mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-09-01 15:14:52 +00:00
loongarch-next
13 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
b454abfab5 |
net: mscc: ocelot: be resilient to loss of PTP packets during transmission
The Felix DSA driver presents unique challenges that make the simplistic
ocelot PTP TX timestamping procedure unreliable: any transmitted packet
may be lost in hardware before it ever leaves our local system.
This may happen because there is congestion on the DSA conduit, the
switch CPU port or even user port (Qdiscs like taprio may delay packets
indefinitely by design).
The technical problem is that the kernel, i.e. ocelot_port_add_txtstamp_skb(),
runs out of timestamp IDs eventually, because it never detects that
packets are lost, and keeps the IDs of the lost packets on hold
indefinitely. The manifestation of the issue once the entire timestamp
ID range becomes busy looks like this in dmesg:
mscc_felix 0000:00:00.5: port 0 delivering skb without TX timestamp
mscc_felix 0000:00:00.5: port 1 delivering skb without TX timestamp
At the surface level, we need a timeout timer so that the kernel knows a
timestamp ID is available again. But there is a deeper problem with the
implementation, which is the monotonically increasing ocelot_port->ts_id.
In the presence of packet loss, it will be impossible to detect that and
reuse one of the holes created in the range of free timestamp IDs.
What we actually need is a bitmap of 63 timestamp IDs tracking which one
is available. That is able to use up holes caused by packet loss, but
also gives us a unique opportunity to not implement an actual timer_list
for the timeout timer (very complicated in terms of locking).
We could only declare a timestamp ID stale on demand (lazily), aka when
there's no other timestamp ID available. There are pros and cons to this
approach: the implementation is much more simple than per-packet timers
would be, but most of the stale packets would be quasi-leaked - not
really leaked, but blocked in driver memory, since this algorithm sees
no reason to free them.
An improved technique would be to check for stale timestamp IDs every
time we allocate a new one. Assuming a constant flux of PTP packets,
this avoids stale packets being blocked in memory, but of course,
packets lost at the end of the flux are still blocked until the flux
resumes (nobody left to kick them out).
Since implementing per-packet timers is way too complicated, this should
be good enough.
Testing procedure:
Persistently block traffic class 5 and try to run PTP on it:
$ tc qdisc replace dev swp3 parent root taprio num_tc 8 \
map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
base-time 0 sched-entry S 0xdf 100000 flags 0x2
[ 126.948141] mscc_felix 0000:00:00.5: port 3 tc 5 min gate length 0 ns not enough for max frame size 1526 at 1000 Mbps, dropping frames over 1 octets including FCS
$ ptp4l -i swp3 -2 -P -m --socket_priority 5 --fault_reset_interval ASAP --logSyncInterval -3
ptp4l[70.351]: port 1 (swp3): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[70.354]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[70.358]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE
[ 70.394583] mscc_felix 0000:00:00.5: port 3 timestamp id 0
ptp4l[70.406]: timed out while polling for tx timestamp
ptp4l[70.406]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[70.406]: port 1 (swp3): send peer delay response failed
ptp4l[70.407]: port 1 (swp3): clearing fault immediately
ptp4l[70.952]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1
[ 71.394858] mscc_felix 0000:00:00.5: port 3 timestamp id 1
ptp4l[71.400]: timed out while polling for tx timestamp
ptp4l[71.400]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[71.401]: port 1 (swp3): send peer delay response failed
ptp4l[71.401]: port 1 (swp3): clearing fault immediately
[ 72.393616] mscc_felix 0000:00:00.5: port 3 timestamp id 2
ptp4l[72.401]: timed out while polling for tx timestamp
ptp4l[72.402]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[72.402]: port 1 (swp3): send peer delay response failed
ptp4l[72.402]: port 1 (swp3): clearing fault immediately
ptp4l[72.952]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1
[ 73.395291] mscc_felix 0000:00:00.5: port 3 timestamp id 3
ptp4l[73.400]: timed out while polling for tx timestamp
ptp4l[73.400]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[73.400]: port 1 (swp3): send peer delay response failed
ptp4l[73.400]: port 1 (swp3): clearing fault immediately
[ 74.394282] mscc_felix 0000:00:00.5: port 3 timestamp id 4
ptp4l[74.400]: timed out while polling for tx timestamp
ptp4l[74.401]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[74.401]: port 1 (swp3): send peer delay response failed
ptp4l[74.401]: port 1 (swp3): clearing fault immediately
ptp4l[74.953]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1
[ 75.396830] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 0 which seems lost
[ 75.405760] mscc_felix 0000:00:00.5: port 3 timestamp id 0
ptp4l[75.410]: timed out while polling for tx timestamp
ptp4l[75.411]: increasing tx_timestamp_timeout or increasing kworker priority may correct this issue, but a driver bug likely causes it
ptp4l[75.411]: port 1 (swp3): send peer delay response failed
ptp4l[75.411]: port 1 (swp3): clearing fault immediately
(...)
Remove the blocking condition and see that the port recovers:
$ same tc command as above, but use "sched-entry S 0xff" instead
$ same ptp4l command as above
ptp4l[99.489]: port 1 (swp3): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[99.490]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[99.492]: port 0 (/var/run/ptp4lro): INITIALIZING to LISTENING on INIT_COMPLETE
[ 100.403768] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 0 which seems lost
[ 100.412545] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 1 which seems lost
[ 100.421283] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 2 which seems lost
[ 100.430015] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 3 which seems lost
[ 100.438744] mscc_felix 0000:00:00.5: port 3 invalidating stale timestamp ID 4 which seems lost
[ 100.447470] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 100.505919] mscc_felix 0000:00:00.5: port 3 timestamp id 0
ptp4l[100.963]: port 1 (swp3): new foreign master d858d7.fffe.00ca6d-1
[ 101.405077] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 101.507953] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 102.405405] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 102.509391] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 103.406003] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 103.510011] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 104.405601] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 104.510624] mscc_felix 0000:00:00.5: port 3 timestamp id 0
ptp4l[104.965]: selected best master clock d858d7.fffe.00ca6d
ptp4l[104.966]: port 1 (swp3): assuming the grand master role
ptp4l[104.967]: port 1 (swp3): LISTENING to GRAND_MASTER on RS_GRAND_MASTER
[ 105.106201] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.232420] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.359001] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.405500] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.485356] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.511220] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.610938] mscc_felix 0000:00:00.5: port 3 timestamp id 0
[ 105.737237] mscc_felix 0000:00:00.5: port 3 timestamp id 0
(...)
Notice that in this new usage pattern, a non-congested port should
basically use timestamp ID 0 all the time, progressing to higher numbers
only if there are unacknowledged timestamps in flight. Compare this to
the old usage, where the timestamp ID used to monotonically increase
modulo OCELOT_MAX_PTP_ID.
In terms of implementation, this simplifies the bookkeeping of the
ocelot_port :: ts_id and ptp_skbs_in_flight. Since we need to traverse
the list of two-step timestampable skbs for each new packet anyway, the
information can already be computed and does not need to be stored.
Also, ocelot_port->tx_skbs is always accessed under the switch-wide
ocelot->ts_id_lock IRQ-unsafe spinlock, so we don't need the skb queue's
lock and can use the unlocked primitives safely.
This problem was actually detected using the tc-taprio offload, and is
causing trouble in TSN scenarios, which Felix (NXP LS1028A / VSC9959)
supports but Ocelot (VSC7514) does not. Thus, I've selected the commit
to blame as the one adding initial timestamping support for the Felix
switch.
Fixes:
|
||
![]() |
67c3ca2c5c |
net: mscc: ocelot: use ocelot_xmit_get_vlan_info() also for FDMA and register injection
Problem description ------------------- On an NXP LS1028A (felix DSA driver) with the following configuration: - ocelot-8021q tagging protocol - VLAN-aware bridge (with STP) spanning at least swp0 and swp1 - 8021q VLAN upper interfaces on swp0 and swp1: swp0.700, swp1.700 - ptp4l on swp0.700 and swp1.700 we see that the ptp4l instances do not see each other's traffic, and they all go to the grand master state due to the ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES condition. Jumping to the conclusion for the impatient ------------------------------------------- There is a zero-day bug in the ocelot switchdev driver in the way it handles VLAN-tagged packet injection. The correct logic already exists in the source code, in function ocelot_xmit_get_vlan_info() added by commit |
||
![]() |
35d9768021 |
net: dsa: tag_ocelot: convert to tagger-owned data
The felix driver makes very light use of dp->priv, and the tagger is effectively stateless. dp->priv is practically only needed to set up a callback to perform deferred xmit of PTP and STP packets using the ocelot-8021q tagging protocol (the main ocelot tagging protocol makes no use of dp->priv, although this driver sets up dp->priv irrespective of actual tagging protocol in use). struct felix_port (what used to be pointed to by dp->priv) is removed and replaced with a two-sided structure. The public side of this structure, visible to the switch driver, is ocelot_8021q_tagger_data. The private side is ocelot_8021q_tagger_private, and the latter structure physically encapsulates the former. The public half of the tagger data structure can be accessed through a helper of the same name (ocelot_8021q_tagger_data) which also sanity-checks the protocol currently in use by the switch. The public/private split was requested by Andrew Lunn. Suggested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
![]() |
92f62485b3 |
net: dsa: felix: fix broken VLAN-tagged PTP under VLAN-aware bridge
Normally it is expected that the dsa_device_ops :: rcv() method finishes parsing the DSA tag and consumes it, then never looks at it again. But commit |
||
![]() |
e15f5972b8 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
tools/testing/selftests/net/ioam6.sh |
||
![]() |
49f885b2d9 |
net: dsa: tag_ocelot_8021q: break circular dependency with ocelot switch lib
Michael reported that when using the "ocelot-8021q" tagging protocol,
the switch driver module must be manually loaded before the tagging
protocol can be loaded/is available.
This appears to be the same problem described here:
https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
where due to the fact that DSA tagging protocols make use of symbols
exported by the switch drivers, circular dependencies appear and this
breaks module autoloading.
The ocelot_8021q driver needs the ocelot_can_inject() and
ocelot_port_inject_frame() functions from the switch library. Previously
the wrong approach was taken to solve that dependency: shims were
provided for the case where the ocelot switch library was compiled out,
but that turns out to be insufficient, because the dependency when the
switch lib _is_ compiled is problematic too.
We cannot declare ocelot_can_inject() and ocelot_port_inject_frame() as
static inline functions, because these access I/O functions like
__ocelot_write_ix() which is called by ocelot_write_rix(). Making those
static inline basically means exposing the whole guts of the ocelot
switch library, not ideal...
We already have one tagging protocol driver which calls into the switch
driver during xmit but not using any exported symbol: sja1105_defer_xmit.
We can do the same thing here: create a kthread worker and one work item
per skb, and let the switch driver itself do the register accesses to
send the skb, and then consume it.
Fixes:
|
||
![]() |
deab6b1cd9 |
net: dsa: tag_ocelot: break circular dependency with ocelot switch lib driver
As explained here: https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/ DSA tagging protocol drivers cannot depend on symbols exported by switch drivers, because this creates a circular dependency that breaks module autoloading. The tag_ocelot.c file depends on the ocelot_ptp_rew_op() function exported by the common ocelot switch lib. This function looks at OCELOT_SKB_CB(skb) and computes how to populate the REW_OP field of the DSA tag, for PTP timestamping (the command: one-step/two-step, and the TX timestamp identifier). None of that requires deep insight into the driver, it is quite stateless, as it only depends upon the skb->cb. So let's make it a static inline function and put it in include/linux/dsa/ocelot.h, a file that despite its name is used by the ocelot switch driver for populating the injection header too - since commit |
||
![]() |
e8c0722927 |
net: mscc: ocelot: write full VLAN TCI in the injection header
The VLAN TCI contains more than the VLAN ID, it also has the VLAN PCP and Drop Eligibility Indicator. If the ocelot driver is going to write the VLAN header inside the DSA tag, it could just as well write the entire TCI. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
![]() |
3c9cfb5269 |
net: update NXP copyright text
NXP Legal insists that the following are not fine: - Saying "NXP Semiconductors" instead of "NXP", since the company's registered name is "NXP" - Putting a "(c)" sign in the copyright string - Putting a comma in the copyright string The only accepted copyright string format is "Copyright <year-range> NXP". This patch changes the copyright headers in the networking files that were sent by me, or derived from code sent by me. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
![]() |
2ed2c5f039 |
net: ocelot: Remove ocelot_xfh_get_cpuq
Now when extracting frames from CPU the cpuq is not used anymore so remove it. Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
![]() |
d8ea7ff399 |
net: mscc: ocelot: Add support for MRP
Add basic support for MRP. The HW will just trap all MRP frames on the ring ports to CPU and allow the SW to process them. In this way it is possible to for this node to behave both as MRM and MRC. Current limitations are: - it doesn't support Interconnect roles. - it supports only a single ring. - the HW should be able to do forwarding of MRP Test frames so the SW will not need to do this. So it would be able to have the role MRC without SW support. Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
![]() |
7c4bb540e9 |
net: dsa: tag_ocelot: create separate tagger for Seville
The ocelot tagger is a hot mess currently, it relies on memory initialized by the attached driver for basic frame transmission. This is against all that DSA tagging protocols stand for, which is that the transmission and reception of a DSA-tagged frame, the data path, should be independent from the switch control path, because the tag protocol is in principle hot-pluggable and reusable across switches (even if in practice it wasn't until very recently). But if another driver like dsa_loop wants to make use of tag_ocelot, it couldn't. This was done to have common code between Felix and Ocelot, which have one bit difference in the frame header format. Quoting from commit |
||
![]() |
40d3f295b5 |
net: mscc: ocelot: use common tag parsing code with DSA
The Injection Frame Header and Extraction Frame Header that the switch prepends to frames over the NPI port is also prepended to frames delivered over the CPU port module's queues. Let's unify the handling of the frame headers by making the ocelot driver call some helpers exported by the DSA tagger. Among other things, this allows us to get rid of the strange cpu_to_be32 when transmitting the Injection Frame Header on ocelot, since the packing API uses network byte order natively (when "quirks" is 0). The comments above ocelot_gen_ifh talk about setting pop_cnt to 3, and the cpu extraction queue mask to something, but the code doesn't do it, so we don't do it either. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> |