which are from 4.5M/s to 6.4M/s and 3.3M/s to 5.1M/s individually. [1] https://lore.kernel.org/all/20240731214256.3588718-1-andrii@kernel.org [2] https://lore.kernel.org/all/20240727094405.1362496-1-liaochang1@huawei.com Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Liao Chang <liaochang1@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250124093826.2123675-3-liaochang1@huawei.com |
||
![]() |
eae8a56ae0 |
uprobes: Remove redundant spinlock in uprobe_deny_signal()
Since clearing a bit in thread_info is an atomic operation, the spinlock is redundant and can be removed, reducing lock contention is good for performance. Signed-off-by: Liao Chang <liaochang1@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: "Masami Hiramatsu (Google)" <mhiramat@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20250124093826.2123675-2-liaochang1@huawei.com |
||
![]() |
64c37e134b |
kernel: be more careful about dup_mmap() failures and uprobe registering
If a memory allocation fails during dup_mmap(), the maple tree can be left in an unsafe state for other iterators besides the exit path. All the locks are dropped before the exit_mmap() call (in mm/mmap.c), but the incomplete mm_struct can be reached through (at least) the rmap finding the vmas which have a pointer back to the mm_struct. Up to this point, there have been no issues with being able to find an mm_struct that was only partially initialised. Syzbot was able to make the incomplete mm_struct fail with recent forking changes, so it has been proven unsafe to use the mm_struct that hasn't been initialised, as referenced in the link below. Although |
||
![]() |
6c4aa896eb |
Performance events changes for v6.14:
- Seqlock optimizations that arose in a perf context and were merged into the perf tree: - seqlock: Add raw_seqcount_try_begin (Suren Baghdasaryan) - mm: Convert mm_lock_seq to a proper seqcount ((Suren Baghdasaryan) - mm: Introduce mmap_lock_speculate_{try_begin|retry} (Suren Baghdasaryan) - mm/gup: Use raw_seqcount_try_begin() (Peter Zijlstra) - Core perf enhancements: - Reduce 'struct page' footprint of perf by mapping pages in advance (Lorenzo Stoakes) - Save raw sample data conditionally based on sample type (Yabin Cui) - Reduce sampling overhead by checking sample_type in perf_sample_save_callchain() and perf_sample_save_brstack() (Yabin Cui) - Export perf_exclude_event() (Namhyung Kim) - Uprobes scalability enhancements: (Andrii Nakryiko) - Simplify find_active_uprobe_rcu() VMA checks - Add speculative lockless VMA-to-inode-to-uprobe resolution - Simplify session consumer tracking - Decouple return_instance list traversal and freeing - Ensure return_instance is detached from the list before freeing - Reuse return_instances between multiple uretprobes within task - Guard against kmemdup() failing in dup_return_instance() - AMD core PMU driver enhancements: - Relax privilege filter restriction on AMD IBS (Namhyung Kim) - AMD RAPL energy counters support: (Dhananjay Ugwekar) - Introduce topology_logical_core_id() (K Prateek Nayak) - Remove the unused get_rapl_pmu_cpumask() function - Remove the cpu_to_rapl_pmu() function - Rename rapl_pmu variables - Make rapl_model struct global - Add arguments to the init and cleanup functions - Modify the generic variable names to *_pkg* - Remove the global variable rapl_msrs - Move the cntr_mask to rapl_pmus struct - Add core energy counter support for AMD CPUs - Intel core PMU driver enhancements: - Support RDPMC 'metrics clear mode' feature (Kan Liang) - Clarify adaptive PEBS processing (Kan Liang) - Factor out functions for PEBS records processing (Kan Liang) - Simplify the PEBS records processing for adaptive PEBS (Kan Liang) - Intel uncore driver enhancements: (Kan Liang) - Convert buggy pmu->func_id use to pmu->registered - Support more units on Granite Rapids Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmeOJdQRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1i2yQ/+MXl7yfJOgdbwjBpgGGzH4burEO7ppak+ ktzz+YjpNgjODe/xMAJGjjblouuYArCnRolc1UPvPm6M7jSY76wi42Y6c4dRtFoB 2ReSrRqnreLOcrRS9nsTjvWRHfJHqJDVSd9TfHX6ILfzbaizCZOGYk558ZxAKRqu Lw7FOvLEe/Y3tg4z8dDg083jsasalKySP9wIPc0BkSqQTOfusd3KXju/Fux/9wkn hZcUgF4ds+0bH7xtO1/G9ILqGyeq97X1McIR9bAjln5Mxykclen4hSjRaWWHHo9O mzBKmd/blIATisfuuW+QLDQow3M1k3688cz7e9QOeWHHd/dJiMb9RLV90jdND/T/ uLINC5vNemzyWEfnNiYQ31LjhG3SeuDiKWzRp36MbQcCh6EBdRXWLBgtmxq1L/3o ZCaCdtFu5+6epycdyOVZEpWDnjdx4GmLXMZi5WJfZ7fZ/IFjNkjk4OdzI1iRQ+i3 Sbi75ep59ayTUhm5AB7gCJsP3R7EsZsiPHUenQdA2n9Sj6xE+IuhlS/QDQ9g5mdY Ijs0jHeVCGmhYoOD1xWnCZSzlnkEVU3zwfypAK+MC7pgtFMwDy5/Bu1USGxXXDy+ aKsrJRSgHbtZ1gwoHstqkV+DeCTfElCLYkvigzI5Nmyib5Zp4vkwy2ZLWQjaNjm7 mqRI7PugUkU= =c8XB -----END PGP SIGNATURE----- Merge tag 'perf-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull performance events updates from Ingo Molnar: "Seqlock optimizations that arose in a perf context and were merged into the perf tree: - seqlock: Add raw_seqcount_try_begin (Suren Baghdasaryan) - mm: Convert mm_lock_seq to a proper seqcount (Suren Baghdasaryan) - mm: Introduce mmap_lock_speculate_{try_begin|retry} (Suren Baghdasaryan) - mm/gup: Use raw_seqcount_try_begin() (Peter Zijlstra) Core perf enhancements: - Reduce 'struct page' footprint of perf by mapping pages in advance (Lorenzo Stoakes) - Save raw sample data conditionally based on sample type (Yabin Cui) - Reduce sampling overhead by checking sample_type in perf_sample_save_callchain() and perf_sample_save_brstack() (Yabin Cui) - Export perf_exclude_event() (Namhyung Kim) Uprobes scalability enhancements: (Andrii Nakryiko) - Simplify find_active_uprobe_rcu() VMA checks - Add speculative lockless VMA-to-inode-to-uprobe resolution - Simplify session consumer tracking - Decouple return_instance list traversal and freeing - Ensure return_instance is detached from the list before freeing - Reuse return_instances between multiple uretprobes within task - Guard against kmemdup() failing in dup_return_instance() AMD core PMU driver enhancements: - Relax privilege filter restriction on AMD IBS (Namhyung Kim) AMD RAPL energy counters support: (Dhananjay Ugwekar) - Introduce topology_logical_core_id() (K Prateek Nayak) - Remove the unused get_rapl_pmu_cpumask() function - Remove the cpu_to_rapl_pmu() function - Rename rapl_pmu variables - Make rapl_model struct global - Add arguments to the init and cleanup functions - Modify the generic variable names to *_pkg* - Remove the global variable rapl_msrs - Move the cntr_mask to rapl_pmus struct - Add core energy counter support for AMD CPUs Intel core PMU driver enhancements: - Support RDPMC 'metrics clear mode' feature (Kan Liang) - Clarify adaptive PEBS processing (Kan Liang) - Factor out functions for PEBS records processing (Kan Liang) - Simplify the PEBS records processing for adaptive PEBS (Kan Liang) Intel uncore driver enhancements: (Kan Liang) - Convert buggy pmu->func_id use to pmu->registered - Support more units on Granite Rapids" * tag 'perf-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) perf: map pages in advance perf/x86/intel/uncore: Support more units on Granite Rapids perf/x86/intel/uncore: Clean up func_id perf/x86/intel: Support RDPMC metrics clear mode uprobes: Guard against kmemdup() failing in dup_return_instance() perf/x86: Relax privilege filter restriction on AMD IBS perf/core: Export perf_exclude_event() uprobes: Reuse return_instances between multiple uretprobes within task uprobes: Ensure return_instance is detached from the list before freeing uprobes: Decouple return_instance list traversal and freeing uprobes: Simplify session consumer tracking uprobes: add speculative lockless VMA-to-inode-to-uprobe resolution uprobes: simplify find_active_uprobe_rcu() VMA checks mm: introduce mmap_lock_speculate_{try_begin|retry} mm: convert mm_lock_seq to a proper seqcount mm/gup: Use raw_seqcount_try_begin() seqlock: add raw_seqcount_try_begin perf/x86/rapl: Add core energy counter support for AMD CPUs perf/x86/rapl: Move the cntr_mask to rapl_pmus struct perf/x86/rapl: Remove the global variable rapl_msrs ... |
||
![]() |
b709eb872e |
perf: map pages in advance
We are adjusting struct page to make it smaller, removing unneeded fields which correctly belong to struct folio. Two of those fields are page->index and page->mapping. Perf is currently making use of both of these. This is unnecessary. This patch eliminates this. Perf establishes its own internally controlled memory-mapped pages using vm_ops hooks. The first page in the mapping is the read/write user control page, and the rest of the mapping consists of read-only pages. The VMA is backed by kernel memory either from the buddy allocator or vmalloc depending on configuration. It is intended to be mapped read/write, but because it has a page_mkwrite() hook, vma_wants_writenotify() indicates that it should be mapped read-only. When a write fault occurs, the provided page_mkwrite() hook, perf_mmap_fault() (doing double duty handing faults as well) uses the vmf->pgoff field to determine if this is the first page, allowing for the desired read/write first page, read-only rest mapping. For this to work the implementation has to carefully work around faulting logic. When a page is write-faulted, the fault() hook is called first, then its page_mkwrite() hook is called (to allow for dirty tracking in file systems). On fault we set the folio's mapping in perf_mmap_fault(), this is because when do_page_mkwrite() is subsequently invoked, it treats a missing mapping as an indicator that the fault should be retried. We also set the folio's index so, given the folio is being treated as faux user memory, it correctly references its offset within the VMA. This explains why the mapping and index fields are used - but it's not necessary. We preallocate pages when perf_mmap() is called for the first time via rb_alloc(), and further allocate auxiliary pages via rb_aux_alloc() as needed if the mapping requires it. This allocation is done in the f_ops->mmap() hook provided in perf_mmap(), and so we can instead simply map all the memory right away here - there's no point in handling (read) page faults when we don't demand page nor need to be notified about them (perf does not). This patch therefore changes this logic to map everything when the mmap() hook is called, establishing a PFN map. It implements vm_ops->pfn_mkwrite() to provide the required read/write vs. read-only behaviour, which does not require the previously implemented workarounds. While it is not ideal to use a VM_PFNMAP here, doing anything else will result in the page_mkwrite() hook need to be provided, which requires the same page->mapping hack this patch seeks to undo. It will also result in the pages being treated as folios and placed on the rmap, which really does not make sense for these mappings. Semantically it makes sense to establish this as some kind of special mapping, as the pages are managed by perf and are not strictly user pages, but currently the only means by which we can do so functionally while maintaining the required R/W and R/O behaviour is a PFN map. There should be no change to actual functionality as a result of this change. Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20250103153151.124163-1-lorenzo.stoakes@oracle.com |
||
![]() |
b583ef82b6 |
uprobes: Fix race in uprobe_free_utask
Max Makarov reported kernel panic [1] in perf user callchain code.
The reason for that is the race between uprobe_free_utask and bpf
profiler code doing the perf user stack unwind and is triggered
within uprobe_free_utask function:
- after current->utask is freed and
- before current->utask is set to NULL
general protection fault, probably for non-canonical address 0x9e759c37ee555c76: 0000 [#1] SMP PTI
RIP: 0010:is_uprobe_at_func_entry+0x28/0x80
...
? die_addr+0x36/0x90
? exc_general_protection+0x217/0x420
? asm_exc_general_protection+0x26/0x30
? is_uprobe_at_func_entry+0x28/0x80
perf_callchain_user+0x20a/0x360
get_perf_callchain+0x147/0x1d0
bpf_get_stackid+0x60/0x90
bpf_prog_9aac297fb833e2f5_do_perf_event+0x434/0x53b
? __smp_call_single_queue+0xad/0x120
bpf_overflow_handler+0x75/0x110
...
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:__kmem_cache_free+0x1cb/0x350
...
? uprobe_free_utask+0x62/0x80
? acct_collect+0x4c/0x220
uprobe_free_utask+0x62/0x80
mm_release+0x12/0xb0
do_exit+0x26b/0xaa0
__x64_sys_exit+0x1b/0x20
do_syscall_64+0x5a/0x80
It can be easily reproduced by running following commands in
separate terminals:
# while :; do bpftrace -e 'uprobe:/bin/ls:_start { printf("hit\n"); }' -c ls; done
# bpftrace -e 'profile:hz:100000 { @[ustack()] = count(); }'
Fixing this by making sure current->utask pointer is set to NULL
before we start to release the utask object.
[1] https://github.com/grafana/pyroscope/issues/3673
Fixes:
|
||
![]() |
02c56362a7 |
uprobes: Guard against kmemdup() failing in dup_return_instance()
If kmemdup() failed to alloc memory, don't proceed with extra_consumers copy. Fixes: e62f2d492728 ("uprobes: Simplify session consumer tracking") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20241206183436.968068-1-andrii@kernel.org |
||
![]() |
6057b90ecc |
perf/core: Export perf_exclude_event()
While at it, rename the same function in s390 cpum_sf PMU. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com> Acked-by: Thomas Richter <tmricht@linux.ibm.com> Link: https://lore.kernel.org/r/20241203180441.1634709-2-namhyung@kernel.org |
||
![]() |
8622e45b5d |
uprobes: Reuse return_instances between multiple uretprobes within task
Instead of constantly allocating and freeing very short-lived struct return_instance, reuse it as much as possible within current task. For that, store a linked list of reusable return_instances within current->utask. The only complication is that ri_timer() might be still processing such return_instance. And so while the main uretprobe processing logic might be already done with return_instance and would be OK to immediately reuse it for the next uretprobe instance, it's not correct to unconditionally reuse it just like that. Instead we make sure that ri_timer() can't possibly be processing it by using seqcount_t, with ri_timer() being "a writer", while free_ret_instance() being "a reader". If, after we unlink return instance from utask->return_instances list, we know that ri_timer() hasn't gotten to processing utask->return_instances yet, then we can be sure that immediate return_instance reuse is OK, and so we put it onto utask->ri_pool for future (potentially, almost immediate) reuse. This change shows improvements both in single CPU performance (by avoiding relatively expensive kmalloc/free combon) and in terms of multi-CPU scalability, where you can see that per-CPU throughput doesn't decline as steeply with increased number of CPUs (which were previously attributed to kmalloc()/free() through profiling): BASELINE (latest perf/core) =========================== uretprobe-nop ( 1 cpus): 1.898 ± 0.002M/s ( 1.898M/s/cpu) uretprobe-nop ( 2 cpus): 3.574 ± 0.011M/s ( 1.787M/s/cpu) uretprobe-nop ( 3 cpus): 5.279 ± 0.066M/s ( 1.760M/s/cpu) uretprobe-nop ( 4 cpus): 6.824 ± 0.047M/s ( 1.706M/s/cpu) uretprobe-nop ( 5 cpus): 8.339 ± 0.060M/s ( 1.668M/s/cpu) uretprobe-nop ( 6 cpus): 9.812 ± 0.047M/s ( 1.635M/s/cpu) uretprobe-nop ( 7 cpus): 11.030 ± 0.048M/s ( 1.576M/s/cpu) uretprobe-nop ( 8 cpus): 12.453 ± 0.126M/s ( 1.557M/s/cpu) uretprobe-nop (10 cpus): 14.838 ± 0.044M/s ( 1.484M/s/cpu) uretprobe-nop (12 cpus): 17.092 ± 0.115M/s ( 1.424M/s/cpu) uretprobe-nop (14 cpus): 19.576 ± 0.022M/s ( 1.398M/s/cpu) uretprobe-nop (16 cpus): 22.264 ± 0.015M/s ( 1.391M/s/cpu) uretprobe-nop (24 cpus): 33.534 ± 0.078M/s ( 1.397M/s/cpu) uretprobe-nop (32 cpus): 43.262 ± 0.127M/s ( 1.352M/s/cpu) uretprobe-nop (40 cpus): 53.252 ± 0.080M/s ( 1.331M/s/cpu) uretprobe-nop (48 cpus): 55.778 ± 0.045M/s ( 1.162M/s/cpu) uretprobe-nop (56 cpus): 56.850 ± 0.227M/s ( 1.015M/s/cpu) uretprobe-nop (64 cpus): 62.005 ± 0.077M/s ( 0.969M/s/cpu) uretprobe-nop (72 cpus): 66.445 ± 0.236M/s ( 0.923M/s/cpu) uretprobe-nop (80 cpus): 68.353 ± 0.180M/s ( 0.854M/s/cpu) THIS PATCHSET (on top of latest perf/core) ========================================== uretprobe-nop ( 1 cpus): 2.253 ± 0.004M/s ( 2.253M/s/cpu) uretprobe-nop ( 2 cpus): 4.281 ± 0.003M/s ( 2.140M/s/cpu) uretprobe-nop ( 3 cpus): 6.389 ± 0.027M/s ( 2.130M/s/cpu) uretprobe-nop ( 4 cpus): 8.328 ± 0.005M/s ( 2.082M/s/cpu) uretprobe-nop ( 5 cpus): 10.353 ± 0.001M/s ( 2.071M/s/cpu) uretprobe-nop ( 6 cpus): 12.513 ± 0.010M/s ( 2.086M/s/cpu) uretprobe-nop ( 7 cpus): 14.525 ± 0.017M/s ( 2.075M/s/cpu) uretprobe-nop ( 8 cpus): 15.633 ± 0.013M/s ( 1.954M/s/cpu) uretprobe-nop (10 cpus): 19.532 ± 0.011M/s ( 1.953M/s/cpu) uretprobe-nop (12 cpus): 21.405 ± 0.009M/s ( 1.784M/s/cpu) uretprobe-nop (14 cpus): 24.857 ± 0.020M/s ( 1.776M/s/cpu) uretprobe-nop (16 cpus): 26.466 ± 0.018M/s ( 1.654M/s/cpu) uretprobe-nop (24 cpus): 40.513 ± 0.222M/s ( 1.688M/s/cpu) uretprobe-nop (32 cpus): 54.180 ± 0.074M/s ( 1.693M/s/cpu) uretprobe-nop (40 cpus): 66.100 ± 0.082M/s ( 1.652M/s/cpu) uretprobe-nop (48 cpus): 70.544 ± 0.068M/s ( 1.470M/s/cpu) uretprobe-nop (56 cpus): 74.494 ± 0.055M/s ( 1.330M/s/cpu) uretprobe-nop (64 cpus): 79.317 ± 0.029M/s ( 1.239M/s/cpu) uretprobe-nop (72 cpus): 84.875 ± 0.020M/s ( 1.179M/s/cpu) uretprobe-nop (80 cpus): 92.318 ± 0.224M/s ( 1.154M/s/cpu) For reference, with uprobe-nop we hit the following throughput: uprobe-nop (80 cpus): 143.485 ± 0.035M/s ( 1.794M/s/cpu) So now uretprobe stays a bit closer to that performance. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20241206002417.3295533-5-andrii@kernel.org |
||
![]() |
0cf981de76 |
uprobes: Ensure return_instance is detached from the list before freeing
Ensure that by the time we call free_ret_instance() to clean up an instance of struct return_instance it isn't reachable from utask->return_instances anymore. free_ret_instance() is called in a few different situations, all but one of which already are fine w.r.t. return_instance visibility: - uprobe_free_utask() guarantees that ri_timer() won't be called (through timer_delete_sync() call), and so there is no need to unlink anything, because entire utask is being freed; - uprobe_handle_trampoline() is already unlinking to-be-freed return_instance with rcu_assign_pointer() before calling free_ret_instance(). Only cleanup_return_instances() violates this property, which so far is not causing problems due to RCU-delayed freeing of return_instance, which we'll change in the next patch. So make sure we unlink return_instance before passing it into free_ret_instance(), as otherwise reuse will be unsafe. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20241206002417.3295533-4-andrii@kernel.org |
||
![]() |
636666a1c7 |
uprobes: Decouple return_instance list traversal and freeing
free_ret_instance() has two unrelated responsibilities: actually cleaning up return_instance's resources and freeing memory, and also helping with utask->return_instances list traversal by returning the next alive pointer. There is no reason why these two aspects have to be mixed together, so turn free_ret_instance() into void-returning function and make callers do list traversal on their own. We'll use this simplification in the next patch that will guarantee that to-be-freed return_instance isn't reachable from utask->return_instances list. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20241206002417.3295533-3-andrii@kernel.org |
||
![]() |
2ff913ab3f |
uprobes: Simplify session consumer tracking
In practice, each return_instance will typically contain either zero or one return_consumer, depending on whether it has any uprobe session consumer attached or not. It's highly unlikely that more than one uprobe session consumers will be attached to any given uprobe, so there is no need to optimize for that case. But the way we currently do memory allocation and accounting is by pre-allocating the space for 4 session consumers in contiguous block of memory next to struct return_instance fixed part. This is unnecessarily wasteful. This patch changes this to keep struct return_instance fixed-sized with one pre-allocated return_consumer, while (in a highly unlikely scenario) allowing for more session consumers in a separate dynamically allocated and reallocated array. We also simplify accounting a bit by not maintaining a separate temporary capacity for consumers array, and, instead, relying on krealloc() to be a no-op if underlying memory can accommodate a slightly bigger allocation (but again, it's very uncommon scenario to even have to do this reallocation). All this gets rid of ri_size(), simplifies push_consumer() and removes confusing ri->consumers_cnt re-assignment, while containing this singular preallocated consumer logic contained within a few simple preexisting helpers. Having fixed-sized struct return_instance simplifies and speeds up return_instance reuse that we ultimately add later in this patch set, see follow up patches. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20241206002417.3295533-2-andrii@kernel.org |
||
![]() |
e0925f2dc4 |
uprobes: add speculative lockless VMA-to-inode-to-uprobe resolution
Given filp_cachep is marked SLAB_TYPESAFE_BY_RCU (and FMODE_BACKING files, a special case, now goes through RCU-delated freeing), we can safely access vma->vm_file->f_inode field locklessly under just rcu_read_lock() protection, which enables looking up uprobe from uprobes_tree completely locklessly and speculatively without the need to acquire mmap_lock for reads. In most cases, anyway, assuming that there are no parallel mm and/or VMA modifications. The underlying struct file's memory won't go away from under us (even if struct file can be reused in the meantime). We rely on newly added mmap_lock_speculate_{try_begin,retry}() helpers to validate that mm_struct stays intact for entire duration of this speculation. If not, we fall back to mmap_lock-protected lookup. The speculative logic is written in such a way that it will safely handle any garbage values that might be read from vma or file structs. Benchmarking results speak for themselves. BEFORE (latest tip/perf/core) ============================= uprobe-nop ( 1 cpus): 3.384 ± 0.004M/s ( 3.384M/s/cpu) uprobe-nop ( 2 cpus): 5.456 ± 0.005M/s ( 2.728M/s/cpu) uprobe-nop ( 3 cpus): 7.863 ± 0.015M/s ( 2.621M/s/cpu) uprobe-nop ( 4 cpus): 9.442 ± 0.008M/s ( 2.360M/s/cpu) uprobe-nop ( 5 cpus): 11.036 ± 0.013M/s ( 2.207M/s/cpu) uprobe-nop ( 6 cpus): 10.884 ± 0.019M/s ( 1.814M/s/cpu) uprobe-nop ( 7 cpus): 7.897 ± 0.145M/s ( 1.128M/s/cpu) uprobe-nop ( 8 cpus): 10.021 ± 0.128M/s ( 1.253M/s/cpu) uprobe-nop (10 cpus): 9.932 ± 0.170M/s ( 0.993M/s/cpu) uprobe-nop (12 cpus): 8.369 ± 0.056M/s ( 0.697M/s/cpu) uprobe-nop (14 cpus): 8.678 ± 0.017M/s ( 0.620M/s/cpu) uprobe-nop (16 cpus): 7.392 ± 0.003M/s ( 0.462M/s/cpu) uprobe-nop (24 cpus): 5.326 ± 0.178M/s ( 0.222M/s/cpu) uprobe-nop (32 cpus): 5.426 ± 0.059M/s ( 0.170M/s/cpu) uprobe-nop (40 cpus): 5.262 ± 0.070M/s ( 0.132M/s/cpu) uprobe-nop (48 cpus): 6.121 ± 0.010M/s ( 0.128M/s/cpu) uprobe-nop (56 cpus): 6.252 ± 0.035M/s ( 0.112M/s/cpu) uprobe-nop (64 cpus): 7.644 ± 0.023M/s ( 0.119M/s/cpu) uprobe-nop (72 cpus): 7.781 ± 0.001M/s ( 0.108M/s/cpu) uprobe-nop (80 cpus): 8.992 ± 0.048M/s ( 0.112M/s/cpu) AFTER ===== uprobe-nop ( 1 cpus): 3.534 ± 0.033M/s ( 3.534M/s/cpu) uprobe-nop ( 2 cpus): 6.701 ± 0.007M/s ( 3.351M/s/cpu) uprobe-nop ( 3 cpus): 10.031 ± 0.007M/s ( 3.344M/s/cpu) uprobe-nop ( 4 cpus): 13.003 ± 0.012M/s ( 3.251M/s/cpu) uprobe-nop ( 5 cpus): 16.274 ± 0.006M/s ( 3.255M/s/cpu) uprobe-nop ( 6 cpus): 19.563 ± 0.024M/s ( 3.261M/s/cpu) uprobe-nop ( 7 cpus): 22.696 ± 0.054M/s ( 3.242M/s/cpu) uprobe-nop ( 8 cpus): 24.534 ± 0.010M/s ( 3.067M/s/cpu) uprobe-nop (10 cpus): 30.475 ± 0.117M/s ( 3.047M/s/cpu) uprobe-nop (12 cpus): 33.371 ± 0.017M/s ( 2.781M/s/cpu) uprobe-nop (14 cpus): 38.864 ± 0.004M/s ( 2.776M/s/cpu) uprobe-nop (16 cpus): 41.476 ± 0.020M/s ( 2.592M/s/cpu) uprobe-nop (24 cpus): 64.696 ± 0.021M/s ( 2.696M/s/cpu) uprobe-nop (32 cpus): 85.054 ± 0.027M/s ( 2.658M/s/cpu) uprobe-nop (40 cpus): 101.979 ± 0.032M/s ( 2.549M/s/cpu) uprobe-nop (48 cpus): 110.518 ± 0.056M/s ( 2.302M/s/cpu) uprobe-nop (56 cpus): 117.737 ± 0.020M/s ( 2.102M/s/cpu) uprobe-nop (64 cpus): 124.613 ± 0.079M/s ( 1.947M/s/cpu) uprobe-nop (72 cpus): 133.239 ± 0.032M/s ( 1.851M/s/cpu) uprobe-nop (80 cpus): 142.037 ± 0.138M/s ( 1.775M/s/cpu) Previously total throughput was maxing out at 11mln/s, and gradually declining past 8 cores. With this change, it now keeps growing with each added CPU, reaching 142mln/s at 80 CPUs (this was measured on a 80-core Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz). Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20241122035922.3321100-3-andrii@kernel.org |
||
![]() |
83e3dc9a5d |
uprobes: simplify find_active_uprobe_rcu() VMA checks
At the point where find_active_uprobe_rcu() is used we know that VMA in question has triggered software breakpoint, so we don't need to validate vma->vm_flags. Keep only vma->vm_file NULL check. Suggested-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20241122035922.3321100-2-andrii@kernel.org |
||
![]() |
bcfd5f644c |
Linux 6.13-rc1
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmdM4ygeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGURgIAIpjH8kH2NS3bdqK 65MBoKZ8qstZcQyo7H68sCkMyaspvDyePznmkDrWym/FyIOVg4FQ/sXes9xxLACu 2zy9WG+bAmZvpQ/xCqJZK9WklbXwvRXW5c5i+SB1kFTMhhdLqCpwxRnaQyIVMnmO dIAtJxDr1eYpOCEmibEbVfYyj9SUhBcvk4qznV5yeW50zOYzv0OJU9BwAuxkShxV NXqMpXoy1Ye5GJ2KB8u/VEccVpywR0c6bHlvaTnPZxOBxrZF/FbVQ6PzEO+j4/aX 3TWgSa5jrVwRksnll8YqIkNSWR10u3kOLgDax/S0G8opktTFIB/EiQ84AVN0Tjme PrwJSWs= =tjyG -----END PGP SIGNATURE----- Merge tag 'v6.13-rc1' into perf/core, to refresh the branch Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
![]() |
f5f4745a7f |
- The series "resource: A couple of cleanups" from Andy Shevchenko
performs some cleanups in the resource management code. - The series "Improve the copy of task comm" from Yafang Shao addresses possible race-induced overflows in the management of task_struct.comm[]. - The series "Remove unnecessary header includes from {tools/}lib/list_sort.c" from Kuan-Wei Chiu adds some cleanups and a small fix to the list_sort library code and to its selftest. - The series "Enhance min heap API with non-inline functions and optimizations" also from Kuan-Wei Chiu optimizes and cleans up the min_heap library code. - The series "nilfs2: Finish folio conversion" from Ryusuke Konishi finishes off nilfs2's folioification. - The series "add detect count for hung tasks" from Lance Yang adds more userspace visibility into the hung-task detector's activity. - Apart from that, singelton patches in many places - please see the individual changelogs for details. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZ0L6lQAKCRDdBJ7gKXxA jmEIAPwMSglNPKRIOgzOvHh8MUJW1Dy8iKJ2kWCO3f6QTUIM2AEA+PazZbUd/g2m Ii8igH0UBibIgva7MrCyJedDI1O23AA= =8BIU -----END PGP SIGNATURE----- Merge tag 'mm-nonmm-stable-2024-11-24-02-05' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: - The series "resource: A couple of cleanups" from Andy Shevchenko performs some cleanups in the resource management code - The series "Improve the copy of task comm" from Yafang Shao addresses possible race-induced overflows in the management of task_struct.comm[] - The series "Remove unnecessary header includes from {tools/}lib/list_sort.c" from Kuan-Wei Chiu adds some cleanups and a small fix to the list_sort library code and to its selftest - The series "Enhance min heap API with non-inline functions and optimizations" also from Kuan-Wei Chiu optimizes and cleans up the min_heap library code - The series "nilfs2: Finish folio conversion" from Ryusuke Konishi finishes off nilfs2's folioification - The series "add detect count for hung tasks" from Lance Yang adds more userspace visibility into the hung-task detector's activity - Apart from that, singelton patches in many places - please see the individual changelogs for details * tag 'mm-nonmm-stable-2024-11-24-02-05' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (71 commits) gdb: lx-symbols: do not error out on monolithic build kernel/reboot: replace sprintf() with sysfs_emit() lib: util_macros_kunit: add kunit test for util_macros.h util_macros.h: fix/rework find_closest() macros Improve consistency of '#error' directive messages ocfs2: fix uninitialized value in ocfs2_file_read_iter() hung_task: add docs for hung_task_detect_count hung_task: add detect count for hung tasks dma-buf: use atomic64_inc_return() in dma_buf_getfile() fs/proc/kcore.c: fix coccinelle reported ERROR instances resource: avoid unnecessary resource tree walking in __region_intersects() ocfs2: remove unused errmsg function and table ocfs2: cluster: fix a typo lib/scatterlist: use sg_phys() helper checkpatch: always parse orig_commit in fixes tag nilfs2: convert metadata aops from writepage to writepages nilfs2: convert nilfs_recovery_copy_block() to take a folio nilfs2: convert nilfs_page_count_clean_buffers() to take a folio nilfs2: remove nilfs_writepage nilfs2: convert checkpoint file to be folio-based ... |
||
![]() |
5c00ff742b |
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzwFqgAKCRDdBJ7gKXxA jkeuAQCkl+BmeYHE6uG0hi3pRxkupseR6DEOAYIiTv0/l8/GggD/Z3jmEeqnZaNq xyyenpibWgUoShU2wZ/Ha8FE5WDINwg= =JfWR -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "zram: optimal post-processing target selection" from Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. * tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits) cma: enforce non-zero pageblock_order during cma_init_reserved_mem() mm/kfence: add a new kunit test test_use_after_free_read_nofault() zram: fix NULL pointer in comp_algorithm_show() memcg/hugetlb: add hugeTLB counters to memcg vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount zram: ZRAM_DEF_COMP should depend on ZRAM MAINTAINERS/MEMORY MANAGEMENT: add document files for mm Docs/mm/damon: recommend academic papers to read and/or cite mm: define general function pXd_init() kmemleak: iommu/iova: fix transient kmemleak false positive mm/list_lru: simplify the list_lru walk callback function mm/list_lru: split the lock to per-cgroup scope mm/list_lru: simplify reparenting and initial allocation mm/list_lru: code clean up for reparenting mm/list_lru: don't export list_lru_add mm/list_lru: don't pass unnecessary key parameters kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols ... |
||
![]() |
f41dac3efb |
Performance events changes for v6.13:
- Uprobes: - Add BPF session support (Jiri Olsa) - Switch to RCU Tasks Trace flavor for better performance (Andrii Nakryiko) - Massively increase uretprobe SMP scalability by SRCU-protecting the uretprobe lifetime (Andrii Nakryiko) - Kill xol_area->slot_count (Oleg Nesterov) - Core facilities: - Implement targeted high-frequency profiling by adding the ability for an event to "pause" or "resume" AUX area tracing (Adrian Hunter) - VM profiling/sampling: - Correct perf sampling with guest VMs (Colton Lewis) - New hardware support: - x86/intel: Add PMU support for Intel ArrowLake-H CPUs (Dapeng Mi) - Misc fixes and enhancements: - x86/intel/pt: Fix buffer full but size is 0 case (Adrian Hunter) - x86/amd: Warn only on new bits set (Breno Leitao) - x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init (Jean Delvare) - uprobes: Re-order struct uprobe_task to save some space (Christophe JAILLET) - x86/rapl: Move the pmu allocation out of CPU hotplug (Kan Liang) - x86/rapl: Clean up cpumask and hotplug (Kan Liang) - uprobes: Deuglify xol_get_insn_slot/xol_free_insn_slot paths (Oleg Nesterov) Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmc7eKERHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1i57A/+KQ6TrIoICVTE+BPlDfUw8NU+N3DagVb0 dzoyDxlDRsnsYzeXZipPn+3IitX1w+DrGxBNIojSoiFVCLnHIKgo4uHbj7cVrR7J fBTVSnoJ94SGAk5ySebvLwMLce/YhXBeHK2lx6W/pI6acNcxzDfIabjjETeqltUo g7hmT9lo10pzZEZyuUfYX9khlWBxda1dKHc9pMIq7baeLe4iz/fCGlJ0K4d4M4z3 NPZw239Np6iHUwu3Lcs4gNKe4rcDe7Bt47hpedemHe0Y+7c4s2HaPxbXWxvDtE76 mlsg93i28f8SYxeV83pREn0EOCptXcljhiek+US+GR7NSbltMnV+uUiDfPKIE9+Y vYP/DYF9hx73FsOucEFrHxYYcePorn3pne5/khBYWdQU6TnlrBYWpoLQsjgCKTTR 4JhCFlBZ5cDpc6ihtpwCwVTQ4Q/H7vM1XOlDwx0hPhcIPPHDreaQD/wxo61jBdXf PY0EPAxh3BcQxfPYuDS+XiYjQ8qO8MtXMKz5bZyHBZlbHwccV6T4ExjsLKxFk5As 6BG8pkBWLg7drXAgVdleIY0ux+34w/Zzv7gemdlQxvWLlZrVvpjiG93oU3PTpZeq A2UD9eAOuXVD6+HsF/dmn88sFmcLWbrMskFWujkvhEUmCvSGAnz3YSS/mLEawBiT 2xI8xykNWSY= =ItOT -----END PGP SIGNATURE----- Merge tag 'perf-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull performance events updates from Ingo Molnar: "Uprobes: - Add BPF session support (Jiri Olsa) - Switch to RCU Tasks Trace flavor for better performance (Andrii Nakryiko) - Massively increase uretprobe SMP scalability by SRCU-protecting the uretprobe lifetime (Andrii Nakryiko) - Kill xol_area->slot_count (Oleg Nesterov) Core facilities: - Implement targeted high-frequency profiling by adding the ability for an event to "pause" or "resume" AUX area tracing (Adrian Hunter) VM profiling/sampling: - Correct perf sampling with guest VMs (Colton Lewis) New hardware support: - x86/intel: Add PMU support for Intel ArrowLake-H CPUs (Dapeng Mi) Misc fixes and enhancements: - x86/intel/pt: Fix buffer full but size is 0 case (Adrian Hunter) - x86/amd: Warn only on new bits set (Breno Leitao) - x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init (Jean Delvare) - uprobes: Re-order struct uprobe_task to save some space (Christophe JAILLET) - x86/rapl: Move the pmu allocation out of CPU hotplug (Kan Liang) - x86/rapl: Clean up cpumask and hotplug (Kan Liang) - uprobes: Deuglify xol_get_insn_slot/xol_free_insn_slot paths (Oleg Nesterov)" * tag 'perf-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) perf/core: Correct perf sampling with guest VMs perf/x86: Refactor misc flag assignments perf/powerpc: Use perf_arch_instruction_pointer() perf/core: Hoist perf_instruction_pointer() and perf_misc_flags() perf/arm: Drop unused functions uprobes: Re-order struct uprobe_task to save some space perf/x86/amd/uncore: Avoid a false positive warning about snprintf truncation in amd_uncore_umc_ctx_init perf/x86/intel: Do not enable large PEBS for events with aux actions or aux sampling perf/x86/intel/pt: Add support for pause / resume perf/core: Add aux_pause, aux_resume, aux_start_paused perf/x86/intel/pt: Fix buffer full but size is 0 case uprobes: SRCU-protect uretprobe lifetime (with timeout) uprobes: allow put_uprobe() from non-sleepable softirq context perf/x86/rapl: Clean up cpumask and hotplug perf/x86/rapl: Move the pmu allocation out of CPU hotplug uprobe: Add support for session consumer uprobe: Add data pointer to consumer handlers perf/x86/amd: Warn only on new bits set uprobes: fold xol_take_insn_slot() into xol_get_insn_slot() uprobes: kill xol_area->slot_count ... |
||
![]() |
b9c44b9147 |
perf/core: Save raw sample data conditionally based on sample type
Currently, space for raw sample data is always allocated within sample
records for both BPF output and tracepoint events. This leads to unused
space in sample records when raw sample data is not requested.
This patch enforces checking sample type of an event in
perf_sample_save_raw_data(). So raw sample data will only be saved if
explicitly requested, reducing overhead when it is not needed.
Fixes:
|
||
![]() |
0f25f0e4ef |
the bulk of struct fd memory safety stuff
Making sure that struct fd instances are destroyed in the same scope where they'd been created, getting rid of reassignments and passing them by reference, converting to CLASS(fd{,_pos,_raw}). We are getting very close to having the memory safety of that stuff trivial to verify. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZzdikAAKCRBZ7Krx/gZQ 69nJAQCmbQHK3TGUbQhOw6MJXOK9ezpyEDN3FZb4jsu38vTIdgEA6OxAYDO2m2g9 CN18glYmD3wRyU6Bwl4vGODouSJvDgA= =gVH3 -----END PGP SIGNATURE----- Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull 'struct fd' class updates from Al Viro: "The bulk of struct fd memory safety stuff Making sure that struct fd instances are destroyed in the same scope where they'd been created, getting rid of reassignments and passing them by reference, converting to CLASS(fd{,_pos,_raw}). We are getting very close to having the memory safety of that stuff trivial to verify" * tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (28 commits) deal with the last remaing boolean uses of fd_file() css_set_fork(): switch to CLASS(fd_raw, ...) memcg_write_event_control(): switch to CLASS(fd) assorted variants of irqfd setup: convert to CLASS(fd) do_pollfd(): convert to CLASS(fd) convert do_select() convert vfs_dedupe_file_range(). convert cifs_ioctl_copychunk() convert media_request_get_by_fd() convert spu_run(2) switch spufs_calls_{get,put}() to CLASS() use convert cachestat(2) convert do_preadv()/do_pwritev() fdget(), more trivial conversions fdget(), trivial conversions privcmd_ioeventfd_assign(): don't open-code eventfd_ctx_fdget() o2hb_region_dev_store(): avoid goto around fdget()/fdput() introduce "fd_pos" class, convert fdget_pos() users to it. fdget_raw() users: switch to CLASS(fd_raw) convert vmsplice() to CLASS(fd) ... |
||
![]() |
2c47e7a74f |
perf/core: Correct perf sampling with guest VMs
Previously any PMU overflow interrupt that fired while a VCPU was loaded was recorded as a guest event whether it truly was or not. This resulted in nonsense perf recordings that did not honor perf_event_attr.exclude_guest and recorded guest IPs where it should have recorded host IPs. Rework the sampling logic to only record guest samples for events with exclude_guest = 0. This way any host-only events with exclude_guest set will never see unexpected guest samples. The behaviour of events with exclude_guest = 0 is unchanged. Note that events configured to sample both host and guest may still misattribute a PMI that arrived in the host as a guest event depending on KVM arch and vendor behavior. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20241113190156.2145593-6-coltonlewis@google.com |
||
![]() |
04782e6391 |
perf/core: Hoist perf_instruction_pointer() and perf_misc_flags()
For clarity, rename the arch-specific definitions of these functions to perf_arch_* to denote they are arch-specifc. Define the generic-named functions in one place where they can call the arch-specific ones as needed. Signed-off-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Acked-by: Thomas Richter <tmricht@linux.ibm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Madhavan Srinivasan <maddy@linux.ibm.com> Acked-by: Kan Liang <kan.liang@linux.intel.com> Link: https://lore.kernel.org/r/20241113190156.2145593-3-coltonlewis@google.com |
||
![]() |
083ad2871a |
perf/core: update min_heap_callbacks to use default builtin swap
After introducing the default builtin swap implementation, update the min_heap_callbacks to replace the swp function pointer with NULL. This change allows the min heap to directly utilize the builtin swap, simplifying the code. Link: https://lkml.kernel.org/r/20241020040200.939973-6-visitorckw@gmail.com Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw> Cc: Coly Li <colyli@suse.de> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: "Liang, Kan" <kan.liang@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Sakai <msakai@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
92a8b224b8 |
lib/min_heap: introduce non-inline versions of min heap API functions
Patch series "Enhance min heap API with non-inline functions and optimizations", v2. Add non-inline versions of the min heap API functions in lib/min_heap.c and updates all users outside of kernel/events/core.c to use these non-inline versions. To mitigate the performance impact of indirect function calls caused by the non-inline versions of the swap and compare functions, a builtin swap has been introduced that swaps elements based on their size. Additionally, it micro-optimizes the efficiency of the min heap by pre-scaling the counter, following the same approach as in lib/sort.c. Documentation for the min heap API has also been added to the core-api section. This patch (of 10): All current min heap API functions are marked with '__always_inline'. However, as the number of users increases, inlining these functions everywhere leads to a increase in kernel size. In performance-critical paths, such as when perf events are enabled and min heap functions are called on every context switch, it is important to retain the inline versions for optimal performance. To balance this, the original inline functions are kept, and additional non-inline versions of the functions have been added in lib/min_heap.c. Link: https://lkml.kernel.org/r/20241020040200.939973-1-visitorckw@gmail.com Link: https://lore.kernel.org/20240522161048.8d8bbc7b153b4ecd92c50666@linux-foundation.org Link: https://lkml.kernel.org/r/20241020040200.939973-2-visitorckw@gmail.com Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw> Cc: Coly Li <colyli@suse.de> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Kuan-Wei Chiu <visitorckw@gmail.com> Cc: "Liang, Kan" <kan.liang@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Sakai <msakai@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
ad8f63f935 |
perf/hw_breakpoint: use ERR_PTR_PCPU(), IS_ERR_PCPU() and PTR_ERR_PCPU() macros
Use ERR_PTR_PCPU() when returning error pointer in the percpu address space. Use IS_ERR_PCPU() and PTR_ERR_PCPU() when returning the error pointer from the percpu address space. These macros add intermediate cast to unsigned long when switching named address spaces. The patch will avoid future build errors due to pointer address space mismatch with enabled strict percpu address space checks. Link: https://lkml.kernel.org/r/20240924090813.1353586-1-ubizjak@gmail.com Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Ian Rogers <irogers@google.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: "Liang, Kan" <kan.liang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
f2f484085e |
mm: move mm flags to mm_types.h
The types of mm flags are now far beyond the core dump related features. This patch moves mm flags from linux/sched/coredump.h to linux/mm_types.h. The linux/sched/coredump.h has include the mm_types.h, so the C files related to coredump does not need to change head file inclusion. In addition, the inclusion of sched/coredump.h now can be deleted from the C files that irrelevant to core dump. Link: https://lkml.kernel.org/r/20240926074922.2721274-1-sunnanyong@huawei.com Signed-off-by: Nanyong Sun <sunnanyong@huawei.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
18d92bb57c |
perf/core: Add aux_pause, aux_resume, aux_start_paused
Hardware traces, such as instruction traces, can produce a vast amount of trace data, so being able to reduce tracing to more specific circumstances can be useful. The ability to pause or resume tracing when another event happens, can do that. Add ability for an event to "pause" or "resume" AUX area tracing. Add aux_pause bit to perf_event_attr to indicate that, if the event happens, the associated AUX area tracing should be paused. Ditto aux_resume. Do not allow aux_pause and aux_resume to be set together. Add aux_start_paused bit to perf_event_attr to indicate to an AUX area event that it should start in a "paused" state. Add aux_paused to struct hw_perf_event for AUX area events to keep track of the "paused" state. aux_paused is initialized to aux_start_paused. Add PERF_EF_PAUSE and PERF_EF_RESUME modes for ->stop() and ->start() callbacks. Call as needed, during __perf_event_output(). Add aux_in_pause_resume to struct perf_buffer to prevent races with the NMI handler. Pause/resume in NMI context will miss out if it coincides with another pause/resume. To use aux_pause or aux_resume, an event must be in a group with the AUX area event as the group leader. Example (requires Intel PT and tools patches also): $ perf record --kcore -e intel_pt/aux-action=start-paused/k,syscalls:sys_enter_newuname/aux-action=resume/,syscalls:sys_exit_newuname/aux-action=pause/ uname Linux [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.043 MB perf.data ] $ perf script --call-trace uname 30805 [000] 24001.058782799: name: 0x7ffc9c1865b0 uname 30805 [000] 24001.058784424: psb offs: 0 uname 30805 [000] 24001.058784424: cbr: 39 freq: 3904 MHz (139%) uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __x64_sys_newuname uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) down_read uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __cond_resched uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) in_lock_functions uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_sub uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) up_read uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) in_lock_functions uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) preempt_count_sub uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) _copy_to_user uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_to_user_mode uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_work uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) perf_syscall_exit uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_alloc uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_get_recursion_context uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_tp_event uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_update uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) tracing_gen_ctx_irq_test uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_event uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __perf_event_account_interrupt uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __this_cpu_preempt_check uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_output_forward uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_aux_pause uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) ring_buffer_get uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_lock uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_unlock uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) pt_event_stop uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) native_write_msr uname 30805 [000] 24001.058785463: ([kernel.kallsyms]) native_write_msr uname 30805 [000] 24001.058785639: 0x0 Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: James Clark <james.clark@arm.com> Link: https://lkml.kernel.org/r/20241022155920.17511-3-adrian.hunter@intel.com |
||
![]() |
6348be02ee |
fdget(), trivial conversions
fdget() is the first thing done in scope, all matching fdput() are immediately followed by leaving the scope. Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
![]() |
4dd53b84ff |
get rid of perf_fget_light(), convert kernel/events/core.c to CLASS(fd)
Lift fdget() and fdput() out of perf_fget_light(), turning it into is_perf_file(struct fd f). The life gets easier in both callers if we do fdget() unconditionally, including the case when we are given -1 instead of a descriptor - that avoids a reassignment in perf_event_open(2) and it avoids a nasty temptation in _perf_ioctl() where we must *not* lift output_event out of scope for output. Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
![]() |
dd1a756778 |
uprobes: SRCU-protect uretprobe lifetime (with timeout)
Avoid taking refcount on uprobe in prepare_uretprobe(), instead take uretprobe-specific SRCU lock and keep it active as kernel transfers control back to user space. Given we can't rely on user space returning from traced function within reasonable time period, we need to make sure not to keep SRCU lock active for too long, though. To that effect, we employ a timer callback which is meant to terminate SRCU lock region after predefined timeout (currently set to 100ms), and instead transfer underlying struct uprobe's lifetime protection to refcounting. This fallback to less scalable refcounting after 100ms is a fine tradeoff from uretprobe's scalability and performance perspective, because uretprobing *long running* user functions inherently doesn't run into scalability issues (there is just not enough frequency to cause noticeable issues with either performance or scalability). The overall trick is in ensuring synchronization between current thread and timer's callback fired on some other thread. To cope with that with minimal logic complications, we add hprobe wrapper which is used to contain all the synchronization related issues behind a small number of basic helpers: hprobe_expire() for "downgrading" uprobe from SRCU-protected state to refcounted state, and a hprobe_consume() and hprobe_finalize() pair of single-use consuming helpers. Other than that, whatever current thread's logic is there stays the same, as timer thread cannot modify return_instance state (or add new/remove old return_instances). It only takes care of SRCU unlock and uprobe refcounting, which is hidden from the higher-level uretprobe handling logic. We use atomic xchg() in hprobe_consume(), which is called from performance critical handle_uretprobe_chain() function run in the current context. When uncontended, this xchg() doesn't seem to hurt performance as there are no other competing CPUs fighting for the same cache line. We also mark struct return_instance as ____cacheline_aligned to ensure no false sharing can happen. Another technical moment. We need to make sure that the list of return instances can be safely traversed under RCU from timer callback, so we delay return_instance freeing with kfree_rcu() and make sure that list modifications use RCU-aware operations. Also, given SRCU lock survives transition from kernel to user space and back we need to use lower-level __srcu_read_lock() and __srcu_read_unlock() to avoid lockdep complaining. Just to give an impression of a kind of performance improvements this change brings, below are benchmarking results with and without these SRCU changes, assuming other uprobe optimizations (mainly RCU Tasks Trace for entry uprobes, lockless RB-tree lookup, and lockless VMA to uprobe lookup) are left intact: WITHOUT SRCU for uretprobes =========================== uretprobe-nop ( 1 cpus): 2.197 ± 0.002M/s ( 2.197M/s/cpu) uretprobe-nop ( 2 cpus): 3.325 ± 0.001M/s ( 1.662M/s/cpu) uretprobe-nop ( 3 cpus): 4.129 ± 0.002M/s ( 1.376M/s/cpu) uretprobe-nop ( 4 cpus): 6.180 ± 0.003M/s ( 1.545M/s/cpu) uretprobe-nop ( 8 cpus): 7.323 ± 0.005M/s ( 0.915M/s/cpu) uretprobe-nop (16 cpus): 6.943 ± 0.005M/s ( 0.434M/s/cpu) uretprobe-nop (32 cpus): 5.931 ± 0.014M/s ( 0.185M/s/cpu) uretprobe-nop (64 cpus): 5.145 ± 0.003M/s ( 0.080M/s/cpu) uretprobe-nop (80 cpus): 4.925 ± 0.005M/s ( 0.062M/s/cpu) WITH SRCU for uretprobes ======================== uretprobe-nop ( 1 cpus): 1.968 ± 0.001M/s ( 1.968M/s/cpu) uretprobe-nop ( 2 cpus): 3.739 ± 0.003M/s ( 1.869M/s/cpu) uretprobe-nop ( 3 cpus): 5.616 ± 0.003M/s ( 1.872M/s/cpu) uretprobe-nop ( 4 cpus): 7.286 ± 0.002M/s ( 1.822M/s/cpu) uretprobe-nop ( 8 cpus): 13.657 ± 0.007M/s ( 1.707M/s/cpu) uretprobe-nop (32 cpus): 45.305 ± 0.066M/s ( 1.416M/s/cpu) uretprobe-nop (64 cpus): 42.390 ± 0.922M/s ( 0.662M/s/cpu) uretprobe-nop (80 cpus): 47.554 ± 2.411M/s ( 0.594M/s/cpu) Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241024044159.3156646-3-andrii@kernel.org |
||
![]() |
2bf8e5acef |
uprobes: allow put_uprobe() from non-sleepable softirq context
Currently put_uprobe() might trigger mutex_lock()/mutex_unlock(), which makes it unsuitable to be called from more restricted context like softirq. Let's make put_uprobe() agnostic to the context in which it is called, and use work queue to defer the mutex-protected clean up steps. RB tree removal step is also moved into work-deferred callback to avoid potential deadlock between softirq-based timer callback, added in the next patch, and the rest of uprobe code. We can rework locking altogher as a follow up, but that's significantly more tricky, so warrants its own patch set. For now, we need to make sure that changes in the next patch that add timer thread work correctly with existing approach, while concentrating on SRCU + timeout logic. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241024044159.3156646-2-andrii@kernel.org |
||
![]() |
4d756095d3 |
uprobe: Add support for session consumer
This change allows the uprobe consumer to behave as session which means that 'handler' and 'ret_handler' callbacks are connected in a way that allows to: - control execution of 'ret_handler' from 'handler' callback - share data between 'handler' and 'ret_handler' callbacks The session concept fits to our common use case where we do filtering on entry uprobe and based on the result we decide to run the return uprobe (or not). It's also convenient to share the data between session callbacks. To achive this we are adding new return value the uprobe consumer can return from 'handler' callback: UPROBE_HANDLER_IGNORE - Ignore 'ret_handler' callback for this consumer. And store cookie and pass it to 'ret_handler' when consumer has both 'handler' and 'ret_handler' callbacks defined. We store shared data in the return_consumer object array as part of the return_instance object. This way the handle_uretprobe_chain can find related return_consumer and its shared data. We also store entry handler return value, for cases when there are multiple consumers on single uprobe and some of them are ignored and some of them not, in which case the return probe gets installed and we need to have a way to find out which consumer needs to be ignored. The tricky part is when consumer is registered 'after' the uprobe entry handler is hit. In such case this consumer's 'ret_handler' gets executed as well, but it won't have the proper data pointer set, so we can filter it out. Suggested-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241018202252.693462-3-jolsa@kernel.org |
||
![]() |
da09a9e0c3 |
uprobe: Add data pointer to consumer handlers
Adding data pointer to both entry and exit consumer handlers and all its users. The functionality itself is coming in following change. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241018202252.693462-2-jolsa@kernel.org |
||
![]() |
e3dfd64c1f |
perf: Fix missing RCU reader protection in perf_event_clear_cpumask()
Running rcutorture scenario TREE05, the below warning is triggered.
[ 32.604594] WARNING: suspicious RCU usage
[ 32.605928] 6.11.0-rc5-00040-g4ba4f1afb6a9 #55238 Not tainted
[ 32.607812] -----------------------------
[ 32.609140] kernel/events/core.c:13946 RCU-list traversed in non-reader section!!
[ 32.611595] other info that might help us debug this:
[ 32.614247] rcu_scheduler_active = 2, debug_locks = 1
[ 32.616392] 3 locks held by cpuhp/4/35:
[ 32.617687] #0: ffffffffb666a650 (cpu_hotplug_lock){++++}-{0:0}, at: cpuhp_thread_fun+0x4e/0x200
[ 32.620563] #1: ffffffffb666cd20 (cpuhp_state-down){+.+.}-{0:0}, at: cpuhp_thread_fun+0x4e/0x200
[ 32.623412] #2: ffffffffb677c288 (pmus_lock){+.+.}-{3:3}, at: perf_event_exit_cpu_context+0x32/0x2f0
In perf_event_clear_cpumask(), uses list_for_each_entry_rcu() without an
obvious RCU read-side critical section.
Either pmus_srcu or pmus_lock is good enough to protect the pmus list.
In the current context, pmus_lock is already held. The
list_for_each_entry_rcu() is not required.
Fixes:
|
||
![]() |
cd9626e9eb |
sched/fair: Fix external p->on_rq users
Sean noted that ever since commit |
||
![]() |
6c74ca7aa8 |
uprobes: fold xol_take_insn_slot() into xol_get_insn_slot()
After the previous change xol_take_insn_slot() becomes trivial, kill it. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241001142503.GA13633@redhat.com |
||
![]() |
7a166094bd |
uprobes: kill xol_area->slot_count
Add the new helper, xol_get_slot_nr() which does find_first_zero_bit() + test_and_set_bit(). xol_take_insn_slot() can wait for the "xol_get_slot_nr() < UINSNS_PER_PAGE" event instead of "area->slot_count < UINSNS_PER_PAGE". So we can kill area->slot_count and avoid atomic_inc() + atomic_dec(), this simplifies the code and can slightly improve the performance. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20241001142458.GA13629@redhat.com |
||
![]() |
c16e2fdd74 |
uprobes: deny mremap(xol_vma)
kernel/events/uprobes.c assumes that xol_area->vaddr is always correct but a malicious application can remap its "[uprobes]" vma to another adress to confuse the kernel. Introduce xol_mremap() to make this impossible. With this change utask->xol_vaddr in xol_free_insn_slot() can't be invalid, we can turn the offset check into WARN_ON_ONCE(offset >= PAGE_SIZE). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144258.GA9492@redhat.com |
||
![]() |
c5356ab1db |
uprobes: pass utask to xol_get_insn_slot() and xol_free_insn_slot()
Add the "struct uprobe_task *utask" argument to xol_get_insn_slot() and xol_free_insn_slot(), their callers already have it so we can avoid the unnecessary dereference and simplify the code. Kill the "tsk" argument of xol_free_insn_slot(), it is always current. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144253.GA9487@redhat.com |
||
![]() |
1cee988c1d |
uprobes: move the initialization of utask->xol_vaddr from pre_ssout() to xol_get_insn_slot()
This simplifies the code and makes xol_get_insn_slot() symmetric with xol_free_insn_slot() which clears utask->xol_vaddr. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144248.GA9483@redhat.com |
||
![]() |
6ffe8c7d87 |
uprobes: simplify xol_take_insn_slot() and its caller
The do / while (slot_nr >= UINSNS_PER_PAGE) loop in xol_take_insn_slot() makes no sense, the checked condition is always true. Change this code to use the "for (;;)" loop, this way we do not need to change slot_nr if test_and_set_bit() fails. Also, kill the unnecessary xol_vaddr != NULL check in xol_get_insn_slot(), xol_take_insn_slot() never returns NULL. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144244.GA9480@redhat.com |
||
![]() |
430af825ba |
uprobes: kill the unnecessary put_uprobe/xol_free_insn_slot in uprobe_free_utask()
If pre_ssout() succeeds and sets utask->active_uprobe and utask->xol_vaddr the task must not exit until it calls handle_singlestep() which does the necessary put_uprobe() and xol_free_insn_slot(). Remove put_uprobe() and xol_free_insn_slot() from uprobe_free_utask(). With this change xol_free_insn_slot() can't hit xol_area/utask/xol_vaddr == NULL, we can kill the unnecessary checks checks and simplify this function more. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144239.GA9475@redhat.com |
||
![]() |
c7b4133c48 |
uprobes: sanitiize xol_free_insn_slot()
1. Clear utask->xol_vaddr unconditionally, even if this addr is not valid, xol_free_insn_slot() should never return with utask->xol_vaddr != NULL. 2. Add a comment to explain why do we need to validate slot_addr. 3. Simplify the validation above. We can simply check offset < PAGE_SIZE, unsigned underflows are fine, it should work if slot_addr < area->vaddr. 4. Kill the unnecessary "slot_nr >= UINSNS_PER_PAGE" check, slot_nr must be valid if offset < PAGE_SIZE. The next patches will cleanup this function even more. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144235.GA9471@redhat.com |
||
![]() |
b302d5a6ff |
uprobes: don't abuse get_utask() in pre_ssout() and prepare_uretprobe()
handle_swbp() calls get_utask() before prepare_uretprobe() or pre_ssout() can be called, they can simply use current->utask which can't be NULL. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240929144230.GA9468@redhat.com |
||
![]() |
87195a1ee3 |
uprobes: switch to RCU Tasks Trace flavor for better performance
This patch switches uprobes SRCU usage to RCU Tasks Trace flavor, which is optimized for more lightweight and quick readers (at the expense of slower writers, which for uprobes is a fine tradeof) and has better performance and scalability with number of CPUs. Similarly to baseline vs SRCU, we've benchmarked SRCU-based implementation vs RCU Tasks Trace implementation. SRCU ==== uprobe-nop ( 1 cpus): 3.276 ± 0.005M/s ( 3.276M/s/cpu) uprobe-nop ( 2 cpus): 4.125 ± 0.002M/s ( 2.063M/s/cpu) uprobe-nop ( 4 cpus): 7.713 ± 0.002M/s ( 1.928M/s/cpu) uprobe-nop ( 8 cpus): 8.097 ± 0.006M/s ( 1.012M/s/cpu) uprobe-nop (16 cpus): 6.501 ± 0.056M/s ( 0.406M/s/cpu) uprobe-nop (32 cpus): 4.398 ± 0.084M/s ( 0.137M/s/cpu) uprobe-nop (64 cpus): 6.452 ± 0.000M/s ( 0.101M/s/cpu) uretprobe-nop ( 1 cpus): 2.055 ± 0.001M/s ( 2.055M/s/cpu) uretprobe-nop ( 2 cpus): 2.677 ± 0.000M/s ( 1.339M/s/cpu) uretprobe-nop ( 4 cpus): 4.561 ± 0.003M/s ( 1.140M/s/cpu) uretprobe-nop ( 8 cpus): 5.291 ± 0.002M/s ( 0.661M/s/cpu) uretprobe-nop (16 cpus): 5.065 ± 0.019M/s ( 0.317M/s/cpu) uretprobe-nop (32 cpus): 3.622 ± 0.003M/s ( 0.113M/s/cpu) uretprobe-nop (64 cpus): 3.723 ± 0.002M/s ( 0.058M/s/cpu) RCU Tasks Trace =============== uprobe-nop ( 1 cpus): 3.396 ± 0.002M/s ( 3.396M/s/cpu) uprobe-nop ( 2 cpus): 4.271 ± 0.006M/s ( 2.135M/s/cpu) uprobe-nop ( 4 cpus): 8.499 ± 0.015M/s ( 2.125M/s/cpu) uprobe-nop ( 8 cpus): 10.355 ± 0.028M/s ( 1.294M/s/cpu) uprobe-nop (16 cpus): 7.615 ± 0.099M/s ( 0.476M/s/cpu) uprobe-nop (32 cpus): 4.430 ± 0.007M/s ( 0.138M/s/cpu) uprobe-nop (64 cpus): 6.887 ± 0.020M/s ( 0.108M/s/cpu) uretprobe-nop ( 1 cpus): 2.174 ± 0.001M/s ( 2.174M/s/cpu) uretprobe-nop ( 2 cpus): 2.853 ± 0.001M/s ( 1.426M/s/cpu) uretprobe-nop ( 4 cpus): 4.913 ± 0.002M/s ( 1.228M/s/cpu) uretprobe-nop ( 8 cpus): 5.883 ± 0.002M/s ( 0.735M/s/cpu) uretprobe-nop (16 cpus): 5.147 ± 0.001M/s ( 0.322M/s/cpu) uretprobe-nop (32 cpus): 3.738 ± 0.008M/s ( 0.117M/s/cpu) uretprobe-nop (64 cpus): 4.397 ± 0.002M/s ( 0.069M/s/cpu) Peak throughput for uprobes increases from 8 mln/s to 10.3 mln/s (+28%!), and for uretprobes from 5.3 mln/s to 5.8 mln/s (+11%), as we have more work to do on uretprobes side. Even single-thread (no contention) performance is slightly better: 3.276 mln/s to 3.396 mln/s (+3.5%) for uprobes, and 2.055 mln/s to 2.174 mln/s (+5.8%) for uretprobes. We also select TASKS_TRACE_RCU for UPROBES in Kconfig due to the new dependency. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20240910174312.3646590-1-andrii@kernel.org |
||
![]() |
34820304cc |
uprobes: fix kernel info leak via "[uprobes]" vma
xol_add_vma() maps the uninitialized page allocated by __create_xol_area()
into userspace. On some architectures (x86) this memory is readable even
without VM_READ, VM_EXEC results in the same pgprot_t as VM_EXEC|VM_READ,
although this doesn't really matter, debugger can read this memory anyway.
Link: https://lore.kernel.org/all/20240929162047.GA12611@redhat.com/
Reported-by: Will Deacon <will@kernel.org>
Fixes:
|
||
![]() |
cb787f4ac0 |
[tree-wide] finally take no_llseek out
no_llseek had been defined to NULL two years ago, in commit
|
||
![]() |
f8ffbc365f |
struct fd layout change (and conversion to accessor helpers)
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZvDNmgAKCRBZ7Krx/gZQ 63zrAP9vI0rf55v27twiabe9LnI7aSx5ckoqXxFIFxyT3dOYpQD/bPmoApnWDD3d 592+iDgLsema/H/0/CqfqlaNtDNY8Q0= =HUl5 -----END PGP SIGNATURE----- Merge tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull 'struct fd' updates from Al Viro: "Just the 'struct fd' layout change, with conversion to accessor helpers" * tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: add struct fd constructors, get rid of __to_fd() struct fd: representation change introduce fd_file(), convert all accessors to it. |
||
![]() |
673a5009cf |
perf: Fix topology_sibling_cpumask check warning on ARM
The below warning is triggered when building with arm
multi_v7_defconfig.
kernel/events/core.c: In function 'perf_event_setup_cpumask':
kernel/events/core.c:14012:13: warning: the comparison will always evaluate as 'true' for the address of 'thread_sibling' will never be NULL [-Waddress]
14012 | if (!topology_sibling_cpumask(cpu)) {
The perf_event_init_cpu() may be invoked at the early boot stage, while
the topology_*_cpumask hasn't been initialized yet. The check is to
specially handle the case, and initialize the perf_online_<domain>_masks
on the boot CPU.
X86 uses a per-cpu cpumask pointer, which could be NULL at the early
boot stage. However, ARM uses a global variable, which never be NULL.
Use perf_online_mask as an indicator instead. Only initialize the
perf_online_<domain>_masks when perf_online_mask is empty.
Fix a typo as well.
Fixes:
|
||
![]() |
440b652328 |
bpf-next-6.12
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmbk/nIACgkQ6rmadz2v bTqxuBAAnqW81Rr0nORIxeJMbyo4EiFuYHGk6u5BYP9NPzqHroUPCLVmSP7Hp/Ta CJjsiZeivZsGa6Qlc3BCa4hHNpqP5WE1C/73svSDn7/99EfxdSBtirpMVFUPsUtn DDb5chNpvnxKNS8Mw5Ty8wBrdbXHMlSx+IfaFHpv0Yn6EAcuF4UdoEUq2l3PqhfD Il9Zm127eViPGAP+o+TBZFfW+rRw8d0ngqeRq2GvJ8ibNEDWss+GmBI1Dod7d+fC dUDg96Ipdm1a5Xz7dnH80eXz9JHdpu6qhQrQMKKArnlpJElrKiOf9b17ZcJoPQOR ZnstEnUyVnrWROZxUuKY72+2tx3TuSf+L9uZqFHNx3Ix5FIoS+tFbHf4b8SxtsOb hb2X7SigdGqhQDxUT+IPeO5hsJlIvG1/VYxMXxgc++rh9DjL06hDLUSH1WBSU0fC kFQ7HrcpAlVHtWmGbwwUyVjD+KC/qmZBTAnkcYT4C62WZVytSCnihIuSFAvV1tpZ SSIhVPyQ599UoZIiQYihp0S4qP74FotCtErWSrThneh2Cl8kDsRq//lV1nj/PTV8 CpTvz4VCFDFTgthCfd62fP95EwW5K+aE3NjGTPW/9Hx/0+J/1tT+yqWsrToGaruf TbrqtzQhpclz9UEqA+696cVAXNj9uRU4AoD3YIg72kVnRlkgYd0= =MDwh -----END PGP SIGNATURE----- Merge tag 'bpf-next-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Pull bpf updates from Alexei Starovoitov: - Introduce '__attribute__((bpf_fastcall))' for helpers and kfuncs with corresponding support in LLVM. It is similar to existing 'no_caller_saved_registers' attribute in GCC/LLVM with a provision for backward compatibility. It allows compilers generate more efficient BPF code assuming the verifier or JITs will inline or partially inline a helper/kfunc with such attribute. bpf_cast_to_kern_ctx, bpf_rdonly_cast, bpf_get_smp_processor_id are the first set of such helpers. - Harden and extend ELF build ID parsing logic. When called from sleepable context the relevants parts of ELF file will be read to find and fetch .note.gnu.build-id information. Also harden the logic to avoid TOCTOU, overflow, out-of-bounds problems. - Improvements and fixes for sched-ext: - Allow passing BPF iterators as kfunc arguments - Make the pointer returned from iter_next method trusted - Fix x86 JIT convergence issue due to growing/shrinking conditional jumps in variable length encoding - BPF_LSM related: - Introduce few VFS kfuncs and consolidate them in fs/bpf_fs_kfuncs.c - Enforce correct range of return values from certain LSM hooks - Disallow attaching to other LSM hooks - Prerequisite work for upcoming Qdisc in BPF: - Allow kptrs in program provided structs - Support for gen_epilogue in verifier_ops - Important fixes: - Fix uprobe multi pid filter check - Fix bpf_strtol and bpf_strtoul helpers - Track equal scalars history on per-instruction level - Fix tailcall hierarchy on x86 and arm64 - Fix signed division overflow to prevent INT_MIN/-1 trap on x86 - Fix get kernel stack in BPF progs attached to tracepoint:syscall - Selftests: - Add uprobe bench/stress tool - Generate file dependencies to drastically improve re-build time - Match JIT-ed and BPF asm with __xlated/__jited keywords - Convert older tests to test_progs framework - Add support for RISC-V - Few fixes when BPF programs are compiled with GCC-BPF backend (support for GCC-BPF in BPF CI is ongoing in parallel) - Add traffic monitor - Enable cross compile and musl libc * tag 'bpf-next-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (260 commits) btf: require pahole 1.21+ for DEBUG_INFO_BTF with default DWARF version btf: move pahole check in scripts/link-vmlinux.sh to lib/Kconfig.debug btf: remove redundant CONFIG_BPF test in scripts/link-vmlinux.sh bpf: Call the missed kfree() when there is no special field in btf bpf: Call the missed btf_record_free() when map creation fails selftests/bpf: Add a test case to write mtu result into .rodata selftests/bpf: Add a test case to write strtol result into .rodata selftests/bpf: Rename ARG_PTR_TO_LONG test description selftests/bpf: Fix ARG_PTR_TO_LONG {half-,}uninitialized test bpf: Zero former ARG_PTR_TO_{LONG,INT} args in case of error bpf: Improve check_raw_mode_ok test for MEM_UNINIT-tagged types bpf: Fix helper writes to read-only maps bpf: Remove truncation test in bpf_strtol and bpf_strtoul helpers bpf: Fix bpf_strtol and bpf_strtoul helpers for 32bit selftests/bpf: Add tests for sdiv/smod overflow cases bpf: Fix a sdiv overflow issue libbpf: Add bpf_object__token_fd accessor docs/bpf: Add missing BPF program types to docs docs/bpf: Add constant values for linkages bpf: Use fake pt_regs when doing bpf syscall tracepoint tracing ... |
||
![]() |
617a814f14 |
ALong with the usual shower of singleton patches, notable patch series in
this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ... |
||
![]() |
9f0c253ddd |
Performance events changes for v6.12:
- Implement per-PMU context rescheduling to significantly improve single-PMU performance, and related cleanups/fixes. (by Peter Zijlstra and Namhyung Kim) - Fix ancient bug resulting in a lot of events being dropped erroneously at higher sampling frequencies. (by Luo Gengkun) - uprobes enhancements: - Implement RCU-protected hot path optimizations for better performance: "For baseline vs SRCU, peak througput increased from 3.7 M/s (million uprobe triggerings per second) up to about 8 M/s. For uretprobes it's a bit more modest with bump from 2.4 M/s to 5 M/s. For SRCU vs RCU Tasks Trace, peak throughput for uprobes increases further from 8 M/s to 10.3 M/s (+28%!), and for uretprobes from 5.3 M/s to 5.8 M/s (+11%), as we have more work to do on uretprobes side. Even single-thread (no contention) performance is slightly better: 3.276 M/s to 3.396 M/s (+3.5%) for uprobes, and 2.055 M/s to 2.174 M/s (+5.8%) for uretprobes." (by Andrii Nakryiko et al) - Document mmap_lock, don't abuse get_user_pages_remote(). (by Oleg Nesterov) - Cleanups & fixes to prepare for future work: - Remove uprobe_register_refctr() - Simplify error handling for alloc_uprobe() - Make uprobe_register() return struct uprobe * - Fold __uprobe_unregister() into uprobe_unregister() - Shift put_uprobe() from delete_uprobe() to uprobe_unregister() - BPF: Fix use-after-free in bpf_uprobe_multi_link_attach() (by Oleg Nesterov) - New feature & ABI extension: allow events to use PERF_SAMPLE READ with inheritance, enabling sample based profiling of a group of counters over a hierarchy of processes or threads. (by Ben Gainey) - Intel uncore & power events updates: - Add Arrow Lake and Lunar Lake support - Add PERF_EV_CAP_READ_SCOPE - Clean up and enhance cpumask and hotplug support (by Kan Liang) - Add LNL uncore iMC freerunning support - Use D0:F0 as a default device (by Zhenyu Wang) - Intel PT: fix AUX snapshot handling race. (by Adrian Hunter) - Misc fixes and cleanups. (by James Clark, Jiri Olsa, Oleg Nesterov and Peter Zijlstra) Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJEBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmbqxEwRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1iusw/43UAcAZVof6Qs+j6bVAxSabF66fFfE9Wh jc+F4yZ2MGl9x6a1f392+CPcTdVsYp6G2QtRGMipD+trmi/lhDhmRrhxxD1KWIwP zVGSBx9CSFl0UpCXdGiVrGzT5xpIpJ4qqW2XUVr32n8SxTT5X/vM5ySm6KUXsIrD 2/KXwucT9a7grkl3pvy/A/FUHxaF7oAMJjcIPSvLBveQjQSHUrZoCZdHsRGT9rjS HjzxG6gDy97172z5XV1ej3HJOfFlFTQ1RcoxNqdLfiZ6n3hD4hfmtsXWB5zTzRjT xHaCOmWLhEp5v+fK2+RCFiWUbDBsmW/mecZdrjGb3C1RIDWQhLCXXc95XtrobTvk BkW9QEC/XRB+vU6Ssdv3ugN7yRWxih0BsLU5sy4nlzmwoYt9qOy8fgjRvSBKHr5K Mu1RIFu+KXq++sa7+ZJjUMY70PHQCp2m4AHprG/Y98t93CQMhDXzGVpPzWyQuW/V lqYFjd/CAoCIVGF4Jxq7sqOdZ1emDN+P0WSnnFWssJ0ZJFvxN9ZDPH2AaMk4lwo7 NFW6u3+0Vx9P0m/H6xRQj00Iye2JLMqJNCIA8QtjnB7L6upgVvcIPjgcG58fpV1o xfJekOR1A7T2aQUDlX5t9Cu36ZUImDRmwHj2m1p84s5AANlbD7/fOmffR1Hn9uFj wCTqSpi8Hg== =E3s3 -----END PGP SIGNATURE----- Merge tag 'perf-core-2024-09-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf events updates from Ingo Molnar: - Implement per-PMU context rescheduling to significantly improve single-PMU performance, and related cleanups/fixes (Peter Zijlstra and Namhyung Kim) - Fix ancient bug resulting in a lot of events being dropped erroneously at higher sampling frequencies (Luo Gengkun) - uprobes enhancements: - Implement RCU-protected hot path optimizations for better performance: "For baseline vs SRCU, peak througput increased from 3.7 M/s (million uprobe triggerings per second) up to about 8 M/s. For uretprobes it's a bit more modest with bump from 2.4 M/s to 5 M/s. For SRCU vs RCU Tasks Trace, peak throughput for uprobes increases further from 8 M/s to 10.3 M/s (+28%!), and for uretprobes from 5.3 M/s to 5.8 M/s (+11%), as we have more work to do on uretprobes side. Even single-thread (no contention) performance is slightly better: 3.276 M/s to 3.396 M/s (+3.5%) for uprobes, and 2.055 M/s to 2.174 M/s (+5.8%) for uretprobes." (Andrii Nakryiko et al) - Document mmap_lock, don't abuse get_user_pages_remote() (Oleg Nesterov) - Cleanups & fixes to prepare for future work: - Remove uprobe_register_refctr() - Simplify error handling for alloc_uprobe() - Make uprobe_register() return struct uprobe * - Fold __uprobe_unregister() into uprobe_unregister() - Shift put_uprobe() from delete_uprobe() to uprobe_unregister() - BPF: Fix use-after-free in bpf_uprobe_multi_link_attach() (Oleg Nesterov) - New feature & ABI extension: allow events to use PERF_SAMPLE READ with inheritance, enabling sample based profiling of a group of counters over a hierarchy of processes or threads (Ben Gainey) - Intel uncore & power events updates: - Add Arrow Lake and Lunar Lake support - Add PERF_EV_CAP_READ_SCOPE - Clean up and enhance cpumask and hotplug support (Kan Liang) - Add LNL uncore iMC freerunning support - Use D0:F0 as a default device (Zhenyu Wang) - Intel PT: fix AUX snapshot handling race (Adrian Hunter) - Misc fixes and cleanups (James Clark, Jiri Olsa, Oleg Nesterov and Peter Zijlstra) * tag 'perf-core-2024-09-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits) dmaengine: idxd: Clean up cpumask and hotplug for perfmon iommu/vt-d: Clean up cpumask and hotplug for perfmon perf/x86/intel/cstate: Clean up cpumask and hotplug perf: Add PERF_EV_CAP_READ_SCOPE perf: Generic hotplug support for a PMU with a scope uprobes: perform lockless SRCU-protected uprobes_tree lookup rbtree: provide rb_find_rcu() / rb_find_add_rcu() perf/uprobe: split uprobe_unregister() uprobes: travers uprobe's consumer list locklessly under SRCU protection uprobes: get rid of enum uprobe_filter_ctx in uprobe filter callbacks uprobes: protected uprobe lifetime with SRCU uprobes: revamp uprobe refcounting and lifetime management bpf: Fix use-after-free in bpf_uprobe_multi_link_attach() perf/core: Fix small negative period being ignored perf: Really fix event_function_call() locking perf: Optimize __pmu_ctx_sched_out() perf: Add context time freeze perf: Fix event_function_call() locking perf: Extract a few helpers perf: Optimize context reschedule for single PMU cases ... |
||
![]() |
2abbcc099e |
uprobes: turn xol_area->pages[2] into xol_area->page
Now that xol_mapping has its own ->fault() method we no longer need xol_area->pages[1] == NULL, we need a single page. Link: https://lkml.kernel.org/r/20240911131437.GC3448@redhat.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
6d27a31ef1 |
uprobes: introduce the global struct vm_special_mapping xol_mapping
Currently each xol_area has its own instance of vm_special_mapping, this is suboptimal and ugly. Kill xol_area->xol_mapping and add a single global instance of vm_special_mapping, the ->fault() method can use area->pages rather than xol_mapping->pages. As a side effect this fixes the problem introduced by the recent commit |