When destroying delayed refs during a transaction abort, we have open
coded the removal of a delayed ref, which is also done by the static
helper function drop_delayed_ref(). So remove that duplicated code and
use drop_delayed_ref() instead.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fs_info parameter is redundant because it can be extracted from the
transaction given as another parameter. So remove it and use the fs_info
accessible from the transaction.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fs_info parameter is redundant because it can be extracted from the
transaction given as another parameter. So remove it and use the fs_info
accessible from the transaction.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's better suited at delayed-ref.c since it's about delayed refs and
contains logic to iterate over them (using the red black tree, doing all
the locking, freeing, etc), so move it from disk-io.c, which is pretty
big, into delayed-ref.c, hiding implementation details of how delayed
refs are tracked and managed. This also facilitates the next patches in
the series.
This change moves the code between files but also does the following
simple cleanups:
1) Rename the 'cache' variable to 'bg', since it's a block group
(the 'cache' logic comes from old days where the block group
structure was named 'btrfs_block_group_cache');
2) Move the 'ref' variable declaration to the scope of the inner
while loop, since it's not used outside that loop.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_destroy_delayed_refs() it's unexpected to not find the block
group to which a delayed reference's extent belongs to, so we have this
BUG_ON(), not just because it's highly unexpected but also because we
don't know what to do there.
Since we are in the transaction abort path, there's nothing we can do
other than proceed and cleanup all used resources we can. So remove
the BUG_ON() and deal with a missing block group by logging an error
message and continuing to cleanup all we can related to the current
delayed ref head and moving to other delayed refs.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When inserting extent backref, in order to check whether refs other than
inline refs are used, we always use path keep locks for tree search, which
will increase the lock contention of extent tree.
We do not need the parent node every time to determine whether normal
refs are used. It is only needed when the extent item is the last item
in a leaf.
Therefore, we change it to first use keep_locks=0 for search. If the
extent item happens to be the last item in the leaf, we then change to
keep_locks=1 for the second search to reduce lock contention.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Implement self-tests for partial deletion of RAID stripe-tree entries.
These two new tests cover both the deletion of the front of a RAID
stripe-tree stripe extent as well as truncation of an item to make it
smaller.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In our CI system, the RAID stripe tree configuration sometimes fails with
the following ASSERT():
assertion failed: found_start >= start && found_end <= end, in fs/btrfs/raid-stripe-tree.c:64
This ASSERT()ion triggers, because for the initial design of RAID
stripe-tree, I had the "one ordered-extent equals one bio" rule of zoned
btrfs in mind.
But for a RAID stripe-tree based system, that is not hosted on a zoned
storage device, but on a regular device this rule doesn't apply.
So in case the range we want to delete starts in the middle of the
previous item, grab the item and "truncate" it's length. That is, clone
the item, subtract the deleted portion from the key's offset, delete the
old item and insert the new one.
In case the range to delete ends in the middle of an item, we have to
adjust both the item's key as well as the stripe extents and then
re-insert the modified clone into the tree after deleting the old stripe
extent.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When fgp_flags and gfp_flags are zero, use filemap_get_folio(A, B)
instead of __filemap_get_folio(A, B, 0, 0)—no need for the extra
arguments 0, 0.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The buffered write path is still heavily utilizing the page interface.
Since we have converted it to do a page-by-page copying, it's much easier
to convert all involved functions to folio interface, this involves:
- btrfs_copy_from_user()
- btrfs_drop_folio()
- prepare_uptodate_page()
- prepare_one_page()
- lock_and_cleanup_extent_if_need()
- btrfs_dirty_page()
All function are changed to accept a folio parameter, and if the word
"page" is in the function name, change that to "folio" too.
The function btrfs_dirty_page() is exported for v1 space cache, convert
v1 cache call site to convert its page to folio for the new interface.
And there is a small enhancement for prepare_one_folio(), instead of
manually waiting for the page writeback, let __filemap_get_folio() to
handle that by using FGP_WRITEBEGIN, which implies
(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE).
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the btrfs_buffered_write() is preparing multiple page a time,
allowing a better performance.
But the current trend is to support larger folio as an optimization,
instead of implementing own multi-page optimization.
This is inspired by generic_perform_write(), which is copying one folio
a time.
Such change will prepare us to migrate to implement the write_begin()
and write_end() callbacks, and make every involved function a little
easier.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_do_encoded_write() was converted to use folios in 400b172b8c,
but we're still allocating based on sizeof(struct page *) rather than
sizeof(struct folio *). There's no functional change.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Mark Harmstone <maharmstone@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove hard-coded strings by using the str_yes_no() and str_no_yes()
helper functions.
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since there is no user of reader locks, rename the writer locks into a
more generic name, by removing the "_writer" part from the name.
And also rename btrfs_subpage::writer into btrfs_subpage::locked.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit d7172f52e9 ("btrfs: use per-buffer locking for
extent_buffer reading"), metadata read no longer relies on the subpage
reader locking.
This means we do not need to maintain a different metadata/data split
for locking, so we can convert the existing reader lock users by:
- add_ra_bio_pages()
Convert to btrfs_folio_set_writer_lock()
- end_folio_read()
Convert to btrfs_folio_end_writer_lock()
- begin_folio_read()
Convert to btrfs_folio_set_writer_lock()
- folio_range_has_eb()
Remove the subpage->readers checks, since it is always 0.
- Remove btrfs_subpage_start_reader() and btrfs_subpage_end_reader()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is not really suitable to lock a folio, as it lacks the
proper mapping checks, thus the locked folio may not even belong to
btrfs.
And due to the above reason, the last user inside lock_delalloc_folios()
is already removed, and we can remove this function.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If you follow the seed/sprout wiki, it suggests the following workflow:
btrfstune -S 1 seed_dev
mount seed_dev mnt
btrfs device add sprout_dev
mount -o remount,rw mnt
The first mount mounts the FS readonly, which results in not setting
BTRFS_FS_OPEN, and setting the readonly bit on the sb. The device add
somewhat surprisingly clears the readonly bit on the sb (though the
mount is still practically readonly, from the users perspective...).
Finally, the remount checks the readonly bit on the sb against the flag
and sees no change, so it does not run the code intended to run on
ro->rw transitions, leaving BTRFS_FS_OPEN unset.
As a result, when the cleaner_kthread runs, it sees no BTRFS_FS_OPEN and
does no work. This results in leaking deleted snapshots until we run out
of space.
I propose fixing it at the first departure from what feels reasonable:
when we clear the readonly bit on the sb during device add.
A new fstest I have written reproduces the bug and confirms the fix.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
It's redundant to have the 'gen' variable since we already have the same
value in the local btrfs_tree_parent_check structure. So remove it and
instead use the structure's field.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's pointless to initialize the has_first_key field of the stack local
btrfs_tree_parent_check structure at btrfs_tree_parent_check() and at
btrfs_qgroup_trace_subtree() since all fields not explicitly initialized
are zeroed out. In the case of the first function it's a bit odd because
we are assigning 0 and the field is of type bool, however not incorrect
since a 0 is converted to false.
Just remove the explicit initializations due to their redundancy.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only caller of btrfs_verify_level_key() is read_block_for_search() and
it's passing 3 arguments to it that can be extracted from its on stack
variable of type struct btrfs_tree_parent_check.
So change btrfs_verify_level_key() to accept an argument of type
struct btrfs_tree_parent_check instead of level, first key and parent
transid arguments.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The level parameter passed to read_block_for_search() always matches the
level of the extent buffer passed in the "eb_ret" parameter, which we are
also extracting into the "parent_level" local variable.
So remove the level parameter and instead use the "parent_level" variable
which in fact has a better name (it's the level of the parent node from
which we are reading a child node/leaf).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the extent map shrinker can only be run by a single task and runs
asynchronously as a work queue job, enable it as it can no longer cause
stalls on tasks allocating memory and entering the extent map shrinker
through the fs shrinker (implemented by btrfs_free_cached_objects()).
This is crucial to prevent exhaustion of memory due to unbounded extent
map creation, primarily with direct IO but also for buffered IO on files
with holes. This problem, for the direct IO case, was first reported in
the Link tag below. That report was added to a Link tag of the first patch
that introduced the extent map shrinker, commit 956a17d9d0 ("btrfs: add
a shrinker for extent maps"), however the Link tag disappeared somehow
from the committed patch (but was included in the submitted patch to the
mailing list), so adding it below for future reference.
Link: https://lore.kernel.org/linux-btrfs/13f94633dcf04d29aaf1f0a43d42c55e@amazon.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The names for the members of struct btrfs_fs_info related to the extent
map shrinker are a bit too long, so rename them to be shorter by replacing
the "extent_map_" prefix with the "em_" prefix.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the extent map shrinker can only be run by a single task (as a
work queue item) there is no need to keep the progress of the shrinker
protected by a spinlock and passing the progress to trace events as
parameters. So remove the lock and simplify the arguments for the trace
events.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the extent map shrinker is run synchronously for kswapd tasks
that end up calling the fs shrinker (fs/super.c:super_cache_scan()).
This has some disadvantages and for some heavy workloads with memory
pressure it can cause some delays and stalls that make a machine
unresponsive for some periods. This happens because:
1) We can have several kswapd tasks on machines with multiple NUMA zones,
and running the extent map shrinker concurrently can cause high
contention on some spin locks, namely the spin locks that protect
the radix tree that tracks roots, the per root xarray that tracks
open inodes and the list of delayed iputs. This not only delays the
shrinker but also causes high CPU consumption and makes the task
running the shrinker monopolize a core, resulting in the symptoms
of an unresponsive system. This was noted in previous commits such as
commit ae1e766f62 ("btrfs: only run the extent map shrinker from
kswapd tasks");
2) The extent map shrinker's iteration over inodes can often be slow, even
after changing the data structure that tracks open inodes for a root
from a red black tree (up to kernel 6.10) to an xarray (kernel 6.10+).
The transition to the xarray while it made things a bit faster, it's
still somewhat slow - for example in a test scenario with 10000 inodes
that have no extent maps loaded, the extent map shrinker took between
5ms to 8ms, using a release, non-debug kernel. Iterating over the
extent maps of an inode can also be slow if have an inode with many
thousands of extent maps, since we use a red black tree to track and
search extent maps. So having the extent map shrinker run synchronously
adds extra delay for other things a kswapd task does.
So make the extent map shrinker run asynchronously as a job for the
system unbounded workqueue, just like what we do for data and metadata
space reclaim jobs.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move the common code to remove an extent map from its inode's tree into a
helper function and use it, reducing duplicated code.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When crawling btree, if an eb cache miss occurs, we change to use the eb
read lock and release all previous locks (including the parent lock) to
reduce lock contention.
If an eb cache miss occurs in a leaf and needs to execute IO, before this
change we released locks only from level 2 and up and we read a leaf's
content from disk while holding a lock on its parent (level 1), causing
the unnecessary lock contention on the parent, after this change we
release locks from level 1 and up, but we lock level 0, and read leaf's
content from disk.
Because we have prepared the check parameters and the read lock of eb we
hold, we can ensure that no race will occur during the check and cause
unexpected errors.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The compression heuristic pass does not need a level, so we can drop the
parameter.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Cascaded removal of fs_info that is not needed in several functions.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function got split in commit 6ab6ebb760 ("btrfs: split
alloc_log_tree()") and since then transaction parameter has been unused.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only caller passes NULL, we can drop the parameter. This is since
the new mount option parser done in 3bb17a25bc ("btrfs: add get_tree
callback for new mount API").
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since the new mount option parser in commit ad21f15b0f ("btrfs:
switch to the new mount API") we don't pass the options like that
anymore.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter was added in 8ff8466d29 ("btrfs: support subpage for
extent buffer page release") for page but hasn't been used since, so we
can drop it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The mask parameter used for allocations got unified to GFP_NOFS and
removed from relevant functions in 1d12680044 ("btrfs: drop gfp from
parameter extent state helpers").
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter duplicates what can be effectively obtained from
wc->refs[level - 1] and this is what's actually used inside. Added in
commit 2b73c7e761 ("btrfs: unify logic to decide if we need to walk
down into a node during snapshot delete").
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter 'from' has never been used since commit b8d8e1fd57
("btrfs: introduce btrfs_write_check()"), this is for buffered write.
Direct io write needs it so it was probably an interface thing, but we
can drop it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The file_offset parameter used to be passed to encoded read struct but
was removed in commit b665affe93 ("btrfs: remove unused members from
struct btrfs_encoded_read_private").
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need offset for inline extents, they always start from 0.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need the inode pointer to read inline extent, it's all
accessible from the path pointer.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need the user passed parameter, rescan is a filesystem
operation so fs_info is sufficient.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The LZO compression has only one level, we don't need to pass the
parameter.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The caller replace_path() runs under transaction but we don't need it in
btrfs_qgroup_add_swapped_blocks().
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need fs_info here, everything is reachable from qgroup.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter map used to be passed to scrub_extent() until
e02ee89baa ("btrfs: scrub: switch scrub_simple_mirror() to
scrub_stripe infrastructure"), where the scrub implementation was
completely reworked.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter is unused and we can reach sctx from scrub stripe if
needed.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
None of the ref iteration callbacks needs the index parameter (this is
for the directory item iteration), so we can drop it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
None of the ref iteration callbacks needs the num parameter (this is for
the directory item iteration), so we can drop it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter is unused and we can get it from space info if needed.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter is not used, we can also reach it from the space info if
needed in the future.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The path parameter was used for our own locking, that got converted to
rwsem eventually. Last usage in ac5887c8e0 ("btrfs: locking: remove
all the blocking helpers").
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make sure we got the right timer struct for the zstd workspace reclaim
work.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_set_range_writeback() was originally a callback for
metadata and data, to mark a range with writeback flag.
Then it was converted into a common function call for both metadata and
data.
From the very beginning, the function had been only called on a full page,
later converted to handle range inside a page.
But it never needed to handle multiple pages, and since commit
8189197425 ("btrfs: refactor __extent_writepage_io() to do
sector-by-sector submission") the function was only called on a
sector-by-sector basis.
This makes the function unnecessary, and can be converted to a simple
btrfs_folio_set_writeback() call instead.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When trying to flush qgroups in order to release space we run delayed
iputs in order to release space from recently deleted files (their link
counted reached zero), and then we start delalloc and wait for any
existing ordered extents to complete.
However there's a time window here where we end up not doing the final
iput on a deleted file which could release necessary space:
1) An unlink operation starts;
2) During the unlink, or right before it completes, delalloc is flushed
and an ordered extent is created;
3) When the ordered extent is created, the inode's ref count is
incremented (with igrab() at alloc_ordered_extent());
4) When the unlink finishes it doesn't drop the last reference on the
inode and so it doesn't trigger inode eviction to delete all of
the inode's items in its root and drop all references on its data
extents;
5) Another task enters try_flush_qgroup() to try to release space,
it runs all delayed iputs, but there's no delayed iput yet for that
deleted file because the ordered extent hasn't completed yet;
6) Then at try_flush_qgroup() we wait for the ordered extent to complete
and that results in adding a delayed iput at btrfs_put_ordered_extent()
when called from btrfs_finish_one_ordered();
7) Adding the delayed iput results in waking the cleaner kthread if it's
not running already. However it may take some time for it to be
scheduled, or it may be running but busy running auto defrag, dropping
deleted snapshots or doing other work, so by the time we return from
try_flush_qgroup() the space for deleted file isn't released.
Improve on this by running delayed iputs only after flushing delalloc
and waiting for ordered extent completion.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Performing the initial extent sector read on a RAID stripe-tree backed
filesystem with pre-allocated extents will cause the RAID stripe-tree
lookup code to return ENODATA, as pre-allocated extents do not have any
on-disk bytes and thus no RAID stripe-tree entries.
But the current scrub read code marks these extents as errors, because
the lookup fails.
If btrfs_map_block() returns -ENODATA, it means that the call to
btrfs_get_raid_extent_offset() returned -ENODATA, because there is no
entry for the corresponding range in the RAID stripe-tree. But as this
range is in the extent tree it means we've hit a pre-allocated extent. In
this case, don't mark the sector in the stripe's error bitmaps as faulty
and carry on to the next.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In case a lookup in the RAID stripe-tree fails, return ENODATA instead of
ENOENT to better distinguish stripe-tree lookups from other code paths
where we return ENOENT.
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we BUG_ON() in btrfs_finish_one_ordered() if we are finishing
an ordered extent that is flagged as NOCOW, but it's checksum list is
not empty.
This is clearly a logic error which we can recover from by aborting the
transaction.
For developer builds which enable CONFIG_BTRFS_ASSERT, also ASSERT()
that the list is empty.
Suggested-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently inside prepare_pages(), we handle the leading and tailing page
differently, and skip the middle pages (if any). This is to avoid
reading pages which are fully covered by the dirty range.
Refactor the code by moving all checks (alignment check, range check,
force read check) into prepare_uptodate_page().
So that prepare_pages() only needs to iterate all the pages
unconditionally.
And since we're here, also update prepare_uptodate_page() to use
folio API other than the old page API.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Inside btrfs_buffered_write(), we have a local variable @dirty_pages,
recording the number of pages we dirtied in the current iteration.
However we do not really need that variable, since it can be calculated
from @pos and @copied.
In fact there is already a problem inside the short copy path, where we
use @dirty_pages to calculate the range we need to release.
But that usage assumes sectorsize == PAGE_SIZE, which is no longer true.
Instead of keeping @dirty_pages and cause incorrect usage, just
calculate the number of dirtied pages inside btrfs_dirty_pages().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_try_tree_write_lock() has been unused since commit
50b21d7a06 ("btrfs: submit a writeback bio per extent_buffer").
Remove it as we don't need it anymore.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_is_parity_mirror() has been unused since commit 4886ff7b50
("btrfs: introduce a new helper to submit write bio for repair").
Remove it as the code was refactored and we don't need the helper
anymore.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_free_squota_rsv() was added in commit
e85a0adacf ("btrfs: ensure releasing squota reserve on head refs")
but has remained unused since then.
Remove it as we don't seem to need it and was probably a leftover.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add first stash of very basic self tests for the RAID stripe-tree.
More test cases will follow exercising the tree.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This macro is no longer used after the "btrfs: Cleaned up folio->page
conversion" series patch [1] was applied, so remove it.
[1]: https://patchwork.kernel.org/project/linux-btrfs/cover/20240828182908.3735344-1-lizetao1@huawei.com/
Reviewed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: Youling Tang <tangyouling@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The variable stop_loop was originally introduced in commit 625f1c8dc6
("Btrfs: improve the loop of scrub_stripe"). It was initialized to 0 in
commit 3b080b2564 ("Btrfs: scrub raid56 stripes in the right way").
However, in a later commit 18d30ab961 ("btrfs: scrub: use
scrub_simple_mirror() to handle RAID56 data stripe scrub"), the code
that modified stop_loop was removed, making the variable redundant.
Currently, stop_loop is only initialized with 0 and is never used or
modified within the scrub_stripe() function. As a result, this patch
removes the stop_loop variable to clean up the code and eliminate
unnecessary redundancy.
This change has no impact on functionality, as stop_loop was never
utilized in any meaningful way in the final version of the code.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Riyan Dhiman <riyandhiman14@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The qgroup record was allocated with kzalloc(), so it's pointless to set
its old_roots member to NULL. Remove the assignment.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of dereferencing the delayed refs from the transaction multiple
times, store it early in the local variable and then always use the
variable.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to hold the delayed refs spinlock when calling
btrfs_qgroup_trace_extent_nolock() from btrfs_qgroup_trace_extent(), since
it doesn't change anything in delayed refs and it only changes the xarray
used to track qgroup extent records, which is protected by the xarray's
lock.
Holding the lock is only adding unnecessary lock contention with other
tasks that actually need to take the lock to add/remove/change delayed
references. So remove the locking.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of extracting fs_info from the transaction multiples times, store
it in a local variable and use it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we track qgroup extent records in a xarray we don't need to have
a "bytenr" field in struct btrfs_qgroup_extent_record, since we can get
it from the index of the record in the xarray.
So remove the field and grab the bytenr from either the index key or any
other place where it's available (delayed refs). This reduces the size of
struct btrfs_qgroup_extent_record from 40 bytes down to 32 bytes, meaning
that we now can store 128 instances of this structure instead of 102 per
4K page.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the duplicated transaction joining, block reserve setting and raid
extent inserting in btrfs_finish_ordered_extent().
While at it, also abort the transaction in case inserting a RAID
stripe-tree entry fails.
Suggested-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
Currently btrfs accepts any file path for its device, resulting some
weird situation:
# ./mount_by_fd /dev/test/scratch1 /mnt/btrfs/
The program has the following source code:
#include <fcntl.h>
#include <stdio.h>
#include <sys/mount.h>
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_RDWR);
char path[256];
snprintf(path, sizeof(path), "/proc/self/fd/%d", fd);
return mount(path, argv[2], "btrfs", 0, NULL);
}
Then we can have the following weird device path:
BTRFS: device fsid 2378be81-fe12-46d2-a9e8-68cf08dd98d5 devid 1 transid 7 /proc/self/fd/3 (253:2) scanned by mount_by_fd (18440)
Normally it's not a big deal, and later udev can trigger a device path
rename. But if udev didn't trigger, the device path "/proc/self/fd/3"
will show up in mtab.
[CAUSE]
For filename "/proc/self/fd/3", it means the opened file descriptor 3.
In above case, it's exactly the device we want to open, aka points to
"/dev/test/scratch1" which is another symlink pointing to "/dev/dm-2".
Inside kernel we solve the mount source using LOOKUP_FOLLOW, which
follows the symbolic link and grab the proper block device.
But inside btrfs we also save the filename into btrfs_device::name, and
utilize that member to report our mount source, which leads to the above
situation.
[FIX]
Instead of unconditionally trust the path, check if the original file
(not following the symbolic link) is inside "/dev/", if not, then
manually lookup the path to its final destination, and use that as our
device path.
This allows us to still use symbolic links, like
"/dev/mapper/test-scratch" from LVM2, which is required for fstests runs
with LVM2 setup.
And for really weird names, like the above case, we solve it to
"/dev/dm-2" instead.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Link: https://bugzilla.suse.com/show_bug.cgi?id=1230641
Reported-by: Fabian Vogt <fvogt@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
It is very common for udev to trigger device scan, and every time a
mounted btrfs device got re-scan from different soft links, we will get
some of unnecessary device path updates, this is especially common
for LVM based storage:
# lvs
scratch1 test -wi-ao---- 10.00g
scratch2 test -wi-a----- 10.00g
scratch3 test -wi-a----- 10.00g
scratch4 test -wi-a----- 10.00g
scratch5 test -wi-a----- 10.00g
test test -wi-a----- 10.00g
# mkfs.btrfs -f /dev/test/scratch1
# mount /dev/test/scratch1 /mnt/btrfs
# dmesg -c
[ 205.705234] BTRFS: device fsid 7be2602f-9e35-4ecf-a6ff-9e91d2c182c9 devid 1 transid 6 /dev/mapper/test-scratch1 (253:4) scanned by mount (1154)
[ 205.710864] BTRFS info (device dm-4): first mount of filesystem 7be2602f-9e35-4ecf-a6ff-9e91d2c182c9
[ 205.711923] BTRFS info (device dm-4): using crc32c (crc32c-intel) checksum algorithm
[ 205.713856] BTRFS info (device dm-4): using free-space-tree
[ 205.722324] BTRFS info (device dm-4): checking UUID tree
So far so good, but even if we just touched any soft link of
"dm-4", we will get quite some unnecessary device path updates.
# touch /dev/mapper/test-scratch1
# dmesg -c
[ 469.295796] BTRFS info: devid 1 device path /dev/mapper/test-scratch1 changed to /dev/dm-4 scanned by (udev-worker) (1221)
[ 469.300494] BTRFS info: devid 1 device path /dev/dm-4 changed to /dev/mapper/test-scratch1 scanned by (udev-worker) (1221)
Such device path rename is unnecessary and can lead to random path
change due to the udev race.
[CAUSE]
Inside device_list_add(), we are using a very primitive way checking if
the device has changed, strcmp().
Which can never handle links well, no matter if it's hard or soft links.
So every different link of the same device will be treated as a different
device, causing the unnecessary device path update.
[FIX]
Introduce a helper, is_same_device(), and use path_equal() to properly
detect the same block device.
So that the different soft links won't trigger the rename race.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Link: https://bugzilla.suse.com/show_bug.cgi?id=1230641
Reported-by: Fabian Vogt <fvogt@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previously for btrfs with sector size smaller than page size (subpage),
we only allow compression if the range is fully page aligned.
This is to work around the asynchronous submission of compressed range,
which delayed the page unlock and writeback into a workqueue,
furthermore asynchronous submission can lock multiple sector range
across page boundary.
Such asynchronous submission makes it very hard to co-operate with other
regular writes.
With the recent changes to the subpage folio unlock path, now
asynchronous submission of compressed pages can co-operate with regular
submission, so enable sector perfect compression if it's an experimental
build.
The ETA for moving this feature out of experimental is 6.15, and I hope
all remaining corner cases can be exposed before that.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we only mark sectors as locked if there is a *NEW* delalloc
range for it.
But NEW delalloc range is not the same as dirty sectors we want to
submit, e.g:
0 32K 64K 96K 128K
| |////////||///////| |////|
120K
For above 64K page size case, writepage_delalloc() for page 0 will find
and lock the delalloc range [32K, 96K), which is beyond the page
boundary.
Then when writepage_delalloc() is called for the page 64K, since [64K,
96K) is already locked, only [120K, 128K) will be locked.
This means, although range [64K, 96K) is dirty and will be submitted
later by extent_writepage_io(), it will not be marked as locked.
This is fine for now, as we call btrfs_folio_end_writer_lock_bitmap() to
free every non-compressed sector, and compression is only allowed for
full page range.
But this is not safe for future sector perfect compression support, as
this can lead to double folio unlock:
Thread A | Thread B
---------------------------------------+--------------------------------
| submit_one_async_extent()
| |- extent_clear_unlock_delalloc()
extent_writepage() | |- btrfs_folio_end_writer_lock()
|- btrfs_folio_end_writer_lock_bitmap()| |- btrfs_subpage_end_and_test_writer()
| | | |- atomic_sub_and_test()
| | | /* Now the atomic value is 0 */
|- if (atomic_read() == 0) | |
|- folio_unlock() | |- folio_unlock()
The root cause is the above range [64K, 96K) is dirtied and should also
be locked but it isn't.
So to make everything more consistent and prepare for the incoming
sector perfect compression, mark all dirty sectors as locked.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently for subpage (sector size < page size) cases, we reuse subpage
locked bitmap to find out all delalloc ranges we have locked, and run
all those found ranges.
However such reuse is not perfect, e.g.:
0 32K 64K 96K 128K
| |////////||///////| |////|
120K
For above range, writepage_delalloc() for page 0 will handle the range
[32K, 96k), note delalloc range can be beyond the page boundary.
But writepage_delalloc() for page 64K will only handle range [120K,
128K), as the previous run on page 0 has already handled range [64K,
96K).
Meanwhile for the writeback we should expect range [64K, 96K) to also be
locked, this leads to the mismatch from locked bitmap and delalloc
range.
This is not causing problems yet, but it's still an inconsistent
behavior.
So instead of relying on the subpage locked bitmap, move the delalloc
range search using local @delalloc_bitmap, so that we can remove the
existing btrfs_folio_find_writer_locked().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function extent_writepage_io() will submit the dirty sectors inside
the page for the write.
But recently to co-operate with the incoming subpage compression
enhancement, a new bitmap is introduced to
btrfs_bio_ctrl::submit_bitmap, to only avoid a subset of the dirty
range.
This is because we can have the following cases with 64K page size:
0 16K 32K 48K 64K
| |/////////| |/|
52K
For range [16K, 32K), we queue the dirty range for compression, which is
ran in a delayed workqueue.
Then for range [48K, 52K), we go through the regular submission path.
In that case, our btrfs_bio_ctrl::submit_bitmap will exclude the range
[16K, 32K).
The dirty flags for the range [16K, 32K) is only cleared when the
compression is done, by the extent_clear_unlock_delalloc() call inside
submit_one_async_extent().
This patch fix the false alert by removing the
btrfs_folio_assert_not_dirty() check, since it's no longer correct for
subpage compression cases.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For btrfs with sector size < page size (e.g. 4K sector size, 64K page
size), and enable the sector perfect compression support, then the
following dirty range can lead to problems:
0 32K 64K 96K 128K
| |///////||//////| |/|
124K
In above case, if we start writeback for that inode, the last dirty
range [124K, 128K) will not be submitted and cause reserved space
leakage:
- Start writeback for page 0
We find the range [32K, 96K) is suitable for compression, and queue it
into a workqueue to do the delayed compression and submission.
- Compression happens for range [32K, 96K)
Function extent_range_clear_dirty_for_io() is called, however it is
only doing full page handling, not considering any the extra bitmaps
for subpage cases.
That function will clear page dirty for both page 0 and page 64K.
- Writeback for the inode is done
Because page 64K has its dirty flag cleared, it will not be considered
as a writeback target.
This means the range [124K, 128K) will not be submitted, and reserved
space for it will be leaked.
Fix this problem by using the subpage helper to clear the dirty flag.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
If sector perfect compression is enabled for sector size < page size
case, the following case can lead dirty ranges not being written back:
0 32K 64K 96K 128K
| |///////||//////| |/|
124K
In above example, the page size is 64K, and we need to write back above
two pages.
- Submit for page 0 (main thread)
We found delalloc range [32K, 96K), which can be compressed.
So we queue an async range for [32K, 96K).
This means, the page unlock/clearing dirty/setting writeback will
all happen in a workqueue context.
- The compression is done, and compressed range is submitted (workqueue)
Since the compression is done in asynchronously, the compression can
be done before the main thread to submit for page 64K.
Now the whole range [32K, 96K), involving two pages, will be marked
writeback.
- Submit for page 64K (main thread)
extent_write_cache_pages() got its wbc->sync_mode is WB_SYNC_NONE,
so it skips the writeback wait.
And unlock the page and exit. This means the dirty range [124K, 128K)
will never be submitted, until next writeback happens for page 64K.
This will never happen for previous kernels because:
- For sector size == page size case
Since one page is one sector, if a page is marked writeback it will
not have dirty flags.
So this corner case will never hit.
- For sector size < page size case
We never do subpage compression, a range can only be submitted for
compression if the range is fully page aligned.
This change makes the subpage behavior mostly the same as non-subpage
cases.
[ENHANCEMENT]
Instead of relying WB_SYNC_NONE check only, if it's a subpage case, then
always wait for writeback flags.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are already two bugs (one in zlib, one in zstd) that involved
compression path is not handling sector size < page size cases well.
So it makes more sense to make sure that btrfs_compress_folios() returns
Since we already have two bugs (one in zlib, one in zstd) in the
compression path resulting the @total_in be to larger than the
to-be-compressed range length, there is enough reason to add an ASSERT()
to make sure the total read-in length doesn't exceed the input length.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Inside zstd_compress_folios(), after exhausted one input page, we need
to switch to the next page as input.
However when counting the total input bytes (@tot_in), we always increase
it by PAGE_SIZE.
For the following case, it can cause incorrect value:
0 32K 64K 96K
| |///////////||///////////|
After compressing range [32K, 64K), we switch to the next page, and
increasing @tot_in by 64K, while we only read 32K.
This will cause the @total_in to return a value larger than the input
length.
Fix it by only increase @tot_in by the input size.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Inside zlib_compress_folios(), each time we switch the input page cache,
the @start is increased by PAGE_SIZE.
But for the incoming compression support for sector size < page size
(previously we support compression only when the range is fully page
aligned), this is not going to handle the following case:
0 32K 64K 96K
| |///////////||///////////|
@start has the initial value 32K, indicating the start filepos of the
to-be-compressed range.
And when grabbing the first page as input, we always call "start +=
PAGE_SIZE;".
But since @start is starting at 32K, it will be increased by 64K,
resulting it to be 96K for the next range, causing incorrect input range
and corruption for the future subpage compression.
Fix it by only increase @start by the input size.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently CONFIG_BTRFS_EXPERIMENTAL is not only for the extra debugging
output, but also for experimental features.
This is not ideal to distinguish planned but not yet stable features
from those purely designed for debugging.
This patch splits the following features into CONFIG_BTRFS_EXPERIMENTAL:
- Extent map shrinker
This seems to be the first one to exit experimental.
- Extent tree v2
This seems to be the last one to graduate from experimental.
- Raid stripe tree
- Csum offload mode
- Send protocol v3
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
According to the description, CONFIG_BTRFS_DEBUG is only for extra
debug info, meanwhile sanity checks should be managed by
CONFIG_BTRFS_ASSERT.
There is no need to check both to enable assert_rbio().
Just remove the check for CONFIG_BTRFS_DEBUG.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmct+40ACgkQxWXV+ddt
WDvCtRAAp0rheEu14hpVvWE2//+6u9Gx7Wfjzbj0+o4zBRWdg7BigFxfeb6JsH/E
2TjuWdcoP/OMV9ghCBQAQxySAPtsxH7skkyNy2UcMk5byBIrNvhw9auP5GXXlrhK
jSKDD4yfOMb++8LhrLevgTrijNyjLqaKXruw9a1Pmc3gxpdNmnMEySsQaF62o2Sm
YC3jwi0KpNAhu2qyJ6TnPgd5zf3BTM0JAeuB019IZW4WoeRTOdcPe7S7gqqJwZ+e
lL0D2/lfIE1lKvLE266Fab4FAQiJV07rozYj25XHiDpqThCxnJVOZCEHasOQ1PRy
d6j3RmGPqJYAYfQL1L+FH2hsS1BVZfVyCV1V7A/cN+lAffBfnROnf13C3gJ15Nbx
3lTyjBPQQw2WpfdmeyF3ikbrjZ8AfahChQO+mMnLN7oAWdIwWX5MRB+cwfWTxzA/
P8upz6HSTpSwy8nXdq264q1KkyCjx0Wv+8iyU7LirN2fCcEchA12HAIaOBeHedgh
PrGZDqrkZccQQxAvU5H7hQv0hZkGK8qba381oYHO09g72VM6ysuBU7tGrPZrlZYB
CvYTCwNZ/lqI8ikrcHOyUO1SPR9SaaWej1mWgBJ69ZIfg+ZuMtOMl171DU4S/i2V
iYgYoN8eCqTQWdaX5kk+3LWmK8fSU7F/KSDtJtT1KxkaSwCacfY=
=TQzP
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more one-liners that fix some user visible problems:
- use correct range when clearing qgroup reservations after COW
- properly reset freed delayed ref list head
- fix ro/rw subvolume mounts to be backward compatible with old and
new mount API"
* tag 'for-6.12-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix the length of reserved qgroup to free
btrfs: reinitialize delayed ref list after deleting it from the list
btrfs: fix per-subvolume RO/RW flags with new mount API
Code to support CXL Dynamic Capacity devices will have extent ranges
which need to be compared for intersection not a subset as is being
checked in range_contains().
range_overlaps() is defined in btrfs with a different meaning from what
is required in the standard range code. Dan Williams pointed this out
in [1]. Adjust the btrfs call according to his suggestion there.
Then add a generic range_overlaps().
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: David Sterba <dsterba@suse.com>
Cc: linux-btrfs@vger.kernel.org
Link: https://lore.kernel.org/all/65949f79ef908_8dc68294f2@dwillia2-xfh.jf.intel.com.notmuch/ [1]
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://patch.msgid.link/20241107-dcd-type2-upstream-v7-1-56a84e66bc36@intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
The dealloc flag may be cleared and the extent won't reach the disk in
cow_file_range when errors path. The reserved qgroup space is freed in
commit 30479f31d4 ("btrfs: fix qgroup reserve leaks in
cow_file_range"). However, the length of untouched region to free needs
to be adjusted with the correct remaining region size.
Fixes: 30479f31d4 ("btrfs: fix qgroup reserve leaks in cow_file_range")
CC: stable@vger.kernel.org # 6.11+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Haisu Wang <haisuwang@tencent.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At insert_delayed_ref() if we need to update the action of an existing
ref to BTRFS_DROP_DELAYED_REF, we delete the ref from its ref head's
ref_add_list using list_del(), which leaves the ref's add_list member
not reinitialized, as list_del() sets the next and prev members of the
list to LIST_POISON1 and LIST_POISON2, respectively.
If later we end up calling drop_delayed_ref() against the ref, which can
happen during merging or when destroying delayed refs due to a transaction
abort, we can trigger a crash since at drop_delayed_ref() we call
list_empty() against the ref's add_list, which returns false since
the list was not reinitialized after the list_del() and as a consequence
we call list_del() again at drop_delayed_ref(). This results in an
invalid list access since the next and prev members are set to poison
pointers, resulting in a splat if CONFIG_LIST_HARDENED and
CONFIG_DEBUG_LIST are set or invalid poison pointer dereferences
otherwise.
So fix this by deleting from the list with list_del_init() instead.
Fixes: 1d57ee9416 ("btrfs: improve delayed refs iterations")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
With util-linux 2.40.2, the 'mount' utility is already utilizing the new
mount API. e.g:
# strace mount -o subvol=subv1,ro /dev/test/scratch1 /mnt/test/
...
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/mapper/test-scratch1", 0) = 0
fsconfig(3, FSCONFIG_SET_STRING, "subvol", "subv1", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = 0
fsmount(3, FSMOUNT_CLOEXEC, 0) = 4
mount_setattr(4, "", AT_EMPTY_PATH, {attr_set=MOUNT_ATTR_RDONLY, attr_clr=0, propagation=0 /* MS_??? */, userns_fd=0}, 32) = 0
move_mount(4, "", AT_FDCWD, "/mnt/test", MOVE_MOUNT_F_EMPTY_PATH) = 0
But this leads to a new problem, that per-subvolume RO/RW mount no
longer works, if the initial mount is RO:
# mount -o subvol=subv1,ro /dev/test/scratch1 /mnt/test
# mount -o rw,subvol=subv2 /dev/test/scratch1 /mnt/scratch
# mount | grep mnt
/dev/mapper/test-scratch1 on /mnt/test type btrfs (ro,relatime,discard=async,space_cache=v2,subvolid=256,subvol=/subv1)
/dev/mapper/test-scratch1 on /mnt/scratch type btrfs (ro,relatime,discard=async,space_cache=v2,subvolid=257,subvol=/subv2)
# touch /mnt/scratch/foobar
touch: cannot touch '/mnt/scratch/foobar': Read-only file system
This is a common use cases on distros.
[CAUSE]
We have a workaround for remount to handle the RO->RW change, but if the
mount is using the new mount API, we do not do that, and rely on the
mount tool NOT to set the ro flag.
But that's not how the mount tool is doing for the new API:
fsconfig(3, FSCONFIG_SET_STRING, "source", "/dev/mapper/test-scratch1", 0) = 0
fsconfig(3, FSCONFIG_SET_STRING, "subvol", "subv1", 0) = 0
fsconfig(3, FSCONFIG_SET_FLAG, "ro", NULL, 0) = 0 <<<< Setting RO flag for super block
fsconfig(3, FSCONFIG_CMD_CREATE, NULL, NULL, 0) = 0
fsmount(3, FSMOUNT_CLOEXEC, 0) = 4
mount_setattr(4, "", AT_EMPTY_PATH, {attr_set=MOUNT_ATTR_RDONLY, attr_clr=0, propagation=0 /* MS_??? */, userns_fd=0}, 32) = 0
move_mount(4, "", AT_FDCWD, "/mnt/test", MOVE_MOUNT_F_EMPTY_PATH) = 0
This means we will set the super block RO at the first mount.
Later RW mount will not try to reconfigure the fs to RW because the
mount tool is already using the new API.
This totally breaks the per-subvolume RO/RW mount behavior.
[FIX]
Do not skip the reconfiguration even if using the new API. The old
comments are just expecting any mount tool to properly skip the RO flag
set even if we specify "ro", which is not the reality.
Update the comments regarding the backward compatibility on the kernel
level so it works with old and new mount utilities.
CC: stable@vger.kernel.org # 6.8+
Fixes: f044b31867 ("btrfs: handle the ro->rw transition for mounting different subvolumes")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
fdget() is the first thing done in scope, all matching fdput() are
immediately followed by leaving the scope.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmck8eQACgkQxWXV+ddt
WDu05g/6AwrnvPkivC4iVOv4Wkzrpk4gm76smx91Y9B8tSDLI1pHaS27CvJz9iWl
vBKXPN3PQVQHwo6SPn+NjsFOSMkXlbBOVKpPU+MlZwH9Tuw66qcC+EnUCK2wEuAy
3TN7cUGIA4r/j+SkhgIz+Irlr5pjdb1KkPIMBEVGcVFqDIuvDaTEGBqTn2i/V5aa
dMn+gK+9rfngTOJ68t/pEFaX7SEWCvgMIcBpBB4/vs1gHm3ve2bcc1sBAdMxb1Se
SrxgZfq+Rc5tkMn540JaWGwkb0rLzwXlurK6ygTKDKCpH0IMX+pBvDkexh9Zj0ux
jejlRxiuDzTx3z2a7FjHDyp2sdZWMpq3sPsowpJ1Dsgi5EtSxTy4irmQuSAZY1Uj
/uo6YwV9aTGeiNDwZeKqKc/wOuAttaMZLr14s37pro9KxndFJ/XZBxeyB+euUCOw
B8AvAQVVIJAYQLyWINWruNKppqlgiO2RaN15RvvT2pX01d0TOx1KX1XFQku7YFxb
M/8ZNXzJ96XtkeyHL3euo3zj7N5jWtnCvPINugUG1ADQa+bc8aX336gld1neD6fs
QqIFIgzZG0l4N95viJilACrI6tW9zFnBqMyNFRhucKiX9aP9glOvhSfxfjcpDuQ/
i/LIyxVLwp8M3hPNvv8tC345+1C2ug9AD0OyhWjjIYPuiOxtTWs=
=alpB
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more stability fixes. There's one patch adding export of MIPS
cmpxchg helper, used in the error propagation fix.
- fix error propagation from split bios to the original btrfs bio
- fix merging of adjacent extents (normal operation, defragmentation)
- fix potential use after free after freeing btrfs device structures"
* tag 'for-6.12-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix defrag not merging contiguous extents due to merged extent maps
btrfs: fix extent map merging not happening for adjacent extents
btrfs: fix use-after-free of block device file in __btrfs_free_extra_devids()
btrfs: fix error propagation of split bios
MIPS: export __cmpxchg_small()
When running defrag (manual defrag) against a file that has extents that
are contiguous and we already have the respective extent maps loaded and
merged, we end up not defragging the range covered by those contiguous
extents. This happens when we have an extent map that was the result of
merging multiple extent maps for contiguous extents and the length of the
merged extent map is greater than or equals to the defrag threshold
length.
The script below reproduces this scenario:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Create a 256K file with 4 extents of 64K each.
xfs_io -f -c "falloc 0 64K" \
-c "pwrite 0 64K" \
-c "falloc 64K 64K" \
-c "pwrite 64K 64K" \
-c "falloc 128K 64K" \
-c "pwrite 128K 64K" \
-c "falloc 192K 64K" \
-c "pwrite 192K 64K" \
$MNT/foo
umount $MNT
echo -n "Initial number of file extent items: "
btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l
mount $DEV $MNT
# Read the whole file in order to load and merge extent maps.
cat $MNT/foo > /dev/null
btrfs filesystem defragment -t 128K $MNT/foo
umount $MNT
echo -n "Number of file extent items after defrag with 128K threshold: "
btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l
mount $DEV $MNT
# Read the whole file in order to load and merge extent maps.
cat $MNT/foo > /dev/null
btrfs filesystem defragment -t 256K $MNT/foo
umount $MNT
echo -n "Number of file extent items after defrag with 256K threshold: "
btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l
Running it:
$ ./test.sh
Initial number of file extent items: 4
Number of file extent items after defrag with 128K threshold: 4
Number of file extent items after defrag with 256K threshold: 4
The 4 extents don't get merged because we have an extent map with a size
of 256K that is the result of merging the individual extent maps for each
of the four 64K extents and at defrag_lookup_extent() we have a value of
zero for the generation threshold ('newer_than' argument) since this is a
manual defrag. As a consequence we don't call defrag_get_extent() to get
an extent map representing a single file extent item in the inode's
subvolume tree, so we end up using the merged extent map at
defrag_collect_targets() and decide not to defrag.
Fix this by updating defrag_lookup_extent() to always discard extent maps
that were merged and call defrag_get_extent() regardless of the minimum
generation threshold ('newer_than' argument).
A test case for fstests will be sent along soon.
CC: stable@vger.kernel.org # 6.1+
Fixes: 199257a78b ("btrfs: defrag: don't use merged extent map for their generation check")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have 3 or more adjacent extents in a file, that is, consecutive file
extent items pointing to adjacent extents, within a contiguous file range
and compatible flags, we end up not merging all the extents into a single
extent map.
For example:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ xfs_io -f -d -c "pwrite -b 64K 0 64K" \
-c "pwrite -b 64K 64K 64K" \
-c "pwrite -b 64K 128K 64K" \
-c "pwrite -b 64K 192K 64K" \
/mnt/sdc/foo
After all the ordered extents complete we unpin the extent maps and try
to merge them, but instead of getting a single extent map we get two
because:
1) When the first ordered extent completes (file range [0, 64K)) we
unpin its extent map and attempt to merge it with the extent map for
the range [64K, 128K), but we can't because that extent map is still
pinned;
2) When the second ordered extent completes (file range [64K, 128K)), we
unpin its extent map and merge it with the previous extent map, for
file range [0, 64K), but we can't merge with the next extent map, for
the file range [128K, 192K), because this one is still pinned.
The merged extent map for the file range [0, 128K) gets the flag
EXTENT_MAP_MERGED set;
3) When the third ordered extent completes (file range [128K, 192K)), we
unpin its extent map and attempt to merge it with the previous extent
map, for file range [0, 128K), but we can't because that extent map
has the flag EXTENT_MAP_MERGED set (mergeable_maps() returns false
due to different flags) while the extent map for the range [128K, 192K)
doesn't have that flag set.
We also can't merge it with the next extent map, for file range
[192K, 256K), because that one is still pinned.
At this moment we have 3 extent maps:
One for file range [0, 128K), with the flag EXTENT_MAP_MERGED set.
One for file range [128K, 192K).
One for file range [192K, 256K) which is still pinned;
4) When the fourth and final extent completes (file range [192K, 256K)),
we unpin its extent map and attempt to merge it with the previous
extent map, for file range [128K, 192K), which succeeds since none
of these extent maps have the EXTENT_MAP_MERGED flag set.
So we end up with 2 extent maps:
One for file range [0, 128K), with the flag EXTENT_MAP_MERGED set.
One for file range [128K, 256K), with the flag EXTENT_MAP_MERGED set.
Since after merging extent maps we don't attempt to merge again, that
is, merge the resulting extent map with the one that is now preceding
it (and the one following it), we end up with those two extent maps,
when we could have had a single extent map to represent the whole file.
Fix this by making mergeable_maps() ignore the EXTENT_MAP_MERGED flag.
While this doesn't present any functional issue, it prevents the merging
of extent maps which allows to save memory, and can make defrag not
merging extents too (that will be addressed in the next patch).
Fixes: 199257a78b ("btrfs: defrag: don't use merged extent map for their generation check")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Mounting btrfs from two images (which have the same one fsid and two
different dev_uuids) in certain executing order may trigger an UAF for
variable 'device->bdev_file' in __btrfs_free_extra_devids(). And
following are the details:
1. Attach image_1 to loop0, attach image_2 to loop1, and scan btrfs
devices by ioctl(BTRFS_IOC_SCAN_DEV):
/ btrfs_device_1 → loop0
fs_device
\ btrfs_device_2 → loop1
2. mount /dev/loop0 /mnt
btrfs_open_devices
btrfs_device_1->bdev_file = btrfs_get_bdev_and_sb(loop0)
btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1)
btrfs_fill_super
open_ctree
fail: btrfs_close_devices // -ENOMEM
btrfs_close_bdev(btrfs_device_1)
fput(btrfs_device_1->bdev_file)
// btrfs_device_1->bdev_file is freed
btrfs_close_bdev(btrfs_device_2)
fput(btrfs_device_2->bdev_file)
3. mount /dev/loop1 /mnt
btrfs_open_devices
btrfs_get_bdev_and_sb(&bdev_file)
// EIO, btrfs_device_1->bdev_file is not assigned,
// which points to a freed memory area
btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1)
btrfs_fill_super
open_ctree
btrfs_free_extra_devids
if (btrfs_device_1->bdev_file)
fput(btrfs_device_1->bdev_file) // UAF !
Fix it by setting 'device->bdev_file' as 'NULL' after closing the
btrfs_device in btrfs_close_one_device().
Fixes: 1423881941 ("btrfs: do not background blkdev_put()")
CC: stable@vger.kernel.org # 4.19+
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219408
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper to get the queue_limits from the bdev without having to
poke into the request_queue.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: John Garry <john.g.garry@oracle.com>
Link: https://lore.kernel.org/r/20241029141937.249920-1-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Most of the callers of wbc_account_cgroup_owner() are converting a folio
to page before calling the function. wbc_account_cgroup_owner() is
converting the page back to a folio to call mem_cgroup_css_from_folio().
Convert wbc_account_cgroup_owner() to take a folio instead of a page,
and convert all callers to pass a folio directly except f2fs.
Convert the page to folio for all the callers from f2fs as they were the
only callers calling wbc_account_cgroup_owner() with a page. As f2fs is
already in the process of converting to folios, these call sites might
also soon be calling wbc_account_cgroup_owner() with a folio directly in
the future.
No functional changes. Only compile tested.
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Link: https://lore.kernel.org/r/20240926140121.203821-1-kernel@pankajraghav.com
Acked-by: David Sterba <dsterba@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmcZGqsACgkQxWXV+ddt
WDsZTg//dSLAAswT3dTAvWDt7rGxPhJC1V+gnzWdj/0Q3CUimNaw7zHp1QHtJDFT
S+3TVvJJ2JDvOnbi3u24s/bL5YdkWcvIyy87oVE4trJMbQPc/E45pkYFqF3TRQAH
wEYAVEnO9f9WUY+ekxX2XBzhmKp3xol93j9BBHDXOF9kHsDC5lI0D5YVYEhRY8Qu
D4GcqAhqUj5Hj6I6ppiqO47NCJBNzw1Se9QsgruPpmItRbB0/LYJFhUfevwosTKg
xVpkRVntFqQjkIdIdBfBv/ZGWfxJyM7K4M49QwLUqUQfxugu7BiGYuEjkBkiy07a
pZDEOF9s8wUZsxvRVohqKlhL0zHBF+/pAANowYuhKNW1sqKt4GVCdN3V34AbH8ST
JIbPvC2g1tUzIc2wckE8GO/NnsNR4r3k6iPB53MdCHrIo3jnENOeb9wF0GiVDb6s
OrhCa3ph2ps80YC1aCnc4Jr/yV2ONebSivnqvHCIUQEZfpjtAc07atm0i946/7nx
eiBE+9zSVJZB0LoooIVz2I3HX3lRnm3Wwi4nj8U/sNL/IbGaHNCurIETR23NivYP
yWVql2njwE+yMc8q9YZXs4MBdKsSGP6eGJW3ZwKi6ru2PJdf5eIib+ffvR4bLqXD
UUDfMyC1esGsQB24sc8wppk97wmmMrdqQUj9WnmNlTP8FUFggvQ=
=sYxX
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- mount option fixes:
- fix handling of compression mount options on remount
- reject rw remount in case there are options that don't work
in read-write mode (like rescue options)
- fix zone accounting of unusable space
- fix in-memory corruption when merging extent maps
- fix delalloc range locking for sector < page
- use more convenient default value of drop subtree threshold, clean
more subvolumes without the fallback to marking quotas inconsistent
- fix smatch warning about incorrect value passed to ERR_PTR
* tag 'for-6.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix passing 0 to ERR_PTR in btrfs_search_dir_index_item()
btrfs: reject ro->rw reconfiguration if there are hard ro requirements
btrfs: fix read corruption due to race with extent map merging
btrfs: fix the delalloc range locking if sector size < page size
btrfs: qgroup: set a more sane default value for subtree drop threshold
btrfs: clear force-compress on remount when compress mount option is given
btrfs: zoned: fix zone unusable accounting for freed reserved extent
The purpose of btrfs_bbio_propagate_error() shall be propagating an error
of split bio to its original btrfs_bio, and tell the error to the upper
layer. However, it's not working well on some cases.
* Case 1. Immediate (or quick) end_bio with an error
When btrfs sends btrfs_bio to mirrored devices, btrfs calls
btrfs_bio_end_io() when all the mirroring bios are completed. If that
btrfs_bio was split, it is from btrfs_clone_bioset and its end_io function
is btrfs_orig_write_end_io. For this case, btrfs_bbio_propagate_error()
accesses the orig_bbio's bio context to increase the error count.
That works well in most cases. However, if the end_io is called enough
fast, orig_bbio's (remaining part after split) bio context may not be
properly set at that time. Since the bio context is set when the orig_bbio
(the last btrfs_bio) is sent to devices, that might be too late for earlier
split btrfs_bio's completion. That will result in NULL pointer
dereference.
That bug is easily reproducible by running btrfs/146 on zoned devices [1]
and it shows the following trace.
[1] You need raid-stripe-tree feature as it create "-d raid0 -m raid1" FS.
BUG: kernel NULL pointer dereference, address: 0000000000000020
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 UID: 0 PID: 13 Comm: kworker/u32:1 Not tainted 6.11.0-rc7-BTRFS-ZNS+ #474
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
Workqueue: writeback wb_workfn (flush-btrfs-5)
RIP: 0010:btrfs_bio_end_io+0xae/0xc0 [btrfs]
BTRFS error (device dm-0): bdev /dev/mapper/error-test errs: wr 2, rd 0, flush 0, corrupt 0, gen 0
RSP: 0018:ffffc9000006f248 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888005a7f080 RCX: ffffc9000006f1dc
RDX: 0000000000000000 RSI: 000000000000000a RDI: ffff888005a7f080
RBP: ffff888011dfc540 R08: 0000000000000000 R09: 0000000000000001
R10: ffffffff82e508e0 R11: 0000000000000005 R12: ffff88800ddfbe58
R13: ffff888005a7f080 R14: ffff888005a7f158 R15: ffff888005a7f158
FS: 0000000000000000(0000) GS:ffff88803ea80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000020 CR3: 0000000002e22006 CR4: 0000000000370ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die_body.cold+0x19/0x26
? page_fault_oops+0x13e/0x2b0
? _printk+0x58/0x73
? do_user_addr_fault+0x5f/0x750
? exc_page_fault+0x76/0x240
? asm_exc_page_fault+0x22/0x30
? btrfs_bio_end_io+0xae/0xc0 [btrfs]
? btrfs_log_dev_io_error+0x7f/0x90 [btrfs]
btrfs_orig_write_end_io+0x51/0x90 [btrfs]
dm_submit_bio+0x5c2/0xa50 [dm_mod]
? find_held_lock+0x2b/0x80
? blk_try_enter_queue+0x90/0x1e0
__submit_bio+0xe0/0x130
? ktime_get+0x10a/0x160
? lockdep_hardirqs_on+0x74/0x100
submit_bio_noacct_nocheck+0x199/0x410
btrfs_submit_bio+0x7d/0x150 [btrfs]
btrfs_submit_chunk+0x1a1/0x6d0 [btrfs]
? lockdep_hardirqs_on+0x74/0x100
? __folio_start_writeback+0x10/0x2c0
btrfs_submit_bbio+0x1c/0x40 [btrfs]
submit_one_bio+0x44/0x60 [btrfs]
submit_extent_folio+0x13f/0x330 [btrfs]
? btrfs_set_range_writeback+0xa3/0xd0 [btrfs]
extent_writepage_io+0x18b/0x360 [btrfs]
extent_write_locked_range+0x17c/0x340 [btrfs]
? __pfx_end_bbio_data_write+0x10/0x10 [btrfs]
run_delalloc_cow+0x71/0xd0 [btrfs]
btrfs_run_delalloc_range+0x176/0x500 [btrfs]
? find_lock_delalloc_range+0x119/0x260 [btrfs]
writepage_delalloc+0x2ab/0x480 [btrfs]
extent_write_cache_pages+0x236/0x7d0 [btrfs]
btrfs_writepages+0x72/0x130 [btrfs]
do_writepages+0xd4/0x240
? find_held_lock+0x2b/0x80
? wbc_attach_and_unlock_inode+0x12c/0x290
? wbc_attach_and_unlock_inode+0x12c/0x290
__writeback_single_inode+0x5c/0x4c0
? do_raw_spin_unlock+0x49/0xb0
writeback_sb_inodes+0x22c/0x560
__writeback_inodes_wb+0x4c/0xe0
wb_writeback+0x1d6/0x3f0
wb_workfn+0x334/0x520
process_one_work+0x1ee/0x570
? lock_is_held_type+0xc6/0x130
worker_thread+0x1d1/0x3b0
? __pfx_worker_thread+0x10/0x10
kthread+0xee/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Modules linked in: dm_mod btrfs blake2b_generic xor raid6_pq rapl
CR2: 0000000000000020
* Case 2. Earlier completion of orig_bbio for mirrored btrfs_bios
btrfs_bbio_propagate_error() assumes the end_io function for orig_bbio is
called last among split bios. In that case, btrfs_orig_write_end_io() sets
the bio->bi_status to BLK_STS_IOERR by seeing the bioc->error [2].
Otherwise, the increased orig_bio's bioc->error is not checked by anyone
and return BLK_STS_OK to the upper layer.
[2] Actually, this is not true. Because we only increases orig_bioc->errors
by max_errors, the condition "atomic_read(&bioc->error) > bioc->max_errors"
is still not met if only one split btrfs_bio fails.
* Case 3. Later completion of orig_bbio for un-mirrored btrfs_bios
In contrast to the above case, btrfs_bbio_propagate_error() is not working
well if un-mirrored orig_bbio is completed last. It sets
orig_bbio->bio.bi_status to the btrfs_bio's error. But, that is easily
over-written by orig_bbio's completion status. If the status is BLK_STS_OK,
the upper layer would not know the failure.
* Solution
Considering the above cases, we can only save the error status in the
orig_bbio (remaining part after split) itself as it is always
available. Also, the saved error status should be propagated when all the
split btrfs_bios are finished (i.e, bbio->pending_ios == 0).
This commit introduces "status" to btrfs_bbio and saves the first error of
split bios to original btrfs_bio's "status" variable. When all the split
bios are finished, the saved status is loaded into original btrfs_bio's
status.
With this commit, btrfs/146 on zoned devices does not hit the NULL pointer
dereference anymore.
Fixes: 852eee62d3 ("btrfs: allow btrfs_submit_bio to split bios")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The ret may be zero in btrfs_search_dir_index_item() and should not
passed to ERR_PTR(). Now btrfs_unlink_subvol() is the only caller to
this, reconstructed it to check ERR_PTR(-ENOENT) while ret >= 0.
This fixes smatch warnings:
fs/btrfs/dir-item.c:353
btrfs_search_dir_index_item() warn: passing zero to 'ERR_PTR'
Fixes: 9dcbe16fcc ("btrfs: use btrfs_for_each_slot in btrfs_search_dir_index_item")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Yue Haibing <yuehaibing@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Syzbot reports the following crash:
BTRFS info (device loop0 state MCS): disabling free space tree
BTRFS info (device loop0 state MCS): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1)
BTRFS info (device loop0 state MCS): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2)
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:backup_super_roots fs/btrfs/disk-io.c:1691 [inline]
RIP: 0010:write_all_supers+0x97a/0x40f0 fs/btrfs/disk-io.c:4041
Call Trace:
<TASK>
btrfs_commit_transaction+0x1eae/0x3740 fs/btrfs/transaction.c:2530
btrfs_delete_free_space_tree+0x383/0x730 fs/btrfs/free-space-tree.c:1312
btrfs_start_pre_rw_mount+0xf28/0x1300 fs/btrfs/disk-io.c:3012
btrfs_remount_rw fs/btrfs/super.c:1309 [inline]
btrfs_reconfigure+0xae6/0x2d40 fs/btrfs/super.c:1534
btrfs_reconfigure_for_mount fs/btrfs/super.c:2020 [inline]
btrfs_get_tree_subvol fs/btrfs/super.c:2079 [inline]
btrfs_get_tree+0x918/0x1920 fs/btrfs/super.c:2115
vfs_get_tree+0x90/0x2b0 fs/super.c:1800
do_new_mount+0x2be/0xb40 fs/namespace.c:3472
do_mount fs/namespace.c:3812 [inline]
__do_sys_mount fs/namespace.c:4020 [inline]
__se_sys_mount+0x2d6/0x3c0 fs/namespace.c:3997
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[CAUSE]
To support mounting different subvolume with different RO/RW flags for
the new mount APIs, btrfs introduced two workaround to support this feature:
- Skip mount option/feature checks if we are mounting a different
subvolume
- Reconfigure the fs to RW if the initial mount is RO
Combining these two, we can have the following sequence:
- Mount the fs ro,rescue=all,clear_cache,space_cache=v1
rescue=all will mark the fs as hard read-only, so no v2 cache clearing
will happen.
- Mount a subvolume rw of the same fs.
We go into btrfs_get_tree_subvol(), but fc_mount() returns EBUSY
because our new fc is RW, different from the original fs.
Now we enter btrfs_reconfigure_for_mount(), which switches the RO flag
first so that we can grab the existing fs_info.
Then we reconfigure the fs to RW.
- During reconfiguration, option/features check is skipped
This means we will restart the v2 cache clearing, and convert back to
v1 cache.
This will trigger fs writes, and since the original fs has "rescue=all"
option, it skips the csum tree read.
And eventually causing NULL pointer dereference in super block
writeback.
[FIX]
For reconfiguration caused by different subvolume RO/RW flags, ensure we
always run btrfs_check_options() to ensure we have proper hard RO
requirements met.
In fact the function btrfs_check_options() doesn't really do many
complex checks, but hard RO requirement and some feature dependency
checks, thus there is no special reason not to do the check for mount
reconfiguration.
Reported-by: syzbot+56360f93efa90ff15870@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/0000000000008c5d090621cb2770@google.com/
Fixes: f044b31867 ("btrfs: handle the ro->rw transition for mounting different subvolumes")
CC: stable@vger.kernel.org # 6.8+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In debugging some corrupt squashfs files, we observed symptoms of
corrupt page cache pages but correct on-disk contents. Further
investigation revealed that the exact symptom was a correct page
followed by an incorrect, duplicate, page. This got us thinking about
extent maps.
commit ac05ca913e ("Btrfs: fix race between using extent maps and merging them")
enforces a reference count on the primary `em` extent_map being merged,
as that one gets modified.
However, since,
commit 3d2ac99224 ("btrfs: introduce new members for extent_map")
both 'em' and 'merge' get modified, which started modifying 'merge'
and thus introduced the same race.
We were able to reproduce this by looping the affected squashfs workload
in parallel on a bunch of separate btrfs-es while also dropping caches.
We are still working on a simple enough reproducer to make into an fstest.
The simplest fix is to stop modifying 'merge', which is not essential,
as it is dropped immediately after the merge. This behavior is simply
a consequence of the order of the two extent maps being important in
computing the new values. Modify merge_ondisk_extents to take prev and
next by const* and also take a third merged parameter that it puts the
results in. Note that this introduces the rather odd behavior of passing
'em' to merge_ondisk_extents as a const * and as a regular ptr.
Fixes: 3d2ac99224 ("btrfs: introduce new members for extent_map")
CC: stable@vger.kernel.org # 6.11+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Inside lock_delalloc_folios(), there are several problems related to
sector size < page size handling:
- Set the writer locks without checking if the folio is still valid
We call btrfs_folio_start_writer_lock() just like it's folio_lock().
But since the folio may not even be the folio of the current mapping,
we can easily screw up the folio->private.
- The range is not clamped inside the page
This means we can over write other bitmaps if the start/len is not
properly handled, and trigger the btrfs_subpage_assert().
- @processed_end is always rounded up to page end
If the delalloc range is not page aligned, and we need to retry
(returning -EAGAIN), then we will unlock to the page end.
Thankfully this is not a huge problem, as now
btrfs_folio_end_writer_lock() can handle range larger than the locked
range, and only unlock what is already locked.
Fix all these problems by:
- Lock and check the folio first, then call
btrfs_folio_set_writer_lock()
So that if we got a folio not belonging to the inode, we won't
touch folio->private.
- Properly truncate the range inside the page
- Update @processed_end to the locked range end
Fixes: 1e1de38792 ("btrfs: make process_one_page() to handle subpage locking")
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 011b46c304 ("btrfs: skip subtree scan if it's too high to
avoid low stall in btrfs_commit_transaction()"), btrfs qgroup can
automatically skip large subtree scan at the cost of marking qgroup
inconsistent.
It's designed to address the final performance problem of snapshot drop
with qgroup enabled, but to be safe the default value is
BTRFS_MAX_LEVEL, requiring a user space daemon to set a different value
to make it work.
I'd say it's not a good idea to rely on user space tool to set this
default value, especially when some operations (snapshot dropping) can
be triggered immediately after mount, leaving a very small window to
that that sysfs interface.
So instead of disabling this new feature by default, enable it with a
low threshold (3), so that large subvolume tree drop at mount time won't
cause huge qgroup workload.
CC: stable@vger.kernel.org # 6.1
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the migration to use fs context for processing mount options we had
a slight change in the semantics for remounting a filesystem that was
mounted with compress-force. Before we could clear compress-force by
passing only "-o compress[=algo]" during a remount, but after that change
that does not work anymore, force-compress is still present and one needs
to pass "-o compress-force=no,compress[=algo]" to the mount command.
Example, when running on a kernel 6.8+:
$ mount -o compress-force=zlib:9 /dev/sdi /mnt/sdi
$ mount | grep sdi
/dev/sdi on /mnt/sdi type btrfs (rw,relatime,compress-force=zlib:9,discard=async,space_cache=v2,subvolid=5,subvol=/)
$ mount -o remount,compress=zlib:5 /mnt/sdi
$ mount | grep sdi
/dev/sdi on /mnt/sdi type btrfs (rw,relatime,compress-force=zlib:5,discard=async,space_cache=v2,subvolid=5,subvol=/)
On a 6.7 kernel (or older):
$ mount -o compress-force=zlib:9 /dev/sdi /mnt/sdi
$ mount | grep sdi
/dev/sdi on /mnt/sdi type btrfs (rw,relatime,compress-force=zlib:9,discard=async,space_cache=v2,subvolid=5,subvol=/)
$ mount -o remount,compress=zlib:5 /mnt/sdi
$ mount | grep sdi
/dev/sdi on /mnt/sdi type btrfs (rw,relatime,compress=zlib:5,discard=async,space_cache=v2,subvolid=5,subvol=/)
So update btrfs_parse_param() to clear "compress-force" when "compress" is
given, providing the same semantics as kernel 6.7 and older.
Reported-by: Roman Mamedov <rm@romanrm.net>
Link: https://lore.kernel.org/linux-btrfs/20241014182416.13d0f8b0@nvm/
CC: stable@vger.kernel.org # 6.8+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs reserves an extent and does not use it (e.g, by an error), it
calls btrfs_free_reserved_extent() to free the reserved extent. In the
process, it calls btrfs_add_free_space() and then it accounts the region
bytes as block_group->zone_unusable.
However, it leaves the space_info->bytes_zone_unusable side not updated. As
a result, ENOSPC can happen while a space_info reservation succeeded. The
reservation is fine because the freed region is not added in
space_info->bytes_zone_unusable, leaving that space as "free". OTOH,
corresponding block group counts it as zone_unusable and its allocation
pointer is not rewound, we cannot allocate an extent from that block group.
That will also negate space_info's async/sync reclaim process, and cause an
ENOSPC error from the extent allocation process.
Fix that by returning the space to space_info->bytes_zone_unusable.
Ideally, since a bio is not submitted for this reserved region, we should
return the space to free space and rewind the allocation pointer. But, it
needs rework on extent allocation handling, so let it work in this way for
now.
Fixes: 169e0da91a ("btrfs: zoned: track unusable bytes for zones")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmcPxtAACgkQxWXV+ddt
WDu9lA//WfB88fwEKnqBYDRo6aiSMIAzLDuXkJ9i8d7rcjZO1OIZkEnMOsxhvTcZ
KxgjNjkgzoTyUwoAUlG+ZpvMeSNMhBdr2NFkXmYzN9oanFE4zplpZiWx6tGSApRU
0ilngjXBsr8p03HmB88Yb05DVYQ2elMP6Jx3VETDBa0CNyp4//tGKzusNhZdA7KM
XLZmkKRk3ZKabNo+p2J5t8UGJCl2L18U0o/EphfSkODKadUnsBbAPZUt2EGQCZwv
uZhDFAUkgTFBkeRO7JwTfDrNi51M4zwmh+kEduzg4Ny4TdFb1UapU7K1N330WMru
4Qa953Met9I4NB/kKI+fZP1lN4NGuD2qEU6yoZVSy4UiqRp1gEg8kOUfVGFbNJa1
VFYcwdrBad0I4PjnQc5bpZVjzqJT5wWiZxjlWrB7VyIfdmnvQxe5h4DBwBhN5FJr
+MEtuY2QNFygjDAZ5z0Ss8hegqI+FYi562Cjy9QRLhb3qGD8STF2BIChaILIn3oA
UVJUlUP6CUmCu1RZRMFB4/WkeHO46FmZxJErGfFeXqJInThf0/rdSZOQgIP0JsUq
N8FINEgXFAMCkK1PT7MNvAYkSP0tR7B0JjGKcSlGS3v3F0URCNGvHSiqbLedAtXT
lc1MdXTZxub8h6xhIvgY1j7HRAFGrunn7LD6MIKRWX1SZPWwAGI=
=DEUA
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- regression fix: dirty extents tracked in xarray for qgroups must be
adjusted for 32bit platforms
- fix potentially freeing uninitialized name in fscrypt structure
- fix warning about unneeded variable in a send callback
* tag 'for-6.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix uninitialized pointer free on read_alloc_one_name() error
btrfs: send: cleanup unneeded return variable in changed_verity()
btrfs: fix uninitialized pointer free in add_inode_ref()
btrfs: use sector numbers as keys for the dirty extents xarray
The function read_alloc_one_name() does not initialize the name field of
the passed fscrypt_str struct if kmalloc fails to allocate the
corresponding buffer. Thus, it is not guaranteed that
fscrypt_str.name is initialized when freeing it.
This is a follow-up to the linked patch that fixes the remaining
instances of the bug introduced by commit e43eec81c5 ("btrfs: use
struct qstr instead of name and namelen pairs").
Link: https://lore.kernel.org/linux-btrfs/20241009080833.1355894-1-jroi.martin@gmail.com/
Fixes: e43eec81c5 ("btrfs: use struct qstr instead of name and namelen pairs")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Roi Martin <jroi.martin@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As all changed_* functions need to return something, just return 0
directly here, as the verity status is passed via the context.
Reported by LKP: fs/btrfs/send.c:6877:5-8: Unneeded variable: "ret". Return "0" on line 6883
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202410092305.WbyqspH8-lkp@intel.com/
Signed-off-by: Christian Heusel <christian@heusel.eu>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The add_inode_ref() function does not initialize the "name" struct when
it is declared. If any of the following calls to "read_one_inode()
returns NULL,
dir = read_one_inode(root, parent_objectid);
if (!dir) {
ret = -ENOENT;
goto out;
}
inode = read_one_inode(root, inode_objectid);
if (!inode) {
ret = -EIO;
goto out;
}
then "name.name" would be freed on "out" before being initialized.
out:
...
kfree(name.name);
This issue was reported by Coverity with CID 1526744.
Fixes: e43eec81c5 ("btrfs: use struct qstr instead of name and namelen pairs")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Roi Martin <jroi.martin@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are using the logical address ("bytenr") of an extent as the key for
qgroup records in the dirty extents xarray. This is a problem because the
xarrays use "unsigned long" for keys/indices, meaning that on a 32 bits
platform any extent starting at or beyond 4G is truncated, which is a too
low limitation as virtually everyone is using storage with more than 4G of
space. This means a "bytenr" of 4G gets truncated to 0, and so does 8G and
16G for example, resulting in incorrect qgroup accounting.
Fix this by using sector numbers as keys instead, that is, using keys that
match the logical address right shifted by fs_info->sectorsize_bits, which
is what we do for the fs_info->buffer_radix that tracks extent buffers
(radix trees also use an "unsigned long" type for keys). This also makes
the index space more dense which helps optimize the xarray (as mentioned
at Documentation/core-api/xarray.rst).
Fixes: 3cce39a8ca ("btrfs: qgroup: use xarray to track dirty extents in transaction")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmcH4qAACgkQxWXV+ddt
WDtDig//czntfO+iRvDERZWTIB6vdVExfLd3r3ZNYlO1pIvgCuvqx3iYva+0ZhGW
8A+gcRax7cz0jCaxDp/+5lIRfdNxZH6/LwjZsDgU8Ly7himeRmwhtn2fCgNeiH/K
bUl92+ZMo2vwqTKXYa3xF1g3Hz6cRXVW7gJrMwNhb1hpPTGx+lgYJU02m/Io/vjK
1jcrZ84OEPIOY5uiAoDyO2hgsT/zVEeuuOiSTpKSzrghPbo0vmjLiYJ5T+CE5Uw3
u3w7/Fqnw49NwucqtncvyFFDXY9EWNuQhowi3hqJgOYTInqwwJigIpQV0hDDwYxb
ohGUGjazGfAEf/cy1jZXMbwCVgg8/Nj9x0eDKKhfs19VYUbMkEYQ8LKRTUlCeBwS
H/2AmqpqHEEO+tPY3P+w6MVwkNho8JNpWPdP5OzJs7XrD067IViOjD06HPM/k5ci
TU3zp9NYvgHVtmfZK1Aqsg9OYVhI1klVXejmlAzOLxejRPWXK/1hBw3kXbC6I+k1
50l0Yh1dgEnclMI3yWsKoj8IYUAkh2eudt0pNsot4a5vICMY++NVS2eukdz5UcEz
ix7hcpYcCcmzoOaelyEgmdAncWVGJT5w2Nzy85YaOp+Z1C65Ywb41utU+sSY+swB
kZfwl9vrsfu754vX7UKBherCvvYo+Lnj3GeX8Oe+1LoT2BP0TPk=
=lTqc
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- update fstrim loop and add more cancellation points, fix reported
delayed or blocked suspend if there's a huge chunk queued
- fix error handling in recent qgroup xarray conversion
- in zoned mode, fix warning printing device path without RCU
protection
- again fix invalid extent xarray state (6252690f7e), lost due to
refactoring
* tag 'for-6.12-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix clear_dirty and writeback ordering in submit_one_sector()
btrfs: zoned: fix missing RCU locking in error message when loading zone info
btrfs: fix missing error handling when adding delayed ref with qgroups enabled
btrfs: add cancellation points to trim loops
btrfs: split remaining space to discard in chunks
Jeff Layton <jlayton@kernel.org> says:
The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a change. This has the benefit of allowing
filesystems to optimize away a lot metadata updates, down to around 1
per jiffy, even when a file is under heavy writes.
Unfortunately, this has always been an issue when we're exporting via
NFSv3, which relies on timestamps to validate caches. A lot of changes
can happen in a jiffy, so timestamps aren't sufficient to help the
client decide when to invalidate the cache. Even with NFSv4, a lot of
exported filesystems don't properly support a change attribute and are
subject to the same problems with timestamp granularity. Other
applications have similar issues with timestamps (e.g backup
applications).
If we were to always use fine-grained timestamps, that would improve the
situation, but that becomes rather expensive, as the underlying
filesystem would have to log a lot more metadata updates.
What we need is a way to only use fine-grained timestamps when they are
being actively queried. Use the (unused) top bit in inode->i_ctime_nsec
as a flag that indicates whether the current timestamps have been
queried via stat() or the like. When it's set, we allow the kernel to
use a fine-grained timestamp iff it's necessary to make the ctime show
a different value.
This solves the problem of being able to distinguish the timestamp
between updates, but introduces a new problem: it's now possible for a
file being changed to get a fine-grained timestamp. A file that is
altered just a bit later can then get a coarse-grained one that appears
older than the earlier fine-grained time. This violates timestamp
ordering guarantees.
To remedy this, keep a global monotonic atomic64_t value that acts as a
timestamp floor. When we go to stamp a file, we first get the latter of
the current floor value and the current coarse-grained time. If the
inode ctime hasn't been queried then we just attempt to stamp it with
that value.
If it has been queried, then first see whether the current coarse time
is later than the existing ctime. If it is, then we accept that value.
If it isn't, then we get a fine-grained time and try to swap that into
the global floor. Whether that succeeds or fails, we take the resulting
floor time, convert it to realtime and try to swap that into the ctime.
We take the result of the ctime swap whether it succeeds or fails, since
either is just as valid.
Filesystems can opt into this by setting the FS_MGTIME fstype flag.
Others should be unaffected (other than being subject to the same floor
value as multigrain filesystems).
* patches from https://lore.kernel.org/r/20241002-mgtime-v10-0-d1c4717f5284@kernel.org:
tmpfs: add support for multigrain timestamps
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
Documentation: add a new file documenting multigrain timestamps
fs: add percpu counters for significant multigrain timestamp events
fs: tracepoints around multigrain timestamp events
fs: handle delegated timestamps in setattr_copy_mgtime
fs: have setattr_copy handle multigrain timestamps appropriately
fs: add infrastructure for multigrain timestamps
Link: https://lore.kernel.org/r/20241002-mgtime-v10-0-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Enable multigrain timestamps, which should ensure that there is an
apparent change to the timestamp whenever it has been written after
being actively observed via getattr.
Beyond enabling the FS_MGTIME flag, this patch eliminates
update_time_for_write, which goes to great pains to avoid in-memory
stores. Just have it overwrite the timestamps unconditionally.
Note that this also drops the IS_I_VERSION check and unconditionally
bumps the change attribute, since SB_I_VERSION is always set on btrfs.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # documentation bits
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241002-mgtime-v10-11-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
This commit is a replay of commit 6252690f7e ("btrfs: fix invalid
mapping of extent xarray state"). We need to call
btrfs_folio_clear_dirty() before btrfs_set_range_writeback(), so that
xarray DIRTY tag is cleared.
With a refactoring commit 8189197425 ("btrfs: refactor
__extent_writepage_io() to do sector-by-sector submission"), it screwed
up and the order is reversed and causing the same hang. Fix the ordering
now in submit_one_sector().
Fixes: 8189197425 ("btrfs: refactor __extent_writepage_io() to do sector-by-sector submission")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_load_zone_info() we have an error path that is dereferencing
the name of a device which is a RCU string but we are not holding a RCU
read lock, which is incorrect.
Fix this by using btrfs_err_in_rcu() instead of btrfs_err().
The problem is there since commit 08e11a3db0 ("btrfs: zoned: load zone's
allocation offset"), back then at btrfs_load_block_group_zone_info() but
then later on that code was factored out into the helper
btrfs_load_zone_info() by commit 09a46725cc ("btrfs: zoned: factor out
per-zone logic from btrfs_load_block_group_zone_info").
Fixes: 08e11a3db0 ("btrfs: zoned: load zone's allocation offset")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When adding a delayed ref head, at delayed-ref.c:add_delayed_ref_head(),
if we fail to insert the qgroup record we don't error out, we ignore it.
In fact we treat it as if there was no error and there was already an
existing record - we don't distinguish between the cases where
btrfs_qgroup_trace_extent_nolock() returns 1, meaning a record already
existed and we can free the given record, and the case where it returns
a negative error value, meaning the insertion into the xarray that is
used to track records failed.
Effectively we end up ignoring that we are lacking qgroup record in the
dirty extents xarray, resulting in incorrect qgroup accounting.
Fix this by checking for errors and return them to the callers.
Fixes: 3cce39a8ca ("btrfs: qgroup: use xarray to track dirty extents in transaction")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are reports that system cannot suspend due to running trim because
the task responsible for trimming the device isn't able to finish in
time, especially since we have a free extent discarding phase, which can
trim a lot of unallocated space. There are no limits on the trim size
(unlike the block group part).
Since trime isn't a critical call it can be interrupted at any time,
in such cases we stop the trim, report the amount of discarded bytes and
return an error.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219180
Link: https://bugzilla.suse.com/show_bug.cgi?id=1229737
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Luca Stefani <luca.stefani.ge1@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Per Qu Wenruo in case we have a very large disk, e.g. 8TiB device,
mostly empty although we will do the split according to our super block
locations, the last super block ends at 256G, we can submit a huge
discard for the range [256G, 8T), causing a large delay.
Split the space left to discard based on BTRFS_MAX_DISCARD_CHUNK_SIZE in
preparation of introduction of cancellation points to trim. The value
of the chunk size is arbitrary, it can be higher or derived from actual
device capabilities but we can't easily read that using
bio_discard_limit().
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219180
Link: https://bugzilla.suse.com/show_bug.cgi?id=1229737
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Luca Stefani <luca.stefani.ge1@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmb/9agACgkQxWXV+ddt
WDtKFA/5AW88osk/1k/NVhOvOa0xPr5XyDLq1n8Gaxfy8uHlHAc8wdsvJzCDMS0M
qUOD/tOPhRI0HGXPiKD767erwbyXiZAcCTkSd8x5jlXy1hVjUHQSKO//JxD0vtAZ
jOscoUA1wJJutopCXcppnoUUFE2753edEg0w2EtUXMpfqivqOmMCR+1ZtKkfaNJo
oRuZCq3Oi8hu7Wsvmh4Etq/9MvGM+xovXAMAji6Op8nsP1jJlzWztpEUogLOQH2S
IhDFFxP9shBV9JjV+HSyXcAYr8VArH6HtYjapR9oajCH0pvSjLYQQPq/qQ0//8Hb
SHr4YP6RBbpEIvvaQeA7vwsckBHNBOrSAbEgRQ2+zdmiwha6SRIEVyXYh5LUwcYT
WnVozbk7ZX9rD1jOVhvgouFG6vUz8A6/qt3BD028bVcyMvBXW4gsEduCMVlFGmlN
D6+hNY6J08j4HUEGnPk7fAYi/lk5OEK1p5yarUgsOQ3GqWWS0ywkrfbmbWwyC+Ff
AxggFTl9YodU5RMs7EU2GeHkLU6LnXgevk6FFm0JzsLtT/BbEP7pj6tOot4Msl1e
2ovqFiSbuPNg5Wr70ZBRO9LDIAYtTZy1UrVR/YCSLzm+wZsXMelDIHMQfE7+Yodp
O5Cud23AanRTwjErvNl3X4rhut8rrI1FsR89gDyKK1EPG+mwofo=
=yslr
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- in incremental send, fix invalid clone operation for file that got
its size decreased
- fix __counted_by() annotation of send path cache entries, we do not
store the terminating NUL
- fix a longstanding bug in relocation (and quite hard to hit by
chance), drop back reference cache that can get out of sync after
transaction commit
- wait for fixup worker kthread before finishing umount
- add missing raid-stripe-tree extent for NOCOW files, zoned mode
cannot have NOCOW files but RST is meant to be a standalone feature
- handle transaction start error during relocation, avoid potential
NULL pointer dereference of relocation control structure (reported by
syzbot)
- disable module-wide rate limiting of debug level messages
- minor fix to tracepoint definition (reported by checkpatch.pl)
* tag 'for-6.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: disable rate limiting when debug enabled
btrfs: wait for fixup workers before stopping cleaner kthread during umount
btrfs: fix a NULL pointer dereference when failed to start a new trasacntion
btrfs: send: fix invalid clone operation for file that got its size decreased
btrfs: tracepoints: end assignment with semicolon at btrfs_qgroup_extent event class
btrfs: drop the backref cache during relocation if we commit
btrfs: also add stripe entries for NOCOW writes
btrfs: send: fix buffer overflow detection when copying path to cache entry
We are close to removing the private_2 flag, so switch btrfs to using
owner_2 for its ordered flag. This is mostly used by buffer head
filesystems, so btrfs can use it because it doesn't use buffer heads.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20241002040111.1023018-5-willy@infradead.org
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.
auto-generated by the following:
for i in `git grep -l -w asm/unaligned.h`; do
sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
Disable ratelimiting for btrfs_printk when CONFIG_BTRFS_DEBUG is
enabled. This allows for more verbose output which is often needed by
functions like btrfs_dump_space_info().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Leo Martins <loemra.dev@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Syzbot reported a NULL pointer dereference with the following crash:
FAULT_INJECTION: forcing a failure.
start_transaction+0x830/0x1670 fs/btrfs/transaction.c:676
prepare_to_relocate+0x31f/0x4c0 fs/btrfs/relocation.c:3642
relocate_block_group+0x169/0xd20 fs/btrfs/relocation.c:3678
...
BTRFS info (device loop0): balance: ended with status: -12
Oops: general protection fault, probably for non-canonical address 0xdffffc00000000cc: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000660-0x0000000000000667]
RIP: 0010:btrfs_update_reloc_root+0x362/0xa80 fs/btrfs/relocation.c:926
Call Trace:
<TASK>
commit_fs_roots+0x2ee/0x720 fs/btrfs/transaction.c:1496
btrfs_commit_transaction+0xfaf/0x3740 fs/btrfs/transaction.c:2430
del_balance_item fs/btrfs/volumes.c:3678 [inline]
reset_balance_state+0x25e/0x3c0 fs/btrfs/volumes.c:3742
btrfs_balance+0xead/0x10c0 fs/btrfs/volumes.c:4574
btrfs_ioctl_balance+0x493/0x7c0 fs/btrfs/ioctl.c:3673
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[CAUSE]
The allocation failure happens at the start_transaction() inside
prepare_to_relocate(), and during the error handling we call
unset_reloc_control(), which makes fs_info->balance_ctl to be NULL.
Then we continue the error path cleanup in btrfs_balance() by calling
reset_balance_state() which will call del_balance_item() to fully delete
the balance item in the root tree.
However during the small window between set_reloc_contrl() and
unset_reloc_control(), we can have a subvolume tree update and created a
reloc_root for that subvolume.
Then we go into the final btrfs_commit_transaction() of
del_balance_item(), and into btrfs_update_reloc_root() inside
commit_fs_roots().
That function checks if fs_info->reloc_ctl is in the merge_reloc_tree
stage, but since fs_info->reloc_ctl is NULL, it results a NULL pointer
dereference.
[FIX]
Just add extra check on fs_info->reloc_ctl inside
btrfs_update_reloc_root(), before checking
fs_info->reloc_ctl->merge_reloc_tree.
That DEAD_RELOC_TREE handling is to prevent further modification to the
reloc tree during merge stage, but since there is no reloc_ctl at all,
we do not need to bother that.
Reported-by: syzbot+283673dbc38527ef9f3d@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/66f6bfa7.050a0220.38ace9.0019.GAE@google.com/
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During an incremental send we may end up sending an invalid clone
operation, for the last extent of a file which ends at an unaligned offset
that matches the final i_size of the file in the send snapshot, in case
the file had its initial size (the size in the parent snapshot) decreased
in the send snapshot. In this case the destination will fail to apply the
clone operation because its end offset is not sector size aligned and it
ends before the current size of the file.
Sending the truncate operation always happens when we finish processing an
inode, after we process all its extents (and xattrs, names, etc). So fix
this by ensuring the file has a valid size before we send a clone
operation for an unaligned extent that ends at the final i_size of the
file. The size we truncate to matches the start offset of the clone range
but it could be any value between that start offset and the final size of
the file since the clone operation will expand the i_size if the current
size is smaller than the end offset. The start offset of the range was
chosen because it's always sector size aligned and avoids a truncation
into the middle of a page, which results in dirtying the page due to
filling part of it with zeroes and then making the clone operation at the
receiver trigger IO.
The following test reproduces the issue:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Create a file with a size of 256K + 5 bytes, having two extents, one
# with a size of 128K and another one with a size of 128K + 5 bytes.
last_ext_size=$((128 * 1024 + 5))
xfs_io -f -d -c "pwrite -S 0xab -b 128K 0 128K" \
-c "pwrite -S 0xcd -b $last_ext_size 128K $last_ext_size" \
$MNT/foo
# Another file which we will later clone foo into, but initially with
# a larger size than foo.
xfs_io -f -c "pwrite -S 0xef 0 1M" $MNT/bar
btrfs subvolume snapshot -r $MNT/ $MNT/snap1
# Now resize bar and clone foo into it.
xfs_io -c "truncate 0" \
-c "reflink $MNT/foo" $MNT/bar
btrfs subvolume snapshot -r $MNT/ $MNT/snap2
rm -f /tmp/send-full /tmp/send-inc
btrfs send -f /tmp/send-full $MNT/snap1
btrfs send -p $MNT/snap1 -f /tmp/send-inc $MNT/snap2
umount $MNT
mkfs.btrfs -f $DEV
mount $DEV $MNT
btrfs receive -f /tmp/send-full $MNT
btrfs receive -f /tmp/send-inc $MNT
umount $MNT
Running it before this patch:
$ ./test.sh
(...)
At subvol snap1
At snapshot snap2
ERROR: failed to clone extents to bar: Invalid argument
A test case for fstests will be sent soon.
Reported-by: Ben Millwood <thebenmachine@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAJhrHS2z+WViO2h=ojYvBPDLsATwLbg+7JaNCyYomv0fUxEpQQ@mail.gmail.com/
Fixes: 46a6e10a1a ("btrfs: send: allow cloning non-aligned extent if it ends at i_size")
CC: stable@vger.kernel.org # 6.11
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since the inception of relocation we have maintained the backref cache
across transaction commits, updating the backref cache with the new
bytenr whenever we COWed blocks that were in the cache, and then
updating their bytenr once we detected a transaction id change.
This works as long as we're only ever modifying blocks, not changing the
structure of the tree.
However relocation does in fact change the structure of the tree. For
example, if we are relocating a data extent, we will look up all the
leaves that point to this data extent. We will then call
do_relocation() on each of these leaves, which will COW down to the leaf
and then update the file extent location.
But, a key feature of do_relocation() is the pending list. This is all
the pending nodes that we modified when we updated the file extent item.
We will then process all of these blocks via finish_pending_nodes, which
calls do_relocation() on all of the nodes that led up to that leaf.
The purpose of this is to make sure we don't break sharing unless we
absolutely have to. Consider the case that we have 3 snapshots that all
point to this leaf through the same nodes, the initial COW would have
created a whole new path. If we did this for all 3 snapshots we would
end up with 3x the number of nodes we had originally. To avoid this we
will cycle through each of the snapshots that point to each of these
nodes and update their pointers to point at the new nodes.
Once we update the pointer to the new node we will drop the node we
removed the link for and all of its children via btrfs_drop_subtree().
This is essentially just btrfs_drop_snapshot(), but for an arbitrary
point in the snapshot.
The problem with this is that we will never reflect this in the backref
cache. If we do this btrfs_drop_snapshot() for a node that is in the
backref tree, we will leave the node in the backref tree. This becomes
a problem when we change the transid, as now the backref cache has
entire subtrees that no longer exist, but exist as if they still are
pointed to by the same roots.
In the best case scenario you end up with "adding refs to an existing
tree ref" errors from insert_inline_extent_backref(), where we attempt
to link in nodes on roots that are no longer valid.
Worst case you will double free some random block and re-use it when
there's still references to the block.
This is extremely subtle, and the consequences are quite bad. There
isn't a way to make sure our backref cache is consistent between
transid's.
In order to fix this we need to simply evict the entire backref cache
anytime we cross transid's. This reduces performance in that we have to
rebuild this backref cache every time we change transid's, but fixes the
bug.
This has existed since relocation was added, and is a pretty critical
bug. There's a lot more cleanup that can be done now that this
functionality is going away, but this patch is as small as possible in
order to fix the problem and make it easy for us to backport it to all
the kernels it needs to be backported to.
Followup series will dismantle more of this code and simplify relocation
drastically to remove this functionality.
We have a reproducer that reproduced the corruption within a few minutes
of running. With this patch it survives several iterations/hours of
running the reproducer.
Fixes: 3fd0a5585e ("Btrfs: Metadata ENOSPC handling for balance")
CC: stable@vger.kernel.org
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
NOCOW writes do not generate stripe_extent entries in the RAID stripe
tree, as the RAID stripe-tree feature initially was designed with a
zoned filesystem in mind and on a zoned filesystem, we do not allow NOCOW
writes. But the RAID stripe-tree feature is independent from the zoned
feature, so we must also do NOCOW writes for RAID stripe-tree filesystems.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmbxUdkACgkQxWXV+ddt
WDtAVQ//SCg5XtExxtol1emzZ+AGQjwRnRfUPo/x32h9SmaynaHa/sLsG2EwePKs
1lrkW8gEx3NF1bfeCubhoVX2eAo/1rwGqtPEbweE7XaYtmSnxT8jXeH2fQcMwQMc
PkYfnCMIOdJzwoVS8wS3kLmuDep+9DJrbeI9oN5tUgugkTTbW7g576uv/SXjp46D
Dl4b1uvVOCowBbY2Bz1pg0fQpBzJcLzvynGElSi85uoQ520JuA8PP/3Pszg8BTxm
6MO99kF0MhVSBnKSvmlIgxmlnGhlW/AlZakxywRYYKsiSM/eCWHpyUV0p4mMcpWW
QM8yeJcAhugTDIV3VdRpGx4NcJSo1PPaXxRrMr/vnnuOPF4VQ2gSw+S4p44YCsML
VpyNJIjeXNO86A6feQybxwczMzdpkc5UzdfJ+l3CDSxcGiQGRU3WWPIHjte90e38
ZNjXknc96EwOmxsx8ojGlfi7Lh9yHklMGslxI64488PTa+2RRGITUSziAla29nrd
E4U6bh+bLeh2a11u+OjvSqIjdDfoJZD40Abnqe6DVA9pboPaLvf8vAVZa1FOJxsI
oVJgkdhEBGbn26KqlghlnbkYBdjuGxtBoyuCvUAI8ybOTVnp423d+JYXkZOnSq9A
EdL3UGII4LWQ71p+QxF3tm5nuKfbulyibfoBNj57zk0hM2OVNdg=
=wGXc
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix dangling pointer to rb-tree of defragmented inodes after cleanup
- a followup fix to handle concurrent lseek on the same fd that could
leak memory under some conditions
- fix wrong root id reported in tree checker when verifying dref
* tag 'for-6.12-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix use-after-free on rbtree that tracks inodes for auto defrag
btrfs: tree-checker: fix the wrong output of data backref objectid
btrfs: fix race setting file private on concurrent lseek using same fd
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZvDNmgAKCRBZ7Krx/gZQ
63zrAP9vI0rf55v27twiabe9LnI7aSx5ckoqXxFIFxyT3dOYpQD/bPmoApnWDD3d
592+iDgLsema/H/0/CqfqlaNtDNY8Q0=
=HUl5
-----END PGP SIGNATURE-----
Merge tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull 'struct fd' updates from Al Viro:
"Just the 'struct fd' layout change, with conversion to accessor
helpers"
* tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
add struct fd constructors, get rid of __to_fd()
struct fd: representation change
introduce fd_file(), convert all accessors to it.
When cleaning up defrag inodes at btrfs_cleanup_defrag_inodes(), called
during remount and unmount, we are freeing every node from the rbtree
that tracks inodes for auto defrag using
rbtree_postorder_for_each_entry_safe(), which doesn't modify the tree
itself. So once we unlock the lock that protects the rbtree, we have a
tree pointing to a root that was freed (and a root pointing to freed
nodes, and their children pointing to other freed nodes, and so on).
This makes further access to the tree result in a use-after-free with
unpredictable results.
Fix this by initializing the rbtree to an empty root after the call to
rbtree_postorder_for_each_entry_safe() and before unlocking.
Fixes: 276940915f ("btrfs: clear defragmented inodes using postorder in btrfs_cleanup_defrag_inodes()")
Reported-by: syzbot+ad7966ca1f5dd8b001b3@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000f9aad406223eabff@google.com/
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are some reports about invalid data backref objectids, the report
looks like this:
BTRFS critical (device sda): corrupt leaf: block=333654787489792 slot=110 extent bytenr=333413935558656 len=65536 invalid data ref objectid value 2543
The data ref objectid is the inode number inside the subvolume.
But in above case, the value is completely sane, not really showing the
problem.
[CAUSE]
The root cause of the problem is the deprecated feature, inode cache.
This feature results a special inode number, -12ULL, and it's no longer
recognized by tree-checker, triggering the error.
The direct problem here is the output of data ref objectid. The value
shown is in fact the dref_root (subvolume id), not the dref_objectid
(inode number).
[FIX]
Fix the output to use dref_objectid instead.
Reported-by: Neil Parton <njparton@gmail.com>
Reported-by: Archange <archange@archlinux.org>
Link: https://lore.kernel.org/linux-btrfs/CAAYHqBbrrgmh6UmW3ANbysJX9qG9Pbg3ZwnKsV=5mOpv_qix_Q@mail.gmail.com/
Link: https://lore.kernel.org/linux-btrfs/9541deea-9056-406e-be16-a996b549614d@archlinux.org/
Fixes: f333a3c7e8 ("btrfs: tree-checker: validate dref root and objectid")
CC: stable@vger.kernel.org # 6.11
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing concurrent lseek(2) system calls against the same file
descriptor, using multiple threads belonging to the same process, we have
a short time window where a race happens and can result in a memory leak.
The race happens like this:
1) A program opens a file descriptor for a file and then spawns two
threads (with the pthreads library for example), lets call them
task A and task B;
2) Task A calls lseek with SEEK_DATA or SEEK_HOLE and ends up at
file.c:find_desired_extent() while holding a read lock on the inode;
3) At the start of find_desired_extent(), it extracts the file's
private_data pointer into a local variable named 'private', which has
a value of NULL;
4) Task B also calls lseek with SEEK_DATA or SEEK_HOLE, locks the inode
in shared mode and enters file.c:find_desired_extent(), where it also
extracts file->private_data into its local variable 'private', which
has a NULL value;
5) Because it saw a NULL file private, task A allocates a private
structure and assigns to the file structure;
6) Task B also saw a NULL file private so it also allocates its own file
private and then assigns it to the same file structure, since both
tasks are using the same file descriptor.
At this point we leak the private structure allocated by task A.
Besides the memory leak, there's also the detail that both tasks end up
using the same cached state record in the private structure (struct
btrfs_file_private::llseek_cached_state), which can result in a
use-after-free problem since one task can free it while the other is
still using it (only one task took a reference count on it). Also, sharing
the cached state is not a good idea since it could result in incorrect
results in the future - right now it should not be a problem because it
end ups being used only in extent-io-tree.c:count_range_bits() where we do
range validation before using the cached state.
Fix this by protecting the private assignment and check of a file while
holding the inode's spinlock and keep track of the task that allocated
the private, so that it's used only by that task in order to prevent
user-after-free issues with the cached state record as well as potentially
using it incorrectly in the future.
Fixes: 3c32c7212f ("btrfs: use cached state when looking for delalloc ranges with lseek")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmbkZhQQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpjOKD/0fzd4yOcqxSI9W3OLGd04VrOTJIQa4CRbV
GmoTq39pOeIDVGug5ekkTpqqHHnuGk+nQhCzD9vsN/eTmC7yZOIr847O2aWzvYEn
PzFRgmJpoo2E9sr/IsTR5LnJjbaIZhQVkqLH6ZOj9tpKlVwN2SK0nIRVNrAi5zgT
MaDrto/2OUld+vmA99Rgb23jxM6UBdCPIjuiVa+11Vg9Z3D1tWbBmrsG7OMysyIf
FbASBeKHqFSO61/ipFCZv6VV1X8zoWEVyT8n4A1yUbbN5rLzPgoQJVbfSqQRXIdr
cdrKeCbKxl+joSgKS6LKpvnfwRgGF+hgAfpZg4c0vrbZGTQcRhhLFECyh/aVI08F
p5TOMArhVaX59664gHgSPq4KnGTXOO29dot9N3Jya/ZQnxinjY9r+GVOfLuduPPy
1B04vab8oAsk4zK7fZbkDxgYUyifwzK/vQ6OqYq2mYdpdIS/AE7T2ou61Bz5mI7I
/BuucNV0Z96OKlyLEXwXXZjZgNu1TFcq6ARIBJ8L08PY64Fesj5BXabRyXkeNH26
0exyz9heeJs6OwRGfngXmS24tDSS0k74CeZX3KoePNj69u6KCn346KiU1qgntwwD
E5F7AEHqCl5FjUEIWB4M1EPlfA8U0MzOL+tkx2xKJAjsU60wAy7jRSyOIcqodpMs
6UlPcJzgYg==
=uuLl
-----END PGP SIGNATURE-----
Merge tag 'for-6.12/block-20240913' of git://git.kernel.dk/linux
Pull block updates from Jens Axboe:
- MD changes via Song:
- md-bitmap refactoring (Yu Kuai)
- raid5 performance optimization (Artur Paszkiewicz)
- Other small fixes (Yu Kuai, Chen Ni)
- Add a sysfs entry 'new_level' (Xiao Ni)
- Improve information reported in /proc/mdstat (Mateusz Kusiak)
- NVMe changes via Keith:
- Asynchronous namespace scanning (Stuart)
- TCP TLS updates (Hannes)
- RDMA queue controller validation (Niklas)
- Align field names to the spec (Anuj)
- Metadata support validation (Puranjay)
- A syntax cleanup (Shen)
- Fix a Kconfig linking error (Arnd)
- New queue-depth quirk (Keith)
- Add missing unplug trace event (Keith)
- blk-iocost fixes (Colin, Konstantin)
- t10-pi modular removal and fixes (Alexey)
- Fix for potential BLKSECDISCARD overflow (Alexey)
- bio splitting cleanups and fixes (Christoph)
- Deal with folios rather than rather than pages, speeding up how the
block layer handles bigger IOs (Kundan)
- Use spinlocks rather than bit spinlocks in zram (Sebastian, Mike)
- Reduce zoned device overhead in ublk (Ming)
- Add and use sendpages_ok() for drbd and nvme-tcp (Ofir)
- Fix regression in partition error pointer checking (Riyan)
- Add support for write zeroes and rotational status in nbd (Wouter)
- Add Yu Kuai as new BFQ maintainer. The scheduler has been
unmaintained for quite a while.
- Various sets of fixes for BFQ (Yu Kuai)
- Misc fixes and cleanups (Alvaro, Christophe, Li, Md Haris, Mikhail,
Yang)
* tag 'for-6.12/block-20240913' of git://git.kernel.dk/linux: (120 commits)
nvme-pci: qdepth 1 quirk
block: fix potential invalid pointer dereference in blk_add_partition
blk_iocost: make read-only static array vrate_adj_pct const
block: unpin user pages belonging to a folio at once
mm: release number of pages of a folio
block: introduce folio awareness and add a bigger size from folio
block: Added folio-ized version of bio_add_hw_page()
block, bfq: factor out a helper to split bfqq in bfq_init_rq()
block, bfq: remove local variable 'bfqq_already_existing' in bfq_init_rq()
block, bfq: remove local variable 'split' in bfq_init_rq()
block, bfq: remove bfq_log_bfqg()
block, bfq: merge bfq_release_process_ref() into bfq_put_cooperator()
block, bfq: fix procress reference leakage for bfqq in merge chain
block, bfq: fix uaf for accessing waker_bfqq after splitting
blk-throttle: support prioritized processing of metadata
blk-throttle: remove last_low_overflow_time
drbd: Add NULL check for net_conf to prevent dereference in state validation
nvme-tcp: fix link failure for TCP auth
blk-mq: add missing unplug trace event
mtip32xx: Remove redundant null pointer checks in mtip_hw_debugfs_init()
...
[SUBPAGE COMPRESSION LIMITS]
Currently inside writepage_delalloc(), if a delalloc range is going to
be submitted asynchronously (inline or compression, the page
dirty/writeback/unlock are all handled in at different time, not at the
submission time), then we return 1 and extent_writepage() will skip the
submission.
This is fine if every sector matches page size, but if a sector is
smaller than page size (aka, subpage case), then it can be very
problematic, for example for the following 64K page:
0 16K 32K 48K 64K
|/| |///////| |/|
| |
4K 52K
Where |/| is the dirty range we need to submit.
In the above case, we need the following different handling for the 3
ranges:
- [0, 4K) needs to be submitted for regular write
A single sector cannot be compressed.
- [16K, 32K) needs to be submitted for compressed write
- [48K, 52K) needs to be submitted for regular write.
Above, if we try to submit [16K, 32K) for compressed write, we will
return 1 and immediately, and without submitting the remaining
[48K, 52K) range.
Furthermore, since extent_writepage() will exit without unlocking any
sectors, the submitted range [0, 4K) will not have sector unlocked.
That's the reason why for now subpage is only allowed for full page
range.
[ENHANCEMENT]
- Introduce a submission bitmap at btrfs_bio_ctrl::submit_bitmap
This records which sectors will be submitted by extent_writepage_io().
This allows us to track which sectors needs to be submitted thus later
to be properly unlocked.
For asynchronously submitted range (inline/compression), the
corresponding bits will be cleared from that bitmap.
- Only return 1 if no sector needs to be submitted in
writepage_delalloc()
- Only submit sectors marked by submission bitmap inside
extent_writepage_io()
So we won't touch the asynchronously submitted part.
- Introduce btrfs_folio_end_writer_lock_bitmap() helper
This will only unlock the involved sectors specified by @bitmap
parameter, to avoid touching the range asynchronously submitted.
Please note that, since subpage compression is still limited to page
aligned range, this change is only a preparation for future sector
perfect compression support for subpage.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_folio_unlock_writer() is already calling
btrfs_folio_end_writer_lock() to do the heavy lifting work, the only
missing 0 writer check.
Thus there is no need to keep two different functions, move the 0 writer
check into btrfs_folio_end_writer_lock(), and remove
btrfs_folio_unlock_writer().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All cleanup paths lead to btrfs_path_free so path can be defined with
the automatic freeing callback in the following functions:
- btrfs_insert_orphan_item()
- btrfs_del_orphan_item()
Signed-off-by: Leo Martins <loemra.dev@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All cleanup paths lead to btrfs_path_free so path can be defined with
the automatic freeing callback in the following functions:
- calculate_emulated_zone_size()
- calculate_alloc_pointer()
Signed-off-by: Leo Martins <loemra.dev@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a DEFINE_FREE for struct btrfs_path. This defines a function that
can be called using the __free attribute. Define a macro
BTRFS_PATH_AUTO_FREE to make the declaration of an auto freeing path
very clear.
The intended use is to define the auto free of path in cases where the
path is allocated somewhere at the beginning and freed either on all
error paths or at the end of the function.
int func() {
BTRFS_PATH_AUTO_FREE(path);
if (...)
return -ERROR;
path = alloc_path();
...
if (...)
return -ERROR;
...
return 0;
}
Signed-off-by: Leo Martins <loemra.dev@gmail.com>
[ update changelog ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_folio_end_all_writers() is only utilized in
extent_writepage() as a way to unlock all subpage range (for both
successful submission and error handling).
Meanwhile we have a similar function, btrfs_folio_end_writer_lock().
The difference is, btrfs_folio_end_writer_lock() expects a range that is
a subset of the already locked range.
This limit on btrfs_folio_end_writer_lock() is a little overkilled,
preventing it from being utilized for error paths.
So here we enhance btrfs_folio_end_writer_lock() to accept a superset of
the locked range, and only end the locked subset.
This means we can replace btrfs_folio_end_all_writers() with
btrfs_folio_end_writer_lock() instead.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Continue adding const to parameters. This is for clarity and minor
addition to safety. There are some minor effects, in the assembly code
and .ko measured on release config.
Signed-off-by: David Sterba <dsterba@suse.com>
Currently BTRFS_I is a static inline function that takes a const inode
and returns btrfs inode, dropping the 'const' qualifier. This can break
assumptions of compiler though it seems there's no real case.
To make the parameter and return type consistent regardint const we can
use the container_of_const() that preserves it. However this would not
check the parameter type. To fix that use the same _Generic construct
but implement only the two expected types.
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few places that check if we have the inode locked by doing:
ASSERT(inode_is_locked(vfs_inode));
This actually proved to be useful several times as if assertions are
enabled (and by default they are in many distros) it immediately triggers
a crash which is impossible for users to miss.
However that doesn't check if the lock is held by the calling task, so
the check passes if some other task locked the inode.
Using one of the lockdep functions to check the lock is held, like
lockdep_assert_held() for example, does check that the calling task
holds the lock, and if that's not the case it produces a warning and
stack trace in dmesg. However, despite the misleading "assert" in the
name of the lockdep helpers, it does not trigger a crash/BUG_ON(), just
a warning and splat in dmesg, which is easy to get unnoticed by users
who may have lockdep enabled.
So add a helper that does the ASSERT() and calls lockdep_assert_held()
immediately after and use it every where we check the inode is locked.
Like this if the lock is held by some other task we get the warning
in dmesg which is caught by fstests, very helpful during development,
and may also be occassionaly noticed by users with lockdep enabled.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Even in case of failure we could've discarded some data and userspace
should be made aware of it, so copy fstrim_range to userspace
regardless.
Also make sure to update the trimmed bytes amount even if
btrfs_trim_free_extents fails.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Luca Stefani <luca.stefani.ge1@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover find_or_create_page() is compatible API, and it can
replaced with __filemap_get_folio(). Some interfaces have been converted
to use folio before, so the conversion operation from page can be
eliminated here.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Based on the previous patch, the compression path can be
directly used in folio without converting to page.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And page_to_inode() can be replaced with folio_to_inode() now.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover, use folio_pos() instead of page_offset(),
which is more consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover, use folio_pos() instead of page_offset(),
which is more consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover, use kmap_local_folio() instead of kmap_local_page(),
which is more consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And use folio_pos instead of page_offset, which is more
consistent with folio usage. At the same time, folio_test_private() can
handle folio directly without converting from page to folio first.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Use folio_pos instead of page_offset, which is more
consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Now clear_page_extent_mapped() can deal with a folio
directly, so change its name to clear_folio_extent_mapped().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs compression path is not really subpage compatible, every
thing is still done in page unit.
That's fine for regular sector size and subpage routine. As even for
subpage routine compression is only enabled if the whole range is page
aligned, so reading the page cache in page unit is totally fine.
However in preparation for the future subpage perfect compression
support, we need to change the compression routine to properly handle a
subpage range.
This patch would prepare both zlib and zstd to only read the subpage
range for compression.
Lzo is already doing subpage aware read, as lzo's on-disk format is
already sectorsize dependent.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are only two differences between the two functions:
- btrfs_orig_bbio_end_io() does extra error propagation
This is mostly to allow tolerance for write errors.
- btrfs_orig_bbio_end_io() does extra pending_ios check
This check can handle both the original bio, or the cloned one.
(All accounting happens in the original one).
This makes btrfs_orig_bbio_end_io() a much safer call.
In fact we already had a double freeing error due to usage of
btrfs_bio_end_io() in the error path of btrfs_submit_chunk().
So just move the whole content of btrfs_orig_bbio_end_io() into
btrfs_bio_end_io().
For normal paths this brings no change, because they are already calling
btrfs_orig_bbio_end_io() in the first place.
For error paths (not only inside bio.c but also external callers), this
change will introduce extra checks, especially for external callers, as
they will error out without submitting the btrfs bio.
But considering it's already in the error path, such slower but much
safer checks are still an overall win.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Historically we've held the extent lock throughout the entire read.
There's been a few reasons for this, but it's mostly just caused us
problems. For example, this prevents us from allowing page faults
during direct io reads, because we could deadlock. This has forced us
to only allow 4k reads at a time for io_uring NOWAIT requests because we
have no idea if we'll be forced to page fault and thus have to do a
whole lot of work.
On the buffered side we are protected by the page lock, as long as we're
reading things like buffered writes, punch hole, and even direct IO to a
certain degree will get hung up on the page lock while the page is in
flight.
On the direct side we have the dio extent lock, which acts much like the
way the extent lock worked previously to this patch, however just for
direct reads. This protects direct reads from concurrent direct writes,
while we're protected from buffered writes via the inode lock.
Now that we're protected in all cases, narrow the extent lock to the
part where we're getting the extent map to submit the reads, no longer
holding the extent lock for the entire read operation. Push the extent
lock down into do_readpage() so that we're only grabbing it when looking
up the extent map. This portion was contributed by Goldwyn.
Co-developed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we hold the extent lock for the entire duration of a read.
This isn't really necessary in the buffered case, we're protected by the
page lock, however it's necessary for O_DIRECT.
For O_DIRECT reads, if we only locked the extent for the part where we
get the extent, we could potentially race with an O_DIRECT write in the
same region. This isn't really a problem, unless the read is delayed so
much that the write does the COW, unpins the old extent, and some other
application re-allocates the extent before the read is actually able to
be submitted. At that point at best we'd have a checksum mismatch, but
at worse we could read data that doesn't belong to us.
To address this potential race we need to make sure we don't have
overlapping, concurrent direct io reads and writes.
To accomplish this use the new EXTENT_DIO_LOCKED bit in the direct IO
case in the same spot as the current extent lock. The writes will take
this while they're creating the ordered extent, which is also used to
make sure concurrent buffered reads or concurrent direct reads are not
allowed to occur, and drop it after the ordered extent is taken. For
reads it will act as the current read behavior for the EXTENT_LOCKED
bit, we set it when we're starting the read, we clear it in the end_io
to allow other direct writes to continue.
This still has the drawback of disallowing concurrent overlapping direct
reads from occurring, but that exists with the current extent locking.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to support dropping the extent lock during a read we need a way
to make sure that direct reads and direct writes for overlapping ranges
are protected from each other. To accomplish this introduce another
lock bit specifically for direct io. Subsequent patches will utilize
this to protect direct IO operations.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Defrag ioctl passes readahead from the file, but autodefrag does not
have a file so the readahead state is allocated when needed.
The autodefrag loop in cleaner thread iterates over inodes so we can
simply provide an on-stack readahead state and will not need to allocate
it in btrfs_defrag_file(). The size is 32 bytes which is acceptable.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's only one caller inode_should_defrag() that passes NULL to
btrfs_add_inode_defrag() so we can drop it an simplify the code.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The potential memory allocation failure is not a fatal error, skipping
autodefrag is fine and the caller inode_should_defrag() does not care
about the errors. Further writes can attempt to add the inode back to
the defragmentation list again.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_cleanup_defrag_inodes() is not called frequently, only in remount
or unmount, but the way it frees the inodes in fs_info->defrag_inodes
is inefficient. Each time it needs to locate first node, remove it,
potentially rebalance tree until it's done. This allows to do a
conditional reschedule.
For cleanups the rbtree_postorder_for_each_entry_safe() iterator is
convenient but we can't reschedule and restart iteration because some of
the tree nodes would be already freed.
The cleanup operation is kmem_cache_free() which will likely take the
fast path for most objects so rescheduling should not be necessary.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function does not follow the pattern where the underscores would be
justified, so rename it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function does not follow the pattern where the underscores would be
justified, so rename it.
Also update the misleading comment, the passed item is not freed, that's
what the caller does.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function does not follow the pattern where the underscores would be
justified, so rename it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A comparator function does not change its parameters, make them const.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function does not follow the pattern where the underscores would be
justified, so rename it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function does not follow the pattern where the underscores would be
justified, so rename it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previous patch freed the function name btrfs_submit_bio() so we can use
it for a helper that submits struct bio.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function name is a bit misleading as it submits the btrfs_bio
(bbio), rename it so we can use btrfs_submit_bio() when an actual bio is
submitted.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member btrfs_fs_info::subpage_info stores the cached bitmap start
position inside the merged bitmap.
However in reality there is only one thing depending on the sectorsize,
bitmap_nr_bits, which records the number of sectors that fit inside a
page.
The sequence of sub-bitmaps have fixed order, thus it's just a quick
multiplication to calculate the start position of each sub-bitmaps.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter @nr_ret is used to tell the caller how many sectors have
been submitted for IO.
Then callers check @nr_ret value to determine if we need to manually
clear the PAGECACHE_TAG_DIRTY, as if we submitted no sector (e.g. all
sectors are beyond i_size) there is no folio_start_writeback() called thus
PAGECACHE_TAG_DIRTY tag will not be cleared.
Remove this parameter by:
- Moving the btrfs_folio_clear_writeback() call into
__extent_writepage_io()
So that if we didn't submit any IO, then manually call
btrfs_folio_set_writeback() to clear PAGECACHE_TAG_DIRTY when
the page is no longer dirty.
- Use a bool to record if we have submitted any sector
Instead of an int.
- Use subpage compatible helpers to end folio writeback.
This brings no change to the behavior, just for the sake of consistency.
As for the call site inside __extent_writepage(), we're always called
for the whole page, so the existing full page helper
folio_(start|end)_writeback() is totally fine.
For the call site inside extent_write_locked_range(), although we can
have subpage range, folio_start_writeback() will only clear
PAGECACHE_TAG_DIRTY if the page is no longer dirty, and the full folio
will still be dirty if there is any subpage dirty range.
Only when the last dirty subpage sector is cleared, the
folio_start_writeback() will clear PAGECACHE_TAG_DIRTY.
So no matter if we call the full page or subpage helper, the result
is still the same, then just use the subpage helpers for consistency.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix a few obvious grammar mistakes: a -> an, then -> than.
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use xarray to track dirty extents to reduce the size of the struct
btrfs_qgroup_extent_record from 64 bytes to 40 bytes. The xarray is
more cache line friendly, it also reduces the complexity of insertion
and search code compared to rb tree.
Another change introduced is about error handling. Before this patch,
the result of btrfs_qgroup_trace_extent_nolock() is always a success. In
this patch, because of this function calls the function xa_store() which
has the possibility to fail, so mark qgroup as inconsistent if error
happened and then free preallocated memory. Also we preallocate memory
before spin_lock(), if memory preallcation failed, error handling is the
same the existing code.
Suggested-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Junchao Sun <sunjunchao2870@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Clean up resources using goto to get rid of repeated code.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Junchao Sun <sunjunchao2870@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike the bitmap usage inside raid56, for __extent_writepage_io() we
handle the subpage submission not sector-by-sector, but for each dirty
range we found.
This is not a big deal normally, as the subpage complex code is already
mostly optimized out by the compiler for x86_64.
However for the sake of consistency and for the future of subpage
sector-perfect compression support, this patch does:
- Extract the sector submission code into submit_one_sector()
- Add the needed code to extract the dirty bitmap for subpage case
There is a small pitfall for non-subpage case, as we cleared page
dirty before starting writeback, so we have to manually set
the default dirty_bitmap to 1 for such case.
- Use bitmap_and() to calculate the target sectors we need to submit
This is done for both subpage and non-subpage cases, and will later
be expanded to skip inline/compression ranges.
For x86_64, the dirty bitmap will be fixed to 1, with the length of 1,
so we're still doing the same workload per sector.
For larger page sizes, the overhead will be a little larger, as previous
we only need to do one extent_map lookup per-dirty-range, but now it
will be one extent_map lookup per-sector.
But that is the same frequency as x86_64, so we're just aligning the
behavior to x86_64.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In commit 75258f20fb ("btrfs: subpage: dump extra subpage bitmaps for
debug") an internal macro GET_SUBPAGE_BITMAP() is introduced to grab the
bitmap of each attribute.
But that commit is using bitmap_cut() which will do the left shift of
the larger bitmap, causing incorrect values.
Thankfully this bitmap_cut() is only called for debug usage, and so far
it's not yet causing problem.
Fix it to use bitmap_read() to only grab the desired sub-bitmap.
Fixes: 75258f20fb ("btrfs: subpage: dump extra subpage bitmaps for debug")
CC: stable@vger.kernel.org # 6.6+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we're calling btrfs_num_copies() before btrfs_get_chunk_map() in
btrfs_map_block(). But btrfs_num_copies() itself does a chunk map lookup
to be able to calculate the number of copies.
So split out the code getting the number of copies from btrfs_num_copies()
into a helper called btrfs_chunk_map_num_copies() and directly call it
from btrfs_map_block() and btrfs_num_copies().
This saves us one rbtree lookup per btrfs_map_block() invocation.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The BTRFS_IOC_SYNC ioctl wants to wake up the cleaner kthread so that it
does any pending work (subvolume deletion, delayed iputs, etc), however
it is waking up the transaction kthread, which in turn wakes up the
cleaner. Since we don't have any transaction to commit, as any ongoing
transaction was already committed when it called btrfs_sync_fs() and
the goal is just to wake up the cleaner thread, directly wake up the
cleaner instead of the transaction kthread.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs only supports sectorsize 4K, 8K, 16K, 32K, 64K for now, thus for
systems with 4K page size, there is no way the fs is subpage (sectorsize
< PAGE_SIZE).
So here we define btrfs_is_subpage() different according to the
PAGE_SIZE:
- PAGE_SIZE > 4K
We may hit real subpage cases, define btrfs_is_subpage() as a regular
function and do the usual checks.
- PAGE_SIZE == 4K (no smaller PAGE_SIZE support AFAIK)
There is no way the fs is subpage, so just define btrfs_is_subpage()
as an inline function which always return false.
This saves about 7K bytes for x86_64 debug builds:
text data bss dec hex filename
Before: 1484452 168693 25776 1678921 199e49 fs/btrfs/btrfs.ko
After: 1476605 168445 25776 1670826 197eaa fs/btrfs/btrfs.ko
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that RAID stripe-tree lookup failures are not treated as a fatal issue
any more, change the RAID stripe-tree lookup error message to debug level.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Set rst_search_commit_root in the btrfs_io_stripe we're passing to
btrfs_map_block() in case we're doing data relocation.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename 'btrfs_io_stripe::is_scrub' to 'rst_search_commit_root'. While
'is_scrub' describes the state of the io_stripe (it is a stripe submitted
by scrub) it does not describe the purpose, namely looking at the commit
root when searching RAID stripe-tree entries.
Renaming the stripe to rst_search_commit_root describes this purpose.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This just creates unnecessary noise and doesn't provide any insights into
debugging RAID stripe-tree related issues.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a comment to document the complicated locked_page unlock logic in
cow_file_range_inline. The specifically tricky part is that a caller
just up the stack converts ret == 0 to ret == 1 and then another
caller far up the callstack handles ret == 1 as a success, AND returns
without cleanup in that case, both of which "feel" unnatural and led to
the original bug.
Try to document that somewhat specific callstack logic here to explain
the weird un-setting of locked_folio on success.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
When iterating the chunk maps when a device replace finishes we are doing
a full rbtree search for each chunk map, which is not the most efficient
thing to do, wasting CPU time. As we are holding a write lock on the tree
during the whole iteration, we can simply start from the first node in the
tree and then move to the next chunk map by doing a rb_next() call - the
only exception is when we need to reschedule, in which case we have to do
a full rbtree search since we dropped the write lock and the tree may have
changed (chunk maps may have been removed and the tree got rebalanced).
So just do that.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At the end of a device replace we must go over all the chunk maps and
update their stripes to point to the target device instead of the source
device. We iterate over the chunk maps while holding a write lock and
we never reschedule, which can result in monopolizing a CPU for too long
and blocking readers for too long (it's a rw lock, non-blocking).
So improve on this by rescheduling if necessary. This is safe because at
this point we are holding the chunk mutex, which means no new chunks can
be allocated and therefore we don't risk missing a new chunk map that
covers a range behind the last one we processed before rescheduling.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of getting a page and using that to clear dirty for io, use the
folio helper and use the appropriate folio functions.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only use a page to copy in the data for the inline extent. Use a
folio for this instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We already use a lot of functions here that use folios, update the
function to use __filemap_get_folio instead of find_get_page and then
use the folio directly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently this already uses a folio for most things, update it to take a
folio and update all the page usage with the corresponding folio usage.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We already use a folio some in this function, replace all page usage
with the folio and update the function to take the folio as an argument.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_get_extent takes a folio, update __get_extent_map to
take a folio as well.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only pass this into read_inline_extent, change it to take a folio and
update the callers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using a page, use a folio instead, take a folio as an
argument, and update the callers appropriately.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update uncompress_inline to take a folio and update it's usage
accordingly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now the fixup creator and consumer use folios, change this to use a
folio as well.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of a page, use a folio for btrfs_writepage_cow_fixup. We
already have a folio at the only caller, and the fixup worker uses
folios.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function heavily messes with pages, instead update it to use a
folio.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This mostly uses folios already, update it to take a folio and update
the rest of the function to use the folio instead of the page.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of passing in the page for ->locked_page, make it hold a
locked_folio and then update the users of async_chunk to act
accordingly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that every function that btrfs_run_delalloc_range calls takes a
folio, update it to take a folio and update the callers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This just passes the page into the compressed machinery to keep track of
the locked page. Update this to take a folio and convert it to a page
where appropriate.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that btrfs_cleanup_ordered_extents is operating mostly with folios,
update it to use a folio instead of a page, and the update the function
and the callers as appropriate.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We walk through pages in this function and clear ordered, and the
function for this uses folios. Update the function to use a folio for
this whole operation.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now all of the functions that use locked_page in run_delalloc_nocow take
a folio, update it to take a folio and update the caller.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With this we can pass the folio directly into cow_file_range().
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Convert this to take a folio and pass it into all of the various cleanup
functions. Update the callers to pass in a folio instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we want the folio in this function, convert it to take a folio
directly and use that.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We pass the folio into extent_write_locked_range, go ahead and take a
folio to pass along, and update the callers to pass in a folio.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This mostly uses folios, convert it to take a folio instead and update
the callers to pass in the folio.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of taking the locked page, take the locked folio so we can pass
that into __process_folios_contig.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that this mostly uses folios, update it to take folios, use the
folios that are passed in, and rename from process_one_page =>
process_one_folio.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This operates mostly on folios, update it to take a folio for the locked
folio instead of the page, rename from __process_pages_contig =>
__process_folios_contig.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All of the callers have a folio at this point, update
__unlock_for_delalloc to take a folio so that it's consistent with its
callers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Also rename lock_delalloc_pages => lock_delalloc_folios in the process,
now that it exclusively works on folios.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of passing in a page for locked_page, pass in the folio instead.
We only use the folio itself to validate some range assumptions, and
then pass it into other functions.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We already use a folio heavily in this function, pass the folio in
directly and use it everywhere, only passing the page down to functions
that do not take a folio yet.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only need a folio now, make it take a folio as an argument and update
all of the callers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The callers and callee's of this now all use folios, update it to take a
folio as well.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass in a folio instead, and use a folio instead of a page.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We already have a folio that we're using in btrfs_page_mkwrite, update
the rest of the function to use folio everywhere else. This will make
it easier on Willy when he drops page->index.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Willy is going to get rid of page->index, and add_ra_bio_pages uses
page->index. Make his life easier by converting add_ra_bio_pages to use
folios so that we are no longer using page->index.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we've gotten most of the helpers updated to only take a folio,
update __extent_writepage to only deal in folios.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using pages for everything, find a folio and use that. This
makes things a bit cleaner as a lot of the functions calls here all take
folios.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__extent_writepage_io uses page everywhere, but a lot of these functions
take a folio. Convert it to use the folio based helpers, and then
change it to take a folio as an argument and update its callers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Willy is wanting to get rid of page->index, convert the writepage
tracepoint to take a folio so we can do folio->index instead of
page->index.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the callers and helpers mostly use folio, convert
btrfs_do_readpage to take a folio, and rename it to btrfs_do_read_folio.
Update all of the page stuff to use the folio based helpers instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The callers of this helper are going to be converted to using a folio,
so adjust submit_extent_page to become submit_extent_folio and update it
to use all the relevant folio helpers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This already uses a folio internally, change it to take a folio as an
argument instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have this helper function to set the page range uptodate once we're
done reading it, as well as run fsverity against it. Half of these
functions already take a folio, just rename this to end_folio_read and
then rework it to take a folio instead, and update everything
accordingly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we're using the page for everything here. Convert this to use
the folio helpers instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're the only user of readahead_page_batch(). Convert
btrfs_readahead() to use the folio based helpers to do readahead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[ENHANCEMENT]
When mounting a btrfs filesystem, the filesystem opens the block device,
and if this fails, there is no message about it. Print a message about
it to help debugging.
[TEST]
I have a btrfs filesystem on three block devices, one of which is
write-protected, so regular mounts fail, but there is no message in
dmesg.
/dev/vdb normal
/dev/vdc write protected
/dev/vdd normal
Before patch:
$ sudo mount /dev/vdb /mnt/
mount: mount(2) failed: no such file or directory
$ sudo dmesg # Show only messages about missing block devices
....
[ 352.947196] BTRFS error (device vdb): devid 2 uuid 4ee2c625-a3b2-4fe0-b411-756b23e08533 missing
....
After patch:
$ sudo mount /dev/vdb /mnt/
mount: mount(2) failed: no such file or directory
$ sudo dmesg # Show bdev_file_open_by_path failed.
....
[ 352.944328] BTRFS error: failed to open device for path /dev/vdc with flags 0x3: -13
[ 352.947196] BTRFS error (device vdb): missing devid 2 uuid 4ee2c625-a3b2-4fe0-b411-756b23e08533
....
Signed-off-by: Li Zhang <zhanglikernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Functions btrfs_uuid_scan_kthread() and btrfs_create_uuid_tree() are for
UUID tree rescan and creation, it's not suitable for volumes.[ch].
Move them to uuid-tree.[ch] instead.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At extent_map_block_end() we are calling the inline functions
extent_map_block_start() and extent_map_block_len() multiple times, which
results in expanding their code multiple times, increasing the compiled
code size and repeating the computations those functions do.
Improve this by caching their results in local variables.
The size of the module before this change:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1755770 163800 16920 1936490 1d8c6a fs/btrfs/btrfs.ko
And after this change:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1755656 163800 16920 1936376 1d8bf8 fs/btrfs/btrfs.ko
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_delete_raid_extent() was written under the assumption, that it's
call-chain always passes a start, length tuple that matches a single
extent. But btrfs_delete_raid_extent() is called by
do_free_extent_accounting() which in turn is called by
__btrfs_free_extent().
But this call-chain passes in a start address and a length that can
possibly match multiple on-disk extents.
To make this possible, we have to adjust the start and length of each
btree node lookup, to not delete beyond the requested range.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update a stripe extent in case of an already existing logical address,
but with different physical addresses and/or device id instead of
bailing out with EEXIST.
This can happen i.e. in case of a device replace operation, where data
extents get rewritten to a new disk.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:
1) Attempt a fsync without holding the inode's lock, triggering an
assertion failures when assertions are enabled;
2) Do an invalid memory access from the fsync task because the file private
points to memory allocated on stack by the direct IO task and it may be
used by the fsync task after the stack was destroyed.
The race happens like this:
1) A user space program opens a file descriptor with O_DIRECT;
2) The program spawns 2 threads using libpthread for example;
3) One of the threads uses the file descriptor to do direct IO writes,
while the other calls fsync using the same file descriptor.
4) Call task A the thread doing direct IO writes and task B the thread
doing fsyncs;
5) Task A does a direct IO write, and at btrfs_direct_write() sets the
file's private to an on stack allocated private with the member
'fsync_skip_inode_lock' set to true;
6) Task B enters btrfs_sync_file() and sees that there's a private
structure associated to the file which has 'fsync_skip_inode_lock' set
to true, so it skips locking the inode's VFS lock;
7) Task A completes the direct IO write, and resets the file's private to
NULL since it had no prior private and our private was stack allocated.
Then it unlocks the inode's VFS lock;
8) Task B enters btrfs_get_ordered_extents_for_logging(), then the
assertion that checks the inode's VFS lock is held fails, since task B
never locked it and task A has already unlocked it.
The stack trace produced is the following:
assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
------------[ cut here ]------------
kernel BUG at fs/btrfs/ordered-data.c:983!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
Code: 50 d6 86 c0 e8 (...)
RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x24
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? exc_invalid_op+0x50/0x70
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? asm_exc_invalid_op+0x1a/0x20
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? __seccomp_filter+0x31d/0x4f0
__x64_sys_fdatasync+0x4f/0x90
do_syscall_64+0x82/0x160
? do_futex+0xcb/0x190
? __x64_sys_futex+0x10e/0x1d0
? switch_fpu_return+0x4f/0xd0
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Another problem here is if task B grabs the private pointer and then uses
it after task A has finished, since the private was allocated in the stack
of task A, it results in some invalid memory access with a hard to predict
result.
This issue, triggering the assertion, was observed with QEMU workloads by
two users in the Link tags below.
Fix this by not relying on a file's private to pass information to fsync
that it should skip locking the inode and instead pass this information
through a special value stored in current->journal_info. This is safe
because in the relevant section of the direct IO write path we are not
holding a transaction handle, so current->journal_info is NULL.
The following C program triggers the issue:
$ cat repro.c
/* Get the O_DIRECT definition. */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
static int fd;
static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset)
{
while (count > 0) {
ssize_t ret;
ret = pwrite(fd, buf, count, offset);
if (ret < 0) {
if (errno == EINTR)
continue;
return ret;
}
count -= ret;
buf += ret;
}
return 0;
}
static void *fsync_loop(void *arg)
{
while (1) {
int ret;
ret = fsync(fd);
if (ret != 0) {
perror("Fsync failed");
exit(6);
}
}
}
int main(int argc, char *argv[])
{
long pagesize;
void *write_buf;
pthread_t fsyncer;
int ret;
if (argc != 2) {
fprintf(stderr, "Use: %s <file path>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666);
if (fd == -1) {
perror("Failed to open/create file");
return 1;
}
pagesize = sysconf(_SC_PAGE_SIZE);
if (pagesize == -1) {
perror("Failed to get page size");
return 2;
}
ret = posix_memalign(&write_buf, pagesize, pagesize);
if (ret) {
perror("Failed to allocate buffer");
return 3;
}
ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to create writer thread: %d\n", ret);
return 4;
}
while (1) {
ret = do_write(fd, write_buf, pagesize, 0);
if (ret != 0) {
perror("Write failed");
exit(5);
}
}
return 0;
}
$ mkfs.btrfs -f /dev/sdi
$ mount /dev/sdi /mnt/sdi
$ timeout 10 ./repro /mnt/sdi/foo
Usually the race is triggered within less than 1 second. A test case for
fstests will follow soon.
Reported-by: Paulo Dias <paulo.miguel.dias@gmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219187
Reported-by: Andreas Jahn <jahn-andi@web.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219199
Reported-by: syzbot+4704b3cc972bd76024f1@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000044ff540620d7dee2@google.com/
Fixes: 939b656bc8 ("btrfs: fix corruption after buffer fault in during direct IO append write")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs rejects to mount a FS if it finds a block group with a broken write
pointer (e.g, unequal write pointers on two zones of RAID1 block group).
Since such case can happen easily with a power-loss or crash of a system,
we need to handle the case more gently.
Handle such block group by making it unallocatable, so that there will be
no writes into it. That can be done by setting the allocation pointer at
the end of allocating region (= block_group->zone_capacity). Then, existing
code handle zone_unusable properly.
Having proper zone_capacity is necessary for the change. So, set it as fast
as possible.
We cannot handle RAID0 and RAID10 case like this. But, they are anyway
unable to read because of a missing stripe.
Fixes: 265f7237dd ("btrfs: zoned: allow DUP on meta-data block groups")
Fixes: 568220fa96 ("btrfs: zoned: support RAID0/1/10 on top of raid stripe tree")
CC: stable@vger.kernel.org # 6.1+
Reported-by: HAN Yuwei <hrx@bupt.moe>
Cc: Xuefer <xuefer@gmail.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The local extent changeset is passed to clear_record_extent_bits() where
it may have some additional memory dynamically allocated for ulist. When
qgroup is disabled, the memory is leaked because in this case the
changeset is not released upon __btrfs_qgroup_release_data() return.
Since the recorded contents of the changeset are not used thereafter, just
don't pass it.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
Reported-by: syzbot+81670362c283f3dd889c@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/lkml/000000000000aa8c0c060ade165e@google.com
Fixes: af0e2aab3b ("btrfs: qgroup: flush reservations during quota disable")
CC: stable@vger.kernel.org # 6.10+
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: David Sterba <dsterba@suse.com>
The current setup with bio_may_exceed_limit and __bio_split_to_limits
is a bit of a mess.
Change it so that __bio_split_to_limits does all the work and is just
a variant of bio_split_to_limits that returns nr_segs. This is done
by inlining it and instead have the various bio_split_* helpers directly
submit the potentially split bios.
To support btrfs, the rw version has a lower level helper split out
that just returns the offset to split. This turns out to nicely clean
up the btrfs flow as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Tested-by: Hans Holmberg <hans.holmberg@wdc.com>
Reviewed-by: Hans Holmberg <hans.holmberg@wdc.com>
Link: https://lore.kernel.org/r/20240826173820.1690925-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The return variable 'ret' at btrfs_reclaim_sweep() is never assigned if
none of the space infos is reclaimable (for example if periodic reclaim
is disabled, which is the default), so we return an undefined value.
This can be fixed my making btrfs_reclaim_sweep() not return any value
as well as do_reclaim_sweep() because:
1) do_reclaim_sweep() always returns 0, so we can make it return void;
2) The only caller of btrfs_reclaim_sweep() (btrfs_reclaim_bgs()) doesn't
care about its return value, and in its context there's nothing to do
about any errors anyway.
Therefore remove the return value from btrfs_reclaim_sweep() and
do_reclaim_sweep().
Fixes: e4ca3932ae ("btrfs: periodic block_group reclaim")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is an internal report that KASAN is reporting use-after-free, with
the following backtrace:
BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs]
Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45
CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
Call Trace:
dump_stack_lvl+0x61/0x80
print_address_description.constprop.0+0x5e/0x2f0
print_report+0x118/0x216
kasan_report+0x11d/0x1f0
btrfs_check_read_bio+0xa68/0xb70 [btrfs]
process_one_work+0xce0/0x12a0
worker_thread+0x717/0x1250
kthread+0x2e3/0x3c0
ret_from_fork+0x2d/0x70
ret_from_fork_asm+0x11/0x20
Allocated by task 20917:
kasan_save_stack+0x37/0x60
kasan_save_track+0x10/0x30
__kasan_slab_alloc+0x7d/0x80
kmem_cache_alloc_noprof+0x16e/0x3e0
mempool_alloc_noprof+0x12e/0x310
bio_alloc_bioset+0x3f0/0x7a0
btrfs_bio_alloc+0x2e/0x50 [btrfs]
submit_extent_page+0x4d1/0xdb0 [btrfs]
btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
btrfs_readahead+0x29a/0x430 [btrfs]
read_pages+0x1a7/0xc60
page_cache_ra_unbounded+0x2ad/0x560
filemap_get_pages+0x629/0xa20
filemap_read+0x335/0xbf0
vfs_read+0x790/0xcb0
ksys_read+0xfd/0x1d0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 20917:
kasan_save_stack+0x37/0x60
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x4b/0x60
kmem_cache_free+0x214/0x5d0
bio_free+0xed/0x180
end_bbio_data_read+0x1cc/0x580 [btrfs]
btrfs_submit_chunk+0x98d/0x1880 [btrfs]
btrfs_submit_bio+0x33/0x70 [btrfs]
submit_one_bio+0xd4/0x130 [btrfs]
submit_extent_page+0x3ea/0xdb0 [btrfs]
btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
btrfs_readahead+0x29a/0x430 [btrfs]
read_pages+0x1a7/0xc60
page_cache_ra_unbounded+0x2ad/0x560
filemap_get_pages+0x629/0xa20
filemap_read+0x335/0xbf0
vfs_read+0x790/0xcb0
ksys_read+0xfd/0x1d0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[CAUSE]
Although I cannot reproduce the error, the report itself is good enough
to pin down the cause.
The call trace is the regular endio workqueue context, but the
free-by-task trace is showing that during btrfs_submit_chunk() we
already hit a critical error, and is calling btrfs_bio_end_io() to error
out. And the original endio function called bio_put() to free the whole
bio.
This means a double freeing thus causing use-after-free, e.g.:
1. Enter btrfs_submit_bio() with a read bio
The read bio length is 128K, crossing two 64K stripes.
2. The first run of btrfs_submit_chunk()
2.1 Call btrfs_map_block(), which returns 64K
2.2 Call btrfs_split_bio()
Now there are two bios, one referring to the first 64K, the other
referring to the second 64K.
2.3 The first half is submitted.
3. The second run of btrfs_submit_chunk()
3.1 Call btrfs_map_block(), which by somehow failed
Now we call btrfs_bio_end_io() to handle the error
3.2 btrfs_bio_end_io() calls the original endio function
Which is end_bbio_data_read(), and it calls bio_put() for the
original bio.
Now the original bio is freed.
4. The submitted first 64K bio finished
Now we call into btrfs_check_read_bio() and tries to advance the bio
iter.
But since the original bio (thus its iter) is already freed, we
trigger the above use-after free.
And even if the memory is not poisoned/corrupted, we will later call
the original endio function, causing a double freeing.
[FIX]
Instead of calling btrfs_bio_end_io(), call btrfs_orig_bbio_end_io(),
which has the extra check on split bios and do the proper refcounting
for cloned bios.
Furthermore there is already one extra btrfs_cleanup_bio() call, but
that is duplicated to btrfs_orig_bbio_end_io() call, so remove that
label completely.
Reported-by: David Sterba <dsterba@suse.com>
Fixes: 852eee62d3 ("btrfs: allow btrfs_submit_bio to split bios")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a warning (probably on some older compiler version):
fs/btrfs/fiemap.c: warning: 'last_extent_end' may be used uninitialized in this function [-Wmaybe-uninitialized]: => 822:19
Initialize the variable to 0 although it's not necessary as it's either
properly set or not used after an error. The called function is in the
same file so this is a false alert but we want to fix all
-Wmaybe-uninitialized reports.
Link: https://lore.kernel.org/all/20240819070639.2558629-1-geert@linux-m68k.org/
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: David Sterba <dsterba@suse.com>
We have transient failures with btrfs/301, specifically in the part
where we do
for i in $(seq 0 10); do
write 50m to file
rm -f file
done
Sometimes this will result in a transient quota error, and it's because
sometimes we start writeback on the file which results in a delayed
iput, and thus the rm doesn't actually clean the file up. When we're
flushing the quota space we need to run the delayed iputs to make sure
all the unlinks that we think have completed have actually completed.
This removes the small window where we could fail to find enough space
in our quota.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__btrfs_add_free_space_zoned() references and modifies bg's alloc_offset,
ro, and zone_unusable, but without taking the lock. It is mostly safe
because they monotonically increase (at least for now) and this function is
mostly called by a transaction commit, which is serialized by itself.
Still, taking the lock is a safer and correct option and I'm going to add a
change to reset zone_unusable while a block group is still alive. So, add
locking around the operations.
Fixes: 169e0da91a ("btrfs: zoned: track unusable bytes for zones")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[REPORT]
There is a corruption report that btrfs refused to mount a fs that has
overlapping dev extents:
BTRFS error (device sdc): dev extent devid 4 physical offset 14263979671552 overlap with previous dev extent end 14263980982272
BTRFS error (device sdc): failed to verify dev extents against chunks: -117
BTRFS error (device sdc): open_ctree failed
[CAUSE]
The direct cause is very obvious, there is a bad dev extent item with
incorrect length.
With btrfs check reporting two overlapping extents, the second one shows
some clue on the cause:
ERROR: dev extent devid 4 offset 14263979671552 len 6488064 overlap with previous dev extent end 14263980982272
ERROR: dev extent devid 13 offset 2257707008000 len 6488064 overlap with previous dev extent end 2257707270144
ERROR: errors found in extent allocation tree or chunk allocation
The second one looks like a bitflip happened during new chunk
allocation:
hex(2257707008000) = 0x20da9d30000
hex(2257707270144) = 0x20da9d70000
diff = 0x00000040000
So it looks like a bitflip happened during new dev extent allocation,
resulting the second overlap.
Currently we only do the dev-extent verification at mount time, but if the
corruption is caused by memory bitflip, we really want to catch it before
writing the corruption to the storage.
Furthermore the dev extent items has the following key definition:
(<device id> DEV_EXTENT <physical offset>)
Thus we can not just rely on the generic key order check to make sure
there is no overlapping.
[ENHANCEMENT]
Introduce dedicated dev extent checks, including:
- Fixed member checks
* chunk_tree should always be BTRFS_CHUNK_TREE_OBJECTID (3)
* chunk_objectid should always be
BTRFS_FIRST_CHUNK_CHUNK_TREE_OBJECTID (256)
- Alignment checks
* chunk_offset should be aligned to sectorsize
* length should be aligned to sectorsize
* key.offset should be aligned to sectorsize
- Overlap checks
If the previous key is also a dev-extent item, with the same
device id, make sure we do not overlap with the previous dev extent.
Reported: Stefan N <stefannnau@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+W5K0rSO3koYTo=nzxxTm1-Pdu1HYgVxEpgJ=aGc7d=E8mGEg@mail.gmail.com/
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlink changes the link count on the target inode. POSIX mandates that
the ctime must also change when this occurs.
According to https://pubs.opengroup.org/onlinepubs/9699919799/functions/unlink.html:
"Upon successful completion, unlink() shall mark for update the last data
modification and last file status change timestamps of the parent
directory. Also, if the file's link count is not 0, the last file status
change timestamp of the file shall be marked for update."
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add link to the opengroup docs ]
Signed-off-by: David Sterba <dsterba@suse.com>
Add the __counted_by compiler attribute to the flexible array member
name to improve access bounds-checking via CONFIG_UBSAN_BOUNDS and
CONFIG_FORTIFY_SOURCE.
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we a find that an extent is shared but its end offset is not sector
size aligned, then we don't clone it and issue write operations instead.
This is because the reflink (remap_file_range) operation does not allow
to clone unaligned ranges, except if the end offset of the range matches
the i_size of the source and destination files (and the start offset is
sector size aligned).
While this is not incorrect because send can only guarantee that a file
has the same data in the source and destination snapshots, it's not
optimal and generates confusion and surprising behaviour for users.
For example, running this test:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Use a file size not aligned to any possible sector size.
file_size=$((1 * 1024 * 1024 + 5)) # 1MB + 5 bytes
dd if=/dev/random of=$MNT/foo bs=$file_size count=1
cp --reflink=always $MNT/foo $MNT/bar
btrfs subvolume snapshot -r $MNT/ $MNT/snap
rm -f /tmp/send-test
btrfs send -f /tmp/send-test $MNT/snap
umount $MNT
mkfs.btrfs -f $DEV
mount $DEV $MNT
btrfs receive -vv -f /tmp/send-test $MNT
xfs_io -r -c "fiemap -v" $MNT/snap/bar
umount $MNT
Gives the following result:
(...)
mkfile o258-7-0
rename o258-7-0 -> bar
write bar - offset=0 length=49152
write bar - offset=49152 length=49152
write bar - offset=98304 length=49152
write bar - offset=147456 length=49152
write bar - offset=196608 length=49152
write bar - offset=245760 length=49152
write bar - offset=294912 length=49152
write bar - offset=344064 length=49152
write bar - offset=393216 length=49152
write bar - offset=442368 length=49152
write bar - offset=491520 length=49152
write bar - offset=540672 length=49152
write bar - offset=589824 length=49152
write bar - offset=638976 length=49152
write bar - offset=688128 length=49152
write bar - offset=737280 length=49152
write bar - offset=786432 length=49152
write bar - offset=835584 length=49152
write bar - offset=884736 length=49152
write bar - offset=933888 length=49152
write bar - offset=983040 length=49152
write bar - offset=1032192 length=16389
chown bar - uid=0, gid=0
chmod bar - mode=0644
utimes bar
utimes
BTRFS_IOC_SET_RECEIVED_SUBVOL uuid=06d640da-9ca1-604c-b87c-3375175a8eb3, stransid=7
/mnt/sdi/snap/bar:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..2055]: 26624..28679 2056 0x1
There's no clone operation to clone extents from the file foo into file
bar and fiemap confirms there's no shared flag (0x2000).
So update send_write_or_clone() so that it proceeds with cloning if the
source and destination ranges end at the i_size of the respective files.
After this changes the result of the test is:
(...)
mkfile o258-7-0
rename o258-7-0 -> bar
clone bar - source=foo source offset=0 offset=0 length=1048581
chown bar - uid=0, gid=0
chmod bar - mode=0644
utimes bar
utimes
BTRFS_IOC_SET_RECEIVED_SUBVOL uuid=582420f3-ea7d-564e-bbe5-ce440d622190, stransid=7
/mnt/sdi/snap/bar:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..2055]: 26624..28679 2056 0x2001
A test case for fstests will also follow up soon.
Link: https://github.com/kdave/btrfs-progs/issues/572#issuecomment-2282841416
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the extent map shrinker can be run by any task when attempting
to allocate memory and there's enough memory pressure to trigger it.
To avoid too much latency we stop iterating over extent maps and removing
them once the task needs to reschedule. This logic was introduced in commit
b3ebb9b7e9 ("btrfs: stop extent map shrinker if reschedule is needed").
While that solved high latency problems for some use cases, it's still
not enough because with a too high number of tasks entering the extent map
shrinker code, either due to memory allocations or because they are a
kswapd task, we end up having a very high level of contention on some
spin locks, namely:
1) The fs_info->fs_roots_radix_lock spin lock, which we need to find
roots to iterate over their inodes;
2) The spin lock of the xarray used to track open inodes for a root
(struct btrfs_root::inodes) - on 6.10 kernels and below, it used to
be a red black tree and the spin lock was root->inode_lock;
3) The fs_info->delayed_iput_lock spin lock since the shrinker adds
delayed iputs (calls btrfs_add_delayed_iput()).
Instead of allowing the extent map shrinker to be run by any task, make
it run only by kswapd tasks. This still solves the problem of running
into OOM situations due to an unbounded extent map creation, which is
simple to trigger by direct IO writes, as described in the changelog
of commit 956a17d9d0 ("btrfs: add a shrinker for extent maps"), and
by a similar case when doing buffered IO on files with a very large
number of holes (keeping the file open and creating many holes, whose
extent maps are only released when the file is closed).
Reported-by: kzd <kzd@56709.net>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219121
Reported-by: Octavia Togami <octavia.togami@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAHPNGSSt-a4ZZWrtJdVyYnJFscFjP9S7rMcvEMaNSpR556DdLA@mail.gmail.com/
Fixes: 956a17d9d0 ("btrfs: add a shrinker for extent maps")
CC: stable@vger.kernel.org # 6.10+
Tested-by: kzd <kzd@56709.net>
Tested-by: Octavia Togami <octavia.togami@gmail.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[REPORT]
There is a bug report that kernel is rejecting a mismatching inode mode
and its dir item:
[ 1881.553937] BTRFS critical (device dm-0): inode mode mismatch with
dir: inode mode=040700 btrfs type=2 dir type=0
[CAUSE]
It looks like the inode mode is correct, while the dir item type
0 is BTRFS_FT_UNKNOWN, which should not be generated by btrfs at all.
This may be caused by a memory bit flip.
[ENHANCEMENT]
Although tree-checker is not able to do any cross-leaf verification, for
this particular case we can at least reject any dir type with
BTRFS_FT_UNKNOWN.
So here we enhance the dir type check from [0, BTRFS_FT_MAX), to
(0, BTRFS_FT_MAX).
Although the existing corruption can not be fixed just by such enhanced
checking, it should prevent the same 0x2->0x0 bitflip for dir type to
reach disk in the future.
Reported-by: Kota <nospam@kota.moe>
Link: https://lore.kernel.org/linux-btrfs/CACsxjPYnQF9ZF-0OhH16dAx50=BXXOcP74MxBc3BG+xae4vTTw@mail.gmail.com/
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the patch 78c52d9eb6 ("btrfs: check for refs on snapshot delete
resume") I added some code to handle file systems that had been
corrupted by a bug that incorrectly skipped updating the drop progress
key while dropping a snapshot. This code would check to see if we had
already deleted our reference for a child block, and skip the deletion
if we had already.
Unfortunately there is a bug, as the check would only check the on-disk
references. I made an incorrect assumption that blocks in an already
deleted snapshot that was having the deletion resume on mount wouldn't
be modified.
If we have 2 pending deleted snapshots that share blocks, we can easily
modify the rules for a block. Take the following example
subvolume a exists, and subvolume b is a snapshot of subvolume a. They
share references to block 1. Block 1 will have 2 full references, one
for subvolume a and one for subvolume b, and it belongs to subvolume a
(btrfs_header_owner(block 1) == subvolume a).
When deleting subvolume a, we will drop our full reference for block 1,
and because we are the owner we will drop our full reference for all of
block 1's children, convert block 1 to FULL BACKREF, and add a shared
reference to all of block 1's children.
Then we will start the snapshot deletion of subvolume b. We look up the
extent info for block 1, which checks delayed refs and tells us that
FULL BACKREF is set, so sets parent to the bytenr of block 1. However
because this is a resumed snapshot deletion, we call into
check_ref_exists(). Because check_ref_exists() only looks at the disk,
it doesn't find the shared backref for the child of block 1, and thus
returns 0 and we skip deleting the reference for the child of block 1
and continue. This orphans the child of block 1.
The fix is to lookup the delayed refs, similar to what we do in
btrfs_lookup_extent_info(). However we only care about whether the
reference exists or not. If we fail to find our reference on disk, go
look up the bytenr in the delayed refs, and if it exists look for an
existing ref in the delayed ref head. If that exists then we know we
can delete the reference safely and carry on. If it doesn't exist we
know we have to skip over this block.
This bug has existed since I introduced this fix, however requires
having multiple deleted snapshots pending when we unmount. We noticed
this in production because our shutdown path stops the container on the
system, which deletes a bunch of subvolumes, and then reboots the box.
This gives us plenty of opportunities to hit this issue. Looking at the
history we've seen this occasionally in production, but we had a big
spike recently thanks to faster machines getting jobs with multiple
subvolumes in the job.
Chris Mason wrote a reproducer which does the following
mount /dev/nvme4n1 /btrfs
btrfs subvol create /btrfs/s1
simoop -E -f 4k -n 200000 -z /btrfs/s1
while(true) ; do
btrfs subvol snap /btrfs/s1 /btrfs/s2
simoop -f 4k -n 200000 -r 10 -z /btrfs/s2
btrfs subvol snap /btrfs/s2 /btrfs/s3
btrfs balance start -dusage=80 /btrfs
btrfs subvol del /btrfs/s2 /btrfs/s3
umount /btrfs
btrfsck /dev/nvme4n1 || exit 1
mount /dev/nvme4n1 /btrfs
done
On the second loop this would fail consistently, with my patch it has
been running for hours and hasn't failed.
I also used dm-log-writes to capture the state of the failure so I could
debug the problem. Using the existing failure case to test my patch
validated that it fixes the problem.
Fixes: 78c52d9eb6 ("btrfs: check for refs on snapshot delete resume")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For any changes of struct fd representation we need to
turn existing accesses to fields into calls of wrappers.
Accesses to struct fd::flags are very few (3 in linux/file.h,
1 in net/socket.c, 3 in fs/overlayfs/file.c and 3 more in
explicit initializers).
Those can be dealt with in the commit converting to
new layout; accesses to struct fd::file are too many for that.
This commit converts (almost) all of f.file to
fd_file(f). It's not entirely mechanical ('file' is used as
a member name more than just in struct fd) and it does not
even attempt to distinguish the uses in pointer context from
those in boolean context; the latter will be eventually turned
into a separate helper (fd_empty()).
NOTE: mass conversion to fd_empty(), tempting as it
might be, is a bad idea; better do that piecewise in commit
that convert from fdget...() to CLASS(...).
[conflicts in fs/fhandle.c, kernel/bpf/syscall.c, mm/memcontrol.c
caught by git; fs/stat.c one got caught by git grep]
[fs/xattr.c conflict]
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmazbGYACgkQxWXV+ddt
WDsQAw//Z3XjjylTZPuHNk/AiMe5oochxB5T9ZracQOzG0o70gj1w/UQIZBkSzp1
66g8I4YdbwvEXKDg9Oi/GPDSON3GuhAiLXp+0Y/reeD/totgvrhROuJ3mIk5CZ0H
B4fIKH3xCKLQan26Opgju4qjum7+AR7ekFveM6GicxXXb3eAYALgoEFt63eZjZVu
7myak78gmBuK5QdGHH+onEhn+HfC57UTGBqu1bJsSOQC7dANkU+WzmgbH6FeOHqx
2T/lN/tu2tBBoF4zMvC472Zjmj4PnubNQnwwv0oJ8Z2Y0yIY95joZV0uXIXO72oz
BMQC6s0cltiTn1Tfe4iIWn+ZNjcfGAZO7aoD5NcJb2F/Mz5mZuMhtq3BND0wJ8/+
SuYk7PxX7tcOaFrDAn3Ne7XHsD7r5lLkFICXkzcNG4dqkBUxR3dN4Oi8KKMFrgCP
kTpf0/lAkYKYSrU86Yn1zhwRLaH8jm3fulVUY8i/p0tJnpsW8AmeME1Sk97Bhxbb
y6zt8+MPscPuQi3jPsBevaYd8Q8BIT34vVtU/jNmGAyqEv1wVYQRRK2Ma4sJJfNk
EEQV9i4VqXWLc17dcWVZrG6lEsVRIIBE/2Adhth6Myq73bkunpB9ZNNNZApf1T2j
Wn5gPzkuQd6FWrXe8V7oSN9rT1OPn9uHL6BmSUWhHUCuFeATgoc=
=03Gf
-----END PGP SIGNATURE-----
Merge tag 'for-6.11-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix double inode unlock for direct IO sync writes (reported by
syzbot)
- fix root tree id/name map definitions, don't use fixed size buffers
for name (reported by -Werror=unterminated-string-initialization)
- fix qgroup reserve leaks in bufferd write path
- update scrub status structure more often so it can be reported in
user space more accurately and let 'resume' not repeat work
- in preparation to remove space cache v1 in the future print a warning
if it's detected
* tag 'for-6.11-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: avoid using fixed char array size for tree names
btrfs: fix double inode unlock for direct IO sync writes
btrfs: emit a warning about space cache v1 being deprecated
btrfs: fix qgroup reserve leaks in cow_file_range
btrfs: implement launder_folio for clearing dirty page reserve
btrfs: scrub: update last_physical after scrubbing one stripe
btrfs: factor out stripe length calculation into a helper
[BUG]
There is a bug report that using the latest trunk GCC 15, btrfs would cause
unterminated-string-initialization warning:
linux-6.6/fs/btrfs/print-tree.c:29:49: error: initializer-string for array of ‘char’ is too long [-Werror=unterminated-string-initialization]
29 | { BTRFS_BLOCK_GROUP_TREE_OBJECTID, "BLOCK_GROUP_TREE" },
|
^~~~~~~~~~~~~~~~~~
[CAUSE]
To print tree names we have an array of root_name_map structure, which
uses "char name[16];" to store the name string of a tree.
But the following trees have names exactly at 16 chars length:
- "BLOCK_GROUP_TREE"
- "RAID_STRIPE_TREE"
This means we will have no space for the terminating '\0', and can lead
to unexpected access when printing the name.
[FIX]
Instead of "char name[16];" use "const char *" instead.
Since the name strings are all read-only data, and are all NULL
terminated by default, there is not much need to bother the length at
all.
Reported-by: Sam James <sam@gentoo.org>
Reported-by: Alejandro Colomar <alx@kernel.org>
Fixes: edde81f1ab ("btrfs: add raid stripe tree pretty printer")
Fixes: 9c54e80ddc ("btrfs: add code to support the block group root")
CC: stable@vger.kernel.org # 6.1+
Suggested-by: Alejandro Colomar <alx@kernel.org>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Alejandro Colomar <alx@kernel.org>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we do a direct IO sync write, at btrfs_sync_file(), and we need to skip
inode logging or we get an error starting a transaction or an error when
flushing delalloc, we end up unlocking the inode when we shouldn't under
the 'out_release_extents' label, and then unlock it again at
btrfs_direct_write().
Fix that by checking if we have to skip inode unlocking under that label.
Reported-by: syzbot+7dbbb74af6291b5a5a8b@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000dfd631061eaeb4bc@google.com/
Fixes: 939b656bc8 ("btrfs: fix corruption after buffer fault in during direct IO append write")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We've been wanting to get rid of this for a while, add a message to
indicate that this feature is going away and when so we can finally have
a date when we're going to remove it. The output looks like this
BTRFS warning (device nvme0n1): space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the buffered write path, the dirty page owns the qgroup reserve until
it creates an ordered_extent.
Therefore, any errors that occur before the ordered_extent is created
must free that reservation, or else the space is leaked. The fstest
generic/475 exercises various IO error paths, and is able to trigger
errors in cow_file_range where we fail to get to allocating the ordered
extent. Note that because we *do* clear delalloc, we are likely to
remove the inode from the delalloc list, so the inodes/pages to not have
invalidate/launder called on them in the commit abort path.
This results in failures at the unmount stage of the test that look like:
BTRFS: error (device dm-8 state EA) in cleanup_transaction:2018: errno=-5 IO failure
BTRFS: error (device dm-8 state EA) in btrfs_replace_file_extents:2416: errno=-5 IO failure
BTRFS warning (device dm-8 state EA): qgroup 0/5 has unreleased space, type 0 rsv 28672
------------[ cut here ]------------
WARNING: CPU: 3 PID: 22588 at fs/btrfs/disk-io.c:4333 close_ctree+0x222/0x4d0 [btrfs]
Modules linked in: btrfs blake2b_generic libcrc32c xor zstd_compress raid6_pq
CPU: 3 PID: 22588 Comm: umount Kdump: loaded Tainted: G W 6.10.0-rc7-gab56fde445b8 #21
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
RIP: 0010:close_ctree+0x222/0x4d0 [btrfs]
RSP: 0018:ffffb4465283be00 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffffa1a1818e1000 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ffffb4465283bbe0 RDI: ffffa1a19374fcb8
RBP: ffffa1a1818e13c0 R08: 0000000100028b16 R09: 0000000000000000
R10: 0000000000000003 R11: 0000000000000003 R12: ffffa1a18ad7972c
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f9168312b80(0000) GS:ffffa1a4afcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f91683c9140 CR3: 000000010acaa000 CR4: 00000000000006f0
Call Trace:
<TASK>
? close_ctree+0x222/0x4d0 [btrfs]
? __warn.cold+0x8e/0xea
? close_ctree+0x222/0x4d0 [btrfs]
? report_bug+0xff/0x140
? handle_bug+0x3b/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? close_ctree+0x222/0x4d0 [btrfs]
generic_shutdown_super+0x70/0x160
kill_anon_super+0x11/0x40
btrfs_kill_super+0x11/0x20 [btrfs]
deactivate_locked_super+0x2e/0xa0
cleanup_mnt+0xb5/0x150
task_work_run+0x57/0x80
syscall_exit_to_user_mode+0x121/0x130
do_syscall_64+0xab/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f916847a887
---[ end trace 0000000000000000 ]---
BTRFS error (device dm-8 state EA): qgroup reserved space leaked
Cases 2 and 3 in the out_reserve path both pertain to this type of leak
and must free the reserved qgroup data. Because it is already an error
path, I opted not to handle the possible errors in
btrfs_free_qgroup_data.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
In the buffered write path, dirty pages can be said to "own" the qgroup
reservation until they create an ordered_extent. It is possible for
there to be outstanding dirty pages when a transaction is aborted, in
which case there is no cancellation path for freeing this reservation
and it is leaked.
We do already walk the list of outstanding delalloc inodes in
btrfs_destroy_delalloc_inodes() and call invalidate_inode_pages2() on them.
This does *not* call btrfs_invalidate_folio(), as one might guess, but
rather calls launder_folio() and release_folio(). Since this is a
reservation associated with dirty pages only, rather than something
associated with the private bit (ordered_extent is cancelled separately
already in the cleanup transaction path), implementing this release
should be done via launder_folio.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently sctx->stat.last_physical only got updated in the following
cases:
- When the last stripe of a non-RAID56 chunk is scrubbed
This implies a pitfall, if the last stripe is at the chunk boundary,
and we finished the scrub of the whole chunk, we won't update
last_physical at all until the next chunk.
- When a P/Q stripe of a RAID56 chunk is scrubbed
This leads the following two problems:
- sctx->stat.last_physical is not updated for a almost full chunk
This is especially bad, affecting scrub resume, as the resume would
start from last_physical, causing unnecessary re-scrub.
- "btrfs scrub status" will not report any progress for a long time
Fix the problem by properly updating @last_physical after each stripe is
scrubbed.
And since we're here, for the sake of consistency, use spin lock to
protect the update of @last_physical, just like all the remaining
call sites touching sctx->stat.
Reported-by: Michel Palleau <michel.palleau@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAMFk-+igFTv2E8svg=cQ6o3e6CrR5QwgQ3Ok9EyRaEvvthpqCQ@mail.gmail.com/
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently there are two locations which need to calculate the real
length of a stripe (which can be at the end of a chunk, and the chunk
size may not always be 64K aligned).
Factor them into a helper as we're going to have a third user soon.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmapmOQACgkQxWXV+ddt
WDsXVhAAi4X+xt3o4jcN3IAu08JCQAAyXnFWC3lvn7sqYjSrcccI6ZT4/gAbHss+
qrifakRGoYQ7fAjYBmhw48HqPmHtI2OQjIUDaIqHQOS68aXShBo9HiE460HRY4GT
QV/KT0w37E2/R0EDR9gyjLq3ZA3/raxN1n+LNCFhRWmtsAEZrk4XzsADWb05YkIq
1QBa92DzEhVpd04X8YHIYBgRidWbcYST6xhoWdyL9VZ1pzZsISq5LH67D4f/J1KU
gXNf+ZnF9DXsQnptJrMsjhx61seJ2F0/vozFZ+l6SjRr0jeysmrJI0dxqQc/hUga
gbLmdha6ztKdn03JOIL+lfdZYzICFl/2fekSWI2SNcag+TYszACjlFOyHusOgKsa
3qQwzVB699FheWO5nrOOvOtgq0ZqGsrIvhIXLhA7/bVpNavPnUB7IQCcs8n89ImQ
hUIebfX1FZnYXTrB6Hhm92LUb0lyLSlW1we3SSmaAMiy1TiXHG7hO2G/sIbOPAJC
5VzdHf0DEjzEdjmTrGOV7JBfy5JmMK56oN8viZS95p70DYxNGvEOhLs/8n5twpri
MWV8GElcOjjC+KnGnUH72spsnEKONpdzyccG9kiZEgkEi4csgHSxrkSmAehYD6i6
MFYk+i7jvZ1VsbOulmdGOLbHS7whxi9pWb/CT3KKF1Ei5/v07bU=
=JdOX
-----END PGP SIGNATURE-----
Merge tag 'for-6.11-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix regression in extent map rework when handling insertion of
overlapping compressed extent
- fix unexpected file length when appending to a file using direct io
and buffer not faulted in
- in zoned mode, fix accounting of unusable space when flipping
read-only block group back to read-write
- fix page locking when COWing an inline range, assertion failure found
by syzbot
- fix calculation of space info in debugging print
- tree-checker, add validation of data reference item
- fix a few -Wmaybe-uninitialized build warnings
* tag 'for-6.11-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: initialize location to fix -Wmaybe-uninitialized in btrfs_lookup_dentry()
btrfs: fix corruption after buffer fault in during direct IO append write
btrfs: zoned: fix zone_unusable accounting on making block group read-write again
btrfs: do not subtract delalloc from avail bytes
btrfs: make cow_file_range_inline() honor locked_page on error
btrfs: fix corrupt read due to bad offset of a compressed extent map
btrfs: tree-checker: validate dref root and objectid
Some arch + compiler combinations report a potentially unused variable
location in btrfs_lookup_dentry(). This is a false alert as the variable
is passed by value and always valid or there's an error. The compilers
cannot probably reason about that although btrfs_inode_by_name() is in
the same file.
> + /kisskb/src/fs/btrfs/inode.c: error: 'location.objectid' may be used
+uninitialized in this function [-Werror=maybe-uninitialized]: => 5603:9
> + /kisskb/src/fs/btrfs/inode.c: error: 'location.type' may be used
+uninitialized in this function [-Werror=maybe-uninitialized]: => 5674:5
m68k-gcc8/m68k-allmodconfig
mips-gcc8/mips-allmodconfig
powerpc-gcc5/powerpc-all{mod,yes}config
powerpc-gcc5/ppc64_defconfig
Initialize it to zero, this should fix the warnings and won't change the
behaviour as btrfs_inode_by_name() accepts only a root or inode item
types, otherwise returns an error.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Link: https://lore.kernel.org/linux-btrfs/bd4e9928-17b3-9257-8ba7-6b7f9bbb639a@linux-m68k.org/
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During an append (O_APPEND write flag) direct IO write if the input buffer
was not previously faulted in, we can corrupt the file in a way that the
final size is unexpected and it includes an unexpected hole.
The problem happens like this:
1) We have an empty file, with size 0, for example;
2) We do an O_APPEND direct IO with a length of 4096 bytes and the input
buffer is not currently faulted in;
3) We enter btrfs_direct_write(), lock the inode and call
generic_write_checks(), which calls generic_write_checks_count(), and
that function sets the iocb position to 0 with the following code:
if (iocb->ki_flags & IOCB_APPEND)
iocb->ki_pos = i_size_read(inode);
4) We call btrfs_dio_write() and enter into iomap, which will end up
calling btrfs_dio_iomap_begin() and that calls
btrfs_get_blocks_direct_write(), where we update the i_size of the
inode to 4096 bytes;
5) After btrfs_dio_iomap_begin() returns, iomap will attempt to access
the page of the write input buffer (at iomap_dio_bio_iter(), with a
call to bio_iov_iter_get_pages()) and fail with -EFAULT, which gets
returned to btrfs at btrfs_direct_write() via btrfs_dio_write();
6) At btrfs_direct_write() we get the -EFAULT error, unlock the inode,
fault in the write buffer and then goto to the label 'relock';
7) We lock again the inode, do all the necessary checks again and call
again generic_write_checks(), which calls generic_write_checks_count()
again, and there we set the iocb's position to 4K, which is the current
i_size of the inode, with the following code pointed above:
if (iocb->ki_flags & IOCB_APPEND)
iocb->ki_pos = i_size_read(inode);
8) Then we go again to btrfs_dio_write() and enter iomap and the write
succeeds, but it wrote to the file range [4K, 8K), leaving a hole in
the [0, 4K) range and an i_size of 8K, which goes against the
expectations of having the data written to the range [0, 4K) and get an
i_size of 4K.
Fix this by not unlocking the inode before faulting in the input buffer,
in case we get -EFAULT or an incomplete write, and not jumping to the
'relock' label after faulting in the buffer - instead jump to a location
immediately before calling iomap, skipping all the write checks and
relocking. This solves this problem and it's fine even in case the input
buffer is memory mapped to the same file range, since only holding the
range locked in the inode's io tree can cause a deadlock, it's safe to
keep the inode lock (VFS lock), as was fixed and described in commit
51bd9563b6 ("btrfs: fix deadlock due to page faults during direct IO
reads and writes").
A sample reproducer provided by a reporter is the following:
$ cat test.c
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <fcntl.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
if (argc < 2) {
fprintf(stderr, "Usage: %s <test file>\n", argv[0]);
return 1;
}
int fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT |
O_APPEND, 0644);
if (fd < 0) {
perror("creating test file");
return 1;
}
char *buf = mmap(NULL, 4096, PROT_READ,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
ssize_t ret = write(fd, buf, 4096);
if (ret < 0) {
perror("pwritev2");
return 1;
}
struct stat stbuf;
ret = fstat(fd, &stbuf);
if (ret < 0) {
perror("stat");
return 1;
}
printf("size: %llu\n", (unsigned long long)stbuf.st_size);
return stbuf.st_size == 4096 ? 0 : 1;
}
A test case for fstests will be sent soon.
Reported-by: Hanna Czenczek <hreitz@redhat.com>
Link: https://lore.kernel.org/linux-btrfs/0b841d46-12fe-4e64-9abb-871d8d0de271@redhat.com/
Fixes: 8184620ae2 ("btrfs: fix lost file sync on direct IO write with nowait and dsync iocb")
CC: stable@vger.kernel.org # 6.1+
Tested-by: Hanna Czenczek <hreitz@redhat.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs makes a block group read-only, it adds all free regions in the
block group to space_info->bytes_readonly. That free space excludes
reserved and pinned regions. OTOH, when btrfs makes the block group
read-write again, it moves all the unused regions into the block group's
zone_unusable. That unused region includes reserved and pinned regions.
As a result, it counts too much zone_unusable bytes.
Fortunately (or unfortunately), having erroneous zone_unusable does not
affect the calculation of space_info->bytes_readonly, because free
space (num_bytes in btrfs_dec_block_group_ro) calculation is done based on
the erroneous zone_unusable and it reduces the num_bytes just to cancel the
error.
This behavior can be easily discovered by adding a WARN_ON to check e.g,
"bg->pinned > 0" in btrfs_dec_block_group_ro(), and running fstests test
case like btrfs/282.
Fix it by properly considering pinned and reserved in
btrfs_dec_block_group_ro(). Also, add a WARN_ON and introduce
btrfs_space_info_update_bytes_zone_unusable() to catch a similar mistake.
Fixes: 169e0da91a ("btrfs: zoned: track unusable bytes for zones")
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The block group's avail bytes printed when dumping a space info subtract
the delalloc_bytes. However, as shown in btrfs_add_reserved_bytes() and
btrfs_free_reserved_bytes(), it is added or subtracted along with
"reserved" for the delalloc case, which means the "delalloc_bytes" is a
part of the "reserved" bytes. So, excluding it to calculate the avail space
counts delalloc_bytes twice, which can lead to an invalid result.
Fixes: e50b122b83 ("btrfs: print available space for a block group when dumping a space info")
CC: stable@vger.kernel.org # 6.6+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs buffered write path runs through __extent_writepage() which
has some tricky return value handling for writepage_delalloc().
Specifically, when that returns 1, we exit, but for other return values
we continue and end up calling btrfs_folio_end_all_writers(). If the
folio has been unlocked (note that we check the PageLocked bit at the
start of __extent_writepage()), this results in an assert panic like
this one from syzbot:
BTRFS: error (device loop0 state EAL) in free_log_tree:3267: errno=-5 IO failure
BTRFS warning (device loop0 state EAL): Skipping commit of aborted transaction.
BTRFS: error (device loop0 state EAL) in cleanup_transaction:2018: errno=-5 IO failure
assertion failed: folio_test_locked(folio), in fs/btrfs/subpage.c:871
------------[ cut here ]------------
kernel BUG at fs/btrfs/subpage.c:871!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 1 PID: 5090 Comm: syz-executor225 Not tainted
6.10.0-syzkaller-05505-gb1bc554e009e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 06/27/2024
RIP: 0010:btrfs_folio_end_all_writers+0x55b/0x610 fs/btrfs/subpage.c:871
Code: e9 d3 fb ff ff e8 25 22 c2 fd 48 c7 c7 c0 3c 0e 8c 48 c7 c6 80 3d
0e 8c 48 c7 c2 60 3c 0e 8c b9 67 03 00 00 e8 66 47 ad 07 90 <0f> 0b e8
6e 45 b0 07 4c 89 ff be 08 00 00 00 e8 21 12 25 fe 4c 89
RSP: 0018:ffffc900033d72e0 EFLAGS: 00010246
RAX: 0000000000000045 RBX: 00fff0000000402c RCX: 663b7a08c50a0a00
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffffc900033d73b0 R08: ffffffff8176b98c R09: 1ffff9200067adfc
R10: dffffc0000000000 R11: fffff5200067adfd R12: 0000000000000001
R13: dffffc0000000000 R14: 0000000000000000 R15: ffffea0001cbee80
FS: 0000000000000000(0000) GS:ffff8880b9500000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f5f076012f8 CR3: 000000000e134000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__extent_writepage fs/btrfs/extent_io.c:1597 [inline]
extent_write_cache_pages fs/btrfs/extent_io.c:2251 [inline]
btrfs_writepages+0x14d7/0x2760 fs/btrfs/extent_io.c:2373
do_writepages+0x359/0x870 mm/page-writeback.c:2656
filemap_fdatawrite_wbc+0x125/0x180 mm/filemap.c:397
__filemap_fdatawrite_range mm/filemap.c:430 [inline]
__filemap_fdatawrite mm/filemap.c:436 [inline]
filemap_flush+0xdf/0x130 mm/filemap.c:463
btrfs_release_file+0x117/0x130 fs/btrfs/file.c:1547
__fput+0x24a/0x8a0 fs/file_table.c:422
task_work_run+0x24f/0x310 kernel/task_work.c:222
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0xa2f/0x27f0 kernel/exit.c:877
do_group_exit+0x207/0x2c0 kernel/exit.c:1026
__do_sys_exit_group kernel/exit.c:1037 [inline]
__se_sys_exit_group kernel/exit.c:1035 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1035
x64_sys_call+0x2634/0x2640
arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f5f075b70c9
Code: Unable to access opcode bytes at
0x7f5f075b709f.
I was hitting the same issue by doing hundreds of accelerated runs of
generic/475, which also hits IO errors by design.
I instrumented that reproducer with bpftrace and found that the
undesirable folio_unlock was coming from the following callstack:
folio_unlock+5
__process_pages_contig+475
cow_file_range_inline.constprop.0+230
cow_file_range+803
btrfs_run_delalloc_range+566
writepage_delalloc+332
__extent_writepage # inlined in my stacktrace, but I added it here
extent_write_cache_pages+622
Looking at the bisected-to patch in the syzbot report, Josef realized
that the logic of the cow_file_range_inline error path subtly changing.
In the past, on error, it jumped to out_unlock in cow_file_range(),
which honors the locked_page, so when we ultimately call
folio_end_all_writers(), the folio of interest is still locked. After
the change, we always unlocked ignoring the locked_page, on both success
and error. On the success path, this all results in returning 1 to
__extent_writepage(), which skips the folio_end_all_writers() call,
which makes it OK to have unlocked.
Fix the bug by wiring the locked_page into cow_file_range_inline() and
only setting locked_page to NULL on success.
Reported-by: syzbot+a14d8ac9af3a2a4fd0c8@syzkaller.appspotmail.com
Fixes: 0586d0a89e ("btrfs: move extent bit and page cleanup into cow_file_range_inline")
CC: stable@vger.kernel.org # 6.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
We only had a couple of array[] declarations, and changing them to just
use 'MAX()' instead of 'max()' fixes the issue.
This will allow us to simplify our min/max macros enormously, since they
can now unconditionally use temporary variables to avoid using the
argument values multiple times.
Cc: David Laight <David.Laight@aculab.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we attempt to insert a compressed extent map that has a range that
overlaps another extent map we have in the inode's extent map tree, we
can end up with an incorrect offset after adjusting the new extent map at
merge_extent_mapping() because we don't update the extent map's offset.
For example consider the following scenario:
1) We have a file extent item for a compressed extent covering the file
range [108K, 144K) and currently there's no corresponding extent map
in the inode's extent map tree;
2) The inode's size is 141K;
3) We have an encoded write (compressed) into the file range [120K, 128K),
which overlaps the existing file extent item. The encoded write creates
a matching extent map, adds it to the inode's extent map tree and
creates an ordered extent for it.
Note that the corresponding file extent item is added to the subvolume
tree only when the ordered extent completes (when executing
btrfs_finish_one_ordered());
4) We have a write into the file range [160K, 164K).
This writes increases the i_size of the file, and there's a hole
between the current i_size (141K) and the start offset of this write,
and since the old i_size is in the middle of the block [140K, 144K),
we have to write zeroes to the range [141K, 144K) (3072 bytes) and
therefore dirty that page.
We then call btrfs_set_extent_delalloc() with a start offset of 140K.
We then end up at btrfs_find_new_delalloc_bytes() which will call
btrfs_get_extent() for the range [140K, 144K);
5) The btrfs_get_extent() doesn't find any extent map in the inode's
extent map tree covering the range [140K, 144K), so it searches the
subvolume tree for any file extent items covering that range.
There it finds the file extent item for the range [108K, 144K),
creates a compressed extent map for that range and then calls
btrfs_add_extent_mapping() with that extent map and passes the
range [140K, 144K) via the "start" and "len" parameters;
6) The call to add_extent_mapping() done by btrfs_add_extent_mapping()
fails with -EEXIST because there's an extent map, created at step 2
for the [120K, 128K) range, that covers that overlaps with the range
of the given extent map ([108K, 144K)).
Then it does a lookup for extent map from step 2 add calls
merge_extent_mapping() to adjust the input extent map ([108K, 144K)).
That adjust the extent map to a start offset of 128K and a length
of 16K (starting just after the extent map from step 2), but it does
not update the offset field of the extent map, leaving it with a value
of zero instead of updating to a value of 20K (128K - 108K = 20K).
As a result any read for the range [128K, 144K) can return
incorrect data since we read from a wrong section of the extent (unless
both the correct and incorrect ranges happen to have the same data).
So fix this by changing merge_extent_mapping() to update the extent map's
offset even if it's compressed. Also add a test case to the self tests.
This didn't happen before the patchset that does big changes in the extent
map structure (which includes the commit in the Fixes tag below) because
we kept track of the original start offset in the extent map (member
"orig_start") so we could always calculate the correct offset by
subtracting that offset from the start offset.
A test case for fstests that triggered this problem using send/receive
with compressed writes will be added soon.
Fixes: 3d2ac99224 ("btrfs: introduce new members for extent_map")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[CORRUPTION]
There is a bug report that btrfs flips RO due to a corruption in the
extent tree, the involved dumps looks like this:
item 188 key (402811572224 168 4096) itemoff 14598 itemsize 79
extent refs 3 gen 3678544 flags 1
ref#0: extent data backref root 13835058055282163977 objectid 281473384125923 offset 81432576 count 1
ref#1: shared data backref parent 1947073626112 count 1
ref#2: shared data backref parent 1156030103552 count 1
BTRFS critical (device vdc1: state EA): unable to find ref byte nr 402811572224 parent 0 root 265 owner 28703026 offset 81432576 slot 189
BTRFS error (device vdc1: state EA): failed to run delayed ref for logical 402811572224 num_bytes 4096 type 178 action 2 ref_mod 1: -2
[CAUSE]
The corrupted entry is ref#0 of item 188.
The root number 13835058055282163977 is beyond the upper limit for root
items (the current limit is 1 << 48), and the objectid also looks
suspicious.
Only the offset and count is correct.
[ENHANCEMENT]
Although it's still unknown why we have such many bytes corrupted
randomly, we can still enhance the tree-checker for data backrefs by:
- Validate the root value
For now there should only be 3 types of roots can have data backref:
* subvolume trees
* data reloc trees
* root tree
Only for v1 space cache
- validate the objectid value
The objectid should be a valid inode number.
Hopefully we can catch such problem in the future with the new checkers.
Reported-by: Kai Krakow <hurikhan77@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAMthOuPjg5RDT-G_LXeBBUUtzt3cq=JywF+D1_h+JYxe=WKp-Q@mail.gmail.com/#t
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
walkers") is known to cause a performance regression
(https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff).
Yu has a fix which I'll send along later via the hotfixes branch.
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability of
cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of the
zeropage in MAP_SHARED mappings. I don't see any runtime effects here -
more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of
higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the
series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has
simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Is anyone reading this stuff? If so, email me!
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large folio
userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's self
testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are
"mm: memcg: separate legacy cgroup v1 code and put under config
option" and
"mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of excessive
correctable memory errors. In order to permit userspace to monitor and
handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from migrate
folio" teaches the kernel to appropriately handle migration from
poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare
refcount increments. So these paes can first be moved aside if they
reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps
for much faster reading of vma information. The series is "query VMAs
from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance Yang
improves the kernel's presentation of developer information related to
multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and not
very useful feature from slab fault injection.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA
joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3
xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8=
=z0Lf
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My
bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability
of cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache
index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of
the zeropage in MAP_SHARED mappings. I don't see any runtime effects
here - more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
of higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
the series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
has simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large
folio userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's
self testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
under config option" and "mm: memcg: put cgroup v1-specific memcg
data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of
excessive correctable memory errors. In order to permit userspace to
monitor and handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from
migrate folio" teaches the kernel to appropriately handle migration
from poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory
utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than
bare refcount increments. So these paes can first be moved aside if
they reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to
/proc/pid/maps for much faster reading of vma information. The series
is "query VMAs from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance
Yang improves the kernel's presentation of developer information
related to multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and
not very useful feature from slab fault injection.
* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
mm/mglru: fix ineffective protection calculation
mm/zswap: fix a white space issue
mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
mm/hugetlb: fix possible recursive locking detected warning
mm/gup: clear the LRU flag of a page before adding to LRU batch
mm/numa_balancing: teach mpol_to_str about the balancing mode
mm: memcg1: convert charge move flags to unsigned long long
alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
lib: reuse page_ext_data() to obtain codetag_ref
lib: add missing newline character in the warning message
mm/mglru: fix overshooting shrinker memory
mm/mglru: fix div-by-zero in vmpressure_calc_level()
mm/kmemleak: replace strncpy() with strscpy()
mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
mm: ignore data-race in __swap_writepage
hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
mm: shmem: rename mTHP shmem counters
mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
mm/migrate: putback split folios when numa hint migration fails
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmaak1cACgkQxWXV+ddt
WDvtDw/9GLN/pzAhH+rg0v51b4Ofxqa5QXuz7GIHb+UOqOdiZIjun+UmBst8794t
oZ0rhO1sjXVNwci5TG2oWUHcoAkjoPrVgJ/X5nzBHOzHJCQlV1kNzgsDyY+HFL9F
FBkJ6u1pCXUIxry6zp55NLWLMcjtFdMphjLXENh+GzUx5aAXl7VamK41B3+pHGfW
gDCNJ41vaaHqTGN8+9AADpZ2Oo4CUCtr8eNxGXZ0O5/0s5CdRJrjphtBTcGwbGch
SYVceySM4ElLmFi+hKFxx68MkWgnuTnBhZhbOM4V2fPFv0hLzXyQ7OrAk+MY8O2m
AHLx2jHKfCdONFeTUdt1cY5/wM6Afhy+N/iKtv3t2+Wi70C/LEHQRY1Op3rfx1rn
vOIbR9IXEHVi6ncO/E9c4LacSqLd/KSOaZn2Z/6i5wN+NY86CrCMuPwr6Pv0LL6x
aSHka47SFFTQLvHUdwmzexJ2YuosFdI0BhpiEu8ylAZTJ17yDJatk8wM+FB6Rfh1
vdPMRi93nVfrCwkU63Y2gqtJ3ncb3mbk/0uUdtMMflZJgjL0qkxTmcu3pSEdzIYR
gHFLVlns4cljL5PB9yMH/JjYjYn+Y6bCVvVyuhQZ3FAanUVOSFin/YWfo1bIi1et
ENNP+lhUKYvKLcz3QcnQpX3a6PkFPrmFi5wniAvxymrmVKJ3g3E=
=ROO7
-----END PGP SIGNATURE-----
Merge tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"A fix for build breakage on 32bit platforms"
* tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: change BTRFS_MOUNT_* flags to 64bit type
Currently the BTRFS_MOUNT_* flags are already beyond 32 bits, this is
going to cause compilation errors for some 32 bit systems, as their
unsigned long is only 32 bits long, thus flag
BTRFS_MOUNT_IGNORESUPERFLAGS overflows and can lead to errors.
Fix the problem by:
- Migrate all existing BTRFS_MOUNT_* flags to unsigned long long
- Migrate all mount option related variables to unsigned long long
* btrfs_fs_info::mount_opt
* btrfs_fs_context::mount_opt
* mount_opt parameter of btrfs_check_options()
* old_opts parameter of btrfs_remount_begin()
* old_opts parameter of btrfs_remount_cleanup()
* mount_opt parameter of btrfs_check_mountopts_zoned()
* mount_opt and opt parameters of check_ro_option()
Fixes: 32e6216512 ("btrfs: introduce new "rescue=ignoresuperflags" mount option")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmaVN3MACgkQxWXV+ddt
WDtpIRAAl+1NjsEj8e5V/UYn8Jr06ujTOnrkR3PCTICxDHbUaMLkQEw21H0K/ogQ
3fOiEVpSlZOfKdYXtXaMQbC0jd/Af2eA10Uht96nAEjAtxu1uJ4cFZGu2meNdXZP
xUioivJ/CElMPH2aluG6FaQvUTqmhrEr8tSoYbxzQmUd434q9kqqyjtw1tfzYDG1
VDn2f7ykhpB/8P0aoqgWSshWTmaCzG0GkuI28o1o0iZUIF/P9TKdzxlLRW6BVHE7
T2oGLEQjN1GQbCH75L4IeNJDkCBVfcDcbZkUDJ/ae4Pt/jJQTFY53YIP9wXFZQnd
mdfHmK7Atpsk75ATftYSq+ENkbQ5fsuut5CD63u54gAqA4M1FncDXTAWS1Y30F76
P8juSCmsSy0o3gTflDIo/IMdntoh/JmncwwStF6oKzmyUZZzzarsqM8mc1P03ZNt
3ttlnbY7lC1TDAlD5J2wXE0INCT2pN+4C9IToWdRypeuLu6qrI7cQ0oylyp9OVQM
t9umTXm0B6s1cyqEDjJf0xJZS/JTHYwu7S4EmAJwicgiLpOjABVTmO8021rVmDJy
TAUu6yEhSsrTT6Dxm7/2Et1EEOKFF5hhsG1SiGD9oUIZK6B5+0waT+rbkEWl7osR
4/TAv2zX6tuCc7HIW0fQloM/6/Gyd5wcDVaQNDUzFA075uKstwY=
=k5d3
-----END PGP SIGNATURE-----
Merge tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"The highlights are new logic behind background block group reclaim,
automatic removal of qgroup after removing a subvolume and new
'rescue=' mount options.
The rest is optimizations, cleanups and refactoring.
User visible features:
- dynamic block group reclaim:
- tunable framework to avoid situations where eager data
allocations prevent creating new metadata chunks due to lack of
unallocated space
- reuse sysfs knob bg_reclaim_threshold (otherwise used only in
zoned mode) for a fixed value threshold
- new on/off sysfs knob "dynamic_reclaim" calculating the value
based on heuristics, aiming to keep spare working space for
relocating chunks but not to needlessly relocate partially
utilized block groups or reclaim newly allocated ones
- stats are exported in sysfs per block group type, files
"reclaim_*"
- this may increase IO load at unexpected times but the corner
case of no allocatable block groups is known to be worse
- automatically remove qgroup of deleted subvolumes:
- adjust qgroup removal conditions, make sure all related
subvolume data are already removed, or return EBUSY, also take
into account setting of sysfs drop_subtree_threshold
- also works in squota mode
- mount option updates: new modes of 'rescue=' that allow to mount
images (read-only) that could have been partially converted by user
space tools
- ignoremetacsums - invalid metadata checksums are ignored
- ignoresuperflags - super block flags that track conversion in
progress (like UUID or checksums)
Core:
- size of struct btrfs_inode is now below 1024 (on a release config),
improved memory packing and other secondary effects
- switch tracking of open inodes from rb-tree to xarray, minor
performance improvement
- reduce number of empty transaction commits when there are no dirty
data/metadata
- memory allocation optimizations (reduced numbers, reordering out of
critical sections)
- extent map structure optimizations and refactoring, more sanity
checks
- more subpage in zoned mode preparations or fixes
- general snapshot code cleanups, improvements and documentation
- tree-checker updates: more file extent ram_bytes fixes, continued
- raid-stripe-tree update (not backward compatible):
- remove extent encoding field from the structure, can be inferred
from other information
- requires btrfs-progs 6.9.1 or newer
- cleanups and refactoring
- error message updates
- error handling improvements
- return type and parameter cleanups and improvements"
* tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (152 commits)
btrfs: fix extent map use-after-free when adding pages to compressed bio
btrfs: fix bitmap leak when loading free space cache on duplicate entry
btrfs: remove the BUG_ON() inside extent_range_clear_dirty_for_io()
btrfs: move extent_range_clear_dirty_for_io() into inode.c
btrfs: enhance compression error messages
btrfs: fix data race when accessing the last_trans field of a root
btrfs: rename the extra_gfp parameter of btrfs_alloc_page_array()
btrfs: remove the extra_gfp parameter from btrfs_alloc_folio_array()
btrfs: introduce new "rescue=ignoresuperflags" mount option
btrfs: introduce new "rescue=ignoremetacsums" mount option
btrfs: output the unrecognized super block flags as hex
btrfs: remove unused Opt enums
btrfs: tree-checker: add extra ram_bytes and disk_num_bytes check
btrfs: fix the ram_bytes assignment for truncated ordered extents
btrfs: make validate_extent_map() catch ram_bytes mismatch
btrfs: ignore incorrect btrfs_file_extent_item::ram_bytes
btrfs: cleanup the bytenr usage inside btrfs_extent_item_to_extent_map()
btrfs: fix typo in error message in btrfs_validate_super()
btrfs: move the direct IO code into its own file
btrfs: pass a btrfs_inode to btrfs_set_prop()
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmaOTd8QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgppqIEACUr8Vv2FtezvT3OfVSlYWHHLXzkRhwEG5s
vdk0o7Ow6U54sMjfymbHTgLD0ZOJf3uJ6BI95FQuW41jPzDFVbx4Hy8QzqonMkw9
1D/YQ4zrVL2mOKBzATbKpoGJzMOzGeoXEueFZ1AYPAX7RrDtP4xPQNfrcfkdE2zF
LycJN70Vp6lrZZMuI9yb9ts1tf7TFzK0HJANxOAKTgSiPmBmxesjkJlhrdUrgkAU
qDVyjj7u/ssndBJAb9i6Bl95Do8s9t4DeJq5/6wgKqtf5hClMXzPVB8Wy084gr6E
rTRsCEhOug3qEZSqfAgAxnd3XFRNc/p2KMUe5YZ4mAqux4hpSmIQQDM/5X5K9vEv
f4MNqUGlqyqntZx+KPyFpf7kLHFYS1qK4ub0FojWJEY4GrbBPNjjncLJ9+ozR0c8
kNDaFjMNAjalBee1FxNNH8LdVcd28rrCkPxRLEfO/gvBMUmvJf4ZyKmSED0v5DhY
vZqKlBqG+wg0EXvdiWEHMDh9Y+q/2XBIkS6NN/Bhh61HNu+XzC838ts1X7lR+4o2
AM5Vapw+v0q6kFBMRP3IcJI/c0UcIU8EQU7axMyzWtvhog8kx8x01hIj1L4UyYYr
rUdWrkugBVXJbywFuH/QIJxWxS/z4JdSw5VjASJLIrXy+aANmmG9Wonv95eyhpUv
5iv+EdRSNA==
=wVi8
-----END PGP SIGNATURE-----
Merge tag 'for-6.11/block-20240710' of git://git.kernel.dk/linux
Pull block updates from Jens Axboe:
- NVMe updates via Keith:
- Device initialization memory leak fixes (Keith)
- More constants defined (Weiwen)
- Target debugfs support (Hannes)
- PCIe subsystem reset enhancements (Keith)
- Queue-depth multipath policy (Redhat and PureStorage)
- Implement get_unique_id (Christoph)
- Authentication error fixes (Gaosheng)
- MD updates via Song
- sync_action fix and refactoring (Yu Kuai)
- Various small fixes (Christoph Hellwig, Li Nan, and Ofir Gal, Yu
Kuai, Benjamin Marzinski, Christophe JAILLET, Yang Li)
- Fix loop detach/open race (Gulam)
- Fix lower control limit for blk-throttle (Yu)
- Add module descriptions to various drivers (Jeff)
- Add support for atomic writes for block devices, and statx reporting
for same. Includes SCSI and NVMe (John, Prasad, Alan)
- Add IO priority information to block trace points (Dongliang)
- Various zone improvements and tweaks (Damien)
- mq-deadline tag reservation improvements (Bart)
- Ignore direct reclaim swap writes in writeback throttling (Baokun)
- Block integrity improvements and fixes (Anuj)
- Add basic support for rust based block drivers. Has a dummy null_blk
variant for now (Andreas)
- Series converting driver settings to queue limits, and cleanups and
fixes related to that (Christoph)
- Cleanup for poking too deeply into the bvec internals, in preparation
for DMA mapping API changes (Christoph)
- Various minor tweaks and fixes (Jiapeng, John, Kanchan, Mikulas,
Ming, Zhu, Damien, Christophe, Chaitanya)
* tag 'for-6.11/block-20240710' of git://git.kernel.dk/linux: (206 commits)
floppy: add missing MODULE_DESCRIPTION() macro
loop: add missing MODULE_DESCRIPTION() macro
ublk_drv: add missing MODULE_DESCRIPTION() macro
xen/blkback: add missing MODULE_DESCRIPTION() macro
block/rnbd: Constify struct kobj_type
block: take offset into account in blk_bvec_map_sg again
block: fix get_max_segment_size() warning
loop: Don't bother validating blocksize
virtio_blk: Don't bother validating blocksize
null_blk: Don't bother validating blocksize
block: Validate logical block size in blk_validate_limits()
virtio_blk: Fix default logical block size fallback
nvmet-auth: fix nvmet_auth hash error handling
nvme: implement ->get_unique_id
block: pass a phys_addr_t to get_max_segment_size
block: add a bvec_phys helper
blk-lib: check for kill signal in ioctl BLKZEROOUT
block: limit the Write Zeroes to manually writing zeroes fallback
block: refacto blkdev_issue_zeroout
block: move read-only and supported checks into (__)blkdev_issue_zeroout
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZpEG2wAKCRCRxhvAZXjc
ooW/AQDzyY+xNGt4OPMvlyFUHd5RcyiLsMhYrkKc3FaIFjesVgD+PFW5PPW12c0V
Z4VHg9w1HDDuUn4XvELs7OXZpek7RgU=
=eDC8
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.11.inode' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs inode / dentry updates from Christian Brauner:
"This contains smaller performance improvements to inodes and dentries:
inode:
- Add rcu based inode lookup variants.
They avoid one inode hash lock acquire in the common case thereby
significantly reducing contention. We already support RCU-based
operations but didn't take advantage of them during inode
insertion.
Callers of iget_locked() get the improvement without any code
changes. Callers that need a custom callback can switch to
iget5_locked_rcu() as e.g., did btrfs.
With 20 threads each walking a dedicated 1000 dirs * 1000 files
directory tree to stat(2) on a 32 core + 24GB ram vm:
before: 3.54s user 892.30s system 1966% cpu 45.549 total
after: 3.28s user 738.66s system 1955% cpu 37.932 total (-16.7%)
Long-term we should pick up the effort to introduce more
fine-grained locking and possibly improve on the currently used
hash implementation.
- Start zeroing i_state in inode_init_always() instead of doing it in
individual filesystems.
This allows us to remove an unneeded lock acquire in new_inode()
and not burden individual filesystems with this.
dcache:
- Move d_lockref out of the area used by RCU lookup to avoid
cacheline ping poing because the embedded name is sharing a
cacheline with d_lockref.
- Fix dentry size on 32bit with CONFIG_SMP=y so it does actually end
up with 128 bytes in total"
* tag 'vfs-6.11.inode' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
fs: fix dentry size
vfs: move d_lockref out of the area used by RCU lookup
bcachefs: remove now spurious i_state initialization
xfs: remove now spurious i_state initialization in xfs_inode_alloc
vfs: partially sanitize i_state zeroing on inode creation
xfs: preserve i_state around inode_init_always in xfs_reinit_inode
btrfs: use iget5_locked_rcu
vfs: add rcu-based find_inode variants for iget ops
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmaRcQgACgkQxWXV+ddt
WDvAGxAAknJAiREp/AmzhSwkhr+nSnqex0t+VVgsOaMTu0BEHO0xhoXc3l0QuSwS
u2AIqmOYyzr/UQVXCuatBqAE+5T4njtYAYIWwE825yquAtHNyuok9+Sjhfvxrwgs
HmNAN4Vvl2Fwds7xbWE8ug18QlssuRTIX8hk7ZtS6xo49g0tsbRX9KlzIPpsULD3
BOZa+2NJwC1PGVeNPf3p06rfiUkKfmFYgdDybe2zJ17uwsRz1CFSsaEEB35ys1f0
xYOS4epfcie03EGyZmYctuNxatUkk/J/1lTH4Z9JHwvPBvLK1U97SyJ11Wz2VQC/
8ar8gUDRYtjWdf6vn6AWBM4MseaYm9LDMlPhbSfvpDcWiclGTE64IOP4gKKr3mCh
WzlNSIR9I+tYgrhvcsCEzd7lvrSVHa7clwfooYgkEx0wl5lgbN0llAdtJWG3eeLn
3stxje2FqqXsFNj5N9SrPy7f7t6xF2i8vwk4qh6EpRuT4yuatb+nWzDm9EuTT/Bc
P+zM1KFp7Blk7Zw/Tpw0O9qjt1whStY2xrqcMzg539WVo45MmuFEFzmGBRwZsH55
QPGLIjXPpt728AgMdhBFEG0DtWaiA3AOI/C5nYOtLu92aZVBmbaX7/d/GpJv3Vvd
Ihvr9s1c49YvTZsIS0T0tkq/7LXZi/SToRJDjhP5HCrRGf7A30Y=
=gtsF
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Fix a regression in extent map shrinker behaviour.
In the past weeks we got reports from users that there are huge
latency spikes or freezes. This was bisected to newly added shrinker
of extent maps (it was added to fix a build up of the structures in
memory).
I'm assuming that the freezes would happen to many users after release
so I'd like to get it merged now so it's in 6.10. Although the diff
size is not small the changes are relatively straightforward, the
reporters verified the fixes and we did testing on our side.
The fixes:
- adjust behaviour under memory pressure and check lock or scheduling
conditions, bail out if needed
- synchronize tracking of the scanning progress so inode ranges are
not skipped or work duplicated
- do a delayed iput when scanning a root so evicting an inode does
not slow things down in case of lots of dirty data, also fix
lockdep warning, a deadlock could happen when writing the dirty
data would need to start a transaction"
* tag 'for-6.10-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: avoid races when tracking progress for extent map shrinking
btrfs: stop extent map shrinker if reschedule is needed
btrfs: use delayed iput during extent map shrinking
We store the progress (root and inode numbers) of the extent map shrinker
in fs_info without any synchronization but we can have multiple tasks
calling into the shrinker during memory allocations when there's enough
memory pressure for example.
This can result in a task A reading fs_info->extent_map_shrinker_last_ino
after another task B updates it, and task A reading
fs_info->extent_map_shrinker_last_root before task B updates it, making
task A see an odd state that isn't necessarily harmful but may make it
skip certain inode ranges or do more work than necessary by going over
the same inodes again. These unprotected accesses would also trigger
warnings from tools like KCSAN.
So add a lock to protect access to these progress fields.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent map shrinker can be called in a variety of contexts where we
are under memory pressure, and of them is when a task is trying to
allocate memory. For this reason the shrinker is typically called with a
value of struct shrink_control::nr_to_scan that is much smaller than what
we return in the nr_cached_objects callback of struct super_operations
(fs/btrfs/super.c:btrfs_nr_cached_objects()), so that the shrinker does
not take a long time and cause high latencies. However we can still take
a lot of time in the shrinker even for a limited amount of nr_to_scan:
1) When traversing the red black tree that tracks open inodes in a root,
as for example with millions of open inodes we get a deep tree which
takes time searching for an inode;
2) Iterating over the extent map tree, which is a red black tree, of an
inode when doing the rb_next() calls and when removing an extent map
from the tree, since often that requires rebalancing the red black
tree;
3) When trying to write lock an inode's extent map tree we may wait for a
significant amount of time, because there's either another task about
to do IO and searching for an extent map in the tree or inserting an
extent map in the tree, and we can have thousands or even millions of
extent maps for an inode. Furthermore, there can be concurrent calls
to the shrinker so the lock might be busy simply because there is
already another task shrinking extent maps for the same inode;
4) We often reschedule if we need to, which further increases latency.
So improve on this by stopping the extent map shrinking code whenever we
need to reschedule and make it skip an inode if we can't immediately lock
its extent map tree.
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CABXGCsMmmb36ym8hVNGTiU8yfUS_cGvoUmGCcBrGWq9OxTrs+A@mail.gmail.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we failed to link a free space entry because there's already a
conflicting entry for the same offset, we free the free space entry but
we don't free the associated bitmap that we had just allocated before.
Fix that by freeing the bitmap before freeing the entry.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previously we had a BUG_ON() inside extent_range_clear_dirty_for_io(), as
we expected all involved folios to be still locked, thus no folio should be
missing.
However for extent_range_clear_dirty_for_io() itself, we can skip the
missing folio and handle the remaining ones, and return an error if
there is anything wrong.
Remove the BUG_ON() and let the caller to handle the error.
In the caller we do not have a quick way to cleanup the error, but all
the compression routines would handle the missing folio as an error and
properly error out, so we only need to do an ASSERT() for developers,
while for non-debug build the compression routine would handle the
error correctly.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function is only used inside inode.c by compress_file_range(),
so move it to inode.c and unexport it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add more verbose and specific messages to all main error points in
compression code for all algorithms. Currently there's no way to know
which inode is affected or where in the data errors happened.
The messages follow a common format:
- what happened
- error code if relevant
- root and inode
- additional data like offsets or lengths
There's no helper for the messages as they differ in some details and
that would be cumbersome to generalize to a single function. As all the
errors are "almost never happens" there are the unlikely annotations
done as compression is hot path.
Signed-off-by: David Sterba <dsterba@suse.com>
KCSAN complains about a data race when accessing the last_trans field of a
root:
[ 199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs]
[ 199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1:
[ 199.555210] btrfs_record_root_in_trans+0x9a/0x128 [btrfs]
[ 199.555999] start_transaction+0x154/0xcd8 [btrfs]
[ 199.556780] btrfs_join_transaction+0x44/0x60 [btrfs]
[ 199.557559] btrfs_dirty_inode+0x9c/0x140 [btrfs]
[ 199.558339] btrfs_update_time+0x8c/0xb0 [btrfs]
[ 199.559123] touch_atime+0x16c/0x1e0
[ 199.559151] pipe_read+0x6a8/0x7d0
[ 199.559179] vfs_read+0x466/0x498
[ 199.559204] ksys_read+0x108/0x150
[ 199.559230] __s390x_sys_read+0x68/0x88
[ 199.559257] do_syscall+0x1c6/0x210
[ 199.559286] __do_syscall+0xc8/0xf0
[ 199.559318] system_call+0x70/0x98
[ 199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0:
[ 199.559464] record_root_in_trans+0x196/0x228 [btrfs]
[ 199.560236] btrfs_record_root_in_trans+0xfe/0x128 [btrfs]
[ 199.561097] start_transaction+0x154/0xcd8 [btrfs]
[ 199.561927] btrfs_join_transaction+0x44/0x60 [btrfs]
[ 199.562700] btrfs_dirty_inode+0x9c/0x140 [btrfs]
[ 199.563493] btrfs_update_time+0x8c/0xb0 [btrfs]
[ 199.564277] file_update_time+0xb8/0xf0
[ 199.564301] pipe_write+0x8ac/0xab8
[ 199.564326] vfs_write+0x33c/0x588
[ 199.564349] ksys_write+0x108/0x150
[ 199.564372] __s390x_sys_write+0x68/0x88
[ 199.564397] do_syscall+0x1c6/0x210
[ 199.564424] __do_syscall+0xc8/0xf0
[ 199.564452] system_call+0x70/0x98
This is because we update and read last_trans concurrently without any
type of synchronization. This should be generally harmless and in the
worst case it can make us do extra locking (btrfs_record_root_in_trans())
trigger some warnings at ctree.c or do extra work during relocation - this
would probably only happen in case of load or store tearing.
So fix this by always reading and updating the field using READ_ONCE()
and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is only one caller utilizing the @extra_gfp parameter,
alloc_eb_folio_array(). And in that case the extra_gfp is only assigned
to __GFP_NOFAIL.
Rename the @extra_gfp parameter to @nofail to indicate that.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_alloc_folio_array() is only utilized in
btrfs_submit_compressed_read() and no other location, and the only
caller is not utilizing the @extra_gfp parameter.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This new mount option allows the kernel to skip the super flags check,
it's mostly to allow the kernel to do a rescue mount of an interrupted
checksum conversion.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce "rescue=ignoremetacsums" to ignore metadata csums, all the
other metadata sanity checks are still kept as is.
This new mount option is mostly to allow the kernel to mount an
interrupted checksum conversion (at the metadata csum overwrite stage).
And since the main part of metadata sanity checks is inside
tree-checker, we shouldn't lose much safety, and the new mount option is
rescue mount option it requires full read-only mount.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Most of the extra super block flags are beyond 32bits (from
CHANGING_FSID_V2 to CHANGING_*_CSUMS), thus using %llu is not only too
long and pretty hard to read.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following three Opt_* enums haven't been utilized since the port to
new mount API:
- Opt_ignorebadroots
- Opt_ignoredatacsums
- Opt_rescue_all
All those enums are from the old day where we have dedicated mount
options, nowadays they have been moved to "rescue=" mount option
groups, and no more global tokens for them.
So we can safely remove them now.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is to ensure non-compressed file extents (both regular and
prealloc) should have matching ram_bytes and disk_num_bytes.
This is only for CONFIG_BTRFS_DEBUG and CONFIG_BTRFS_ASSERT case,
furthermore this will not return error, but just a kernel warning to
inform developers.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[HICCUP]
After adding extra checks on btrfs_file_extent_item::ram_bytes to
tree-checker, running fsstress leads to tree-checker warning at write time,
as we created file extent items with an invalid ram_bytes.
All those offending file extents have offset 0, and ram_bytes matching
num_bytes, and smaller than disk_num_bytes.
This would also trigger the recently enhanced btrfs-check, which catches
such mismatches and report them as minor errors.
[CAUSE]
When a folio/page is invalidated and it is part of a submitted OE, we
mark the OE truncated just to the beginning of the folio/page.
And for truncated OE, we insert the file extent item with incorrect
value for ram_bytes (using num_bytes instead of the usual value).
This is not a big deal for end users, as we do not utilize the ram_bytes
field for regular non-compressed extents.
This mismatch is just a small violation against on-disk format.
[FIX]
Fix it by removing the override on btrfs_file_extent_item::ram_bytes.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Previously validate_extent_map() is only to catch bugs related to
extent_map member cleanups.
But with recent btrfs-check enhancement to catch ram_bytes mismatch with
disk_num_bytes, it would be much better to catch such extent maps
earlier.
So this patch adds extra ram_bytes validation for extent maps.
Please note that, older filesystems with such mismatch won't trigger this error:
- extent_map::ram_bytes is already fixed
Previous patch has already fixed the ram_bytes for affected file
extents.
So this enhanced sanity check should not affect end users.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[HICCUP]
Kernels can create file extent items with incorrect ram_bytes like this:
item 6 key (257 EXTENT_DATA 0) itemoff 15816 itemsize 53
generation 7 type 1 (regular)
extent data disk byte 13631488 nr 32768
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
Thankfully kernel can handle them properly, as in that case ram_bytes is
not utilized at all.
[ENHANCEMENT]
Since the hiccup is not going to cause any data-loss and is only a minor
violation of on-disk format, here we only need to ignore the incorrect
ram_bytes value, and use the correct one from
btrfs_file_extent_item::disk_num_bytes.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[HICCUP]
Before commit 85de2be7129c ("btrfs: remove extent_map::block_start
member"), we utilized @bytenr variable inside
btrfs_extent_item_to_extent_map() to calculate block_start.
But that commit removed block_start completely, we have no need to
advance @bytenr at all.
[ENHANCEMENT]
- Rename @bytenr as @disk_bytenr
- Only declare @disk_bytenr inside the if branch
- Make @disk_bytenr const and remove the modification on it
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a typo in an error message when checking the block group tree
feature, it mentions fres-space-tree instead of free-space-tree. Fix
that.
Signed-off-by: Mark Harmstone <maharmstone@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The direct IO code is over a thousand lines and it's currently spread
between file.c and inode.c, which makes it not easy to locate some parts
of it sometimes. Also inode.c is about 11 thousand lines and file.c about
4 thousand lines, both too big. So move all the direct IO code into a
dedicated file, so that it's easy to locate all its code and reduce the
sizes of inode.c and file.c.
This is a pure move of code without any other changes except export a
a couple functions from inode.c (get_extent_allocation_hint() and
create_io_em()) because they are used in inode.c and the new direct-io.c
file, and a couple functions from file.c (btrfs_buffered_write() and
btrfs_write_check()) because they are used both in file.c and in the new
direct-io.c file.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a struct btrfs_inode to btrfs_set_prop() as it's an
internal interface, allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a struct btrfs_inode to btrfs_compress_heuristic() as it's an
internal interface, allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The structure is internal so we should use struct btrfs_inode for that,
allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The structure is internal so we should use struct btrfs_inode for that.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a struct btrfs_inode to btrfs_ioctl_send() and _btrfs_ioctl_send()
as it's an internal interface, allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The structure is internal so we should use struct btrfs_inode for that.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a struct btrfs_inode to is_data_inode() as it's an
internal interface, allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a struct btrfs_inode to btrfs_readdir_get_delayed_items() as it's
an internal interface, allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a struct btrfs_inode to btrfs_readdir_put_delayed_items() as it's
an internal interface, allowing to remove some use of BTRFS_I.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the encoding field from 'struct btrfs_stripe_extent'. It was
originally intended to encode the RAID type as well as if we're a data
or a parity stripe.
But the RAID type can be inferred form the block-group and the data vs.
parity differentiation can be done easier with adding a new key type
for parity stripes in the RAID stripe tree.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When debugging the recent ram_bytes mismatch bug, I can hit it with
enhanced tree-checker for file extent items at write time.
But the bug is not that easy to trigger (mostly triggered with
btrfs/06*, which uses 20 threads fsstress), and when I hit it, the only
info is the kernel leaf dump, but it doesn't include things like the
file extent type (REGULAR or PREALLOC).
Add the dump for generation and type (although only numeric output) to
make debugging a little easier.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Periodic reclaim attempts to avoid block_groups seeing active use with a
sweep mark that gets cleared on allocation and set on a sweep. In urgent
conditions where we have very little unallocated space (less than one
chunk used by the threshold calculation for the unallocated target), we
want to be able to override this mechanism.
Introduce a second pass that only happens if we fail to find a reclaim
candidate and reclaim is urgent. In that case, do a second pass where
all block groups are eligible.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Periodic reclaim runs the risk of getting stuck in a state where it
keeps reclaiming the same block group over and over. This can happen if
1. reclaiming that block_group fails
2. reclaiming that block_group fails to move any extents into existing
block_groups and just allocates a fresh chunk and moves everything.
Currently, 1. is a very tight loop inside the reclaim worker. That is
critical for edge triggered reclaim or else we risk forgetting about a
reclaimable group. On the other hand, with level triggered reclaim we
can break out of that loop and get it later.
With that fixed, 2. applies to both failures and "successes" with no
progress. If we have done a periodic reclaim on a space_info and nothing
has changed in that space_info, there is not much point to trying again,
so don't, until enough space gets free, which we capture with a
heuristic of needing to net free 1 chunk.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently employ a edge-triggered block group reclaim strategy which
marks block groups for reclaim as they free down past a threshold.
With a dynamic threshold, this is worse than doing it in a
level-triggered fashion periodically. That is because the reclaim
itself happens periodically, so the threshold at that point in time is
what really matters, not the threshold at freeing time. If we mark the
reclaim in a big pass, then sort by usage and do reclaim, we also
benefit from a negative feedback loop preventing unnecessary reclaims as
we crunch through the "best" candidates.
Since this is quite a different model, it requires some additional
support. The edge triggered reclaim has a good heuristic for not
reclaiming fresh block groups, so we need to replace that with a typical
GC sweep mark which skips block groups that have seen an allocation
since the last sweep.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
We can currently recover allocated block_groups by:
- explicitly starting balance operations
- "auto reclaim" via bg_reclaim_threshold
The latter works by checking against a fixed threshold on frees. If we
pass from above the threshold to below, relocation triggers and the
block group will get reclaimed by the cleaner thread (assuming it is
still eligible)
Picking a threshold is challenging. Too high, and you end up trying to
reclaim very full block_groups which is quite costly, and you don't do
reclaim on block_groups that don't get quite THAT full, but could still
be quite fragmented and stranding a lot of space. Too low, and you
similarly miss out on reclaim even if you badly need it to avoid running
out of unallocated space, if you have heavily fragmented block groups
living above the threshold.
No matter the threshold, it suffers from a workload that happens to
bounce around that threshold, which can introduce arbitrary amounts of
reclaim waste.
To improve this situation, introduce a dynamic threshold. The basic idea
behind this threshold is that it should be very lax when there is plenty
of unallocated space, and increasingly aggressive as we approach zero
unallocated space. To that end, it sets a target for unallocated space
(10 chunks) and then linearly increases the threshold as the amount of
space short of the target we are increases. The formula is:
(target - unalloc) / target
I tested this by running it on three interesting workloads:
1. bounce allocations around X% full.
2. fill up all the way and introduce full fragmentation.
3. write in a fragmented way until the filesystem is just about full.
1. and 2. attack the weaknesses of a fixed threshold; fixed either works
perfectly or fully falls apart, depending on the threshold. Dynamic
always handles these cases well.
3. attacks dynamic by checking whether it is too zealous to reclaim in
conditions with low unallocated and low unused. It tends to claw back
1GiB of unallocated fairly aggressively, but not much more. Early
versions of dynamic threshold struggled on this test.
Additional work could be done to intelligently ratchet up the urgency of
reclaim in very low unallocated conditions. Existing mechanisms are
already useless in that case anyway.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
This is handy when computing space_info dynamic reclaim thresholds where
we do not have access to a block group. We could add it to the various
functions as a parameter, but it seems reasonable for space_info to have
an fs_info pointer.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When evaluating various reclaim strategies/thresholds against each
other, it is useful to collect data about the amount of reclaim
happening. Expose a count, error count, and byte count via sysfs
per space_info.
Note that this is only for automatic reclaim, not manually invoked
balances or other codepaths that use "relocate_block_group"
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Calling btrfs_handle_fs_error() after btrfs_run_qgroups() fails to
update the qgroup status is probably not necessary, this would turn the
filesystem to read-only. For the same reason aborting the transaction is
also not a good option.
The state is left inconsistent and can be fixed by rescan, printing a
warning should be sufficient. Return code reflects the status of
adding/deleting the relation and if the transaction was ended properly.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a transaction joined in the qgroup relation add/remove ioctl and
any error will lead to abort/error. We could lift the allocation from
btrfs_add_qgroup_relation() and move it outside of the transaction
context. The relation deletion does not need that.
The ownership of the structure is moved to the add relation handler.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The errors during removing a chunk item are fatal, we expect to have a
matching item in the chunk map from which the chunk_offset is taken.
Handle that by transaction abort.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent item used to have a v0 that was removed in 6.6. There's a
check for minimum expected size that could lead to
btrfs_handle_fs_error() that would make the filesystem read-only. As we
don't have v0 anymore (and haven't seen any reports in the deprecation
period), handle this in a less intrusive way.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When an extended ref is deleted we do a sanity check right before
removing the item, if we can't find it then handle the error. This is
done by btrfs_handle_fs_error() but this is from the time before we had
the transaction abort infrastructure, so switch to that. The end result
is the same, the error is reported and switched to read-only. We newly
return the -ENOENT error code as this better represents what happened.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We always allocate a delayed extent op structure when allocating a tree
block (except for log trees), but most of the time we don't need it as
we only need to set the BTRFS_BLOCK_FLAG_FULL_BACKREF if we're dealing
with a relocation tree and we only need to set the key of a tree block
in a btrfs_tree_block_info structure if we are not using skinny metadata
(feature enabled by default since btrfs-progs 3.18 and available as of
kernel 3.10).
In these cases, where we don't need neither to update flags nor to set
the key, we only use the delayed extent op structure to set the tree
block's level. This is a waste of memory and besides that, the memory
allocation can fail and can add additional latency.
Instead of using a delayed extent op structure to store the level of
the tree block, use the delayed ref head to store it. This doesn't
change the size of neither structure and helps us avoid allocating
delayed extent ops structures when using the skinny metadata feature
and there's no relocation going on. This also gets rid of a BUG_ON().
For example, for a fs_mark run, with 5 iterations, 8 threads and 100K
files per iteration, before this patch there were 118109 allocations
of delayed extent op structures and after it there were none.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When qgroups are enabled, during data reservation, we allocate the
ulist_nodes that track the exact reserved extents with GFP_ATOMIC
unconditionally. This is unnecessary, and we can follow the model
already employed by the struct extent_state we preallocate in the non
qgroups case, which should reduce the risk of allocation failures with
GFP_ATOMIC.
Add a prealloc node to struct ulist which ulist_add will grab when it is
present, and try to allocate it before taking the tree lock while we can
still take advantage of a less strict gfp mask. The lifetime of that
node belongs to the new prealloc field, until it is used, at which point
it belongs to the ulist linked list.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of doing a BUG_ON() handle the error by returning -EUCLEAN,
aborting the transaction and logging an error message.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using an if-else statement when processing the extent item at
btrfs_lookup_extent_info(), use a single if statement for the error case
since it does a goto at the end and leave the success (expected) case
following the if statement, reducing indentation and making the logic a
bit easier to follow. Also make the if statement's condition as unlikely
since it's not expected to ever happen, as it signals some corruption,
making it clear and hint the compiler to generate more efficient code.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we didn't found an extent item with the initial btrfs_search_slot()
call, it's pointless to test if the "metadata" variable is "true", because
right after we check if the key type is BTRFS_METADATA_ITEM_KEY and that
is the case only when "metadata" is set to "true". So remove the redundant
check.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of a BUG_ON() just return an error, log an error message and
abort the transaction in case we find an extent buffer belonging to the
relocation tree that doesn't have the full backref flag set. This is
unexpected and should never happen (save for bugs or a potential bad
memory).
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We keep a "new_flags" variable only to keep track if we need to update the
metadata extent's flags, and when we set BTRFS_BLOCK_FLAG_FULL_BACKREF in
the variable, we do it in an inner scope. Then check in an outer scope
if the variable is not 0 and if so call btrfs_set_disk_extent_flags().
The variable isn't used for anything else. This is somewhat confusing, so
to make it more straightforward update the extent's flags where we are
currently updating "new_flags" and remove the variable.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are no callers of btrfs_lookup_extent_info() that pass a NULL value
for the transaction handle argument, so there's no point in having special
logic to deal with the NULL. The last caller that passed a NULL value was
removed in commit 19b546d7a1 ("btrfs: relocation:
Use btrfs_find_all_leafs to locate data extent parent tree leaves").
So remove the NULL handling from btrfs_lookup_extent_info().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_force_cow_block() we have several error paths that need to
unlock the "cow" extent buffer, drop the reference on it and then return
an error. This is a bit verbose so add a label where we perform these
tasks and make the error paths jump to that label.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When freeing a tree block, at btrfs_free_tree_block(), if we fail to
create a delayed reference we don't deal with the error and just do a
BUG_ON(). The error most likely to happen is -ENOMEM, and we have a
comment mentioning that only -ENOMEM can happen, but that is not true,
because in case qgroups are enabled any error returned from
btrfs_qgroup_trace_extent_post() (can be -EUCLEAN or anything returned
from btrfs_search_slot() for example) can be propagated back to
btrfs_free_tree_block().
So stop doing a BUG_ON() and return the error to the callers and make
them abort the transaction to prevent leaking space. Syzbot was
triggering this, likely due to memory allocation failure injection.
Reported-by: syzbot+a306f914b4d01b3958fe@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000fcba1e05e998263c@google.com/
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's pointless to pass a super block argument to btrfs_iget_locked()
because we always pass a root and from it we can get the super block
through:
root->fs_info->sb
So remove the super block argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's pointless to pass a super block argument to btrfs_iget_path() because
we always pass a root and from it we can get the super block through:
root->fs_info->sb
So remove the super block argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's pointless to pass a super block argument to btrfs_iget() because we
always pass a root and from it we can get the super block through:
root->fs_info->sb
So remove the super block argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 2b2553f123 ("btrfs: stop setting PageError in the data I/O
path") btrfs no longer utilizes subpage error bitmaps anymore, but the
commit forgot to remove the error bitmap in btrfs_subpage_dump_bitmap(),
resulting in possible meaningless result for the error bitmap.
Fix it by just removing the error bitmap dumping.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Snapshot delete has some complicated looking code that is weirdly subtle
at times. I've cleaned it up the best I can without re-writing it, but
there are still a lot of details that are non-obvious. Add a bunch of
comments to the main parts of the code to help future developers better
understand the mechanics of snapshot deletion.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In walk_up_proc() we BUG_ON(ret) from btrfs_dec_ref(). This is
incorrect, we have proper error handling here, return the error.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In walk_up_proc() we have several sanity checks that should only trip if
the programmer made a mistake. Convert these to ASSERT()'s instead of
BUG_ON()'s.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In reada we BUG_ON(refs == 0), which could be unkind since we aren't
holding a lock on the extent leaf and thus could get a transient
incorrect answer. In walk_down_proc we also BUG_ON(refs == 0), which
could happen if we have extent tree corruption. Change that to return
-EUCLEAN. In do_walk_down() we catch this case and handle it correctly,
however we return -EIO, which -EUCLEAN is a more appropriate error code.
Finally in walk_up_proc we have the same BUG_ON(refs == 0), so convert
that to proper error handling. Also adjust the error message so we can
actually do something with the information.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a couple of areas where we check to make sure the tree block is
locked before looking up or messing with references. This is old code
so it has this as BUG_ON(). Convert this to ASSERT() for developers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have blanket BUG_ON(ret) after every one of these reference mod
attempts, which is just incorrect. If we encounter any errors during
walk_down_tree() we will abort, so abort on any one of these failures.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We handle errors here properly, ENOMEM isn't fatal, return the error.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a big chunk of code in do_walk_down() that will conditionally
remove the reference for the child block we're currently evaluating.
Extract it out into it's own helper and call that from do_walk_down()
instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently duplicate the logic for walking into a node during snapshot
delete. In one case it is during the actual delete, and in the other we
use it for deciding if we should reada the block or not.
Factor this code into it's own helper and comment fully what we're
doing, and then update the two users to use the new helper.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only set this if wc->refs[level - 1] > 1, and we check this way up
above where we need it because the first thing we do before dropping our
refs is reset wc->refs[level - 1] to 0. Reorder resetting of wc->refs
to after our drop logic, and then remove the need_account variable and
simply check wc->refs[level - 1] directly instead of using a variable.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
do_walk_down() already has a bunch of things going on, and there's a bit
of code related to reading in the next eb if we decide we need it. Move
this code off into it's own helper to clean up do_walk_down() a little
bit.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using a flag we're passing around everywhere, add a field to
walk_control that we're already passing around everywhere and use that
instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently if our extent buffer isn't uptodate we will drop the lock,
free it, and then call read_tree_block() for the bytenr. This is
inefficient, we already have the extent buffer, we can simply call
btrfs_read_extent_buffer().
Merge these two cases down into one if statement, if we are not uptodate
we can drop the lock, trigger readahead, and do the read using
btrfs_read_extent_buffer(), and carry on.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we have a handful of btrfs_check_eb_owner() calls in various
places and helpers that read extent buffers. However we call this in
the endio handler for every metadata block, so these extra checks are
unnecessary, simply remove them from everywhere except the endio
handler.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do find_extent_buffer(), and then if we don't find the eb in cache we
call btrfs_find_create_tree_block(), which calls find_extent_buffer()
first and then allocates the extent buffer.
The reason we're doing this is because if we don't find the extent
buffer in cache we set reada = 1. However this doesn't matter, because
lower down we only trigger reada if !btrfs_buffer_uptodate(eb), which is
what the case would be if we didn't find the extent buffer in cache and
had to allocate it.
Clean this up to simply call btrfs_find_create_tree_block(), and then
use the fact that we're having to read the extent buffer off of disk to
go ahead and kick off readahead.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As of commit 1b53e51a4a ("btrfs: don't commit transaction for every
subvol create") we started to make any fsync after creating a subvolume
to fallback to a transaction commit if the fsync is performed in the
same transaction that was used to create the subvolume. This happens
with the following at ioctl.c:create_subvol():
$ cat fs/btrfs/ioctl.c
(...)
/* Tree log can't currently deal with an inode which is a new root. */
btrfs_set_log_full_commit(trans);
(...)
Note that the comment is misleading as the problem is not that fsync can
not deal with the root inode of a new root, but that we can not log any
inode that belongs to a root that was not yet persisted because that would
make log replay fail since the root doesn't exist at log replay time.
The above simply makes any fsync fallback to a full transaction commit if
it happens in the same transaction used to create the subvolume - even if
it's an inode that belongs to any other subvolume. This is a brute force
solution and it doesn't necessarily improve performance for every workload
out there - it just moves a full transaction commit from one place, the
subvolume creation, to another - an fsync for any inode.
Just improve on this by making the fallback to a transaction commit only
for an fsync against an inode of the new subvolume, or for the directory
that contains the dentry that points to the new subvolume (in case anyone
attempts to fsync the directory in the same transaction).
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating and deleting a subvolume, after starting a transaction we
are explicitly calling btrfs_record_root_in_trans() for the root which we
passed to btrfs_start_transaction(). This is pointless because at
transaction.c:start_transaction() we end up doing that call, regardless
of whether we actually start a new transaction or join an existing one,
and if we were not it would mean the root item of that root would not
be updated in the root tree when committing the transaction, leading to
problems easy to spot with fstests for example.
Remove these redundant calls. They were introduced with commit
74e9795812 ("btrfs: qgroup: fix qgroup prealloc rsv leak in subvolume
operations").
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All parameters passed into setup_relocation_extent_mapping() can be
derived from 'struct reloc_control', so only pass in a 'struct
reloc_control'.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a 'struct reloc_control' to prealloc_file_extent_cluster()
instead of passing its members 'data_inode' and 'cluster' on their own.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In describe_relocation() the fs_info is only needed for printing
information via btrfs_info() and can easily be accessed via the passed
in 'struct btrfs_block_group'.
So we can safely remove the fs_info parameter.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a struct reloc_control to relocate_one_folio, instead of passing
it's members data_inode and cluster as separate arguments to the function.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of passing in a reloc_control's data_inode and
file_extent_cluster members, pass in the whole reloc_control structure.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass a 'struct reloc_control' to relocate_data_extent() instead of
it's data_inode and file_extent_cluster separately.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During ordered extent splitting if we find a duplicated ordered extent
when attempting to insert the new ordered extent we panic but with a
message that has the "zoned:" prefix. This is because the splitting used
to be exclusive for zoned filesystems, but as of commit b73a6fd1b1
("btrfs: split partial dio bios before submit") it can also be done for
non zoned filesystems during direct IO writes. So remove the "zoned:"
prefix from the message and mention the split to make it more specific
and different from the panic message at insert_ordered_extent().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We never expect an ordered extent insertion to fail due to already having
another ordered extent in the tree for the same file offset, since we
always wait for existing ordered extents in a range to complete before
writing into the range again. So mark the failure checks for the results
of tree_insert() as unlikely, to make it clear it's never expected (save
exceptional causes like bugs or memory corruptions) and to serve as a hint
for the compiler to possibly generate better code.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_split_ordered_extent(), we are removing and re-inserting the
ordered extent that we are trimming, but we don't need to since the
trimming doesn't change its position in the red black tree because we
don't have overlapping ordered extents (that would imply double allocation
of extents) and we know the split length is smaller than the ordered
extent's num_bytes field (we checked that early in the function).
So drop the remove and re-insert code for the slit ordered extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are subtle details about why the root's ordered_extent_lock is held,
so add a comment mentioning them.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_wait_ordered_extents(), there's no point in updating the counters
after locking the root's ordered extent lock, as the counters are local.
So change this to update the counters before taking the lock.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_wait_ordered_roots(), there's no point in decrementing the
counter after locking fs_info->ordered_root_lock as the counter is local.
So change this to decrement the counter before taking the lock.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can add const to many parameters, this is for clarity and minor
addition to safety. There are some minor effects, in the assembly
code and .ko measured on release config. This patch does not cover all
possible conversions.
Signed-off-by: David Sterba <dsterba@suse.com>
There is already an error inside that header:
#if !defined(__LINUX_SPINLOCK_TYPES_H)
# error "Do not include directly, include spinlock_types.h"
#endif
Thankfully it never get triggered as some other headers have already
included spinlock_types.h.
However clangd would still do a proper warning on that if only
extent_map.h is opened.
Fix it by using spinlock_types.h instead.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several headers that are including themselves, triggering clangd
warnings.
Such includes are caused by commit 602035d7fe ("btrfs: add forward
declarations and headers, part 2").
Just remove such unnecessary include.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Generic slab works fine allocating btrfs_qgroup_extent_record
structures. It's not necessary to create a dedicated kmem cache that
would be created but unused if quotas were not enabled. Let's delete the
TODO line.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Junchao Sun <sunjunchao2870@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When extent_write_locked_range() generated an inline extent, it would
set and finish the writeback for the whole page.
Although currently it's safe since subpage disables inline creation,
for the sake of consistency, let it go with subpage helpers to set and
clear the writeback flags.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For subpage + zoned case, the following workload can lead to rsv data
leak at unmount time:
# mkfs.btrfs -f -s 4k $dev
# mount $dev $mnt
# fsstress -w -n 8 -d $mnt -s 1709539240
0/0: fiemap - no filename
0/1: copyrange read - no filename
0/2: write - no filename
0/3: rename - no source filename
0/4: creat f0 x:0 0 0
0/4: creat add id=0,parent=-1
0/5: writev f0[259 1 0 0 0 0] [778052,113,965] 0
0/6: ioctl(FIEMAP) f0[259 1 0 0 224 887097] [1294220,2291618343991484791,0x10000] -1
0/7: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 224 887097] return 25, fallback to stat()
0/7: dwrite f0[259 1 0 0 224 887097] [696320,102400] 0
# umount $mnt
The dmesg includes the following rsv leak detection warning (all call
trace skipped):
------------[ cut here ]------------
WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8653 btrfs_destroy_inode+0x1e0/0x200 [btrfs]
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8654 btrfs_destroy_inode+0x1a8/0x200 [btrfs]
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8660 btrfs_destroy_inode+0x1a0/0x200 [btrfs]
---[ end trace 0000000000000000 ]---
BTRFS info (device sda): last unmount of filesystem 1b4abba9-de34-4f07-9e7f-157cf12a18d6
------------[ cut here ]------------
WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs]
---[ end trace 0000000000000000 ]---
BTRFS info (device sda): space_info DATA has 268218368 free, is not full
BTRFS info (device sda): space_info total=268435456, used=204800, pinned=0, reserved=0, may_use=12288, readonly=0 zone_unusable=0
BTRFS info (device sda): global_block_rsv: size 0 reserved 0
BTRFS info (device sda): trans_block_rsv: size 0 reserved 0
BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0
BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0
BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0
------------[ cut here ]------------
WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs]
---[ end trace 0000000000000000 ]---
BTRFS info (device sda): space_info METADATA has 267796480 free, is not full
BTRFS info (device sda): space_info total=268435456, used=131072, pinned=0, reserved=0, may_use=262144, readonly=0 zone_unusable=245760
BTRFS info (device sda): global_block_rsv: size 0 reserved 0
BTRFS info (device sda): trans_block_rsv: size 0 reserved 0
BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0
BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0
BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0
Above $dev is a tcmu-runner emulated zoned HDD, which has a max zone
append size of 64K, and the system has 64K page size.
[CAUSE]
I have added several trace_printk() to show the events (header skipped):
> btrfs_dirty_pages: r/i=5/259 dirty start=774144 len=114688
> btrfs_dirty_pages: r/i=5/259 dirty part of page=720896 off_in_page=53248 len_in_page=12288
> btrfs_dirty_pages: r/i=5/259 dirty part of page=786432 off_in_page=0 len_in_page=65536
> btrfs_dirty_pages: r/i=5/259 dirty part of page=851968 off_in_page=0 len_in_page=36864
The above lines show our buffered write has dirtied 3 pages of inode
259 of root 5:
704K 768K 832K 896K
I |////I/////////////////I///////////| I
756K 868K
|///| is the dirtied range using subpage bitmaps. and 'I' is the page
boundary.
Meanwhile all three pages (704K, 768K, 832K) have their PageDirty
flag set.
> btrfs_direct_write: r/i=5/259 start dio filepos=696320 len=102400
Then direct IO write starts, since the range [680K, 780K) covers the
beginning part of the above dirty range, we need to writeback the
two pages at 704K and 768K.
> cow_file_range: r/i=5/259 add ordered extent filepos=774144 len=65536
> extent_write_locked_range: r/i=5/259 locked page=720896 start=774144 len=65536
Now the above 2 lines show that we're writing back for dirty range
[756K, 756K + 64K).
We only writeback 64K because the zoned device has max zone append size
as 64K.
> extent_write_locked_range: r/i=5/259 clear dirty for page=786432
!!! The above line shows the root cause. !!!
We're calling clear_page_dirty_for_io() inside extent_write_locked_range(),
for the page 768K.
This is because extent_write_locked_range() can go beyond the current
locked page, here we hit the page at 768K and clear its page dirt.
In fact this would lead to the desync between subpage dirty and page
dirty flags. We have the page dirty flag cleared, but the subpage range
[820K, 832K) is still dirty.
After the writeback of range [756K, 820K), the dirty flags look like
this, as page 768K no longer has dirty flag set.
704K 768K 832K 896K
I I | I/////////////| I
820K 868K
This means we will no longer writeback range [820K, 832K), thus the
reserved data/metadata space would never be properly released.
> extent_write_cache_pages: r/i=5/259 skip non-dirty folio=786432
Now even though we try to start writeback for page 768K, since the
page is not dirty, we completely skip it at extent_write_cache_pages()
time.
> btrfs_direct_write: r/i=5/259 dio done filepos=696320 len=0
Now the direct IO finished.
> cow_file_range: r/i=5/259 add ordered extent filepos=851968 len=36864
> extent_write_locked_range: r/i=5/259 locked page=851968 start=851968 len=36864
Now we writeback the remaining dirty range, which is [832K, 868K).
Causing the range [820K, 832K) never to be submitted, thus leaking the
reserved space.
This bug only affects subpage and zoned case. For non-subpage and zoned
case, we have exactly one sector for each page, thus no such partial dirty
cases.
For subpage and non-zoned case, we never go into run_delalloc_cow(), and
normally all the dirty subpage ranges would be properly submitted inside
__extent_writepage_io().
[FIX]
Just do not clear the page dirty at all inside extent_write_locked_range().
As __extent_writepage_io() would do a more accurate, subpage compatible
clear for page and subpage dirty flags anyway.
Now the correct trace would look like this:
> btrfs_dirty_pages: r/i=5/259 dirty start=774144 len=114688
> btrfs_dirty_pages: r/i=5/259 dirty part of page=720896 off_in_page=53248 len_in_page=12288
> btrfs_dirty_pages: r/i=5/259 dirty part of page=786432 off_in_page=0 len_in_page=65536
> btrfs_dirty_pages: r/i=5/259 dirty part of page=851968 off_in_page=0 len_in_page=36864
The page dirty part is still the same 3 pages.
> btrfs_direct_write: r/i=5/259 start dio filepos=696320 len=102400
> cow_file_range: r/i=5/259 add ordered extent filepos=774144 len=65536
> extent_write_locked_range: r/i=5/259 locked page=720896 start=774144 len=65536
And the writeback for the first 64K is still correct.
> cow_file_range: r/i=5/259 add ordered extent filepos=839680 len=49152
> extent_write_locked_range: r/i=5/259 locked page=786432 start=839680 len=49152
Now with the fix, we can properly writeback the range [820K, 832K), and
properly release the reserved data/metadata space.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have a subpage range like this for a 16K page with 4K sectorsize:
0 4K 8K 12K 16K
|/////| |//////| |
|/////| = dirty range
Currently writepage_delalloc() would go through the following steps:
- lock range [0, 4K)
- run delalloc range for [0, 4K)
- lock range [8K, 12K)
- run delalloc range for [8K 12K)
So far it's fine for regular subpage writeback, as
btrfs_run_delalloc_range() can only go into one of run_delalloc_nocow(),
cow_file_range() and run_delalloc_compressed().
But there is a special case for zoned subpage, where we will go
through run_delalloc_cow(), which would create the ordered extent for the
range and immediately submit the range.
This would unlock the whole page range, causing all kinds of different
ASSERT()s related to locked page.
Address the page unlocking problem of run_delalloc_cow(), by changing
the workflow to the following one:
- lock range [0, 4K)
- lock range [8K, 12K)
- run delalloc range for [0, 4K)
- run delalloc range for [8K, 12K)
So that run_delalloc_cow() can only unlock the full page until the
last lock user released.
To do that:
- Utilize subpage locked bitmap
So for every delalloc range we found, call
btrfs_folio_set_writer_lock() to populate the subpage locked bitmap,
and later btrfs_folio_end_all_writers() if the page is fully unlocked.
So we know there is a delalloc range that needs to be run later.
- Save the @delalloc_end as @last_delalloc_end inside writepage_delalloc()
Since subpage locked bitmap is only for ranges inside the page,
meanwhile we can have delalloc range ends beyond our page boundary,
we have to save the @last_delalloc_end just in case it's beyond our
page boundary.
Although there is one extra point to notice:
- We need to handle errors in previous iteration
Since we can have multiple locked delalloc ranges we have to call
run_delalloc_ranges() multiple times.
If we hit an error half way, we still need to unlock the remaining
ranges.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Three new helpers are introduced for the incoming subpage delalloc locking
change.
- btrfs_folio_set_writer_lock()
This is to mark specified range with subpage specific writer lock.
After calling this, the subpage range can be proper unlocked by
btrfs_folio_end_writer_lock()
- btrfs_subpage_find_writer_locked()
This is to find the writer locked subpage range in a page.
With the help of btrfs_folio_set_writer_lock(), it can allow us to
record and find previously locked subpage range without extra memory
allocation.
- btrfs_folio_end_all_writers()
This is for the locked_page of __extent_writepage(), as there may be
multiple subpage delalloc ranges locked.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function __extent_writepage_io() is designed to find all dirty ranges of
a page, and add the dirty ranges to the bio_ctrl for submission.
It requires all the dirtied ranges to be covered by an ordered extent.
It gets called in two locations, but one call site is not subpage aware:
- __extent_writepage()
It gets called when writepage_delalloc() returned 0, which means
writepage_delalloc() has handled delalloc for all subpage sectors
inside the page.
So this call site is OK.
- extent_write_locked_range()
This call site is utilized by zoned support, and in this case, we may
only run delalloc range for a subset of the page, like this: (64K page
size)
0 16K 32K 48K 64K
|/////| |///////| |
In the above case, if extent_write_locked_range() is only triggered for
range [0, 16K), __extent_writepage_io() would still try to submit
the dirty range of [32K, 48K), then it would not find any ordered
extent for it and triggers various ASSERT()s.
Fix this problem by:
- Introducing @start and @len parameters to specify the range
For the first call site, we just pass the whole page, and the behavior
is not touched, since run_delalloc_range() for the page should have
created all ordered extents for the page.
For the second call site, we avoid touching anything beyond the
range, thus avoiding the dirty range which is not yet covered by any
delalloc range.
- Making btrfs_folio_assert_not_dirty() subpage aware
The only caller is inside __extent_writepage_io(), and since that
caller now accepts a subpage range, we should also check the subpage
range other than the whole page.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix the 'make W=1' warning:
WARNING: modpost: missing MODULE_DESCRIPTION() in fs/btrfs/btrfs.o
Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Drop the variable 'err', reuse the variable 'ret' by reinitializing it to
zero where necessary.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix coding style: rename the return variable to 'ret' in the function
btrfs_recover_relocation instead of 'err'.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A preparatory patch to rename 'err' to 'ret', but ret is already used as an
intermediary return value, so first rename 'ret' to 'ret2'.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the function btrfs_recover_relocation(), currently the variable 'err'
carries the return value and 'ret' holds the intermediary return value.
However, in some lines, we don't need this two-step approach; we can
directly use 'err'. So, optimize them, which requires reinitializing 'err'
to zero at two locations.
This is a preparatory patch to fix the code style by renaming 'err'
to 'ret'.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since err represents the function return value, rename it as ret,
and rename the original ret, which serves as a helper return value,
to found. Also, optimize the code to continue call btrfs_put_root()
for the rest of the root if even after btrfs_orphan_cleanup() returns
error.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following 3 parameters can be cleaned up using btrfs_file_extent
structure:
- len
btrfs_file_extent::num_bytes
- orig_block_len
btrfs_file_extent::disk_num_bytes
- ram_bytes
btrfs_file_extent::ram_bytes
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Most parameters of create_io_em() can be replaced by the members with
the same name inside btrfs_file_extent.
Do a direct parameters cleanup here.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All parameters after @filepos of btrfs_alloc_ordered_extent() can be
replaced with btrfs_file_extent structure.
This patch does the cleanup, meanwhile some points to note:
- Move btrfs_file_extent structure to ordered-data.h
The structure is needed by both btrfs_alloc_ordered_extent() and
can_nocow_extent(), but since btrfs_inode.h includes
ordered-data.h, so we need to move the structure to ordered-data.h.
- Move the special handling of NOCOW/PREALLOC into
btrfs_alloc_ordered_extent()
This is to allow btrfs_split_ordered_extent() to properly split them
for DIO.
For now just move the handling into btrfs_alloc_ordered_extent() to
simplify the callers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following functions and structures can be simplified using the
btrfs_file_extent structure:
- can_nocow_extent()
No need to return ram_bytes/orig_block_len through the parameter list,
the @file_extent parameter contains all the needed info.
- can_nocow_file_extent_args
The following members are no longer needed:
* disk_bytenr
This one is confusing as it's not really the
btrfs_file_extent_item::disk_bytenr, but where the IO would be,
thus it's file_extent::disk_bytenr + file_extent::offset now.
* num_bytes
Now file_extent::num_bytes.
* extent_offset
Now file_extent::offset.
* disk_num_bytes
Now file_extent::disk_num_bytes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member extent_map::block_start can be calculated from
extent_map::disk_bytenr + extent_map::offset for regular extents.
And otherwise just extent_map::disk_bytenr.
And this is already validated by the validate_extent_map(). Now we can
remove the member.
However there is a special case in btrfs_create_dio_extent() where we
for NOCOW/PREALLOC ordered extents cannot directly use the resulting
btrfs_file_extent, as btrfs_split_ordered_extent() cannot handle them
yet.
So for that call site, we pass file_extent->disk_bytenr +
file_extent->num_bytes as disk_bytenr for the ordered extent, and 0 for
offset.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent_map::block_len is either extent_map::len (non-compressed
extent) or extent_map::disk_num_bytes (compressed extent).
Since we already have sanity checks to do the cross-checks between the
new and old members, we can drop the old extent_map::block_len now.
For most call sites, they can manually select extent_map::len or
extent_map::disk_num_bytes, since most if not all of them have checked
if the extent is compressed.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have extent_map::offset, the old extent_map::orig_start is just
extent_map::start - extent_map::offset for non-hole/inline extents.
And since the new extent_map::offset is already verified by
validate_extent_map() while the old orig_start is not, let's just remove
the old member from all call sites.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since extent_map structure has the all the needed members to represent a
file extent directly, we can apply all the file extent sanity checks to
an extent map.
The new sanity checks will cross check both the old members
(block_start/block_len/orig_start) and the new members
(disk_bytenr/disk_num_bytes/offset).
There is a special case for offset/orig_start/start cross check, we only
do such sanity check for compressed extent, as only compressed
read/encoded write really utilize orig_start.
This can be proved by the cleanup patch of orig_start.
The checks happens at the following times:
- add_extent_mapping()
This is for newly added extent map
- replace_extent_mapping()
This is for btrfs_drop_extent_map_range() and split_extent_map()
- try_merge_map()
For a lot of call sites we have to properly populate all the members to
pass the sanity check, meanwhile the following code needs extra
modification:
- setup_file_extents() from inode-tests
The file extents layout of setup_file_extents() is already too invalid
that tree-checker would reject most of them in real world.
However there is just a special unaligned regular extent which has
mismatched disk_num_bytes (4096) and ram_bytes (4096 - 1).
So instead of dropping the whole test case, here we just unify
disk_num_bytes and ram_bytes to 4096 - 1.
- test_case_7() from extent-map-tests
An extent is inserted with 16K length, but on-disk extent size is
only 4K.
This means it must be a compressed extent, so set the compressed flag
for it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce two new members for extent_map:
- disk_bytenr
- offset
Both are matching the members with the same name inside
btrfs_file_extent_items.
For now this patch only touches those members when:
- Reading btrfs_file_extent_items from disk
- Inserting new holes
- Merging two extent maps
With the new disk_bytenr and disk_num_bytes, doing merging would be a
little more complex, as we have 3 different cases:
* Both extent maps are referring to the same data extents
|<----- data extent A ----->|
|<- em 1 ->|<- em 2 ->|
* Both extent maps are referring to different data extents
|<-- data extent A -->|<-- data extent B -->|
|<- em 1 ->|<- em 2 ->|
* One of the extent maps is referring to a merged and larger data
extent that covers both extent maps
This is not really valid case other than some selftests.
So this test case would be removed.
A new helper merge_ondisk_extents() is introduced to handle the above
valid cases.
To properly assign values for those new members, a new btrfs_file_extent
parameter is introduced to all the involved call sites.
- For NOCOW writes the btrfs_file_extent would be exposed from
can_nocow_file_extent().
- For other writes, the members can be easily calculated
As most of them have 0 offset and utilizing the whole on-disk data
extent.
The exception is encoded write, but thankfully that interface provided
offset directly and all other needed info.
For now, both the old members (block_start/block_len/orig_start) are
co-existing with the new members (disk_bytenr/offset), meanwhile all the
critical code is still using the old members only.
The cleanup will happen later after all the old and new members are
properly validated.
There would be some re-ordering for the assignment of the extent_map
members, now we follow the new ordering:
- start and len
Or file_pos and num_bytes for other structures.
- disk_bytenr and disk_num_bytes
- offset and ram_bytes
- compression
So expect some seemingly unrelated line movement.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently function can_nocow_extent() only returns members needed for
extent_map.
However since we will soon change the extent_map structure to be more
like btrfs_file_extent_item, we want to expose the expected file extent
caused by the NOCOW write for future usage.
This introduces a new structure, btrfs_file_extent, to be a more
memory access friendly representation of btrfs_file_extent_item.
And use that structure to expose the expected file extent caused by the
NOCOW write.
For now there is no user of the new structure yet.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This would make it very obvious that the member just matches
btrfs_file_extent_item::disk_num_bytes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the core of the fiemap code lives in extent_io.c, which does
not make any sense because it's not related to extent IO at all (and it
was not as well before the big rewrite of fiemap I did some time ago).
The entry point for fiemap, btrfs_fiemap(), lives in inode.c since it's
an inode operation.
Since there's a significant amount of fiemap code, move all of it into a
dedicated file, including its entry point inode.c:btrfs_fiemap().
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that there is a helper to commit the current transaction and we are
using it, there's no need for the label and goto statements at
ensure_commit_roots_uptodate(). So replace them with direct return
statements that call btrfs_commit_current_transaction().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several places that attach to the current transaction with
btrfs_attach_transaction_barrier() and then commit the transaction if
there is one. Add a helper and use it to deduplicate this pattern.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At finish_extent_writes_for_zoned() we use btrfs_join_transaction() to
catch any running transaction and then commit it. This will however create
a new and empty transaction in case there's no running transaction anymore
(got committed by the transaction kthread or other task for example) or
there's a running transaction finishing its commit and with a state >=
TRANS_STATE_UNBLOCKED. In the former case we don't need to do anything
while in the second case we just need to wait for the transaction to
complete its commit.
So improve this by using btrfs_attach_transaction_barrier() instead, which
does not create a new transaction if there's none running, and if there's
a current transaction that is committing, it will wait for it to fully
commit and not create a new transaction. This helps avoiding creating and
committing empty transactions, saving IO, time and unnecessary rotation of
the backup roots in the super block.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At ensure_commit_roots_uptodate() we use btrfs_join_transaction() to
catch any running transaction and then commit it. This will however create
a new and empty transaction in case there's no running transaction anymore
(got committed by the transaction kthread or other task for example) or
there's a running transaction finishing its commit and with a state >=
TRANS_STATE_UNBLOCKED. In the former case we don't need to do anything
while in the second case we just need to wait for the transaction to
complete its commit.
So improve this by using btrfs_attach_transaction_barrier() instead, which
does not create a new transaction if there's none running, and if there's
a current transaction that is committing, it will wait for it to fully
commit and not create a new transaction. This helps avoiding creating and
committing empty transactions, saving IO, time and unnecessary rotation of
the backup roots in the super block.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before starting a send operation we have to make sure that every root has
its commit root matching the regular root, to that send doesn't find stale
inodes in the commit root (inodes that were deleted in the regular root)
and fails the inode lookups with -ESTALE.
Currently we keep looking for roots used by the send operation and as soon
as we find one we commit the current transaction (or a new one since
btrfs_join_transaction() creates one if there isn't any running or the
running one is in a state >= TRANS_STATE_UNBLOCKED). It's pointless to
keep looking until we don't find any, because after the first transaction
commit all the other roots are updated too, as they were already tagged in
the fs_info->fs_roots_radix radix tree when they were modified in order to
have a commit root different from the regular root.
Currently we are also always passing the main send root into
btrfs_join_transaction(), which despite not having any functional issue,
it is not optimal because in case the root wasn't modified we end up
adding it to fs_info->fs_roots_radix and then update its root item in the
root tree when committing the transaction, causing unnecessary work.
So simplify and make this more efficient by removing the looping and by
passing the first root we found that is modified as the argument to
btrfs_join_transaction().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_commit_super(), called in a few contexts such as when unmounting
a filesystem, we use btrfs_join_transaction() to catch any running
transaction and then commit it. This will however create a new and empty
transaction in case there's no running transaction or there's a running
transaction with a state >= TRANS_STATE_UNBLOCKED.
As we just want to be sure that any existing transaction is fully
committed, we can use btrfs_attach_transaction_barrier() instead of
btrfs_join_transaction(), therefore avoiding the creation and commit of
empty transactions, which only waste IO and causes rotation of the
precious backup roots.
Example where we create and commit a pointless empty transaction:
$ mkfs.btrfs -f /dev/sdj
$ btrfs inspect-internal dump-super /dev/sdj | grep -e '^generation'
generation 6
$ mount /dev/sdj /mnt/sdj
$ touch /mnt/sdj/foo
# Commit the currently open transaction. Just 'sync' or wait ~30
# seconds for the transaction kthread to commit it.
$ sync
$ btrfs inspect-internal dump-super /dev/sdj | grep -e '^generation'
generation 7
$ umount /mnt/sdj
$ btrfs inspect-internal dump-super /dev/sdj | grep -e '^generation'
generation 8
The transaction with id 8 was pointless, an empty transaction that did
not achieve anything.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When flushing reservations we are using btrfs_join_transaction() to get a
handle for the current transaction and then commit it to try to release
space. However btrfs_join_transaction() has some undesirable consequences:
1) If there's no running transaction, it will create one, and we will
commit it right after. This is unnecessary because it will not release
any space, and it will result in unnecessary IO and rotation of backup
roots in the superblock;
2) If there's a current transaction and that transaction is committing
(its state is >= TRANS_STATE_COMMIT_DOING), it will wait for that
transaction to almost finish its commit (for its state to be >=
TRANS_STATE_UNBLOCKED) and then start and return a new transaction.
We will then commit that new transaction, which is pointless because
all we wanted was to wait for the current (previous) transaction to
fully finish its commit (state == TRANS_STATE_COMPLETED), and by
starting and committing a new transaction we are wasting IO too and
causing unnecessary rotation of backup roots in the superblock.
So improve this by using btrfs_attach_transaction_barrier() instead, which
does not create a new transaction if there's none running, and if there's
a current transaction that is committing, it will wait for it to fully
commit and not create a new transaction.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The range is specified only in two ways, we can simplify the case for
the whole filesystem range as a NULL block group parameter.
Signed-off-by: David Sterba <dsterba@suse.com>
Currently if we fully clean a subvolume (not only delete its directory,
but fully clean all it's related data and root item), the associated
qgroup would not be removed.
We have "btrfs qgroup clear-stale" to handle such 0 level qgroups.
Change the behavior to automatically removie the qgroup of a fully
cleaned subvolume when possible:
- Full qgroup but still consistent
We can and should remove the qgroup.
The qgroup numbers should be 0, without any rsv.
- Full qgroup but inconsistent
Can happen with drop_subtree_threshold feature (skip accounting
and mark qgroup inconsistent).
We can and should remove the qgroup.
Higher level qgroup numbers will be incorrect, but since qgroup
is already inconsistent, it should not be a problem.
- Squota mode
This is the special case, we can only drop the qgroup if its numbers
are all 0.
This would be handled by can_delete_qgroup(), so we only need to check
the return value and ignore the -EBUSY error.
Link: https://bugzilla.suse.com/show_bug.cgi?id=1222847
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Currently if one is utilizing "qgroups/drop_subtree_threshold" sysfs,
and a snapshot with level higher than that value is dropped, we will
not be able to delete the qgroup until next qgroup rescan:
uuid=ffffffff-eeee-dddd-cccc-000000000000
wipefs -fa $dev
mkfs.btrfs -f $dev -O quota -s 4k -n 4k -U $uuid
mount $dev $mnt
btrfs subvolume create $mnt/subv1/
for (( i = 0; i < 1024; i++ )); do
xfs_io -f -c "pwrite 0 2k" $mnt/subv1/file_$i > /dev/null
done
sync
btrfs subvolume snapshot $mnt/subv1 $mnt/snapshot
btrfs quota enable $mnt
btrfs quota rescan -w $mnt
sync
echo 1 > /sys/fs/btrfs/$uuid/qgroups/drop_subtree_threshold
btrfs subvolume delete $mnt/snapshot
btrfs subvolume sync $mnt
btrfs qgroup show -prce --sync $mnt
btrfs qgroup destroy 0/257 $mnt
umount $mnt
The final qgroup removal would fail with the following error:
ERROR: unable to destroy quota group: Device or resource busy
[CAUSE]
The above script would generate a subvolume of level 2, then snapshot
it, enable qgroup, set the drop_subtree_threshold, then drop the
snapshot.
Since the subvolume drop would meet the threshold, qgroup would be
marked inconsistent and skip accounting to avoid hanging the system at
transaction commit.
But currently we do not allow a qgroup with any rfer/excl numbers to be
dropped, and this is not really compatible with the new
drop_subtree_threshold behavior.
[FIX]
Only require the strict zero rfer/excl/rfer_cmpr/excl_cmpr for squota
mode. This is due to the fact that squota can never go inconsistent,
and it can have dropped subvolume but with non-zero qgroup numbers for
future accounting.
For full qgroup mode, we only check if there is a subvolume for it.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reported by 'gcc -Wcast-qual', the argument from which write_extent_buffer()
reads data to write to the eb should be const. In addition the const
needs to be also added to __write_extent_buffer() local buffers.
All callers of write_eb_member() can now be updated to use const for the
input buffer structure or type.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was reported by 'gcc -Wcast-qual', the get_unaligned_le8() simply
returns the argument and there's no reason to drop the cast.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was added in c61a16a701 ("Btrfs: fix the confusion between
delalloc bytes and metadata bytes") and removed in 03fe78cc29
("btrfs: use delalloc_bytes to determine flush amount for
shrink_delalloc") where the calculation was reworked to use a
non-constant numbers. This was found by 'make W=2'.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We've started to use for-loop local variables and in a few places this
shadows a function variable. Convert a few cases reported by 'make W=2'.
If applicable also change the style to post-increment, that's the
preferred one.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix variable names in two macros where there's a local function variable
of the same name. In subpage_calc_start_bit() it's in several callers,
in btrfs_abort_transaction() it's only in replace_file_extents().
Found by 'make W=2'.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When running 'make W=2' there are a few reports where a variable of the
same name is declared in a nested block. In all the cases we can use the
one declared in the parent block, no problematic cases were found.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using a VFS inode local pointer and then doing many BTRFS_I()
calls inside btrfs_sync_file(), use a btrfs_inode pointer instead. This
makes everything a bit easier to read and less confusing, allowing to
make some statements shorter.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of passing a (VFS) inode pointer argument, pass a btrfs_inode
instead, as this is generally what we do for internal APIs, making it
more consistent with most of the code base. This will later allow to
help to remove a lot of BTRFS_I() calls in btrfs_sync_file().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of passing a (VFS) inode pointer argument, pass a btrfs_inode
instead, as this is generally what we do for internal APIs, making it
more consistent with most of the code base. This will later allow to
help to remove a lot of BTRFS_I() calls in btrfs_sync_file().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of using a inode pointer, use a btrfs_inode pointer in the log
context structure, as this is generally what we need and allows for some
internal APIs to take a btrfs_inode instead, making them more consistent
with most of the code base. This will later allow to help to remove a lot
of BTRFS_I() calls in btrfs_sync_file().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_finish_ordered_extent() returns a boolean indicating if
the ordered extent was added to the work queue for completion, but none
of its callers cares about it, so make it return void.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_block_group_root() is declared in disk-io.c; however,
all its callers are in block-group.c. Move it to the latter file and
declare it static.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Drop the single-use variable bytenr_orig and instead use btrfs_sb_offset()
in the function argument passing.
Fix a stale comment about not automatically fixing a bad primary
superblock from the backup mirror copies. Also, move the comment closer
to where the primary superblock read occurs.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are currently using a cached rb_root (struct rb_root_cached) for the
rb root of struct extent_map_tree. This doesn't offer much of an advantage
here because:
1) It's only advantage over the regular rb_root is that it caches a
pointer to the left most node (first node), so a call to
rb_first_cached() doesn't have to chase pointers until it reaches
the left most node;
2) We only have two scenarios that access left most node with
rb_first_cached():
When dropping all extent maps from an inode, during inode eviction;
When iterating over extent maps during the extent map shrinker;
3) In both cases we keep removing extent maps, which causes deletion of
the left most node so rb_erase_cached() has to call rb_next() to find
out what's the next left most node and assign it to
struct rb_root_cached::rb_leftmost;
4) We can do that ourselves in those two uses cases and stop using a
rb_root_cached rb tree and use instead a regular rb_root rb tree.
This reduces the size of struct extent_map_tree by 8 bytes and, since
this structure is embedded in struct btrfs_inode, it also reduces the
size of that structure by 8 bytes.
So on a 64 bits platform the size of btrfs_inode is reduced from 1032
bytes down to 1024 bytes.
This means we will be able to have 4 inodes per 4K page instead of 3.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we name the rb_root member of struct extent_map_tree as 'map',
which is odd and confusing. Since it's a root node, rename it to 'root'.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On 64 bits platforms we don't really need to have a dedicated member (the
objectid field) for the inode's number since we store in the VFS inode's
i_ino member, which is an unsigned long and this type is 64 bits wide on
64 bits platforms. We only need that field in case we are on a 32 bits
platform because the unsigned long type is 32 bits wide on such platforms
See commit 33345d0152 ("Btrfs: Always use 64bit inode number") regarding
this 64/32 bits detail.
The objectid field of struct btrfs_inode is also used to store the ID of
a root for directories that are stubs for unreferenced roots. In such
cases the inode is a directory and has the BTRFS_INODE_ROOT_STUB runtime
flag set.
So in order to reduce the size of btrfs_inode structure on 64 bits
platforms we can remove the objectid member and use the VFS inode's i_ino
member instead whenever we need to get the inode number. In case the inode
is a root stub (BTRFS_INODE_ROOT_STUB set) we can use the member
last_reflink_trans to store the ID of the unreferenced root, since such
inode is a directory and reflinks can't be done against directories.
So remove the objectid fields for 64 bits platforms and alias the
last_reflink_trans field with a name of ref_root_id in a union.
On a release kernel config, this reduces the size of struct btrfs_inode
from 1040 bytes down to 1032 bytes.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently struct btrfs_inode has a key member, named "location", that is
either:
1) The key of the inode's item. In this case the objectid is the number
of the inode;
2) A key stored in a dir entry with a type of BTRFS_ROOT_ITEM_KEY, for
the case where we have a root that is a snapshot of a subvolume that
points to other subvolumes. In this case the objectid is the ID of
a subvolume inside the snapshotted parent subvolume.
The key is only used to lookup the inode item for the first case, while
for the second it's never used since it corresponds to directory stubs
created with new_simple_dir() and which are marked as dummy, so there's
no actual inode item to ever update. In the second case we only check
the key type at btrfs_ino() for 32 bits platforms and its objectid is
only needed for unlink.
Instead of using a key we can do fine with just the objectid, since we
can generate the key whenever we need it having only the objectid, as
in all use cases the type is always BTRFS_INODE_ITEM_KEY and the offset
is always 0.
So use only an objectid instead of a full key. This reduces the size of
struct btrfs_inode from 1048 bytes down to 1040 bytes on a release kernel.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When not using the NO_HOLES feature we always allocate an io tree for an
inode's file_extent_tree. This is wasteful because that io tree is only
used for regular files, so we allocate more memory than needed for inodes
that represent directories or symlinks for example, or for inodes that
correspond to free space inodes.
So improve on this by allocating the io tree only for inodes of regular
files that are not free space inodes.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The index_cnt field of struct btrfs_inode is used only for two purposes:
1) To store the index for the next entry added to a directory;
2) For the data relocation inode to track the logical start address of the
block group currently being relocated.
For the relocation case we use index_cnt because it's not used for
anything else in the relocation use case - we could have used other fields
that are not used by relocation such as defrag_bytes, last_unlink_trans
or last_reflink_trans for example (among others).
Since the csum_bytes field is not used for directories, do the following
changes:
1) Put index_cnt and csum_bytes in a union, and index_cnt is only
initialized when the inode is a directory. The csum_bytes is only
accessed in IO paths for regular files, so we're fine here;
2) Use the defrag_bytes field for relocation, since the data relocation
inode is never used for defrag purposes. And to make the naming better,
alias it to reloc_block_group_start by using a union.
This reduces the size of struct btrfs_inode by 8 bytes in a release
kernel, from 1056 bytes down to 1048 bytes.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we use the spinlock inode_lock from struct btrfs_root to
serialize access to two different data structures:
1) The delayed inodes xarray (struct btrfs_root::delayed_nodes);
2) The inodes xarray (struct btrfs_root::inodes).
Instead of using our own lock, we can use the spinlock that is part of the
xarray implementation, by using the xa_lock() and xa_unlock() APIs and
using the xarray APIs with the double underscore prefix that don't take
the xarray locks and assume the caller is using xa_lock() and xa_unlock().
So remove the spinlock inode_lock from struct btrfs_root and use the
corresponding xarray locks. This brings 2 benefits:
1) We reduce the size of struct btrfs_root, from 1336 bytes down to
1328 bytes on a 64 bits release kernel config;
2) We reduce lock contention by not using anymore the same lock for
changing two different and unrelated xarrays.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make btrfs_iget_path() simpler and easier to read by avoiding nesting of
if-then-else statements and having an error label to do all the error
handling instead of repeating it a couple times.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a new inode, at btrfs_create_new_inode(), one of the very
last steps is to add the inode to the root's inodes xarray. This often
requires allocating memory which may fail (even though xarrays have a
dedicated kmem_cache which make it less likely to fail), and at that point
we are forced to abort the current transaction (as some, but not all, of
the inode metadata was added to its subvolume btree).
To avoid a transaction abort, preallocate memory for the xarray early at
btrfs_create_new_inode(), so that if we fail we don't need to abort the
transaction and the insertion into the xarray is guaranteed to succeed.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we use a red black tree (rb-tree) to track the currently open
inodes of a root (in struct btrfs_root::inode_tree). This however is not
very efficient when the number of inodes is large since rb-trees are
binary trees. For example for 100K open inodes, the tree has a depth of
17. Besides that, inserting into the tree requires navigating through it
and pulling useless cache lines in the process since the red black tree
nodes are embedded within the btrfs inode - on the other hand, by being
embedded, it requires no extra memory allocations.
We can improve this by using an xarray instead, which is efficient when
indices are densely clustered (such as inode numbers), is more cache
friendly and behaves like a resizable array, with a much better search
and insertion complexity than a red black tree. This only has one small
disadvantage which is that insertion will sometimes require allocating
memory for the xarray - which may fail (not that often since it uses a
kmem_cache) - but on the other hand we can reduce the btrfs inode
structure size by 24 bytes (from 1080 down to 1056 bytes) after removing
the embedded red black tree node, which after the next patches will allow
to reduce the size of the structure to 1024 bytes, meaning we will be able
to store 4 inodes per 4K page instead of 3 inodes.
This change does a straightforward change to use an xarray, and results
in a transaction abort if we can't allocate memory for the xarray when
creating an inode - but the next patch changes things so that we don't
need to abort.
Running the following fs_mark test showed some improvements:
$ cat test.sh
#!/bin/bash
DEV=/dev/nullb0
MNT=/mnt/nullb0
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before this patch:
FSUse% Count Size Files/sec App Overhead
10 1200000 0 92081.6 12505547
16 2400000 0 138222.6 13067072
23 3600000 0 148833.1 13290336
43 4800000 0 97864.7 13931248
53 6000000 0 85597.3 14384313
After this patch:
FSUse% Count Size Files/sec App Overhead
10 1200000 0 93225.1 12571078
16 2400000 0 146720.3 12805007
23 3600000 0 160626.4 13073835
46 4800000 0 116286.2 13802927
53 6000000 0 90087.9 14754892
The test was run with a release kernel config (Debian's default config).
Also capturing the insertion times into the rb tree and into the xarray,
that is measuring the duration of the old function inode_tree_add() and
the duration of the new btrfs_add_inode_to_root() function, gave the
following results (in nanoseconds):
Before this patch, inode_tree_add() execution times:
Count: 5000000
Range: 0.000 - 5536887.000; Mean: 775.674; Median: 729.000; Stddev: 4820.961
Percentiles: 90th: 1015.000; 95th: 1139.000; 99th: 1397.000
0.000 - 7.816: 40 |
7.816 - 37.858: 209 |
37.858 - 170.278: 6059 |
170.278 - 753.961: 2754890 #####################################################
753.961 - 3326.728: 2232312 ###########################################
3326.728 - 14667.018: 4366 |
14667.018 - 64652.943: 852 |
64652.943 - 284981.761: 550 |
284981.761 - 1256150.914: 221 |
1256150.914 - 5536887.000: 7 |
After this patch, btrfs_add_inode_to_root() execution times:
Count: 5000000
Range: 0.000 - 2900652.000; Mean: 272.148; Median: 241.000; Stddev: 2873.369
Percentiles: 90th: 342.000; 95th: 432.000; 99th: 572.000
0.000 - 7.264: 104 |
7.264 - 33.145: 352 |
33.145 - 140.081: 109606 #
140.081 - 581.930: 4840090 #####################################################
581.930 - 2407.590: 43532 |
2407.590 - 9950.979: 2245 |
9950.979 - 41119.278: 514 |
41119.278 - 169902.616: 155 |
169902.616 - 702018.539: 47 |
702018.539 - 2900652.000: 9 |
Average, percentiles, standard deviation, etc, are all much better.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several hard-to-hit ASSERT()s hit inside raid56.
Unfortunately the ASSERT() expression is a little complex, and except
the ASSERT(), there is nothing to provide any clue.
Considering if race is involved, it's pretty hard to reproduce.
Meanwhile sometimes the dump of the rbio structure can provide some
pretty good clues, it's worth to do the extra multi-line dump for
btrfs raid56 related code.
The dump looks like this:
BTRFS critical (device dm-3): bioc logical=4598530048 full_stripe=4598530048 size=0 map_type=0x81 mirror=0 replace_nr_stripes=0 replace_stripe_src=-1 num_stripes=5
BTRFS critical (device dm-3): nr=0 devid=1 physical=1166147584
BTRFS critical (device dm-3): nr=1 devid=2 physical=1145176064
BTRFS critical (device dm-3): nr=2 devid=4 physical=1145176064
BTRFS critical (device dm-3): nr=3 devid=5 physical=1145176064
BTRFS critical (device dm-3): nr=4 devid=3 physical=1145176064
BTRFS critical (device dm-3): rbio flags=0x0 nr_sectors=80 nr_data=4 real_stripes=5 stripe_nsectors=16 scrubp=0 dbitmap=0x0
BTRFS critical (device dm-3): logical=4598530048
assertion failed: orig_logical >= full_stripe_start && orig_logical + orig_len <= full_stripe_start + rbio->nr_data * BTRFS_STRIPE_LEN, in fs/btrfs/raid56.c:1702
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Due to a refactoring introduced by commit 53d9981ca2 ("btrfs: split
btrfs_alloc_ordered_extent to allocation and insertion helpers"), the
function btrfs_alloc_ordered_extent() was renamed to
alloc_ordered_extent(), so the comment at btrfs_remove_ordered_extent()
is no longer very accurate. Update the comment to refer to the new
name "alloc_ordered_extent()".
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix typo in the end IO compression callbacks, from "comprssed" to
"compressed".
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_migrate_to_delayed_refs_rsv() is no longer used.
Its last use was removed in commit 2f6397e448 ("btrfs: don't refill
whole delayed refs block reserve when starting transaction").
So remove the function.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's not used outside zoned.c, so make it static.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Passing in a 'struct btrfs_io_geometry into handle_ops_on_dev_replace
can reduce the number of arguments by two.
No functional changes otherwise.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The ioctls that add relations, create qgroups or set limits start/join
transaction. When quotas are not enabled this is not necessary, there
will be errors reported back anyway but this could be also misleading
and we should really report that quotas are not enabled. For that use
-ENOTCONN.
The helper is meant to do a quick check before any other standard ioctl
checks are done. If quota is disabled meanwhile we still rely on proper
locking inside any active operation changing the qgroup structures.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmaG0jUACgkQxWXV+ddt
WDsg4Q//f7xRooomsRaRvIDN4Add17jyZWuhreMhxKKvdtoRzLq/YZUldGJt1XXu
tVpCvKkVvrJt5UY3b1czfA8GTHeOInZSoqyV8ZaxOAcg6cfKrUtLFi1wAKGU6BK/
S9Zz/9lfbjXhG4PnZW7GRFmH0n68p/dmS+kXPVVPhj7CibxuZJtifflK1r6rHw+Y
PDDnMIPqbrdK+xBfR+SEpG+1uIEFvI6SgsAZG6p0mzcbbUINGp7SpU3v2NVuvdIX
tjTlZhz+D2do4dPk3RJ4Z6dpL+VlZnR1F9CZn6SmPcdGWn6mTkywoukJPP62iHYO
b8Xr4j1mKDPcu55OEPWwhYWOvRP4FvltrGB+35xsQoPlKBBKxSMFgNyEkdfvjtKU
qL9qRYJvm8D2OBqdv5BnawKRSouPcR4KPiM9JSGWRcW6vdOiY3Cd1mnAR8EA1LSd
SRYmBlrZIIjOpEeGkEy2MeNKEH9L5B1wAU21VQd+cAlCKBFUmFb1csZ/vCJJ1B34
swedmirNx0lyZTNBGQsDipkxSM0c/0xj/ysG8N41bLvPUM35x0K9xw5ZqBlTXrrg
Lln51s6TeqSzfEvKdDGikBL3dVhT5I6acRUchQU9YSZ3Bqxj3QCTNnOZMZQsCFkp
CMohduRVHiK4LHQTkU++q8bT8xX20kh/1HIJhAjdnDbrlRY4oTU=
=tyXO
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix folio refcounting when releasing them (encoded write, dummy
extent buffer)
- fix out of bounds read when checking qgroup inherit data
- fix how configurable chunk size is handled in zoned mode
- in the ref-verify tool, fix uninitialized return value when checking
extent owner ref and simple quota are not enabled
* tag 'for-6.10-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix folio refcount in __alloc_dummy_extent_buffer()
btrfs: fix folio refcount in btrfs_do_encoded_write()
btrfs: fix uninitialized return value in the ref-verify tool
btrfs: always do the basic checks for btrfs_qgroup_inherit structure
btrfs: zoned: fix calc_available_free_space() for zoned mode
The index argument of page_cache_async_readahead() is just folio->index so
there's no point in passing is separately. Drop it.
Link: https://lkml.kernel.org/r/20240625101909.12234-5-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Zhang Peng <zhangpengpeng0808@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Another improper use of __folio_put() in an error path after freshly
allocating pages/folios which returns them with the refcount initialized
to 1. The refactor from __free_pages() -> __folio_put() (instead of
folio_put) removed a refcount decrement found in __free_pages() and
folio_put but absent from __folio_put().
Fixes: 13df3775ef ("btrfs: cleanup metadata page pointer usage")
CC: stable@vger.kernel.org # 6.8+
Tested-by: Ed Tomlinson <edtoml@gmail.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The conversion to folios switched __free_page() to __folio_put() in the
error path in btrfs_do_encoded_write().
However, this gets the page refcounting wrong. If we do hit that error
path (I reproduced by modifying btrfs_do_encoded_write to pretend to
always fail in a way that jumps to out_folios and running the fstests
case btrfs/281), then we always hit the following BUG freeing the folio:
BUG: Bad page state in process btrfs pfn:40ab0b
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x61be5 pfn:0x40ab0b
flags: 0x5ffff0000000000(node=0|zone=2|lastcpupid=0x1ffff)
raw: 05ffff0000000000 0000000000000000 dead000000000122 0000000000000000
raw: 0000000000061be5 0000000000000000 00000001ffffffff 0000000000000000
page dumped because: nonzero _refcount
Call Trace:
<TASK>
dump_stack_lvl+0x3d/0xe0
bad_page+0xea/0xf0
free_unref_page+0x8e1/0x900
? __mem_cgroup_uncharge+0x69/0x90
__folio_put+0xe6/0x190
btrfs_do_encoded_write+0x445/0x780
? current_time+0x25/0xd0
btrfs_do_write_iter+0x2cc/0x4b0
btrfs_ioctl_encoded_write+0x2b6/0x340
It turns out __free_page() decreases the page reference count while
__folio_put() does not. Switch __folio_put() to folio_put() which
decreases the folio reference count first.
Fixes: 400b172b8c ("btrfs: compression: migrate compression/decompression paths to folios")
Tested-by: Ed Tomlinson <edtoml@gmail.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the ref-verify tool, when processing the inline references of an extent
item, we may end up returning with uninitialized return value, because:
1) The 'ret' variable is not initialized if there are no inline extent
references ('ptr' == 'end' before the while loop starts);
2) If we find an extent owner inline reference we don't initialize 'ret'.
So fix these cases by initializing 'ret' to 0 when declaring the variable
and set it to -EINVAL if we find an extent owner inline references and
simple quotas are not enabled (as well as print an error message).
Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/59b40ebe-c824-457d-8b24-0bbca69d472b@gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Syzbot reports the following regression detected by KASAN:
BUG: KASAN: slab-out-of-bounds in btrfs_qgroup_inherit+0x42e/0x2e20 fs/btrfs/qgroup.c:3277
Read of size 8 at addr ffff88814628ca50 by task syz-executor318/5171
CPU: 0 PID: 5171 Comm: syz-executor318 Not tainted 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
btrfs_qgroup_inherit+0x42e/0x2e20 fs/btrfs/qgroup.c:3277
create_pending_snapshot+0x1359/0x29b0 fs/btrfs/transaction.c:1854
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1922
btrfs_commit_transaction+0xf20/0x3740 fs/btrfs/transaction.c:2382
create_snapshot+0x6a1/0x9e0 fs/btrfs/ioctl.c:875
btrfs_mksubvol+0x58f/0x710 fs/btrfs/ioctl.c:1029
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1075
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1340
btrfs_ioctl_snap_create_v2+0x1f2/0x3a0 fs/btrfs/ioctl.c:1422
btrfs_ioctl+0x99e/0xc60
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fcbf1992509
RSP: 002b:00007fcbf1928218 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fcbf1a1f618 RCX: 00007fcbf1992509
RDX: 0000000020000280 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fcbf1a1f610 R08: 00007ffea1298e97 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fcbf19eb660
R13: 00000000200002b8 R14: 00007fcbf19e60c0 R15: 0030656c69662f2e
</TASK>
And it also pinned it down to commit b5357cb268 ("btrfs: qgroup: do not
check qgroup inherit if qgroup is disabled").
[CAUSE]
That offending commit skips the whole qgroup inherit check if qgroup is
not enabled.
But that also skips the very basic checks like
num_ref_copies/num_excl_copies and the structure size checks.
Meaning if a qgroup enable/disable race is happening at the background,
and we pass a btrfs_qgroup_inherit structure when the qgroup is
disabled, the check would be completely skipped.
Then at the time of transaction commitment, qgroup is re-enabled and
btrfs_qgroup_inherit() is going to use the incorrect structure and
causing the above KASAN error.
[FIX]
Make btrfs_qgroup_check_inherit() only skip the source qgroup checks.
So that even if invalid btrfs_qgroup_inherit structure is passed in, we
can still reject invalid ones no matter if qgroup is enabled or not.
Furthermore we do already have an extra safety inside
btrfs_qgroup_inherit(), which would just ignore invalid qgroup sources,
so even if we only skip the qgroup source check we're still safe.
Reported-by: syzbot+a0d1f7e26910be4dc171@syzkaller.appspotmail.com
Fixes: b5357cb268 ("btrfs: qgroup: do not check qgroup inherit if qgroup is disabled")
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Jeongjun Park <aha310510@gmail.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
calc_available_free_space() returns the total size of metadata (or
system) block groups, which can be allocated from unallocated disk
space. The logic is wrong on zoned mode in two places.
First, the calculation of data_chunk_size is wrong. We always allocate
one zone as one chunk, and no partial allocation of a zone. So, we
should use zone_size (= data_sinfo->chunk_size) as it is.
Second, the result "avail" may not be zone aligned. Since we always
allocate one zone as one chunk on zoned mode, returning non-zone size
aligned bytes will result in less pressure on the async metadata reclaim
process.
This is serious for the nearly full state with a large zone size device.
Allowing over-commit too much will result in less async reclaim work and
end up in ENOSPC. We can align down to the zone size to avoid that.
Fixes: cb6cbab790 ("btrfs: adjust overcommit logic when very close to full")
CC: stable@vger.kernel.org # 6.9
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmaC45kACgkQxWXV+ddt
WDt6yRAAkn3n/nkapAvQbtOEIAV9GOc+DYecQXLM+E6m85vsvOBO6OeO/QDfIGvI
ALNE4EEKTkmqk6AOLNX9rQUvo8aOaDXj/9bNZYuVSCzG2hfwLijv6DlRShxuEIE8
kzOisuIZ4w7aL7G7OsUa50j/BLdZ47+iVF/79N+odhdaCDhhK/CcfLbemiLUS9AF
OYkYDyl2WCo9HLduSlVHDWXNUKs7I6/S29UWQpkTKTkmLlMk7rdkgbpjgpKjFxsd
/CuVW5NEGs+4dkV2OdOJ9t+f4qGJ56YuJanvrV3R1bGh+sgDzrcA0kP8318nFzgG
KBYTXjAZoe5RAi4IYfMhSrEExo2JJYFeei0B7Dv3M4IvxLOF7NdMvppBFdODF0A4
20gZ8EgNtZ0sMEafK2WAZSI23sjX0TH+/P3FFKQszxX0fRH3NV6al2drhuBTeIKr
UzxDqeDuqpDHSZskHIMR9nMEymcov5JTg5v2ds64WiT8kr3L23u3j1KO+8UrZ8j4
eB5vYEXE9VJDNPoJQ/qhbqDduzIJ1s+RU8lhEVIUJRIThRk/oHc7YcXgXKqvS6RM
ilJeAzjEhp2t3CQDfx+FJ9jjgi5jhOoCkbITg6iiiExIt++XOXJtL0y2BH514LA5
5jQXoXl/YnukfCaKLNRsxYXCw7JAQxWQiVq3s9g1tG5679zrfNA=
=RkBU
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"A fixup for a recent fix that prevents an infinite loop during block
group reclaim.
Unfortunately it introduced an unsafe way of updating block group list
and could race with relocation. This could be hit on fast devices when
relocation/balance does not have enough space"
* tag 'for-6.10-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix adding block group to a reclaim list and the unused list during reclaim
There is a potential parallel list adding for retrying in
btrfs_reclaim_bgs_work and adding to the unused list. Since the block
group is removed from the reclaim list and it is on a relocation work,
it can be added into the unused list in parallel. When that happens,
adding it to the reclaim list will corrupt the list head and trigger
list corruption like below.
Fix it by taking fs_info->unused_bgs_lock.
[177.504][T2585409] BTRFS error (device nullb1): error relocating ch= unk 2415919104
[177.514][T2585409] list_del corruption. next->prev should be ff1100= 0344b119c0, but was ff11000377e87c70. (next=3Dff110002390cd9c0)
[177.529][T2585409] ------------[ cut here ]------------
[177.537][T2585409] kernel BUG at lib/list_debug.c:65!
[177.545][T2585409] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
[177.555][T2585409] CPU: 9 PID: 2585409 Comm: kworker/u128:2 Tainted: G W 6.10.0-rc5-kts #1
[177.568][T2585409] Hardware name: Supermicro SYS-520P-WTR/X12SPW-TF, BIOS 1.2 02/14/2022
[177.579][T2585409] Workqueue: events_unbound btrfs_reclaim_bgs_work[btrfs]
[177.589][T2585409] RIP: 0010:__list_del_entry_valid_or_report.cold+0x70/0x72
[177.624][T2585409] RSP: 0018:ff11000377e87a70 EFLAGS: 00010286
[177.633][T2585409] RAX: 000000000000006d RBX: ff11000344b119c0 RCX:0000000000000000
[177.644][T2585409] RDX: 000000000000006d RSI: 0000000000000008 RDI:ffe21c006efd0f40
[177.655][T2585409] RBP: ff110002e0509f78 R08: 0000000000000001 R09:ffe21c006efd0f08
[177.665][T2585409] R10: ff11000377e87847 R11: 0000000000000000 R12:ff110002390cd9c0
[177.676][T2585409] R13: ff11000344b119c0 R14: ff110002e0508000 R15:dffffc0000000000
[177.687][T2585409] FS: 0000000000000000(0000) GS:ff11000fec880000(0000) knlGS:0000000000000000
[177.700][T2585409] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[177.709][T2585409] CR2: 00007f06bc7b1978 CR3: 0000001021e86005 CR4:0000000000771ef0
[177.720][T2585409] DR0: 0000000000000000 DR1: 0000000000000000 DR2:0000000000000000
[177.731][T2585409] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:0000000000000400
[177.742][T2585409] PKRU: 55555554
[177.748][T2585409] Call Trace:
[177.753][T2585409] <TASK>
[177.759][T2585409] ? __die_body.cold+0x19/0x27
[177.766][T2585409] ? die+0x2e/0x50
[177.772][T2585409] ? do_trap+0x1ea/0x2d0
[177.779][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72
[177.788][T2585409] ? do_error_trap+0xa3/0x160
[177.795][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72
[177.805][T2585409] ? handle_invalid_op+0x2c/0x40
[177.812][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72
[177.820][T2585409] ? exc_invalid_op+0x2d/0x40
[177.827][T2585409] ? asm_exc_invalid_op+0x1a/0x20
[177.834][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72
[177.843][T2585409] btrfs_delete_unused_bgs+0x3d9/0x14c0 [btrfs]
There is a similar retry_list code in btrfs_delete_unused_bgs(), but it is
safe, AFAICS. Since the block group was in the unused list, the used bytes
should be 0 when it was added to the unused list. Then, it checks
block_group->{used,reserved,pinned} are still 0 under the
block_group->lock. So, they should be still eligible for the unused list,
not the reclaim list.
The reason it is safe there it's because because we're holding
space_info->groups_sem in write mode.
That means no other task can allocate from the block group, so while we
are at deleted_unused_bgs() it's not possible for other tasks to
allocate and deallocate extents from the block group, so it can't be
added to the unused list or the reclaim list by anyone else.
The bug can be reproduced by btrfs/166 after a few rounds. In practice
this can be hit when relocation cannot find more chunk space and ends
with ENOSPC.
Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Suggested-by: Johannes Thumshirn <Johannes.Thumshirn@wdc.com>
Fixes: 4eb4e85c4f ("btrfs: retry block group reclaim without infinite loop")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmZ9gV0ACgkQxWXV+ddt
WDsK2hAAmbOArbK5QHprawdOqqvJL46yoGCMba798EjYo53+hO1F8/lb531+zCUI
GDhdIC2mHdRIkARJ8Cde5POUjID1Kv3Rlc0rdHy3nOw38WZmA/+HdkcKzQhsDFSR
/FX9RKSWiu0xl6JdCLh4KkIWE+2m1v1kybhvRHCKb+70iBua1e+OSoM33BeiIhrP
yoFwMwIbzG2CoZOHoobDxUjs9ZMUHm4wH0csJYG9R59Vv7uLBOgpWuQB46iqpoj4
EYR8Sg8PscI7YXa0y8VTP3pdrNMW48IC6jerIAKHUeWRWRoTCh9He+3/E4xjNHxz
3Pm+Aat5QYdsqmE68IbeN5c7QB1YAdUCgoJJJwAFjwe9WtTn8RS9RiMjWIr+VHYm
E3REibQI151p0yHwAl8xPHDiTecmlNisof0eg6gzHdvODm/NYFuFapD+aDxWribX
G63dOa8Fy0h4pwDoF73Rd2YYbtO6tDVSNVIG3bWpPep3r+SI/oC4JMHbmn1aqmqF
c0/ZYVbsx/Hm066l4LCrpgi7kJ8en2zQ8MmcZHHt+2gXe1AyAON7kvRHaEizUCaA
fnLVhQvaOofC4g7DJc1JkwyLc9VF5hMTYUhldoJvqj1wm2qsT/siJgKVvllRGoMs
FU2qlWYaN/fPRylyEySyZPq/sWKHOAZZSOhyWM8SB2nYoBXNkO0=
=qpEp
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix quota root leak after quota disable failure
- fix condition when checking if a zone can be added as free
- allocate inode in NOFS context during logging or tree-log replay
- handle raid-stripe-tree lookup correctly during scrub
* tag 'for-6.10-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: qgroup: fix quota root leak after quota disable failure
btrfs: scrub: handle RST lookup error correctly
btrfs: zoned: fix initial free space detection
btrfs: use NOFS context when getting inodes during logging and log replay
If during the quota disable we fail when cleaning the quota tree or when
deleting the root from the root tree, we jump to the 'out' label without
ever dropping the reference on the quota root, resulting in a leak of the
root since fs_info->quota_root is no longer pointing to the root (we have
set it to NULL just before those steps).
Fix this by always doing a btrfs_put_root() call under the 'out' label.
This is a problem that exists since qgroups were first added in 2012 by
commit bed92eae26 ("Btrfs: qgroup implementation and prototypes"), but
back then we missed a kfree on the quota root and free_extent_buffer()
calls on its root and commit root nodes, since back then roots were not
yet reference counted.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running btrfs/060 with forced RST feature, it would crash the
following ASSERT() inside scrub_read_endio():
ASSERT(sector_nr < stripe->nr_sectors);
Before that, we would have tree dump from
btrfs_get_raid_extent_offset(), as we failed to find the RST entry for
the range.
[CAUSE]
Inside scrub_submit_extent_sector_read() every time we allocated a new
bbio we immediately called btrfs_map_block() to make sure there was some
RST range covering the scrub target.
But if btrfs_map_block() fails, we immediately call endio for the bbio,
while the bbio is newly allocated, it's completely empty.
Then inside scrub_read_endio(), we go through the bvecs to find
the sector number (as bi_sector is no longer reliable if the bio is
submitted to lower layers).
And since the bio is empty, such bvecs iteration would not find any
sector matching the sector, and return sector_nr == stripe->nr_sectors,
triggering the ASSERT().
[FIX]
Instead of calling btrfs_map_block() after allocating a new bbio, call
btrfs_map_block() first.
Since our only objective of calling btrfs_map_block() is only to update
stripe_len, there is really no need to do that after btrfs_alloc_bio().
This new timing would avoid the problem of handling empty bbio
completely, and in fact fixes a possible race window for the old code,
where if the submission thread is the only owner of the pending_io, the
scrub would never finish (since we didn't decrease the pending_io
counter).
Although the root cause of RST lookup failure still needs to be
addressed.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a new block group, it calls btrfs_add_new_free_space() to add
the entire block group range into the free space accounting.
__btrfs_add_free_space_zoned() checks if size == block_group->length to
detect the initial free space adding, and proceed that case properly.
However, if the zone_capacity == zone_size and the over-write speed is fast
enough, the entire zone can be over-written within one transaction. That
confuses __btrfs_add_free_space_zoned() to handle it as an initial free
space accounting. As a result, that block group becomes a strange state: 0
used bytes, 0 zone_unusable bytes, but alloc_offset == zone_capacity (no
allocation anymore).
The initial free space accounting can properly be checked by checking
alloc_offset too.
Fixes: 98173255bd ("btrfs: zoned: calculate free space from zone capacity")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
An atomic write is a write issued with torn-write protection, meaning
that for a power failure or any other hardware failure, all or none of the
data from the write will be stored, but never a mix of old and new data.
Userspace may add flag RWF_ATOMIC to pwritev2() to indicate that the
write is to be issued with torn-write prevention, according to special
alignment and length rules.
For any syscall interface utilizing struct iocb, add IOCB_ATOMIC for
iocb->ki_flags field to indicate the same.
A call to statx will give the relevant atomic write info for a file:
- atomic_write_unit_min
- atomic_write_unit_max
- atomic_write_segments_max
Both min and max values must be a power-of-2.
Applications can avail of atomic write feature by ensuring that the total
length of a write is a power-of-2 in size and also sized between
atomic_write_unit_min and atomic_write_unit_max, inclusive. Applications
must ensure that the write is at a naturally-aligned offset in the file
wrt the total write length. The value in atomic_write_segments_max
indicates the upper limit for IOV_ITER iovcnt.
Add file mode flag FMODE_CAN_ATOMIC_WRITE, so files which do not have the
flag set will have RWF_ATOMIC rejected and not just ignored.
Add a type argument to kiocb_set_rw_flags() to allows reads which have
RWF_ATOMIC set to be rejected.
Helper function generic_atomic_write_valid() can be used by FSes to verify
compliant writes. There we check for iov_iter type is for ubuf, which
implies iovcnt==1 for pwritev2(), which is an initial restriction for
atomic_write_segments_max. Initially the only user will be bdev file
operations write handler. We will rely on the block BIO submission path to
ensure write sizes are compliant for the bdev, so we don't need to check
atomic writes sizes yet.
Signed-off-by: Prasad Singamsetty <prasad.singamsetty@oracle.com>
jpg: merge into single patch and much rewrite
Acked-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: John Garry <john.g.garry@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20240620125359.2684798-4-john.g.garry@oracle.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If inc_block_group_ro systematically fails (e.g. due to ETXTBUSY from
swap) or btrfs_relocate_chunk systematically fails (from lack of
space), then this worker becomes an infinite loop.
At the very least, this strands the cleaner thread, but can also result
in hung tasks/RCU stalls on PREEMPT_NONE kernels and if the
reclaim_bgs_lock mutex is not contended.
I believe the best long term fix is to manage reclaim via work queue,
where we queue up a relocation on the triggering condition and re-queue
on failure. In the meantime, this is an easy fix to apply to avoid the
immediate pain.
Fixes: 7e27180994 ("btrfs: reinsert BGs failed to reclaim")
CC: stable@vger.kernel.org # 6.6+
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With 20 threads each walking a dedicated 1000 dirs * 1000 files
directory tree to stat(2) on a 32 core + 24GB ram vm:
before: 3.54s user 892.30s system 1966% cpu 45.549 total
after: 3.28s user 738.66s system 1955% cpu 37.932 total (-16.7%)
Benchmark can be found here: https://people.freebsd.org/~mjg/fstree.tgz
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20240611173824.535995-3-mjguzik@gmail.com
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmZjGxEACgkQxWXV+ddt
WDt/lQ/9G5Ieozi7BoHcBTmE5BpyRXqfQ5dj9VaWFLZEH+rvdOiZlQ5QlcI1gkUg
jbSp7SB8qhrIbBwv2b58xgnGuuUxE2dd3tPP655bBhe7o4xvAKOK8XBVyVQQxvzq
eRI1J4daQC08FjlSNnHiY1ozl1OIOTSVllLBqkhkYOaBbIKbMByCVPpj4cwzqAvC
5iBCmL2RalAQ/ZasYwdBid2L2VD4dWGJ9uHY6pi+i9f/Q7nxGRlXqhHo25J5T2Gl
YE+75fS1lN9hQIkhZRlpiqOdpjJcxkkGJ0elXtRQ0t856lXUAOacIN+HW6aaLxj/
qv8tnaZO1M/Aw8t65N/8m/ktnBQEwXeX3rAcTpvaMLKAQRGP1oZdsyN5YzLpEi0h
0Y+yXyFdOYbTJBrGie+kRyh9RoRY3CLcQgRw/2u7ysRjBqdXPcaGXAH4ydE/67Qy
hdD9DVwDkjzmxh/V4o8raIM+b3Ql4FuBR0X93f8A0LeanJUlgCrc4lokgdA1tPEf
i/+epnnlEnBOpS4ht5PFn8FkpzeuKAR63AM5sKL18DYswpP5oCyyh76zMMoBh33k
JFEwVSUDW8AH6YSMAA5eLp9bGTDOGYyvNHKBRXAv5GHQkBXq4ahjZEUh2b/r1903
FzivbyRtUsxEh62SCsXCZqKlb1BhXRkhSqdbBFbYsKYmVEkylQo=
=7rUb
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix handling of folio private changes.
The private value holds pointer to our extent buffer structure
representing a metadata range. Release and create of the range was
not properly synchronized when updating the private bit which ended
up in double folio_put, leading to all sorts of breakage
- fix a crash, reported as duplicate key in metadata, but caused by a
race of fsync and size extending write. Requires prealloc target
range + fsync and other conditions (log tree state, timing)
- fix leak of qgroup extent records after transaction abort
* tag 'for-6.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: protect folio::private when attaching extent buffer folios
btrfs: fix leak of qgroup extent records after transaction abort
btrfs: fix crash on racing fsync and size-extending write into prealloc
[BUG]
Since v6.8 there are rare kernel crashes reported by various people,
the common factor is bad page status error messages like this:
BUG: Bad page state in process kswapd0 pfn:d6e840
page: refcount:0 mapcount:0 mapping:000000007512f4f2 index:0x2796c2c7c
pfn:0xd6e840
aops:btree_aops ino:1
flags: 0x17ffffe0000008(uptodate|node=0|zone=2|lastcpupid=0x3fffff)
page_type: 0xffffffff()
raw: 0017ffffe0000008 dead000000000100 dead000000000122 ffff88826d0be4c0
raw: 00000002796c2c7c 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: non-NULL mapping
[CAUSE]
Commit 09e6cef19c ("btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method") changes the sequence when allocating a new
extent buffer.
Previously we always called grab_extent_buffer() under
mapping->i_private_lock, to ensure the safety on modification on
folio::private (which is a pointer to extent buffer for regular
sectorsize).
This can lead to the following race:
Thread A is trying to allocate an extent buffer at bytenr X, with 4
4K pages, meanwhile thread B is trying to release the page at X + 4K
(the second page of the extent buffer at X).
Thread A | Thread B
-----------------------------------+-------------------------------------
| btree_release_folio()
| | This is for the page at X + 4K,
| | Not page X.
| |
alloc_extent_buffer() | |- release_extent_buffer()
|- filemap_add_folio() for the | | |- atomic_dec_and_test(eb->refs)
| page at bytenr X (the first | | |
| page). | | |
| Which returned -EEXIST. | | |
| | | |
|- filemap_lock_folio() | | |
| Returned the first page locked. | | |
| | | |
|- grab_extent_buffer() | | |
| |- atomic_inc_not_zero() | | |
| | Returned false | | |
| |- folio_detach_private() | | |- folio_detach_private() for X
| |- folio_test_private() | | |- folio_test_private()
| Returned true | | | Returned true
|- folio_put() | |- folio_put()
Now there are two puts on the same folio at folio X, leading to refcount
underflow of the folio X, and eventually causing the BUG_ON() on the
page->mapping.
The condition is not that easy to hit:
- The release must be triggered for the middle page of an eb
If the release is on the same first page of an eb, page lock would kick
in and prevent the race.
- folio_detach_private() has a very small race window
It's only between folio_test_private() and folio_clear_private().
That's exactly when mapping->i_private_lock is used to prevent such race,
and commit 09e6cef19c ("btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method") screwed that up.
At that time, I thought the page lock would kick in as
filemap_release_folio() also requires the page to be locked, but forgot
the filemap_release_folio() only locks one page, not all pages of an
extent buffer.
[FIX]
Move all the code requiring i_private_lock into
attach_eb_folio_to_filemap(), so that everything is done with proper
lock protection.
Furthermore to prevent future problems, add an extra
lockdep_assert_locked() to ensure we're holding the proper lock.
To reproducer that is able to hit the race (takes a few minutes with
instrumented code inserting delays to alloc_extent_buffer()):
#!/bin/sh
drop_caches () {
while(true); do
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory
done
}
run_tar () {
while(true); do
for x in `seq 1 80` ; do
tar cf /dev/zero /mnt > /dev/null &
done
wait
done
}
mkfs.btrfs -f -d single -m single /dev/vda
mount -o noatime /dev/vda /mnt
# create 200,000 files, 1K each
./simoop -n 200000 -E -f 1k /mnt
drop_caches &
(run_tar)
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/linux-btrfs/CAHk-=wgt362nGfScVOOii8cgKn2LVVHeOvOA7OBwg1OwbuJQcw@mail.gmail.com/
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Link: https://lore.kernel.org/lkml/CABXGCsPktcHQOvKTbPaTwegMExije=Gpgci5NW=hqORo-s7diA@mail.gmail.com/
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Link: https://lore.kernel.org/linux-btrfs/e8b3311c-9a75-4903-907f-fc0f7a3fe423@gmx.de/
Reported-by: syzbot+f80b066392366b4af85e@syzkaller.appspotmail.com
Fixes: 09e6cef19c ("btrfs: refactor alloc_extent_buffer() to allocate-then-attach method")
CC: stable@vger.kernel.org # 6.8+
CC: Chris Mason <clm@fb.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmZggXMACgkQxWXV+ddt
WDupkA/9Foo2OsWR6wIQyBqzmHnhgzBwJ67q0F6MO2/iFfMRW/YIJH3Fk+0+PP40
BDK4xiz1DIl/qJvoSv4bpPNvy/lAovtVB/AV8rH+JaJNHP/fTjkqA3Ad6ZtZN45J
KoHE4SoX4NT1v+zwJ2irrH1W2mPh8tNTYvZINPcLC/nX2UzYoNjiIFLRCMSe003M
ybNjvv6VUHPk+9JAWsVt5pjDLu5E1EmXakXv5mvGaIVr0ljNUPCwhFip20YMpVfo
17t6MezmeqwGbrJgMpJyPOSsghaA68lzuzVVyAFFoxqlGLZ5rgtXTmK4O4NsyZfr
EMkwNR1IDt7fVXUkHy4X/8f9V8Wwmmwp8bSY4rTTgA4hg3w0w4FCX+uNOWHagkaS
8vWWTJBSvJKJwLUfWhKVHIaiUEkFEhmnUQPjqlfSxc+mQgxJcK1djgdVkVxSudrp
l0xdDG0WTWiO0zniIXbIlZ7tCeUgL1kcovZmDIA6em+HSipryvSFdYT+h7VKgzzv
XTJvdXKMSiqMvXoT2BRYkmWVeuUBhJ1EptkGidZBgTZ7EFfuGnhBCRgq9YSaWnak
2SBvgjxKQzyxVpqWllOsksRg2/fSl9vdlGK3KjyGW1pAwrZD/zbmG/ZqH2MVOfjt
LdswuwKd25pYpamYZqrCyJtIZlTSUrWpasaX1P28gs0uRCuFaiY=
=q3Ic
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"A fix for fast fsync that needs to handle errors during writes after
some COW failure so it does not lead to an inconsistent state"
* tag 'for-6.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: ensure fast fsync waits for ordered extents after a write failure
Qgroup extent records are created when delayed ref heads are created and
then released after accounting extents at btrfs_qgroup_account_extents(),
called during the transaction commit path.
If a transaction is aborted we free the qgroup records by calling
btrfs_qgroup_destroy_extent_records() at btrfs_destroy_delayed_refs(),
unless we don't have delayed references. We are incorrectly assuming
that no delayed references means we don't have qgroup extents records.
We can currently have no delayed references because we ran them all
during a transaction commit and the transaction was aborted after that
due to some error in the commit path.
So fix this by ensuring we btrfs_qgroup_destroy_extent_records() at
btrfs_destroy_delayed_refs() even if we don't have any delayed references.
Reported-by: syzbot+0fecc032fa134afd49df@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/0000000000004e7f980619f91835@google.com/
Fixes: 81f7eb00ff ("btrfs: destroy qgroup extent records on transaction abort")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have been seeing crashes on duplicate keys in
btrfs_set_item_key_safe():
BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:2620!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs]
With the following stack trace:
#0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4)
#1 btrfs_drop_extents (fs/btrfs/file.c:411:4)
#2 log_one_extent (fs/btrfs/tree-log.c:4732:9)
#3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9)
#4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9)
#5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8)
#6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8)
#7 btrfs_sync_file (fs/btrfs/file.c:1933:8)
#8 vfs_fsync_range (fs/sync.c:188:9)
#9 vfs_fsync (fs/sync.c:202:9)
#10 do_fsync (fs/sync.c:212:9)
#11 __do_sys_fdatasync (fs/sync.c:225:9)
#12 __se_sys_fdatasync (fs/sync.c:223:1)
#13 __x64_sys_fdatasync (fs/sync.c:223:1)
#14 do_syscall_x64 (arch/x86/entry/common.c:52:14)
#15 do_syscall_64 (arch/x86/entry/common.c:83:7)
#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121)
So we're logging a changed extent from fsync, which is splitting an
extent in the log tree. But this split part already exists in the tree,
triggering the BUG().
This is the state of the log tree at the time of the crash, dumped with
drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py)
to get more details than btrfs_print_leaf() gives us:
>>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"])
leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610
leaf 33439744 flags 0x100000000000000
fs uuid e5bd3946-400c-4223-8923-190ef1f18677
chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160
generation 7 transid 9 size 8192 nbytes 8473563889606862198
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 204 flags 0x10(PREALLOC)
atime 1716417703.220000000 (2024-05-22 15:41:43)
ctime 1716417704.983333333 (2024-05-22 15:41:44)
mtime 1716417704.983333333 (2024-05-22 15:41:44)
otime 17592186044416.000000000 (559444-03-08 01:40:16)
item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13
index 195 namelen 3 name: 193
item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37
location key (0 UNKNOWN.0 0) type XATTR
transid 7 data_len 1 name_len 6
name: user.a
data a
item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53
generation 9 type 1 (regular)
extent data disk byte 303144960 nr 12288
extent data offset 0 nr 4096 ram 12288
extent compression 0 (none)
item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53
generation 9 type 2 (prealloc)
prealloc data disk byte 303144960 nr 12288
prealloc data offset 4096 nr 8192
item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53
generation 9 type 2 (prealloc)
prealloc data disk byte 303144960 nr 12288
prealloc data offset 8192 nr 4096
...
So the real problem happened earlier: notice that items 4 (4k-12k) and 5
(8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and
item 5 starts at i_size.
Here is the state of the filesystem tree at the time of the crash:
>>> root = prog.crashed_thread().stack_trace()[2]["inode"].root
>>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0))
>>> print_extent_buffer(nodes[0])
leaf 30425088 level 0 items 184 generation 9 owner 5
leaf 30425088 flags 0x100000000000000
fs uuid e5bd3946-400c-4223-8923-190ef1f18677
chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
...
item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160
generation 7 transid 7 size 4096 nbytes 12288
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 6 flags 0x10(PREALLOC)
atime 1716417703.220000000 (2024-05-22 15:41:43)
ctime 1716417703.220000000 (2024-05-22 15:41:43)
mtime 1716417703.220000000 (2024-05-22 15:41:43)
otime 1716417703.220000000 (2024-05-22 15:41:43)
item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13
index 195 namelen 3 name: 193
item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37
location key (0 UNKNOWN.0 0) type XATTR
transid 7 data_len 1 name_len 6
name: user.a
data a
item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53
generation 9 type 1 (regular)
extent data disk byte 303144960 nr 12288
extent data offset 0 nr 8192 ram 12288
extent compression 0 (none)
item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53
generation 9 type 2 (prealloc)
prealloc data disk byte 303144960 nr 12288
prealloc data offset 8192 nr 4096
Item 5 in the log tree corresponds to item 183 in the filesystem tree,
but nothing matches item 4. Furthermore, item 183 is the last item in
the leaf.
btrfs_log_prealloc_extents() is responsible for logging prealloc extents
beyond i_size. It first truncates any previously logged prealloc extents
that start beyond i_size. Then, it walks the filesystem tree and copies
the prealloc extent items to the log tree.
If it hits the end of a leaf, then it calls btrfs_next_leaf(), which
unlocks the tree and does another search. However, while the filesystem
tree is unlocked, an ordered extent completion may modify the tree. In
particular, it may insert an extent item that overlaps with an extent
item that was already copied to the log tree.
This may manifest in several ways depending on the exact scenario,
including an EEXIST error that is silently translated to a full sync,
overlapping items in the log tree, or this crash. This particular crash
is triggered by the following sequence of events:
- Initially, the file has i_size=4k, a regular extent from 0-4k, and a
prealloc extent beyond i_size from 4k-12k. The prealloc extent item is
the last item in its B-tree leaf.
- The file is fsync'd, which copies its inode item and both extent items
to the log tree.
- An xattr is set on the file, which sets the
BTRFS_INODE_COPY_EVERYTHING flag.
- The range 4k-8k in the file is written using direct I/O. i_size is
extended to 8k, but the ordered extent is still in flight.
- The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this
calls copy_inode_items_to_log(), which calls
btrfs_log_prealloc_extents().
- btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the
filesystem tree. Since it starts before i_size, it skips it. Since it
is the last item in its B-tree leaf, it calls btrfs_next_leaf().
- btrfs_next_leaf() unlocks the path.
- The ordered extent completion runs, which converts the 4k-8k part of
the prealloc extent to written and inserts the remaining prealloc part
from 8k-12k.
- btrfs_next_leaf() does a search and finds the new prealloc extent
8k-12k.
- btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into
the log tree. Note that it overlaps with the 4k-12k prealloc extent
that was copied to the log tree by the first fsync.
- fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k
extent that was written.
- This tries to drop the range 4k-8k in the log tree, which requires
adjusting the start of the 4k-12k prealloc extent in the log tree to
8k.
- btrfs_set_item_key_safe() sees that there is already an extent
starting at 8k in the log tree and calls BUG().
Fix this by detecting when we're about to insert an overlapping file
extent item in the log tree and truncating the part that would overlap.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a write path in COW mode fails, either before submitting a bio for the
new extents or an actual IO error happens, we can end up allowing a fast
fsync to log file extent items that point to unwritten extents.
This is because dropping the extent maps happens when completing ordered
extents, at btrfs_finish_one_ordered(), and the completion of an ordered
extent is executed in a work queue.
This can result in a fast fsync to start logging file extent items based
on existing extent maps before the ordered extents complete, therefore
resulting in a log that has file extent items that point to unwritten
extents, resulting in a corrupt file if a crash happens after and the log
tree is replayed the next time the fs is mounted.
This can happen for both direct IO writes and buffered writes.
For example consider a direct IO write, in COW mode, that fails at
btrfs_dio_submit_io() because btrfs_extract_ordered_extent() returned an
error:
1) We call btrfs_finish_ordered_extent() with the 'uptodate' parameter
set to false, meaning an error happened;
2) That results in marking the ordered extent with the BTRFS_ORDERED_IOERR
flag;
3) btrfs_finish_ordered_extent() queues the completion of the ordered
extent - so that btrfs_finish_one_ordered() will be executed later in
a work queue. That function will drop extent maps in the range when
it's executed, since the extent maps point to unwritten locations
(signaled by the BTRFS_ORDERED_IOERR flag);
4) After calling btrfs_finish_ordered_extent() we keep going down the
write path and unlock the inode;
5) After that a fast fsync starts and locks the inode;
6) Before the work queue executes btrfs_finish_one_ordered(), the fsync
task sees the extent maps that point to the unwritten locations and
logs file extent items based on them - it does not know they are
unwritten, and the fast fsync path does not wait for ordered extents
to complete, which is an intentional behaviour in order to reduce
latency.
For the buffered write case, here's one example:
1) A fast fsync begins, and it starts by flushing delalloc and waiting for
the writeback to complete by calling filemap_fdatawait_range();
2) Flushing the dellaloc created a new extent map X;
3) During the writeback some IO error happened, and at the end io callback
(end_bbio_data_write()) we call btrfs_finish_ordered_extent(), which
sets the BTRFS_ORDERED_IOERR flag in the ordered extent and queues its
completion;
4) After queuing the ordered extent completion, the end io callback clears
the writeback flag from all pages (or folios), and from that moment the
fast fsync can proceed;
5) The fast fsync proceeds sees extent map X and logs a file extent item
based on extent map X, resulting in a log that points to an unwritten
data extent - because the ordered extent completion hasn't run yet, it
happens only after the logging.
To fix this make btrfs_finish_ordered_extent() set the inode flag
BTRFS_INODE_NEEDS_FULL_SYNC in case an error happened for a COW write,
so that a fast fsync will wait for ordered extent completion.
Note that this issues of using extent maps that point to unwritten
locations can not happen for reads, because in read paths we start by
locking the extent range and wait for any ordered extents in the range
to complete before looking for extent maps.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmZQjzoACgkQxWXV+ddt
WDsFaw/+O6lH+rPLhvUoqtnrydC6QLnEW5Qj5EURDt3HkROOsXHszdNGKdsETZ2i
/s4dDiCRwLv7PP/bWlFfQbHzckoBHI9I/1GxHKQM3OM27BpXvILacXSMJ13zw4vq
DRQIUdTwfUkegEytZb0ddv6+++R1YyU6nE6LfiF2Pf4XJMQ2WXPRNu6bAa27xUia
4ITHB6m92zynhATJk0/RpfCU64HWwj919WnJDmoVOJ7Nr8Pslz4jKm7HS1qiehNd
EbhduQPhj7UvWiL4C9/iFFndgzm1tX1WNlJDu5c0KqwYIHq2+BmDv3Cqhkazkdvu
veU0wO62bZzV42vmTvQXzyXeXjNXRyLOvK6uHXv0VCO8VVsl2/WnYTRWmH44ECar
z4tByfBKA7nIL2e23ztkyqnhygDf8Y1/Dy+GfprR6JPhyYGHJDqLcB3Gyw9y/AXO
b/2MoAEgET9QPM/0HLqdonDJ75D2PF0qmwp1ys79w/BGH0BUoxZs/POL2UT87EJO
rO5kW0/nZy99sbWFfZRwDUxTj1IlDqdudaHPOdJs/tUb3wPseLm5abQEyk+Dns6K
3y7OviNVQy0x325JY9RmdfnJv60KHvv5pqws1Nkuhqk1LH8csL6MsYlcybhR+vOk
G9qkNxg35aNqjNlBi7RacMT8OgwVbVhik8jVr+MfXk30grIevzU=
=XR4r
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull more btrfs updates from David Sterba:
"A few more updates, mostly stability fixes or user visible changes:
- fix race in zoned mode during device replace that can lead to
use-after-free
- update return codes and lower message levels for quota rescan where
it's causing false alerts
- fix unexpected qgroup id reuse under some conditions
- fix condition when looking up extent refs
- add option norecovery (removed in 6.8), the intended replacements
haven't been used and some aplications still rely on the old one
- build warning fixes"
* tag 'for-6.10-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: re-introduce 'norecovery' mount option
btrfs: fix end of tree detection when searching for data extent ref
btrfs: scrub: initialize ret in scrub_simple_mirror() to fix compilation warning
btrfs: zoned: fix use-after-free due to race with dev replace
btrfs: qgroup: fix qgroup id collision across mounts
btrfs: qgroup: update rescan message levels and error codes
Replacement of bdev->bd_inode with sane(r) set of primitives.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZkwjlgAKCRBZ7Krx/gZQ
66OmAP9nhZLASn/iM2+979I6O0GW+vid+uLh48uW3d+LbsmVIgD9GYpR+cuLQ/xj
mJESWfYKOVSpFFSrqlzKg9PQlU/GFgs=
=6LRp
-----END PGP SIGNATURE-----
Merge tag 'pull-bd_inode-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull bdev bd_inode updates from Al Viro:
"Replacement of bdev->bd_inode with sane(r) set of primitives by me and
Yu Kuai"
* tag 'pull-bd_inode-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RIP ->bd_inode
dasd_format(): killing the last remaining user of ->bd_inode
nilfs_attach_log_writer(): use ->bd_mapping->host instead of ->bd_inode
block/bdev.c: use the knowledge of inode/bdev coallocation
gfs2: more obvious initializations of mapping->host
fs/buffer.c: massage the remaining users of ->bd_inode to ->bd_mapping
blk_ioctl_{discard,zeroout}(): we only want ->bd_inode->i_mapping here...
grow_dev_folio(): we only want ->bd_inode->i_mapping there
use ->bd_mapping instead of ->bd_inode->i_mapping
block_device: add a pointer to struct address_space (page cache of bdev)
missing helpers: bdev_unhash(), bdev_drop()
block: move two helpers into bdev.c
block2mtd: prevent direct access of bd_inode
dm-vdo: use bdev_nr_bytes(bdev) instead of i_size_read(bdev->bd_inode)
blkdev_write_iter(): saner way to get inode and bdev
bcachefs: remove dead function bdev_sectors()
ext4: remove block_device_ejected()
erofs_buf: store address_space instead of inode
erofs: switch erofs_bread() to passing offset instead of block number
to struct file * and verifying that caller has device
opened exclusively.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZkwkfQAKCRBZ7Krx/gZQ
62C3AQDW5vuXNx2+KDPma5YStjFpPLC0xtSyAS5D3YANjtyRFgD/TOcCarq7rvBt
KubxHVFsfW+eu6ASeaoMRB83w5OIzwk=
=Liix
-----END PGP SIGNATURE-----
Merge tag 'pull-set_blocksize' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs blocksize updates from Al Viro:
"This gets rid of bogus set_blocksize() uses, switches it over
to be based on a 'struct file *' and verifies that the caller
has the device opened exclusively"
* tag 'pull-set_blocksize' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
make set_blocksize() fail unless block device is opened exclusive
set_blocksize(): switch to passing struct file *
btrfs_get_bdev_and_sb(): call set_blocksize() only for exclusive opens
swsusp: don't bother with setting block size
zram: don't bother with reopening - just use O_EXCL for open
swapon(2): open swap with O_EXCL
swapon(2)/swapoff(2): don't bother with block size
pktcdvd: sort set_blocksize() calls out
bcache_register(): don't bother with set_blocksize()
Although 'norecovery' mount option was marked as deprecated for a long
time and a warning message was printed during the deprecation window,
it's still actively utilized by several projects that need a safer way
to mount a btrfs without any writes.
Furthermore this 'norecovery' mount option is supported by other major
filesystems, which makes it less clear what's our motivation to remove
it.
Re-introduce the 'norecovery' mount option, and output a message to recommend
'rescue=nologreplay' option.
Link: https://lore.kernel.org/linux-btrfs/ZkxZT0J-z0GYvfy8@gardel-login/#t
Link: https://github.com/systemd/systemd/pull/32892
Link: https://bugzilla.suse.com/show_bug.cgi?id=1222429
Reported-by: Lennart Poettering <lennart@poettering.net>
Reported-by: Jiri Slaby <jslaby@suse.com>
Fixes: a1912f7121 ("btrfs: remove code for inode_cache and recovery mount options")
CC: stable@vger.kernel.org # 6.8+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At lookup_extent_data_ref() we are incorrectly checking if we are at the
last slot of the last leaf in the extent tree. We are returning -ENOENT
if btrfs_next_leaf() returns a value greater than 1, but btrfs_next_leaf()
never returns anything greater than 1:
1) It returns < 0 on error;
2) 0 if there is a next leaf (or a new item was added to the end of the
current leaf after releasing the path);
3) 1 if there are no more leaves (and no new items were added to the last
leaf after releasing the path).
So fix this by checking if the return value is greater than zero instead
of being greater than one.
Fixes: 1618aa3c2e ("btrfs: simplify return variables in lookup_extent_data_ref()")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following error message is displayed:
../fs/btrfs/scrub.c:2152:9: error: ‘ret’ may be used uninitialized
in this function [-Werror=maybe-uninitialized]"
Compiler version: gcc version: (Debian 10.2.1-6) 10.2.1 20210110
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Lu Yao <yaolu@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While loading a zone's info during creation of a block group, we can race
with a device replace operation and then trigger a use-after-free on the
device that was just replaced (source device of the replace operation).
This happens because at btrfs_load_zone_info() we extract a device from
the chunk map into a local variable and then use the device while not
under the protection of the device replace rwsem. So if there's a device
replace operation happening when we extract the device and that device
is the source of the replace operation, we will trigger a use-after-free
if before we finish using the device the replace operation finishes and
frees the device.
Fix this by enlarging the critical section under the protection of the
device replace rwsem so that all uses of the device are done inside the
critical section.
CC: stable@vger.kernel.org # 6.1.x: 15c12fcc50: btrfs: zoned: introduce a zone_info struct in btrfs_load_block_group_zone_info
CC: stable@vger.kernel.org # 6.1.x: 09a46725cc: btrfs: zoned: factor out per-zone logic from btrfs_load_block_group_zone_info
CC: stable@vger.kernel.org # 6.1.x: 9e0e3e74dc: btrfs: zoned: factor out single bg handling from btrfs_load_block_group_zone_info
CC: stable@vger.kernel.org # 6.1.x: 87463f7e02: btrfs: zoned: factor out DUP bg handling from btrfs_load_block_group_zone_info
CC: stable@vger.kernel.org # 6.1.x
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we delete subvolumes whose ID is the largest in the filesystem, then
unmount and mount again, then btrfs_init_root_free_objectid on the
tree_root will select a subvolid smaller than that one and thus allow
reusing it.
If we are also using qgroups (and particularly squotas) it is possible
to delete the subvol without deleting the qgroup. In that case, we will
be able to create a new subvol whose id already has a level 0 qgroup.
This will result in re-using that qgroup which would then lead to
incorrect accounting.
Fixes: 6ed05643dd ("btrfs: create qgroup earlier in snapshot creation")
CC: stable@vger.kernel.org # 6.7+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
On filesystems without enabled quotas there's still a warning message in
the logs when rescan is called. In that case it's not a problem that
should be reported, rescan can be called unconditionally. Change the
error code to ENOTCONN which is used for 'quotas not enabled' elsewhere.
Remove message (also a warning) when rescan is called during an ongoing
rescan, this brings no useful information and the error code is
sufficient.
Change message levels to debug for now, they can be removed eventually.
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Core & protocols
----------------
- Complete rework of garbage collection of AF_UNIX sockets.
AF_UNIX is prone to forming reference count cycles due to fd passing
functionality. New method based on Tarjan's Strongly Connected Components
algorithm should be both faster and remove a lot of workarounds
we accumulated over the years.
- Add TCP fraglist GRO support, allowing chaining multiple TCP packets
and forwarding them together. Useful for small switches / routers which
lack basic checksum offload in some scenarios (e.g. PPPoE).
- Support using SMP threads for handling packet backlog i.e. packet
processing from software interfaces and old drivers which don't
use NAPI. This helps move the processing out of the softirq jumble.
- Continue work of converting from rtnl lock to RCU protection.
Don't require rtnl lock when reading: IPv6 routing FIB, IPv6 address
labels, netdev threaded NAPI sysfs files, bonding driver's sysfs files,
MPLS devconf, IPv4 FIB rules, netns IDs, tcp metrics, TC Qdiscs,
neighbor entries, ARP entries via ioctl(SIOCGARP), a lot of the link
information available via rtnetlink.
- Small optimizations from Eric to UDP wake up handling, memory accounting,
RPS/RFS implementation, TCP packet sizing etc.
- Allow direct page recycling in the bulk API used by XDP, for +2% PPS.
- Support peek with an offset on TCP sockets.
- Add MPTCP APIs for querying last time packets were received/sent/acked,
and whether MPTCP "upgrade" succeeded on a TCP socket.
- Add intra-node communication shortcut to improve SMC performance.
- Add IPv6 (and IPv{4,6}-over-IPv{4,6}) support to the GTP protocol driver.
- Add HSR-SAN (RedBOX) mode of operation to the HSR protocol driver.
- Add reset reasons for tracing what caused a TCP reset to be sent.
- Introduce direction attribute for xfrm (IPSec) states.
State can be used either for input or output packet processing.
Things we sprinkled into general kernel code
--------------------------------------------
- Add bitmap_{read,write}(), bitmap_size(), expose BYTES_TO_BITS().
This required touch-ups and renaming of a few existing users.
- Add Endian-dependent __counted_by_{le,be} annotations.
- Make building selftests "quieter" by printing summaries like
"CC object.o" rather than full commands with all the arguments.
Netfilter
---------
- Use GFP_KERNEL to clone elements, to deal better with OOM situations
and avoid failures in the .commit step.
BPF
---
- Add eBPF JIT for ARCv2 CPUs.
- Support attaching kprobe BPF programs through kprobe_multi link in
a session mode, meaning, a BPF program is attached to both function entry
and return, the entry program can decide if the return program gets
executed and the entry program can share u64 cookie value with return
program. "Session mode" is a common use-case for tetragon and bpftrace.
- Add the ability to specify and retrieve BPF cookie for raw tracepoint
programs in order to ease migration from classic to raw tracepoints.
- Add an internal-only BPF per-CPU instruction for resolving per-CPU
memory addresses and implement support in x86, ARM64 and RISC-V JITs.
This allows inlining functions which need to access per-CPU state.
- Optimize x86 BPF JIT's emit_mov_imm64, and add support for various
atomics in bpf_arena which can be JITed as a single x86 instruction.
Support BPF arena on ARM64.
- Add a new bpf_wq API for deferring events and refactor process-context
bpf_timer code to keep common code where possible.
- Harden the BPF verifier's and/or/xor value tracking.
- Introduce crypto kfuncs to let BPF programs call kernel crypto APIs.
- Support bpf_tail_call_static() helper for BPF programs with GCC 13.
- Add bpf_preempt_{disable,enable}() kfuncs in order to allow a BPF
program to have code sections where preemption is disabled.
Driver API
----------
- Skip software TC processing completely if all installed rules are
marked as HW-only, instead of checking the HW-only flag rule by rule.
- Add support for configuring PoE (Power over Ethernet), similar to
the already existing support for PoDL (Power over Data Line) config.
- Initial bits of a queue control API, for now allowing a single queue
to be reset without disturbing packet flow to other queues.
- Common (ethtool) statistics for hardware timestamping.
Tests and tooling
-----------------
- Remove the need to create a config file to run the net forwarding tests
so that a naive "make run_tests" can exercise them.
- Define a method of writing tests which require an external endpoint
to communicate with (to send/receive data towards the test machine).
Add a few such tests.
- Create a shared code library for writing Python tests. Expose the YAML
Netlink library from tools/ to the tests for easy Netlink access.
- Move netfilter tests under net/, extend them, separate performance tests
from correctness tests, and iron out issues found by running them
"on every commit".
- Refactor BPF selftests to use common network helpers.
- Further work filling in YAML definitions of Netlink messages for:
nftables, team driver, bonding interfaces, vlan interfaces, VF info,
TC u32 mark, TC police action.
- Teach Python YAML Netlink to decode attribute policies.
- Extend the definition of the "indexed array" construct in the specs
to cover arrays of scalars rather than just nests.
- Add hyperlinks between definitions in generated Netlink docs.
Drivers
-------
- Make sure unsupported flower control flags are rejected by drivers,
and make more drivers report errors directly to the application rather
than dmesg (large number of driver changes from Asbjørn Sloth Tønnesen).
- Ethernet high-speed NICs:
- Broadcom (bnxt):
- support multiple RSS contexts and steering traffic to them
- support XDP metadata
- make page pool allocations more NUMA aware
- Intel (100G, ice, idpf):
- extract datapath code common among Intel drivers into a library
- use fewer resources in switchdev by sharing queues with the PF
- add PFCP filter support
- add Ethernet filter support
- use a spinlock instead of HW lock in PTP clock ops
- support 5 layer Tx scheduler topology
- nVidia/Mellanox:
- 800G link modes and 100G SerDes speeds
- per-queue IRQ coalescing configuration
- Marvell Octeon:
- support offloading TC packet mark action
- Ethernet NICs consumer, embedded and virtual:
- stop lying about skb->truesize in USB Ethernet drivers, it messes up
TCP memory calculations
- Google cloud vNIC:
- support changing ring size via ethtool
- support ring reset using the queue control API
- VirtIO net:
- expose flow hash from RSS to XDP
- per-queue statistics
- add selftests
- Synopsys (stmmac):
- support controllers which require an RX clock signal from the MII
bus to perform their hardware initialization
- TI:
- icssg_prueth: support ICSSG-based Ethernet on AM65x SR1.0 devices
- icssg_prueth: add SW TX / RX Coalescing based on hrtimers
- cpsw: minimal XDP support
- Renesas (ravb):
- support describing the MDIO bus
- Realtek (r8169):
- add support for RTL8168M
- Microchip Sparx5:
- matchall and flower actions mirred and redirect
- Ethernet switches:
- nVidia/Mellanox:
- improve events processing performance
- Marvell:
- add support for MV88E6250 family internal PHYs
- Microchip:
- add DCB and DSCP mapping support for KSZ switches
- vsc73xx: convert to PHYLINK
- Realtek:
- rtl8226b/rtl8221b: add C45 instances and SerDes switching
- Many driver changes related to PHYLIB and PHYLINK deprecated API cleanup.
- Ethernet PHYs:
- Add a new driver for Airoha EN8811H 2.5 Gigabit PHY.
- micrel: lan8814: add support for PPS out and external timestamp trigger
- WiFi:
- Disable Wireless Extensions (WEXT) in all Wi-Fi 7 devices drivers.
Modern devices can only be configured using nl80211.
- mac80211/cfg80211
- handle color change per link for WiFi 7 Multi-Link Operation
- Intel (iwlwifi):
- don't support puncturing in 5 GHz
- support monitor mode on passive channels
- BZ-W device support
- P2P with HE/EHT support
- re-add support for firmware API 90
- provide channel survey information for Automatic Channel Selection
- MediaTek (mt76):
- mt7921 LED control
- mt7925 EHT radiotap support
- mt7920e PCI support
- Qualcomm (ath11k):
- P2P support for QCA6390, WCN6855 and QCA2066
- support hibernation
- ieee80211-freq-limit Device Tree property support
- Qualcomm (ath12k):
- refactoring in preparation of multi-link support
- suspend and hibernation support
- ACPI support
- debugfs support, including dfs_simulate_radar support
- RealTek:
- rtw88: RTL8723CS SDIO device support
- rtw89: RTL8922AE Wi-Fi 7 PCI device support
- rtw89: complete features of new WiFi 7 chip 8922AE including
BT-coexistence and Wake-on-WLAN
- rtw89: use BIOS ACPI settings to set TX power and channels
- rtl8xxxu: enable Management Frame Protection (MFP) support
- Bluetooth:
- support for Intel BlazarI and Filmore Peak2 (BE201)
- support for MediaTek MT7921S SDIO
- initial support for Intel PCIe BT driver
- remove HCI_AMP support
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmZD6sQACgkQMUZtbf5S
IrtLYw/+I73ePGIye37o2jpbodcLAUZVfF3r6uYUzK8hokEcKD0QVJa9w7PizLZ3
UO45ClOXFLJCkfP4reFenLfxGCel2AJI+F7VFl2xaO2XgrcH/lnVrHqKZEAEXjls
KoYMnShIolv7h2MKP6hHtyTi2j1wvQUKsZC71o9/fuW+4fUT8gECx1YtYcL73wrw
gEMdlUgBYC3jiiCUHJIFX6iPJ2t/TC+q1eIIF2K/Osrk2kIqQhzoozcL4vpuAZQT
99ljx/qRelXa8oppDb7nM5eulg7WY8ZqxEfFZphTMC5nLEGzClxuOTTl2kDYI/D/
UZmTWZDY+F5F0xvNk2gH84qVJXBOVDoobpT7hVA/tDuybobc/kvGDzRayEVqVzKj
Q0tPlJs+xBZpkK5TVnxaFLJVOM+p1Xosxy3kNVXmuYNBvT/R89UbJiCrUKqKZF+L
z/1mOYUv8UklHqYAeuJSptHvqJjTGa/fsEYP7dAUBbc1N2eVB8mzZ4mgU5rYXbtC
E6UXXiWnoSRm8bmco9QmcWWoXt5UGEizHSJLz6t1R5Df/YmXhWlytll5aCwY1ksf
FNoL7S4u7AZThL1Nwi7yUs4CAjhk/N4aOsk+41S0sALCx30BJuI6UdesAxJ0lu+Z
fwCQYbs27y4p7mBLbkYwcQNxAxGm7PSK4yeyRIy2njiyV4qnLf8=
=EsC2
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core & protocols:
- Complete rework of garbage collection of AF_UNIX sockets.
AF_UNIX is prone to forming reference count cycles due to fd
passing functionality. New method based on Tarjan's Strongly
Connected Components algorithm should be both faster and remove a
lot of workarounds we accumulated over the years.
- Add TCP fraglist GRO support, allowing chaining multiple TCP
packets and forwarding them together. Useful for small switches /
routers which lack basic checksum offload in some scenarios (e.g.
PPPoE).
- Support using SMP threads for handling packet backlog i.e. packet
processing from software interfaces and old drivers which don't use
NAPI. This helps move the processing out of the softirq jumble.
- Continue work of converting from rtnl lock to RCU protection.
Don't require rtnl lock when reading: IPv6 routing FIB, IPv6
address labels, netdev threaded NAPI sysfs files, bonding driver's
sysfs files, MPLS devconf, IPv4 FIB rules, netns IDs, tcp metrics,
TC Qdiscs, neighbor entries, ARP entries via ioctl(SIOCGARP), a lot
of the link information available via rtnetlink.
- Small optimizations from Eric to UDP wake up handling, memory
accounting, RPS/RFS implementation, TCP packet sizing etc.
- Allow direct page recycling in the bulk API used by XDP, for +2%
PPS.
- Support peek with an offset on TCP sockets.
- Add MPTCP APIs for querying last time packets were received/sent/acked
and whether MPTCP "upgrade" succeeded on a TCP socket.
- Add intra-node communication shortcut to improve SMC performance.
- Add IPv6 (and IPv{4,6}-over-IPv{4,6}) support to the GTP protocol
driver.
- Add HSR-SAN (RedBOX) mode of operation to the HSR protocol driver.
- Add reset reasons for tracing what caused a TCP reset to be sent.
- Introduce direction attribute for xfrm (IPSec) states. State can be
used either for input or output packet processing.
Things we sprinkled into general kernel code:
- Add bitmap_{read,write}(), bitmap_size(), expose BYTES_TO_BITS().
This required touch-ups and renaming of a few existing users.
- Add Endian-dependent __counted_by_{le,be} annotations.
- Make building selftests "quieter" by printing summaries like
"CC object.o" rather than full commands with all the arguments.
Netfilter:
- Use GFP_KERNEL to clone elements, to deal better with OOM
situations and avoid failures in the .commit step.
BPF:
- Add eBPF JIT for ARCv2 CPUs.
- Support attaching kprobe BPF programs through kprobe_multi link in
a session mode, meaning, a BPF program is attached to both function
entry and return, the entry program can decide if the return
program gets executed and the entry program can share u64 cookie
value with return program. "Session mode" is a common use-case for
tetragon and bpftrace.
- Add the ability to specify and retrieve BPF cookie for raw
tracepoint programs in order to ease migration from classic to raw
tracepoints.
- Add an internal-only BPF per-CPU instruction for resolving per-CPU
memory addresses and implement support in x86, ARM64 and RISC-V
JITs. This allows inlining functions which need to access per-CPU
state.
- Optimize x86 BPF JIT's emit_mov_imm64, and add support for various
atomics in bpf_arena which can be JITed as a single x86
instruction. Support BPF arena on ARM64.
- Add a new bpf_wq API for deferring events and refactor
process-context bpf_timer code to keep common code where possible.
- Harden the BPF verifier's and/or/xor value tracking.
- Introduce crypto kfuncs to let BPF programs call kernel crypto
APIs.
- Support bpf_tail_call_static() helper for BPF programs with GCC 13.
- Add bpf_preempt_{disable,enable}() kfuncs in order to allow a BPF
program to have code sections where preemption is disabled.
Driver API:
- Skip software TC processing completely if all installed rules are
marked as HW-only, instead of checking the HW-only flag rule by
rule.
- Add support for configuring PoE (Power over Ethernet), similar to
the already existing support for PoDL (Power over Data Line)
config.
- Initial bits of a queue control API, for now allowing a single
queue to be reset without disturbing packet flow to other queues.
- Common (ethtool) statistics for hardware timestamping.
Tests and tooling:
- Remove the need to create a config file to run the net forwarding
tests so that a naive "make run_tests" can exercise them.
- Define a method of writing tests which require an external endpoint
to communicate with (to send/receive data towards the test
machine). Add a few such tests.
- Create a shared code library for writing Python tests. Expose the
YAML Netlink library from tools/ to the tests for easy Netlink
access.
- Move netfilter tests under net/, extend them, separate performance
tests from correctness tests, and iron out issues found by running
them "on every commit".
- Refactor BPF selftests to use common network helpers.
- Further work filling in YAML definitions of Netlink messages for:
nftables, team driver, bonding interfaces, vlan interfaces, VF
info, TC u32 mark, TC police action.
- Teach Python YAML Netlink to decode attribute policies.
- Extend the definition of the "indexed array" construct in the specs
to cover arrays of scalars rather than just nests.
- Add hyperlinks between definitions in generated Netlink docs.
Drivers:
- Make sure unsupported flower control flags are rejected by drivers,
and make more drivers report errors directly to the application
rather than dmesg (large number of driver changes from Asbjørn
Sloth Tønnesen).
- Ethernet high-speed NICs:
- Broadcom (bnxt):
- support multiple RSS contexts and steering traffic to them
- support XDP metadata
- make page pool allocations more NUMA aware
- Intel (100G, ice, idpf):
- extract datapath code common among Intel drivers into a library
- use fewer resources in switchdev by sharing queues with the PF
- add PFCP filter support
- add Ethernet filter support
- use a spinlock instead of HW lock in PTP clock ops
- support 5 layer Tx scheduler topology
- nVidia/Mellanox:
- 800G link modes and 100G SerDes speeds
- per-queue IRQ coalescing configuration
- Marvell Octeon:
- support offloading TC packet mark action
- Ethernet NICs consumer, embedded and virtual:
- stop lying about skb->truesize in USB Ethernet drivers, it
messes up TCP memory calculations
- Google cloud vNIC:
- support changing ring size via ethtool
- support ring reset using the queue control API
- VirtIO net:
- expose flow hash from RSS to XDP
- per-queue statistics
- add selftests
- Synopsys (stmmac):
- support controllers which require an RX clock signal from the
MII bus to perform their hardware initialization
- TI:
- icssg_prueth: support ICSSG-based Ethernet on AM65x SR1.0 devices
- icssg_prueth: add SW TX / RX Coalescing based on hrtimers
- cpsw: minimal XDP support
- Renesas (ravb):
- support describing the MDIO bus
- Realtek (r8169):
- add support for RTL8168M
- Microchip Sparx5:
- matchall and flower actions mirred and redirect
- Ethernet switches:
- nVidia/Mellanox:
- improve events processing performance
- Marvell:
- add support for MV88E6250 family internal PHYs
- Microchip:
- add DCB and DSCP mapping support for KSZ switches
- vsc73xx: convert to PHYLINK
- Realtek:
- rtl8226b/rtl8221b: add C45 instances and SerDes switching
- Many driver changes related to PHYLIB and PHYLINK deprecated API
cleanup
- Ethernet PHYs:
- Add a new driver for Airoha EN8811H 2.5 Gigabit PHY.
- micrel: lan8814: add support for PPS out and external timestamp trigger
- WiFi:
- Disable Wireless Extensions (WEXT) in all Wi-Fi 7 devices
drivers. Modern devices can only be configured using nl80211.
- mac80211/cfg80211
- handle color change per link for WiFi 7 Multi-Link Operation
- Intel (iwlwifi):
- don't support puncturing in 5 GHz
- support monitor mode on passive channels
- BZ-W device support
- P2P with HE/EHT support
- re-add support for firmware API 90
- provide channel survey information for Automatic Channel Selection
- MediaTek (mt76):
- mt7921 LED control
- mt7925 EHT radiotap support
- mt7920e PCI support
- Qualcomm (ath11k):
- P2P support for QCA6390, WCN6855 and QCA2066
- support hibernation
- ieee80211-freq-limit Device Tree property support
- Qualcomm (ath12k):
- refactoring in preparation of multi-link support
- suspend and hibernation support
- ACPI support
- debugfs support, including dfs_simulate_radar support
- RealTek:
- rtw88: RTL8723CS SDIO device support
- rtw89: RTL8922AE Wi-Fi 7 PCI device support
- rtw89: complete features of new WiFi 7 chip 8922AE including
BT-coexistence and Wake-on-WLAN
- rtw89: use BIOS ACPI settings to set TX power and channels
- rtl8xxxu: enable Management Frame Protection (MFP) support
- Bluetooth:
- support for Intel BlazarI and Filmore Peak2 (BE201)
- support for MediaTek MT7921S SDIO
- initial support for Intel PCIe BT driver
- remove HCI_AMP support"
* tag 'net-next-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1827 commits)
selftests: netfilter: fix packetdrill conntrack testcase
net: gro: fix napi_gro_cb zeroed alignment
Bluetooth: btintel_pcie: Refactor and code cleanup
Bluetooth: btintel_pcie: Fix warning reported by sparse
Bluetooth: hci_core: Fix not handling hdev->le_num_of_adv_sets=1
Bluetooth: btintel: Fix compiler warning for multi_v7_defconfig config
Bluetooth: btintel_pcie: Fix compiler warnings
Bluetooth: btintel_pcie: Add *setup* function to download firmware
Bluetooth: btintel_pcie: Add support for PCIe transport
Bluetooth: btintel: Export few static functions
Bluetooth: HCI: Remove HCI_AMP support
Bluetooth: L2CAP: Fix div-by-zero in l2cap_le_flowctl_init()
Bluetooth: qca: Fix error code in qca_read_fw_build_info()
Bluetooth: hci_conn: Use __counted_by() and avoid -Wfamnae warning
Bluetooth: btintel: Add support for Filmore Peak2 (BE201)
Bluetooth: btintel: Add support for BlazarI
LE Create Connection command timeout increased to 20 secs
dt-bindings: net: bluetooth: Add MediaTek MT7921S SDIO Bluetooth
Bluetooth: compute LE flow credits based on recvbuf space
Bluetooth: hci_sync: Use cmd->num_cis instead of magic number
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmZCE4MACgkQxWXV+ddt
WDudtQ//WjXcHtY3I6NJtDhPsIOG3Qjg9mA0shp73X4djJtZoGCdgL7dq+fTp5lk
Wu6/XY5g+CSttTgwF4eyHgUSJOptKWY0XQDWxX5VR8WCM2qmUZ7SedlrBED9GNDM
rN/3egmc74OGwnqyQq3I/2qYLByXFj66tsvW3UBjLNB8vMHajjw1idj9ujipioHq
ySStPCHkPMwuhEzw9+CTe3W47VUSb5Ug3XDhAZXvxT99oDHn1m+CxKQwcona/IPH
1El8PmZ7JetaT9ZO3DICBICfCyo+2SSy/KXYypXXE+nzNZhbhC0V9N7Uqm1c91C0
aRglsJZCXmHBD4BPLvkls6CqEIvMc7FvcNCqQlrbRT6PlfX91/XaeDq4l3RUcuPn
mGShsdHUiwbPMWYVwqVUKd0IPiktF1R7yigTjYSkEFJTL6HFTrBqV/2fAMUsMfPc
8gyzYMCPQld73WmrnXZQPKvmzO/LvE0gS5cPapokGwoXstq9n3iYd4ypN0wN6sif
1jwy3efNzWXXMYV0WzcihKwFMm2fqp/pl9bXq/zwn2CunfIX4WTsaQ2NmJf81jqF
qFNjlr8S3qO7AvIOs+R2XY9E3VjfzeDADzvjpQy5J/ZYbcHBcxxdYDhg+QGhe5nB
eNmR51oL1pHSjU2M8PxATL8JxKkX2BvX6u64lVojaw4rxUlyFC0=
=MMpE
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This update brings a few minor performance improvements, otherwise
there's a lot of refactoring, cleanups and other sort of not user
visible changes.
Performance improvements:
- inline b-tree locking functions, improvement in metadata-heavy
changes
- relax locking on a range that's being reflinked, allows read
operations to run in parallel
- speed up NOCOW write checks (throughput +9% on a sample test)
- extent locking ranges have been reduced in several places, namely
around delayed ref processing
Core:
- more page to folio conversions:
- relocation
- send
- compression
- inline extent handling
- super block write and wait
- extent_map structure optimizations:
- reduced structure size
- code simplifications
- add shrinker for allocated objects, the numbers can go high and
could exhaust memory on smaller systems (reported) as they may
not get an opportunity to be freed fast enough
- extent locking optimizations:
- reduce locking ranges where it does not seem to be necessary and
are safe due to other means of synchronization
- potential improvements due to lower contention,
allocation/freeing and state management operations of extent
state tracking structures
- delayed ref cleanups and simplifications
- updated trace points
- improved error handling, warnings and assertions
- cleanups and refactoring, unification of error handling paths"
* tag 'for-6.10-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (122 commits)
btrfs: qgroup: fix initialization of auto inherit array
btrfs: count super block write errors in device instead of tracking folio error state
btrfs: use the folio iterator in btrfs_end_super_write()
btrfs: convert super block writes to folio in write_dev_supers()
btrfs: convert super block writes to folio in wait_dev_supers()
bio: Export bio_add_folio_nofail to modules
btrfs: remove duplicate included header from fs.h
btrfs: add a cached state to extent_clear_unlock_delalloc
btrfs: push extent lock down in submit_one_async_extent
btrfs: push lock_extent down in cow_file_range()
btrfs: move can_cow_file_range_inline() outside of the extent lock
btrfs: push lock_extent into cow_file_range_inline
btrfs: push extent lock into cow_file_range
btrfs: push extent lock into run_delalloc_cow
btrfs: remove unlock_extent from run_delalloc_compressed
btrfs: push extent lock down in run_delalloc_nocow
btrfs: adjust while loop condition in run_delalloc_nocow
btrfs: push extent lock into run_delalloc_nocow
btrfs: push the extent lock into btrfs_run_delalloc_range
btrfs: lock extent when doing inline extent in compression
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmY/YgsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpvi0EACwnFRtYioizBH0x7QUHTBcIr0IhACd5gfz
bm+uwlDUtf6G6lupHdJT9gOVB2z2z1m2Pz//8RuUVWw3Eqw2+rfgG8iJd+yo7IaV
DpX3WaM4NnBvB7FKOKHlMPvGuf7KgbZ3uPm3x8cbrn/axMmkZ6ljxTixJ3p5t4+s
xRsef/lVdG71DkXIFgTKATB86yNRJNlRQTbL+sZW22vdXdtfyBbOgR1sBuFfp7Hd
g/uocZM/z0ahM6JH/5R2IX2ttKXMIBZLA8HRkJdvYqg022cj4js2YyRCPU3N6jQN
MtN4TpJV5I++8l6SPQOOhaDNrK/6zFtDQpwG0YBiKKj3nQDgVbWWb8ejYTIUv4MP
SrEto4MVBEqg5N65VwYYhIf45rmueFyJp6z0Vqv6Owur5nuww/YIFknmoMa/WDMd
V8dIU3zL72FZDbPjIBjxHeqAGz9OgzEVafled7pi0Xbw6wqiB4kZihlMGXlD+WBy
Yd6xo8PX4i5+d2LLKKPxpW1X0eJlKYJ/4dnYCoFN8LmXSiPJnMx2pYrV+NqMxy4X
Thr8lxswLQC7j9YBBuIeDl8NB9N5FZZLvaC6I25QKq045M2ckJ+VrounsQb3vGwJ
72nlxxBZL8wz3sasgX9Pc1Cez9AqYbM+UZahq8ezPY5y3Jh0QfRw/MOk1ZaDNC8V
CNOHBH0E+Q==
=HnjE
-----END PGP SIGNATURE-----
Merge tag 'for-6.10/block-20240511' of git://git.kernel.dk/linux
Pull block updates from Jens Axboe:
- Add a partscan attribute in sysfs, fixing an issue with systemd
relying on an internal interface that went away.
- Attempt #2 at making long running discards interruptible. The
previous attempt went into 6.9, but we ended up mostly reverting it
as it had issues.
- Remove old ida_simple API in bcache
- Support for zoned write plugging, greatly improving the performance
on zoned devices.
- Remove the old throttle low interface, which has been experimental
since 2017 and never made it beyond that and isn't being used.
- Remove page->index debugging checks in brd, as it hasn't caught
anything and prepares us for removing in struct page.
- MD pull request from Song
- Don't schedule block workers on isolated CPUs
* tag 'for-6.10/block-20240511' of git://git.kernel.dk/linux: (84 commits)
blk-throttle: delay initialization until configuration
blk-throttle: remove CONFIG_BLK_DEV_THROTTLING_LOW
block: fix that util can be greater than 100%
block: support to account io_ticks precisely
block: add plug while submitting IO
bcache: fix variable length array abuse in btree_iter
bcache: Remove usage of the deprecated ida_simple_xx() API
md: Revert "md: Fix overflow in is_mddev_idle"
blk-lib: check for kill signal in ioctl BLKDISCARD
block: add a bio_await_chain helper
block: add a blk_alloc_discard_bio helper
block: add a bio_chain_and_submit helper
block: move discard checks into the ioctl handler
block: remove the discard_granularity check in __blkdev_issue_discard
block/ioctl: prefer different overflow check
null_blk: Fix the WARNING: modpost: missing MODULE_DESCRIPTION()
block: fix and simplify blkdevparts= cmdline parsing
block: refine the EOF check in blkdev_iomap_begin
block: add a partscan sysfs attribute for disks
block: add a disk_has_partscan helper
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZj3HuwAKCRCRxhvAZXjc
orYvAQCZOr68uJaEaXAArYTdnMdQ6HIzG+FVlwrqtrhz0BV07wEAqgmtSR9XKh+L
0+DNepg4R8PZOHH371eSSsLNRCUCkAs=
=SVsU
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.10.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull misc vfs updates from Christian Brauner:
"This contains the usual miscellaneous features, cleanups, and fixes
for vfs and individual fses.
Features:
- Free up FMODE_* bits. I've freed up bits 6, 7, 8, and 24. That
means we now have six free FMODE_* bits in total (but bit #6
already got used for FMODE_WRITE_RESTRICTED)
- Add FOP_HUGE_PAGES flag (follow-up to FMODE_* cleanup)
- Add fd_raw cleanup class so we can make use of automatic cleanup
provided by CLASS(fd_raw, f)(fd) for O_PATH fds as well
- Optimize seq_puts()
- Simplify __seq_puts()
- Add new anon_inode_getfile_fmode() api to allow specifying f_mode
instead of open-coding it in multiple places
- Annotate struct file_handle with __counted_by() and use
struct_size()
- Warn in get_file() whether f_count resurrection from zero is
attempted (epoll/drm discussion)
- Folio-sophize aio
- Export the subvolume id in statx() for both btrfs and bcachefs
- Relax linkat(AT_EMPTY_PATH) requirements
- Add F_DUPFD_QUERY fcntl() allowing to compare two file descriptors
for dup*() equality replacing kcmp()
Cleanups:
- Compile out swapfile inode checks when swap isn't enabled
- Use (1 << n) notation for FMODE_* bitshifts for clarity
- Remove redundant variable assignment in fs/direct-io
- Cleanup uses of strncpy in orangefs
- Speed up and cleanup writeback
- Move fsparam_string_empty() helper into header since it's currently
open-coded in multiple places
- Add kernel-doc comments to proc_create_net_data_write()
- Don't needlessly read dentry->d_flags twice
Fixes:
- Fix out-of-range warning in nilfs2
- Fix ecryptfs overflow due to wrong encryption packet size
calculation
- Fix overly long line in xfs file_operations (follow-up to FMODE_*
cleanup)
- Don't raise FOP_BUFFER_{R,W}ASYNC for directories in xfs (follow-up
to FMODE_* cleanup)
- Don't call xfs_file_open from xfs_dir_open (follow-up to FMODE_*
cleanup)
- Fix stable offset api to prevent endless loops
- Fix afs file server rotations
- Prevent xattr node from overflowing the eraseblock in jffs2
- Move fdinfo PTRACE_MODE_READ procfs check into the .permission()
operation instead of .open() operation since this caused userspace
regressions"
* tag 'vfs-6.10.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (39 commits)
afs: Fix fileserver rotation getting stuck
selftests: add F_DUPDFD_QUERY selftests
fcntl: add F_DUPFD_QUERY fcntl()
file: add fd_raw cleanup class
fs: WARN when f_count resurrection is attempted
seq_file: Simplify __seq_puts()
seq_file: Optimize seq_puts()
proc: Move fdinfo PTRACE_MODE_READ check into the inode .permission operation
fs: Create anon_inode_getfile_fmode()
xfs: don't call xfs_file_open from xfs_dir_open
xfs: drop fop_flags for directories
xfs: fix overly long line in the file_operations
shmem: Fix shmem_rename2()
libfs: Add simple_offset_rename() API
libfs: Fix simple_offset_rename_exchange()
jffs2: prevent xattr node from overflowing the eraseblock
vfs, swap: compile out IS_SWAPFILE() on swapless configs
vfs: relax linkat() AT_EMPTY_PATH - aka flink() - requirements
fs/direct-io: remove redundant assignment to variable retval
fs/dcache: Re-use value stored to dentry->d_flags instead of re-reading
...
Cross-merge networking fixes after downstream PR.
No conflicts.
Adjacent changes:
drivers/net/ethernet/hisilicon/hns3/hns3pf/hclge_main.c
35d92abfba ("net: hns3: fix kernel crash when devlink reload during initialization")
2a1a1a7b5f ("net: hns3: add command queue trace for hns3")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The "i++" was accidentally left out so it just sets qgids[0] over and
over.
This can lead to unexpected problems, as the groups[1:] would be all 0,
leading to later find_qgroup_rb() unable to find a qgroup and cause
snapshot creation failure.
Fixes: 5343cd9364 ("btrfs: qgroup: simple quota auto hierarchy for nested subvolumes")
CC: stable@vger.kernel.org # 6.7+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the error status of super block write is tracked in page/folio
status bit Error. For that we need to keep the reference for the whole
duration of write and wait.
Count the number of superblock writeback errors in the btrfs_device.
That means we don't need the folio to stay around until it's waited for,
and can avoid the extra call to folio_get/put.
Also remove a mention of PageError in a comment as it's the last mention
of the page Error state.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Iterate over folios instead of bvecs. Switch the order of unlock and put
to be the usual order; we know this folio can't be put until it's been
waited for, but that's fragile. Remove the calls to ClearPageUptodate /
SetPageUptodate -- if PAGE_SIZE is larger than BTRFS_SUPER_INFO_SIZE,
we'd be marking the entire folio uptodate without having actually
initialised all the bytes in the page.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a direct conversion from pages to folios, assuming single page
folio. Also removes some calls to obsolete APIs and some hidden calls to
compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a direct conversion from pages to folios, assuming single page
folio. Also removes a few calls to compound_head() and calls to
obsolete APIs.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have the lock_extent tightly coupled with
extent_clear_unlock_delalloc we can add a cached state to
extent_clear_unlock_delalloc and benefit from skipping the extra lookup
when we're doing cow.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to include the time we spend in the allocator under our
extent lock protection, move it after the allocator and make sure we
lock the extent in the error case to ensure we're not clearing these
bits without the extent lock held.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we've got the extent lock pushed into cow_file_range() we can
push it further down into the allocation loop. This allows us to only
hold the extent lock during the dropping of the extent map range and
inserting the ordered extent.
This makes the error case a little trickier as we'll now have to lock
the range before clearing any of the other extent bits for the range,
but this is the error path so is less performance critical.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These checks aren't reliant on the extent lock. Move this up into
cow_file_range_inline(), and then update encoded writes to call this
check before calling __cow_file_range_inline(). This will allow us to
skip the extent lock if we're not able to inline the given extent.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we've pushed the lock_extent() into cow_file_range() we can
push the extent locking into cow_file_range_inline() and move the
lock_extent in cow_file_range() to after we call
cow_file_range_inline().
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that cow_file_range is the only function that is called with the
range locked, push this call into cow_file_range so we can further
narrow the scope.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is used by zoned but also as the fallback for uncompressed extents
when we fail to compress the ranges. Push the extent lock into
run_dealloc_cow(), and adjust the compression case to take the extent
lock after calling run_delalloc_cow().
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we immediately unlock the extent range when we enter
run_delalloc_compressed() simply move the lock_extent() down to cover
cow_file_range() and then remove the unlock_extent() from
run_delalloc_compressed.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
run_delalloc_nocow is a little special because we use the file extents
to see if we can nocow a range. We don't actually need the protection
of the extent lock to look at the file extents at this point however.
We are currently holding the page lock for this range, so we are
protected from anybody who would simultaneously be modifying the file
extent items for this range.
* mmap() - we're holding the page lock.
* buffered writes - we're holding the page lock.
* direct writes - we're holding the page lock and direct IO has to flush
page cache before it's able to continue.
* fallocate() - all callers flush the range and wait on ordered extents
while holding the inode lock and the mmap lock, so we are again saved
by the page lock.
We want to use the extent lock to protect
1) The mapping tree for the given range.
2) The ordered extents for the given range.
3) The io_tree for the given range.
Push the extent lock down to cover these operations. In the
fallback_to_cow() case we simply lock before doing anything and rely on
the cow_file_range() helper to handle it's range properly.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have the following pattern
while (1) {
if (cur_offset > end)
break;
}
Which is just
while (cur_offset <= end) {
...
}
so adjust the code to be more clear.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
run_delalloc_nocow is a bit special as it walks through the file extents
for the inode and determines what it can nocow and what it can't. This
is the more complicated area for extent locking, so start with this
function.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We want to limit the scope of the extent lock to be around operations
that can change in flight. Currently we hold the extent lock through
the entire writepage operation, which isn't really necessary.
We want to protect to make sure nobody has updated DELALLOC. In
find_lock_delalloc_range we must lock the range in order to validate the
contents of our io_tree. However once we've done that we're safe to
unlock the range and continue, as we have the page lock already held for
the range.
We are protected from all operations at this point.
* mmap() - we're holding the page lock, thus are protected.
* buffered writes - again, we're protected because we take the page lock
for the first and last page in our range for buffered writes so we
won't create new delalloc ranges in this area.
* direct IO - we invalidate pagecache before attempting to write a new
area, which requires the page lock, so again are protected once we're
holding the page lock on this range.
Additionally this behavior actually already exists for compressed, we
unlock the range as soon as we start to process the async extents, and
re-lock it during compression. So this is completely safe, and makes
the locking more consistent.
Make this simple by just pushing the extent lock into
btrfs_run_delalloc_range. From there followup patches will push the
lock further down into its users.
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently don't lock the extent when we're doing a
cow_file_range_inline() for a compressed extent. This isn't a problem
necessarily, but it's inconsistent with the rest of our usage of
cow_file_range_inline(). This also leads to some extra weird logic
around whether the extent is locked or not. Fix this to lock the extent
before calling cow_file_range_inline() in compression to make it
consistent with the rest of the inline users. In future patches this
will be pushed down into the cow_file_range_inline() helper, so we're
fine with the quick and dirty locking here. This patch exists to make
the behavior change obvious.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We duplicate the extent cleanup for cow_file_range_inline() in the cow
and compressed case. The encoded case doesn't need to do cleanup the
same way, so rename cow_file_range_inline to __cow_file_range_inline and
then make cow_file_range_inline handle the extent cleanup appropriately,
and update the callers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since 4750af3bbe ("btrfs: prevent extent_clear_unlock_delalloc() to
unlock page not locked by __process_pages_contig()") we have been
unlocking the locked page manually instead of via
extent_clear_unlock_delalloc() because of subpage blocksize support.
However we actually disable inline extent creation for subpage blocksize
support, so this behavior isn't necessary. Remove this code and
comment, if at some point the subpage blocksize code grows support for
inline extents this can be re-evaluated.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we have a lot of duplicated checks of
if (start == 0 && fs_info->sectorsize == PAGE_SIZE)
cow_file_range_inline();
Instead of duplicating this check everywhere, consolidate all of the
inline extent logic into a helper which documents all of the checks and
then use that helper inside of cow_file_range_inline(). With this we
can clean up all of the calls to either unconditionally call
cow_file_range_inline(), or at least reduce the checks we're doing
before we call cow_file_range_inline();
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the cow path we will clone the reloc csums for relocated data
extents, and if there's an error we already have an ordered extent and
rely on the ordered extent finishing to clean everything up.
There's a problem however, we don't mark the ordered extent with an
error, we pretend like everything was just fine. If we were at the end
of our range we won't actually bubble up this error anywhere, and we
could end up inserting an extent that doesn't have csums where it should
have them.
Fix this by adding a helper to mark the ordered extent with an error,
and then use this when we fail to lookup the csums in
btrfs_reloc_clone_csums. Use this helper in the other place where we
use the same pattern while we're here.
This will prevent us from erroneously inserting the extent that doesn't
have the required checksums.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function create_io_em() is called before we submit an IO, to update
the in-memory extent map for the involved range.
This patch changes the following aspects:
- Does not allow BTRFS_ORDERED_NOCOW type
For real NOCOW (excluding NOCOW writes into preallocated ranges)
writes, we never call create_io_em(), as we does not need to update
the extent map at all.
So remove the sanity check allowing BTRFS_ORDERED_NOCOW type.
- Add extra sanity checks
* PREALLOC
- @block_len == len
For uncompressed writes.
* REGULAR
- @block_len == @orig_block_len == @ram_bytes == @len
We're creating a new uncompressed extent, and referring all of it.
- @orig_start == @start
We haven no offset inside the extent.
* COMPRESSED
- valid @compress_type
- @len <= @ram_bytes
This is to co-operate with encoded writes, which can cause a new
file extent referring only part of a uncompressed extent.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the tree-checker ensuring all inline file extents starts at file
offset 0 and has a length no larger than sectorsize, we can simplify the
calculation to assigned those fixes values directly.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent_map structure is very critical to btrfs, as it is involved
for both read and write paths.
Unfortunately the structure is not properly explained, making it pretty
hard to understand nor to do further improvement.
This patch adds extra comments explaining the major members based on my
code reading. Hopefully we can find more members to cleanup in the
future.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
calcu_metadata_size() has a "reserve" argument, but the only caller always
set it to "1". The other usage (reserve = 0) is dropped by a commit
0647bf564f ("Btrfs: improve forever loop when doing balance relocation"),
which is more than 10 years ago. Drop the argument and simplify the code.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's another return variable wret that is only passed to ret on
error, we can simply use ret.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
First, drop err instead reuse ret, choose to return the error instead of
goto fail and then return the same error. Do not initialize the ret
until where it has to be initialized. Slight logic change in handling
the btrfs_search_slot() and btrfs_next_leaf() return value.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename ret to ret2 compile and then err to ret. Also, new ret2 is found
to be localized within the 'if (trans)' statement, so move its
declaration there.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In quick_update_accounting() err is used as 2nd return value, which could
be achieved just with ret.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Coding style fixes the function relocate_tree_blocks(). After the fix,
ret is the return value variable.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Code style fix in the function build_backref_tree(). Drop the ret
initialization 0, as we don't need it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename the function's local return variables err and werr to ret.
Also, align the variable declarations with the other declarations in
the function for better function space alignment.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename the function's local variable werr and err to ret.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the function btrfs_write_marked_extents() and in __btrfs_wait_marked_extents()
return the actual error if when filemap_fdata<write|wait>_range() fails.
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are open coded tests of BTRFS_FS_STATE_DUMMY_FS_INFO and we have a
wrapper for that that's a compile-time constant when self-tests are not
built in. As this is only for development we can save some bytes and
conditions on release configs by using the helper in the remaining
cases.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to initialize the delayed inodes xarray with a GFP_ATOMIC
flag because that actually does nothing on the xarray operations. That was
needed for radix trees, but for xarrays the allocation flags are passed as
the last argument to xa_store() (which we are using correctly).
So initialize the delayed inodes xarray with a simple xa_init().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently try_release_extent_mapping() as an int return type, but we
use it as a boolean. Its only caller, the release folio callback, also
returns a boolean which corresponds to try_release_extent_mapping()'s
return value. So change its return value type to bool as well as its
helper try_release_extent_state().
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At try_release_extent_mapping(), called during the release folio callback
(btrfs_release_folio() callchain), we don't release any extent maps in the
range if the GFP flags don't allow blocking. This behaviour is exaggerated
because:
1) Both searching for extent maps and removing them are not blocking
operations. The only thing that it is the cond_resched() call at the
end of the loop that searches for and removes extent maps;
2) We currently only operate on a single page, so for the case where
block size matches the page size, we can only have one extent map,
and for the case where the block size is smaller than the page size,
we can have at most 16 extent maps.
So it's very unlikely the cond_resched() call will ever block even in the
block size smaller than page size scenario.
So instead of not removing any extent maps at all in case the GFP glags
don't allow blocking, keep removing extent maps while we don't need to
reschedule. This makes it safe for the subpage case and for a future
where we can process folios with a size larger than a page.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we don't attempt to release extent maps if the inode has an
i_size that is not greater than 16M. This condition was added way back
in 2008 by commit 70dec8079d ("Btrfs: extent_io and extent_state
optimizations"), without any explanation about it. A quick chat with
Chris on slack revealed that the goal was probably to release the extent
maps for small files only when closing the inode. This however can be
harmful in case we have tons of such files being kept open for very long
periods of time, since we will consume more and more pages for extent
maps.
So remove the condition.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nowadays we have the btrfs_get_fs_generation() to get the current
generation of the filesystem, so there's no need anymore to lock the
transaction spinlock to read it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename the following variables:
1) "btrfs_inode" to "inode", because it's shorter to type and clear, and
we don't have a VFS inode here as well, so there's no confusion;
2) "tree" to "io_tree", to be clear which tree we are dealing with, since
we use 2 different trees in the function;
3) "map" to "extent_tree" since "map" gives the idea we are dealing with
an extent map for example, but we are dealing with the inode's extent
tree (the tree which stores extent maps).
These also make the next patches simpler.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add some tracepoints for the extent map shrinker to help debug and analyse
main events. These have proved useful during development of the shrinker.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nowadays we have a lock used to synchronize mmap writes with reflink and
fsync operations (struct btrfs_inode::i_mmap_lock), so update the comment
for btrfs_set_inode_full_sync() to mention that it can also be called
while holding that mmap lock. Besides being a valid alternative to the
inode's VFS lock, we already have the extent map shrinker using that mmap
lock instead.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extent maps are used either to represent existing file extent items, or to
represent new extents that are going to be written and the respective file
extent items are created when the ordered extent completes.
We currently don't have any limit for how many extent maps we can have,
neither per inode nor globally. Most of the time this not too noticeable
because extent maps are removed in the following situations:
1) When evicting an inode;
2) When releasing folios (pages) through the btrfs_release_folio() address
space operation callback.
However we won't release extent maps in the folio range if the folio is
either dirty or under writeback or if the inode's i_size is less than
or equals to 16M (see try_release_extent_mapping(). This 16M i_size
constraint was added back in 2008 with commit 70dec8079d ("Btrfs:
extent_io and extent_state optimizations"), but there's no explanation
about why we have it or why the 16M value.
This means that for buffered IO we can reach an OOM situation due to too
many extent maps if either of the following happens:
1) There's a set of tasks constantly doing IO on many files with a size
not larger than 16M, specially if they keep the files open for very
long periods, therefore preventing inode eviction.
This requires a really high number of such files, and having many non
mergeable extent maps (due to random 4K writes for example) and a
machine with very little memory;
2) There's a set tasks constantly doing random write IO (therefore
creating many non mergeable extent maps) on files and keeping them
open for long periods of time, so inode eviction doesn't happen and
there's always a lot of dirty pages or pages under writeback,
preventing btrfs_release_folio() from releasing the respective extent
maps.
This second case was actually reported in the thread pointed by the Link
tag below, and it requires a very large file under heavy IO and a machine
with very little amount of RAM, which is probably hard to happen in
practice in a real world use case.
However when using direct IO this is not so hard to happen, because the
page cache is not used, and therefore btrfs_release_folio() is never
called. Which means extent maps are dropped only when evicting the inode,
and that means that if we have tasks that keep a file descriptor open and
keep doing IO on a very large file (or files), we can exhaust memory due
to an unbounded amount of extent maps. This is especially easy to happen
if we have a huge file with millions of small extents and their extent
maps are not mergeable (non contiguous offsets and disk locations).
This was reported in that thread with the following fio test:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS=""
cat <<EOF > /tmp/fio-job.ini
[global]
name=fio-rand-write
filename=$MNT/fio-rand-write
rw=randwrite
bs=4K
direct=1
numjobs=16
fallocate=none
time_based
runtime=90000
[file1]
size=300G
ioengine=libaio
iodepth=16
EOF
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
Monitoring the btrfs_extent_map slab while running the test with:
$ watch -d -n 1 'cat /sys/kernel/slab/btrfs_extent_map/objects \
/sys/kernel/slab/btrfs_extent_map/total_objects'
Shows the number of active and total extent maps skyrocketing to tens of
millions, and on systems with a short amount of memory it's easy and quick
to get into an OOM situation, as reported in that thread.
So to avoid this issue add a shrinker that will remove extents maps, as
long as they are not pinned, and takes proper care with any concurrent
fsync to avoid missing extents (setting the full sync flag while in the
middle of a fast fsync). This shrinker is triggered through the callbacks
nr_cached_objects and free_cached_objects of struct super_operations.
The shrinker will iterate over all roots and over all inodes of each
root, and keeps track of the last scanned root and inode, so that the
next time it runs, it starts from that root and from the next inode.
This is similar to what xfs does for its inode reclaim (implements those
callbacks, and cycles through inodes by starting from where it ended
last time).
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a per cpu counter that tracks the total number of extent maps that are
in extent trees of inodes that belong to fs trees. This is going to be
used in an upcoming change that adds a shrinker for extent maps. Only
extent maps for fs trees are considered, because for special trees such as
the data relocation tree we don't want to evict their extent maps which
are critical for the relocation to work, and since those are limited, it's
not a concern to have them in memory during the relocation of a block
group. Another case are extent maps for free space cache inodes, which
must always remain in memory, but those are limited (there's only one per
free space cache inode, which means one per block group).
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to try_merge_map().
In order to facilitate an upcoming change that adds a shrinker for extent
maps, change try_merge_map() to receive the inode instead of its extent
map tree.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
setup_extent_mapping().
In order to facilitate an upcoming change that adds a shrinker for extent
maps, change setup_extent_mapping() to receive the inode instead of its
extent map tree.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
replace_extent_mapping().
In order to facilitate an upcoming change that adds a shrinker for extent
maps, change replace_extent_mapping() to receive the inode instead of its
extent map tree.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
remove_extent_mapping().
In order to facilitate an upcoming change that adds a shrinker for extent
maps, change remove_extent_mapping() to receive the inode instead of its
extent map tree.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
clear_em_logging().
In order to facilitate an upcoming change that adds a shrinker for extent
maps, change clear_em_logging() to receive the inode instead of its extent
map tree.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Extent maps are always added to an inode's extent map tree, so there's no
need to pass the extent map tree explicitly to add_extent_mapping().
In order to facilitate an upcoming change that adds a shrinker for extent
maps, change add_extent_mapping() to receive the inode instead of its
extent map tree.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A comment from Filipe on one of my previous cleanups brought my
attention to a new helper we have for getting the root id of a root,
which makes it easier to read in the code.
The changes where made with the following Coccinelle semantic patch:
// <smpl>
@@
expression E,E1;
@@
(
E->root_key.objectid = E1
|
- E->root_key.objectid
+ btrfs_root_id(E)
)
// </smpl>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
Our subpage testing started hanging on generic/560 and I bisected it
down to 1cab1375ba ("btrfs: reuse cloned extent buffer during
fiemap to avoid re-allocations"). This is subtle because we use
eb->start to figure out where in the folio we're copying to when we're
subpage, as our ->start may refer to an area inside of the folio.
For example, assume a 16K page size machine with a 4K node size, and
assume that we already have a cloned extent buffer when we cloned the
previous search.
copy_extent_buffer_full() will do the following when copying the extent
buffer path->nodes[0] (src) into cloned (dest):
src->start = 8k; // this is the new leaf we're cloning
cloned->start = 4k; // this is left over from the previous clone
src_addr = folio_address(src->folios[0]);
dest_addr = folio_address(dest->folios[0]);
memcpy(dest_addr + get_eb_offset_in_folio(dst, 0),
src_addr + get_eb_offset_in_folio(src, 0), src->len);
Now get_eb_offset_in_folio() is where the problems occur, because for
sub-pagesize blocksize we can have multiple eb's per folio, the code for
this is as follows
size_t get_eb_offset_in_folio(eb, offset) {
return (eb->start + offset & (folio_size(eb->folio[0]) - 1));
}
So in the above example we are copying into offset 4K inside the folio.
However once we update cloned->start to 8K to match the src the math for
get_eb_offset_in_folio() changes, and any subsequent reads (i.e.
btrfs_item_key_to_cpu()) will start reading from the offset 8K instead
of 4K where we copied to, giving us garbage.
Fix this by setting start before we co copy_extent_buffer_full() to make
sure that we're copying into the same offset inside of the folio that we
will read from later.
All other sites of copy_extent_buffer_full() are correct because we
either set ->start beforehand or we simply don't change it in the case
of the tree-log usage.
With this fix we now pass generic/560 on our subpage tests.
Fixes: 1cab1375ba ("btrfs: reuse cloned extent buffer during fiemap to avoid re-allocations")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that these two structs are the same, move the btrfs_data_ref and
btrfs_tree_ref up and use these in the btrfs_delayed_ref_node. Then
remove the btrfs_delayed_*_ref structs.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we don't use these helpers anywhere, remove them.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only ever need to use this to get the level of the tree block ref, so
use the btrfs_delayed_ref_owner() helper, which returns the level for
the given reference.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that most of our elements are inside of btrfs_delayed_ref_node
directly and we have helpers for the delayed_data_ref bits, go ahead and
remove all direct usage of btrfs_delayed_data_ref and use the helpers
where needed.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to pass in all the elements for the backrefs as function
arguments, simply pass through the btrfs_delayed_ref_node and then
extract the values we need from that.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have all the information we need in our btrfs_delayed_ref_node, which
we already pass into __btrfs_free_extent. Drop the extra arguments and
just extract the values from btrfs_delayed_ref_node.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're just extracting the values from btrfs_delayed_ref_node and passing
them through, simply pass the btrfs_delayed_ref_node into
__btrfs_inc_extent_ref and shrink the function arguments.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is how we refer to it in the rest of the extent reference related
code, make it consistent.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These two members are shared by both the tree refs and data refs, so
move them into btrfs_delayed_ref_node proper. This allows us to greatly
simplify the comparison code, as the shared refs always only sort on
parent, and the non shared refs always sort first on ref_root, and then
only data refs sort on their specific fields.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We consistently use ->num_bytes everywhere through the delayed ref code,
except in btrfs_ref. Rename btrfs_ref to match all the other code.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that these helpers are identical, create a helper function that
handles everything properly and strip the individual helpers down to use
just the common helper. This cleans up a significant amount of
duplicated code.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all of the delayed ref information is in the delayed ref node,
drastically simplify the delayed ref tracepoints by simply passing in
the btrfs_delayed_ref_node and populating the tracepoints with the
values from the structure itself.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the btrfs_delayed_ref_node contains a union of the data and
metadata specific information we can move the initialization into
init_delayed_ref_common and just use the btrfs_ref to initialize the
correct fields of the reference.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are calling init_delayed_ref_head with all of the elements from
btrfs_ref, clean this up to simply pass in the btrfs_ref and initialize
the btrfs_delayed_ref_head with the values from the btrfs_ref directly.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're extracting all of these values from the btrfs_ref we passed in
already, just pass the btrfs_ref through to init_delayed_ref_common and
get the values directly from the struct.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have this in both btrfs_tree_ref and btrfs_data_ref, which is just
wasting space and making the code more complicated. Move this into
btrfs_ref proper and update all the call sites to do the assignment in
btrfs_ref.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ref currently has ->owning_root, and ->ref_root is shared between
the tree ref and data ref, so in order to move that into btrfs_ref
proper I would need to add another root parameter to the initialization
function. This function has too many arguments, and adding another root
will make it easy to make mistakes about which root goes where.
Drop the generic ref init function and statically initialize the
btrfs_ref in every usage. This makes the code easier to read because we
can see what elements we're assigning, and will make the upcoming change
moving the ref_root into the btrfs_ref more clear and less error prone
than adding a new element to the initialization function.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have been embedding btrfs_delayed_ref_node in the
btrfs_delayed_data_ref and btrfs_delayed_tree_ref, and then we have two
sets of cachep's and a variety of handling that is awkward because of
this separation.
Instead union these two members inside of btrfs_delayed_ref_node and
make that the first class object. This allows us to go down to one
cachep for our delayed ref nodes instead of two.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several different ways we refer to references throughout the
code and it's not consistent and there's a bit of duplication. In order
to clean this up I want to have one structure we use to define reference
information, and one structure we use for the delayed reference
information. Start this process by adding a helper to get from the
btrfs_delayed_data_ref/btrfs_delayed_tree_ref to the
btrfs_delayed_ref_node so that it'll make moving these structures around
simpler.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_prune_dentries() has open code to find the first inode in
a root with a minimum inode number. Remove that code and make it use the
helper btrfs_find_first_inode() for that task.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Export the relocation private helper find_next_inode() to inode.c, as this
same logic is also used at btrfs_prune_dentries() and will be used by an
upcoming change that adds an extent map shrinker. The next patch will
change btrfs_prune_dentries() to use this helper.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The add_extent_mapping() function is short and trivial, there's no need to
have a label for a quick exit in case of an error, even because there's no
error handling needed, we just need to return the error. So remove that
label and return directly.
Also while at it remove the redundant initialization of 'ret', as that may
help avoid some warnings with clang tools such as the one reported/fixed
by commit 966de47ff0 ("btrfs: remove redundant initialization of
variables in log_new_ancestors").
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the extent map self tests, when freeing all extent maps from a test
extent map tree we are not expecting to find any extent map with a
reference count different from 1 (the tree reference). If we find any,
we just log a message but we don't fail the test, which makes it very easy
to miss any bug/regression - no one reads the test messages unless a test
fails. So change the behaviour to make a test fail if we find an extent
map in the tree with a reference count different from 1. Make the failure
happen only after removing all extent maps, so that we don't leak memory.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of passing fs_info and extent map tree arguments to
btrfs_add_extent_mapping(), we can pass an inode instead, as extent maps
are always inserted in the extent map tree of an inode, and the fs_info
can be extracted from the inode (inode->root->fs_info). The only exception
is in the self tests where we allocate an extent map tree and then use it
to insert/update/remove extent maps. However the tests can be changed to
use a test inode and then use the inode's extent map tree.
So change btrfs_add_extent_mapping() to have an inode as an argument
instead of a fs_info and an extent map tree. This reduces the number of
parameters and will also be needed for an upcoming change.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The csum_exist_in_range() function is now too trivial and is only used in
one place, so open code it in its single caller.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before deciding if we can do a NOCOW write into a range, one of the things
we have to do is check if there are checksum items for that range. We do
that through the btrfs_lookup_csums_list() function, which searches for
checksums and adds them to a list supplied by the caller.
But all we need is to check if there is any checksum, we don't need to
look for all of them and collect them into a list, which requires more
search time in the checksums tree, allocating memory for checksums items
to add to the list, copy checksums from a leaf into those list items,
then free that memory, etc. This is all unnecessary overhead, wasting
mostly CPU time, and perhaps some occasional IO if we need to read from
disk any extent buffers.
So change btrfs_lookup_csums_list() to allow to return immediately in
case it finds any checksum, without the need to add it to a list and read
it from a leaf. This is accomplished by allowing a NULL list parameter and
making the function return 1 if it found any checksum, 0 if it didn't
found any, and a negative value in case of an error.
The following test with fio was used to measure performance:
$ cat test.sh
#!/bin/bash
DEV=/dev/nullb0
MNT=/mnt/nullb0
cat <<EOF > /tmp/fio-job.ini
[global]
name=fio-rand-write
filename=$MNT/fio-rand-write
rw=randwrite
bssplit=4k/20:8k/20:16k/20:32k/20:64k/20
direct=1
numjobs=16
fallocate=posix
time_based
runtime=300
[file1]
size=8G
ioengine=io_uring
iodepth=16
EOF
umount $MNT &> /dev/null
mkfs.btrfs -f $DEV
mount -o ssd $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The test was run on a release kernel (Debian's default kernel config).
The results before this patch:
WRITE: bw=139MiB/s (146MB/s), 8204KiB/s-9504KiB/s (8401kB/s-9732kB/s), io=17.0GiB (18.3GB), run=125317-125344msec
The results after this patch:
WRITE: bw=153MiB/s (160MB/s), 9241KiB/s-10.0MiB/s (9463kB/s-10.5MB/s), io=17.0GiB (18.3GB), run=114054-114071msec
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the error path we have this while loop that keeps iterating over the
csums of the list and then delete them from the list and free them,
testing for an error (ret < 0) and list emptyness as the conditions of
the while loop.
Simplify this by using list_for_each_entry_safe() so there's no need to
delete elements from the list and need to test the error condition on
each iteration.
Also rename the 'fail' label to 'out' since the label is not exclusive
to a failure path, as we also end up there when the function succeeds,
and it's also a more common label name.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to use a temporary list to add the checksums, we can just
add them to input list and then on error delete and free any checksums
that were added. So simplify and remove the temporary list.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All the callers of btrfs_lookup_csums_list() pass a value of 0 as the
"search_commit" parameter. So remove it and make the function behave as
to always search from the regular root.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a function comment to btrfs_lookup_csums_list() to document it.
With another upcoming change its parameter list and return value will be
less obvious. So add the documentation now so that it can be updated where
needed later.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_page_mkwrite() is a struct vm_operations_struct callback and we
define that structure in file.c. Currently the function is in inode.c and
has to be exported to be used in file.c, which makes no sense because it's
not used anywhere else. So move btrfs_page_mkwrite() from inode.c and into
file.c.
While at it do a few minor style changes:
1) Capitalize the first word of every comment and end each sentence with
punctuation;
2) Avoid splitting some statements into two lines when everything fits in
85 characters or less.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are no more users of btrfs_clone_chunk_map(), the last one (and
only one ever) was removed in commit 1ec17ef591 ("btrfs: zoned: fix
use-after-free in do_zone_finish()"). So remove btrfs_clone_chunk_map().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At warn_about_uncommitted_trans(), there's no need to check if the list
is empty and return, because list_for_each_entry_safe() is safe to call
for an empty list, it simply does nothing. So remove the check.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_finish_one_ordered() it's pointless to assign 0 to the 'ret'
variable because if it has a non-zero value (error), we have already
jumped to the 'out' label. So remove that redundant assignment.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The mod_start and mod_len fields of struct extent_map were introduced by
commit 4e2f84e63d ("Btrfs: improve fsync by filtering extents that we
want") in order to avoid too low performance when fsyncing a file that
keeps getting extent maps merge, because it resulted in each fsync logging
again csum ranges that were already merged before.
We don't need this anymore as extent maps in the list of modified extents
are never merged with other extent maps and once we log an extent map we
remove it from the list of modified extent maps, so it's never logged
twice.
So remove the mod_start and mod_len fields from struct extent_map and use
instead the start and len fields when logging checksums in the fast fsync
path. This also makes EXTENT_FLAG_FILLING unused so remove it as well.
Running the reproducer from the commit mentioned before, with a larger
number of extents and against a null block device, so that IO is fast
and we can better see any impact from searching checksums items and
logging them, gave the following results from dd:
Before this change:
409600000 bytes (410 MB, 391 MiB) copied, 22.948 s, 17.8 MB/s
After this change:
409600000 bytes (410 MB, 391 MiB) copied, 22.9997 s, 17.8 MB/s
So no changes in throughput.
The test was done in a release kernel (non-debug, Debian's default kernel
config) and its steps are the following:
$ mkfs.btrfs -f /dev/nullb0
$ mount /dev/sdb /mnt
$ dd if=/dev/zero of=/mnt/foobar bs=4k count=100000 oflag=sync
$ umount /mnt
This also reduces the size of struct extent_map from 128 bytes down to 112
bytes, so now we can have 36 extents maps per 4K page instead of 32.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some of the operations after the free might convert more PERTRANS
metadata. Do the freeing as late as possible to eliminate a source of
leaked PERTRANS metadata.
This helps with the pass rate of generic/269 and generic/475.
Reviewed-by: Qu Wenruo <qwu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
For both compression and decompression paths, we always require a
"struct page **pages" and "unsigned long nr_pages", this involves quite
some part of the btrfs compression paths:
- All the compression entry points
- compressed_bio structure
This affects both compression and decompression.
- async_extent structure
Unfortunately with all those involved parts, there is no good way to
split the conversion into smaller patches while still passing compiling.
So do this in one big conversion in one go.
Please note this is direct page->folio conversion, no change on the page
sized folio requirement yet.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
The new helper will do the same thing as btrfs_alloc_page_array(), but
with folios.
One extra difference is, there is no extra helper for bulk allocation,
thus it may not be as efficient as the page version.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since insert_inline_extent() now only accepts a single page, it's much
easier to convert it to use folio interfaces.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since our inline extent cannot accept anything larger than a sector,
there is really no need to pass all the compressed pages to
insert_inline_extent().
And just in case, expand the ASSERT()s to make sure we only try inline
with compressed size no larger than sectorsize.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we have two wrappers to allocate and free a page for
compression usage:
- btrfs_alloc_compr_page()
- btrfs_free_compr_page()
The allocator would try to grab a page from the pool, and only allocate
a new page if the pool is empty.
The reclaimer would check if the pool is full, and if not full it would
put the page into the pool.
This patch converts both helpers to use folio interfaces, and allowing
further conversion of compression path to folios.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For all the supported compression algorithms, the compression path would
always need to grab the page cache, then do the compression.
Normally we would get a page reference without any problem, since the
write path should have already locked the pages in the write range.
For the sake of error handling, we should handle the page cache miss
case.
Adds a common wrapper, btrfs_compress_find_get_page(), which calls
find_get_page(), and do the error handling along with an error message.
Callers inside compression path would only need to call
btrfs_compress_find_get_page(), and error out if it returned any error.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nowadays before starting a reflink operation we do this:
1) Take the VFS lock of the inodes in exclusive mode (a rw semaphore);
2) Take the mmap lock of the inodes (struct btrfs_inode::i_mmap_lock);
3) Flush all delalloc in the source and target ranges;
4) Wait for all ordered extents in the source and target ranges to
complete;
5) Lock the source and destination ranges in the inodes' io trees.
In step 5 we lock the source range because:
1) We needed to serialize against mmap writes, but that is not needed
anymore because nowadays we do that through the inode's i_mmap_lock
(step 2). This happens since commit 8c99516a8c ("btrfs: exclude mmaps
while doing remap");
2) To serialize against a concurrent relocation and avoid generating
a delayed ref for an extent that was just dropped by relocation, see
commit d8b5524242 ("Btrfs: fix race between reflink/dedupe and
relocation").
Locking the source range however blocks any concurrent reads for that
range and makes test case generic/733 fail.
So instead of locking the source range during reflinks, make relocation
read lock the inode's i_mmap_lock, so that it serializes with a concurrent
reflink while still able to run concurrently with mmap writes and allow
concurrent reads too.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This check "if (inherit->num_qgroups > PAGE_SIZE)" is confusing and
unnecessary.
The problem with the check is that static checkers flag it as a
potential mixup of between units of bytes vs number of elements.
Fortunately, the check can safely be deleted because the next check is
correct and applies an even stricter limit:
if (size != struct_size(inherit, qgroups, inherit->num_qgroups))
return -EINVAL;
The "inherit" struct ends in a variable array of __u64 and
"inherit->num_qgroups" is the number of elements in the array. At the
start of the function we check that:
if (size < sizeof(*inherit) || size > PAGE_SIZE)
return -EINVAL;
Thus, since we verify that the whole struct fits within one page, that
means that the number of elements in the inherit->qgroups[] array must
be less than PAGE_SIZE.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use folio instead of page in put_file_data(). Add a warning in case
higher order folio is found, this will be implemented in the future.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Convert page references to folios and call the respective folio
functions. Since find_or_create_page() takes a mask argument, call
__filemap_get_folio() instead of filemap_grab_folio().
The patch assumes folio size is PAGE_SIZE, add a warning in case it's a
higher order that will be implemented in the future.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Convert usage of page to folio in prealloc_file_extent_cluster()
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unify naming of return value to the preferred way.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We recently tracked down a race condition that triggered a read for an
extent buffer with EXTENT_BUFFER_UPTODATE already set. While this read
was in progress, other concurrent readers would see the UPTODATE bit and
return early as if the read was already complete, making accesses to the
extent buffer conflict with the read operation that was overwriting it.
Add a WARN_ON() to end_bbio_meta_read() for this situation to make
similar races easier to spot in the future.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Tavian Barnes <tavianator@tavianator.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are clearing the bit and waking up any waiters in two different
places. Factor that code out into a static helper function.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Tavian Barnes <tavianator@tavianator.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When unlocking a write lock on a drew lock, at btrfs_drew_write_unlock(),
it's pointless to wake up tasks waiting to acquire a read lock if we
didn't decrement the 'writers' counter down to 0, since a read lock can
only be acquired when the counter reaches a value of 0. Doing so is
harmless from a functional point of view, but it's not efficient due to
unnecessarily waking up tasks just for them to sleep again on the
waitqueue.
So change this to wake up readers only if we decremented the 'writers'
counter to 0.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no point in having a static writepages callback in inode.c that
does nothing besides calling extent_writepages from extent_io.c.
So just remove the callback at inode.c and rename extent_writepages()
to btrfs_writepages().
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no point in having a static readahead callback in inode.c that
does nothing besides calling extent_readahead() from extent_io.c.
So just remove the callback at inode.c and rename extent_readahead()
to btrfs_readahead().
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The __btrfs_tree_lock() and __btrfs_tree_read_lock() are using a naming
with a double underscore prefix, which is specially not proper for
exported functions. Remove the double underscore prefix from their name
and add the "_nested" suffix.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The functions btrfs_tree_lock() and btrfs_tree_read_lock() are very
trivial so that can be made inline and avoid call overhead, as they
are very often called inside critical sections (when searching a btree
for example, attempting to lock a child node/leaf while holding a lock
on the parent).
So make them static inline, which even reduces the size of the btrfs
module a little bit.
Before this change:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1718786 156276 16920 1891982 1cde8e fs/btrfs/btrfs.ko
After this change:
$ size fs/btrfs/btrfs.ko
text data bss dec hex filename
1718650 156260 16920 1891830 1cddf6 fs/btrfs/btrfs.ko
Running fs_mark also showed a tiny improvement with this script:
$ cat test.sh
#!/bin/bash
DEV=/dev/nullb0
MNT=/mnt/nullb0
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
mount $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before this change:
FSUse% Count Size Files/sec App Overhead
10 1200000 0 180894.0 10705410
16 2400000 0 228211.4 10765738
23 3600000 0 215969.6 11011072
30 4800000 0 199077.1 11145587
46 6000000 0 176624.1 11658470
After this change:
FSUse% Count Size Files/sec App Overhead
10 1200000 0 185312.3 10708377
16 2400000 0 229320.4 10858013
23 3600000 0 217958.7 11006167
30 4800000 0 205122.9 11112899
46 6000000 0 178039.1 11438852
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a snapshot we first check with btrfs_lookup_dir_item() if
there is a name collision in the parent directory and then return an error
if there's a collision. Then later on when trying to insert a dir item for
the snapshot we BUG_ON() if the return value is -EEXIST or -EOVERFLOW:
static noinline int create_pending_snapshot(...)
{
(...)
/* check if there is a file/dir which has the same name. */
dir_item = btrfs_lookup_dir_item(...);
(...)
ret = btrfs_insert_dir_item(...);
/* We have check then name at the beginning, so it is impossible. */
BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
(...)
}
It's impossible to get the -EEXIST because we previously checked for a
potential collision with btrfs_lookup_dir_item() and we know that after
that no one could have added a colliding name because at this point the
transaction is in its critical section, state TRANS_STATE_COMMIT_DOING,
so no one can join this transaction to add a colliding name and neither
can anyone start a new transaction to do that.
As for the -EOVERFLOW, that can't happen as long as we have the extended
references feature enabled, which is a mkfs default for many years now.
In either case, the BUG_ON() is excessive as we can properly deal with
any error and can abort the transaction and jump to the 'fail' label,
in which case we'll also get the useful stack trace (just like a BUG_ON())
from the abort if the error is either -EEXIST or -EOVERFLOW.
So remove the BUG_ON().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmY5LaQACgkQxWXV+ddt
WDs7aQ/8DbxhYTNqHmEv6860w/o7Sb856foIqlZ81v1r55XYIFGhTbvQntjQgvcI
Kf8+Du6ijpYeAO2Iuj/7EQP/6yA+f5NCogpW8Nsr24riUCvzjhXr49KQbVg1SsdX
i8iec0UCQlxq7RncbpGiIwgxPRMJhUEG/wRHWnGR3jOJFXSvsLJpywZbn+Yw1d7w
kcUbHEzZPZqrWPAIcifpv/7qVCd1sPN8P3mMevcWtc1diEhQlHVVF7JnCcHxrwBP
dIsNSWyt0YmgIt231GW6GKDwuQHyv870yHK9gumvpePsfcZnDBgeMuMvv0TykhgJ
BHV2gwhIK11bNala1pw1F7CX4oiiHEeI/09/nh7xopcjnULMRFItGus2dkqDagSa
ex4g48J412crWayZ5uFqAVYeO9MNufvLvCutUj1sD/teh2ymMq82gHzQO0FTu5GL
NjWLoJXXyU18BgbXTmbm5rSMycDf1BG9Hv+MdxwEFrasF2q6Lhp+EIljUxN7+n49
i9GrLWptd8sBx/GtZXhsZlWP+vPSuHqdjZe61LD4B3IgBeGDJg6tJmHv8rEFO4Ws
9nkvaDVF03pHWxWOocDIzbrkpVwOLBaDHGwjH9Cn/lgIHL+zjXVpMaKz4/klpOr8
4/ehUajrOK6Wmyoi3fKYxZACnWK5HhFHYcB8zc1R8+zt+Pj/mbk=
=2no9
-----END PGP SIGNATURE-----
Merge tag 'for-6.9-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Two more fixes, both have some visible effects on user space:
- add check if quotas are enabled when passing qgroup inheritance
info, this affects snapper that could fail to create a snapshot
- do check for leaf/node flag WRITTEN earlier so that nodes are
completely validated before access, this used to be done by
integrity checker but it's been removed and left an unhandled case"
* tag 'for-6.9-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: make sure that WRITTEN is set on all metadata blocks
btrfs: qgroup: do not check qgroup inherit if qgroup is disabled
btrfs_get_bdev_and_sb() has two callers - btrfs_open_one_device(),
which asks for open to be exclusive and btrfs_get_dev_args_from_path(),
which doesn't. Currently it does set_blocksize() in all cases.
I'm rather dubious about the need to do set_blocksize() anywhere in btrfs,
to be honest - there's some access to page cache of underlying block
devices in there, but it's nowhere near the hot paths, AFAICT.
In any case, btrfs_get_dev_args_from_path() only needs to read
the on-disk superblock and copy several fields out of it; all
callers are only interested in devices that are already opened
and brought into per-filesystem set, so setting the block size
is redundant for those and actively harmful if we are given
a pathname of unrelated device.
So we only need btrfs_get_bdev_and_sb() to call set_blocksize()
when it's asked to open exclusive.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We previously would call btrfs_check_leaf() if we had the check
integrity code enabled, which meant that we could only run the extended
leaf checks if we had WRITTEN set on the header flags.
This leaves a gap in our checking, because we could end up with
corruption on disk where WRITTEN isn't set on the leaf, and then the
extended leaf checks don't get run which we rely on to validate all of
the item pointers to make sure we don't access memory outside of the
extent buffer.
However, since 732fab95ab ("btrfs: check-integrity: remove
CONFIG_BTRFS_FS_CHECK_INTEGRITY option") we no longer call
btrfs_check_leaf() from btrfs_mark_buffer_dirty(), which means we only
ever call it on blocks that are being written out, and thus have WRITTEN
set, or that are being read in, which should have WRITTEN set.
Add checks to make sure we have WRITTEN set appropriately, and then make
sure __btrfs_check_leaf() always does the item checking. This will
protect us from file systems that have been corrupted and no longer have
WRITTEN set on some of the blocks.
This was hit on a crafted image tweaking the WRITTEN bit and reported by
KASAN as out-of-bound access in the eb accessors. The example is a dir
item at the end of an eb.
[2.042] BTRFS warning (device loop1): bad eb member start: ptr 0x3fff start 30572544 member offset 16410 size 2
[2.040] general protection fault, probably for non-canonical address 0xe0009d1000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI
[2.537] KASAN: maybe wild-memory-access in range [0x0005088000000018-0x000508800000001f]
[2.729] CPU: 0 PID: 2587 Comm: mount Not tainted 6.8.2 #1
[2.729] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[2.621] RIP: 0010:btrfs_get_16+0x34b/0x6d0
[2.621] RSP: 0018:ffff88810871fab8 EFLAGS: 00000206
[2.621] RAX: 0000a11000000003 RBX: ffff888104ff8720 RCX: ffff88811b2288c0
[2.621] RDX: dffffc0000000000 RSI: ffffffff81dd8aca RDI: ffff88810871f748
[2.621] RBP: 000000000000401a R08: 0000000000000001 R09: ffffed10210e3ee9
[2.621] R10: ffff88810871f74f R11: 205d323430333737 R12: 000000000000001a
[2.621] R13: 000508800000001a R14: 1ffff110210e3f5d R15: ffffffff850011e8
[2.621] FS: 00007f56ea275840(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000
[2.621] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[2.621] CR2: 00007febd13b75c0 CR3: 000000010bb50000 CR4: 00000000000006f0
[2.621] Call Trace:
[2.621] <TASK>
[2.621] ? show_regs+0x74/0x80
[2.621] ? die_addr+0x46/0xc0
[2.621] ? exc_general_protection+0x161/0x2a0
[2.621] ? asm_exc_general_protection+0x26/0x30
[2.621] ? btrfs_get_16+0x33a/0x6d0
[2.621] ? btrfs_get_16+0x34b/0x6d0
[2.621] ? btrfs_get_16+0x33a/0x6d0
[2.621] ? __pfx_btrfs_get_16+0x10/0x10
[2.621] ? __pfx_mutex_unlock+0x10/0x10
[2.621] btrfs_match_dir_item_name+0x101/0x1a0
[2.621] btrfs_lookup_dir_item+0x1f3/0x280
[2.621] ? __pfx_btrfs_lookup_dir_item+0x10/0x10
[2.621] btrfs_get_tree+0xd25/0x1910
Reported-by: lei lu <llfamsec@gmail.com>
CC: stable@vger.kernel.org # 6.7+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ copy more details from report ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
After kernel commit 86211eea8a ("btrfs: qgroup: validate
btrfs_qgroup_inherit parameter"), user space tool snapper will fail to
create snapshot using its timeline feature.
[CAUSE]
It turns out that, if using timeline snapper would unconditionally pass
btrfs_qgroup_inherit parameter (assigning the new snapshot to qgroup 1/0)
for snapshot creation.
In that case, since qgroup is disabled there would be no qgroup 1/0, and
btrfs_qgroup_check_inherit() would return -ENOENT and fail the whole
snapshot creation.
[FIX]
Just skip the check if qgroup is not enabled.
This is to keep the older behavior for user space tools, as if the
kernel behavior changed for user space, it is a regression of kernel.
Thankfully snapper is also fixing the behavior by detecting if qgroup is
running in the first place, so the effect should not be that huge.
Link: https://github.com/openSUSE/snapper/issues/894
Fixes: 86211eea8a ("btrfs: qgroup: validate btrfs_qgroup_inherit parameter")
CC: stable@vger.kernel.org # 6.8+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmYzivoACgkQxWXV+ddt
WDu4TxAAgK+W1RSvrc2xe6MfHFMi2x2pL2qM0IEcYbmjNZJDQlmGYNj3jILho62/
/mHyA5skMr9hN58FFUJveiBj3qOds/lZD0640sGGpysFJKzA4/Wdg5xJvpsQtyDM
jr6BcgZOQ+j7Pqe7zsm/sc0n5yG4P+cydnlCFMNvpRfZjg1kYIV9F92qEPAHtLCx
BoDJyHhCEqFWWyH2nALu3syTHyvGECUCBEHLFgyGcG/IXT6Oq/BpsDZPm1j72NCt
9f58OY7/2R9QJYfCjYidFGnr3EYdI5CnCOtR2sQLcRUOISOOQSni52r5tonPdpm2
7QRPyuXTiVxpM909phGJt5wwyssK/JQgxUjUo3s0U04+qXb3cRoJny3vAcGcnuyk
W7lYh08QRQa3dzZ/Q+GFxqPPovdZalTHXYMAYP7QGwLuv+fZkqh39oz6LQfw7F7c
JxEjuSCSd8lJpFyIDkirZF9lELurjgt0Zn3RNe25BLiBpeqFvTQdAYGo5wML3Ug0
kHSmZVFC2En8Ad2AahpkGToVKGgUumo4RAZDiRGIUaHEoS7XfBbnPOAtC7Z1RKTS
9N++XVtJ1/uYQiLM5afiZRtUTkA/jqjSNH/v3YYTS18SczKEOWlHnpJeQSWK0rD1
rzbKZ+2MhBL5CGQnwkhUi0u07QorvMkQhWCHpf9au9rtUggg+nU=
=zEs6
-----END PGP SIGNATURE-----
Merge tag 'for-6.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- set correct ram_bytes when splitting ordered extent. This can be
inconsistent on-disk but harmless as it's not used for calculations
and it's only advisory for compression
- fix lockdep splat when taking cleaner mutex in qgroups disable ioctl
- fix missing mutex unlock on error path when looking up sys chunk for
relocation
* tag 'for-6.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: set correct ram_bytes when splitting ordered extent
btrfs: take the cleaner_mutex earlier in qgroup disable
btrfs: add missing mutex_unlock in btrfs_relocate_sys_chunks()
[BUG]
When running generic/287, the following file extent items can be
generated:
item 16 key (258 EXTENT_DATA 2682880) itemoff 15305 itemsize 53
generation 9 type 1 (regular)
extent data disk byte 1378414592 nr 462848
extent data offset 0 nr 462848 ram 2097152
extent compression 0 (none)
Note that file extent item is not a compressed one, but its ram_bytes is
way larger than its disk_num_bytes.
According to btrfs on-disk scheme, ram_bytes should match disk_num_bytes
if it's not a compressed one.
[CAUSE]
Since commit b73a6fd1b1 ("btrfs: split partial dio bios before
submit"), for partial dio writes, we would split the ordered extent.
However the function btrfs_split_ordered_extent() doesn't update the
ram_bytes even it has already shrunk the disk_num_bytes.
Originally the function btrfs_split_ordered_extent() is only introduced
for zoned devices in commit d22002fd37 ("btrfs: zoned: split ordered
extent when bio is sent"), but later commit b73a6fd1b1 ("btrfs: split
partial dio bios before submit") makes non-zoned btrfs affected.
Thankfully for un-compressed file extent, we do not really utilize the
ram_bytes member, thus it won't cause any real problem.
[FIX]
Also update btrfs_ordered_extent::ram_bytes inside
btrfs_split_ordered_extent().
Fixes: d22002fd37 ("btrfs: zoned: split ordered extent when bio is sent")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
One of my CI runs popped the following lockdep splat
======================================================
WARNING: possible circular locking dependency detected
6.9.0-rc4+ #1 Not tainted
------------------------------------------------------
btrfs/471533 is trying to acquire lock:
ffff92ba46980850 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_quota_disable+0x54/0x4c0
but task is already holding lock:
ffff92ba46980bd0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1c8f/0x2600
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&fs_info->subvol_sem){++++}-{3:3}:
down_read+0x42/0x170
btrfs_rename+0x607/0xb00
btrfs_rename2+0x2e/0x70
vfs_rename+0xaf8/0xfc0
do_renameat2+0x586/0x600
__x64_sys_rename+0x43/0x50
do_syscall_64+0x95/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
-> #1 (&sb->s_type->i_mutex_key#16){++++}-{3:3}:
down_write+0x3f/0xc0
btrfs_inode_lock+0x40/0x70
prealloc_file_extent_cluster+0x1b0/0x370
relocate_file_extent_cluster+0xb2/0x720
relocate_data_extent+0x107/0x160
relocate_block_group+0x442/0x550
btrfs_relocate_block_group+0x2cb/0x4b0
btrfs_relocate_chunk+0x50/0x1b0
btrfs_balance+0x92f/0x13d0
btrfs_ioctl+0x1abf/0x2600
__x64_sys_ioctl+0x97/0xd0
do_syscall_64+0x95/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
-> #0 (&fs_info->cleaner_mutex){+.+.}-{3:3}:
__lock_acquire+0x13e7/0x2180
lock_acquire+0xcb/0x2e0
__mutex_lock+0xbe/0xc00
btrfs_quota_disable+0x54/0x4c0
btrfs_ioctl+0x206b/0x2600
__x64_sys_ioctl+0x97/0xd0
do_syscall_64+0x95/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
other info that might help us debug this:
Chain exists of:
&fs_info->cleaner_mutex --> &sb->s_type->i_mutex_key#16 --> &fs_info->subvol_sem
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&fs_info->subvol_sem);
lock(&sb->s_type->i_mutex_key#16);
lock(&fs_info->subvol_sem);
lock(&fs_info->cleaner_mutex);
*** DEADLOCK ***
2 locks held by btrfs/471533:
#0: ffff92ba4319e420 (sb_writers#14){.+.+}-{0:0}, at: btrfs_ioctl+0x3b5/0x2600
#1: ffff92ba46980bd0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl+0x1c8f/0x2600
stack backtrace:
CPU: 1 PID: 471533 Comm: btrfs Kdump: loaded Not tainted 6.9.0-rc4+ #1
Call Trace:
<TASK>
dump_stack_lvl+0x77/0xb0
check_noncircular+0x148/0x160
? lock_acquire+0xcb/0x2e0
__lock_acquire+0x13e7/0x2180
lock_acquire+0xcb/0x2e0
? btrfs_quota_disable+0x54/0x4c0
? lock_is_held_type+0x9a/0x110
__mutex_lock+0xbe/0xc00
? btrfs_quota_disable+0x54/0x4c0
? srso_return_thunk+0x5/0x5f
? lock_acquire+0xcb/0x2e0
? btrfs_quota_disable+0x54/0x4c0
? btrfs_quota_disable+0x54/0x4c0
btrfs_quota_disable+0x54/0x4c0
btrfs_ioctl+0x206b/0x2600
? srso_return_thunk+0x5/0x5f
? __do_sys_statfs+0x61/0x70
__x64_sys_ioctl+0x97/0xd0
do_syscall_64+0x95/0x180
? srso_return_thunk+0x5/0x5f
? reacquire_held_locks+0xd1/0x1f0
? do_user_addr_fault+0x307/0x8a0
? srso_return_thunk+0x5/0x5f
? lock_acquire+0xcb/0x2e0
? srso_return_thunk+0x5/0x5f
? srso_return_thunk+0x5/0x5f
? find_held_lock+0x2b/0x80
? srso_return_thunk+0x5/0x5f
? lock_release+0xca/0x2a0
? srso_return_thunk+0x5/0x5f
? do_user_addr_fault+0x35c/0x8a0
? srso_return_thunk+0x5/0x5f
? trace_hardirqs_off+0x4b/0xc0
? srso_return_thunk+0x5/0x5f
? lockdep_hardirqs_on_prepare+0xde/0x190
? srso_return_thunk+0x5/0x5f
This happens because when we call rename we already have the inode mutex
held, and then we acquire the subvol_sem if we are a subvolume. This
makes the dependency
inode lock -> subvol sem
When we're running data relocation we will preallocate space for the
data relocation inode, and we always run the relocation under the
->cleaner_mutex. This now creates the dependency of
cleaner_mutex -> inode lock (from the prealloc) -> subvol_sem
Qgroup delete is doing this in the opposite order, it is acquiring the
subvol_sem and then it is acquiring the cleaner_mutex, which results in
this lockdep splat. This deadlock can't happen in reality, because we
won't ever rename the data reloc inode, nor is the data reloc inode a
subvolume.
However this is fairly easy to fix, simply take the cleaner mutex in the
case where we are disabling qgroups before we take the subvol_sem. This
resolves the lockdep splat.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The previous patch that replaced BUG_ON by error handling forgot to
unlock the mutex in the error path.
Link: https://lore.kernel.org/all/Zh%2fHpAGFqa7YAFuM@duo.ucw.cz
Reported-by: Pavel Machek <pavel@denx.de>
Fixes: 7411055db5 ("btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks()")
CC: stable@vger.kernel.org
Reviewed-by: Pavel Machek <pavel@denx.de>
Signed-off-by: Dominique Martinet <dominique.martinet@atmark-techno.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmYnyRwACgkQxWXV+ddt
WDtnlA/9GWPYrQFBBzPZeXZHldr7grn8t8oDVVvMhSxRslrk2XYGqRVEVfZT5+Wp
wsbqdfmDXShstWkU43jxXcJAg4QxQNBBSVaKVMO5rXkM5ZHLdn78EJs5htSuy+67
n0zFqqxVr0F9LvrHqs/JJp70fr3WQtGINAkxda0JHKaMEj2nSnGjzKf6GAPomAs+
7BWQlV4cc8tQAox2MxCFx1eXTISepa9pi0ojm0R+siZGgMkmzpjJTy9WZ3EtIWQN
4LU5FMCQMsKkqUETxsEs5Va0QkEvN3SuiNsoUIJZFSArws3cwYz+u10+8Rpc/U1o
8P3H8fGxvbYpRt6QjG1GGYy0LxhyYeyGp+fNfeBF4pl2MAn2e8qeiPpPlC+Q6/U2
/Nn8+x9/FgWQKNmu76DQ1BM4WoD18mEUQrB6OYLO/9FBttLAevaEO3vxECxosBIj
wGyfXJ/r4Y2Vva+pkjreBpc7m/VwwOPGdRHkKk8mzFGqoQzSwvs/pm3ldF9dV7ud
smZ0H8vvaEDigOd4oFR2vC2wpETaCL89oS9x/NzMvqlqQaGJoD6t591c3yRwmvro
hJYT5lG6KR+ZeDgv+2ZZA2s5/2l7193pkS3toj7v1xSOkpjADPaTBg+2P5o27YyJ
UvXbEpdcCV6xWxT3Ak/bkfS1dDGfxAtwV7c/sPGvY5KtmbvjOBE=
=riVJ
-----END PGP SIGNATURE-----
Merge tag 'for-6.9-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix information leak by the buffer returned from LOGICAL_INO ioctl
- fix flipped condition in scrub when tracking sectors in zoned mode
- fix calculation when dropping extent range
- reinstate fallback to write uncompressed data in case of fragmented
space that could not store the entire compressed chunk
- minor fix to message formatting style to make it conforming to the
commonly used style
* tag 'for-6.9-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix wrong block_start calculation for btrfs_drop_extent_map_range()
btrfs: fix information leak in btrfs_ioctl_logical_to_ino()
btrfs: fallback if compressed IO fails for ENOSPC
btrfs: scrub: run relocation repair when/only needed
btrfs: remove colon from messages with state
[BUG]
During my extent_map cleanup/refactor, with extra sanity checks,
extent-map-tests::test_case_7() would not pass the checks.
The problem is, after btrfs_drop_extent_map_range(), the resulted
extent_map has a @block_start way too large.
Meanwhile my btrfs_file_extent_item based members are returning a
correct @disk_bytenr/@offset combination.
The extent map layout looks like this:
0 16K 32K 48K
| PINNED | | Regular |
The regular em at [32K, 48K) also has 32K @block_start.
Then drop range [0, 36K), which should shrink the regular one to be
[36K, 48K).
However the @block_start is incorrect, we expect 32K + 4K, but got 52K.
[CAUSE]
Inside btrfs_drop_extent_map_range() function, if we hit an extent_map
that covers the target range but is still beyond it, we need to split
that extent map into half:
|<-- drop range -->|
|<----- existing extent_map --->|
And if the extent map is not compressed, we need to forward
extent_map::block_start by the difference between the end of drop range
and the extent map start.
However in that particular case, the difference is calculated using
(start + len - em->start).
The problem is @start can be modified if the drop range covers any
pinned extent.
This leads to wrong calculation, and would be caught by my later
extent_map sanity checks, which checks the em::block_start against
btrfs_file_extent_item::disk_bytenr + btrfs_file_extent_item::offset.
This is a regression caused by commit c962098ca4 ("btrfs: fix
incorrect splitting in btrfs_drop_extent_map_range"), which removed the
@len update for pinned extents.
[FIX]
Fix it by avoiding using @start completely, and use @end - em->start
instead, which @end is exclusive bytenr number.
And update the test case to verify the @block_start to prevent such
problem from happening.
Thankfully this is not going to lead to any data corruption, as IO path
does not utilize btrfs_drop_extent_map_range() with @skip_pinned set.
So this fix is only here for the sake of consistency/correctness.
CC: stable@vger.kernel.org # 6.5+
Fixes: c962098ca4 ("btrfs: fix incorrect splitting in btrfs_drop_extent_map_range")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Syzbot reported the following information leak for in
btrfs_ioctl_logical_to_ino():
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
_copy_to_user+0xbc/0x110 lib/usercopy.c:40
copy_to_user include/linux/uaccess.h:191 [inline]
btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
__kmalloc_large_node+0x231/0x370 mm/slub.c:3921
__do_kmalloc_node mm/slub.c:3954 [inline]
__kmalloc_node+0xb07/0x1060 mm/slub.c:3973
kmalloc_node include/linux/slab.h:648 [inline]
kvmalloc_node+0xc0/0x2d0 mm/util.c:634
kvmalloc include/linux/slab.h:766 [inline]
init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779
btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Bytes 40-65535 of 65536 are uninitialized
Memory access of size 65536 starts at ffff888045a40000
This happens, because we're copying a 'struct btrfs_data_container' back
to user-space. This btrfs_data_container is allocated in
'init_data_container()' via kvmalloc(), which does not zero-fill the
memory.
Fix this by using kvzalloc() which zeroes out the memory on allocation.
CC: stable@vger.kernel.org # 4.14+
Reported-by: <syzbot+510a1abbb8116eeb341d@syzkaller.appspotmail.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <Johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmYgXDMACgkQxWXV+ddt
WDsPpg//RzpLGyfFVFx+AdqIPScBvDSr6RIQAug++4OmDbIRMxzOpxKOAWThhivf
78KIms2fj9R/zLJEdUGCLQTcy8a1eWBnoeSzXoeTta2pip5cKrc9v3hJId53l0F6
BfltbVjpAKt6XHqeI0V2myrL/KHx5bApz5oNn/oEQCwiA2HBkasrYTRLEA7xMem2
hRUIXrTuIdwiyWugi84xjp9D0BxEdbTBfH6SR6RG4ESy+73gdEt4BAeDI6DzWN+D
eKUv/CthhrP7xuO8Aq9XGkwznP7lIeIwBCiV5XURLR0HztFm64vXgbPQHhwqvI43
5uhA7wifc/VE8nOysubfET6MwVEeyOptW6+25ih/9Da9VLxRK1y/Hm94JW8t6Sxi
VPgT5gz4YuE5/QaojETDLYgkkjKj7Lpe/Bs225J3QBCHu3fs/tp9kHKbUNJrcAeM
b56tiRMccLVpeoslbK4ahvQqCH4/LKBMdAqfWK5/p24JkYT/ubVP3CdLS2MOeRpV
UqDpQExuWsVJZKH8znSXXrHf2ZMYHmlA/1gRqdEmcvPF8A2vCc9aMMZHTP7v57EC
/80NJv9HQuxcUFQCl0h4WBlB+gGQtAszz+0q1X9aedauC6Hd/7LeICLCPRczJC3g
rD3J+EXiTg2MxqZWyXJXQ1Q9cQWNkQjG6o/rEhl5r5c3OGWgssk=
=ZKAP
-----END PGP SIGNATURE-----
Merge tag 'for-6.9-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fixup in zoned mode for out-of-order writes of metadata that are no
longer necessary, this used to be tracked in a separate list but now
the old locaion needs to be zeroed out, also add assertions
- fix bulk page allocation retry, this may stall after first failure
for compression read/write
* tag 'for-6.9-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: do not wait for short bulk allocation
btrfs: zoned: add ASSERT and WARN for EXTENT_BUFFER_ZONED_ZEROOUT handling
btrfs: zoned: do not flag ZEROOUT on non-dirty extent buffer
In commit b4ccace878 ("btrfs: refactor submit_compressed_extents()"), if
an async extent compressed but failed to find enough space, we changed
from falling back to an uncompressed write to just failing the write
altogether. The principle was that if there's not enough space to write
the compressed version of the data, there can't possibly be enough space
to write the larger, uncompressed version of the data.
However, this isn't necessarily true: due to fragmentation, there could
be enough discontiguous free blocks to write the uncompressed version,
but not enough contiguous free blocks to write the smaller but
unsplittable compressed version.
This has occurred to an internal workload which relied on write()'s
return value indicating there was space. While rare, it has happened a
few times.
Thus, in order to prevent early ENOSPC, re-add a fallback to
uncompressed writing.
Fixes: b4ccace878 ("btrfs: refactor submit_compressed_extents()")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Co-developed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When btrfs scrub finds an error, it reads mirrors to find correct data. If
all the errors are fixed, sctx->error_bitmap is cleared for the stripe
range. However, in the zoned mode, it runs relocation to repair scrub
errors when the bitmap is *not* empty, which is a flipped condition.
Also, it runs the relocation even if the scrub is read-only. This was
missed by a fix in commit 1f2030ff6e ("btrfs: scrub: respect the
read-only flag during repair").
The repair is only necessary when there is a repaired sector and should be
done on read-write scrub. So, tweak the condition for both regular and
zoned case.
Fixes: 54765392a1 ("btrfs: scrub: introduce helper to queue a stripe for scrub")
Fixes: 1f2030ff6e ("btrfs: scrub: respect the read-only flag during repair")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The message format in syslog is usually made of two parts:
prefix ":" message
Various tools parse the prefix up to the first ":". When there's
an additional status of a btrfs filesystem like
[5.199782] BTRFS info (device nvme1n1p1: state M): use zstd compression, level 9
where 'M' is for remount, there's one more ":" that does not conform to
the format. Remove it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a recent report that when memory pressure is high (including
cached pages), btrfs can spend most of its time on memory allocation in
btrfs_alloc_page_array() for compressed read/write.
[CAUSE]
For btrfs_alloc_page_array() we always go alloc_pages_bulk_array(), and
even if the bulk allocation failed (fell back to single page
allocation) we still retry but with extra memalloc_retry_wait().
If the bulk alloc only returned one page a time, we would spend a lot of
time on the retry wait.
The behavior was introduced in commit 395cb57e85 ("btrfs: wait between
incomplete batch memory allocations").
[FIX]
Although the commit mentioned that other filesystems do the wait, it's
not the case at least nowadays.
All the mainlined filesystems only call memalloc_retry_wait() if they
failed to allocate any page (not only for bulk allocation).
If there is any progress, they won't call memalloc_retry_wait() at all.
For example, xfs_buf_alloc_pages() would only call memalloc_retry_wait()
if there is no allocation progress at all, and the call is not for
metadata readahead.
So I don't believe we should call memalloc_retry_wait() unconditionally
for short allocation.
Call memalloc_retry_wait() if it fails to allocate any page for tree
block allocation (which goes with __GFP_NOFAIL and may not need the
special handling anyway), and reduce the latency for
btrfs_alloc_page_array().
Reported-by: Julian Taylor <julian.taylor@1und1.de>
Tested-by: Julian Taylor <julian.taylor@1und1.de>
Link: https://lore.kernel.org/all/8966c095-cbe7-4d22-9784-a647d1bf27c3@1und1.de/
Fixes: 395cb57e85 ("btrfs: wait between incomplete batch memory allocations")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add an ASSERT to catch a faulty delayed reference item resulting from
prematurely cleared extent buffer.
Also, add a WARN to detect if we try to dirty a ZEROOUT buffer again, which
is suspicious as its update will be lost.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs clears the content of an extent buffer marked as
EXTENT_BUFFER_ZONED_ZEROOUT before the bio submission. This mechanism is
introduced to prevent a write hole of an extent buffer, which is once
allocated, marked dirty, but turns out unnecessary and cleaned up within
one transaction operation.
Currently, btrfs_clear_buffer_dirty() marks the extent buffer as
EXTENT_BUFFER_ZONED_ZEROOUT, and skips the entry function. If this call
happens while the buffer is under IO (with the WRITEBACK flag set,
without the DIRTY flag), we can add the ZEROOUT flag and clear the
buffer's content just before a bio submission. As a result:
1) it can lead to adding faulty delayed reference item which leads to a
FS corrupted (EUCLEAN) error, and
2) it writes out cleared tree node on disk
The former issue is previously discussed in [1]. The corruption happens
when it runs a delayed reference update. So, on-disk data is safe.
[1] https://lore.kernel.org/linux-btrfs/3f4f2a0ff1a6c818050434288925bdcf3cd719e5.1709124777.git.naohiro.aota@wdc.com/
The latter one can reach on-disk data. But, as that node is already
processed by btrfs_clear_buffer_dirty(), that will be invalidated in the
next transaction commit anyway. So, the chance of hitting the corruption
is relatively small.
Anyway, we should skip flagging ZEROOUT on a non-DIRTY extent buffer, to
keep the content under IO intact.
Fixes: aa6313e6ff ("btrfs: zoned: don't clear dirty flag of extent buffer")
CC: stable@vger.kernel.org # 6.8
Link: https://lore.kernel.org/linux-btrfs/oadvdekkturysgfgi4qzuemd57zudeasynswurjxw3ocdfsef6@sjyufeugh63f/
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmYQIdIACgkQxWXV+ddt
WDvjmw/+KahIHfFt17cM5uZpiETcL9v44uT0Y69r0bMpw8Vy/cmE+rmGfyERr8YN
v68U/hpWHD2mYhxL01EHut2X/MRA4zmAcWUKVu1vk0d/9Vp/01wPJfKyvX6q388/
dFtPtzqXxj0uIwO5lRIk+dJuvShtfCps2rx/zcBUoaQYljIDNfhrWscfV4nIzqlR
BF7GX3b22rlw8q1dXAXWW+zTk3tey8Jxj+jmShyoPxcGMDK4jmNyaFu1WSIFfSdc
ns5Kii7/4tIBqpqPCr/FMGXQjdEZGw9ZTiAO4nUjtyoCTO3l/jMVYoo7llJR9dtv
Fgtej0MLlAapX2mJ65xOBO6OvCIM8VwrY+DfIDeWxtDONmrGxBUIMTJIjSq3oGEi
Mh0CbnpISGj9zQlR4raOavtgxmbdXnhdvLcp2Uv+VcJnEyCtHMmVLx9yNMKqjHje
oJHtuJiEeqlB66xZEYx3qA8SIdaJGhB/HluU9Vyg67AJTJUcCzuxZlqaC+oSOxfj
GYgY66BHD+ZKRKUFw7EylohnhvsMcmFhMSeBLzMuSaqEig4dmv4cFenad06up6c+
c0obH8oKsaA05gS3sMshmkNtBm8ms1OP2rWebjQWmmXhCOWLPqcGs5AxYeqvRdzx
eqFNKhRw+JH1mFmhEtY/Y+4OX6eTlluSxoKxZYWfAX1xvlr94U4=
=XtPw
-----END PGP SIGNATURE-----
Merge tag 'for-6.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Several fixes to qgroups that have been recently identified by test
generic/475:
- fix prealloc reserve leak in subvolume operations
- various other fixes in reservation setup, conversion or cleanup"
* tag 'for-6.9-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: always clear PERTRANS metadata during commit
btrfs: make btrfs_clear_delalloc_extent() free delalloc reserve
btrfs: qgroup: convert PREALLOC to PERTRANS after record_root_in_trans
btrfs: record delayed inode root in transaction
btrfs: qgroup: fix qgroup prealloc rsv leak in subvolume operations
btrfs: qgroup: correctly model root qgroup rsv in convert
There's a bunch of flags that are purely based on what the file
operations support while also never being conditionally set or unset.
IOW, they're not subject to change for individual files. Imho, such
flags don't need to live in f_mode they might as well live in the fops
structs itself. And the fops struct already has that lonely
mmap_supported_flags member. We might as well turn that into a generic
fop_flags member and move a few flags from FMODE_* space into FOP_*
space. That gets us four FMODE_* bits back and the ability for new
static flags that are about file ops to not have to live in FMODE_*
space but in their own FOP_* space. It's not the most beautiful thing
ever but it gets the job done. Yes, there'll be an additional pointer
chase but hopefully that won't matter for these flags.
I suspect there's a few more we can move into there and that we can also
redirect a bunch of new flag suggestions that follow this pattern into
the fop_flags field instead of f_mode.
Link: https://lore.kernel.org/r/20240328-gewendet-spargel-aa60a030ef74@brauner
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christian Brauner <brauner@kernel.org>
It is possible to clear a root's IN_TRANS tag from the radix tree, but
not clear its PERTRANS, if there is some error in between. Eliminate
that possibility by moving the free up to where we clear the tag.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, this call site in btrfs_clear_delalloc_extent() only converts
the reservation. We are marking it not delalloc, so I don't think it
makes sense to keep the rsv around. This is a path where we are not
sure to join a transaction, so it leads to incorrect free-ing during
umount.
Helps with the pass rate of generic/269 and generic/475.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The transaction is only able to free PERTRANS reservations for a root
once that root has been recorded with the TRANS tag on the roots radix
tree. Therefore, until we are sure that this root will get tagged, it
isn't safe to convert. Generally, this is not an issue as *some*
transaction will likely tag the root before long and this reservation
will get freed in that transaction, but technically it could stick
around until unmount and result in a warning about leaked metadata
reservation space.
This path is most exercised by running the generic/269 fstest with
CONFIG_BTRFS_DEBUG.
Fixes: a649684967 ("btrfs: fix start transaction qgroup rsv double free")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
When running delayed inode updates, we do not record the inode's root in
the transaction, but we do allocate PREALLOC and thus converted PERTRANS
space for it. To be sure we free that PERTRANS meta rsv, we must ensure
that we record the root in the transaction.
Fixes: 4f5427ccce ("btrfs: delayed-inode: Use new qgroup meta rsv for delayed inode and item")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Create subvolume, create snapshot and delete subvolume all use
btrfs_subvolume_reserve_metadata() to reserve metadata for the changes
done to the parent subvolume's fs tree, which cannot be mediated in the
normal way via start_transaction. When quota groups (squota or qgroups)
are enabled, this reserves qgroup metadata of type PREALLOC. Once the
operation is associated to a transaction, we convert PREALLOC to
PERTRANS, which gets cleared in bulk at the end of the transaction.
However, the error paths of these three operations were not implementing
this lifecycle correctly. They unconditionally converted the PREALLOC to
PERTRANS in a generic cleanup step regardless of errors or whether the
operation was fully associated to a transaction or not. This resulted in
error paths occasionally converting this rsv to PERTRANS without calling
record_root_in_trans successfully, which meant that unless that root got
recorded in the transaction by some other thread, the end of the
transaction would not free that root's PERTRANS, leaking it. Ultimately,
this resulted in hitting a WARN in CONFIG_BTRFS_DEBUG builds at unmount
for the leaked reservation.
The fix is to ensure that every qgroup PREALLOC reservation observes the
following properties:
1. any failure before record_root_in_trans is called successfully
results in freeing the PREALLOC reservation.
2. after record_root_in_trans, we convert to PERTRANS, and now the
transaction owns freeing the reservation.
This patch enforces those properties on the three operations. Without
it, generic/269 with squotas enabled at mkfs time would fail in ~5-10
runs on my system. With this patch, it ran successfully 1000 times in a
row.
Fixes: e85fde5162 ("btrfs: qgroup: fix qgroup meta rsv leak for subvolume operations")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
We use add_root_meta_rsv and sub_root_meta_rsv to track prealloc and
pertrans reservations for subvolumes when quotas are enabled. The
convert function does not properly increment pertrans after decrementing
prealloc, so the count is not accurate.
Note: we check that the fs is not read-only to mirror the logic in
qgroup_convert_meta, which checks that before adding to the pertrans rsv.
Fixes: 8287475a20 ("btrfs: qgroup: Use root::qgroup_meta_rsv_* to record qgroup meta reserved space")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Use bio_list_merge_init instead of open coding bio_list_merge and
bio_list_init.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Link: https://lore.kernel.org/r/20240328084147.2954434-5-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bitmap_set_bits() does not start with the FS' prefix and may collide
with a new generic helper one day. It operates with the FS-specific
types, so there's no change those two could do the same thing.
Just add the prefix to exclude such possible conflict.
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmYEfJYACgkQxWXV+ddt
WDucIg/+IupuqdLKnj6bepxX/VufnFAjecD3sRgZQQLIMfm3MQX3TzbNoPYEiAGU
tNG6jxYgkGRoyhN3aIQnsJmRFje5epYjNA5+ueUNT2/KfyKonnS2TIKQt6u7XBls
fl4SCTSNRX7w/QUNUWwyY5/86yzV4F8w19X5nVOKcp7Nz3hUBdeDZWAmMlYyHuFW
N2YRyNdCxB4Y0U9g1vgI63wFjOac0F+7RTHGsDH7ueOZ2dbtDM38lHBoCbdX3jmy
5nG7wVJZp2H/zCmzrVQJ897CMfr3h9r9Kxx8EE3JDJaJ5sMMaRh361rgsZTaGsjz
SwUzT6Z0u0hsBANSTOUZixhfX5sqArmemG+XpFu6Rq+732DqS+c4vWRSu7c8Rc8i
+4HIQNsjJqm/d1u2IyxXfuqSbaULLnyYQ8rdEx3o2AM37JnuTvOWoB+v/JqPb9TI
aG+bOPvg7GM9Sl3IoM5sR+j3bEebranZbUF+UiDEujZJiY+uiw3vMbFvyOBRWaUU
ODTpNoyCmz94mWg79hyosOjM9A/NCEkRH4oSc+YeqOvzTIBG3V+D3HxN/DX4FVTy
VDxMdptu0aPIEkUQ3nvsj4t3OKgj1w9rxZFpRYH33zJVvRqZ8VrgtC9V6zgPv3h7
suQL4s4i4EiIgAk2Z0OR23wDwg1TwXVWLGErfQVHslvhl/a2Qb4=
=Lhhp
-----END PGP SIGNATURE-----
Merge tag 'for-6.9-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix race when reading extent buffer and 'uptodate' status is missed
by one thread (introduced in 6.5)
- do additional validation of devices using major:minor numbers
- zoned mode fixes:
- use zone-aware super block access during scrub
- fix use-after-free during device replace (found by KASAN)
- also delete zones that are 100% unusable to reclaim space
- extent unpinning fixes:
- fix extent map leak after error handling
- print correct range in error message
- error code and message updates
* tag 'for-6.9-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix race in read_extent_buffer_pages()
btrfs: return accurate error code on open failure in open_fs_devices()
btrfs: zoned: don't skip block groups with 100% zone unusable
btrfs: use btrfs_warn() to log message at btrfs_add_extent_mapping()
btrfs: fix message not properly printing interval when adding extent map
btrfs: fix warning messages not printing interval at unpin_extent_range()
btrfs: fix extent map leak in unexpected scenario at unpin_extent_cache()
btrfs: validate device maj:min during open
btrfs: zoned: fix use-after-free in do_zone_finish()
btrfs: zoned: use zone aware sb location for scrub
There are reports from tree-checker that detects corrupted nodes,
without any obvious pattern so possibly an overwrite in memory.
After some debugging it turns out there's a race when reading an extent
buffer the uptodate status can be missed.
To prevent concurrent reads for the same extent buffer,
read_extent_buffer_pages() performs these checks:
/* (1) */
if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
return 0;
/* (2) */
if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
goto done;
At this point, it seems safe to start the actual read operation. Once
that completes, end_bbio_meta_read() does
/* (3) */
set_extent_buffer_uptodate(eb);
/* (4) */
clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
Normally, this is enough to ensure only one read happens, and all other
callers wait for it to finish before returning. Unfortunately, there is
a racey interleaving:
Thread A | Thread B | Thread C
---------+----------+---------
(1) | |
| (1) |
(2) | |
(3) | |
(4) | |
| (2) |
| | (1)
When this happens, thread B kicks of an unnecessary read. Worse, thread
C will see UPTODATE set and return immediately, while the read from
thread B is still in progress. This race could result in tree-checker
errors like this as the extent buffer is concurrently modified:
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
Fix it by testing UPTODATE again after setting the READING bit, and if
it's been set, skip the unnecessary read.
Fixes: d7172f52e9 ("btrfs: use per-buffer locking for extent_buffer reading")
Link: https://lore.kernel.org/linux-btrfs/CAHk-=whNdMaN9ntZ47XRKP6DBes2E5w7fi-0U3H2+PS18p+Pzw@mail.gmail.com/
Link: https://lore.kernel.org/linux-btrfs/f51a6d5d7432455a6a858d51b49ecac183e0bbc9.1706312914.git.wqu@suse.com/
Link: https://lore.kernel.org/linux-btrfs/c7241ea4-fcc6-48d2-98c8-b5ea790d6c89@gmx.com/
CC: stable@vger.kernel.org # 6.5+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Tavian Barnes <tavianator@tavianator.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor update of changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
When attempting to exclusive open a device which has no exclusive open
permission, such as a physical device associated with the flakey dm
device, the open operation will fail, resulting in a mount failure.
In this particular scenario, we erroneously return -EINVAL instead of the
correct error code provided by the bdev_open_by_path() function, which is
-EBUSY.
Fix this, by returning error code from the bdev_open_by_path() function.
With this correction, the mount error message will align with that of
ext4 and xfs.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit f4a9f21941 ("btrfs: do not delete unused block group if it may be
used soon") changed the behaviour of deleting unused block-groups on zoned
filesystems. Starting with this commit, we're using
btrfs_space_info_used() to calculate the number of used bytes in a
space_info. But btrfs_space_info_used() also accounts
btrfs_space_info::bytes_zone_unusable as used bytes.
So if a block group is 100% zone_unusable it is skipped from the deletion
step.
In order not to skip fully zone_unusable block-groups, also check if the
block-group has bytes left that can be used on a zoned filesystem.
Fixes: f4a9f21941 ("btrfs: do not delete unused block group if it may be used soon")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_add_extent_mapping(), if we failed to merge the extent map, which
is unexpected and theoretically should never happen, we use WARN_ONCE() to
log a message which is not great because we don't get information about
which filesystem it relates to in case we have multiple btrfs filesystems
mounted. So change this to use btrfs_warn() and surround the error check
with WARN_ON() so we always get a useful stack trace and the condition is
flagged as "unlikely" since it's not expected to ever happen.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_add_extent_mapping(), if we are unable to merge the existing
extent map, we print a warning message that suggests interval ranges in
the form "[X, Y)", where the first element is the inclusive start offset
of a range and the second element is the exclusive end offset. However
we end up printing the length of the ranges instead of the exclusive end
offsets. So fix this by printing the range end offsets.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At unpin_extent_range() we print warning messages that are supposed to
print an interval in the form "[X, Y)", with the first element being an
inclusive start offset and the second element being the exclusive end
offset of a range. However we end up printing the range's length instead
of the range's exclusive end offset, so fix that to avoid having confusing
and non-sense messages in case we hit one of these unexpected scenarios.
Fixes: 00deaf04df ("btrfs: log messages at unpin_extent_range() during unexpected cases")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At unpin_extent_cache() if we happen to find an extent map with an
unexpected start offset, we jump to the 'out' label and never release the
reference we added to the extent map through the call to
lookup_extent_mapping(), therefore resulting in a leak. So fix this by
moving the free_extent_map() under the 'out' label.
Fixes: c03c89f821 ("btrfs: handle errors returned from unpin_extent_cache()")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Boris managed to create a device capable of changing its maj:min without
altering its device path.
Only multi-devices can be scanned. A device that gets scanned and remains
in the btrfs kernel cache might end up with an incorrect maj:min.
Despite the temp-fsid feature patch did not introduce this bug, it could
lead to issues if the above multi-device is converted to a single device
with a stale maj:min. Subsequently, attempting to mount the same device
with the correct maj:min might mistake it for another device with the same
fsid, potentially resulting in wrongly auto-enabling the temp-fsid feature.
To address this, this patch validates the device's maj:min at the time of
device open and updates it if it has changed since the last scan.
CC: stable@vger.kernel.org # 6.7+
Fixes: a5b8a5f9f8 ("btrfs: support cloned-device mount capability")
Reported-by: Boris Burkov <boris@bur.io>
Co-developed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Boris Burkov <boris@bur.io>#
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Shinichiro reported the following use-after-free triggered by the device
replace operation in fstests btrfs/070.
BTRFS info (device nullb1): scrub: finished on devid 1 with status: 0
==================================================================
BUG: KASAN: slab-use-after-free in do_zone_finish+0x91a/0xb90 [btrfs]
Read of size 8 at addr ffff8881543c8060 by task btrfs-cleaner/3494007
CPU: 0 PID: 3494007 Comm: btrfs-cleaner Tainted: G W 6.8.0-rc5-kts #1
Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x90
print_report+0xcf/0x670
? __virt_addr_valid+0x200/0x3e0
kasan_report+0xd8/0x110
? do_zone_finish+0x91a/0xb90 [btrfs]
? do_zone_finish+0x91a/0xb90 [btrfs]
do_zone_finish+0x91a/0xb90 [btrfs]
btrfs_delete_unused_bgs+0x5e1/0x1750 [btrfs]
? __pfx_btrfs_delete_unused_bgs+0x10/0x10 [btrfs]
? btrfs_put_root+0x2d/0x220 [btrfs]
? btrfs_clean_one_deleted_snapshot+0x299/0x430 [btrfs]
cleaner_kthread+0x21e/0x380 [btrfs]
? __pfx_cleaner_kthread+0x10/0x10 [btrfs]
kthread+0x2e3/0x3c0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
Allocated by task 3493983:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0xaa/0xb0
btrfs_alloc_device+0xb3/0x4e0 [btrfs]
device_list_add.constprop.0+0x993/0x1630 [btrfs]
btrfs_scan_one_device+0x219/0x3d0 [btrfs]
btrfs_control_ioctl+0x26e/0x310 [btrfs]
__x64_sys_ioctl+0x134/0x1b0
do_syscall_64+0x99/0x190
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Freed by task 3494056:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3f/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x32/0x70
kfree+0x11b/0x320
btrfs_rm_dev_replace_free_srcdev+0xca/0x280 [btrfs]
btrfs_dev_replace_finishing+0xd7e/0x14f0 [btrfs]
btrfs_dev_replace_by_ioctl+0x1286/0x25a0 [btrfs]
btrfs_ioctl+0xb27/0x57d0 [btrfs]
__x64_sys_ioctl+0x134/0x1b0
do_syscall_64+0x99/0x190
entry_SYSCALL_64_after_hwframe+0x6e/0x76
The buggy address belongs to the object at ffff8881543c8000
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 96 bytes inside of
freed 1024-byte region [ffff8881543c8000, ffff8881543c8400)
The buggy address belongs to the physical page:
page:00000000fe2c1285 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1543c8
head:00000000fe2c1285 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0x17ffffc0000840(slab|head|node=0|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0017ffffc0000840 ffff888100042dc0 ffffea0019e8f200 dead000000000002
raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8881543c7f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff8881543c7f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff8881543c8000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8881543c8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8881543c8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
This UAF happens because we're accessing stale zone information of a
already removed btrfs_device in do_zone_finish().
The sequence of events is as follows:
btrfs_dev_replace_start
btrfs_scrub_dev
btrfs_dev_replace_finishing
btrfs_dev_replace_update_device_in_mapping_tree <-- devices replaced
btrfs_rm_dev_replace_free_srcdev
btrfs_free_device <-- device freed
cleaner_kthread
btrfs_delete_unused_bgs
btrfs_zone_finish
do_zone_finish <-- refers the freed device
The reason for this is that we're using a cached pointer to the chunk_map
from the block group, but on device replace this cached pointer can
contain stale device entries.
The staleness comes from the fact, that btrfs_block_group::physical_map is
not a pointer to a btrfs_chunk_map but a memory copy of it.
Also take the fs_info::dev_replace::rwsem to prevent
btrfs_dev_replace_update_device_in_mapping_tree() from changing the device
underneath us again.
Note: btrfs_dev_replace_update_device_in_mapping_tree() is holding
fs_info::mapping_tree_lock, but as this is a spinning read/write lock we
cannot take it as the call to blkdev_zone_mgmt() requires a memory
allocation which may not sleep.
But btrfs_dev_replace_update_device_in_mapping_tree() is always called with
the fs_info::dev_replace::rwsem held in write mode.
Many thanks to Shinichiro for analyzing the bug.
Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
CC: stable@vger.kernel.org # 6.8
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a new statx field for (sub)volume identifiers, as implemented by
btrfs and bcachefs.
This includes bcachefs support; we'll definitely want btrfs support as
well.
Link: https://lore.kernel.org/linux-fsdevel/2uvhm6gweyl7iyyp2xpfryvcu2g3padagaeqcbiavjyiis6prl@yjm725bizncq/
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Link: https://lore.kernel.org/r/20240308022914.196982-1-kent.overstreet@linux.dev
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
There are reports that since version 6.7 update-grub fails to find the
device of the root on systems without initrd and on a single device.
This looks like the device name changed in the output of
/proc/self/mountinfo:
6.5-rc5 working
18 1 0:16 / / rw,noatime - btrfs /dev/sda8 ...
6.7 not working:
17 1 0:15 / / rw,noatime - btrfs /dev/root ...
and "update-grub" shows this error:
/usr/sbin/grub-probe: error: cannot find a device for / (is /dev mounted?)
This looks like it's related to the device name, but grub-probe
recognizes the "/dev/root" path and tries to find the underlying device.
However there's a special case for some filesystems, for btrfs in
particular.
The generic root device detection heuristic is not done and it all
relies on reading the device infos by a btrfs specific ioctl. This ioctl
returns the device name as it was saved at the time of device scan (in
this case it's /dev/root).
The change in 6.7 for temp_fsid to allow several single device
filesystem to exist with the same fsid (and transparently generate a new
UUID at mount time) was to skip caching/registering such devices.
This also skipped mounted device. One step of scanning is to check if
the device name hasn't changed, and if yes then update the cached value.
This broke the grub-probe as it always read the device /dev/root and
couldn't find it in the system. A temporary workaround is to create a
symlink but this does not survive reboot.
The right fix is to allow updating the device path of a mounted
filesystem even if this is a single device one.
In the fix, check if the device's major:minor number matches with the
cached device. If they do, then we can allow the scan to happen so that
device_list_add() can take care of updating the device path. The file
descriptor remains unchanged.
This does not affect the temp_fsid feature, the UUID of the mounted
filesystem remains the same and the matching is based on device major:minor
which is unique per mounted filesystem.
This covers the path when the device (that exists for all mounted
devices) name changes, updating /dev/root to /dev/sdx. Any other single
device with filesystem and is not mounted is still skipped.
Note that if a system is booted and initial mount is done on the
/dev/root device, this will be the cached name of the device. Only after
the command "btrfs device scan" it will change as it triggers the
rename.
The fix was verified by users whose systems were affected.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=218353
Link: https://lore.kernel.org/lkml/CAKLYgeJ1tUuqLcsquwuFqjDXPSJpEiokrWK2gisPKDZLs8Y2TQ@mail.gmail.com/
Fixes: bc27d6f0aa ("btrfs: scan but don't register device on single device filesystem")
CC: stable@vger.kernel.org # 6.7+
Tested-by: Alex Romosan <aromosan@gmail.com>
Tested-by: CHECK_1234543212345@protonmail.com
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At the moment scrub_supers() doesn't grab the super block's location via
the zoned device aware btrfs_sb_log_location() but via btrfs_sb_offset().
This leads to checksum errors on 'scrub' as we're not accessing the
correct location of the super block.
So use btrfs_sb_log_location() for getting the super blocks location on
scrub.
Reported-by: WA AM <waautomata@gmail.com>
Link: http://lore.kernel.org/linux-btrfs/CANU2Z0EvUzfYxczLgGUiREoMndE9WdQnbaawV5Fv5gNXptPUKw@mail.gmail.com
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmXvUekACgkQxWXV+ddt
WDuDpA//QiTipyU+v2b0aV2iOQs66YxFU0D9suQnin2paAU9YHzT6cLr9uYLAnPE
Hs57jfZiWiCKSTVJwezJJb5azKmC9M9Fm0uSny51O7EKibcyLEDuHGrMB4C+O/9e
7PQD6K6WCRfH7PzLPeDYSK8tdHyj8hu1YbW/o/iBfQGyCxZVejCuOr/tItnO9JxY
km8pwmcREzOTGyBBjA19QKiC1hY4cARtLqtzxCBrfFcMgT2H6KbAciXzBabdMf8D
8NpP98HOFpi5sOVauSQDz8t0aQkGVWyP1yIBZ0rdQesTp7kqkXLCJOSLAw8M2Q4c
la0zywlOb4hjh0vO1gyzyJ+HPA+UZtkebeMvm0BtNukMKi2hn/AF94af4jVuR6e5
fjK79q3EU87RjluMW6wPux/MFJBJdDJrdhwZVkYFNf6yMv+L94NOcCDD3d346Hgr
hk5gOFhZ38Me9zC3/4z0NboiSxnoTk1W0hz1Je8e1vXdeIEzexkJQM6AhP8ovAjL
S9dl2po2SNLo9qvzg8rPkWKktAcI7gDZhM6mMBZispTC7JgtByHC2gd8yiys0ss0
cs0gAkL2SqOCQNNEQuf7lz7p3dhXBDkPJBmISEi4Fsnxxo7ltPECcR9kYXJ7gnqK
Hcamuc2XD8oncJ6NuqplBwmgLrjZP9I2ckUGdd5bUQPYJegx3Vw=
=dgEi
-----END PGP SIGNATURE-----
Merge tag 'for-6.9-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Mostly stabilization, refactoring and cleanup changes. There rest are
minor performance optimizations due to caching or lock contention
reduction and a few notable fixes.
Performance improvements:
- minor speedup in logging when repeatedly allocated structure is
preallocated only once, improves latency and decreases lock
contention
- minor throughput increase (+6%), reduced lock contention after
clearing delayed allocation bits, applies to several common
workload types
- skip full quota rescan if a new relation is added in the same
transaction
Fixes:
- zstd fix for inline compressed file in subpage mode, updated
version from the 6.8 time
- proper qgroup inheritance ioctl parameter validation
- more fiemap followup fixes after reduced locking done in 6.8:
- fix race when detecting delalloc ranges
Core changes:
- more debugging code:
- added assertions for a very rare crash in raid56 calculation
- tree-checker dumps page state to give more insights into
possible reference counting issues
- add checksum calculation offloading sysfs knob, for now enabled
under DEBUG only to determine a good heuristic for deciding the
offload or synchronous, depends on various factors (block group
profile, device speed) and is not as clear as initially thought
(checksum type)
- error handling improvements, added assertions
- more page to folio conversion (defrag, truncate), cached size and
shift
- preparation for more fine grained locking of sectors in subpage
mode
- cleanups and refactoring:
- include cleanups, forward declarations
- pointer-to-structure helpers
- redundant argument removals
- removed unused code
- slab cache updates, last use of SLAB_MEM_SPREAD removed"
* tag 'for-6.9-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (114 commits)
btrfs: reuse cloned extent buffer during fiemap to avoid re-allocations
btrfs: fix race when detecting delalloc ranges during fiemap
btrfs: fix off-by-one chunk length calculation at contains_pending_extent()
btrfs: qgroup: allow quick inherit if snapshot is created and added to the same parent
btrfs: qgroup: validate btrfs_qgroup_inherit parameter
btrfs: include device major and minor numbers in the device scan notice
btrfs: mark btrfs_put_caching_control() static
btrfs: remove SLAB_MEM_SPREAD flag use
btrfs: qgroup: always free reserved space for extent records
btrfs: tree-checker: dump the page status if hit something wrong
btrfs: compression: remove dead comments in btrfs_compress_heuristic()
btrfs: subpage: make writer lock utilize bitmap
btrfs: subpage: make reader lock utilize bitmap
btrfs: unexport btrfs_subpage_start_writer() and btrfs_subpage_end_and_test_writer()
btrfs: pass a valid extent map cache pointer to __get_extent_map()
btrfs: merge btrfs_del_delalloc_inode() helpers
btrfs: pass btrfs_device to btrfs_scratch_superblocks()
btrfs: handle transaction commit errors in flush_reservations()
btrfs: use KMEM_CACHE() to create btrfs_free_space cache
btrfs: use KMEM_CACHE() to create delayed ref caches
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZem4DwAKCRCRxhvAZXjc
ooTRAQDRI6Qz6wJym5Yblta8BScMGbt/SgrdgkoCvT6y83MtqwD+Nv/AZQzi3A3l
9NdULtniW1reuCYkc8R7dYM8S+yAwAc=
=Y1qX
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.9.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull block handle updates from Christian Brauner:
"Last cycle we changed opening of block devices, and opening a block
device would return a bdev_handle. This allowed us to implement
support for restricting and forbidding writes to mounted block
devices. It was accompanied by converting and adding helpers to
operate on bdev_handles instead of plain block devices.
That was already a good step forward but ultimately it isn't necessary
to have special purpose helpers for opening block devices internally
that return a bdev_handle.
Fundamentally, opening a block device internally should just be
equivalent to opening files. So now all internal opens of block
devices return files just as a userspace open would. Instead of
introducing a separate indirection into bdev_open_by_*() via struct
bdev_handle bdev_file_open_by_*() is made to just return a struct
file. Opening and closing a block device just becomes equivalent to
opening and closing a file.
This all works well because internally we already have a pseudo fs for
block devices and so opening block devices is simple. There's a few
places where we needed to be careful such as during boot when the
kernel is supposed to mount the rootfs directly without init doing it.
Here we need to take care to ensure that we flush out any asynchronous
file close. That's what we already do for opening, unpacking, and
closing the initramfs. So nothing new here.
The equivalence of opening and closing block devices to regular files
is a win in and of itself. But it also has various other advantages.
We can remove struct bdev_handle completely. Various low-level helpers
are now private to the block layer. Other helpers were simply
removable completely.
A follow-up series that is already reviewed build on this and makes it
possible to remove bdev->bd_inode and allows various clean ups of the
buffer head code as well. All places where we stashed a bdev_handle
now just stash a file and use simple accessors to get to the actual
block device which was already the case for bdev_handle"
* tag 'vfs-6.9.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (35 commits)
block: remove bdev_handle completely
block: don't rely on BLK_OPEN_RESTRICT_WRITES when yielding write access
bdev: remove bdev pointer from struct bdev_handle
bdev: make struct bdev_handle private to the block layer
bdev: make bdev_{release, open_by_dev}() private to block layer
bdev: remove bdev_open_by_path()
reiserfs: port block device access to file
ocfs2: port block device access to file
nfs: port block device access to files
jfs: port block device access to file
f2fs: port block device access to files
ext4: port block device access to file
erofs: port device access to file
btrfs: port device access to file
bcachefs: port block device access to file
target: port block device access to file
s390: port block device access to file
nvme: port block device access to file
block2mtd: port device access to files
bcache: port block device access to files
...
During fiemap we may have to visit multiple leaves of the subvolume's
inode tree, and each time we are freeing and allocating an extent buffer
to use as a clone of each visited leaf. Optimize this by reusing cloned
extent buffers, to avoid the freeing and re-allocation both of the extent
buffer structure itself and more importantly of the pages attached to the
extent buffer.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For fiemap we recently stopped locking the target extent range for the
whole duration of the fiemap call, in order to avoid a deadlock in a
scenario where the fiemap buffer happens to be a memory mapped range of
the same file. This use case is very unlikely to be useful in practice but
it may be triggered by fuzz testing (syzbot, etc).
This however introduced a race that makes us miss delalloc ranges for
file regions that are currently holes, so the caller of fiemap will not
be aware that there's data for some file regions. This can be quite
serious for some use cases - for example in coreutils versions before 9.0,
the cp program used fiemap to detect holes and data in the source file,
copying only regions with data (extents or delalloc) from the source file
to the destination file in order to preserve holes (see the documentation
for its --sparse command line option). This means that if cp was used
with a source file that had delalloc in a hole, the destination file could
end up without that data, which is effectively a data loss issue, if it
happened to hit the race described below.
The race happens like this:
1) Fiemap is called, without the FIEMAP_FLAG_SYNC flag, for a file that
has delalloc in the file range [64M, 65M[, which is currently a hole;
2) Fiemap locks the inode in shared mode, then starts iterating the
inode's subvolume tree searching for file extent items, without having
the whole fiemap target range locked in the inode's io tree - the
change introduced recently by commit b0ad381fa7 ("btrfs: fix
deadlock with fiemap and extent locking"). It only locks ranges in
the io tree when it finds a hole or prealloc extent since that
commit;
3) Note that fiemap clones each leaf before using it, and this is to
avoid deadlocks when locking a file range in the inode's io tree and
the fiemap buffer is memory mapped to some file, because writing
to the page with btrfs_page_mkwrite() will wait on any ordered extent
for the page's range and the ordered extent needs to lock the range
and may need to modify the same leaf, therefore leading to a deadlock
on the leaf;
4) While iterating the file extent items in the cloned leaf before
finding the hole in the range [64M, 65M[, the delalloc in that range
is flushed and its ordered extent completes - meaning the corresponding
file extent item is in the inode's subvolume tree, but not present in
the cloned leaf that fiemap is iterating over;
5) When fiemap finds the hole in the [64M, 65M[ range by seeing the gap in
the cloned leaf (or a file extent item with disk_bytenr == 0 in case
the NO_HOLES feature is not enabled), it will lock that file range in
the inode's io tree and then search for delalloc by checking for the
EXTENT_DELALLOC bit in the io tree for that range and ordered extents
(with btrfs_find_delalloc_in_range()). But it finds nothing since the
delalloc in that range was already flushed and the ordered extent
completed and is gone - as a result fiemap will not report that there's
delalloc or an extent for the range [64M, 65M[, so user space will be
mislead into thinking that there's a hole in that range.
This could actually be sporadically triggered with test case generic/094
from fstests, which reports a missing extent/delalloc range like this:
generic/094 2s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad)
--- tests/generic/094.out 2020-06-10 19:29:03.830519425 +0100
+++ /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad 2024-02-28 11:00:00.381071525 +0000
@@ -1,3 +1,9 @@
QA output created by 094
fiemap run with sync
fiemap run without sync
+ERROR: couldn't find extent at 7
+map is 'HHDDHPPDPHPH'
+logical: [ 5.. 6] phys: 301517.. 301518 flags: 0x800 tot: 2
+logical: [ 8.. 8] phys: 301520.. 301520 flags: 0x800 tot: 1
...
(Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/generic/094.out /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad' to see the entire diff)
So in order to fix this, while still avoiding deadlocks in the case where
the fiemap buffer is memory mapped to the same file, change fiemap to work
like the following:
1) Always lock the whole range in the inode's io tree before starting to
iterate the inode's subvolume tree searching for file extent items,
just like we did before commit b0ad381fa7 ("btrfs: fix deadlock with
fiemap and extent locking");
2) Now instead of writing to the fiemap buffer every time we have an extent
to report, write instead to a temporary buffer (1 page), and when that
buffer becomes full, stop iterating the file extent items, unlock the
range in the io tree, release the search path, submit all the entries
kept in that buffer to the fiemap buffer, and then resume the search
for file extent items after locking again the remainder of the range in
the io tree.
The buffer having a size of a page, allows for 146 entries in a system
with 4K pages. This is a large enough value to have a good performance
by avoiding too many restarts of the search for file extent items.
In other words this preserves the huge performance gains made in the
last two years to fiemap, while avoiding the deadlocks in case the
fiemap buffer is memory mapped to the same file (useless in practice,
but possible and exercised by fuzz testing and syzbot).
Fixes: b0ad381fa7 ("btrfs: fix deadlock with fiemap and extent locking")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At contains_pending_extent() the value of the end offset of a chunk we
found in the device's allocation state io tree is inclusive, so when
we calculate the length we pass to the in_range() macro, we must sum
1 to the expression "physical_end - physical_offset".
In practice the wrong calculation should be harmless as chunks sizes
are never 1 byte and we should never have 1 byte ranges of unallocated
space. Nevertheless fix the wrong calculation.
Reported-by: Alex Lyakas <alex.lyakas@zadara.com>
Link: https://lore.kernel.org/linux-btrfs/CAOcd+r30e-f4R-5x-S7sV22RJPe7+pgwherA6xqN2_qe7o4XTg@mail.gmail.com/
Fixes: 1c11b63eff ("btrfs: replace pending/pinned chunks lists with io tree")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently "btrfs subvolume snapshot -i <qgroupid>" would always mark the
qgroup inconsistent.
This can be annoying if the fs has a lot of snapshots, and needs qgroup
to get the accounting for the amount of bytes it can free for each
snapshot.
Although we have the new simple quote as a solution, there is also a
case where we can skip the full scan, if all the following conditions
are met:
- The source subvolume belongs to a higher level parent qgroup
- The parent qgroup already owns all its bytes exclusively
- The new snapshot is also added to the same parent qgroup
In that case, we only need to add nodesize to the parent qgroup and
avoid a full rescan.
This patch would add the extra quick accounting update for such inherit.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Currently btrfs can create subvolume with an invalid qgroup inherit
without triggering any error:
# mkfs.btrfs -O quota -f $dev
# mount $dev $mnt
# btrfs subvolume create -i 2/0 $mnt/subv1
# btrfs qgroup show -prce --sync $mnt
Qgroupid Referenced Exclusive Path
-------- ---------- --------- ----
0/5 16.00KiB 16.00KiB <toplevel>
0/256 16.00KiB 16.00KiB subv1
[CAUSE]
We only do a very basic size check for btrfs_qgroup_inherit structure,
but never really verify if the values are correct.
Thus in btrfs_qgroup_inherit() function, we have to skip non-existing
qgroups, and never return any error.
[FIX]
Fix the behavior and introduce extra checks:
- Introduce early check for btrfs_qgroup_inherit structure
Not only the size, but also all the qgroup ids would be verified.
And the timing is very early, so we can return error early.
This early check is very important for snapshot creation, as snapshot
is delayed to transaction commit.
- Drop support for btrfs_qgroup_inherit::num_ref_copies and
num_excl_copies
Those two members are used to specify to copy refr/excl numbers from
other qgroups.
This would definitely mark qgroup inconsistent, and btrfs-progs has
dropped the support for them for a long time.
It's time to drop the support for kernel.
- Verify the supported btrfs_qgroup_inherit::flags
Just in case we want to add extra flags for btrfs_qgroup_inherit.
Now above subvolume creation would fail with -ENOENT other than silently
ignore the non-existing qgroup.
CC: stable@vger.kernel.org # 6.7+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To better debug issues surrounding device scans, include the device's
major and minor numbers in the device scan notice for btrfs.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_put_caching_control() is only used in block-group.c, so mark it
static.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Lijuan Li <lilijuan@iscas.ac.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The SLAB_MEM_SPREAD flag used to be implemented in SLAB, which was
removed as of v6.8-rc1, so it became a dead flag since the commit
16a1d96835 ("mm/slab: remove mm/slab.c and slab_def.h"). And the
series[1] went on to mark it obsolete to avoid confusion for users.
Here we can just remove all its users, which has no functional change.
[1] https://lore.kernel.org/all/20240223-slab-cleanup-flags-v2-1-02f1753e8303@suse.cz/
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
If qgroup is marked inconsistent (e.g. caused by operations needing full
subtree rescan, like creating a snapshot and assign to a higher level
qgroup), btrfs would immediately start leaking its data reserved space.
The following script can easily reproduce it:
mkfs.btrfs -O quota -f $dev
mount $dev $mnt
btrfs subvolume create $mnt/subv1
btrfs qgroup create 1/0 $mnt
# This snapshot creation would mark qgroup inconsistent,
# as the ownership involves different higher level qgroup, thus
# we have to rescan both source and snapshot, which can be very
# time consuming, thus here btrfs just choose to mark qgroup
# inconsistent, and let users to determine when to do the rescan.
btrfs subv snapshot -i 1/0 $mnt/subv1 $mnt/snap1
# Now this write would lead to qgroup rsv leak.
xfs_io -f -c "pwrite 0 64k" $mnt/file1
# And at unmount time, btrfs would report 64K DATA rsv space leaked.
umount $mnt
And we would have the following dmesg output for the unmount:
BTRFS info (device dm-1): last unmount of filesystem 14a3d84e-f47b-4f72-b053-a8a36eef74d3
BTRFS warning (device dm-1): qgroup 0/5 has unreleased space, type 0 rsv 65536
[CAUSE]
Since commit e15e9f43c7 ("btrfs: introduce
BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING to skip qgroup accounting"),
we introduce a mode for btrfs qgroup to skip the timing consuming
backref walk, if the qgroup is already inconsistent.
But this skip also covered the data reserved freeing, thus the qgroup
reserved space for each newly created data extent would not be freed,
thus cause the leakage.
[FIX]
Make the data extent reserved space freeing mandatory.
The qgroup reserved space handling is way cheaper compared to the
backref walking part, and we always have the super sensitive leak
detector, thus it's definitely worth to always free the qgroup
reserved data space.
Reported-by: Fabian Vogt <fvogt@suse.com>
Fixes: e15e9f43c7 ("btrfs: introduce BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING to skip qgroup accounting")
CC: stable@vger.kernel.org # 6.1+
Link: https://bugzilla.suse.com/show_bug.cgi?id=1216196
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a bug report about very suspicious tree-checker got triggered:
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
BTRFS critical (device dm-0): corrupted node, root=256
block=8550954455682405139 owner mismatch, have 11858205567642294356
expect [256, 18446744073709551360]
SELinux: inode_doinit_use_xattr: getxattr returned 117 for dev=dm-0
ino=5737268
[ANALYZE]
The root cause is still unclear, but there are some clues already:
- Unaligned eb bytenr
The block bytenr is 8550954455682405139, which is not even aligned to
2.
This bytenr is fetched from extent buffer header, not from eb->start.
This means, at the initial time of read, eb header bytenr is still
correct (the very basis check to continue read), but later something
wrong happened, got at least the first page corrupted.
Thus we got such obviously incorrect value.
- Invalid extent buffer header owner
The read itself is triggered for subvolume 256, but the eb header
owner is 11858205567642294356, which is not really possible.
The problem here is, subvolume id is limited to (1 << 48 - 1),
and this one definitely goes beyond that limit.
So this value is another garbage.
We already got two garbage from an extent buffer, which passed the
initial bytenr and csum checks, but later the contents become garbage at
some point.
This looks like a page lifespan problem (e.g. we didn't properly hold the
page).
[ENHANCEMENT]
The current tree-checker only outputs things from the extent buffer,
nothing with the page status.
So this patch would enhance the tree-checker output by also dumping the
first page, which would look like this:
page:00000000aa9f3ce8 refcount:4 mapcount:0 mapping:00000000169aa6b6 index:0x1d0c pfn:0x1022e5
memcg:ffff888103456000
aops:btree_aops [btrfs] ino:1
flags: 0x2ffff0000008000(private|node=0|zone=2|lastcpupid=0xffff)
page_type: 0xffffffff()
raw: 02ffff0000008000 0000000000000000 dead000000000122 ffff88811e06e220
raw: 0000000000001d0c ffff888102fdb1d8 00000004ffffffff ffff888103456000
page dumped because: eb page dump
BTRFS critical (device dm-3): corrupt leaf: root=5 block=30457856 slot=6 ino=257 file_offset=0, invalid disk_bytenr for file extent, have 10617606235235216665, should be aligned to 4096
BTRFS error (device dm-3): read time tree block corruption detected on logical 30457856 mirror 1
From the dump we can see some extra info, something can help us to do
extra cross-checks:
- Page refcount
if it's too low, it definitely means something bad.
- Page aops
Any mapped eb page should have btree_aops with inode number 1.
- Page index
Since a mapped eb page should has its bytenr matching the page
position, (index << PAGE_SHIFT) should match the bytenr of the
bytenr from the critical line.
- Page Private flags
A mapped eb page should have Private flag set to indicate it's managed
by btrfs.
Link: https://lore.kernel.org/linux-btrfs/CAHk-=whNdMaN9ntZ47XRKP6DBes2E5w7fi-0U3H2+PS18p+Pzw@mail.gmail.com/
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit a440d48c7f ("Btrfs: heuristic: implement sampling
logic"), btrfs_compress_heuristic() is no longer a simple "return true",
but more complex to determine if we should compress.
Thus the comment is dead and can be confusing, just remove it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For the writer counter, it's pretty much the same as the reader counter,
and they are exclusive. So move them to the new locked bitmap.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_subpage utilizes its atomic member @reader to manage the
reader counter. However it is only utilized to prevent the page to be
released/unlocked when we still have reads underway.
In that use case, we don't really allow multiple readers on the same
subpage sector. So here we can introduce a new locked bitmap to
represent exactly which subpage range is locked for read.
In theory we can remove btrfs_subpage::reader as it's just the set bits
of the new locked bitmap. But unfortunately bitmap doesn't provide such
handy API yet, so we still keep the reader counter.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both functions were introduced in commit 1e1de38792 ("btrfs: make
process_one_page() to handle subpage locking"), but they have never
been utilized out of subpage code. So just unexport them.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can pass a valid em cache pointer down to __get_extent_map() and
drop the validity check. This avoids the special case, the call stacks
are simple:
btrfs_read_folio
btrfs_do_readpage
__get_extent_map
extent_readahead
contiguous_readpages
btrfs_do_readpage
__get_extent_map
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers btrfs_del_delalloc_inode() and __btrfs_del_delalloc_inode()
don't follow the pattern when the "__" helper does a special case and
are in fact reversed regarding the naming. We can merge them into one as
there's only one place that needs to be open coded.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace the two parameters bdev and name by one that can be used to get
them both.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Other errors in flush_reservations() are handled and also in the caller.
Ignoring commit might make some sense as it's called right after join so
it's to poke the whole commit machinery to free space.
However for consistency return the error. The caller
btrfs_quota_disable() would try to start the transaction which would
in turn fail too so there's no effective change.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the KMEM_CACHE() macro instead of kmem_cache_create() to simplify
the creation of SLAB caches when the default values are used.
Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the KMEM_CACHE() macro instead of kmem_cache_create() to simplify
the creation of SLAB caches related to delayed refs when the default
values are used.
Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the KMEM_CACHE() macro instead of kmem_cache_create() to simplify
the creation of SLAB caches when the default values are used.
Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the KMEM_CACHE() macro instead of kmem_cache_create() to simplify
the creation of SLAB caches when the default values are used.
Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the KMEM_CACHE() macro instead of kmem_cache_create() to simplify
the creation of SLAB caches when the default values are used.
Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the KMEM_CACHE() macro instead of kmem_cache_create() to simplify
the creation of SLAB caches when the default values are used.
Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers are doing an initialization or release work, none of which
is performance critical that it would require a static inline, so move
them to the .c file.
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers are doing an initialization or release work, none of which
is performance critical that it would require a static inline, so move
them to the .c file.
Signed-off-by: David Sterba <dsterba@suse.com>
Using static inline in a .c file should be justified, e.g. when
functions are on a hot path but none of the affected functions seem to
be. As it's all in one compilation unit let the compiler decide.
Signed-off-by: David Sterba <dsterba@suse.com>
There are many helpers doing simple things but not simple enough to
justify the static inline. None of them seems to be on a hot path so
move them to .c.
Signed-off-by: David Sterba <dsterba@suse.com>
The helper is trivial, we can inline it. It's safe to remove the 'if' as
the iterator is always valid when used, the potential NULL was never
checked anyway.
Signed-off-by: David Sterba <dsterba@suse.com>
The helper is trivial and used only once, open code it. It's safe to
remove the 'if', the pointer is validated in build_backref_tree().
Signed-off-by: David Sterba <dsterba@suse.com>
The from/to CPU/disk helpers for balance args are used only in volumes,
no need to define them in accessors.h.
Signed-off-by: David Sterba <dsterba@suse.com>
We disable offloading checksum to workqueues and do it synchronously when
the checksum algorithm is fast. However, as reported in the link below,
RAID0 with multiple devices may suffer from the sync checksum, because
"fast checksum" is still not fast enough to catch up with RAID0 writing.
We don't have an effective way to determine whether to offload or not,
for now add a sysfs knob so this can be debugged. This is intentionally
under CONFIG_BTRFS_DEBUG so ti's not exposed to users as it may be
removed in the future agin.
Introduce fs_devices->offload_csum_mode, so that a btrfs developer can
change the behavior by writing to /sys/fs/btrfs/<uuid>/offload_csum. The
default is "auto" which is the same as the previous behavior. Or, you
can set "on" or "off" (or "y" or "n" whatever kstrtobool() accepts) to
always/never offload checksum.
More benchmark need to be collected with this knob to implement a proper
criteria to enable/disable checksum offloading.
Link: https://lore.kernel.org/linux-btrfs/20230731152223.4EFB.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/p3vo3g7pqn664mhmdhlotu5dzcna6vjtcoc2hb2lsgo2fwct7k@xzaxclba5tae/
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
I have got at least two crash report for RAID6 syndrome generation, no
matter if it's AVX2 or SSE2, they all seems to have a similar
calltrace with corrupted RAX:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
Workqueue: btrfs-rmw rmw_rbio_work [btrfs]
RIP: 0010:raid6_sse21_gen_syndrome+0x9e/0x130 [raid6_pq]
RAX: 0000000000000000 RBX: 0000000000001000 RCX: ffffa0ff4cfa3248
RDX: 0000000000000000 RSI: ffffa0f74cfa3238 RDI: 0000000000000000
Call Trace:
<TASK>
rmw_rbio+0x5c8/0xa80 [btrfs]
process_one_work+0x1c7/0x3d0
worker_thread+0x4d/0x380
kthread+0xf3/0x120
ret_from_fork+0x2c/0x50
</TASK>
[CAUSE]
The cause is not known. Recently I also hit this in AVX512 path, and
that's even in v5.15 backport, which doesn't have any of my RAID56
rework.
Furthermore according to the registers:
RAX: 0000000000000000 RBX: 0000000000001000 RCX: ffffa0ff4cfa3248
The RAX register is showing the number of stripes (including PQ), which
is not correct (0). But the remaining two registers are all sane.
- RBX is the sectorsize
For x86_64 it should always be 4K and matches the output.
- RCX is the pointers array
Which is from rbio->finish_pointers, and it looks like a sane
kernel address.
[WORKAROUND]
For now, I can only add extra debug ASSERT()s before we call raid6
gen_syndrome() helper and hopes to catch the problem.
The debug requires both CONFIG_BTRFS_DEBUG and CONFIG_BTRFS_ASSERT
enabled.
My current guess is some use-after-free, but every report is only having
corrupted RAX but seemingly valid pointers doesn't make much sense.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_free_tree_block(), we are always initializing a delayed reference
to drop the given extent buffer but we only use if it does not belong to a
log root tree. So we are doing unnecessary work here and increasing the
duration of a critical section as this is normally called while holding a
lock on the parent tree block (if any) and while holding a log transaction
open.
So initialize the delayed reference only if the extent buffer is not from
a log tree, avoiding unnecessary work and making the code also a bit
easier to follow.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During an incremental send, before determining if we need to send a hole
(write operations full of zeroes) we will search for the last extent's
end offset if we are at the first slot of a leaf and the last processed
extent's end offset is smaller then the current extent's start offset.
However we are repeating this search in case we had the last extent's end
offset undefined (set to the (u64)-1 value) when we entered
maybe_send_hole(), wasting time.
So avoid this duplicated search by combining the two conditions that
trigger a search for the last extent's end offset into a single if
statement.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The validation of vol args v2 name in snapshot and device remove ioctls
is not done properly. A terminating NUL is written to the end of the
buffer unconditionally, assuming that this would be the last place in
case the buffer is used completely. This does not communicate back the
actual error (either an invalid or too long path).
Factor out all such cases and use a helper to do the verification,
simply look for NUL in the buffer. There's no expected practical
change, the size of buffer is 4088, this is enough for most paths or
names.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The validation of vol args name in several ioctls is not done properly.
a terminating NUL is written to the end of the buffer unconditionally,
assuming that this would be the last place in case the buffer is used
completely. This does not communicate back the actual error (either an
invalid or too long path).
Factor out all such cases and use a helper to do the verification,
simply look for NUL in the buffer. There's no expected practical change,
the size of buffer is 4088, this is enough for most paths or names.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_transaction_in_commit() is no longer used, its last
use was removed in commit 11aeb97b45 ("btrfs: don't arbitrarily slow
down delalloc if we're committing"), so just remove it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The IS_ENABLED() macro already guarantees the result will be a
suitable boolean return value ("1" for enabled, and "0" for disabled).
Thus, it seems that the "!!" used right before is unnecessary to force
the 0/1 values.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Neal Gompa <neal@gompa.dev>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The purpose of the BUG_ON is not clear. The helper btrfs_grab_root()
could return a NULL in case args->root would be a NULL or if there are
zero references. Then we check if the root pointer stored in the inode
still exists.
The whole call chain is for iget:
btrfs_iget
btrfs_iget_path
btrfs_iget_locked
iget5_locked
btrfs_init_locked_inode
which is called from many contexts where we the root pointer is used and
we can safely assume has enough references.
Signed-off-by: David Sterba <dsterba@suse.com>
Checking extent item size in add_inline_refs() is redundant, we do that
already in tree-checker after reading the extent buffer and it won't
change under normal circumstances. It was added long ago in
8da6d5815c ("Btrfs: added btrfs_find_all_roots()") and does not seem
to have a clear purpose.
Similar case in extent_from_logical(), added in a542ad1baf ("btrfs:
added helper functions to iterate backrefs").
Signed-off-by: David Sterba <dsterba@suse.com>
The BUG_ON is deep in the qgroup code where we can expect that it
exists. A NULL pointer would cause a crash.
It was added long ago in 550d7a2ed5 ("btrfs: qgroup: Add new qgroup
calculation function btrfs_qgroup_account_extents()."). It maybe made
sense back then as the quota enable/disable state machine was not that
robust as it is nowadays, so we can just delete it.
Signed-off-by: David Sterba <dsterba@suse.com>
The only caller do_walk_down() of btrfs_qgroup_trace_subtree() validates
the value of level and uses it several times before it's passed as an
argument. Same for root_eb that's called 'next' in the caller.
Change both BUG_ONs to assertions as this is to assure proper interface
use rather than real errors.
Signed-off-by: David Sterba <dsterba@suse.com>
There's only one caller of tree_move_down() that does not pass level 0
so the assertion is better suited here.
Signed-off-by: David Sterba <dsterba@suse.com>
Change BUG_ON to proper error handling if building the path buffer
fails. The pointers are not printed so we don't accidentally leak kernel
addresses.
Signed-off-by: David Sterba <dsterba@suse.com>
Change BUG_ON to proper error handling when an unexpected inode number
is encountered. As the comment says this should never happen.
Signed-off-by: David Sterba <dsterba@suse.com>
Change BUG_ON to a proper error handling in the unlikely case of seeing
data when the command is started. This is supposed to be reset when the
command is finished (send_cmd, send_encoded_extent).
Signed-off-by: David Sterba <dsterba@suse.com>
The may_destroy_subvol() looks up a root by a key, allowing to do an
inexact search when key->offset is -1. It's never expected to find such
item, as it would break the allowed range of a root id.
Signed-off-by: David Sterba <dsterba@suse.com>
The find_first_extent_item() helper looks up an extent item by a key,
allowing to do an inexact search when key->offset is -1. It's never
expected to find such item, as it would break the allowed range of a
extent item offset.
Signed-off-by: David Sterba <dsterba@suse.com>
The extent_from_logical() helper looks up an extent item by a key,
allowing to do an inexact search when key->offset is -1. It's never
expected to find such item, as it would break the allowed range of a
extent item offset.
The same error is already handled in btrfs_backref_iter_start() so add a
comment for consistency.
Signed-off-by: David Sterba <dsterba@suse.com>
Same comment was added to this type of error, unify that and drop the
assertion as we'd find out quickly that something is wrong after
returning -EUCLEAN.
Signed-off-by: David Sterba <dsterba@suse.com>
The memory allocation error in add_async_extent() is not handled
properly, return an error and push the BUG_ON to the caller. Handling it
there is not trivial so at least make it visible.
Signed-off-by: David Sterba <dsterba@suse.com>
The "do_list" variable has a rather confusing name, so remove it and
directly use btrfs_is_free_space_inode() instead.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The "do_list" variable is only used once, plus its name/meaning is a bit
confusing, so remove it and directory use btrfs_is_free_space_inode().
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When adding or removing and inode to/from the root's delalloc list,
instead of using a BUG_ON() to validate list emptiness, use ASSERT()
since this is to check logic errors rather than real errors.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The merge and split callbacks for an inode's io tree are supposed to be
called while the io tree's spinlock is being held, so that the given
extent_state records are stable, not modified or freed while the callbacks
are using them. So add lockdep assertions in the callbacks.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When setting and clearing a delalloc range, at btrfs_set_delalloc_extent()
and btrfs_clear_delalloc_extent(), we are adding/removing the inode
to/from the root's list of delalloc inodes while under the protection of
the inode's lock. This however is not needed, we can add and remove the
inode to the root's list without holding the inode's lock because here
we are under the protection of the io tree's lock, reducing the size of
the critical section delimited by the inode's lock. The inode's lock is
used in many other places such as when finishing an ordered extent (when
calling btrfs_update_inode_bytes() or btrfs_delalloc_release_metadata(),
or decreasing the number of outstanding extents) or when reserving space
when doing a buffered or direct IO write (calls to functions from
delalloc-space.c).
So move the inode add/remove operations to the root's list of delalloc
inodes to outside the critical section delimited by the inode's lock.
This also allows us to get rid of the BTRFS_INODE_IN_DELALLOC_LIST flag
since we can rely on the inode's delalloc bytes counter to determine if
the inode is or is not in the list.
The following fio based test, that exercises IO to multiple files in the
same subvolume, was used to test:
$ cat test.sh
#!/bin/bash
DEV=/dev/nullb0
MNT=/mnt/nullb0
MOUNT_OPTIONS="-o ssd"
mkfs.btrfs -f $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
fio --direct=0 --ioengine=sync --thread --directory=$MNT \
--invalidate=1 --group_reporting=1 \
--new_group --rw=randwrite --size=50m --numjobs=200 \
--bs=4k --fsync_on_close=0 --fallocate=none --end_fsync=0 \
--name=foo --filename_format=FioWorkloads.\$jobnum
umount $MNT
The test was run on a non-debug kernel (Debian's default kernel config)
against a 16G null block device.
Result before this patch:
WRITE: bw=81.9MiB/s (85.9MB/s), 81.9MiB/s-81.9MiB/s (85.9MB/s-85.9MB/s), io=9.77GiB (10.5GB), run=122136-122136msec
Result after this patch:
WRITE: bw=86.8MiB/s (91.0MB/s), 86.8MiB/s-86.8MiB/s (91.0MB/s-91.0MB/s), io=9.77GiB (10.5GB), run=115180-115180msec
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_add_delalloc_inodes() adds a single inode its root's
list of delalloc inodes, so it doesn't make any sense at all for the
function's name to be plural. Rename it to the singular form
btrfs_add_delalloc_inode() to avoid any confusion.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function requires the delalloc lock of the inode's root to be held,
so assert it's held.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to pass a root argument to __btrfs_del_delalloc_inode()
and btrfs_del_delalloc_inode(), we can just pass the inode since the root
is always the root associated to that inode. Some remove the root argument
from these functions.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to pass a root argument to btrfs_add_delalloc_inodes(), we
can just pass the inode since the root is always the root associated to
the inode in the context it's called. So remove it and have the single
caller pass only the inode.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Do a cleanup in the rest of the headers:
- add forward declarations for types referenced by pointers
- add includes when types need them
This fixes potential compilation problems if the headers are reordered
or the missing includes are not provided indirectly.
Signed-off-by: David Sterba <dsterba@suse.com>
Do a cleanup in more headers:
- add forward declarations for types referenced by pointers
- add includes when types need them
This fixes potential compilation problems if the headers are reordered
or the missing includes are not provided indirectly.
Signed-off-by: David Sterba <dsterba@suse.com>
Do a cleanup in the short headers:
- add forward declarations for types referenced by pointers
- add includes when types need them
This fixes potential compilation problems if the headers are reordered
or the missing includes are not provided indirectly.
Signed-off-by: David Sterba <dsterba@suse.com>
The fs_info and sectorsize remain the same during the loops, no need to
set them on each iteration.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a convenience helper to get a fs_info from a VFS inode pointer
instead of open coding the chain or using btrfs_sb() that in some cases
does one more pointer hop. This is implemented as a macro (still with
type checking) so we don't need full definitions of struct btrfs_inode,
btrfs_root or btrfs_fs_info.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add convenience helpers to get a fs_info from a page or folio pointer
instead of open coding the chain or using btrfs_sb() that in some cases
does one more pointer hop. This is implemented as a macro (still with
type checking) so we don't need full definitions of struct page, folio,
btrfs_root and btrfs_fs_info. The latter can't be static inlines as this
would create loop between ctree.h <-> fs.h, or the headers would have to
be restructured.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add convenience helpers to get a struct btrfs_inode from a page or folio
pointer instead of open coding the chain or intermediate BTRFS_I. This
is implemented as a macro (still with type checking) so we don't need
full definitions of struct page or address_space.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Allocate fs_info and root to have a valid fs_info pointer in case it's
dereferenced by a helper outside of tests, like find_lock_delalloc_range().
Signed-off-by: David Sterba <dsterba@suse.com>
__btrfs_add_free_space is only used in free-space-cache.c,
so mark it static.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Lijuan Li <lilijuan@iscas.ac.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The recommended pattern for transaction abort after error is to place it
right after the error is handled. That way it's easier to locate where
it failed and help debugging.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The recommended pattern for transaction abort after error is to place it
right after the error is handled. That way it's easier to locate where
it failed and help debugging.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The recommended pattern for transaction abort after error is to place it
right after the error is handled. That way it's easier to locate where
it failed and help debugging.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The error values returned by btrfs_insert_empty_items() are following
the common patter of 0/-errno, but some callers check for a value > 0,
which can't happen. Document that and update calls to not expect
positive values.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The balance state machine is complex so it's good to verify the
assumptions in helpers, however reset_balance_state() is used
at the end of balance and fs_info::balance_ctl is properly set up before
and protected by the exclusive op ownership in btrfs_balance().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The file extents are normally reserved in subvolume roots but could be
also in the data reloc tree. Change the BUG_ON to assertions as this
verifies the usage assumptions.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The BUG_ON in btrfs_set_buffer_lockdep_class() is a sanity check of the
level which is verified in callers, e.g. when initializing an extent
buffer or reading from an eb header. Change it to an assertion as this
would not happen unless things are really bad and would fail elsewhere
too.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's one caller of btrfs_read_roots() and that already uses the
tree_root pointer, it's pointless to BUG_ON on it. As it's an assumption
of the initialization helpers make it an assert instead.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The BUG_ON verifies a condition that should be guaranteed by the correct
use of the path search (with keep_locks and lowest_level set), an
assertion is the suitable check.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The pointer to root is initialized in btrfs_init_delayed_node(), no need
to check for it again. Change the BUG_ON to assertion.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a BUG_ON checking for a valid pointer of fs_info::delayed_root
but it is valid since init_mount_fs_info() and has the same lifetime as
fs_info.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The get_parent handler looks up a parent of a given dentry, this can be
either a subvolume or a directory. The search is set up with offset -1
but it's never expected to find such item, as it would break allowed
range of inode number or a root id. This means it's a corruption (ext4
also returns this error code).
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The check_committed_ref() helper looks up an extent item by a key,
allowing to do an inexact search when key->offset is -1. It's never
expected to find such item, as it would break the allowed range of a
extent item offset.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The unhandled case in btrfs_relocate_sys_chunks() loop is a corruption,
as it could be caused only by two impossible conditions:
- at first the search key is set up to look for a chunk tree item, with
offset -1, this is an inexact search and the key->offset will contain
the correct offset upon a successful search, a valid chunk tree item
cannot have an offset -1
- after first successful search, the found_key corresponds to a chunk
item, the offset is decremented by 1 before the next loop, it's
impossible to find a chunk item there due to alignment and size
constraints
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs_init_root_free_objectid() looks up a root by a key, allowing
to do an inexact search when key->offset is -1. It's never expected to
find such item, as it would break the allowed range of a root id.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs_find_root() looks up a root by a key, allowing to do an
inexact search when key->offset is -1. It's never expected to find such
item, as it would break allowed the range of a root id.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're deleting a root and looking it up by key does not succeed, this
is an inconsistent state and we can't do anything. All callers handle
errors and abort a transaction.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The unlikely case of lookup error in btrfs_remove_block_group() can be
handled properly, in its caller this would lead to a transaction abort.
We can't do anything else, a block group must have been loaded first.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Turn a BUG_ON to a properly handled error and update the error message
in the caller. It is expected that @em_in and @start passed to
btrfs_add_extent_mapping() overlap. Besides tests, the only caller
btrfs_get_extent() makes sure this is true.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper btrfs_may_delete() is a copy of generic fs/namei.c:may_delete()
to verify various conditions before deletion. There's a BUG_ON added
before linux.git started, we can turn it to a proper error handling
at least in our local helper. A mistmatch between directory and the
deleted dentry is clearly invalid.
This won't be probably ever hit due to the way how the parameters are
set from the caller btrfs_ioctl_snap_destroy(), using a VFS helper
lookup_one().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we can read/modify the value from the sysfs interface concurrently,
it would be better to protect it from compiler optimizations.
Currently, there is only one read policy BTRFS_READ_POLICY_PID available,
so no actual problem can happen now. This is a preparation for the future
expansion.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging an inode and we require to copy items from subvolume leaves
to the log tree, we clone each subvolume leaf and than use that clone to
copy items to the log tree. This is required to avoid possible deadlocks
as stated in commit 796787c978 ("btrfs: do not modify log tree while
holding a leaf from fs tree locked").
The cloning requires allocating an extent buffer (struct extent_buffer)
and then allocating pages (folios) to attach to the extent buffer. This
may be slow in case we are under memory pressure, and since we are doing
the cloning while holding a read lock on a subvolume leaf, it means we
can be blocking other operations on that leaf for significant periods of
time, which can increase latency on operations like creating other files,
renaming files, etc. Similarly because we're under a log transaction, we
may also cause extra delay on other tasks doing an fsync, because syncing
the log requires waiting for tasks that joined a log transaction to exit
the transaction.
So to improve this, for any inode logging operation that needs to copy
items from a subvolume leaf ("full sync" or "copy everything" bit set
in the inode), preallocate a dummy extent buffer before locking any
extent buffer from the subvolume tree, and even before joining a log
transaction, add it to the log context and then use it when we need to
copy items from a subvolume leaf to the log tree. This avoids making
other operations get extra latency when waiting to lock a subvolume
leaf that is used during inode logging and we are under heavy memory
pressure.
The following test script with bonnie++ was used to test this:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdh
MNT=/mnt/sdh
MOUNT_OPTIONS="-o ssd"
MEMTOTAL_BYTES=`free -b | grep Mem: | awk '{ print $2 }'`
NR_DIRECTORIES=20
NR_FILES=20480
DATASET_SIZE=$((MEMTOTAL_BYTES * 2 / 1048576))
DIRECTORY_SIZE=$((MEMTOTAL_BYTES * 2 / NR_FILES))
NR_FILES=$((NR_FILES / 1024))
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $DEV &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
bonnie++ -u root -d $MNT \
-n $NR_FILES:$DIRECTORY_SIZE:$DIRECTORY_SIZE:$NR_DIRECTORIES \
-r 0 -s $DATASET_SIZE -b
umount $MNT
The results of this test on a 8G VM running a non-debug kernel (Debian's
default kernel config), were the following.
Before this change:
Version 2.00a ------Sequential Output------ --Sequential Input- --Random-
-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Name:Size etc /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
debian0 7501M 376k 99 1.4g 96 117m 14 1510k 99 2.5g 95 +++++ +++
Latency 35068us 24976us 2944ms 30725us 71770us 26152us
Version 2.00a ------Sequential Create------ --------Random Create--------
debian0 -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
files:max:min /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
20:384100:384100/20 20480 32 20480 58 20480 48 20480 39 20480 56 20480 61
Latency 411ms 11914us 119ms 617ms 10296us 110ms
After this change:
Version 2.00a ------Sequential Output------ --Sequential Input- --Random-
-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Name:Size etc /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
debian0 7501M 375k 99 1.4g 97 117m 14 1546k 99 2.3g 98 +++++ +++
Latency 35975us 20945us 2144ms 10297us 2217us 6004us
Version 2.00a ------Sequential Create------ --------Random Create--------
debian0 -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
files:max:min /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
20:384100:384100/20 20480 35 20480 58 20480 48 20480 40 20480 57 20480 59
Latency 320ms 11237us 77779us 518ms 6470us 86389us
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_delete_unused_bgs(), the use of the list_is_singular() check on
a block group may not be immediately obvious. It is there to prevent
losing raid profile information for a block group type (data, metadata or
system), as that information is removed from
fs_info->avail_[data|metadata|system]_alloc_bits when the last block group
of a given type is deleted. So deleting the block group would later result
in creating block groups of that type with a single profile (because
fs_info->avail_*_alloc_bits would have a value of 0).
This check was added in commit aefbe9a633 ("btrfs: Fix lost-data-profile
caused by auto removing bg").
So add a comment mentioning the need for the check.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add some comments to struct btrfs_fs_info to explicitly document which
members are protected by the spinlock unused_bgs_lock. It is currently
used to protect two linked lists, the reclaim_bgs and unused_bgs lists.
So add an explicit comment on top of each list to mention its protected
by unused_bgs_lock, as well as comment on top of unused_bgs_lock to
mention the lists it protects.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This helper is used in transaction abort or cleanup context and the
callers cannot handle all errors, only do best effort.
btrfs_cleanup_one_transaction
btrfs_destroy_delayed_refs
btrfs_error_unpin_extent_range
btrfs_destroy_pinned_extent
btrfs_error_unpin_extent_range
Signed-off-by: David Sterba <dsterba@suse.com>
Handle the lookup failure of the block group to unpin, this is a logic
error as the block group must exist at this point. If not, something else
must have freed it, like clean_pinned_extents() would do without locking
the unused_bg_unpin_mutex.
Push the errors to the callers, proper handling will be done in followup
patches.
Signed-off-by: David Sterba <dsterba@suse.com>
We've had numerous attempts to let function unpin_extent_cache() return
void as it only returns 0. There are still error cases to handle so do
that, in addition to the verbose messages. The only caller
btrfs_finish_one_ordered() will now abort the transaction, previously it
let it continue which could lead to further problems.
Signed-off-by: David Sterba <dsterba@suse.com>
There is a spelling mistake in a warning message. Fix it.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Note: this is a fixed version that was previously reverted as
e01a83e126 ("Revert "btrfs: zstd: fix and simplify the inline extent
decompression""), with fixed parameters to memzero_page().
[BUG]
If we have a filesystem with 4k sectorsize, and an inlined compressed
extent created like this:
item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160
generation 8 transid 8 size 4096 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24
index 2 namelen 14 name: source_inlined
item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69
generation 8 type 0 (inline)
inline extent data size 48 ram_bytes 4096 compression 3 (zstd)
Then trying to reflink that extent in an aarch64 system with 64K page
size, the reflink would just fail:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
XFS_IOC_CLONE_RANGE: Input/output error
[CAUSE]
In zstd_decompress(), we didn't treat @start_byte as just a page offset,
but also use it as an indicator on whether we should error out, without
any proper explanation (this is copied from other decompression code).
In reality, for subpage cases, although @start_byte can be non-zero,
we should never switch input/output buffer nor error out, since the whole
input/output buffer should never exceed one sector, thus we should not
need to do any buffer switch.
Thus the current code using @start_byte as a condition to switch
input/output buffer or finish the decompression is completely incorrect.
[FIX]
The fix involves several modification:
- Rename @start_byte to @dest_pgoff to properly express its meaning
- Use @sectorsize other than PAGE_SIZE to properly initialize the
output buffer size
- Use correct destination offset inside the destination page
- Simplify the main loop
Since the input/output buffer should never switch, we only need one
zstd_decompress_stream() call.
- Consider early end as an error
After the fix, even on 64K page sized aarch64, above reflink now
works as expected:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
linked 4096/4096 bytes at offset 61440
And results the correct file layout:
item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160
generation 10 transid 10 size 65536 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14
index 3 namelen 4 name: dest
item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83
location key (0 UNKNOWN.0 0) type XATTR
transid 10 data_len 37 name_len 16
name: security.selinux
data unconfined_u:object_r:unlabeled_t:s0
item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53
generation 10 type 1 (regular)
extent data disk byte 13631488 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The block size calculated by i_blocksize from inode is the same as what
we have in fs_info, initalized in inode_init_always(). Unify that to use
the fs_info value everywhere.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The block size stored in the super block is used by subsystems outside
of btrfs and it's a copy of fs_info::sectorsize. Unify that to always
use our sectorsize, with the exception of mount where we first need to
use fixed values (4K) until we read the super block and can set the
sectorsize.
Replace all uses, in most cases it's fewer pointer indirections.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the duplicate physical recording of the original write physical
address in case of a single device write.
This duplicated code is most likely present due to a rebase error.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Convert use of struct page to struct folio inside btrfs_truncate_block().
The only page based function is set_page_extent_mapped(). All other
functions have folio equivalents.
Had to use __filemap_get_folio() because filemap_grab_folio() does not
allow passing allocation mask as a parameter.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove more hidden calls to compound_head() by using an array of folios
instead of pages. Also neaten the error path in defrag_one_range() by
adjusting the length of the array instead of checking for NULL.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use a folio throughout defrag_prepare_one_page() to remove dozens of
hidden calls to compound_head(). There is no support here for large
folios; indeed, turn the existing check for PageCompound into a check
for large folios.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Turn set_page_extent_mapped() into a wrapper around this version.
Saves a call to compound_head() for callers who already have a folio
and removes a couple of users of page->mapping.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
fstests looks for WARN_ON's in dmesg. Add WARN_ON_ONCE() to our leak
detection code (enabled only in debug builds) so that fstests will fail
if these things trip at all. This will allow us to easily catch
problems with our reference counting that may otherwise go unnoticed.
Reviewed-by: Neal Gompa <neal@gompa.dev>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to do a forward declaration of struct extent_map_tree at
extent_io.h, as there are no function prototypes, inline functions or data
structures that refer to struct extent_map_tree.
So remove that forward declaration, which is not needed since commit
477a30ba5f ("btrfs: Sink extent_tree arguments in
try_release_extent_mapping").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the conversion to folio interfaces (but without the patch to
enable larger folio allocation), there is an LTP report about observable
performance drop on metadata heavy operations.
https://lore.kernel.org/linux-btrfs/202312221750.571925bd-oliver.sang@intel.com/
This drop is caused by the extra code of calculating the
folio_size()/folio_shift(), instead of the old hard coded
PAGE_SIZE/PAGE_SHIFT.
To slightly reduce the overhead, just cache both folio_size and
folio_shift in extent_buffer.
The two new members (u32 folio_size and u8 folio_shift) are stored
inside the holes of extent_buffer. folio_size is shared with len, which
is reduced to u32. The size of eb does not change.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The variable @bio_offset was introduced in commit 7ffd27e378 ("btrfs:
pass bio_offset to check_data_csum() directly"), when we are still using
the same endio function for both data and metadata.
Later we had several changes to data and metadata endio functions:
- Data verification is handled by btrfs bio layer
- Split data and metadata endio paths
Now for data path we no longer do any verification in
end_bbio_data_read(), as the verification is handled by btrfs bio layer
already.
Thus there is no need for such bio_offset variable.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter @pg_offset of btrfs_get_extent() is only utilized for
inlined extent, and we already have an ASSERT() and tree-checker, to
make sure we can only get inline extent at file offset 0.
Any invalid inline extent with non-zero file offset would be rejected by
tree-checker in the first place.
Thus the @pg_offset parameter is not really necessary, just remove it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmXh1GgACgkQxWXV+ddt
WDtnvA/7BN7BZ6QmwWv9UyxhgSBtzI19AXPi/kBsssnnjNuzXoHFaVHj68lQCCOB
a4YjRxAg7nmwFGHdVDTdnwXgUECzqlVkeX9cXg1ZpJy0IfP9RriGedRlC/93z7aV
pg6DnKMh2FlkibK7yO6kRBR8RYLc5aVIytqHXgUeqbaquuhj2Hh8EpqRo2X0RsoE
wDXlK0qgrU8HyrA3fHdqKYPcm1+cYABGTCwGx65iRffy8vH+KFSAr71G8jOJVEUj
DgNWJCpBjXJNs0dsKrik5oGmvLd3GDBKinNX7R2mAvMAMGWrL+fVVTVTfBS/clUT
FBiVFNYCJuphMcO3Qjs6JIuEez0GuGEeh1m+tQ8W795At1FSiINtE5J7LjmJUl5X
FuUwOUpxco1lTXBLX149Y9kk7AEOaqYxy0XbH4r5bbKyuzQegRGB9/qQX4sSaCt3
3T+Td9PvS+6Jo+CDO0dsYhG/h3bsHeHtHGR6f2CiO/m1zHDnTX9aYVcLMM3hsrMI
8OUEy1jkuKnDZQuZuIWES/3V9FlJL34dR3Cb236Pv/yIH1iujIc27g0qXrC1vzPg
wnUL1wheLQ9IRLedXoiHtX2Y2ZfFQGQDrIKNCJFD+WNPkZYffih5QNTV/mPZmL80
9EbjoVTu+6rygzdD43R1RWvK0kFsY44RKhHreI8SItO+e3/0TAs=
=hMf8
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix freeing allocated id for anon dev when snapshot creation fails
- fiemap fixes:
- followup for a recent deadlock fix, ranges that fiemap can access
can still race with ordered extent completion
- make sure fiemap with SYNC flag does not race with writes
* tag 'for-6.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix double free of anonymous device after snapshot creation failure
btrfs: ensure fiemap doesn't race with writes when FIEMAP_FLAG_SYNC is given
btrfs: fix race between ordered extent completion and fiemap
When creating a snapshot we may do a double free of an anonymous device
in case there's an error committing the transaction. The second free may
result in freeing an anonymous device number that was allocated by some
other subsystem in the kernel or another btrfs filesystem.
The steps that lead to this:
1) At ioctl.c:create_snapshot() we allocate an anonymous device number
and assign it to pending_snapshot->anon_dev;
2) Then we call btrfs_commit_transaction() and end up at
transaction.c:create_pending_snapshot();
3) There we call btrfs_get_new_fs_root() and pass it the anonymous device
number stored in pending_snapshot->anon_dev;
4) btrfs_get_new_fs_root() frees that anonymous device number because
btrfs_lookup_fs_root() returned a root - someone else did a lookup
of the new root already, which could some task doing backref walking;
5) After that some error happens in the transaction commit path, and at
ioctl.c:create_snapshot() we jump to the 'fail' label, and after
that we free again the same anonymous device number, which in the
meanwhile may have been reallocated somewhere else, because
pending_snapshot->anon_dev still has the same value as in step 1.
Recently syzbot ran into this and reported the following trace:
------------[ cut here ]------------
ida_free called for id=51 which is not allocated.
WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525
Modules linked in:
CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525
Code: 10 42 80 3c 28 (...)
RSP: 0018:ffffc90015a67300 EFLAGS: 00010246
RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000
RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000
RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4
R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246
R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246
FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0
Call Trace:
<TASK>
btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346
create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931
btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404
create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848
btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306
btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393
btrfs_ioctl+0xa74/0xd40
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7fca3e67dda9
Code: 28 00 00 00 (...)
RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9
RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658
</TASK>
Where we get an explicit message where we attempt to free an anonymous
device number that is not currently allocated. It happens in a different
code path from the example below, at btrfs_get_root_ref(), so this change
may not fix the case triggered by syzbot.
To fix at least the code path from the example above, change
btrfs_get_root_ref() and its callers to receive a dev_t pointer argument
for the anonymous device number, so that in case it frees the number, it
also resets it to 0, so that up in the call chain we don't attempt to do
the double free.
CC: stable@vger.kernel.org # 5.10+
Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/
Fixes: e03ee2fe87 ("btrfs: do not ASSERT() if the newly created subvolume already got read")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When FIEMAP_FLAG_SYNC is given to fiemap the expectation is that that
are no concurrent writes and we get a stable view of the inode's extent
layout.
When the flag is given we flush all IO (and wait for ordered extents to
complete) and then lock the inode in shared mode, however that leaves open
the possibility that a write might happen right after the flushing and
before locking the inode. So fix this by flushing again after locking the
inode - we leave the initial flushing before locking the inode to avoid
holding the lock and blocking other RO operations while waiting for IO
and ordered extents to complete. The second flushing while holding the
inode's lock will most of the time do nothing or very little since the
time window for new writes to have happened is small.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For fiemap we recently stopped locking the target extent range for the
whole duration of the fiemap call, in order to avoid a deadlock in a
scenario where the fiemap buffer happens to be a memory mapped range of
the same file. This use case is very unlikely to be useful in practice but
it may be triggered by fuzz testing (syzbot, etc).
However by not locking the target extent range for the whole duration of
the fiemap call we can race with an ordered extent. This happens like
this:
1) The fiemap task finishes processing a file extent item that covers
the file range [512K, 1M[, and that file extent item is the last item
in the leaf currently being processed;
2) And ordered extent for the file range [768K, 2M[, in COW mode,
completes (btrfs_finish_one_ordered()) and the file extent item
covering the range [512K, 1M[ is trimmed to cover the range
[512K, 768K[ and then a new file extent item for the range [768K, 2M[
is inserted in the inode's subvolume tree;
3) The fiemap task calls fiemap_next_leaf_item(), which then calls
btrfs_next_leaf() to find the next leaf / item. This finds that the
the next key following the one we previously processed (its type is
BTRFS_EXTENT_DATA_KEY and its offset is 512K), is the key corresponding
to the new file extent item inserted by the ordered extent, which has
a type of BTRFS_EXTENT_DATA_KEY and an offset of 768K;
4) Later the fiemap code ends up at emit_fiemap_extent() and triggers
the warning:
if (cache->offset + cache->len > offset) {
WARN_ON(1);
return -EINVAL;
}
Since we get 1M > 768K, because the previously emitted entry for the
old extent covering the file range [512K, 1M[ ends at an offset that
is greater than the new extent's start offset (768K). This makes fiemap
fail with -EINVAL besides triggering the warning that produces a stack
trace like the following:
[1621.677651] ------------[ cut here ]------------
[1621.677656] WARNING: CPU: 1 PID: 204366 at fs/btrfs/extent_io.c:2492 emit_fiemap_extent+0x84/0x90 [btrfs]
[1621.677899] Modules linked in: btrfs blake2b_generic (...)
[1621.677951] CPU: 1 PID: 204366 Comm: pool Not tainted 6.8.0-rc5-btrfs-next-151+ #1
[1621.677954] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[1621.677956] RIP: 0010:emit_fiemap_extent+0x84/0x90 [btrfs]
[1621.678033] Code: 2b 4c 89 63 (...)
[1621.678035] RSP: 0018:ffffab16089ffd20 EFLAGS: 00010206
[1621.678037] RAX: 00000000004fa000 RBX: ffffab16089ffe08 RCX: 0000000000009000
[1621.678039] RDX: 00000000004f9000 RSI: 00000000004f1000 RDI: ffffab16089ffe90
[1621.678040] RBP: 00000000004f9000 R08: 0000000000001000 R09: 0000000000000000
[1621.678041] R10: 0000000000000000 R11: 0000000000001000 R12: 0000000041d78000
[1621.678043] R13: 0000000000001000 R14: 0000000000000000 R15: ffff9434f0b17850
[1621.678044] FS: 00007fa6e20006c0(0000) GS:ffff943bdfa40000(0000) knlGS:0000000000000000
[1621.678046] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1621.678048] CR2: 00007fa6b0801000 CR3: 000000012d404002 CR4: 0000000000370ef0
[1621.678053] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1621.678055] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1621.678056] Call Trace:
[1621.678074] <TASK>
[1621.678076] ? __warn+0x80/0x130
[1621.678082] ? emit_fiemap_extent+0x84/0x90 [btrfs]
[1621.678159] ? report_bug+0x1f4/0x200
[1621.678164] ? handle_bug+0x42/0x70
[1621.678167] ? exc_invalid_op+0x14/0x70
[1621.678170] ? asm_exc_invalid_op+0x16/0x20
[1621.678178] ? emit_fiemap_extent+0x84/0x90 [btrfs]
[1621.678253] extent_fiemap+0x766/0xa30 [btrfs]
[1621.678339] btrfs_fiemap+0x45/0x80 [btrfs]
[1621.678420] do_vfs_ioctl+0x1e4/0x870
[1621.678431] __x64_sys_ioctl+0x6a/0xc0
[1621.678434] do_syscall_64+0x52/0x120
[1621.678445] entry_SYSCALL_64_after_hwframe+0x6e/0x76
There's also another case where before calling btrfs_next_leaf() we are
processing a hole or a prealloc extent and we had several delalloc ranges
within that hole or prealloc extent. In that case if the ordered extents
complete before we find the next key, we may end up finding an extent item
with an offset smaller than (or equals to) the offset in cache->offset.
So fix this by changing emit_fiemap_extent() to address these three
scenarios like this:
1) For the first case, steps listed above, adjust the length of the
previously cached extent so that it does not overlap with the current
extent, emit the previous one and cache the current file extent item;
2) For the second case where he had a hole or prealloc extent with
multiple delalloc ranges inside the hole or prealloc extent's range,
and the current file extent item has an offset that matches the offset
in the fiemap cache, just discard what we have in the fiemap cache and
assign the current file extent item to the cache, since it's more up
to date;
3) For the third case where he had a hole or prealloc extent with
multiple delalloc ranges inside the hole or prealloc extent's range
and the offset of the file extent item we just found is smaller than
what we have in the cache, just skip the current file extent item
if its range end at or behind the cached extent's end, because we may
have emitted (to the fiemap user space buffer) delalloc ranges that
overlap with the current file extent item's range. If the file extent
item's range goes beyond the end offset of the cached extent, just
emit the cached extent and cache a subrange of the file extent item,
that goes from the end offset of the cached extent to the end offset
of the file extent item.
Dealing with those cases in those ways makes everything consistent by
reflecting the current state of file extent items in the btree and
without emitting extents that have overlapping ranges (which would be
confusing and violating expectations).
This issue could be triggered often with test case generic/561, and was
also hit and reported by Wang Yugui.
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20240223104619.701F.409509F4@e16-tech.com/
Fixes: b0ad381fa7 ("btrfs: fix deadlock with fiemap and extent locking")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmXcsfAACgkQxWXV+ddt
WDt3XA/6AkPT8QNT+mOyp4NjPzquR4UMIPVGGvjWTeKNtjNnco9gPkOBWsHeeDQe
aiihh3X2NpNtsduEmqaz717EJW4za9lplGiyPR51H/pTfGfOthWL6Nj+auTPva3t
GnlYh+GUQ+44JJ5+biOK5HUpEEeUR87EN2z5lTWsHAxg7PolBiKYKvV4Wp33xJqR
ILGlYw04reOAljTn0Zf738IL5WpY9etj1GnNxQeEKFRrdF1GH1i6r/JRONU1hGHu
EiZT6XwoN07V+JURB+fPqtY1IXODDC8904OwLg5fKhBggWvR2IaiW1XH+ToFXQgU
idae1+Dy85Hi4s40SL5GcSO8mVHPEGEspwM/5G87YqIu3uH4L9+Wd4zTwVYLcwNm
SSUCDGj2d+/JIug5dPBV8GL7jrhPNnPOu8HR+bIxY9XUhyf+IZVlUNYlorup3lbm
rAouZiCevRhQRBAx33Id5ZOMhlIpPONKObcCEKmdm6WLlnkkqgKQbnapd/I/1mfT
nP5N7oWUtfXO4oq4k5XpJBcTVhXU+DzpQ7EMDGv3mSmIem0wsDmXPbF2MfoSIim8
UuToZ1YF5MuxNLGwYnpkUaxWhKKOFWMvAe65eXP+ureIjOJwQ4f85Nkro0JvKbr8
nVdzl3rDy49tnqW7Qu3vaNPOQneuWaOqCoQcYDcVAiqk11UhH9E=
=mBP6
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A more fixes for recently reported or discovered problems:
- fix corner case of send that would generate potentially large
stream of zeros if there's a hole at the end of the file
- fix chunk validation in zoned mode on conventional zones, it was
possible to create chunks that would not be allowed on sequential
zones
- fix validation of dev-replace ioctl filenames
- fix KCSAN warnings about access to block reserve struct members"
* tag 'for-6.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix data race at btrfs_use_block_rsv() when accessing block reserve
btrfs: fix data races when accessing the reserved amount of block reserves
btrfs: send: don't issue unnecessary zero writes for trailing hole
btrfs: dev-replace: properly validate device names
btrfs: zoned: don't skip block group profile checks on conventional zones
At btrfs_use_block_rsv() we read the size of a block reserve without
locking its spinlock, which makes KCSAN complain because the size of a
block reserve is always updated while holding its spinlock. The report
from KCSAN is the following:
[653.313148] BUG: KCSAN: data-race in btrfs_update_delayed_refs_rsv [btrfs] / btrfs_use_block_rsv [btrfs]
[653.314755] read to 0x000000017f5871b8 of 8 bytes by task 7519 on cpu 0:
[653.314779] btrfs_use_block_rsv+0xe4/0x2f8 [btrfs]
[653.315606] btrfs_alloc_tree_block+0xdc/0x998 [btrfs]
[653.316421] btrfs_force_cow_block+0x220/0xe38 [btrfs]
[653.317242] btrfs_cow_block+0x1ac/0x568 [btrfs]
[653.318060] btrfs_search_slot+0xda2/0x19b8 [btrfs]
[653.318879] btrfs_del_csums+0x1dc/0x798 [btrfs]
[653.319702] __btrfs_free_extent.isra.0+0xc24/0x2028 [btrfs]
[653.320538] __btrfs_run_delayed_refs+0xd3c/0x2390 [btrfs]
[653.321340] btrfs_run_delayed_refs+0xae/0x290 [btrfs]
[653.322140] flush_space+0x5e4/0x718 [btrfs]
[653.322958] btrfs_preempt_reclaim_metadata_space+0x102/0x2f8 [btrfs]
[653.323781] process_one_work+0x3b6/0x838
[653.323800] worker_thread+0x75e/0xb10
[653.323817] kthread+0x21a/0x230
[653.323836] __ret_from_fork+0x6c/0xb8
[653.323855] ret_from_fork+0xa/0x30
[653.323887] write to 0x000000017f5871b8 of 8 bytes by task 576 on cpu 3:
[653.323906] btrfs_update_delayed_refs_rsv+0x1a4/0x250 [btrfs]
[653.324699] btrfs_add_delayed_data_ref+0x468/0x6d8 [btrfs]
[653.325494] btrfs_free_extent+0x76/0x120 [btrfs]
[653.326280] __btrfs_mod_ref+0x6a8/0x6b8 [btrfs]
[653.327064] btrfs_dec_ref+0x50/0x70 [btrfs]
[653.327849] walk_up_proc+0x236/0xa50 [btrfs]
[653.328633] walk_up_tree+0x21c/0x448 [btrfs]
[653.329418] btrfs_drop_snapshot+0x802/0x1328 [btrfs]
[653.330205] btrfs_clean_one_deleted_snapshot+0x184/0x238 [btrfs]
[653.330995] cleaner_kthread+0x2b0/0x2f0 [btrfs]
[653.331781] kthread+0x21a/0x230
[653.331800] __ret_from_fork+0x6c/0xb8
[653.331818] ret_from_fork+0xa/0x30
So add a helper to get the size of a block reserve while holding the lock.
Reading the field while holding the lock instead of using the data_race()
annotation is used in order to prevent load tearing.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At space_info.c we have several places where we access the ->reserved
field of a block reserve without taking the block reserve's spinlock
first, which makes KCSAN warn about a data race since that field is
always updated while holding the spinlock.
The reports from KCSAN are like the following:
[117.193526] BUG: KCSAN: data-race in btrfs_block_rsv_release [btrfs] / need_preemptive_reclaim [btrfs]
[117.195148] read to 0x000000017f587190 of 8 bytes by task 6303 on cpu 3:
[117.195172] need_preemptive_reclaim+0x222/0x2f0 [btrfs]
[117.195992] __reserve_bytes+0xbb0/0xdc8 [btrfs]
[117.196807] btrfs_reserve_metadata_bytes+0x4c/0x120 [btrfs]
[117.197620] btrfs_block_rsv_add+0x78/0xa8 [btrfs]
[117.198434] btrfs_delayed_update_inode+0x154/0x368 [btrfs]
[117.199300] btrfs_update_inode+0x108/0x1c8 [btrfs]
[117.200122] btrfs_dirty_inode+0xb4/0x140 [btrfs]
[117.200937] btrfs_update_time+0x8c/0xb0 [btrfs]
[117.201754] touch_atime+0x16c/0x1e0
[117.201789] filemap_read+0x674/0x728
[117.201823] btrfs_file_read_iter+0xf8/0x410 [btrfs]
[117.202653] vfs_read+0x2b6/0x498
[117.203454] ksys_read+0xa2/0x150
[117.203473] __s390x_sys_read+0x68/0x88
[117.203495] do_syscall+0x1c6/0x210
[117.203517] __do_syscall+0xc8/0xf0
[117.203539] system_call+0x70/0x98
[117.203579] write to 0x000000017f587190 of 8 bytes by task 11 on cpu 0:
[117.203604] btrfs_block_rsv_release+0x2e8/0x578 [btrfs]
[117.204432] btrfs_delayed_inode_release_metadata+0x7c/0x1d0 [btrfs]
[117.205259] __btrfs_update_delayed_inode+0x37c/0x5e0 [btrfs]
[117.206093] btrfs_async_run_delayed_root+0x356/0x498 [btrfs]
[117.206917] btrfs_work_helper+0x160/0x7a0 [btrfs]
[117.207738] process_one_work+0x3b6/0x838
[117.207768] worker_thread+0x75e/0xb10
[117.207797] kthread+0x21a/0x230
[117.207830] __ret_from_fork+0x6c/0xb8
[117.207861] ret_from_fork+0xa/0x30
So add a helper to get the reserved amount of a block reserve while
holding the lock. The value may be not be up to date anymore when used by
need_preemptive_reclaim() and btrfs_preempt_reclaim_metadata_space(), but
that's ok since the worst it can do is cause more reclaim work do be done
sooner rather than later. Reading the field while holding the lock instead
of using the data_race() annotation is used in order to prevent load
tearing.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have a sparse file with a trailing hole (from the last extent's end
to i_size) and then create an extent in the file that ends before the
file's i_size, then when doing an incremental send we will issue a write
full of zeroes for the range that starts immediately after the new extent
ends up to i_size. While this isn't incorrect because the file ends up
with exactly the same data, it unnecessarily results in using extra space
at the destination with one or more extents full of zeroes instead of
having a hole. In same cases this results in using megabytes or even
gigabytes of unnecessary space.
Example, reproducer:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdh
MNT=/mnt/sdh
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Create 1G sparse file.
xfs_io -f -c "truncate 1G" $MNT/foobar
# Create base snapshot.
btrfs subvolume snapshot -r $MNT $MNT/mysnap1
# Create send stream (full send) for the base snapshot.
btrfs send -f /tmp/1.snap $MNT/mysnap1
# Now write one extent at the beginning of the file and one somewhere
# in the middle, leaving a gap between the end of this second extent
# and the file's size.
xfs_io -c "pwrite -S 0xab 0 128K" \
-c "pwrite -S 0xcd 512M 128K" \
$MNT/foobar
# Now create a second snapshot which is going to be used for an
# incremental send operation.
btrfs subvolume snapshot -r $MNT $MNT/mysnap2
# Create send stream (incremental send) for the second snapshot.
btrfs send -p $MNT/mysnap1 -f /tmp/2.snap $MNT/mysnap2
# Now recreate the filesystem by receiving both send streams and
# verify we get the same content that the original filesystem had
# and file foobar has only two extents with a size of 128K each.
umount $MNT
mkfs.btrfs -f $DEV
mount $DEV $MNT
btrfs receive -f /tmp/1.snap $MNT
btrfs receive -f /tmp/2.snap $MNT
echo -e "\nFile fiemap in the second snapshot:"
# Should have:
#
# 128K extent at file range [0, 128K[
# hole at file range [128K, 512M[
# 128K extent file range [512M, 512M + 128K[
# hole at file range [512M + 128K, 1G[
xfs_io -r -c "fiemap -v" $MNT/mysnap2/foobar
# File should be using 256K of data (two 128K extents).
echo -e "\nSpace used by the file: $(du -h $MNT/mysnap2/foobar | cut -f 1)"
umount $MNT
Running the test, we can see with fiemap that we get an extent for the
range [512M, 1G[, while in the source filesystem we have an extent for
the range [512M, 512M + 128K[ and a hole for the rest of the file (the
range [512M + 128K, 1G[):
$ ./test.sh
(...)
File fiemap in the second snapshot:
/mnt/sdh/mysnap2/foobar:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..255]: 26624..26879 256 0x0
1: [256..1048575]: hole 1048320
2: [1048576..2097151]: 2156544..3205119 1048576 0x1
Space used by the file: 513M
This happens because once we finish processing an inode, at
finish_inode_if_needed(), we always issue a hole (write operations full
of zeros) if there's a gap between the end of the last processed extent
and the file's size, even if that range is already a hole in the parent
snapshot. Fix this by issuing the hole only if the range is not already
a hole.
After this change, running the test above, we get the expected layout:
$ ./test.sh
(...)
File fiemap in the second snapshot:
/mnt/sdh/mysnap2/foobar:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..255]: 26624..26879 256 0x0
1: [256..1048575]: hole 1048320
2: [1048576..1048831]: 26880..27135 256 0x1
3: [1048832..2097151]: hole 1048320
Space used by the file: 256K
A test case for fstests will follow soon.
CC: stable@vger.kernel.org # 6.1+
Reported-by: Dorai Ashok S A <dash.btrfs@inix.me>
Link: https://lore.kernel.org/linux-btrfs/c0bf7818-9c45-46a8-b3d3-513230d0c86e@inix.me/
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On a zoned filesystem with conventional zones, we're skipping the block
group profile checks for the conventional zones.
This allows converting a zoned filesystem's data block groups to RAID when
all of the zones backing the chunk are on conventional zones. But this
will lead to problems, once we're trying to allocate chunks backed by
sequential zones.
So also check for conventional zones when loading a block group's profile
on them.
Reported-by: HAN Yuwei <hrx@bupt.moe>
Link: https://lore.kernel.org/all/1ACD2E3643008A17+da260584-2c7f-432a-9e22-9d390aae84cc@bupt.moe/#t
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmXV2z8ACgkQxWXV+ddt
WDsudxAAoKcp1DbuOtaOzG/XVnIKt36drK4cwyZnGo9PZ9vlgT6k+T0efto4DkOF
fNWy2d/9iGy9RHy4oxZL6ceb3rcWW0NbhiKHeTPNqL4ZCPa7t6bxMWXSYBh6pYgZ
6EUS6H9Don05F7rQs8rERc+VIW6u1HFTLn4wS1cmlTyTQzZwlk9B2V6KtDtHBi0k
B4CCxY6jX2bl7BncXdYteb13Xjg7+JnWvfSKb7ouSVnL8VEcGG13QkPFNV2Xsoi2
uDDsw+QKBEcPNgBIubBUwbLS5V5vYa1H1meUFJkciaeblHVlVIMN3h7+Y8VNKMTC
qpxEo3Hx6oqmw9LdEIU7WsvFs0JJum2fKOjOx3vr1d3AiyFG6W6lrm1fKwnp3dt7
dHdAYuo8+Q4rirGlMDcEoYqpy7AcV8QqtSYajdrdpB1dqHcHhukSNqJ0dx5lYElU
HtnMXD9vLc4uJDcl9Z1aTWEmB+7nj5HwukSnTqQhgwpCZM7mrz6pe1DuD5iKinG6
Yth9QFhgcbcnchPA+3SOtC6uuje9chHo6L6eTVacnKAKyKgLY8qTTsh3zYQNVhMX
M2aWcAkizq20vKe7JFxs7M/tClyuswTjOP6RYzeayY21Rn8gGwe7uhXhv5MKpEh5
TjXjiixsrxxsyyaED7Kl69i54BvmM/TI35p7Jbx6Ln7PPD8lf8M=
=pXyL
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- Fix a deadlock in fiemap.
There was a big lock around the whole operation that can interfere
with a page fault and mkwrite.
Reducing the lock scope can also speed up fiemap
- Fix range condition for extent defragmentation which could lead to
worse layout in some cases
* tag 'for-6.8-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix deadlock with fiemap and extent locking
btrfs: defrag: avoid unnecessary defrag caused by incorrect extent size
While working on the patchset to remove extent locking I got a lockdep
splat with fiemap and pagefaulting with my new extent lock replacement
lock.
This deadlock exists with our normal code, we just don't have lockdep
annotations with the extent locking so we've never noticed it.
Since we're copying the fiemap extent to user space on every iteration
we have the chance of pagefaulting. Because we hold the extent lock for
the entire range we could mkwrite into a range in the file that we have
mmap'ed. This would deadlock with the following stack trace
[<0>] lock_extent+0x28d/0x2f0
[<0>] btrfs_page_mkwrite+0x273/0x8a0
[<0>] do_page_mkwrite+0x50/0xb0
[<0>] do_fault+0xc1/0x7b0
[<0>] __handle_mm_fault+0x2fa/0x460
[<0>] handle_mm_fault+0xa4/0x330
[<0>] do_user_addr_fault+0x1f4/0x800
[<0>] exc_page_fault+0x7c/0x1e0
[<0>] asm_exc_page_fault+0x26/0x30
[<0>] rep_movs_alternative+0x33/0x70
[<0>] _copy_to_user+0x49/0x70
[<0>] fiemap_fill_next_extent+0xc8/0x120
[<0>] emit_fiemap_extent+0x4d/0xa0
[<0>] extent_fiemap+0x7f8/0xad0
[<0>] btrfs_fiemap+0x49/0x80
[<0>] __x64_sys_ioctl+0x3e1/0xb50
[<0>] do_syscall_64+0x94/0x1a0
[<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
I wrote an fstest to reproduce this deadlock without my replacement lock
and verified that the deadlock exists with our existing locking.
To fix this simply don't take the extent lock for the entire duration of
the fiemap. This is safe in general because we keep track of where we
are when we're searching the tree, so if an ordered extent updates in
the middle of our fiemap call we'll still emit the correct extents
because we know what offset we were on before.
The only place we maintain the lock is searching delalloc. Since the
delalloc stuff can change during writeback we want to lock the extent
range so we have a consistent view of delalloc at the time we're
checking to see if we need to set the delalloc flag.
With this patch applied we no longer deadlock with my testcase.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
With the following file extent layout, defrag would do unnecessary IO
and result more on-disk space usage.
# mkfs.btrfs -f $dev
# mount $dev $mnt
# xfs_io -f -c "pwrite 0 40m" $mnt/foobar
# sync
# xfs_io -f -c "pwrite 40m 16k" $mnt/foobar
# sync
Above command would lead to the following file extent layout:
item 6 key (257 EXTENT_DATA 0) itemoff 15816 itemsize 53
generation 7 type 1 (regular)
extent data disk byte 298844160 nr 41943040
extent data offset 0 nr 41943040 ram 41943040
extent compression 0 (none)
item 7 key (257 EXTENT_DATA 41943040) itemoff 15763 itemsize 53
generation 8 type 1 (regular)
extent data disk byte 13631488 nr 16384
extent data offset 0 nr 16384 ram 16384
extent compression 0 (none)
Which is mostly fine. We can allow the final 16K to be merged with the
previous 40M, but it's upon the end users' preference.
But if we defrag the file using the default parameters, it would result
worse file layout:
# btrfs filesystem defrag $mnt/foobar
# sync
item 6 key (257 EXTENT_DATA 0) itemoff 15816 itemsize 53
generation 7 type 1 (regular)
extent data disk byte 298844160 nr 41943040
extent data offset 0 nr 8650752 ram 41943040
extent compression 0 (none)
item 7 key (257 EXTENT_DATA 8650752) itemoff 15763 itemsize 53
generation 9 type 1 (regular)
extent data disk byte 340787200 nr 33292288
extent data offset 0 nr 33292288 ram 33292288
extent compression 0 (none)
item 8 key (257 EXTENT_DATA 41943040) itemoff 15710 itemsize 53
generation 8 type 1 (regular)
extent data disk byte 13631488 nr 16384
extent data offset 0 nr 16384 ram 16384
extent compression 0 (none)
Note the original 40M extent is still there, but a new 32M extent is
created for no benefit at all.
[CAUSE]
There is an existing check to make sure we won't defrag a large enough
extent (the threshold is by default 32M).
But the check is using the length to the end of the extent:
range_len = em->len - (cur - em->start);
/* Skip too large extent */
if (range_len >= extent_thresh)
goto next;
This means, for the first 8MiB of the extent, the range_len is always
smaller than the default threshold, and would not be defragged.
But after the first 8MiB, the remaining part would fit the requirement,
and be defragged.
Such different behavior inside the same extent caused the above problem,
and we should avoid different defrag decision inside the same extent.
[FIX]
Instead of using @range_len, just use @em->len, so that we have a
consistent decision among the same file extent.
Now with this fix, we won't touch the extent, thus not making it any
worse.
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 0cb5950f3f ("btrfs: fix deadlock when reserving space during defrag")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmXMewsACgkQxWXV+ddt
WDtFUBAAkEU/hxB4YsLn2JEdp3wc80w5/qKkPaYHsI2ncvc3RFiG+tqSY7BakMgE
Kkdl8ouNX3p/S62ykIBQTKZnOTk7FgKlClAQtgKn1afexqABsP2mifnh40Dzf7eA
VvEl7chnRT6oeivtQkB+BtgOzaOUp4j/8oAivRN8NKNwTxojV4g9PErKSOWfVQSq
3zlrLJbe6era43SpnexkjZHn4Fy4CN+C7FMm+pT/yKzZi2oBZs9BvNZGhIkdnzcK
MftrY9dSGO3CDD2Kvrz3lEm7ZB83wCpm+GTDN7iJx2y+yeW+aHjshFkJr1ApEZQa
lsWTnj3hk3yHoOPUuLlchw5JcFb/dFZ1Ztdwkunf8nmt5a3O/5Zf+Csgze8c+Iii
MJQKi0B/bNQ7cSEwRt36s75kROBItZmHCZmSBlOpT1LXSDQMJ9lvEnv/fPQdcHHF
WMEmk5O5IoGYv5kx5wIoWv27HKE/bDwH6RjkxEd/n17XP+PcfHY4K0o0CGtfwS8g
hdy9RI9X8dbf3ZPrxtsgQ2T8btWs68A4S6nwcSuY5HK0WNmvRh47eLfCI6S6XGJs
hHkppLcc+WTXOskCA+ABdm9hgeAPZkCSpuQSmC2HBt8gRv8XqO7z4cZ/up2N+tES
ZOJSrJb97nusOcxY0pLexnD6eI3pQxzGMiPONlC1Re8CdjZ0l+4=
=RRGT
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few regular fixes and one fix for space reservation regression since
6.7 that users have been reporting:
- fix over-reservation of metadata chunks due to not keeping proper
balance between global block reserve and delayed refs reserve; in
practice this leaves behind empty metadata block groups, the
workaround is to reclaim them by using the '-musage=1' balance
filter
- other space reservation fixes:
- do not delete unused block group if it may be used soon
- do not reserve space for checksums for NOCOW files
- fix extent map assertion failure when writing out free space inode
- reject encoded write if inode has nodatasum flag set
- fix chunk map leak when loading block group zone info"
* tag 'for-6.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: don't refill whole delayed refs block reserve when starting transaction
btrfs: zoned: fix chunk map leak when loading block group zone info
btrfs: reject encoded write if inode has nodatasum flag set
btrfs: don't reserve space for checksums when writing to nocow files
btrfs: add new unused block groups to the list of unused block groups
btrfs: do not delete unused block group if it may be used soon
btrfs: add and use helper to check if block group is used
btrfs: don't drop extent_map for free space inode on write error
Since commit 28270e25c6 ("btrfs: always reserve space for delayed refs
when starting transaction") we started not only to reserve metadata space
for the delayed refs a caller of btrfs_start_transaction() might generate
but also to try to fully refill the delayed refs block reserve, because
there are several case where we generate delayed refs and haven't reserved
space for them, relying on the global block reserve. Relying too much on
the global block reserve is not always safe, and can result in hitting
-ENOSPC during transaction commits or worst, in rare cases, being unable
to mount a filesystem that needs to do orphan cleanup or anything that
requires modifying the filesystem during mount, and has no more
unallocated space and the metadata space is nearly full. This was
explained in detail in that commit's change log.
However the gap between the reserved amount and the size of the delayed
refs block reserve can be huge, so attempting to reserve space for such
a gap can result in allocating many metadata block groups that end up
not being used. After a recent patch, with the subject:
"btrfs: add new unused block groups to the list of unused block groups"
We started to add new block groups that are unused to the list of unused
block groups, to avoid having them around for a very long time in case
they are never used, because a block group is only added to the list of
unused block groups when we deallocate the last extent or when mounting
the filesystem and the block group has 0 bytes used. This is not a problem
introduced by the commit mentioned earlier, it always existed as our
metadata space reservations are, most of the time, pessimistic and end up
not using all the space they reserved, so we can occasionally end up with
one or two unused metadata block groups for a long period. However after
that commit mentioned earlier, we are just more pessimistic in the
metadata space reservations when starting a transaction and therefore the
issue is more likely to happen.
This however is not always enough because we might create unused metadata
block groups when reserving metadata space at a high rate if there's
always a gap in the delayed refs block reserve and the cleaner kthread
isn't triggered often enough or is busy with other work (running delayed
iputs, cleaning deleted roots, etc), not to mention the block group's
allocated space is only usable for a new block group after the transaction
used to remove it is committed.
A user reported that he's getting a lot of allocated metadata block groups
but the usage percentage of metadata space was very low compared to the
total allocated space, specially after running a series of block group
relocations.
So for now stop trying to refill the gap in the delayed refs block reserve
and reserve space only for the delayed refs we are expected to generate
when starting a transaction.
CC: stable@vger.kernel.org # 6.7+
Reported-by: Ivan Shapovalov <intelfx@intelfx.name>
Link: https://lore.kernel.org/linux-btrfs/9cdbf0ca9cdda1b4c84e15e548af7d7f9f926382.camel@intelfx.name/
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H6802ayLHUJFztzZAVzBLJAGdFx=6FHNNy87+obZXXZpQ@mail.gmail.com/
Tested-by: Ivan Shapovalov <intelfx@intelfx.name>
Reported-by: Heddxh <g311571057@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAE93xANEby6RezOD=zcofENYZOT-wpYygJyauyUAZkLv6XVFOA@mail.gmail.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_load_block_group_zone_info() we never drop a reference on the
chunk map we have looked up, therefore leaking a reference on it. So
add the missing btrfs_free_chunk_map() at the end of the function.
Fixes: 7dc66abb5a ("btrfs: use a dedicated data structure for chunk maps")
Reported-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we allow an encoded write against inodes that have the NODATASUM
flag set, either because they are NOCOW files or they were created while
the filesystem was mounted with "-o nodatasum". This results in having
compressed extents without corresponding checksums, which is a filesystem
inconsistency reported by 'btrfs check'.
For example, running btrfs/281 with MOUNT_OPTIONS="-o nodatacow" triggers
this and 'btrfs check' errors out with:
[1/7] checking root items
[2/7] checking extents
[3/7] checking free space tree
[4/7] checking fs roots
root 256 inode 257 errors 1040, bad file extent, some csum missing
root 256 inode 258 errors 1040, bad file extent, some csum missing
ERROR: errors found in fs roots
(...)
So reject encoded writes if the target inode has NODATASUM set.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently when doing a write to a file we always reserve metadata space
for inserting data checksums. However we don't need to do it if we have
a nodatacow file (-o nodatacow mount option or chattr +C) or if checksums
are disabled (-o nodatasum mount option), as in that case we are only
adding unnecessary pressure to metadata reservations.
For example on x86_64, with the default node size of 16K, a 4K buffered
write into a nodatacow file is reserving 655360 bytes of metadata space,
as it's accounting for checksums. After this change, which stops reserving
space for checksums if we have a nodatacow file or checksums are disabled,
we only need to reserve 393216 bytes of metadata.
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all callers pass in GFP_KERNEL to blkdev_zone_mgmt() and use
memalloc_no{io,fs}_{save,restore}() to define the allocation scope, we can
drop the gfp_mask parameter from blkdev_zone_mgmt() as well as
blkdev_zone_reset_all() and blkdev_zone_reset_all_emulated().
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: Mike Snitzer <snitzer@kernel.org>
Link: https://lore.kernel.org/r/20240128-zonefs_nofs-v3-5-ae3b7c8def61@wdc.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add a memalloc_nofs scope around all calls to blkdev_zone_mgmt(). This
allows us to further get rid of the GFP_NOFS argument for
blkdev_zone_mgmt().
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Link: https://lore.kernel.org/r/20240128-zonefs_nofs-v3-3-ae3b7c8def61@wdc.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Space reservations for metadata are, most of the time, pessimistic as we
reserve space for worst possible cases - where tree heights are at the
maximum possible height (8), we need to COW every extent buffer in a tree
path, need to split extent buffers, etc.
For data, we generally reserve the exact amount of space we are going to
allocate. The exception here is when using compression, in which case we
reserve space matching the uncompressed size, as the compression only
happens at writeback time and in the worst possible case we need that
amount of space in case the data is not compressible.
This means that when there's not available space in the corresponding
space_info object, we may need to allocate a new block group, and then
that block group might not be used after all. In this case the block
group is never added to the list of unused block groups and ends up
never being deleted - except if we unmount and mount again the fs, as
when reading block groups from disk we add unused ones to the list of
unused block groups (fs_info->unused_bgs). Otherwise a block group is
only added to the list of unused block groups when we deallocate the
last extent from it, so if no extent is ever allocated, the block group
is kept around forever.
This also means that if we have a bunch of tasks reserving space in
parallel we can end up allocating many block groups that end up never
being used or kept around for too long without being used, which has
the potential to result in ENOSPC failures in case for example we over
allocate too many metadata block groups and then end up in a state
without enough unallocated space to allocate a new data block group.
This is more likely to happen with metadata reservations as of kernel
6.7, namely since commit 28270e25c6 ("btrfs: always reserve space for
delayed refs when starting transaction"), because we started to always
reserve space for delayed references when starting a transaction handle
for a non-zero number of items, and also to try to reserve space to fill
the gap between the delayed block reserve's reserved space and its size.
So to avoid this, when finishing the creation a new block group, add the
block group to the list of unused block groups if it's still unused at
that time. This way the next time the cleaner kthread runs, it will delete
the block group if it's still unused and not needed to satisfy existing
space reservations.
Reported-by: Ivan Shapovalov <intelfx@intelfx.name>
Link: https://lore.kernel.org/linux-btrfs/9cdbf0ca9cdda1b4c84e15e548af7d7f9f926382.camel@intelfx.name/
CC: stable@vger.kernel.org # 6.7+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before deleting a block group that is in the list of unused block groups
(fs_info->unused_bgs), we check if the block group became used before
deleting it, as extents from it may have been allocated after it was added
to the list.
However even if the block group was not yet used, there may be tasks that
have only reserved space and have not yet allocated extents, and they
might be relying on the availability of the unused block group in order
to allocate extents. The reservation works first by increasing the
"bytes_may_use" field of the corresponding space_info object (which may
first require flushing delayed items, allocating a new block group, etc),
and only later a task does the actual allocation of extents.
For metadata we usually don't end up using all reserved space, as we are
pessimistic and typically account for the worst cases (need to COW every
single node in a path of a tree at maximum possible height, etc). For
data we usually reserve the exact amount of space we're going to allocate
later, except when using compression where we always reserve space based
on the uncompressed size, as compression is only triggered when writeback
starts so we don't know in advance how much space we'll actually need, or
if the data is compressible.
So don't delete an unused block group if the total size of its space_info
object minus the block group's size is less then the sum of used space and
space that may be used (space_info->bytes_may_use), as that means we have
tasks that reserved space and may need to allocate extents from the block
group. In this case, besides skipping the deletion, re-add the block group
to the list of unused block groups so that it may be reconsidered later,
in case the tasks that reserved space end up not needing to allocate
extents from it.
Allowing the deletion of the block group while we have reserved space, can
result in tasks failing to allocate metadata extents (-ENOSPC) while under
a transaction handle, resulting in a transaction abort, or failure during
writeback for the case of data extents.
CC: stable@vger.kernel.org # 6.0+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper function to determine if a block group is being used and make
use of it at btrfs_delete_unused_bgs(). This helper will also be used in
future code changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While running the CI for an unrelated change I hit the following panic
with generic/648 on btrfs_holes_spacecache.
assertion failed: block_start != EXTENT_MAP_HOLE, in fs/btrfs/extent_io.c:1385
------------[ cut here ]------------
kernel BUG at fs/btrfs/extent_io.c:1385!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 2695096 Comm: fsstress Kdump: loaded Tainted: G W 6.8.0-rc2+ #1
RIP: 0010:__extent_writepage_io.constprop.0+0x4c1/0x5c0
Call Trace:
<TASK>
extent_write_cache_pages+0x2ac/0x8f0
extent_writepages+0x87/0x110
do_writepages+0xd5/0x1f0
filemap_fdatawrite_wbc+0x63/0x90
__filemap_fdatawrite_range+0x5c/0x80
btrfs_fdatawrite_range+0x1f/0x50
btrfs_write_out_cache+0x507/0x560
btrfs_write_dirty_block_groups+0x32a/0x420
commit_cowonly_roots+0x21b/0x290
btrfs_commit_transaction+0x813/0x1360
btrfs_sync_file+0x51a/0x640
__x64_sys_fdatasync+0x52/0x90
do_syscall_64+0x9c/0x190
entry_SYSCALL_64_after_hwframe+0x6e/0x76
This happens because we fail to write out the free space cache in one
instance, come back around and attempt to write it again. However on
the second pass through we go to call btrfs_get_extent() on the inode to
get the extent mapping. Because this is a new block group, and with the
free space inode we always search the commit root to avoid deadlocking
with the tree, we find nothing and return a EXTENT_MAP_HOLE for the
requested range.
This happens because the first time we try to write the space cache out
we hit an error, and on an error we drop the extent mapping. This is
normal for normal files, but the free space cache inode is special. We
always expect the extent map to be correct. Thus the second time
through we end up with a bogus extent map.
Since we're deprecating this feature, the most straightforward way to
fix this is to simply skip dropping the extent map range for this failed
range.
I shortened the test by using error injection to stress the area to make
it easier to reproduce. With this patch in place we no longer panic
with my error injection test.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmXDNuAACgkQxWXV+ddt
WDvBGg/9FuCJm/GkBxgeVKNxdF28fIzYkYHjSYzHSo5A5GFMNENHUDfXcSNjZjUM
ZFWHCXENcnNa7pKONPaW5QIIQuecBPqcXK+lPJXlqFlC22CGSVD7MZ7/Fm7uKJ5W
mhGGuq7NTuTN1MYm480WVa+5DkfVbFkPeZgWOVTQ0tXGxTEKU9pXvwmflx8rbmRG
VPhT0iZO/KmkRSp91BwAJxitw8v76WG9JpGemiFcNOISCdE/HENxrxj8rE6beZoc
g0Kx8YQDTlf119bdwlCdJkvRVEzjIEZIUE2g8J0oKzPE6CmY2a+8+Iv/S0nCCc6V
2nFVHdhLnUH5oIuFEoo026tvu3tMKR1K30EAQyFslsjPE74Hye7MAjr8sEvAF7E/
J4Sbn3NIILkKu1Ozn/RqhPh+XsSyU9tXeO1+BcdmrGY9vDGq18lVbruOrde14fqZ
xHFJloXKsJCw7AcMzNfsa6arRQ7YGa8sGudMLpriUemUUn0MK8OdY6zCq20p43ON
8eUigP3WHOdPfCJXNfgqlJdyjmYdHCWvn4wKpPDMQuU5rMyUloOJDqtR6fxVCatO
0Pjg0zVyLu/CF6+vrL6wP4qT9sRj1Jy2YEh8fFe4fWc9+JOmQZYBm/Eyaw4oU0rg
lOmqE1/TEgl0ra9IHvxcgJo5l7zx2dbHAgMEmScCgIwrLpkh14A=
=nMOd
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- two fixes preventing deletion and manual creation of subvolume qgroup
- unify error code returned for unknown send flags
- fix assertion during subvolume creation when anonymous device could
be allocated by other thread (e.g. due to backref walk)
* tag 'for-6.8-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: do not ASSERT() if the newly created subvolume already got read
btrfs: forbid deleting live subvol qgroup
btrfs: forbid creating subvol qgroups
btrfs: send: return EOPNOTSUPP on unknown flags
[BUG]
There is a syzbot crash, triggered by the ASSERT() during subvolume
creation:
assertion failed: !anon_dev, in fs/btrfs/disk-io.c:1319
------------[ cut here ]------------
kernel BUG at fs/btrfs/disk-io.c:1319!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:btrfs_get_root_ref.part.0+0x9aa/0xa60
<TASK>
btrfs_get_new_fs_root+0xd3/0xf0
create_subvol+0xd02/0x1650
btrfs_mksubvol+0xe95/0x12b0
__btrfs_ioctl_snap_create+0x2f9/0x4f0
btrfs_ioctl_snap_create+0x16b/0x200
btrfs_ioctl+0x35f0/0x5cf0
__x64_sys_ioctl+0x19d/0x210
do_syscall_64+0x3f/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b
---[ end trace 0000000000000000 ]---
[CAUSE]
During create_subvol(), after inserting root item for the newly created
subvolume, we would trigger btrfs_get_new_fs_root() to get the
btrfs_root of that subvolume.
The idea here is, we have preallocated an anonymous device number for
the subvolume, thus we can assign it to the new subvolume.
But there is really nothing preventing things like backref walk to read
the new subvolume.
If that happens before we call btrfs_get_new_fs_root(), the subvolume
would be read out, with a new anonymous device number assigned already.
In that case, we would trigger ASSERT(), as we really expect no one to
read out that subvolume (which is not yet accessible from the fs).
But things like backref walk is still possible to trigger the read on
the subvolume.
Thus our assumption on the ASSERT() is not correct in the first place.
[FIX]
Fix it by removing the ASSERT(), and just free the @anon_dev, reset it
to 0, and continue.
If the subvolume tree is read out by something else, it should have
already get a new anon_dev assigned thus we only need to free the
preallocated one.
Reported-by: Chenyuan Yang <chenyuan0y@gmail.com>
Fixes: 2dfb1e43f5 ("btrfs: preallocate anon block device at first phase of snapshot creation")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If a subvolume still exists, forbid deleting its qgroup 0/subvolid.
This behavior generally leads to incorrect behavior in squotas and
doesn't have a legitimate purpose.
Fixes: cecbb533b5 ("btrfs: record simple quota deltas in delayed refs")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Creating a qgroup 0/subvolid leads to various races and it isn't
helpful, because you can't specify a subvol id when creating a subvol,
so you can't be sure it will be the right one. Any requirements on the
automatic subvol can be gratified by using a higher level qgroup and the
inheritance parameters of subvol creation.
Fixes: cecbb533b5 ("btrfs: record simple quota deltas in delayed refs")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When some ioctl flags are checked we return EOPNOTSUPP, like for
BTRFS_SCRUB_SUPPORTED_FLAGS, BTRFS_SUBVOL_CREATE_ARGS_MASK or fallocate
modes. The EINVAL is supposed to be for a supported but invalid
values or combination of options. Fix that when checking send flags so
it's consistent with the rest.
CC: stable@vger.kernel.org # 4.14+
Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5rryOLzp3EKq8RTbjMHMHeaJubfpsVLF6H4qJnKCUR1w@mail.gmail.com/
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit 1e7f6def8b.
It causes my machine to not even boot, and Klara Modin reports that the
cause is that small zstd-compressed files return garbage when read.
Reported-by: Klara Modin <klarasmodin@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CABq1_vj4GpUeZpVG49OHCo-3sdbe2-2ROcu_xDvUG-6-5zPRXg@mail.gmail.com/
Reported-and-bisected-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Qu Wenruo <wqu@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmWurp4ACgkQxWXV+ddt
WDsqSg/+OS5/1Cr2W6/3ns2hannEeAzYUeoRDNhNHluHOSufXS52QTckQdiA62BO
iMKGoIxZIn9BQPlvil1hi+jIEt/9qsRt/Qc6oBnzvlto21tJCoS486PJAShu6Sj5
jXKxtR7d6WrJEfk65uzatk1SbRguRKFxSrFlkaOeOHAmWsD54p/BnsZ/pqxPjF8W
LOFvwdhbTw3pzQ873b+hJg16rm4IenAnuazZNmXRdSufgdPEcArv0l7fMr4xTBvO
DBQXoM5GBGVHV2+IsrZiK39p7khz9ej2Ob4rps/x6PduC+GPxGtm6iLy8dZts+hV
D1FOHh3fqWmV2LQIzLNNu9N7sj5sF5dNFRZHSkq4qFNVNQYfvyFg43iJKfUnMY/s
puUm7ElSF3tLC2pRys0m/jDfkykZVFFZzbayfYQn+jRKuUASyXnWqmCKlljkLJD5
ekFXPpor+SQzQso9x0OpAjkSIUmmYFqSvoJCCczPFoo/3EDPv4C6VGOPEQyN6dDH
nBjn7fLXmn4hpdEKia+LU1MhajFis+SUlmjaoTh7UfCCzXDosDOPThRC1Kx0rNlY
t4KON8pMUCK3iGEce+7iOSwEImDDU4B7DUARey/sF0C8cs7jRsX8bf8eFTrEId8M
4C2sLmTw0JJ5n2I2soyTi9fHrGJnJamUlzp/hLrp8JyMzy6qBrs=
=38MW
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- zoned mode fixes:
- fix slowdown when writing large file sequentially by looking up
block groups with enough space faster
- locking fixes when activating a zone
- new mount API fixes:
- preserve mount options for a ro/rw mount of the same subvolume
- scrub fixes:
- fix use-after-free in case the chunk length is not aligned to
64K, this does not happen normally but has been reported on
images converted from ext4
- similar alignment check was missing with raid-stripe-tree
- subvolume deletion fixes:
- prevent calling ioctl on already deleted subvolume
- properly track flag tracking a deleted subvolume
- in subpage mode, fix decompression of an inline extent (zlib, lzo,
zstd)
- fix crash when starting writeback on a folio, after integration with
recent MM changes this needs to be started conditionally
- reject unknown flags in defrag ioctl
- error handling, API fixes, minor warning fixes
* tag 'for-6.8-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: scrub: limit RST scrub to chunk boundary
btrfs: scrub: avoid use-after-free when chunk length is not 64K aligned
btrfs: don't unconditionally call folio_start_writeback in subpage
btrfs: use the original mount's mount options for the legacy reconfigure
btrfs: don't warn if discard range is not aligned to sector
btrfs: tree-checker: fix inline ref size in error messages
btrfs: zstd: fix and simplify the inline extent decompression
btrfs: lzo: fix and simplify the inline extent decompression
btrfs: zlib: fix and simplify the inline extent decompression
btrfs: defrag: reject unknown flags of btrfs_ioctl_defrag_range_args
btrfs: avoid copying BTRFS_ROOT_SUBVOL_DEAD flag to snapshot of subvolume being deleted
btrfs: don't abort filesystem when attempting to snapshot deleted subvolume
btrfs: zoned: fix lock ordering in btrfs_zone_activate()
btrfs: fix unbalanced unlock of mapping_tree_lock
btrfs: ref-verify: free ref cache before clearing mount opt
btrfs: fix kvcalloc() arguments order in btrfs_ioctl_send()
btrfs: zoned: optimize hint byte for zoned allocator
btrfs: zoned: factor out prepare_allocation_zoned()
[BUG]
If there is an extent beyond chunk boundary, currently RST scrub would
error out.
[CAUSE]
In scrub_submit_extent_sector_read(), we completely rely on
extent_sector_bitmap, which is populated using extent tree.
The extent tree can be corrupted that there is an extent item beyond a
chunk.
In that case, RST scrub would fail and error out.
[FIX]
Despite the extent_sector_bitmap usage, also limit the read to chunk
boundary.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a bug report that, on a ext4-converted btrfs, scrub leads to
various problems, including:
- "unable to find chunk map" errors
BTRFS info (device vdb): scrub: started on devid 1
BTRFS critical (device vdb): unable to find chunk map for logical 2214744064 length 4096
BTRFS critical (device vdb): unable to find chunk map for logical 2214744064 length 45056
This would lead to unrepariable errors.
- Use-after-free KASAN reports:
==================================================================
BUG: KASAN: slab-use-after-free in __blk_rq_map_sg+0x18f/0x7c0
Read of size 8 at addr ffff8881013c9040 by task btrfs/909
CPU: 0 PID: 909 Comm: btrfs Not tainted 6.7.0-x64v3-dbg #11 c50636e9419a8354555555245df535e380563b2b
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 2023.11-2 12/24/2023
Call Trace:
<TASK>
dump_stack_lvl+0x43/0x60
print_report+0xcf/0x640
kasan_report+0xa6/0xd0
__blk_rq_map_sg+0x18f/0x7c0
virtblk_prep_rq.isra.0+0x215/0x6a0 [virtio_blk 19a65eeee9ae6fcf02edfad39bb9ddee07dcdaff]
virtio_queue_rqs+0xc4/0x310 [virtio_blk 19a65eeee9ae6fcf02edfad39bb9ddee07dcdaff]
blk_mq_flush_plug_list.part.0+0x780/0x860
__blk_flush_plug+0x1ba/0x220
blk_finish_plug+0x3b/0x60
submit_initial_group_read+0x10a/0x290 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
flush_scrub_stripes+0x38e/0x430 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
scrub_stripe+0x82a/0xae0 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
scrub_chunk+0x178/0x200 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
scrub_enumerate_chunks+0x4bc/0xa30 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
btrfs_scrub_dev+0x398/0x810 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
btrfs_ioctl+0x4b9/0x3020 [btrfs e57987a360bed82fe8756dcd3e0de5406ccfe965]
__x64_sys_ioctl+0xbd/0x100
do_syscall_64+0x5d/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b
RIP: 0033:0x7f47e5e0952b
- Crash, mostly due to above use-after-free
[CAUSE]
The converted fs has the following data chunk layout:
item 2 key (FIRST_CHUNK_TREE CHUNK_ITEM 2214658048) itemoff 16025 itemsize 80
length 86016 owner 2 stripe_len 65536 type DATA|single
For above logical bytenr 2214744064, it's at the chunk end
(2214658048 + 86016 = 2214744064).
This means btrfs_submit_bio() would split the bio, and trigger endio
function for both of the two halves.
However scrub_submit_initial_read() would only expect the endio function
to be called once, not any more.
This means the first endio function would already free the bbio::bio,
leaving the bvec freed, thus the 2nd endio call would lead to
use-after-free.
[FIX]
- Make sure scrub_read_endio() only updates bits in its range
Since we may read less than 64K at the end of the chunk, we should not
touch the bits beyond chunk boundary.
- Make sure scrub_submit_initial_read() only to read the chunk range
This is done by calculating the real number of sectors we need to
read, and add sector-by-sector to the bio.
Thankfully the scrub read repair path won't need extra fixes:
- scrub_stripe_submit_repair_read()
With above fixes, we won't update error bit for range beyond chunk,
thus scrub_stripe_submit_repair_read() should never submit any read
beyond the chunk.
Reported-by: Rongrong <i@rong.moe>
Fixes: e02ee89baa ("btrfs: scrub: switch scrub_simple_mirror() to scrub_stripe infrastructure")
Tested-by: Rongrong <i@rong.moe>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the normal case we check if a page is under writeback and skip it
before we attempt to begin writeback.
The exception is subpage metadata writes, where we know we don't have an
eb under writeback and we're doing it one eb at a time. Since
b5612c3686 ("mm: return void from folio_start_writeback() and related
functions") we now will BUG_ON() if we call folio_start_writeback()
on a folio that's already under writeback. Previously
folio_start_writeback() would bail if writeback was already started.
Fix this in the subpage code by checking if we have writeback set and
skipping it if we do. This fixes the panic we were seeing on subpage.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs/330, which tests our old trick to allow
mount -o ro,subvol=/x /dev/sda1 /foo
mount -o rw,subvol=/y /dev/sda1 /bar
fails on the block group tree. This is because we aren't preserving the
mount options for what is essentially a remount, and thus we're ending
up without the FREE_SPACE_TREE mount option, which triggers our free
space tree delete codepath. This isn't possible with the block group
tree and thus it falls over.
Fix this by making sure we copy the existing mount options for the
existing fs mount over in this case.
Fixes: f044b31867 ("btrfs: handle the ro->rw transition for mounting different subvolumes")
Reviewed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a warning in btrfs_issue_discard() when the range is not aligned
to 512 bytes, originally added in 4d89d377bb ("btrfs:
btrfs_issue_discard ensure offset/length are aligned to sector
boundaries"). We can't do sub-sector writes anyway so the adjustment is
the only thing that we can do and the warning is unnecessary.
CC: stable@vger.kernel.org # 4.19+
Reported-by: syzbot+4a4f1eba14eb5c3417d1@syzkaller.appspotmail.com
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The error message should accurately reflect the size rather than the
type.
Fixes: f82d1c7ca8 ("btrfs: tree-checker: Add EXTENT_ITEM and METADATA_ITEM check")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
If we have a filesystem with 4k sectorsize, and an inlined compressed
extent created like this:
item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160
generation 8 transid 8 size 4096 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24
index 2 namelen 14 name: source_inlined
item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69
generation 8 type 0 (inline)
inline extent data size 48 ram_bytes 4096 compression 3 (zstd)
Then trying to reflink that extent in an aarch64 system with 64K page
size, the reflink would just fail:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
XFS_IOC_CLONE_RANGE: Input/output error
[CAUSE]
In zstd_decompress(), we didn't treat @start_byte as just a page offset,
but also use it as an indicator on whether we should error out, without
any proper explanation (this is copied from other decompression code).
In reality, for subpage cases, although @start_byte can be non-zero,
we should never switch input/output buffer nor error out, since the whole
input/output buffer should never exceed one sector, thus we should not
need to do any buffer switch.
Thus the current code using @start_byte as a condition to switch
input/output buffer or finish the decompression is completely incorrect.
[FIX]
The fix involves several modification:
- Rename @start_byte to @dest_pgoff to properly express its meaning
- Use @sectorsize other than PAGE_SIZE to properly initialize the
output buffer size
- Use correct destination offset inside the destination page
- Simplify the main loop
Since the input/output buffer should never switch, we only need one
zstd_decompress_stream() call.
- Consider early end as an error
After the fix, even on 64K page sized aarch64, above reflink now
works as expected:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
linked 4096/4096 bytes at offset 61440
And results the correct file layout:
item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160
generation 10 transid 10 size 65536 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14
index 3 namelen 4 name: dest
item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83
location key (0 UNKNOWN.0 0) type XATTR
transid 10 data_len 37 name_len 16
name: security.selinux
data unconfined_u:object_r:unlabeled_t:s0
item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53
generation 10 type 1 (regular)
extent data disk byte 13631488 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
If we have a filesystem with 4k sectorsize, and an inlined compressed
extent created like this:
item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160
generation 8 transid 8 size 4096 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24
index 2 namelen 14 name: source_inlined
item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69
generation 8 type 0 (inline)
inline extent data size 48 ram_bytes 4096 compression 2 (lzo)
Then trying to reflink that extent in an aarch64 system with 64K page
size, the reflink would just fail:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
XFS_IOC_CLONE_RANGE: Input/output error
[CAUSE]
In zlib_decompress(), we didn't treat @start_byte as just a page offset,
but also use it as an indicator on whether we should error out, without
any proper explanation (this is from the very beginning of btrfs).
In reality, for subpage cases, although @start_byte can be non-zero,
we should never switch input/output buffer nor error out, since the whole
input/output buffer should never exceed one sector.
Note: The above assumption is only not true if we're going to support
multi-page sectorsize.
Thus the current code using @start_byte as a condition to switch
input/output buffer or finish the decompression is completely incorrect.
[FIX]
The fix involves several modifications:
- Rename @start_byte to @dest_pgoff to properly express its meaning
- Use @sectorsize other than PAGE_SIZE to properly initialize the
output buffer size
- Use correct destination offset inside the destination page
- Use memcpy_to_page() to copy the contents to the destination page
- Use memzero_page() to zero out the tailing part
- Consider early end as an error
After the fix, even on 64K page sized aarch64, above reflink now
works as expected:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
linked 4096/4096 bytes at offset 61440
And results the correct file layout:
item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160
generation 10 transid 10 size 65536 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14
index 3 namelen 4 name: dest
item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83
location key (0 UNKNOWN.0 0) type XATTR
transid 10 data_len 37 name_len 16
name: security.selinux
data unconfined_u:object_r:unlabeled_t:s0
item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53
generation 10 type 1 (regular)
extent data disk byte 13631488 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
If we have a filesystem with 4k sectorsize, and an inlined compressed
extent created like this:
item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160
generation 8 transid 8 size 4096 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24
index 2 namelen 14 name: source_inlined
item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69
generation 8 type 0 (inline)
inline extent data size 48 ram_bytes 4096 compression 1 (zlib)
Which has an inline compressed extent at file offset 0, and its
decompressed size is 4K, allowing us to reflink that 4K range to another
location (which will not be compressed).
If we do such reflink on a subpage system, it would fail like this:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
XFS_IOC_CLONE_RANGE: Input/output error
[CAUSE]
In zlib_decompress(), we didn't treat @start_byte as just a page offset,
but also use it as an indicator on whether we should switch our output
buffer.
In reality, for subpage cases, although @start_byte can be non-zero,
we should never switch input/output buffer, since the whole input/output
buffer should never exceed one sector.
Note: The above assumption is only not true if we're going to support
multi-page sectorsize.
Thus the current code using @start_byte as a condition to switch
input/output buffer or finish the decompression is completely incorrect.
[FIX]
The fix involves several modifications:
- Rename @start_byte to @dest_pgoff to properly express its meaning
- Add an extra ASSERT() inside btrfs_decompress() to make sure the
input/output size never exceeds one sector.
- Use Z_FINISH flag to make sure the decompression happens in one go
- Remove the loop needed to switch input/output buffers
- Use correct destination offset inside the destination page
- Consider early end as an error
After the fix, even on 64K page sized aarch64, above reflink now
works as expected:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
linked 4096/4096 bytes at offset 61440
And resulted a correct file layout:
item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160
generation 10 transid 10 size 65536 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14
index 3 namelen 4 name: dest
item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83
location key (0 UNKNOWN.0 0) type XATTR
transid 10 data_len 37 name_len 16
name: security.selinux
data unconfined_u:object_r:unlabeled_t:s0
item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53
generation 10 type 1 (regular)
extent data disk byte 13631488 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add extra sanity check for btrfs_ioctl_defrag_range_args::flags.
This is not really to enhance fuzzing tests, but as a preparation for
future expansion on btrfs_ioctl_defrag_range_args.
In the future we're going to add new members, allowing more fine tuning
for btrfs defrag. Without the -ENONOTSUPP error, there would be no way
to detect if the kernel supports those new defrag features.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Sweet Tea spotted a race between subvolume deletion and snapshotting
that can result in the root item for the snapshot having the
BTRFS_ROOT_SUBVOL_DEAD flag set. The race is:
Thread 1 | Thread 2
----------------------------------------------|----------
btrfs_delete_subvolume |
btrfs_set_root_flags(BTRFS_ROOT_SUBVOL_DEAD)|
|btrfs_mksubvol
| down_read(subvol_sem)
| create_snapshot
| ...
| create_pending_snapshot
| copy root item from source
down_write(subvol_sem) |
This flag is only checked in send and swap activate, which this would
cause to fail mysteriously.
create_snapshot() now checks the root refs to reject a deleted
subvolume, so we can fix this by locking subvol_sem earlier so that the
BTRFS_ROOT_SUBVOL_DEAD flag and the root refs are updated atomically.
CC: stable@vger.kernel.org # 4.14+
Reported-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs CI reported a lockdep warning as follows by running generic
generic/129.
WARNING: possible circular locking dependency detected
6.7.0-rc5+ #1 Not tainted
------------------------------------------------------
kworker/u5:5/793427 is trying to acquire lock:
ffff88813256d028 (&cache->lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x5e/0x130
but task is already holding lock:
ffff88810a23a318 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x34/0x130
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}:
...
-> #0 (&cache->lock){+.+.}-{2:2}:
...
This is because we take fs_info->zone_active_bgs_lock after a block_group's
lock in btrfs_zone_activate() while doing the opposite in other places.
Fix the issue by expanding the fs_info->zone_active_bgs_lock's critical
section and taking it before a block_group's lock.
Fixes: a7e1ac7bdc ("btrfs: zoned: reserve zones for an active metadata/system block group")
CC: stable@vger.kernel.org # 6.6
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The error path of btrfs_get_chunk_map() releases
fs_info->mapping_tree_lock. But, it is taken and released in
btrfs_find_chunk_map(). So, there is no need to do so.
Fixes: 7dc66abb5a ("btrfs: use a dedicated data structure for chunk maps")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When compiling with gcc version 14.0.0 20231220 (experimental)
and W=1, I've noticed the following warning:
fs/btrfs/send.c: In function 'btrfs_ioctl_send':
fs/btrfs/send.c:8208:44: warning: 'kvcalloc' sizes specified with 'sizeof'
in the earlier argument and not in the later argument [-Wcalloc-transposed-args]
8208 | sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
| ^
Since 'n' and 'size' arguments of 'kvcalloc()' are multiplied to
calculate the final size, their actual order doesn't affect the result
and so this is not a bug. But it's still worth to fix it.
Signed-off-by: Dmitry Antipov <dmantipov@yandex.ru>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Writing sequentially to a huge file on btrfs on a SMR HDD revealed a
decline of the performance (220 MiB/s to 30 MiB/s after 500 minutes).
The performance goes down because of increased latency of the extent
allocation, which is induced by a traversing of a lot of full block groups.
So, this patch optimizes the ffe_ctl->hint_byte by choosing a block group
with sufficient size from the active block group list, which does not
contain full block groups.
After applying the patch, the performance is maintained well.
Fixes: 2eda57089e ("btrfs: zoned: implement sequential extent allocation")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out prepare_allocation_zoned() for further extension. While at
it, optimize the if-branch a bit.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmWcIOIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpn6hD/9oO7U75PuxUwYYHZ9Uzxpw6gQ0LEmeyJmE
NQYCkfYHVq3IsgOdF7elI9v3qtr6v8V8CdB7cByrnn3DgwsMuiTKZZ0dK7vH37PO
DX+/xn349e8oH7RdRo7f3m95g1YbHfpfnj0Rc4mjTDV72Jr/HlLTVgGTQg8DEnCR
wBIFmeuBHHgeeLh87gsWLAP7ReReiy9V1uqpDFsko2/4BxRAM/8eedkwcAxD8aEy
rd+dT/SBQj2cOdQMUeExT3gWjwzHh6ZHx3f1WCLK5fdck6BogH2hBUeri6F/H98L
HoaXjBZYBTH68hB/mnO5I4g1ZlrVM74Vp7JPa3e1SFFtyEi6lsyrk2J3GoNh0E7r
pXqH5kAcaJwBsBrbRGuvEyGbn9RLTaN5Gvseud0VE4oMruyodTniQaHXuIGackgz
sMavMho4486EUWPaF7gIBdLNK1hO13w+IDZ4+3oBxhudMqdgZbk4iYpOCqQ7QY5G
2vkzAE/sZ+aVNXeaIQOI8dE5clBy8gJ+6+t8dm3DY1r1xdbcnU40iZ8/fri3h69r
vHs9bpQnVWZF0gEyEflY1pkcAPpIkvMmWCR7Ehy5YCkIfa+qfSL05o3dicpWovLP
N+gCtpkhTK2AvmUWsUMypMLRvoSOImyCIiobrr3qNBaUdgRP8xKfUa72RuRp8cGl
Vrj5oAiE3w==
=YAfp
-----END PGP SIGNATURE-----
Merge tag 'for-6.8/block-2024-01-08' of git://git.kernel.dk/linux
Pull block updates from Jens Axboe:
"Pretty quiet round this time around. This contains:
- NVMe updates via Keith:
- nvme fabrics spec updates (Guixin, Max)
- nvme target udpates (Guixin, Evan)
- nvme attribute refactoring (Daniel)
- nvme-fc numa fix (Keith)
- MD updates via Song:
- Fix/Cleanup RCU usage from conf->disks[i].rdev (Yu Kuai)
- Fix raid5 hang issue (Junxiao Bi)
- Add Yu Kuai as Reviewer of the md subsystem
- Remove deprecated flavors (Song Liu)
- raid1 read error check support (Li Nan)
- Better handle events off-by-1 case (Alex Lyakas)
- Efficiency improvements for passthrough (Kundan)
- Support for mapping integrity data directly (Keith)
- Zoned write fix (Damien)
- rnbd fixes (Kees, Santosh, Supriti)
- Default to a sane discard size granularity (Christoph)
- Make the default max transfer size naming less confusing
(Christoph)
- Remove support for deprecated host aware zoned model (Christoph)
- Misc fixes (me, Li, Matthew, Min, Ming, Randy, liyouhong, Daniel,
Bart, Christoph)"
* tag 'for-6.8/block-2024-01-08' of git://git.kernel.dk/linux: (78 commits)
block: Treat sequential write preferred zone type as invalid
block: remove disk_clear_zoned
sd: remove the !ZBC && blk_queue_is_zoned case in sd_read_block_characteristics
drivers/block/xen-blkback/common.h: Fix spelling typo in comment
blk-cgroup: fix rcu lockdep warning in blkg_lookup()
blk-cgroup: don't use removal safe list iterators
block: floor the discard granularity to the physical block size
mtd_blkdevs: use the default discard granularity
bcache: use the default discard granularity
zram: use the default discard granularity
null_blk: use the default discard granularity
nbd: use the default discard granularity
ubd: use the default discard granularity
block: default the discard granularity to sector size
bcache: discard_granularity should not be smaller than a sector
block: remove two comments in bio_split_discard
block: rename and document BLK_DEF_MAX_SECTORS
loop: don't abuse BLK_DEF_MAX_SECTORS
aoe: don't abuse BLK_DEF_MAX_SECTORS
null_blk: don't cap max_hw_sectors to BLK_DEF_MAX_SECTORS
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmWYTmMACgkQxWXV+ddt
WDvPRg/+KgS5LV3nNC0MguYcTMQxmgeutIgXZIMfeA3v6EnFS7nj8leP4EPc6+bj
JPSkwj4u2vHVwpnTVuEAuJUXnmFY+Qu70nVy6bM2uOHOYTVBQ8zRVK4cErNNLWCp
OekDaADR53RrZ/xprlQ7b7Ph0Ch2uq9OrpH50IcyquEsH1ffkxlqwyrvth4/8dxC
6zgsFHWrbtVKJf0DYoQPpjEPz5tpdQ+xHZwtmf1cNlUgI1objODr/ZTqXtZqTfw4
/GwrtDPbEri53K/qjgr0dDH7pBVqD6PtnbgoHfYkiizZ0G7UkmlaK6rZIurtATJb
Yk/RCqCUp9tPC4yeFSewFMm1Y8Ae3rkUBG7rnYkvMmBspMqyh/kQAWSBimF5yk/y
vFEdFTe9AbdvP19Nw0CqovLzaO6RrOXCL1usnFvCmBgvF5gZAv63ZW1njP3ZoNta
wB8Rs6hxdRkph8Dk7yvYf54uUR+JyKqjHY6egg2qkKTjz0CSf6qQFyFZXpr81m97
gK4WN5SeP/P2ukRbBKKyzZ5IljUxZuVatvJa0tktd7kAbU26WLzofOJ7pX+iqimM
F2G7gKGJZykLY1WPntXBp9Dg97Ras2O5iViQ7ZKwRdOx1yZS5zzTYlIznHBAmXbL
UgXfVnpJH1xFdkvedNTn+Fz9BHNV1K2a2AT7VITj7sxz23z3aJA=
=4sw3
-----END PGP SIGNATURE-----
Merge tag 'for-6.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"There are no exciting changes for users, it's been mostly API
conversions and some fixes or refactoring.
The mount API conversion is a base for future improvements that would
come with VFS. Metadata processing has been converted to folios, not
yet enabling the large folios but it's one patch away once everything
gets tested enough.
Core changes:
- convert extent buffers to folios:
- direct API conversion where possible
- performance can drop by a few percent on metadata heavy
workloads, the folio sizes are not constant and the calculations
add up in the item helpers
- both regular and subpage modes
- data cannot be converted yet, we need to port that to iomap and
there are some other generic changes required
- convert mount to the new API, should not be user visible:
- options deprecated long time ago have been removed: inode_cache,
recovery
- the new logic that splits mount to two phases slightly changes
timing of device scanning for multi-device filesystems
- LSM options will now work (like for selinux)
- convert delayed nodes radix tree to xarray, preserving the
preload-like logic that still allows to allocate with GFP_NOFS
- more validation of sysfs value of scrub_speed_max
- refactor chunk map structure, reduce size and improve performance
- extent map refactoring, smaller data structures, improved
performance
- reduce size of struct extent_io_tree, embedded in several
structures
- temporary pages used for compression are cached and attached to a
shrinker, this may slightly improve performance
- in zoned mode, remove redirty extent buffer tracking, zeros are
written in case an out-of-order is detected and proper data are
written to the actual write pointer
- cleanups, refactoring, error message improvements, updated tests
- verify and update branch name or tag
- remove unwanted text"
* tag 'for-6.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (89 commits)
btrfs: pass btrfs_io_geometry into btrfs_max_io_len
btrfs: pass struct btrfs_io_geometry to set_io_stripe
btrfs: open code set_io_stripe for RAID56
btrfs: change block mapping to switch/case in btrfs_map_block
btrfs: factor out block mapping for single profiles
btrfs: factor out block mapping for RAID5/6
btrfs: reduce scope of data_stripes in btrfs_map_block
btrfs: factor out block mapping for RAID10
btrfs: factor out block mapping for DUP profiles
btrfs: factor out RAID1 block mapping
btrfs: factor out block-mapping for RAID0
btrfs: re-introduce struct btrfs_io_geometry
btrfs: factor out helper for single device IO check
btrfs: migrate btrfs_repair_io_failure() to folio interfaces
btrfs: migrate eb_bitmap_offset() to folio interfaces
btrfs: migrate various end io functions to folios
btrfs: migrate subpage code to folio interfaces
btrfs: migrate get_eb_page_index() and get_eb_offset_in_page() to folios
btrfs: don't double put our subpage reference in alloc_extent_buffer
btrfs: cleanup metadata page pointer usage
...
are included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the
series
"maple_tree: add mt_free_one() and mt_attr() helpers"
"Some cleanups of maple tree"
- In the series "mm: use memmap_on_memory semantics for dax/kmem"
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few
fixes) in the patch series
"Add folio_zero_tail() and folio_fill_tail()"
"Make folio_start_writeback return void"
"Fix fault handler's handling of poisoned tail pages"
"Convert aops->error_remove_page to ->error_remove_folio"
"Finish two folio conversions"
"More swap folio conversions"
- Kefeng Wang has also contributed folio-related work in the series
"mm: cleanup and use more folio in page fault"
- Jim Cromie has improved the kmemleak reporting output in the
series "tweak kmemleak report format".
- In the series "stackdepot: allow evicting stack traces" Andrey
Konovalov to permits clients (in this case KASAN) to cause
eviction of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series "mm:
page_alloc: fixes for high atomic reserve caluculations".
- Dmitry Rokosov has added to the samples/ dorectory some sample
code for a userspace memcg event listener application. See the
series "samples: introduce cgroup events listeners".
- Some mapletree maintanance work from Liam Howlett in the series
"maple_tree: iterator state changes".
- Nhat Pham has improved zswap's approach to writeback in the
series "workload-specific and memory pressure-driven zswap
writeback".
- DAMON/DAMOS feature and maintenance work from SeongJae Park in
the series
"mm/damon: let users feed and tame/auto-tune DAMOS"
"selftests/damon: add Python-written DAMON functionality tests"
"mm/damon: misc updates for 6.8"
- Yosry Ahmed has improved memcg's stats flushing in the series
"mm: memcg: subtree stats flushing and thresholds".
- In the series "Multi-size THP for anonymous memory" Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series "More buffer_head
cleanups".
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
"userfaultfd move option". UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a "KSM Advisor", in the series
"mm/ksm: Add ksm advisor". This is a governor which tunes KSM's
scanning aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory
use in the series "mm/zswap: dstmem reuse optimizations and
cleanups".
- Matthew Wilcox has performed some maintenance work on the
writeback code, both code and within filesystems. The series is
"Clean up the writeback paths".
- Andrey Konovalov has optimized KASAN's handling of alloc and
free stack traces for secondary-level allocators, in the series
"kasan: save mempool stack traces".
- Andrey also performed some KASAN maintenance work in the series
"kasan: assorted clean-ups".
- David Hildenbrand has gone to town on the rmap code. Cleanups,
more pte batching, folio conversions and more. See the series
"mm/rmap: interface overhaul".
- Kinsey Ho has contributed some maintenance work on the MGLRU
code in the series "mm/mglru: Kconfig cleanup".
- Matthew Wilcox has contributed lruvec page accounting code
cleanups in the series "Remove some lruvec page accounting
functions".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA
jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27
Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU=
=0NHs
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the series
'maple_tree: add mt_free_one() and mt_attr() helpers'
'Some cleanups of maple tree'
- In the series 'mm: use memmap_on_memory semantics for dax/kmem'
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few fixes)
in the patch series
'Add folio_zero_tail() and folio_fill_tail()'
'Make folio_start_writeback return void'
'Fix fault handler's handling of poisoned tail pages'
'Convert aops->error_remove_page to ->error_remove_folio'
'Finish two folio conversions'
'More swap folio conversions'
- Kefeng Wang has also contributed folio-related work in the series
'mm: cleanup and use more folio in page fault'
- Jim Cromie has improved the kmemleak reporting output in the series
'tweak kmemleak report format'.
- In the series 'stackdepot: allow evicting stack traces' Andrey
Konovalov to permits clients (in this case KASAN) to cause eviction
of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series 'mm:
page_alloc: fixes for high atomic reserve caluculations'.
- Dmitry Rokosov has added to the samples/ dorectory some sample code
for a userspace memcg event listener application. See the series
'samples: introduce cgroup events listeners'.
- Some mapletree maintanance work from Liam Howlett in the series
'maple_tree: iterator state changes'.
- Nhat Pham has improved zswap's approach to writeback in the series
'workload-specific and memory pressure-driven zswap writeback'.
- DAMON/DAMOS feature and maintenance work from SeongJae Park in the
series
'mm/damon: let users feed and tame/auto-tune DAMOS'
'selftests/damon: add Python-written DAMON functionality tests'
'mm/damon: misc updates for 6.8'
- Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
memcg: subtree stats flushing and thresholds'.
- In the series 'Multi-size THP for anonymous memory' Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series 'More buffer_head
cleanups'.
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
Add ksm advisor'. This is a governor which tunes KSM's scanning
aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory use
in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.
- Matthew Wilcox has performed some maintenance work on the writeback
code, both code and within filesystems. The series is 'Clean up the
writeback paths'.
- Andrey Konovalov has optimized KASAN's handling of alloc and free
stack traces for secondary-level allocators, in the series 'kasan:
save mempool stack traces'.
- Andrey also performed some KASAN maintenance work in the series
'kasan: assorted clean-ups'.
- David Hildenbrand has gone to town on the rmap code. Cleanups, more
pte batching, folio conversions and more. See the series 'mm/rmap:
interface overhaul'.
- Kinsey Ho has contributed some maintenance work on the MGLRU code
in the series 'mm/mglru: Kconfig cleanup'.
- Matthew Wilcox has contributed lruvec page accounting code cleanups
in the series 'Remove some lruvec page accounting functions'"
* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
mm, treewide: introduce NR_PAGE_ORDERS
selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
selftests/mm: skip test if application doesn't has root privileges
selftests/mm: conform test to TAP format output
selftests: mm: hugepage-mmap: conform to TAP format output
selftests/mm: gup_test: conform test to TAP format output
mm/selftests: hugepage-mremap: conform test to TAP format output
mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
mm/memcontrol: remove __mod_lruvec_page_state()
mm/khugepaged: use a folio more in collapse_file()
slub: use a folio in __kmalloc_large_node
slub: use folio APIs in free_large_kmalloc()
slub: use alloc_pages_node() in alloc_slab_page()
mm: remove inc/dec lruvec page state functions
mm: ratelimit stat flush from workingset shrinker
kasan: stop leaking stack trace handles
mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
mm/mglru: add dummy pmd_dirty()
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZZUzXQAKCRCRxhvAZXjc
ogOtAQDpqUp1zY4dV/dZisCJ5xarZTsSZ1AvgmcxZBtS0NhbdgEAshWvYGA9ryS/
ChL5jjtjjZDLhRA//reoFHTQIrdp2w8=
=bF+R
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.8.rw' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs rw updates from Christian Brauner:
"This contains updates from Amir for read-write backing file helpers
for stacking filesystems such as overlayfs:
- Fanotify is currently in the process of introducing pre content
events. Roughly, a new permission event will be added indicating
that it is safe to write to the file being accessed. These events
are used by hierarchical storage managers to e.g., fill the content
of files on first access.
During that work we noticed that our current permission checking is
inconsistent in rw_verify_area() and remap_verify_area().
Especially in the splice code permission checking is done multiple
times. For example, one time for the whole range and then again for
partial ranges inside the iterator.
In addition, we mostly do permission checking before we call
file_start_write() except for a few places where we call it after.
For pre-content events we need such permission checking to be done
before file_start_write(). So this is a nice reason to clean this
all up.
After this series, all permission checking is done before
file_start_write().
As part of this cleanup we also massaged the splice code a bit. We
got rid of a few helpers because we are alredy drowning in special
read-write helpers. We also cleaned up the return types for splice
helpers.
- Introduce generic read-write helpers for backing files. This lifts
some overlayfs code to common code so it can be used by the FUSE
passthrough work coming in over the next cycles. Make Amir and
Miklos the maintainers for this new subsystem of the vfs"
* tag 'vfs-6.8.rw' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (30 commits)
fs: fix __sb_write_started() kerneldoc formatting
fs: factor out backing_file_mmap() helper
fs: factor out backing_file_splice_{read,write}() helpers
fs: factor out backing_file_{read,write}_iter() helpers
fs: prepare for stackable filesystems backing file helpers
fsnotify: optionally pass access range in file permission hooks
fsnotify: assert that file_start_write() is not held in permission hooks
fsnotify: split fsnotify_perm() into two hooks
fs: use splice_copy_file_range() inline helper
splice: return type ssize_t from all helpers
fs: use do_splice_direct() for nfsd/ksmbd server-side-copy
fs: move file_start_write() into direct_splice_actor()
fs: fork splice_file_range() from do_splice_direct()
fs: create {sb,file}_write_not_started() helpers
fs: create file_write_started() helper
fs: create __sb_write_started() helper
fs: move kiocb_start_write() into vfs_iocb_iter_write()
fs: move permission hook out of do_iter_read()
fs: move permission hook out of do_iter_write()
fs: move file_start_write() into vfs_iter_write()
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZZUx4wAKCRCRxhvAZXjc
osaNAQC/c+xXVfiq/pFbuK9MQLna4RGZaGcG9k312YniXbHq0AD9HAf4aPcZwPy1
/wkD4pauj3UZ3f0xBSyazGBvAXyN0Qc=
=iFAQ
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.8.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs super updates from Christian Brauner:
"This contains the super work for this cycle including the long-awaited
series by Jan to make it possible to prevent writing to mounted block
devices:
- Writing to mounted devices is dangerous and can lead to filesystem
corruption as well as crashes. Furthermore syzbot comes with more
and more involved examples how to corrupt block device under a
mounted filesystem leading to kernel crashes and reports we can do
nothing about. Add tracking of writers to each block device and a
kernel cmdline argument which controls whether other writeable
opens to block devices open with BLK_OPEN_RESTRICT_WRITES flag are
allowed.
Note that this effectively only prevents modification of the
particular block device's page cache by other writers. The actual
device content can still be modified by other means - e.g. by
issuing direct scsi commands, by doing writes through devices lower
in the storage stack (e.g. in case loop devices, DM, or MD are
involved) etc. But blocking direct modifications of the block
device page cache is enough to give filesystems a chance to perform
data validation when loading data from the underlying storage and
thus prevent kernel crashes.
Syzbot can use this cmdline argument option to avoid uninteresting
crashes. Also users whose userspace setup does not need writing to
mounted block devices can set this option for hardening. We expect
that this will be interesting to quite a few workloads.
Btrfs is currently opted out of this because they still haven't
merged patches we require for this to work from three kernel
releases ago.
- Reimplement block device freezing and thawing as holder operations
on the block device.
This allows us to extend block device freezing to all devices
associated with a superblock and not just the main device. It also
allows us to remove get_active_super() and thus another function
that scans the global list of superblocks.
Freezing via additional block devices only works if the filesystem
chooses to use @fs_holder_ops for these additional devices as well.
That currently only includes ext4 and xfs.
Earlier releases switched get_tree_bdev() and mount_bdev() to use
@fs_holder_ops. The remaining nilfs2 open-coded version of
mount_bdev() has been converted to rely on @fs_holder_ops as well.
So block device freezing for the main block device will continue to
work as before.
There should be no regressions in functionality. The only special
case is btrfs where block device freezing for the main block device
never worked because sb->s_bdev isn't set. Block device freezing
for btrfs can be fixed once they can switch to @fs_holder_ops but
that can happen whenever they're ready"
* tag 'vfs-6.8.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (27 commits)
block: Fix a memory leak in bdev_open_by_dev()
super: don't bother with WARN_ON_ONCE()
super: massage wait event mechanism
ext4: Block writes to journal device
xfs: Block writes to log device
fs: Block writes to mounted block devices
btrfs: Do not restrict writes to btrfs devices
block: Add config option to not allow writing to mounted devices
block: Remove blkdev_get_by_*() functions
bcachefs: Convert to bdev_open_by_path()
fs: handle freezing from multiple devices
fs: remove dead check
nilfs2: simplify device handling
fs: streamline thaw_super_locked
ext4: simplify device handling
xfs: simplify device handling
fs: simplify setup_bdev_super() calls
blkdev: comment fs_holder_ops
porting: document block device freeze and thaw changes
fs: remove unused helper
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZZUxRQAKCRCRxhvAZXjc
ov/QAQDzvge3oQ9MEymmOiyzzcF+HhAXBr+9oEsYJjFc1p0TsgEA61gXjZo7F1jY
KBqd6znOZCR+Waj0kIVJRAo/ISRBqQc=
=0bRl
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.8.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull misc vfs updates from Christian Brauner:
"This contains the usual miscellaneous features, cleanups, and fixes
for vfs and individual fses.
Features:
- Add Jan Kara as VFS reviewer
- Show correct device and inode numbers in proc/<pid>/maps for vma
files on stacked filesystems. This is now easily doable thanks to
the backing file work from the last cycles. This comes with
selftests
Cleanups:
- Remove a redundant might_sleep() from wait_on_inode()
- Initialize pointer with NULL, not 0
- Clarify comment on access_override_creds()
- Rework and simplify eventfd_signal() and eventfd_signal_mask()
helpers
- Process aio completions in batches to avoid needless wakeups
- Completely decouple struct mnt_idmap from namespaces. We now only
keep the actual idmapping around and don't stash references to
namespaces
- Reformat maintainer entries to indicate that a given subsystem
belongs to fs/
- Simplify fput() for files that were never opened
- Get rid of various pointless file helpers
- Rename various file helpers
- Rename struct file members after SLAB_TYPESAFE_BY_RCU switch from
last cycle
- Make relatime_need_update() return bool
- Use GFP_KERNEL instead of GFP_USER when allocating superblocks
- Replace deprecated ida_simple_*() calls with their current ida_*()
counterparts
Fixes:
- Fix comments on user namespace id mapping helpers. They aren't
kernel doc comments so they shouldn't be using /**
- s/Retuns/Returns/g in various places
- Add missing parameter documentation on can_move_mount_beneath()
- Rename i_mapping->private_data to i_mapping->i_private_data
- Fix a false-positive lockdep warning in pipe_write() for watch
queues
- Improve __fget_files_rcu() code generation to improve performance
- Only notify writer that pipe resizing has finished after setting
pipe->max_usage otherwise writers are never notified that the pipe
has been resized and hang
- Fix some kernel docs in hfsplus
- s/passs/pass/g in various places
- Fix kernel docs in ntfs
- Fix kcalloc() arguments order reported by gcc 14
- Fix uninitialized value in reiserfs"
* tag 'vfs-6.8.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (36 commits)
reiserfs: fix uninit-value in comp_keys
watch_queue: fix kcalloc() arguments order
ntfs: dir.c: fix kernel-doc function parameter warnings
fs: fix doc comment typo fs tree wide
selftests/overlayfs: verify device and inode numbers in /proc/pid/maps
fs/proc: show correct device and inode numbers in /proc/pid/maps
eventfd: Remove usage of the deprecated ida_simple_xx() API
fs: super: use GFP_KERNEL instead of GFP_USER for super block allocation
fs/hfsplus: wrapper.c: fix kernel-doc warnings
fs: add Jan Kara as reviewer
fs/inode: Make relatime_need_update return bool
pipe: wakeup wr_wait after setting max_usage
file: remove __receive_fd()
file: stop exposing receive_fd_user()
fs: replace f_rcuhead with f_task_work
file: remove pointless wrapper
file: s/close_fd_get_file()/file_close_fd()/g
Improve __fget_files_rcu() code generation (and thus __fget_light())
file: massage cleanup of files that failed to open
fs/pipe: Fix lockdep false-positive in watchqueue pipe_write()
...
When zones were first added the SCSI and ATA specs, two different
models were supported (in addition to the drive managed one that
is invisible to the host):
- host managed where non-conventional zones there is strict requirement
to write at the write pointer, or else an error is returned
- host aware where a write point is maintained if writes always happen
at it, otherwise it is left in an under-defined state and the
sequential write preferred zones behave like conventional zones
(probably very badly performing ones, though)
Not surprisingly this lukewarm model didn't prove to be very useful and
was finally removed from the ZBC and SBC specs (NVMe never implemented
it). Due to to the easily disappearing write pointer host software
could never rely on the write pointer to actually be useful for say
recovery.
Fortunately only a few HDD prototypes shipped using this model which
never made it to mass production. Drop the support before it is too
late. Note that any such host aware prototype HDD can still be used
with Linux as we'll now treat it as a conventional HDD.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20231217165359.604246-4-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmV/Kr0ACgkQxWXV+ddt
WDveXA/+N3y74uafOZI8Bh4PtHuArgjdHsbQVO0Oev5j4dFyDbrz0D84YqGxfB1X
GFQzbv01xuyvuJfXQ5Pyfnqt/N/K4ZDGg6kkYR2MC9T3LOGZFv5kyTSFbj2q0Qy7
3K+xolPmk34DBjipCKi5kV7wo2xLxqpnzs5oYZzwfaSRig+GuG30u/levADc7uG/
fcnVbvf2Vz8YgIe/62RkZc7jWQrhjGPyrTVN5pj75+o2Up7iKM63F2eOTcTj/Fqk
RMWBuDNSEiYBm6SPUwpBJ7r6NHbKuXbtbceelsOD36wL4i+lZGOhM/8Tlw/6U2Ks
JxRkezDn62NiwZKd9d7po1AKPziFOdXjqhc3tZIFjR0xSgsjFFFrI6Qig/BURlbx
L70c+dqojYpQvGndr9+wPxdEyUigAiCP7y7eym4yegY+93W/UXSjMGAUxCPKkgpL
FUUB5HBIn2P3KeJGidu2NRWW85163ISEASUcyhcLA1hd5LThWbdyXxWO19lG6foH
lLg0U0LJ+2HSB6FjW9+GKFTzT8/90nmz5ap7N/Vl3xENz0KXgFuDXx76bvW8Yj1E
t8hrtXEMD+RaTZI7OFYpSEtmD5zeoJx48FLalwlEblHHbMcgPsLTfiBLA4GR3VHa
vMn3mRrCowyOYoUljZm1aS1sWPwk+VT3gBpxDSQermYjT7x40Tc=
=HN3b
-----END PGP SIGNATURE-----
Merge tag 'for-6.7-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"One more fix that verifies that the snapshot source is a root, same
check is also done in user space but should be done by the ioctl as
well"
* tag 'for-6.7-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: do not allow non subvolume root targets for snapshot
Our btrfs subvolume snapshot <source> <destination> utility enforces
that <source> is the root of the subvolume, however this isn't enforced
in the kernel. Update the kernel to also enforce this limitation to
avoid problems with other users of this ioctl that don't have the
appropriate checks in place.
Reported-by: Martin Michaelis <code@mgjm.de>
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of passing three individual members of 'struct btrfs_io_geometry'
into btrfs_max_io_len(), pass a pointer to btrfs_io_geometry.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of passing three members of 'struct btrfs_io_geometry' into
set_io_stripe() pass a pointer to the whole structure and then get the needed
members out of btrfs_io_geometry.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Open code set_io_stripe() for RAID56, as it
a) uses a different method to calculate the stripe_index
b) doesn't need to go through raid-stripe-tree mapping code.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all the per-profile if/else statement blocks have been
converted to calls to helper the conversion to switch/case is
straightforward.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a container for the I/O geometry that has all the needed
information for the block mappings of SINGLE profiles, factor out a helper
calculating this information.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a container for the I/O geometry that has all the needed
information for the block mappings of RAID5 and RAID6, factor out a helper
calculating this information.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reduce the scope of 'data_stripes' in btrfs_map_block(). While the
change alone may not make too much sense, it helps us factoring out a
helper function for the block mapping of RAID56 I/O.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a container for the I/O geometry that has all the needed
information for the block mappings of RAID10, factor out a helper calculating
this information.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a container for the I/O geometry that has all the needed
information for the block mappings of DUP, factor out a helper calculating
this information.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a container for the I/O geometry that has all the needed
information for the block mappings of RAID1, factor out a helper calculating
this information.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have a container for the I/O geometry that has all the needed
information for the block mappings of RAID0, factor out a helper calculating
this information.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Re-introduce struct btrfs_io_geometry, holding the necessary bits and
pieces needed in btrfs_map_block() to decide the I/O geometry of a specific
block mapping.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The check in btrfs_map_block() deciding if a particular I/O is targeting a
single device is getting more and more convoluted.
Factor out the check conditions into a helper function, with no functional
change otherwise.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Test case btrfs/124 failed if larger metadata folio is enabled, the
dying message looks like this:
BTRFS error (device dm-2): bad tree block start, mirror 2 want 31686656 have 0
BTRFS info (device dm-2): read error corrected: ino 0 off 31686656 (dev /dev/mapper/test-scratch2 sector 20928)
BUG: kernel NULL pointer dereference, address: 0000000000000020
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
CPU: 6 PID: 350881 Comm: btrfs Tainted: G OE 6.7.0-rc3-custom+ #128
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022
RIP: 0010:btrfs_read_extent_buffer+0x106/0x180 [btrfs]
PKRU: 55555554
Call Trace:
<TASK>
read_tree_block+0x33/0xb0 [btrfs]
read_block_for_search+0x23e/0x340 [btrfs]
btrfs_search_slot+0x2f9/0xe60 [btrfs]
btrfs_lookup_csum+0x75/0x160 [btrfs]
btrfs_lookup_bio_sums+0x21a/0x560 [btrfs]
btrfs_submit_chunk+0x152/0x680 [btrfs]
btrfs_submit_bio+0x1c/0x50 [btrfs]
submit_one_bio+0x40/0x80 [btrfs]
submit_extent_page+0x158/0x390 [btrfs]
btrfs_do_readpage+0x330/0x740 [btrfs]
extent_readahead+0x38d/0x6c0 [btrfs]
read_pages+0x94/0x2c0
page_cache_ra_unbounded+0x12d/0x190
relocate_file_extent_cluster+0x7c1/0x9d0 [btrfs]
relocate_block_group+0x2d3/0x560 [btrfs]
btrfs_relocate_block_group+0x2c7/0x4b0 [btrfs]
btrfs_relocate_chunk+0x4c/0x1a0 [btrfs]
btrfs_balance+0x925/0x13c0 [btrfs]
btrfs_ioctl+0x19f1/0x25d0 [btrfs]
__x64_sys_ioctl+0x90/0xd0
do_syscall_64+0x3f/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
[CAUSE]
The dying line is at btrfs_repair_io_failure() call inside
btrfs_repair_eb_io_failure().
The function is still relying on the extent buffer using page sized
folios.
When the extent buffer is using larger folio, we go into the 2nd slot of
folios[], and triggered the NULL pointer dereference.
[FIX]
Migrate btrfs_repair_io_failure() to folio interfaces.
So that when we hit a larger folio, we just submit the whole folio in
one go.
This also affects data repair path through btrfs_end_repair_bio(),
thankfully data is still fully page based, we can just add an
ASSERT(), and use page_folio() to convert the page to folio.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Test case btrfs/002 would fail if larger folios are enabled for
metadata:
assertion failed: folio, in fs/btrfs/extent_io.c:4358
------------[ cut here ]------------
kernel BUG at fs/btrfs/extent_io.c:4358!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 30916 Comm: fsstress Tainted: G OE 6.7.0-rc3-custom+ #128
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022
RIP: 0010:assert_eb_folio_uptodate+0x98/0xe0 [btrfs]
Call Trace:
<TASK>
extent_buffer_test_bit+0x3c/0x70 [btrfs]
free_space_test_bit+0xcd/0x140 [btrfs]
modify_free_space_bitmap+0x27a/0x430 [btrfs]
add_to_free_space_tree+0x8d/0x160 [btrfs]
__btrfs_free_extent.isra.0+0xef1/0x13c0 [btrfs]
__btrfs_run_delayed_refs+0x786/0x13c0 [btrfs]
btrfs_run_delayed_refs+0x33/0x120 [btrfs]
btrfs_commit_transaction+0xa2/0x1350 [btrfs]
iterate_supers+0x77/0xe0
ksys_sync+0x60/0xa0
__do_sys_sync+0xa/0x20
do_syscall_64+0x3f/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
</TASK>
[CAUSE]
The function extent_buffer_test_bit() is not folio compatible.
It still assumes the old fixed page size, when an extent buffer with
large folio passed in, only eb->folios[0] is populated.
Then if the target bit range falls in the 2nd page of the folio, then we
would check eb->folios[1], and trigger the ASSERT().
[FIX]
Just migrate eb_bitmap_offset() to folio interfaces, using the
folio_size() to replace PAGE_SIZE.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we still go the old page based iterator functions, like
bio_for_each_segment_all(), we can hit middle pages of a folio (compound
page).
In that case if we set any page flag on those middle pages, we can
easily trigger VM_BUG_ON(), as for compound page flags, they should
follow their flag policies (normally only set on leading or tail pages).
To avoid such problem in the future full folio migration, here we do:
- Change from bio_for_each_segment_all() to bio_for_each_folio_all()
This completely removes the ability to access the middle page.
- Add extra ASSERT()s for data read/write paths
To ensure we only get single paged folio for data now.
- Rename those end io functions to follow a certain schema
* end_bbio_compressed_read()
* end_bbio_compressed_write()
These two endio functions don't set any page flags, as they use pages
not mapped to any address space.
They can be very good candidates for higher order folio testing.
And they are shared between compression and encoded IO.
* end_bbio_data_read()
* end_bbio_data_write()
* end_bbio_meta_read()
* end_bbio_meta_write()
The old function names are not unified:
- end_bio_extent_writepage()
- end_bio_extent_readpage()
- extent_buffer_write_end_io()
- extent_buffer_read_end_io()
They share no schema on where the "end_*io" string should be, nor can
be confusing just using "extent_buffer" and "extent" to distinguish
data and metadata paths.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although subpage itself is conflicting with higher folio, since subpage
(sectorsize < PAGE_SIZE and nodesize < PAGE_SIZE) means we will never
need higher order folio, there is a hidden pitfall:
- btrfs_page_*() helpers
Those helpers are an abstraction to handle both subpage and non-subpage
cases, which means we're going to pass pages pointers to those helpers.
And since those helpers are shared between data and metadata paths, it's
unavoidable to let them to handle folios, including higher order
folios).
Meanwhile for true subpage case, we should only have a single page
backed folios anyway, thus add a new ASSERT() for btrfs_subpage_assert()
to ensure that.
Also since those helpers are shared between both data and metadata, add
some extra ASSERT()s for data path to make sure we only get single page
backed folio for now.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These two functions are still using the old page based code, which is
not going to handle larger folios at all.
The migration itself is going to involve the following changes:
- PAGE_SIZE -> folio_size()
- PAGE_SHIFT -> folio_shift()
- get_eb_page_index() -> get_eb_folio_index()
- get_eb_offset_in_page() -> get_eb_offset_in_folio()
And since we're going to support larger folios, although above straight
conversion is good enough, this patch would add extra comments in the
involved functions to explain why the same single line code can now
cover 3 cases:
- folio_size == PAGE_SIZE, sectorsize == PAGE_SIZE, nodesize >= PAGE_SIZE
The common, non-subpage case with per-page folio.
- folio_size > PAGE_SIZE, sectorsize == PAGE_SIZE, nodesize >= PAGE_SIZE
The incoming larger folio, non-subpage case.
- folio_size == PAGE_SIZE, sectorsize < PAGE_SIZE, nodesize < PAGE_SIZE
The existing subpage case, we won't larger folio anyway.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes as case in "btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method".
We have been seeing panics in the CI for the subpage stuff recently, it
happens on btrfs/187 but could potentially happen anywhere.
In the subpage case, if we race with somebody else inserting the same
extent buffer, the error case will end up calling
detach_extent_buffer_page() on the page twice.
This is done first in the bit
for (int i = 0; i < attached; i++)
detach_extent_buffer_page(eb, eb->pages[i];
and then again in btrfs_release_extent_buffer().
This works fine for !subpage because we're the only person who ever has
ourselves on the private, and so when we do the initial
detach_extent_buffer_page() we know we've completely removed it.
However for subpage we could be using this page private elsewhere, so
this results in a double put on the subpage, which can result in an
early freeing.
The fix here is to clear eb->pages[i] for everything we detach. Then
anything still attached to the eb is freed in
btrfs_release_extent_buffer().
Because of this change we must update
btrfs_release_extent_buffer_pages() to not use num_extent_folios,
because it assumes eb->folio[0] is set properly. Since this is only
interested in freeing any pages we have on the extent buffer we can
simply use INLINE_EXTENT_BUFFER_PAGES.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although we have migrated extent_buffer::pages[] to folios[], we're
still mostly using the folio_page() help to grab the page.
This patch would do the following cleanups for metadata:
- Introduce num_extent_folios() helper
This is to replace most num_extent_pages() callers.
- Use num_extent_folios() to iterate future large folios
This allows us to use things like
bio_add_folio()/bio_add_folio_nofail(), and only set the needed flags
for the folio (aka the leading/tailing page), which reduces the loop
iteration to 1 for large folios.
- Change metadata related functions to use folio pointers
Including their function name, involving:
* attach_extent_buffer_page()
* detach_extent_buffer_page()
* page_range_has_eb()
* btrfs_release_extent_buffer_pages()
* btree_clear_page_dirty()
* btrfs_page_inc_eb_refs()
* btrfs_page_dec_eb_refs()
- Change btrfs_is_subpage() to accept an address_space pointer
This is to allow both page->mapping and folio->mapping to be utilized.
As data is still using the old per-page code, and may keep so for a
while.
- Special corner case place holder for future order mismatches between
extent buffer and inode filemap
For now it's just a block of comments and a dead ASSERT(), no real
handling yet.
The subpage code would still go page, just because subpage and large
folio are conflicting conditions, thus we don't need to bother subpage
with higher order folios at all. Just folio_page(folio, 0) would be
enough.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor styling tweaks ]
Signed-off-by: David Sterba <dsterba@suse.com>
For now extent_buffer::pages[] are still only accepting single page
pointer, thus we can migrate to folios pretty easily.
As for single page, page and folio are 1:1 mapped, including their page
flags.
This patch would just do the conversion from struct page to struct
folio, providing the first step to higher order folio in the future.
This conversion is pretty simple:
- extent_buffer::pages[] -> extent_buffer::folios[]
- page_address(eb->pages[i]) -> folio_address(eb->pages[i])
- eb->pages[i] -> folio_page(eb->folios[i], 0)
There would be more specific cleanups preparing for the incoming higher
order folio support.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently alloc_extent_buffer() utilizes find_or_create_page() to
allocate one page a time for an extent buffer.
This method has the following disadvantages:
- find_or_create_page() is the legacy way of allocating new pages
With the new folio infrastructure, find_or_create_page() is just
redirected to filemap_get_folio().
- Lacks the way to support higher order (order >= 1) folios
As we can not yet let filemap give us a higher order folio.
This patch would change the workflow by the following way:
Old | new
-----------------------------------+-------------------------------------
| ret = btrfs_alloc_page_array();
for (i = 0; i < num_pages; i++) { | for (i = 0; i < num_pages; i++) {
p = find_or_create_page(); | ret = filemap_add_folio();
/* Attach page private */ | /* Reuse page cache if needed */
/* Reused eb if needed */ |
| /* Attach page private and
| reuse eb if needed */
| }
By this we split the page allocation and private attaching into two
parts, allowing future updates to each part more easily, and migrate to
folio interfaces (especially for possible higher order folios).
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The value set as scrub_speed_max accepts size with suffixes
(k/m/g/t/p/e) but we should still validate it for trailing characters,
similar to what we do with chunk_size_store.
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: David Disseldorp <ddiss@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The radix-tree has been superseded by the xarray
(https://lwn.net/Articles/745073), this patch converts the
btrfs_root::delayed_nodes, the APIs are used in a simple way.
First idea is to do xa_insert() but this would require GFP_ATOMIC
allocation which we want to avoid if possible. The preload mechanism of
radix-tree can be emulated within the xarray API.
- xa_reserve() with GFP_NOFS outside of the lock, the reserved entry
is inserted atomically at most once
- xa_store() under a lock, in case something races in we can detect that
and xa_load() returns a valid pointer
All uses of xa_load() must check for a valid pointer in case they manage
to get between the xa_reserve() and xa_store(), this is handled in
btrfs_get_delayed_node().
Otherwise the functionality is equivalent, xarray implements the
radix-tree and there should be no performance difference.
The patch continues the efforts started in 253bf57555 ("btrfs: turn
delayed_nodes_tree into an XArray") and fixes the problems with locking
and GFP flags 088aea3b97 ("Revert "btrfs: turn delayed_nodes_tree
into an XArray"").
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The definition for btrfs_get_extent() is using "u64 end" as the last
parameter, but in implementation we go "u64 len", and all call sites
follows the implementation.
This can be very confusing during development, as most developers
including me, would just use the snippet returned by LSP (clangd in my
case), which would only check the definition.
Unfortunately this mismatch is introduced from the very beginning of
btrfs.
Fix it to prevent further confusion.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, in struct extent_map, we use an unsigned int (32 bits) to
identify the compression type of an extent and an unsigned long (64 bits
on a 64 bits platform, 32 bits otherwise) for flags. We are only using
6 different flags, so an unsigned long is excessive and we can use flags
to identify the compression type instead of using a dedicated 32 bits
field.
We can easily have tens or hundreds of thousands (or more) of extent maps
on busy and large filesystems, specially with compression enabled or many
or large files with tons of small extents. So it's convenient to have the
extent_map structure as small as possible in order to use less memory.
So remove the compression type field from struct extent_map, use flags
to identify the compression type and shorten the flags field from an
unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and
reduces the size of the structure from 136 bytes down to 128 bytes, using
now only two cache lines, and increases the number of extent maps we can
have per 4K page from 30 to 32. By using a u32 for the flags instead of
an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(),
but that level of atomicity is not needed as most flags are never cleared
once set (before adding an extent map to the tree), and the ones that can
be cleared or set after an extent map is added to the tree, are always
performed while holding the write lock on the extent map tree, while the
reader holds a lock on the tree or tests for a flag that never changes
once the extent map is in the tree (such as compression flags).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At mergable_maps() instead of having a single if statement with many
ORed and ANDed conditions, refactor it with multiple if statements that
check a single condition and return immediately once a requirement fails.
This makes it easier to read.
Also change the return type from int to bool, make the arguments const
and rename the function from mergable_maps() to mergeable_maps().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent map pointer argument for extent_map_end() can be const as we
are not modifyng anything in the extent map. So make it const, as it will
allow further changes to callers that have a const extent map pointer.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When trying to merge an extent map that was just inserted or unpinned, we
will try to merge it with any adjacent extent map that is suitable.
However we will only check if our extent map is mergeable after searching
for the previous and next extent maps in the rbtree, meaning that we are
doing unnecessary calls to rb_prev() and rb_next() in case our extent map
is not mergeable (it's compressed, in the list of modifed extents, being
logged or pinned), wasting CPU time chasing rbtree pointers and pulling
in unnecessary cache lines.
So change the logic to check first if an extent map is mergeable before
searching for the next and previous extent maps in the rbtree.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At unpin_extent_range() we trigger a WARN_ON() when we don't find an
extent map or we find one with a start offset not matching the start
offset of the target range. This however isn't very useful for debugging
because:
1) We don't know which condition was triggered, as they are both in the
same WARN_ON() call;
2) We don't know which inode was affected, from which root, for which
range, what's the start offset of the extent map, and so on.
So trigger a separate warning for each case and log a message for each
case providing information about the inode, its root, the target range,
the generation and the start offset of the extent map we found.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_add_extent_mapping(), in case add_extent_mapping() returned
-EEXIST, it's pointless to assign 0 to 'ret' since we will assign a value
to it shortly after, without 'ret' being used before that. So remove that
pointless assignment.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to export add_extent_mapping(), as it's only used inside
extent_map.c and in the self tests. For the tests we can use instead
btrfs_add_extent_mapping(), which will accomplish exactly the same as we
don't expect collisions in any of them. So unexport it and make the tests
use btrfs_add_extent_mapping() instead of add_extent_mapping().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some error messages of the extent map tests print decimal values of start
offsets and lengths, while other are oddly printing in hexadecimal, which
is far less human friendly, specially taking into consideration that all
the values are small and multiples of 4K, so it's a lot easier to read
them as decimal values. Change the format specifiers to print as decimal
instead.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Several of the extent map tests call btrfs_add_extent_mapping() which is
supposed to succeed and return an extent map through the pointer to
pointer argument. However the tests are deliberately ignoring a NULL
extent map, which is not expected to happen. So change the tests to error
out if a NULL extent map is found.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In test case 4 for extent maps, if we error out we are supposed to print
in interval but instead of printing a non-inclusive end offset, we are
printing the length of the interval, which makes it confusing. So fix
that to print the exclusive end offset instead.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When setting up a new extent map, at setup_extent_mapping(), we're doing
a list move operation to add the extent map the tree's list of modified
extents. This is confusing because at this point the extent map can not
be in any list, because it's a new extent map. So replace the list move
with a list add and add an assertion that checks that the extent map is
not currently in any list.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The file_extent_tree was added in 41a2ee75aa ("btrfs: introduce
per-inode file extent tree") so we have an explicit mapping of the file
extents to know where it is safe to update i_size. When the feature
NO_HOLES is enabled, and it's been a mkfs default since 5.15, the tree
is not necessary.
To save some space in the inode, allocate the tree only when necessary.
This reduces size by 16 bytes from 1096 to 1080 on a x86_64 release
config.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When profiling a workload I noticed we were constantly calling getxattr.
These were mostly coming from __remove_privs, which will lookup if
security.capability exists to remove it. However instrumenting getxattr
showed we get called nearly constantly on an idle machine on a lot of
accesses.
These are wasteful and not free. Other security LSMs have a way to
cache their results, but capability doesn't have this, so it's asking us
all the time for the xattr.
Fix this by setting a flag in our inode that it doesn't have a
security.capability xattr. We set this on new inodes and after a failed
lookup of security.capability. If we set this xattr at all we'll clear
the flag.
I haven't found a test in fsperf that this makes a visible difference
on, but I assume fs_mark related tests would show it clearly. This is a
perf report output of the smallfiles100k run where it shows 20% of our
time spent in __remove_privs because we're looking up the non-existent
xattr.
--21.86%--btrfs_write_check.constprop.0
--21.62%--__file_remove_privs
--21.55%--security_inode_need_killpriv
--21.54%--cap_inode_need_killpriv
--21.53%--__vfs_getxattr
--20.89%--btrfs_getxattr
Obviously this is just CPU time in a mostly IO bound test, so the actual
effect of removing this callchain is minimal. However in just normal
testing of an idle system tracing showed around 100 getxattr calls per
minute, and with this patch there are 0.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We've deprecated these a while ago in 5.11, go ahead and remove the code
for them.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're currently setting this when we try to load the roots and we see
that usebackuproot is set. Instead set this at mount option parsing
time.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no reason this has to happen in open_ctree, and in fact in the
old mount API we had to call this from remount. Move this to super.c,
unexport it, and call it from both mount and reconfigure.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we've switched to the new mount API, remove the old stuff.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We add these mount options based on the fs_devices settings, which can
be set once we've opened the fs_devices. Move these into their own
helper and call it from get_tree_super.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have all of the parts in place to use the new mount API,
switch our fs_type to use the new callbacks.
There are a few things that have to be done at the same time because of
the order of operations changes that come along with the new mount API.
These must be done in the same patch otherwise things will go wrong.
1. Export and use btrfs_check_options in open_ctree(). This is because
the options are done ahead of time, and we need to check them once we
have the feature flags loaded.
2. Update the free space cache settings. Since we're coming in with the
options already set we need to make sure we don't undo what the user
has asked for.
3. Set our sb_flags at init_fs_context time, the fs_context stuff is
trying to manage the sb_flagss itself, so move that into
init_fs_context and out of the fill super part.
Additionally I've marked the unused functions with __maybe_unused and
will remove them in a future patch.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a special case that we've carried around since 0723a0473f ("btrfs:
allow mounting btrfs subvolumes with different ro/rw options") where
we'll under the covers flip the file system to RW if you're mixing and
matching ro/rw options with different subvol mounts. The first mount is
what the super gets setup as, so we'd handle this by remount the super
as rw under the covers to facilitate this behavior.
With the new mount API we can't really allow this, because user space
has the ability to specify the super block settings, and the mount
settings. So if the user explicitly sets the super block as read only,
and then tried to mount a rw mount with the super block we'll reject
this. However the old API was less descriptive and thus we allowed this
kind of behavior.
This patch preserves this behavior for the old API calls. This is
inspired by Christians work [1], and includes his comment in
btrfs_get_tree_super() explaining the history and how it all works in
the old and new APIs.
Link: https://lore.kernel.org/all/20230626-fs-btrfs-mount-api-v1-2-045e9735a00b@kernel.org/
Reviewed-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the actual mounting callback for the new mount API. Implement
this using our current fill super as a guideline, making the appropriate
adjustments for the new mount API.
Our old mount operation had two fs_types, one to handle the actual
opening, and the one that we called to handle the actual opening and
then did the subvol lookup for returning the actual root dentry. This
is mirrored here, but simply with different behaviors for ->get_tree.
We use the existence of ->s_fs_info to tell which part we're in. The
initial call allocates the fs_info, then call mount_fc() with a
duplicated fc to do the actual open_ctree part. Then we take that
vfsmount and use it to look up our subvolume that we're mounting and
return that as our s_root. This idea was taken from Christians attempt
to convert us to the new mount API [1].
In btrfs_get_tree_super() the mount device is scanned and opened in one
go under uuid_mutex we expect that all related devices have been already
scanned, either by mount or from the outside. A device forget can be
called on some of the devices as the whole context is not protected but
it's an unlikely event, though it's a minor behaviour change.
References: https://lore.kernel.org/all/20230626-fs-btrfs-mount-api-v1-2-045e9735a00b@kernel.org/
Reviewed-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note about device scanning ]
Signed-off-by: David Sterba <dsterba@suse.com>
This is what is used to remount the file system with the new mount API.
Because the mount options are parsed separately and one at a time I've
added a helper to emit the mount options after the fact once the mount
is configured, this matches the dmesg output for what happens with the
old mount API.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to use the fs context to hold the mount options, so
allocate the btrfs_fs_context when we're asked to init the fs context,
and free it in the free callback.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parse_param callback handles one parameter at a time, take our
existing mount option parsing loop and adjust it to handle one parameter
at a time, and tie it into the fs_context_operations.
Create a btrfs_fs_context object that will store the various mount
properties, we'll house this in fc->fs_private. This is necessary to
separate because remounting will use ->reconfigure, and we'll get a new
copy of the parsed parameters, so we can no longer directly mess with
the fs_info in this stage.
In the future we'll add this to the btrfs_fs_info and update the users
to use the new context object instead.
There's a change how the option device= is processed. Previously all
mount options were parsed in one go under uuid_mutex and the devices
opened. This prevented a concurrent scan to happen during mount. Now we
could see a device scan happen (e.g. by udev) but this should not affect
the end result, mount will either see the populated fs_devices or will
scan the device by itself.
Alternatively we could save all the device paths first and then process
them in one go as before but this does not seem to be necessary.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note about device scanning ]
Signed-off-by: David Sterba <dsterba@suse.com>
In order to convert to the new mount API we have to change how we do the
mount option parsing. For now we're going to duplicate these helpers to
make it easier to follow, and then remove the old code once everything
is in place. This patch contains the re-definition of all of our mount
options into the new fs_parameter_spec format.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the old mount API we'd pre-populate the mount options with the
space cache settings of the file system, and then the user toggled them
on or off with the mount options. When we switch to the new mount API
the mount options will be set before we get into opening the file
system, so we need a flag to indicate that the user explicitly asked for
-o nospace_cache so we can make the appropriate changes after the fact.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we remount ro->rw or rw->ro we have some cleanup tasks that have to
be managed. Split these out into their own function to make
btrfs_remount smaller.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently don't allow these options to be set if we're extent tree v2
via the mount option parsing. However when we switch to the new mount
API we'll no longer have the super block loaded, so won't be able to
make this distinction at mount option parsing time. Address this by
checking for extent tree v2 at the point where we make the decision to
rebuild the free space tree.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we pre-load the space cache settings in btrfs_parse_options,
however when we switch to the new mount API the mount option parsing
will happen before we have the super block loaded. Add a helper to set
the appropriate options based on the fs settings, this will allow us to
have consistent free space cache settings.
This also folds in the space cache related decisions we make for subpage
sectorsize support, so all of this is done in one place.
Since this was being called by parse options it looks like we're
changing the behavior of remount, but in fact we aren't. The
pre-loading of the free space cache settings is done because we want to
handle the case of users not using any space_cache options, we'll derive
the appropriate mount option based on the on disk state. On remount
this wouldn't reset anything as we'll have cleared the v1 cache
generation if we mounted -o nospace_cache. Similarly it's impossible to
turn off the free space tree without specifically saying -o
nospace_cache,clear_cache, which will delete the free space tree and
clear the compat_ro option. Again in this case calling this code in
remount wouldn't result in any change.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the new mount API we'll be setting our compression well before we
call open_ctree. We don't want to overwrite our settings, so set the
default in btrfs_init_fs_info instead of open_ctree.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to need to validate mount options after they're all parsed
with the new mount API, split this code out into its own helper so we
can use it when we swap over to the new mount API.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor adjustments in the messages ]
Signed-off-by: David Sterba <dsterba@suse.com>
After commit ac3c0d36a2 ("btrfs: make fiemap more efficient and accurate
reporting extent sharedness") we no longer need to create special extent
maps during fiemap that have a block start with the EXTENT_MAP_DELALLOC
value. So this block start value for extent maps is no longer used since
then, therefore remove it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs extent buffer helpers are doing all the cross-page
handling, as there is no guarantee that all those eb pages are
contiguous.
However on systems with enough memory, there is a very high chance the
page cache for btree_inode are allocated with physically contiguous
pages.
In that case, we can skip all the complex cross-page handling, thus
speeding up the code.
This patch adds a new member, extent_buffer::addr, which is only set to
non-NULL if all the extent buffer pages are physically contiguous.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reflow btrfs_free_tree_block() so that there is one level of indentation
needed.
This patch has no functional changes.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use memset_page() in memset_extent_buffer() instead of opencoding it.
This does not not change any functionality.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're not clearing the dirty flag off of extent_buffers in zoned mode,
all that is left of btrfs_redirty_list_add() is a memzero() and some
ASSERT()ions.
As we're also memzero()ing the buffer on write-out btrfs_redirty_list_add()
has become obsolete and can be removed.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
One a zoned filesystem, never clear the dirty flag of an extent buffer,
but instead mark it as zeroout.
On writeout, when encountering a marked extent_buffer, zero it out.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
EXTENT_BUFFER_ZONED_ZEROOUT better describes the state of the extent buffer,
namely it is written as all zeros. This is needed in zoned mode, to
preserve I/O ordering.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent_io_tree is embedded in several structures, notably in struct
btrfs_inode. The fs_info is only used for reporting errors and for
reference in trace points. We can get to the pointer through the inode,
but not all io trees set it. However, we always know the owner and
can recognize if inode is valid. For access helpers are provided, const
variant for the trace points.
This reduces size of extent_io_tree by 8 bytes and following structures
in turn:
- btrfs_inode 1104 -> 1088
- btrfs_device 520 -> 512
- btrfs_root 1360 -> 1344
- btrfs_transaction 456 -> 440
- btrfs_fs_info 3600 -> 3592
- reloc_control 1520 -> 1512
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass the type of the extent io tree operation which failed in the report
helper. The message wording and contents is updated, though locking
might be the cause of the error it's probably not the only one and we're
interested in the state.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The printk helpers take const fs_info if it's used just for the
identifier in the messages, __btrfs_panic() lacks that.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper insert_state errors are handled in all callers and reported
by extent_io_tree_panic so we don't need to do it twice.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The per-inode file extent tree was added in 41a2ee75aa ("btrfs:
introduce per-inode file extent tree"), it's the only tree type
that requires the lockdep class. Move it to the file where it is
actually used.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's not needed to have a local variable to store the stripe size at
insert_dev_extents(), we can just take from the chunk map as it's only
used once and typing 'map->stripe_size' is not much more verbose than
simply typing 'stripe_size'. So remove the local variable.
This was added before the recent addition of a dedicated structure for
chunk mappings because the stripe size was encoded in the 'orig_block_len'
field of an extent_map structure, so the use of the local variable made
things more readable.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we abuse the extent_map structure for two purposes:
1) To actually represent extents for inodes;
2) To represent chunk mappings.
This is odd and has several disadvantages:
1) To create a chunk map, we need to do two memory allocations: one for
an extent_map structure and another one for a map_lookup structure, so
more potential for an allocation failure and more complicated code to
manage and link two structures;
2) For a chunk map we actually only use 3 fields (24 bytes) of the
respective extent map structure: the 'start' field to have the logical
start address of the chunk, the 'len' field to have the chunk's size,
and the 'orig_block_len' field to contain the chunk's stripe size.
Besides wasting a memory, it's also odd and not intuitive at all to
have the stripe size in a field named 'orig_block_len'.
We are also using 'block_len' of the extent_map structure to contain
the chunk size, so we have 2 fields for the same value, 'len' and
'block_len', which is pointless;
3) When an extent map is associated to a chunk mapping, we set the bit
EXTENT_FLAG_FS_MAPPING on its flags and then make its member named
'map_lookup' point to the associated map_lookup structure. This means
that for an extent map associated to an inode extent, we are not using
this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform);
4) Extent maps associated to a chunk mapping are never merged or split so
it's pointless to use the existing extent map infrastructure.
So add a dedicated data structure named 'btrfs_chunk_map' to represent
chunk mappings, this is basically the existing map_lookup structure with
some extra fields:
1) 'start' to contain the chunk logical address;
2) 'chunk_len' to contain the chunk's length;
3) 'stripe_size' for the stripe size;
4) 'rb_node' for insertion into a rb tree;
5) 'refs' for reference counting.
This way we do a single memory allocation for chunk mappings and we don't
waste memory for them with unused/unnecessary fields from an extent_map.
We also save 8 bytes from the extent_map structure by removing the
'map_lookup' pointer, so the size of struct extent_map is reduced from
144 bytes down to 136 bytes, and we can now have 30 extents map per 4K
page instead of 28.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no reason to open code what btrfs_next_item() does when searching
for extent items at scrub.c:scrub.c:find_first_extent_item(), so remove
the logic to find the next item and use btrfs_next_item() instead, making
the code shorter and less nested code blocks. While at it also fix the
comment to the plural "items" instead of "item" and end it with proper
punctuation.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper extent_map_block_end() is currently not used anywhere outside
extent_map.c, so move into from extent_map.h into extent_map.c. While at
it, also make the extent map pointer argument as const.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When starting a transaction to remove a block group we have one ASSERT
that checks we found an extent map and that the extent map's start offset
matches the desired chunk offset. In case one of the conditions fails, we
get a stack trace that point to the respective line of code, however we
can't tell which condition failed: either there's no extent map or we got
one with an unexpected start offset. To make such an issue easier to debug
and analyse, split the assertion into two, one for each condition. This
was actually triggered during development of another upcoming change.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When getting a chunk map, at btrfs_get_chunk_map(), we do some sanity
checks to verify that we found an extent map and that it includes the
requested logical address. These are never expected to fail, so mark
them as unlikely to make it more clear as well as to allow a compiler
to generate more efficient code.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Looks like the struct member was added in 2007 in 2.6.29 in commit
87ee04eb0f ("Btrfs: Add simple stripe size parameter") but hasn't been
used at all since. So let's remove it. This was found by tool
https://github.com/jirislaby/clang-struct, then build tested after
removing the struct member.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The declaration was temporarily moved in a4055213bf ("btrfs: unexport
all the temporary exports for extent-io-tree.c") and then should have
been removed in 6.0 in 071d19f513 ("btrfs: remove struct tree_entry in
extent-io-tree.c") but was not. This was found by tool
https://github.com/jirislaby/clang-struct .
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The raid56 changes in 6.2 reworked the IO path to RMW, commit
93723095b5 ("btrfs: raid56: switch write path to rmw_rbio()") in
particular removed the last use of the work member so it can be removed
as well. This was found by tool https://github.com/jirislaby/clang-struct .
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The whole isize code was deleted in 5.6 3f1c64ce04 ("btrfs: delete the
ordered isize update code"), except the struct member. This was found
by tool https://github.com/jirislaby/clang-struct .
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The recent scrub rewrite forgot to remove the sectors_per_bio in
6.3 in 13a62fd997 ("btrfs: scrub: remove scrub_bio structure").
This was found by tool https://github.com/jirislaby/clang-struct .
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As a cleanup and preparation for future folio migration, this patch
would replace all page->private to folio version. This includes:
- PagePrivate()
-> folio_test_private()
- page->private
-> folio_get_private()
- attach_page_private()
-> folio_attach_private()
- detach_page_private()
-> folio_detach_private()
Since we're here, also remove the forced cast on page->private, since
it's (void *) already, we don't really need to do the cast.
For now even if we missed some call sites, it won't cause any problem
yet, as we're only using order 0 folio (single page), thus all those
folio/page flags should be synced.
But for the future conversion to utilize higher order folio, the page
<-> folio flag sync is no longer guaranteed, thus we have to migrate to
utilize folio flags.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The pages are now allocated and freed centrally, so we can extend the
logic to manage the lifetime. The main idea is to keep a few recently
used pages and hand them to all writers. Ideally we won't have to go to
allocator at all (a slight performance gain) and also raise chance that
we'll have the pages available (slightly increased reliability).
In order to avoid gathering too many pages, the shrinker is attached to
the cache so we can free them on when MM demands that. The first
implementation will drain the whole cache. Further this can be refined
to keep some minimal number of pages for emergency purposes. The
ultimate goal to avoid memory allocation failures on the write out path
from the compression.
The pool threshold is set to cover full BTRFS_MAX_COMPRESSED / PAGE_SIZE
for minimal thread pool, which is 8 (btrfs_init_fs_info()). This is 128K
/ 4K * 8 = 256 pages at maximum, which is 1MiB.
This is for all filesystems currently mounted, with heavy use of
compression IO the allocator is still needed. The cache helps for short
burst IO.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a preparation for managing compression pages in a cache-like
manner, instead of asking the allocator each time. The common allocation
and free wrappers are introduced and are functionally equivalent to the
current code.
The freeing helpers need to be carefully placed where the last reference
is dropped. This is either after directly allocating (error handling)
or when there are no other users of the pages (after copying the contents).
It's safe to not use the helper and use put_page() that will handle the
reference count. Not using the helper means there's lower number of
pages that could be reused without passing them back to allocator.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
The function __btrfs_update_delayed_inode() is doing something not
meeting the code standard of today:
path->slots[0]++
if (path->slots[0] >= btrfs_header_nritems(leaf))
goto search;
again:
if (!is_the_target_inode_ref())
goto out;
ret = btrfs_delete_item();
/* Some cleanup. */
return ret;
search:
ret = search_for_the_last_inode_ref();
goto again;
With the tag named "again", it's pretty common to think it's a loop, but
the truth is, we only need to do the search once, to locate the last
(also the first, since there should only be one INODE_REF or
INODE_EXTREF now) ref of the inode.
[FIX]
Instead of the weird jumps, just do them in a stream-lined fashion.
This removes those weird labels, and add extra comments on why we can do
the different searches.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The logic in btrfs_block_can_be_shared() is hard to follow as we have a
lot of conditions in a single if statement including a subexpression with
a logical or and two nested if statements inside the main if statement.
Make this easier to read by using separate if statements that return
immediately when we find a condition that determines if a block can be
or can not be shared.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_block_can_be_shared() returns an int that is used as a
boolean. Since it all it needs is to return true or false, and it can't
return errors for example, change the return type from int to bool to
make it a bit more readable and obvious.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The logged_list[2] and log_extents_lock[2] members of struct btrfs_root
are no longer used, their last use was removed in commit 5636cf7d6d
("btrfs: remove the logged extents infrastructure"). So remove these
fields. This reduces the size of struct btrfs_root, on a release kernel,
from 1392 bytes down to 1352 bytes.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The prototype for btrfs_clear_buffer_dirty() is declared in both disk-io.h
and extent_io.h, but the function is defined at extent_io.c. So remove the
prototype declaration from disk-io.h.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmV5rTIACgkQxWXV+ddt
WDuLUg/+Ix/CeA+JY6VZMA2kBHMzmRexSjYONWfQwIL7LPBy4sOuSEaTZt+QQMs+
AEKau1YfTgo7e9S2DlbZhIWp6P87VFui7Q1E99uJEmKelakvf94DbMrufPTTKjaD
JG2KB6LsD59yWwfbGHEAVVNGSMRk2LDXzcUWMK6/uzu/7Bcr4ataOymWd86/blUV
cw5g87uAHpBn+R1ARTf1CkqyYiI9UldNUJmW1q7dwxOyYG+weUtJImosw2Uda76y
wQXAFQAH3vsFzTC+qjC9Vz7cnyAX9qAw48ODRH7rIT1BQ3yAFQbfXE20jJ/fSE+C
lz3p05tA9373KAOtLUHmANBwe3NafCnlut6ZYRfpTcEzUslAO5PnajPaHh5Al7uC
Iwdpy49byoyVFeNf0yECBsuDP8s86HlUALF8mdJabPI1Kl66MUea6KgS1oyO3pCB
hfqLbpofV4JTywtIRLGQTQvzSwkjPHTbSwtZ9nftTw520a5f7memDu5vi4XzFd+B
NrJxmz2DrMRlwrLgWg9OXXgx1riWPvHnIoqzjG5W6A9N74Ud1/oz7t3VzjGSQ5S2
UikRB6iofPE0deD8IF6H6DvFfvQxU9d9BJ6IS9V2zRt5vdgJ2w08FlqbLZewSY4x
iaQ+L7UYKDjC9hdosXVNu/6fAspyBVdSp2NbKk14fraZtNAoPNs=
=uF/Q
-----END PGP SIGNATURE-----
Merge tag 'for-6.7-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Some fixes to quota accounting code, mostly around error handling and
correctness:
- free reserves on various error paths, after IO errors or
transaction abort
- don't clear reserved range at the folio release time, it'll be
properly cleared after final write
- fix integer overflow due to int used when passing around size of
freed reservations
- fix a regression in squota accounting that missed some cases with
delayed refs"
* tag 'for-6.7-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: ensure releasing squota reserve on head refs
btrfs: don't clear qgroup reserved bit in release_folio
btrfs: free qgroup pertrans reserve on transaction abort
btrfs: fix qgroup_free_reserved_data int overflow
btrfs: free qgroup reserve when ORDERED_IOERR is set
There were already assertions that we were not passing a tail page to
error_remove_page(), so make the compiler enforce that by converting
everything to pass and use a folio.
Link: https://lkml.kernel.org/r/20231117161447.2461643-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A reservation goes through a 3 step lifetime:
- generated during delalloc
- released/counted by ordered_extent allocation
- freed by running delayed ref
That third step depends on must_insert_reserved on the head ref, so the
head ref with that field set owns the reservation. Once you prepare to
run the head ref, must_insert_reserved is unset, which means that
running the ref must free the reservation, whether or not it succeeds,
or else the reservation is leaked. That results in either a risk of
spurious ENOSPC if the fs stays writeable or a warning on unmount if it
is readonly.
The existing squota code was aware of these invariants, but missed a few
cases. Improve it by adding a helper function to use in the cleanup
paths and call it from the existing early returns in running delayed
refs. This also simplifies btrfs_record_squota_delta and struct
btrfs_quota_delta.
This fixes (or at least improves the reliability of) generic/475 with
"mkfs -O squota". On my machine, that test failed ~4/10 times without
this patch and passed 100/100 times with it.
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The EXTENT_QGROUP_RESERVED bit is used to "lock" regions of the file for
duplicate reservations. That is two writes to that range in one
transaction shouldn't create two reservations, as the reservation will
only be freed once when the write finally goes down. Therefore, it is
never OK to clear that bit without freeing the associated qgroup
reserve. At this point, we don't want to be freeing the reserve, so mask
off the bit.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
If we abort a transaction, we never run the code that frees the pertrans
qgroup reservation. This results in warnings on unmount as that
reservation has been leaked. The leak isn't a huge issue since the fs is
read-only, but it's better to clean it up when we know we can/should. Do
it during the cleanup_transaction step of aborting.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The reserved data counter and input parameter is a u64, but we
inadvertently accumulate it in an int. Overflowing that int results in
freeing the wrong amount of data and breaking reserve accounting.
Unfortunately, this overflow rot spreads from there, as the qgroup
release/free functions rely on returning an int to take advantage of
negative values for error codes.
Therefore, the full fix is to return the "released" or "freed" amount by
a u64 argument and to return 0 or negative error code via the return
value.
Most of the call sites simply ignore the return value, though some
of them handle the error and count the returned bytes. Change all of
them accordingly.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
An ordered extent completing is a critical moment in qgroup reserve
handling, as the ownership of the reservation is handed off from the
ordered extent to the delayed ref. In the happy path we release (unlock)
but do not free (decrement counter) the reservation, and the delayed ref
drives the free. However, on an error, we don't create a delayed ref,
since there is no ref to add. Therefore, free on the error path.
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmVmHvEACgkQxWXV+ddt
WDtczA//UdxSPxQwJY1oOQj3k5Zgb/zOThfyD4x5wrDxFAYwVh1XhuyxV2XT8qyq
ipp+mi9doVykZKLSY+oRAeqjGlF0nIYm1z2PGSU7JXz4VsEj970rsDs3ePwH5TW6
V8/6VraOIIvmOnTft7aiuM8CXUjyndalNl7RvHu+v6grgAAgQAaly/3CmRIsm/Ui
2Wb6/J8ciAOBZ8TkFMr0PiTJd+CjUL+1Y9IaYEywujf0nVNJSgHp+R2CpwLDvM/5
1x6LdRrUKmnY7mhOvC7QwWfQmgsPnj3OuR+3+L+8jULTvcpwka2KEcpCH8/s6mUK
+4XhKQ4xXOJr8M+KmAUpy1yZZ30G6cDSwnfCWbWRCfR03396tTb08kb6G21fR+NL
o2qEUOe4DoMbYX/5zd9xEVqbwyGhAIXB0fJ7KJ0RqbaNBh/roRALBVCseP2CFwJE
P0DE9phjeIGQf3ybdfP7XqnMfk520bqoeV49Akbn2us2SrV1+O9Yjqmj2pbTnljE
M30Jh/btaiTFtsGB3MBDRRnGhf7F2l1dsmdmMVhdOK8HMY6obcJUdv6YXVLAjBDn
ATWtUVVizOpHvSZL0G/+1fXqHhLqOnHLY4A97uMjcElK5WJfuYZv8vZK7GVKC/jW
y5F4w/FPxU8dmhorMGksya2CLMvUsv5dikyAzGHirjEAdyrK1jg=
=85Pb
-----END PGP SIGNATURE-----
Merge tag 'for-6.7-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few fixes and message updates:
- for simple quotas, handle the case when a snapshot is created and
the target qgroup already exists
- fix a warning when file descriptor given to send ioctl is not
writable
- fix off-by-one condition when checking chunk maps
- free pages when page array allocation fails during compression
read, other cases were handled
- fix memory leak on error handling path in ref-verify debugging
feature
- copy missing struct member 'version' in 64/32bit compat send ioctl
- tree-checker verifies inline backref ordering
- print messages to syslog on first mount and last unmount
- update error messages when reading chunk maps"
* tag 'for-6.7-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: send: ensure send_fd is writable
btrfs: free the allocated memory if btrfs_alloc_page_array() fails
btrfs: fix 64bit compat send ioctl arguments not initializing version member
btrfs: make error messages more clear when getting a chunk map
btrfs: fix off-by-one when checking chunk map includes logical address
btrfs: ref-verify: fix memory leaks in btrfs_ref_tree_mod()
btrfs: add dmesg output for first mount and last unmount of a filesystem
btrfs: do not abort transaction if there is already an existing qgroup
btrfs: tree-checker: add type and sequence check for inline backrefs
kernel_write() requires the caller to ensure that the file is writable.
Let's do that directly after looking up the ->send_fd.
We don't need a separate bailout path because the "out" path already
does fput() if ->send_filp is non-NULL.
This has no security impact for two reasons:
- the ioctl requires CAP_SYS_ADMIN
- __kernel_write() bails out on read-only files - but only since 5.8,
see commit a01ac27be4 ("fs: check FMODE_WRITE in __kernel_write")
Reported-and-tested-by: syzbot+12e098239d20385264d3@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=12e098239d20385264d3
Fixes: 31db9f7c23 ("Btrfs: introduce BTRFS_IOC_SEND for btrfs send/receive")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
If btrfs_alloc_page_array() fail to allocate all pages but part of the
slots, then the partially allocated pages would be leaked in function
btrfs_submit_compressed_read().
[CAUSE]
As explicitly stated, if btrfs_alloc_page_array() returned -ENOMEM,
caller is responsible to free the partially allocated pages.
For the existing call sites, most of them are fine:
- btrfs_raid_bio::stripe_pages
Handled by free_raid_bio().
- extent_buffer::pages[]
Handled btrfs_release_extent_buffer_pages().
- scrub_stripe::pages[]
Handled by release_scrub_stripe().
But there is one exception in btrfs_submit_compressed_read(), if
btrfs_alloc_page_array() failed, we didn't cleanup the array and freed
the array pointer directly.
Initially there is still the error handling in commit dd137dd1f2
("btrfs: factor out allocating an array of pages"), but later in commit
544fe4a903 ("btrfs: embed a btrfs_bio into struct compressed_bio"),
the error handling is removed, leading to the possible memory leak.
[FIX]
This patch would add back the error handling first, then to prevent such
situation from happening again, also
Make btrfs_alloc_page_array() to free the allocated pages as a extra
safety net, then we don't need to add the error handling to
btrfs_submit_compressed_read().
Fixes: 544fe4a903 ("btrfs: embed a btrfs_bio into struct compressed_bio")
CC: stable@vger.kernel.org # 6.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the send protocol versioning was added in 5.16 e77fbf9903
("btrfs: send: prepare for v2 protocol"), the 32/64bit compat code was
not updated (added by 2351f431f7 ("btrfs: fix send ioctl on 32bit with
64bit kernel")), missing the version struct member. The compat code is
probably rarely used, nobody reported any bugs.
Found by tool https://github.com/jirislaby/clang-struct .
Fixes: e77fbf9903 ("btrfs: send: prepare for v2 protocol")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In vfs code, file_start_write() is usually called after the permission
hook in rw_verify_area(). btrfs_ioctl_encoded_write() in an exception
to this rule.
Move file_start_write() to after the rw_verify_area() check in encoded
write to make the permission hook "start-write-safe".
This is needed for fanotify "pre content" events.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Link: https://lore.kernel.org/r/20231122122715.2561213-9-amir73il@gmail.com
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
When getting a chunk map, at btrfs_get_chunk_map(), we do some sanity
checks to verify we found a chunk map and that map found covers the
logical address the caller passed in. However the messages aren't very
clear in the sense that don't mention the issue is with a chunk map and
one of them prints the 'length' argument as if it were the end offset of
the requested range (while the in the string format we use %llu-%llu
which suggests a range, and the second %llu-%llu is actually a range for
the chunk map). So improve these two details in the error messages.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_get_chunk_map() we get the extent map for the chunk that contains
the given logical address stored in the 'logical' argument. Then we do
sanity checks to verify the extent map contains the logical address. One
of these checks verifies if the extent map covers a range with an end
offset behind the target logical address - however this check has an
off-by-one error since it will consider an extent map whose start offset
plus its length matches the target logical address as inclusive, while
the fact is that the last byte it covers is behind the target logical
address (by 1).
So fix this condition by using '<=' rather than '<' when comparing the
extent map's "start + length" against the target logical address.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_ref_tree_mod(), when !parent 're' was allocated through
kmalloc(). In the following code, if an error occurs, the execution will
be redirected to 'out' or 'out_unlock' and the function will be exited.
However, on some of the paths, 're' are not deallocated and may lead to
memory leaks.
For example: lookup_block_entry() for 'be' returns NULL, the out label
will be invoked. During that flow ref and 'ra' are freed but not 're',
which can potentially lead to a memory leak.
CC: stable@vger.kernel.org # 5.10+
Reported-and-tested-by: syzbot+d66de4cbf532749df35f@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=d66de4cbf532749df35f
Signed-off-by: Bragatheswaran Manickavel <bragathemanick0908@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a feature request to add dmesg output when unmounting a btrfs.
There are several alternative methods to do the same thing, but with
their own problems:
- Use eBPF to watch btrfs_put_super()/open_ctree()
Not end user friendly, they have to dip their head into the source
code.
- Watch for directory /sys/fs/<uuid>/
This is way more simple, but still requires some simple device -> uuid
lookups. And a script needs to use inotify to watch /sys/fs/.
Compared to all these, directly outputting the information into dmesg
would be the most simple one, with both device and UUID included.
And since we're here, also add the output when mounting a filesystem for
the first time for parity. A more fine grained monitoring of subvolume
mounts should be done by another layer, like audit.
Now mounting a btrfs with all default mkfs options would look like this:
[81.906566] BTRFS info (device dm-8): first mount of filesystem 633b5c16-afe3-4b79-b195-138fe145e4f2
[81.907494] BTRFS info (device dm-8): using crc32c (crc32c-intel) checksum algorithm
[81.908258] BTRFS info (device dm-8): using free space tree
[81.912644] BTRFS info (device dm-8): auto enabling async discard
[81.913277] BTRFS info (device dm-8): checking UUID tree
[91.668256] BTRFS info (device dm-8): last unmount of filesystem 633b5c16-afe3-4b79-b195-138fe145e4f2
CC: stable@vger.kernel.org # 5.4+
Link: https://github.com/kdave/btrfs-progs/issues/689
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
It is hard to find where mapping->private_lock, mapping->private_list and
mapping->private_data are used, due to private_XXX being a relatively
common name for variables and structure members in the kernel. To fit
with other members of struct address_space, rename them all to have an
i_ prefix. Tested with an allmodconfig build.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20231117215823.2821906-1-willy@infradead.org
Acked-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Btrfs device probing code needs adaptation so that it works when writes
are restricted to its mounted devices. Since btrfs maintainer wants to
merge these changes through btrfs tree and there are review bandwidth
issues with that, let's not block all other filesystems and just not
restrict writes to btrfs devices for now.
CC: <linux-btrfs@vger.kernel.org>
CC: David Sterba <dsterba@suse.com>
CC: Josef Bacik <josef@toxicpanda.com>
CC: Chris Mason <clm@fb.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20231101174325.10596-4-jack@suse.cz
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christian Brauner <brauner@kernel.org>
[BUG]
Syzbot reported a regression that after commit 6ed05643dd ("btrfs:
create qgroup earlier in snapshot creation") we can trigger transaction
abort during snapshot creation:
BTRFS: Transaction aborted (error -17)
WARNING: CPU: 0 PID: 5057 at fs/btrfs/transaction.c:1778 create_pending_snapshot+0x25f4/0x2b70 fs/btrfs/transaction.c:1778
Modules linked in:
CPU: 0 PID: 5057 Comm: syz-executor225 Not tainted 6.6.0-syzkaller-15365-g305230142ae0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
RIP: 0010:create_pending_snapshot+0x25f4/0x2b70 fs/btrfs/transaction.c:1778
Call Trace:
<TASK>
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1967
btrfs_commit_transaction+0xf1c/0x3730 fs/btrfs/transaction.c:2440
create_snapshot+0x4a5/0x7e0 fs/btrfs/ioctl.c:845
btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:995
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1041
__btrfs_ioctl_snap_create+0x344/0x460 fs/btrfs/ioctl.c:1294
btrfs_ioctl_snap_create+0x13c/0x190 fs/btrfs/ioctl.c:1321
btrfs_ioctl+0xbbf/0xd40
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
RIP: 0033:0x7f2f791127b9
</TASK>
[CAUSE]
The error number is -EEXIST, which can happen for qgroup if there is
already an existing qgroup and then we're trying to create a snapshot
for it.
[FIX]
In that case, we can continue creating the snapshot, although it may
lead to qgroup inconsistency, it's not so critical to abort the current
transaction.
So in this case, we can just ignore the non-critical errors, mostly -EEXIST
(there is already a qgroup).
Reported-by: syzbot+4d81015bc10889fd12ea@syzkaller.appspotmail.com
Fixes: 6ed05643dd ("btrfs: create qgroup earlier in snapshot creation")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a bug report that ntfs2btrfs had a bug that it can lead to
transaction abort and the filesystem flips to read-only.
[CAUSE]
For inline backref items, kernel has a strict requirement for their
ordered, they must follow the following rules:
- All btrfs_extent_inline_ref::type should be in an ascending order
- Within the same type, the items should follow a descending order by
their sequence number
For EXTENT_DATA_REF type, the sequence number is result from
hash_extent_data_ref().
For other types, their sequence numbers are
btrfs_extent_inline_ref::offset.
Thus if there is any code not following above rules, the resulted
inline backrefs can prevent the kernel to locate the needed inline
backref and lead to transaction abort.
[FIX]
Ntrfs2btrfs has already fixed the problem, and btrfs-progs has added the
ability to detect such problems.
For kernel, let's be more noisy and be more specific about the order, so
that the next time kernel hits such problem we would reject it in the
first place, without leading to transaction abort.
Link: https://github.com/kdave/btrfs-progs/pull/622
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmVSO50ACgkQxWXV+ddt
WDuiyg/7BZviFAyiQMAzpA319qRJZ+EemfTdF/k69q4axGYuvqVdXKnpOV44AR4I
dKcHLOPpDZIxsh8lFytkm1UEAHptw1v7A64c+gcdjGK0tAA7aKbw/1nmNysowT23
L0v2+34hkBUfG8A3uVgOwL1rjItEX5Fl54slpVsazSqlEbKrqC4MGNjmqdp3IOeC
qfXTgkvkXmm8s8NyoJybKewM9Aw0tmK0jkAFHA+2sgcZPYKXjqWGv9KUOsXnCx5o
3kPWIRT1sj4q2qzrgP14Q12O6qPLZ2/0oTBhi6nhj8+N1yiH+USS5zBITegF+w2n
leQeVHtyBYHlPYQSQlCIZy7+10gkePvs+JmoAuL8YFISnGYnvOZqCeArlV7cnNI3
CQt7ZBER5Dqw78Y756usUhpYrLWa9kOpcPVRmjJ/R62+TY1FkkyY7irETbn5EGjI
NlhEa4PMYeYpAOccoxWEm9tIiiVD1abURhVBdn3Znfcb1Sv/lrGBlo9DYGFCxbBh
xU1JP7sly8w0aPLqCbn1X3VY8dXp+CeYz4FQabHjQA/zr9lF08/pRYj3haAbYAyH
0KphXurwz/YqY+LmRg7SbQ/KMgBAiBV8Qk9JyNvdvaQbnYnq7CWdpoHcpZu3mvpb
HLGoXew58kZaSfxLHlcT5wwYlbq0rooXRstuFg2+BBcOFOMCQfw=
=GM+1
-----END PGP SIGNATURE-----
Merge tag 'for-6.7-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix potential overflow in returned value from SEARCH_TREE_V2
ioctl on 32bit architecture
- zoned mode fixes:
- drop unnecessary write pointer check for RAID0/RAID1/RAID10
profiles, now it works because of raid-stripe-tree
- wait for finishing the zone when direct IO needs a new
allocation
- simple quota fixes:
- pass correct owning root pointer when cleaning up an
aborted transaction
- fix leaking some structures when processing delayed refs
- change key type number of BTRFS_EXTENT_OWNER_REF_KEY,
reorder it before inline refs that are supposed to be
sorted, keeping the original number would complicate a lot
of things; this change needs an updated version of
btrfs-progs to work and filesystems need to be recreated
- fix error pointer dereference after failure to allocate fs
devices
- fix race between accounting qgroup extents and removing a
qgroup
* tag 'for-6.7-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: make OWNER_REF_KEY type value smallest among inline refs
btrfs: fix qgroup record leaks when using simple quotas
btrfs: fix race between accounting qgroup extents and removing a qgroup
btrfs: fix error pointer dereference after failure to allocate fs devices
btrfs: make found_logical_ret parameter mandatory for function queue_scrub_stripe()
btrfs: get correct owning_root when dropping snapshot
btrfs: zoned: wait for data BG to be finished on direct IO allocation
btrfs: zoned: drop no longer valid write pointer check
btrfs: directly return 0 on no error code in btrfs_insert_raid_extent()
btrfs: use u64 for buffer sizes in the tree search ioctls
When using simple quotas we are not supposed to allocate qgroup records
when adding delayed references. However we allocate them if either mode
of quotas is enabled (the new simple one or the old one), but then we
never free them because running the accounting, which frees the records,
is only run when using the old quotas (at btrfs_qgroup_account_extents()),
resulting in a memory leak of the records allocated when adding delayed
references.
Fix this by allocating the records only if the old quotas mode is enabled.
Also fix btrfs_qgroup_trace_extent_nolock() to return 1 if the old quotas
mode is not enabled - meaning the caller has to free the record.
Fixes: 182940f4f4 ("btrfs: qgroup: add new quota mode for simple quotas")
Reported-by: syzbot+d3ddc6dcc6386dea398b@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000004769106097f9a34@google.com/
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing qgroup accounting for an extent, we take the spinlock
fs_info->qgroup_lock and then add qgroups to the local list (iterator)
named "qgroups". These qgroups are found in the fs_info->qgroup_tree
rbtree. After we're done, we unlock fs_info->qgroup_lock and then call
qgroup_iterator_nested_clean(), which will iterate over all the qgroups
added to the local list "qgroups" and then delete them from the list.
Deleting a qgroup from the list can however result in a use-after-free
if a qgroup remove operation happens after we unlock fs_info->qgroup_lock
and before or while we are at qgroup_iterator_nested_clean().
Fix this by calling qgroup_iterator_nested_clean() while still holding
the lock fs_info->qgroup_lock - we don't need it under the 'out' label
since before taking the lock the "qgroups" list is always empty. This
guarantees safety because btrfs_remove_qgroup() takes that lock before
removing a qgroup from the rbtree fs_info->qgroup_tree.
This was reported by syzbot with the following stack traces:
BUG: KASAN: slab-use-after-free in __list_del_entry_valid_or_report+0x2f/0x130 lib/list_debug.c:49
Read of size 8 at addr ffff888027e420b0 by task kworker/u4:3/48
CPU: 1 PID: 48 Comm: kworker/u4:3 Not tainted 6.6.0-syzkaller-10396-g4652b8e4f3ff #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
Workqueue: btrfs-qgroup-rescan btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:364 [inline]
print_report+0x163/0x540 mm/kasan/report.c:475
kasan_report+0x175/0x1b0 mm/kasan/report.c:588
__list_del_entry_valid_or_report+0x2f/0x130 lib/list_debug.c:49
__list_del_entry_valid include/linux/list.h:124 [inline]
__list_del_entry include/linux/list.h:215 [inline]
list_del_init include/linux/list.h:287 [inline]
qgroup_iterator_nested_clean fs/btrfs/qgroup.c:2623 [inline]
btrfs_qgroup_account_extent+0x18b/0x1150 fs/btrfs/qgroup.c:2883
qgroup_rescan_leaf fs/btrfs/qgroup.c:3543 [inline]
btrfs_qgroup_rescan_worker+0x1078/0x1c60 fs/btrfs/qgroup.c:3604
btrfs_work_helper+0x37c/0xbd0 fs/btrfs/async-thread.c:315
process_one_work kernel/workqueue.c:2630 [inline]
process_scheduled_works+0x90f/0x1400 kernel/workqueue.c:2703
worker_thread+0xa5f/0xff0 kernel/workqueue.c:2784
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242
</TASK>
Allocated by task 6355:
kasan_save_stack mm/kasan/common.c:45 [inline]
kasan_set_track+0x4f/0x70 mm/kasan/common.c:52
____kasan_kmalloc mm/kasan/common.c:374 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:383
kmalloc include/linux/slab.h:600 [inline]
kzalloc include/linux/slab.h:721 [inline]
btrfs_quota_enable+0xee9/0x2060 fs/btrfs/qgroup.c:1209
btrfs_ioctl_quota_ctl+0x143/0x190 fs/btrfs/ioctl.c:3705
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Freed by task 6355:
kasan_save_stack mm/kasan/common.c:45 [inline]
kasan_set_track+0x4f/0x70 mm/kasan/common.c:52
kasan_save_free_info+0x28/0x40 mm/kasan/generic.c:522
____kasan_slab_free+0xd6/0x120 mm/kasan/common.c:236
kasan_slab_free include/linux/kasan.h:164 [inline]
slab_free_hook mm/slub.c:1800 [inline]
slab_free_freelist_hook mm/slub.c:1826 [inline]
slab_free mm/slub.c:3809 [inline]
__kmem_cache_free+0x263/0x3a0 mm/slub.c:3822
btrfs_remove_qgroup+0x764/0x8c0 fs/btrfs/qgroup.c:1787
btrfs_ioctl_qgroup_create+0x185/0x1e0 fs/btrfs/ioctl.c:3811
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Last potentially related work creation:
kasan_save_stack+0x3f/0x60 mm/kasan/common.c:45
__kasan_record_aux_stack+0xad/0xc0 mm/kasan/generic.c:492
__call_rcu_common kernel/rcu/tree.c:2667 [inline]
call_rcu+0x167/0xa70 kernel/rcu/tree.c:2781
kthread_worker_fn+0x4ba/0xa90 kernel/kthread.c:823
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242
Second to last potentially related work creation:
kasan_save_stack+0x3f/0x60 mm/kasan/common.c:45
__kasan_record_aux_stack+0xad/0xc0 mm/kasan/generic.c:492
__call_rcu_common kernel/rcu/tree.c:2667 [inline]
call_rcu+0x167/0xa70 kernel/rcu/tree.c:2781
kthread_worker_fn+0x4ba/0xa90 kernel/kthread.c:823
kthread+0x2d3/0x370 kernel/kthread.c:388
ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242
The buggy address belongs to the object at ffff888027e42000
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 176 bytes inside of
freed 512-byte region [ffff888027e42000, ffff888027e42200)
The buggy address belongs to the physical page:
page:ffffea00009f9000 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x27e40
head:ffffea00009f9000 order:2 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0xfff00000000840(slab|head|node=0|zone=1|lastcpupid=0x7ff)
page_type: 0xffffffff()
raw: 00fff00000000840 ffff888012c41c80 ffffea0000a5ba00 dead000000000002
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 2, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 4514, tgid 4514 (udevadm), ts 24598439480, free_ts 23755696267
set_page_owner include/linux/page_owner.h:31 [inline]
post_alloc_hook+0x1e6/0x210 mm/page_alloc.c:1536
prep_new_page mm/page_alloc.c:1543 [inline]
get_page_from_freelist+0x31db/0x3360 mm/page_alloc.c:3170
__alloc_pages+0x255/0x670 mm/page_alloc.c:4426
alloc_slab_page+0x6a/0x160 mm/slub.c:1870
allocate_slab mm/slub.c:2017 [inline]
new_slab+0x84/0x2f0 mm/slub.c:2070
___slab_alloc+0xc85/0x1310 mm/slub.c:3223
__slab_alloc mm/slub.c:3322 [inline]
__slab_alloc_node mm/slub.c:3375 [inline]
slab_alloc_node mm/slub.c:3468 [inline]
__kmem_cache_alloc_node+0x19d/0x270 mm/slub.c:3517
kmalloc_trace+0x2a/0xe0 mm/slab_common.c:1098
kmalloc include/linux/slab.h:600 [inline]
kzalloc include/linux/slab.h:721 [inline]
kernfs_fop_open+0x3e7/0xcc0 fs/kernfs/file.c:670
do_dentry_open+0x8fd/0x1590 fs/open.c:948
do_open fs/namei.c:3622 [inline]
path_openat+0x2845/0x3280 fs/namei.c:3779
do_filp_open+0x234/0x490 fs/namei.c:3809
do_sys_openat2+0x13e/0x1d0 fs/open.c:1440
do_sys_open fs/open.c:1455 [inline]
__do_sys_openat fs/open.c:1471 [inline]
__se_sys_openat fs/open.c:1466 [inline]
__x64_sys_openat+0x247/0x290 fs/open.c:1466
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
page last free stack trace:
reset_page_owner include/linux/page_owner.h:24 [inline]
free_pages_prepare mm/page_alloc.c:1136 [inline]
free_unref_page_prepare+0x8c3/0x9f0 mm/page_alloc.c:2312
free_unref_page+0x37/0x3f0 mm/page_alloc.c:2405
discard_slab mm/slub.c:2116 [inline]
__unfreeze_partials+0x1dc/0x220 mm/slub.c:2655
put_cpu_partial+0x17b/0x250 mm/slub.c:2731
__slab_free+0x2b6/0x390 mm/slub.c:3679
qlink_free mm/kasan/quarantine.c:166 [inline]
qlist_free_all+0x75/0xe0 mm/kasan/quarantine.c:185
kasan_quarantine_reduce+0x14b/0x160 mm/kasan/quarantine.c:292
__kasan_slab_alloc+0x23/0x70 mm/kasan/common.c:305
kasan_slab_alloc include/linux/kasan.h:188 [inline]
slab_post_alloc_hook+0x67/0x3d0 mm/slab.h:762
slab_alloc_node mm/slub.c:3478 [inline]
slab_alloc mm/slub.c:3486 [inline]
__kmem_cache_alloc_lru mm/slub.c:3493 [inline]
kmem_cache_alloc+0x104/0x2c0 mm/slub.c:3502
getname_flags+0xbc/0x4f0 fs/namei.c:140
do_sys_openat2+0xd2/0x1d0 fs/open.c:1434
do_sys_open fs/open.c:1455 [inline]
__do_sys_openat fs/open.c:1471 [inline]
__se_sys_openat fs/open.c:1466 [inline]
__x64_sys_openat+0x247/0x290 fs/open.c:1466
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Memory state around the buggy address:
ffff888027e41f80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888027e42000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff888027e42080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888027e42100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888027e42180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
Reported-by: syzbot+e0b615318f8fcfc01ceb@syzkaller.appspotmail.com
Fixes: dce28769a3 ("btrfs: qgroup: use qgroup_iterator_nested to in qgroup_update_refcnt()")
CC: stable@vger.kernel.org # 6.6
Link: https://lore.kernel.org/linux-btrfs/00000000000091a5b2060936bf6d@google.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At device_list_add() we allocate a btrfs_fs_devices structure and then
before checking if the allocation failed (pointer is ERR_PTR(-ENOMEM)),
we dereference the error pointer in a memcpy() argument if the feature
BTRFS_FEATURE_INCOMPAT_METADATA_UUID is enabled.
Fix this by checking for an allocation error before trying the memcpy().
Fixes: f7361d8c3f ("btrfs: sipmlify uuid parameters of alloc_fs_devices()")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a compilation warning reported on commit ae76d8e3e1 ("btrfs:
scrub: fix grouping of read IO"), where gcc (14.0.0 20231022 experimental)
is reporting the following uninitialized variable:
fs/btrfs/scrub.c: In function ‘scrub_simple_mirror.isra’:
fs/btrfs/scrub.c:2075:29: error: ‘found_logical’ may be used uninitialized [-Werror=maybe-uninitialized[https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wmaybe-uninitialized]]
2075 | cur_logical = found_logical + BTRFS_STRIPE_LEN;
fs/btrfs/scrub.c:2040:21: note: ‘found_logical’ was declared here
2040 | u64 found_logical;
| ^~~~~~~~~~~~~
[CAUSE]
This is a false alert, as @found_logical is passed as parameter
@found_logical_ret of function queue_scrub_stripe().
As long as queue_scrub_stripe() returned 0, we would update
@found_logical_ret. And if queue_scrub_stripe() returned >0 or <0, the
caller would not utilized @found_logical, thus there should be nothing
wrong.
Although the triggering gcc is still experimental, it looks like the
extra check on "if (found_logical_ret)" can sometimes confuse the
compiler.
Meanwhile the only caller of queue_scrub_stripe() is always passing a
valid pointer, there is no need for such check at all.
[FIX]
Although the report itself is a false alert, we can still make it more
explicit by:
- Replace the check for @found_logical_ret with ASSERT()
- Initialize @found_logical to U64_MAX
- Add one extra ASSERT() to make sure @found_logical got updated
Link: https://lore.kernel.org/linux-btrfs/87fs1x1p93.fsf@gentoo.org/
Fixes: ae76d8e3e1 ("btrfs: scrub: fix grouping of read IO")
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Dave reported a bug where we were aborting the transaction while trying
to cleanup the squota reservation for an extent.
This turned out to be because we're doing btrfs_header_owner(next) in
do_walk_down when we decide to free the block. However in this code
block we haven't explicitly read next, so it could be stale. We would
then get whatever garbage happened to be in the pages at this point.
The commit that introduced that is "btrfs: track owning root in
btrfs_ref".
Fix this by saving the owner_root when we do the
btrfs_lookup_extent_info(). We always do this in do_walk_down, it is
how we make the decision of whether or not to delete the block. This is
cheap because we've already done the extent item lookup at this point,
so it's straightforward to just grab the owner root as well.
Then we can use this when deleting the metadata block without needing to
force a read of the extent buffer to find the owner.
This fixes the problem that Dave reported.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Running the fio command below on a ZNS device results in "Resource
temporarily unavailable" error.
$ sudo fio --name=w --directory=/mnt --filesize=1GB --bs=16MB --numjobs=16 \
--rw=write --ioengine=libaio --iodepth=128 --direct=1
fio: io_u error on file /mnt/w.2.0: Resource temporarily unavailable: write offset=117440512, buflen=16777216
fio: io_u error on file /mnt/w.2.0: Resource temporarily unavailable: write offset=134217728, buflen=16777216
...
This happens because -EAGAIN error returned from btrfs_reserve_extent()
called from btrfs_new_extent_direct() is spilling over to the userland.
btrfs_reserve_extent() returns -EAGAIN when there is no active zone
available. Then, the caller should wait for some other on-going IO to
finish a zone and retry the allocation.
This logic is already implemented for buffered write in cow_file_range(),
but it is missing for the direct IO counterpart. Implement the same logic
for it.
Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Fixes: 2ce543f478 ("btrfs: zoned: wait until zone is finished when allocation didn't progress")
CC: stable@vger.kernel.org # 6.1+
Tested-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a check of the write pointer vs the zone size to reject an invalid
write pointer. However, as of now, we have RAID0/RAID10 on the zoned
mode, we can have a block group whose size is larger than the zone size.
As an equivalent check against the block group's zone_capacity is already
there, we can just drop this invalid check.
Fixes: 568220fa96 ("btrfs: zoned: support RAID0/1/10 on top of raid stripe tree")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's more obvious to return a literal zero instead of "return ret;".
Plus Smatch complains that ret could be uninitialized if the
ordered_extent->bioc_list list is empty and this silences that warning.
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the tree search v2 ioctl we use the type size_t, which is an unsigned
long, to track the buffer size in the local variable 'buf_size'. An
unsigned long is 32 bits wide on a 32 bits architecture. The buffer size
defined in struct btrfs_ioctl_search_args_v2 is a u64, so when we later
try to copy the local variable 'buf_size' to the argument struct, when
the search returns -EOVERFLOW, we copy only 32 bits which will be a
problem on big endian systems.
Fix this by using a u64 type for the buffer sizes, not only at
btrfs_ioctl_tree_search_v2(), but also everywhere down the call chain
so that we can use the u64 at btrfs_ioctl_tree_search_v2().
Fixes: cc68a8a5a4 ("btrfs: new ioctl TREE_SEARCH_V2")
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Link: https://lore.kernel.org/linux-btrfs/ce6f4bd6-9453-4ffe-ba00-cee35495e10f@moroto.mountain/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series "Fixes and cleanups to compaction".
- Joel Fernandes has a patchset ("Optimize mremap during mutual
alignment within PMD") which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested.
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series "Do not try to access unaccepted memory" Adrian Hunter
provides some fixups for the recently-added "unaccepted memory' feature.
To increase the feature's checking coverage. "Plug a few gaps where
RAM is exposed without checking if it is unaccepted memory".
- In the series "cleanups for lockless slab shrink" Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code.
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series "use refcount+RCU method to implement
lockless slab shrink".
- David Hildenbrand contributes some maintenance work for the rmap code
in the series "Anon rmap cleanups".
- Kefeng Wang does more folio conversions and some maintenance work in
the migration code. Series "mm: migrate: more folio conversion and
unification".
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series "Add and use bdev_getblk()".
- In the series "Use nth_page() in place of direct struct page
manipulation" Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames.
- In the series "mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO" has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of gigantic
pages are in use.
- Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
rationalization and folio conversions in the hugetlb code.
- Yin Fengwei has improved mlock()'s handling of large folios in the
series "support large folio for mlock"
- In the series "Expose swapcache stat for memcg v1" Liu Shixin has
added statistics for memcg v1 users which are available (and useful)
under memcg v2.
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named "MDWE
without inheritance".
- Kefeng Wang has provided the series "mm: convert numa balancing
functions to use a folio" which does what it says.
- In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
makes is possible for a process to propagate KSM treatment across
exec().
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use "high
bandwidth memory" in addition to Optane Data Center Persistent Memory
Modules (DCPMM). The series is named "memory tiering: calculate
abstract distance based on ACPI HMAT"
- In the series "Smart scanning mode for KSM" Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans.
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
series "mm: memcg: fix tracking of pending stats updates values".
- In the series "Implement IOCTL to get and optionally clear info about
PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
us to atomically read-then-clear page softdirty state. This is mainly
used by CRIU.
- Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
- a bunch of relatively minor maintenance tweaks to this code.
- Matthew Wilcox has increased the use of the VMA lock over file-backed
page faults in the series "Handle more faults under the VMA lock". Some
rationalizations of the fault path became possible as a result.
- In the series "mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
and folio conversions.
- In the series "various improvements to the GUP interface" Lorenzo
Stoakes has simplified and improved the GUP interface with an eye to
providing groundwork for future improvements.
- Andrey Konovalov has sent along the series "kasan: assorted fixes and
improvements" which does those things.
- Some page allocator maintenance work from Kemeng Shi in the series
"Two minor cleanups to break_down_buddy_pages".
- In thes series "New selftest for mm" Breno Leitao has developed
another MM self test which tickles a race we had between madvise() and
page faults.
- In the series "Add folio_end_read" Matthew Wilcox provides cleanups
and an optimization to the core pagecache code.
- Nhat Pham has added memcg accounting for hugetlb memory in the series
"hugetlb memcg accounting".
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series "Abstract vma_merge() and split_vma()".
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series "Fix page_owner's use of free timestamps".
- Lorenzo Stoakes has fixed the handling of new mappings of sealed files
in the series "permit write-sealed memfd read-only shared mappings".
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series "Batch hugetlb vmemmap modification operations".
- Some buffer_head folio conversions and cleanups from Matthew Wilcox in
the series "Finish the create_empty_buffers() transition".
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the series
"mm: PCP high auto-tuning".
- Roman Gushchin has contributed the patchset "mm: improve performance
of accounted kernel memory allocations" which improves their performance
by ~30% as measured by a micro-benchmark.
- folio conversions from Kefeng Wang in the series "mm: convert page
cpupid functions to folios".
- Some kmemleak fixups in Liu Shixin's series "Some bugfix about
kmemleak".
- Qi Zheng has improved our handling of memoryless nodes by keeping them
off the allocation fallback list. This is done in the series "handle
memoryless nodes more appropriately".
- khugepaged conversions from Vishal Moola in the series "Some
khugepaged folio conversions".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
FgeUPAD1oasg6CP+INZvCj34waNxwAc=
=E+Y4
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series 'Fixes and cleanups to compaction'
- Joel Fernandes has a patchset ('Optimize mremap during mutual
alignment within PMD') which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i
the following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series 'Do not try to access unaccepted memory' Adrian
Hunter provides some fixups for the recently-added 'unaccepted
memory' feature. To increase the feature's checking coverage. 'Plug
a few gaps where RAM is exposed without checking if it is
unaccepted memory'
- In the series 'cleanups for lockless slab shrink' Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series 'use refcount+RCU method to
implement lockless slab shrink'
- David Hildenbrand contributes some maintenance work for the rmap
code in the series 'Anon rmap cleanups'
- Kefeng Wang does more folio conversions and some maintenance work
in the migration code. Series 'mm: migrate: more folio conversion
and unification'
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series 'Add and use bdev_getblk()'
- In the series 'Use nth_page() in place of direct struct page
manipulation' Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames
- In the series 'mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO' has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of
gigantic pages are in use
- Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
rationalization and folio conversions in the hugetlb code
- Yin Fengwei has improved mlock()'s handling of large folios in the
series 'support large folio for mlock'
- In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
added statistics for memcg v1 users which are available (and
useful) under memcg v2
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named 'MDWE
without inheritance'
- Kefeng Wang has provided the series 'mm: convert numa balancing
functions to use a folio' which does what it says
- In the series 'mm/ksm: add fork-exec support for prctl' Stefan
Roesch makes is possible for a process to propagate KSM treatment
across exec()
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use 'high
bandwidth memory' in addition to Optane Data Center Persistent
Memory Modules (DCPMM). The series is named 'memory tiering:
calculate abstract distance based on ACPI HMAT'
- In the series 'Smart scanning mode for KSM' Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in
the series 'mm: memcg: fix tracking of pending stats updates
values'
- In the series 'Implement IOCTL to get and optionally clear info
about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
which permits us to atomically read-then-clear page softdirty
state. This is mainly used by CRIU
- Hugh Dickins contributed the series 'shmem,tmpfs: general
maintenance', a bunch of relatively minor maintenance tweaks to
this code
- Matthew Wilcox has increased the use of the VMA lock over
file-backed page faults in the series 'Handle more faults under the
VMA lock'. Some rationalizations of the fault path became possible
as a result
- In the series 'mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()' David Hildenbrand has implemented some
cleanups and folio conversions
- In the series 'various improvements to the GUP interface' Lorenzo
Stoakes has simplified and improved the GUP interface with an eye
to providing groundwork for future improvements
- Andrey Konovalov has sent along the series 'kasan: assorted fixes
and improvements' which does those things
- Some page allocator maintenance work from Kemeng Shi in the series
'Two minor cleanups to break_down_buddy_pages'
- In thes series 'New selftest for mm' Breno Leitao has developed
another MM self test which tickles a race we had between madvise()
and page faults
- In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
and an optimization to the core pagecache code
- Nhat Pham has added memcg accounting for hugetlb memory in the
series 'hugetlb memcg accounting'
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series 'Abstract vma_merge() and split_vma()'
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series 'Fix page_owner's use of free timestamps'
- Lorenzo Stoakes has fixed the handling of new mappings of sealed
files in the series 'permit write-sealed memfd read-only shared
mappings'
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series 'Batch hugetlb vmemmap modification operations'
- Some buffer_head folio conversions and cleanups from Matthew Wilcox
in the series 'Finish the create_empty_buffers() transition'
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the
series 'mm: PCP high auto-tuning'
- Roman Gushchin has contributed the patchset 'mm: improve
performance of accounted kernel memory allocations' which improves
their performance by ~30% as measured by a micro-benchmark
- folio conversions from Kefeng Wang in the series 'mm: convert page
cpupid functions to folios'
- Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
kmemleak'
- Qi Zheng has improved our handling of memoryless nodes by keeping
them off the allocation fallback list. This is done in the series
'handle memoryless nodes more appropriately'
- khugepaged conversions from Vishal Moola in the series 'Some
khugepaged folio conversions'"
[ bcachefs conflicts with the dynamically allocated shrinkers have been
resolved as per Stephen Rothwell in
https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/
with help from Qi Zheng.
The clone3 test filtering conflict was half-arsed by yours truly ]
* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
mm/damon/sysfs: update monitoring target regions for online input commit
mm/damon/sysfs: remove requested targets when online-commit inputs
selftests: add a sanity check for zswap
Documentation: maple_tree: fix word spelling error
mm/vmalloc: fix the unchecked dereference warning in vread_iter()
zswap: export compression failure stats
Documentation: ubsan: drop "the" from article title
mempolicy: migration attempt to match interleave nodes
mempolicy: mmap_lock is not needed while migrating folios
mempolicy: alloc_pages_mpol() for NUMA policy without vma
mm: add page_rmappable_folio() wrapper
mempolicy: remove confusing MPOL_MF_LAZY dead code
mempolicy: mpol_shared_policy_init() without pseudo-vma
mempolicy trivia: use pgoff_t in shared mempolicy tree
mempolicy trivia: slightly more consistent naming
mempolicy trivia: delete those ancient pr_debug()s
mempolicy: fix migrate_pages(2) syscall return nr_failed
kernfs: drop shared NUMA mempolicy hooks
hugetlbfs: drop shared NUMA mempolicy pretence
mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmU/xAEACgkQxWXV+ddt
WDvYKg//SjTimA5Nins9mb4jdz8n+dDeZnQhKzy3FqInU41EzDRc4WwnEODmDlTa
AyU9rGB3k0JNSUc075jZFCyLqq/ARiOqRi4x33Gk0ckIlc4X5OgBoqP2XkPh0VlP
txskLCrmhc3pwyR4ErlFDX2jebIUXfkv39bJuE40grGvUatRe+WNq0ERIrgO8RAr
Rc3hBotMH8AIqfD1L6j1ZiZIAyrOkT1BJMuqeoq27/gJZn/MRhM9TCrMTzfWGaoW
SxPrQiCDEN3KECsOY/caroMn3AekDijg/ley1Nf7Z0N6oEV+n4VWWPBFE9HhRz83
9fIdvSbGjSJF6ekzTjcVXPAbcuKZFzeqOdBRMIW3TIUo7mZQyJTVkMsc1y/NL2Z3
9DhlRLIzvWJJjt1CEK0u18n5IU+dGngdktbhWWIuIlo8r+G/iKR/7zqU92VfWLHL
Z7/eh6HgH5zr2bm+yKORbrUjkv4IVhGVarW8D4aM+MCG0lFN2GaPcJCCUrp4n7rZ
PzpQbxXa38ANBk6hsp4ndS8TJSBL9moY8tumzLcKg97nzNMV6KpBdV/G6/QfRLCN
3kM6UbwTAkMwGcQS86Mqx6s04ORLnQeD6f7N6X4Ppx0Mi/zkjI2HkRuvQGp12B0v
iZjCCZAYY2Iu+/TU0GrCXSss/grzIAUPzM9msyV3XGO/VBpwdec=
=9TVx
-----END PGP SIGNATURE-----
Merge tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"New features:
- raid-stripe-tree
New tree for logical file extent mapping where the physical mapping
may not match on multiple devices. This is now used in zoned mode
to implement RAID0/RAID1* profiles, but can be used in non-zoned
mode as well. The support for RAID56 is in development and will
eventually fix the problems with the current implementation. This
is a backward incompatible feature and has to be enabled at mkfs
time.
- simple quota accounting (squota)
A simplified mode of qgroup that accounts all space on the initial
extent owners (a subvolume), the snapshots are then cheap to create
and delete. The deletion of snapshots in fully accounting qgroups
is a known CPU/IO performance bottleneck.
The squota is not suitable for the general use case but works well
for containers where the original subvolume exists for the whole
time. This is a backward incompatible feature as it needs extending
some structures, but can be enabled on an existing filesystem.
- temporary filesystem fsid (temp_fsid)
The fsid identifies a filesystem and is hard coded in the
structures, which disallows mounting the same fsid found on
different devices.
For a single device filesystem this is not strictly necessary, a
new temporary fsid can be generated on mount e.g. after a device is
cloned. This will be used by Steam Deck for root partition A/B
testing, or can be used for VM root images.
Other user visible changes:
- filesystems with partially finished metadata_uuid conversion cannot
be mounted anymore and the uuid fixup has to be done by btrfs-progs
(btrfstune).
Performance improvements:
- reduce reservations for checksum deletions (with enabled free space
tree by factor of 4), on a sample workload on file with many
extents the deletion time decreased by 12%
- make extent state merges more efficient during insertions, reduce
rb-tree iterations (run time of critical functions reduced by 5%)
Core changes:
- the integrity check functionality has been removed, this was a
debugging feature and removal does not affect other integrity
checks like checksums or tree-checker
- space reservation changes:
- more efficient delayed ref reservations, this avoids building up
too much work or overusing or exhausting the global block
reserve in some situations
- move delayed refs reservation to the transaction start time,
this prevents some ENOSPC corner cases related to exhaustion of
global reserve
- improvements in reducing excessive reservations for block group
items
- adjust overcommit logic in near full situations, account for one
more chunk to eventually allocate metadata chunk, this is mostly
relevant for small filesystems (<10GiB)
- single device filesystems are scanned but not registered (except
seed devices), this allows temp_fsid to work
- qgroup iterations do not need GFP_ATOMIC allocations anymore
- cleanups, refactoring, reduced data structure size, function
parameter simplifications, error handling fixes"
* tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (156 commits)
btrfs: open code timespec64 in struct btrfs_inode
btrfs: remove redundant log root tree index assignment during log sync
btrfs: remove redundant initialization of variable dirty in btrfs_update_time()
btrfs: sysfs: show temp_fsid feature
btrfs: disable the device add feature for temp-fsid
btrfs: disable the seed feature for temp-fsid
btrfs: update comment for temp-fsid, fsid, and metadata_uuid
btrfs: remove pointless empty log context list check when syncing log
btrfs: update comment for struct btrfs_inode::lock
btrfs: remove pointless barrier from btrfs_sync_file()
btrfs: add and use helpers for reading and writing last_trans_committed
btrfs: add and use helpers for reading and writing fs_info->generation
btrfs: add and use helpers for reading and writing log_transid
btrfs: add and use helpers for reading and writing last_log_commit
btrfs: support cloned-device mount capability
btrfs: add helper function find_fsid_by_disk
btrfs: stop reserving excessive space for block group item insertions
btrfs: stop reserving excessive space for block group item updates
btrfs: reorder btrfs_inode to fill gaps
btrfs: open code btrfs_ordered_inode_tree in btrfs_inode
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTppYgAKCRCRxhvAZXjc
okIHAP9anLz1QDyMLH12ASuHjgBc0Of3jcB6NB97IWGpL4O21gEA46ohaD+vcJuC
YkBLU3lXqQ87nfu28ExFAzh10hG2jwM=
=m4pB
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7.ctime' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull vfs inode time accessor updates from Christian Brauner:
"This finishes the conversion of all inode time fields to accessor
functions as discussed on list. Changing timestamps manually as we
used to do before is error prone. Using accessors function makes this
robust.
It does not contain the switch of the time fields to discrete 64 bit
integers to replace struct timespec and free up space in struct inode.
But after this, the switch can be trivially made and the patch should
only affect the vfs if we decide to do it"
* tag 'vfs-6.7.ctime' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (86 commits)
fs: rename inode i_atime and i_mtime fields
security: convert to new timestamp accessors
selinux: convert to new timestamp accessors
apparmor: convert to new timestamp accessors
sunrpc: convert to new timestamp accessors
mm: convert to new timestamp accessors
bpf: convert to new timestamp accessors
ipc: convert to new timestamp accessors
linux: convert to new timestamp accessors
zonefs: convert to new timestamp accessors
xfs: convert to new timestamp accessors
vboxsf: convert to new timestamp accessors
ufs: convert to new timestamp accessors
udf: convert to new timestamp accessors
ubifs: convert to new timestamp accessors
tracefs: convert to new timestamp accessors
sysv: convert to new timestamp accessors
squashfs: convert to new timestamp accessors
server: convert to new timestamp accessors
client: convert to new timestamp accessors
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZTppWAAKCRCRxhvAZXjc
okB2AP4jjoRErJBwj245OIDJqzoj4m4UVOVd0MH2AkiSpANczwD/TToChdpusY2y
qAYg1fQoGMbDVlb7Txaj9qI9ieCf9w0=
=2PXg
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7.xattr' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull vfs xattr updates from Christian Brauner:
"The 's_xattr' field of 'struct super_block' currently requires a
mutable table of 'struct xattr_handler' entries (although each handler
itself is const). However, no code in vfs actually modifies the
tables.
This changes the type of 's_xattr' to allow const tables, and modifies
existing file systems to move their tables to .rodata. This is
desirable because these tables contain entries with function pointers
in them; moving them to .rodata makes it considerably less likely to
be modified accidentally or maliciously at runtime"
* tag 'vfs-6.7.xattr' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (30 commits)
const_structs.checkpatch: add xattr_handler
net: move sockfs_xattr_handlers to .rodata
shmem: move shmem_xattr_handlers to .rodata
overlayfs: move xattr tables to .rodata
xfs: move xfs_xattr_handlers to .rodata
ubifs: move ubifs_xattr_handlers to .rodata
squashfs: move squashfs_xattr_handlers to .rodata
smb: move cifs_xattr_handlers to .rodata
reiserfs: move reiserfs_xattr_handlers to .rodata
orangefs: move orangefs_xattr_handlers to .rodata
ocfs2: move ocfs2_xattr_handlers and ocfs2_xattr_handler_map to .rodata
ntfs3: move ntfs_xattr_handlers to .rodata
nfs: move nfs4_xattr_handlers to .rodata
kernfs: move kernfs_xattr_handlers to .rodata
jfs: move jfs_xattr_handlers to .rodata
jffs2: move jffs2_xattr_handlers to .rodata
hfsplus: move hfsplus_xattr_handlers to .rodata
hfs: move hfs_xattr_handlers to .rodata
gfs2: move gfs2_xattr_handlers_max to .rodata
fuse: move fuse_xattr_handlers to .rodata
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZT0C2gAKCRCRxhvAZXjc
otV8AQCK5F9ONoQ7ISpdrKyUJiswySGXx0CYPfXbSg5gHH87zgEAua3vwVKeGXXF
5iVsdiNzIIQDwGDx7FyxufL4ggcN6gQ=
=E1kV
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.7.super' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull vfs superblock updates from Christian Brauner:
"This contains the work to make block device opening functions return a
struct bdev_handle instead of just a struct block_device. The same
struct bdev_handle is then also passed to block device closing
functions.
This allows us to propagate context from opening to closing a block
device without having to modify all users everytime.
Sidenote, in the future we might even want to try and have block
device opening functions return a struct file directly but that's a
series on top of this.
These are further preparatory changes to be able to count writable
opens and blocking writes to mounted block devices. That's a separate
piece of work for next cycle and for that we absolutely need the
changes to btrfs that have been quietly dropped somehow.
Originally the series contained a patch that removed the old
blkdev_*() helpers. But since this would've caused needles churn in
-next for bcachefs we ended up delaying it.
The second piece of work addresses one of the major annoyances about
the work last cycle, namely that we required dropping s_umount
whenever we used the superblock and fs_holder_ops for a block device.
The reason for that requirement had been that in some codepaths
s_umount could've been taken under disk->open_mutex (that's always
been the case, at least theoretically). For example, on surprise block
device removal or media change. And opening and closing block devices
required grabbing disk->open_mutex as well.
So we did the work and went through the block layer and fixed all
those places so that s_umount is never taken under disk->open_mutex.
This means no more brittle games where we yield and reacquire s_umount
during block device opening and closing and no more requirements where
block devices need to be closed. Filesystems don't need to care about
this.
There's a bunch of other follow-up work such as moving block device
freezing and thawing to holder operations which makes it work for all
block devices and not just the main block device just as we did for
surprise removal. But that is for next cycle.
Tested with fstests for all major fses, blktests, LTP"
* tag 'vfs-6.7.super' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (37 commits)
porting: update locking requirements
fs: assert that open_mutex isn't held over holder ops
block: assert that we're not holding open_mutex over blk_report_disk_dead
block: move bdev_mark_dead out of disk_check_media_change
block: WARN_ON_ONCE() when we remove active partitions
block: simplify bdev_del_partition()
fs: Avoid grabbing sb->s_umount under bdev->bd_holder_lock
jfs: fix log->bdev_handle null ptr deref in lbmStartIO
bcache: Fixup error handling in register_cache()
xfs: Convert to bdev_open_by_path()
reiserfs: Convert to bdev_open_by_dev/path()
ocfs2: Convert to use bdev_open_by_dev()
nfs/blocklayout: Convert to use bdev_open_by_dev/path()
jfs: Convert to bdev_open_by_dev()
f2fs: Convert to bdev_open_by_dev/path()
ext4: Convert to bdev_open_by_dev()
erofs: Convert to use bdev_open_by_path()
btrfs: Convert to bdev_open_by_path()
fs: Convert to bdev_open_by_dev()
mm/swap: Convert to use bdev_open_by_dev()
...
Convert btrfs to use bdev_open_by_path() and pass the handle around. We
also drop the holder from struct btrfs_device as it is now not needed
anymore.
CC: David Sterba <dsterba@suse.com>
CC: linux-btrfs@vger.kernel.org
Acked-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230927093442.25915-20-jack@suse.cz
Signed-off-by: Christian Brauner <brauner@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmU2lLEACgkQxWXV+ddt
WDvCThAApe+zMNdEhQ/cgrvfzP/X91Q53PXQsdVsrujPyUV8eEV4oJzEwVbJhRdw
3ukIQtvyAMNiWhEBhOQRwxjuUoTCApGAeEEEl1cWWEqQ7G2/2LS4+bcWzgQ3Vu32
dzYL37ddsfe4n7OgfnymtMrnv7kge0XbAlY3GbavaDccZDQDqcD5wSAOyOhfIsH7
kcu4sA5Fi44wVSfAJX1Dms+wXfsmQu/sd3c9Gcyce9Hpy1cEW3vWbApLBE4K0aKX
/JHTdmkAJ20a4APQsfGH+UymyuZgr8d2eGmL9rVYKhT/c+Dow0lNAWYkvGf/MawM
CX3GdP6f6ZOR/anCPZ8nqZCE5AoFykGazvpCCSrvCOpU7o7GqxbAQkWWFcMp1FHW
9TFrj81WK18DeCfCNw7lR3sdMy/2o2nnSUAw3DFY4n/3Lek7FUmrBTHvXlWDot7T
TM9CzYGF840QhL5s5SMYS09YmeI0I34L7HJAi/+qli48SooGuL9RZ29TmzHIX69Y
2bgpS64j06p/AGEnfHAcT1LbpiFCPmO5cpXKv/t40GL5QO5d4WV698ysDGoPYUPO
8CPL85Y8cao56KGJLyOroGz0P1bo+RdNe5bN6xJJoTRn1Y9oUA+bQSnN8x9iuunF
9QZrAIHzNyDcRGzoqgDW+3bivOvIus/Dto/u1P3ap68kP2HTVsY=
=gOyi
-----END PGP SIGNATURE-----
Merge tag 'for-6.6-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"One more fix for a problem with snapshot of a newly created subvolume
that can lead to inconsistent data under some circumstances. Kernel
6.5 added a performance optimization to skip transaction commit for
subvolume creation but this could end up with newer data on disk but
not linked to other structures.
The fix itself is an added condition, the rest of the patch is a
parameter added to several functions"
* tag 'for-6.6-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix unwritten extent buffer after snapshotting a new subvolume