Commit Graph

775 Commits

Author SHA1 Message Date
David Sterba
dba6ae0b43 btrfs: unify ordering of btrfs_key initializations
The btrfs_key is defined as objectid/type/offset and the keys are also
printed like that. For better readability, update all key
initializations to match this order.

Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18 20:35:42 +01:00
Filipe Manana
8787c36c63 btrfs: tree-log: remove unnecessary calls to btrfs_mark_buffer_dirty()
We have several places explicitly calling btrfs_mark_buffer_dirty() but
that is not necessarily since the target leaf came from a path that was
obtained for a btree search function that modifies the btree, something
like btrfs_insert_empty_item() or anything else that ends up calling
btrfs_search_slot() with a value of 1 for its 'cow' argument.

These just make the code more verbose, confusing and add a little extra
overhead and well as increase the module's text size, so remove them.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13 14:53:18 +01:00
David Sterba
2d5903dd5b btrfs: drop unused parameter ctx from batch_delete_dir_index_items()
The ctx parameter is not used, we can drop it.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11 14:34:15 +01:00
Roi Martin
2ab5e243c2 btrfs: fix uninitialized pointer free on read_alloc_one_name() error
The function read_alloc_one_name() does not initialize the name field of
the passed fscrypt_str struct if kmalloc fails to allocate the
corresponding buffer.  Thus, it is not guaranteed that
fscrypt_str.name is initialized when freeing it.

This is a follow-up to the linked patch that fixes the remaining
instances of the bug introduced by commit e43eec81c5 ("btrfs: use
struct qstr instead of name and namelen pairs").

Link: https://lore.kernel.org/linux-btrfs/20241009080833.1355894-1-jroi.martin@gmail.com/
Fixes: e43eec81c5 ("btrfs: use struct qstr instead of name and namelen pairs")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Roi Martin <jroi.martin@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-11 19:55:04 +02:00
Roi Martin
66691c6e2f btrfs: fix uninitialized pointer free in add_inode_ref()
The add_inode_ref() function does not initialize the "name" struct when
it is declared.  If any of the following calls to "read_one_inode()
returns NULL,

	dir = read_one_inode(root, parent_objectid);
	if (!dir) {
		ret = -ENOENT;
		goto out;
	}

	inode = read_one_inode(root, inode_objectid);
	if (!inode) {
		ret = -EIO;
		goto out;
	}

then "name.name" would be freed on "out" before being initialized.

out:
	...
	kfree(name.name);

This issue was reported by Coverity with CID 1526744.

Fixes: e43eec81c5 ("btrfs: use struct qstr instead of name and namelen pairs")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Roi Martin <jroi.martin@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-11 19:54:52 +02:00
Filipe Manana
1b6e068a0c btrfs: add and use helper to verify the calling task has locked the inode
We have a few places that check if we have the inode locked by doing:

    ASSERT(inode_is_locked(vfs_inode));

This actually proved to be useful several times as if assertions are
enabled (and by default they are in many distros) it immediately triggers
a crash which is impossible for users to miss.

However that doesn't check if the lock is held by the calling task, so
the check passes if some other task locked the inode.

Using one of the lockdep functions to check the lock is held, like
lockdep_assert_held() for example, does check that the calling task
holds the lock, and if that's not the case it produces a warning and
stack trace in dmesg. However, despite the misleading "assert" in the
name of the lockdep helpers, it does not trigger a crash/BUG_ON(), just
a warning and splat in dmesg, which is easy to get unnoticed by users
who may have lockdep enabled.

So add a helper that does the ASSERT() and calls lockdep_assert_held()
immediately after and use it every where we check the inode is locked.
Like this if the lock is held by some other task we get the warning
in dmesg which is caught by fstests, very helpful during development,
and may also be occassionaly noticed by users with lockdep enabled.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:22 +02:00
Filipe Manana
d13240dd0a btrfs: remove super block argument from btrfs_iget()
It's pointless to pass a super block argument to btrfs_iget() because we
always pass a root and from it we can get the super block through:

   root->fs_info->sb

So remove the super block argument.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:25 +02:00
Filipe Manana
45c4102f0d btrfs: avoid transaction commit on any fsync after subvolume creation
As of commit 1b53e51a4a ("btrfs: don't commit transaction for every
subvol create") we started to make any fsync after creating a subvolume
to fallback to a transaction commit if the fsync is performed in the
same transaction that was used to create the subvolume. This happens
with the following at ioctl.c:create_subvol():

  $ cat fs/btrfs/ioctl.c
  (...)
      /* Tree log can't currently deal with an inode which is a new root. */
      btrfs_set_log_full_commit(trans);
  (...)

Note that the comment is misleading as the problem is not that fsync can
not deal with the root inode of a new root, but that we can not log any
inode that belongs to a root that was not yet persisted because that would
make log replay fail since the root doesn't exist at log replay time.

The above simply makes any fsync fallback to a full transaction commit if
it happens in the same transaction used to create the subvolume - even if
it's an inode that belongs to any other subvolume. This is a brute force
solution and it doesn't necessarily improve performance for every workload
out there - it just moves a full transaction commit from one place, the
subvolume creation, to another - an fsync for any inode.

Just improve on this by making the fallback to a transaction commit only
for an fsync against an inode of the new subvolume, or for the directory
that contains the dentry that points to the new subvolume (in case anyone
attempts to fsync the directory in the same transaction).

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:24 +02:00
Qu Wenruo
c77a8c6100 btrfs: remove extent_map::block_start member
The member extent_map::block_start can be calculated from
extent_map::disk_bytenr + extent_map::offset for regular extents.
And otherwise just extent_map::disk_bytenr.

And this is already validated by the validate_extent_map().  Now we can
remove the member.

However there is a special case in btrfs_create_dio_extent() where we
for NOCOW/PREALLOC ordered extents cannot directly use the resulting
btrfs_file_extent, as btrfs_split_ordered_extent() cannot handle them
yet.

So for that call site, we pass file_extent->disk_bytenr +
file_extent->num_bytes as disk_bytenr for the ordered extent, and 0 for
offset.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:21 +02:00
Qu Wenruo
e28b851ed9 btrfs: remove extent_map::block_len member
The extent_map::block_len is either extent_map::len (non-compressed
extent) or extent_map::disk_num_bytes (compressed extent).

Since we already have sanity checks to do the cross-checks between the
new and old members, we can drop the old extent_map::block_len now.

For most call sites, they can manually select extent_map::len or
extent_map::disk_num_bytes, since most if not all of them have checked
if the extent is compressed.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Qu Wenruo
4aa7b5d178 btrfs: remove extent_map::orig_start member
Since we have extent_map::offset, the old extent_map::orig_start is just
extent_map::start - extent_map::offset for non-hole/inline extents.

And since the new extent_map::offset is already verified by
validate_extent_map() while the old orig_start is not, let's just remove
the old member from all call sites.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Qu Wenruo
e8fe524da0 btrfs: rename extent_map::orig_block_len to disk_num_bytes
This would make it very obvious that the member just matches
btrfs_file_extent_item::disk_num_bytes.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Filipe Manana
4d0120a519 btrfs: use a btrfs_inode in the log context (struct btrfs_log_ctx)
Instead of using a inode pointer, use a btrfs_inode pointer in the log
context structure, as this is generally what we need and allows for some
internal APIs to take a btrfs_inode instead, making them more consistent
with most of the code base. This will later allow to help to remove a lot
of BTRFS_I() calls in btrfs_sync_file().

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:18 +02:00
Filipe Manana
068fc8f914 btrfs: remove location key from struct btrfs_inode
Currently struct btrfs_inode has a key member, named "location", that is
either:

1) The key of the inode's item. In this case the objectid is the number
   of the inode;

2) A key stored in a dir entry with a type of BTRFS_ROOT_ITEM_KEY, for
   the case where we have a root that is a snapshot of a subvolume that
   points to other subvolumes. In this case the objectid is the ID of
   a subvolume inside the snapshotted parent subvolume.

The key is only used to lookup the inode item for the first case, while
for the second it's never used since it corresponds to directory stubs
created with new_simple_dir() and which are marked as dummy, so there's
no actual inode item to ever update. In the second case we only check
the key type at btrfs_ino() for 32 bits platforms and its objectid is
only needed for unlink.

Instead of using a key we can do fine with just the objectid, since we
can generate the key whenever we need it having only the objectid, as
in all use cases the type is always BTRFS_INODE_ITEM_KEY and the offset
is always 0.

So use only an objectid instead of a full key. This reduces the size of
struct btrfs_inode from 1048 bytes down to 1040 bytes on a release kernel.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:17 +02:00
Filipe Manana
d9891ae28b btrfs: unify index_cnt and csum_bytes from struct btrfs_inode
The index_cnt field of struct btrfs_inode is used only for two purposes:

1) To store the index for the next entry added to a directory;

2) For the data relocation inode to track the logical start address of the
   block group currently being relocated.

For the relocation case we use index_cnt because it's not used for
anything else in the relocation use case - we could have used other fields
that are not used by relocation such as defrag_bytes, last_unlink_trans
or last_reflink_trans for example (among others).

Since the csum_bytes field is not used for directories, do the following
changes:

1) Put index_cnt and csum_bytes in a union, and index_cnt is only
   initialized when the inode is a directory. The csum_bytes is only
   accessed in IO paths for regular files, so we're fine here;

2) Use the defrag_bytes field for relocation, since the data relocation
   inode is never used for defrag purposes. And to make the naming better,
   alias it to reloc_block_group_start by using a union.

This reduces the size of struct btrfs_inode by 8 bytes in a release
kernel, from 1056 bytes down to 1048 bytes.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:17 +02:00
Filipe Manana
d1825752e3 btrfs: use NOFS context when getting inodes during logging and log replay
During inode logging (and log replay too), we are holding a transaction
handle and we often need to call btrfs_iget(), which will read an inode
from its subvolume btree if it's not loaded in memory and that results in
allocating an inode with GFP_KERNEL semantics at the btrfs_alloc_inode()
callback - and this may recurse into the filesystem in case we are under
memory pressure and attempt to commit the current transaction, resulting
in a deadlock since the logging (or log replay) task is holding a
transaction handle open.

Syzbot reported this with the following stack traces:

  WARNING: possible circular locking dependency detected
  6.10.0-rc2-syzkaller-00361-g061d1af7b030 #0 Not tainted
  ------------------------------------------------------
  syz-executor.1/9919 is trying to acquire lock:
  ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: might_alloc include/linux/sched/mm.h:334 [inline]
  ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: slab_pre_alloc_hook mm/slub.c:3891 [inline]
  ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: slab_alloc_node mm/slub.c:3981 [inline]
  ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020

  but task is already holding lock:
  ffff88804b569358 (&ei->log_mutex){+.+.}-{3:3}, at: btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #3 (&ei->log_mutex){+.+.}-{3:3}:
         __mutex_lock_common kernel/locking/mutex.c:608 [inline]
         __mutex_lock+0x175/0x9c0 kernel/locking/mutex.c:752
         btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481
         btrfs_log_inode_parent+0x8cb/0x2a90 fs/btrfs/tree-log.c:7079
         btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180
         btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959
         vfs_fsync_range+0x141/0x230 fs/sync.c:188
         generic_write_sync include/linux/fs.h:2794 [inline]
         btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705
         new_sync_write fs/read_write.c:497 [inline]
         vfs_write+0x6b6/0x1140 fs/read_write.c:590
         ksys_write+0x12f/0x260 fs/read_write.c:643
         do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
         __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
         do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
         entry_SYSENTER_compat_after_hwframe+0x84/0x8e

  -> #2 (btrfs_trans_num_extwriters){++++}-{0:0}:
         join_transaction+0x164/0xf40 fs/btrfs/transaction.c:315
         start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700
         btrfs_commit_super+0xa1/0x110 fs/btrfs/disk-io.c:4170
         close_ctree+0xcb0/0xf90 fs/btrfs/disk-io.c:4324
         generic_shutdown_super+0x159/0x3d0 fs/super.c:642
         kill_anon_super+0x3a/0x60 fs/super.c:1226
         btrfs_kill_super+0x3b/0x50 fs/btrfs/super.c:2096
         deactivate_locked_super+0xbe/0x1a0 fs/super.c:473
         deactivate_super+0xde/0x100 fs/super.c:506
         cleanup_mnt+0x222/0x450 fs/namespace.c:1267
         task_work_run+0x14e/0x250 kernel/task_work.c:180
         resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
         exit_to_user_mode_loop kernel/entry/common.c:114 [inline]
         exit_to_user_mode_prepare include/linux/entry-common.h:328 [inline]
         __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
         syscall_exit_to_user_mode+0x278/0x2a0 kernel/entry/common.c:218
         __do_fast_syscall_32+0x80/0x120 arch/x86/entry/common.c:389
         do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
         entry_SYSENTER_compat_after_hwframe+0x84/0x8e

  -> #1 (btrfs_trans_num_writers){++++}-{0:0}:
         __lock_release kernel/locking/lockdep.c:5468 [inline]
         lock_release+0x33e/0x6c0 kernel/locking/lockdep.c:5774
         percpu_up_read include/linux/percpu-rwsem.h:99 [inline]
         __sb_end_write include/linux/fs.h:1650 [inline]
         sb_end_intwrite include/linux/fs.h:1767 [inline]
         __btrfs_end_transaction+0x5ca/0x920 fs/btrfs/transaction.c:1071
         btrfs_commit_inode_delayed_inode+0x228/0x330 fs/btrfs/delayed-inode.c:1301
         btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291
         evict+0x2ed/0x6c0 fs/inode.c:667
         iput_final fs/inode.c:1741 [inline]
         iput.part.0+0x5a8/0x7f0 fs/inode.c:1767
         iput+0x5c/0x80 fs/inode.c:1757
         dentry_unlink_inode+0x295/0x480 fs/dcache.c:400
         __dentry_kill+0x1d0/0x600 fs/dcache.c:603
         dput.part.0+0x4b1/0x9b0 fs/dcache.c:845
         dput+0x1f/0x30 fs/dcache.c:835
         ovl_stack_put+0x60/0x90 fs/overlayfs/util.c:132
         ovl_destroy_inode+0xc6/0x190 fs/overlayfs/super.c:182
         destroy_inode+0xc4/0x1b0 fs/inode.c:311
         iput_final fs/inode.c:1741 [inline]
         iput.part.0+0x5a8/0x7f0 fs/inode.c:1767
         iput+0x5c/0x80 fs/inode.c:1757
         dentry_unlink_inode+0x295/0x480 fs/dcache.c:400
         __dentry_kill+0x1d0/0x600 fs/dcache.c:603
         shrink_kill fs/dcache.c:1048 [inline]
         shrink_dentry_list+0x140/0x5d0 fs/dcache.c:1075
         prune_dcache_sb+0xeb/0x150 fs/dcache.c:1156
         super_cache_scan+0x32a/0x550 fs/super.c:221
         do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435
         shrink_slab_memcg mm/shrinker.c:548 [inline]
         shrink_slab+0xa87/0x1310 mm/shrinker.c:626
         shrink_one+0x493/0x7c0 mm/vmscan.c:4790
         shrink_many mm/vmscan.c:4851 [inline]
         lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951
         shrink_node mm/vmscan.c:5910 [inline]
         kswapd_shrink_node mm/vmscan.c:6720 [inline]
         balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911
         kswapd+0x5ea/0xbf0 mm/vmscan.c:7180
         kthread+0x2c1/0x3a0 kernel/kthread.c:389
         ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
         ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244

  -> #0 (fs_reclaim){+.+.}-{0:0}:
         check_prev_add kernel/locking/lockdep.c:3134 [inline]
         check_prevs_add kernel/locking/lockdep.c:3253 [inline]
         validate_chain kernel/locking/lockdep.c:3869 [inline]
         __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137
         lock_acquire kernel/locking/lockdep.c:5754 [inline]
         lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719
         __fs_reclaim_acquire mm/page_alloc.c:3801 [inline]
         fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3815
         might_alloc include/linux/sched/mm.h:334 [inline]
         slab_pre_alloc_hook mm/slub.c:3891 [inline]
         slab_alloc_node mm/slub.c:3981 [inline]
         kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020
         btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411
         alloc_inode+0x5d/0x230 fs/inode.c:261
         iget5_locked fs/inode.c:1235 [inline]
         iget5_locked+0x1c9/0x2c0 fs/inode.c:1228
         btrfs_iget_locked fs/btrfs/inode.c:5590 [inline]
         btrfs_iget_path fs/btrfs/inode.c:5607 [inline]
         btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636
         add_conflicting_inode fs/btrfs/tree-log.c:5657 [inline]
         copy_inode_items_to_log+0x1039/0x1e30 fs/btrfs/tree-log.c:5928
         btrfs_log_inode+0xa48/0x4660 fs/btrfs/tree-log.c:6592
         log_new_delayed_dentries fs/btrfs/tree-log.c:6363 [inline]
         btrfs_log_inode+0x27dd/0x4660 fs/btrfs/tree-log.c:6718
         btrfs_log_all_parents fs/btrfs/tree-log.c:6833 [inline]
         btrfs_log_inode_parent+0x22ba/0x2a90 fs/btrfs/tree-log.c:7141
         btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180
         btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959
         vfs_fsync_range+0x141/0x230 fs/sync.c:188
         generic_write_sync include/linux/fs.h:2794 [inline]
         btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705
         do_iter_readv_writev+0x504/0x780 fs/read_write.c:741
         vfs_writev+0x36f/0xde0 fs/read_write.c:971
         do_pwritev+0x1b2/0x260 fs/read_write.c:1072
         __do_compat_sys_pwritev2 fs/read_write.c:1218 [inline]
         __se_compat_sys_pwritev2 fs/read_write.c:1210 [inline]
         __ia32_compat_sys_pwritev2+0x121/0x1b0 fs/read_write.c:1210
         do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
         __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
         do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
         entry_SYSENTER_compat_after_hwframe+0x84/0x8e

  other info that might help us debug this:

  Chain exists of:
    fs_reclaim --> btrfs_trans_num_extwriters --> &ei->log_mutex

   Possible unsafe locking scenario:

         CPU0                    CPU1
         ----                    ----
    lock(&ei->log_mutex);
                                 lock(btrfs_trans_num_extwriters);
                                 lock(&ei->log_mutex);
    lock(fs_reclaim);

   *** DEADLOCK ***

  7 locks held by syz-executor.1/9919:
   #0: ffff88802be20420 (sb_writers#23){.+.+}-{0:0}, at: do_pwritev+0x1b2/0x260 fs/read_write.c:1072
   #1: ffff888065c0f8f0 (&sb->s_type->i_mutex_key#33){++++}-{3:3}, at: inode_lock include/linux/fs.h:791 [inline]
   #1: ffff888065c0f8f0 (&sb->s_type->i_mutex_key#33){++++}-{3:3}, at: btrfs_inode_lock+0xc8/0x110 fs/btrfs/inode.c:385
   #2: ffff888065c0f778 (&ei->i_mmap_lock){++++}-{3:3}, at: btrfs_inode_lock+0xee/0x110 fs/btrfs/inode.c:388
   #3: ffff88802be20610 (sb_internal#4){.+.+}-{0:0}, at: btrfs_sync_file+0x95b/0xe10 fs/btrfs/file.c:1952
   #4: ffff8880546323f0 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x430/0xf40 fs/btrfs/transaction.c:290
   #5: ffff888054632418 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x430/0xf40 fs/btrfs/transaction.c:290
   #6: ffff88804b569358 (&ei->log_mutex){+.+.}-{3:3}, at: btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481

  stack backtrace:
  CPU: 2 PID: 9919 Comm: syz-executor.1 Not tainted 6.10.0-rc2-syzkaller-00361-g061d1af7b030 #0
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
  Call Trace:
   <TASK>
   __dump_stack lib/dump_stack.c:88 [inline]
   dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114
   check_noncircular+0x31a/0x400 kernel/locking/lockdep.c:2187
   check_prev_add kernel/locking/lockdep.c:3134 [inline]
   check_prevs_add kernel/locking/lockdep.c:3253 [inline]
   validate_chain kernel/locking/lockdep.c:3869 [inline]
   __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137
   lock_acquire kernel/locking/lockdep.c:5754 [inline]
   lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719
   __fs_reclaim_acquire mm/page_alloc.c:3801 [inline]
   fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3815
   might_alloc include/linux/sched/mm.h:334 [inline]
   slab_pre_alloc_hook mm/slub.c:3891 [inline]
   slab_alloc_node mm/slub.c:3981 [inline]
   kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020
   btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411
   alloc_inode+0x5d/0x230 fs/inode.c:261
   iget5_locked fs/inode.c:1235 [inline]
   iget5_locked+0x1c9/0x2c0 fs/inode.c:1228
   btrfs_iget_locked fs/btrfs/inode.c:5590 [inline]
   btrfs_iget_path fs/btrfs/inode.c:5607 [inline]
   btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636
   add_conflicting_inode fs/btrfs/tree-log.c:5657 [inline]
   copy_inode_items_to_log+0x1039/0x1e30 fs/btrfs/tree-log.c:5928
   btrfs_log_inode+0xa48/0x4660 fs/btrfs/tree-log.c:6592
   log_new_delayed_dentries fs/btrfs/tree-log.c:6363 [inline]
   btrfs_log_inode+0x27dd/0x4660 fs/btrfs/tree-log.c:6718
   btrfs_log_all_parents fs/btrfs/tree-log.c:6833 [inline]
   btrfs_log_inode_parent+0x22ba/0x2a90 fs/btrfs/tree-log.c:7141
   btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180
   btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959
   vfs_fsync_range+0x141/0x230 fs/sync.c:188
   generic_write_sync include/linux/fs.h:2794 [inline]
   btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705
   do_iter_readv_writev+0x504/0x780 fs/read_write.c:741
   vfs_writev+0x36f/0xde0 fs/read_write.c:971
   do_pwritev+0x1b2/0x260 fs/read_write.c:1072
   __do_compat_sys_pwritev2 fs/read_write.c:1218 [inline]
   __se_compat_sys_pwritev2 fs/read_write.c:1210 [inline]
   __ia32_compat_sys_pwritev2+0x121/0x1b0 fs/read_write.c:1210
   do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
   __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
   do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
   entry_SYSENTER_compat_after_hwframe+0x84/0x8e
  RIP: 0023:0xf7334579
  Code: b8 01 10 06 03 (...)
  RSP: 002b:00000000f5f265ac EFLAGS: 00000292 ORIG_RAX: 000000000000017b
  RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00000000200002c0
  RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000000
  RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000000292 R12: 0000000000000000
  R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000

Fix this by ensuring we are under a NOFS scope whenever we call
btrfs_iget() during inode logging and log replay.

Reported-by: syzbot+8576cfa84070dce4d59b@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000274a3a061abbd928@google.com/
Fixes: 712e36c5f2 ("btrfs: use GFP_KERNEL in btrfs_alloc_inode")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-25 00:33:47 +02:00
Omar Sandoval
9d274c19a7 btrfs: fix crash on racing fsync and size-extending write into prealloc
We have been seeing crashes on duplicate keys in
btrfs_set_item_key_safe():

  BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192)
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.c:2620!
  invalid opcode: 0000 [#1] PREEMPT SMP PTI
  CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
  RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs]

With the following stack trace:

  #0  btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4)
  #1  btrfs_drop_extents (fs/btrfs/file.c:411:4)
  #2  log_one_extent (fs/btrfs/tree-log.c:4732:9)
  #3  btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9)
  #4  btrfs_log_inode (fs/btrfs/tree-log.c:6626:9)
  #5  btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8)
  #6  btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8)
  #7  btrfs_sync_file (fs/btrfs/file.c:1933:8)
  #8  vfs_fsync_range (fs/sync.c:188:9)
  #9  vfs_fsync (fs/sync.c:202:9)
  #10 do_fsync (fs/sync.c:212:9)
  #11 __do_sys_fdatasync (fs/sync.c:225:9)
  #12 __se_sys_fdatasync (fs/sync.c:223:1)
  #13 __x64_sys_fdatasync (fs/sync.c:223:1)
  #14 do_syscall_x64 (arch/x86/entry/common.c:52:14)
  #15 do_syscall_64 (arch/x86/entry/common.c:83:7)
  #16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121)

So we're logging a changed extent from fsync, which is splitting an
extent in the log tree. But this split part already exists in the tree,
triggering the BUG().

This is the state of the log tree at the time of the crash, dumped with
drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py)
to get more details than btrfs_print_leaf() gives us:

  >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"])
  leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610
  leaf 33439744 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
          item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160
                  generation 7 transid 9 size 8192 nbytes 8473563889606862198
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 204 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417704.983333333 (2024-05-22 15:41:44)
                  mtime 1716417704.983333333 (2024-05-22 15:41:44)
                  otime 17592186044416.000000000 (559444-03-08 01:40:16)
          item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13
                  index 195 namelen 3 name: 193
          item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 4096 ram 12288
                  extent compression 0 (none)
          item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 4096 nr 8192
          item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096
  ...

So the real problem happened earlier: notice that items 4 (4k-12k) and 5
(8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and
item 5 starts at i_size.

Here is the state of the filesystem tree at the time of the crash:

  >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root
  >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0))
  >>> print_extent_buffer(nodes[0])
  leaf 30425088 level 0 items 184 generation 9 owner 5
  leaf 30425088 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
  	...
          item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160
                  generation 7 transid 7 size 4096 nbytes 12288
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 6 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417703.220000000 (2024-05-22 15:41:43)
                  mtime 1716417703.220000000 (2024-05-22 15:41:43)
                  otime 1716417703.220000000 (2024-05-22 15:41:43)
          item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13
                  index 195 namelen 3 name: 193
          item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 8192 ram 12288
                  extent compression 0 (none)
          item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096

Item 5 in the log tree corresponds to item 183 in the filesystem tree,
but nothing matches item 4. Furthermore, item 183 is the last item in
the leaf.

btrfs_log_prealloc_extents() is responsible for logging prealloc extents
beyond i_size. It first truncates any previously logged prealloc extents
that start beyond i_size. Then, it walks the filesystem tree and copies
the prealloc extent items to the log tree.

If it hits the end of a leaf, then it calls btrfs_next_leaf(), which
unlocks the tree and does another search. However, while the filesystem
tree is unlocked, an ordered extent completion may modify the tree. In
particular, it may insert an extent item that overlaps with an extent
item that was already copied to the log tree.

This may manifest in several ways depending on the exact scenario,
including an EEXIST error that is silently translated to a full sync,
overlapping items in the log tree, or this crash. This particular crash
is triggered by the following sequence of events:

- Initially, the file has i_size=4k, a regular extent from 0-4k, and a
  prealloc extent beyond i_size from 4k-12k. The prealloc extent item is
  the last item in its B-tree leaf.
- The file is fsync'd, which copies its inode item and both extent items
  to the log tree.
- An xattr is set on the file, which sets the
  BTRFS_INODE_COPY_EVERYTHING flag.
- The range 4k-8k in the file is written using direct I/O. i_size is
  extended to 8k, but the ordered extent is still in flight.
- The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this
  calls copy_inode_items_to_log(), which calls
  btrfs_log_prealloc_extents().
- btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the
  filesystem tree. Since it starts before i_size, it skips it. Since it
  is the last item in its B-tree leaf, it calls btrfs_next_leaf().
- btrfs_next_leaf() unlocks the path.
- The ordered extent completion runs, which converts the 4k-8k part of
  the prealloc extent to written and inserts the remaining prealloc part
  from 8k-12k.
- btrfs_next_leaf() does a search and finds the new prealloc extent
  8k-12k.
- btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into
  the log tree. Note that it overlaps with the 4k-12k prealloc extent
  that was copied to the log tree by the first fsync.
- fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k
  extent that was written.
- This tries to drop the range 4k-8k in the log tree, which requires
  adjusting the start of the 4k-12k prealloc extent in the log tree to
  8k.
- btrfs_set_item_key_safe() sees that there is already an extent
  starting at 8k in the log tree and calls BUG().

Fix this by detecting when we're about to insert an overlapping file
extent item in the log tree and truncating the part that would overlap.

CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-05 18:06:30 +02:00
Filipe Manana
002f3a2ce8 btrfs: pass the extent map tree's inode to clear_em_logging()
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
clear_em_logging().

In order to facilitate an upcoming change that adds a shrinker for extent
maps, change clear_em_logging() to receive the inode instead of its extent
map tree.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Josef Bacik
e094f48040 btrfs: change root->root_key.objectid to btrfs_root_id()
A comment from Filipe on one of my previous cleanups brought my
attention to a new helper we have for getting the root id of a root,
which makes it easier to read in the code.

The changes where made with the following Coccinelle semantic patch:

// <smpl>
@@
expression E,E1;
@@
(
 E->root_key.objectid = E1
|
- E->root_key.objectid
+ btrfs_root_id(E)
)
// </smpl>

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Josef Bacik
12390e42b6 btrfs: rename ->len to ->num_bytes in btrfs_ref
We consistently use ->num_bytes everywhere through the delayed ref code,
except in btrfs_ref.  Rename btrfs_ref to match all the other code.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:05 +02:00
Josef Bacik
f2e69a77aa btrfs: move ref_root into btrfs_ref
We have this in both btrfs_tree_ref and btrfs_data_ref, which is just
wasting space and making the code more complicated.  Move this into
btrfs_ref proper and update all the call sites to do the assignment in
btrfs_ref.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:04 +02:00
Josef Bacik
4d09b4e942 btrfs: do not use a function to initialize btrfs_ref
btrfs_ref currently has ->owning_root, and ->ref_root is shared between
the tree ref and data ref, so in order to move that into btrfs_ref
proper I would need to add another root parameter to the initialization
function.  This function has too many arguments, and adding another root
will make it easy to make mistakes about which root goes where.

Drop the generic ref init function and statically initialize the
btrfs_ref in every usage.  This makes the code easier to read because we
can see what elements we're assigning, and will make the upcoming change
moving the ref_root into the btrfs_ref more clear and less error prone
than adding a new element to the initialization function.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:04 +02:00
Filipe Manana
8d2a83a97f btrfs: make NOCOW checks for existence of checksums in a range more efficient
Before deciding if we can do a NOCOW write into a range, one of the things
we have to do is check if there are checksum items for that range. We do
that through the btrfs_lookup_csums_list() function, which searches for
checksums and adds them to a list supplied by the caller.

But all we need is to check if there is any checksum, we don't need to
look for all of them and collect them into a list, which requires more
search time in the checksums tree, allocating memory for checksums items
to add to the list, copy checksums from a leaf into those list items,
then free that memory, etc. This is all unnecessary overhead, wasting
mostly CPU time, and perhaps some occasional IO if we need to read from
disk any extent buffers.

So change btrfs_lookup_csums_list() to allow to return immediately in
case it finds any checksum, without the need to add it to a list and read
it from a leaf. This is accomplished by allowing a NULL list parameter and
making the function return 1 if it found any checksum, 0 if it didn't
found any, and a negative value in case of an error.

The following test with fio was used to measure performance:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nullb0
  MNT=/mnt/nullb0

  cat <<EOF > /tmp/fio-job.ini
  [global]
  name=fio-rand-write
  filename=$MNT/fio-rand-write
  rw=randwrite
  bssplit=4k/20:8k/20:16k/20:32k/20:64k/20
  direct=1
  numjobs=16
  fallocate=posix
  time_based
  runtime=300

  [file1]
  size=8G
  ioengine=io_uring
  iodepth=16
  EOF

  umount $MNT &> /dev/null
  mkfs.btrfs -f $DEV
  mount -o ssd $DEV $MNT

  fio /tmp/fio-job.ini
  umount $MNT

The test was run on a release kernel (Debian's default kernel config).

The results before this patch:

  WRITE: bw=139MiB/s (146MB/s), 8204KiB/s-9504KiB/s (8401kB/s-9732kB/s), io=17.0GiB (18.3GB), run=125317-125344msec

The results after this patch:

  WRITE: bw=153MiB/s (160MB/s), 9241KiB/s-10.0MiB/s (9463kB/s-10.5MB/s), io=17.0GiB (18.3GB), run=114054-114071msec

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:03 +02:00
Filipe Manana
afcb80624f btrfs: remove search_commit parameter from btrfs_lookup_csums_list()
All the callers of btrfs_lookup_csums_list() pass a value of 0 as the
"search_commit" parameter. So remove it and make the function behave as
to always search from the regular root.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:03 +02:00
Filipe Manana
2e438442ba btrfs: remove not needed mod_start and mod_len from struct extent_map
The mod_start and mod_len fields of struct extent_map were introduced by
commit 4e2f84e63d ("Btrfs: improve fsync by filtering extents that we
want") in order to avoid too low performance when fsyncing a file that
keeps getting extent maps merge, because it resulted in each fsync logging
again csum ranges that were already merged before.

We don't need this anymore as extent maps in the list of modified extents
are never merged with other extent maps and once we log an extent map we
remove it from the list of modified extent maps, so it's never logged
twice.

So remove the mod_start and mod_len fields from struct extent_map and use
instead the start and len fields when logging checksums in the fast fsync
path. This also makes EXTENT_FLAG_FILLING unused so remove it as well.

Running the reproducer from the commit mentioned before, with a larger
number of extents and against a null block device, so that IO is fast
and we can better see any impact from searching checksums items and
logging them, gave the following results from dd:

Before this change:

   409600000 bytes (410 MB, 391 MiB) copied, 22.948 s, 17.8 MB/s

After this change:

   409600000 bytes (410 MB, 391 MiB) copied, 22.9997 s, 17.8 MB/s

So no changes in throughput.
The test was done in a release kernel (non-debug, Debian's default kernel
config) and its steps are the following:

   $ mkfs.btrfs -f /dev/nullb0
   $ mount /dev/sdb /mnt
   $ dd if=/dev/zero of=/mnt/foobar bs=4k count=100000 oflag=sync
   $ umount /mnt

This also reduces the size of struct extent_map from 128 bytes down to 112
bytes, so now we can have 36 extents maps per 4K page instead of 32.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:02 +02:00
David Sterba
c207adc147 btrfs: uninline some static inline helpers from tree-log.h
The helpers are doing an initialization or release work, none of which
is performance critical that it would require a static inline, so move
them to the .c file.

Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:53 +01:00
Filipe Manana
e383e158ed btrfs: preallocate temporary extent buffer for inode logging when needed
When logging an inode and we require to copy items from subvolume leaves
to the log tree, we clone each subvolume leaf and than use that clone to
copy items to the log tree. This is required to avoid possible deadlocks
as stated in commit 796787c978 ("btrfs: do not modify log tree while
holding a leaf from fs tree locked").

The cloning requires allocating an extent buffer (struct extent_buffer)
and then allocating pages (folios) to attach to the extent buffer. This
may be slow in case we are under memory pressure, and since we are doing
the cloning while holding a read lock on a subvolume leaf, it means we
can be blocking other operations on that leaf for significant periods of
time, which can increase latency on operations like creating other files,
renaming files, etc. Similarly because we're under a log transaction, we
may also cause extra delay on other tasks doing an fsync, because syncing
the log requires waiting for tasks that joined a log transaction to exit
the transaction.

So to improve this, for any inode logging operation that needs to copy
items from a subvolume leaf ("full sync" or "copy everything" bit set
in the inode), preallocate a dummy extent buffer before locking any
extent buffer from the subvolume tree, and even before joining a log
transaction, add it to the log context and then use it when we need to
copy items from a subvolume leaf to the log tree. This avoids making
other operations get extra latency when waiting to lock a subvolume
leaf that is used during inode logging and we are under heavy memory
pressure.

The following test script with bonnie++ was used to test this:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/sdh
  MNT=/mnt/sdh
  MOUNT_OPTIONS="-o ssd"

  MEMTOTAL_BYTES=`free -b | grep Mem: | awk '{ print $2 }'`
  NR_DIRECTORIES=20
  NR_FILES=20480
  DATASET_SIZE=$((MEMTOTAL_BYTES * 2 / 1048576))
  DIRECTORY_SIZE=$((MEMTOTAL_BYTES * 2 / NR_FILES))
  NR_FILES=$((NR_FILES / 1024))

  echo "performance" | \
      tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

  umount $DEV &> /dev/null
  mkfs.btrfs -f $MKFS_OPTIONS $DEV
  mount $MOUNT_OPTIONS $DEV $MNT

  bonnie++ -u root -d $MNT \
      -n $NR_FILES:$DIRECTORY_SIZE:$DIRECTORY_SIZE:$NR_DIRECTORIES \
      -r 0 -s $DATASET_SIZE -b

  umount $MNT

The results of this test on a 8G VM running a non-debug kernel (Debian's
default kernel config), were the following.

Before this change:

  Version 2.00a       ------Sequential Output------ --Sequential Input- --Random-
                      -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
  Name:Size etc        /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
  debian0       7501M  376k  99  1.4g  96  117m  14 1510k  99  2.5g  95 +++++ +++
  Latency             35068us   24976us    2944ms   30725us   71770us   26152us
  Version 2.00a       ------Sequential Create------ --------Random Create--------
  debian0             -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
  files:max:min        /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
  20:384100:384100/20 20480  32 20480  58 20480  48 20480  39 20480  56 20480  61
  Latency               411ms   11914us     119ms     617ms   10296us     110ms

After this change:

  Version 2.00a       ------Sequential Output------ --Sequential Input- --Random-
                      -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
  Name:Size etc        /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
  debian0       7501M  375k  99  1.4g  97  117m  14 1546k  99  2.3g  98 +++++ +++
  Latency             35975us  20945us    2144ms   10297us    2217us    6004us
  Version 2.00a       ------Sequential Create------ --------Random Create--------
  debian0             -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
  files:max:min        /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
  20:384100:384100/20 20480  35 20480  58 20480  48 20480  40 20480  57 20480  59
  Latency               320ms   11237us   77779us     518ms    6470us   86389us

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:47 +01:00
David Sterba
2b712e3bb2 btrfs: remove unused included headers
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:46 +01:00
Filipe Manana
f86f7a75e2 btrfs: use the flags of an extent map to identify the compression type
Currently, in struct extent_map, we use an unsigned int (32 bits) to
identify the compression type of an extent and an unsigned long (64 bits
on a 64 bits platform, 32 bits otherwise) for flags. We are only using
6 different flags, so an unsigned long is excessive and we can use flags
to identify the compression type instead of using a dedicated 32 bits
field.

We can easily have tens or hundreds of thousands (or more) of extent maps
on busy and large filesystems, specially with compression enabled or many
or large files with tons of small extents. So it's convenient to have the
extent_map structure as small as possible in order to use less memory.

So remove the compression type field from struct extent_map, use flags
to identify the compression type and shorten the flags field from an
unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and
reduces the size of the structure from 136 bytes down to 128 bytes, using
now only two cache lines, and increases the number of extent maps we can
have per 4K page from 30 to 32. By using a u32 for the flags instead of
an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(),
but that level of atomicity is not needed as most flags are never cleared
once set (before adding an extent map to the tree), and the ones that can
be cleared or set after an extent map is added to the tree, are always
performed while holding the write lock on the extent map tree, while the
reader holds a lock on the tree or tests for a flag that never changes
once the extent map is in the tree (such as compression flags).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 22:59:02 +01:00
Johannes Thumshirn
2aae747a49 btrfs: remove now unneeded btrfs_redirty_list_add
Now that we're not clearing the dirty flag off of extent_buffers in zoned mode,
all that is left of btrfs_redirty_list_add() is a memzero() and some
ASSERT()ions.

As we're also memzero()ing the buffer on write-out btrfs_redirty_list_add()
has become obsolete and can be removed.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 20:27:03 +01:00
Linus Torvalds
d5acbc60fa for-6.7-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmU/xAEACgkQxWXV+ddt
 WDvYKg//SjTimA5Nins9mb4jdz8n+dDeZnQhKzy3FqInU41EzDRc4WwnEODmDlTa
 AyU9rGB3k0JNSUc075jZFCyLqq/ARiOqRi4x33Gk0ckIlc4X5OgBoqP2XkPh0VlP
 txskLCrmhc3pwyR4ErlFDX2jebIUXfkv39bJuE40grGvUatRe+WNq0ERIrgO8RAr
 Rc3hBotMH8AIqfD1L6j1ZiZIAyrOkT1BJMuqeoq27/gJZn/MRhM9TCrMTzfWGaoW
 SxPrQiCDEN3KECsOY/caroMn3AekDijg/ley1Nf7Z0N6oEV+n4VWWPBFE9HhRz83
 9fIdvSbGjSJF6ekzTjcVXPAbcuKZFzeqOdBRMIW3TIUo7mZQyJTVkMsc1y/NL2Z3
 9DhlRLIzvWJJjt1CEK0u18n5IU+dGngdktbhWWIuIlo8r+G/iKR/7zqU92VfWLHL
 Z7/eh6HgH5zr2bm+yKORbrUjkv4IVhGVarW8D4aM+MCG0lFN2GaPcJCCUrp4n7rZ
 PzpQbxXa38ANBk6hsp4ndS8TJSBL9moY8tumzLcKg97nzNMV6KpBdV/G6/QfRLCN
 3kM6UbwTAkMwGcQS86Mqx6s04ORLnQeD6f7N6X4Ppx0Mi/zkjI2HkRuvQGp12B0v
 iZjCCZAYY2Iu+/TU0GrCXSss/grzIAUPzM9msyV3XGO/VBpwdec=
 =9TVx
 -----END PGP SIGNATURE-----

Merge tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "New features:

   - raid-stripe-tree

     New tree for logical file extent mapping where the physical mapping
     may not match on multiple devices. This is now used in zoned mode
     to implement RAID0/RAID1* profiles, but can be used in non-zoned
     mode as well. The support for RAID56 is in development and will
     eventually fix the problems with the current implementation. This
     is a backward incompatible feature and has to be enabled at mkfs
     time.

   - simple quota accounting (squota)

     A simplified mode of qgroup that accounts all space on the initial
     extent owners (a subvolume), the snapshots are then cheap to create
     and delete. The deletion of snapshots in fully accounting qgroups
     is a known CPU/IO performance bottleneck.

     The squota is not suitable for the general use case but works well
     for containers where the original subvolume exists for the whole
     time. This is a backward incompatible feature as it needs extending
     some structures, but can be enabled on an existing filesystem.

   - temporary filesystem fsid (temp_fsid)

     The fsid identifies a filesystem and is hard coded in the
     structures, which disallows mounting the same fsid found on
     different devices.

     For a single device filesystem this is not strictly necessary, a
     new temporary fsid can be generated on mount e.g. after a device is
     cloned. This will be used by Steam Deck for root partition A/B
     testing, or can be used for VM root images.

  Other user visible changes:

   - filesystems with partially finished metadata_uuid conversion cannot
     be mounted anymore and the uuid fixup has to be done by btrfs-progs
     (btrfstune).

  Performance improvements:

   - reduce reservations for checksum deletions (with enabled free space
     tree by factor of 4), on a sample workload on file with many
     extents the deletion time decreased by 12%

   - make extent state merges more efficient during insertions, reduce
     rb-tree iterations (run time of critical functions reduced by 5%)

  Core changes:

   - the integrity check functionality has been removed, this was a
     debugging feature and removal does not affect other integrity
     checks like checksums or tree-checker

   - space reservation changes:

      - more efficient delayed ref reservations, this avoids building up
        too much work or overusing or exhausting the global block
        reserve in some situations

      - move delayed refs reservation to the transaction start time,
        this prevents some ENOSPC corner cases related to exhaustion of
        global reserve

      - improvements in reducing excessive reservations for block group
        items

      - adjust overcommit logic in near full situations, account for one
        more chunk to eventually allocate metadata chunk, this is mostly
        relevant for small filesystems (<10GiB)

   - single device filesystems are scanned but not registered (except
     seed devices), this allows temp_fsid to work

   - qgroup iterations do not need GFP_ATOMIC allocations anymore

   - cleanups, refactoring, reduced data structure size, function
     parameter simplifications, error handling fixes"

* tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (156 commits)
  btrfs: open code timespec64 in struct btrfs_inode
  btrfs: remove redundant log root tree index assignment during log sync
  btrfs: remove redundant initialization of variable dirty in btrfs_update_time()
  btrfs: sysfs: show temp_fsid feature
  btrfs: disable the device add feature for temp-fsid
  btrfs: disable the seed feature for temp-fsid
  btrfs: update comment for temp-fsid, fsid, and metadata_uuid
  btrfs: remove pointless empty log context list check when syncing log
  btrfs: update comment for struct btrfs_inode::lock
  btrfs: remove pointless barrier from btrfs_sync_file()
  btrfs: add and use helpers for reading and writing last_trans_committed
  btrfs: add and use helpers for reading and writing fs_info->generation
  btrfs: add and use helpers for reading and writing log_transid
  btrfs: add and use helpers for reading and writing last_log_commit
  btrfs: support cloned-device mount capability
  btrfs: add helper function find_fsid_by_disk
  btrfs: stop reserving excessive space for block group item insertions
  btrfs: stop reserving excessive space for block group item updates
  btrfs: reorder btrfs_inode to fill gaps
  btrfs: open code btrfs_ordered_inode_tree in btrfs_inode
  ...
2023-10-30 10:42:06 -10:00
Jeff Layton
b1c38a1338
btrfs: convert to new timestamp accessors
Convert to using the new inode timestamp accessor functions.

Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20231004185347.80880-21-jlayton@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-10-18 13:26:19 +02:00
Filipe Manana
cc687c2ef4 btrfs: remove redundant log root tree index assignment during log sync
During log syncing, when we start updating the log root tree we compute
an index value, stored in variable 'index2', once we lock the log root
tree's mutex. This value depends on the log root's log_transid. And
shortly after we compute again the same value for 'index2' - the value
is exactly the same since we haven't released the mutex and therefore
the log_transid of the log root is the same as before.

This second 'index2' computation became pointless after commit
a93e01682e ("btrfs: remove no longer needed use of log_writers for the
log root tree"). So remove it.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:19 +02:00
Filipe Manana
3cf63ddf29 btrfs: remove pointless empty log context list check when syncing log
When syncing the log, if we get an error when updating the log root, we
check first if the log root tree context is in a log context list, and if
so it deletes from the log root tree context from the list. This check
however is pointless because at this moment the context is always in a
list, he have just added it to a context list. The check became pointless
after commit a93e01682e ("btrfs: remove no longer needed use of
log_writers for the log root tree"). So remove this now pointless empty
list check.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:18 +02:00
Filipe Manana
6008859b6c btrfs: add and use helpers for reading and writing log_transid
Currently the log_transid field of a root is always modified while holding
the root's log_mutex locked. Most readers of a root's log_transid are also
holding the root's log_mutex locked, however there is one exception which
is btrfs_set_inode_last_trans() where we don't take the lock to avoid
blocking several operations if log syncing is happening in parallel.

Any races here should be harmless, and in the worst case they may cause a
fsync to log an inode when it's not really needed, so nothing bad from a
functional perspective.

To avoid data race warnings from tools like KCSAN and other issues such
as load and store tearing (amongst others, see [1]), create helpers to
access the log_transid field of a root using READ_ONCE() and WRITE_ONCE(),
and use these helpers where needed.

[1] https://lwn.net/Articles/793253/

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:17 +02:00
Filipe Manana
f985078796 btrfs: add and use helpers for reading and writing last_log_commit
Currently, the last_log_commit of a root can be accessed concurrently
without any lock protection. Readers can be calling btrfs_inode_in_log()
early in a fsync call, which reads a root's last_log_commit, while a
writer can change the last_log_commit while a log tree if being synced,
at btrfs_sync_log(). Any races here should be harmless, and in the worst
case they may cause a fsync to log an inode when it's not really needed,
so nothing bad from a functional perspective.

To avoid data race warnings from tools like KCSAN and other issues such
as load and store tearing (amongst others, see [1]), create helpers to
access the last_log_commit field of a root using READ_ONCE() and
WRITE_ONCE(), and use these helpers everywhere.

[1] https://lwn.net/Articles/793253/

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:17 +02:00
David Sterba
54c6537146 btrfs: open code btrfs_ordered_inode_tree in btrfs_inode
The structure btrfs_ordered_inode_tree is used only in one place, in
btrfs_inode. The structure itself has a 4 byte hole which is wasted
space.

Move the btrfs_ordered_inode_tree members to btrfs_inode with a common
prefix 'ordered_tree_' where the hole can be utilized and shrink inode
size.

Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:16 +02:00
Filipe Manana
0f8ac74d41 btrfs: use extent_io_tree_release() to empty dirty log pages
When freeing a log tree, during a transaction commit, we clear its dirty
log pages io tree by calling clear_extent_bits() using a range from 0 to
(u64)-1. This will iterate the io tree's rbtree and call rb_erase() on
each node before freeing it, which will often trigger rebalance operations
on the rbtree. A better alternative it to use extent_io_tree_release(),
which will not do deletions and trigger rebalances.

So use extent_io_tree_release() instead of clear_extent_bits().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:15 +02:00
Filipe Manana
8befc61cbb btrfs: remove redundant root argument from fixup_inode_link_count()
The root argument for fixup_inode_link_count() always matches the root of
the given inode, so remove the root argument and get it from the inode
argument. This also applies to the helpers count_inode_extrefs() and
count_inode_refs() used by fixup_inode_link_count() - they don't need the
root argument, as it always matches the root of the inode passed to them.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Filipe Manana
8b9d032225 btrfs: remove redundant root argument from btrfs_update_inode()
The root argument for btrfs_update_inode() always matches the root of the
given inode, so remove the root argument and get it from the inode
argument.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:12 +02:00
Boris Burkov
457cb1ddf5 btrfs: track owning root in btrfs_ref
While data extents require us to store additional inline refs to track
the original owner on free, this information is available implicitly for
metadata. It is found in the owner field of the header of the tree
block. Even if other trees refer to this block and the original ref goes
away, we will not rewrite that header field, so it will reliably give the
original owner.

In addition, there is a relocation case where a new data extent needs to
have an owning root separate from the referring root wired through
delayed refs.

To use it for recording simple quota deltas, we need to wire this root
id through from when we create the delayed ref until we fully process
it. Store it in the generic btrfs_ref struct of the delayed ref.

Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:11 +02:00
Filipe Manana
50564b651d btrfs: abort transaction on generation mismatch when marking eb as dirty
When marking an extent buffer as dirty, at btrfs_mark_buffer_dirty(),
we check if its generation matches the running transaction and if not we
just print a warning. Such mismatch is an indicator that something really
went wrong and only printing a warning message (and stack trace) is not
enough to prevent a corruption. Allowing a transaction to commit with such
an extent buffer will trigger an error if we ever try to read it from disk
due to a generation mismatch with its parent generation.

So abort the current transaction with -EUCLEAN if we notice a generation
mismatch. For this we need to pass a transaction handle to
btrfs_mark_buffer_dirty() which is always available except in test code,
in which case we can pass NULL since it operates on dummy extent buffers
and all test roots have a single node/leaf (root node at level 0).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:07 +02:00
David Sterba
007dec8c7e btrfs: reduce parameters of btrfs_pin_extent_for_log_replay
Both callers of btrfs_pin_extent_for_log_replay expand the parameters to
extent buffer members. We can simply pass the extent buffer instead.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
f863c50277 btrfs: reduce parameters of btrfs_pin_reserved_extent
There is only one caller of btrfs_pin_reserved_extent that expands the
parameters to extent buffer members. We can simply pass the extent
buffer instead.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
David Sterba
9580503bcb btrfs: reformat remaining kdoc style comments
Function name in the comment does not bring much value to code not
exposed as API and we don't stick to the kdoc format anymore. Update
formatting of parameter descriptions.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12 16:44:04 +02:00
Linus Torvalds
cac405a3bf for-6.6-rc3-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmURvloACgkQxWXV+ddt
 WDt+CQ/+NgBtQn7eyABsdHzXWPxpFyGZrdw5ldKnly3G+WDW2GKMaZ6CpDuEZGNQ
 vMAkSGX5LIHXvO79pDnGG0i+bRINWrc5HZVZ/p5Da6wplBTgIPlbLmxaZX9MJLbx
 j7Oz37GXiQJY8BxnVCnsb+bhhTrTbO9HFUQr/nxefIvu22OBdL1WXYcfuBOeEsFG
 qr/aeC52YqCVgXvt+8a5DqAKE0NWc4PFMFUMo4vlf1xuL652fvff7xiup1CAIgBh
 qsCa17E7q+qjri2phAhbFNadfpH5wGfyjTWScOlaFuXjRhW2v2oqz3WU5IQj4dmu
 PI+k++PLUzIxT0IcjD1YbZzRFaEI6fR2W0GA4LK08fjVehh2ao5jOjtRgLl8HlqG
 qC5fslAPzUxRmwMmCjSGfXF14sgtyLy8eVWf69xn06/1cbEmfHDrWNXP1QHuq6eT
 Jqy8Ywia3jRzzfZ1utABJPLBW4hFQKkyobtyd67fxslUFmtuLvLqGTiOdmVFiD9K
 o+BF2xjEz2n8O1+aRZk5SFNC9zcaASaRg/wQrhvSI9qxM18fh4TXgKQOniLzAK7v
 lZc+JkegFW4CVquCUpmbsdZAOpVNRXfPOJIt/w6G+oRbaiTvPUnrH+uyq8IGREbw
 E7d8XIP0qlF0DQBGK4Mw/riZz/e5MmEKNjza6M+fj2uglpfWTv4=
 =6WEW
 -----END PGP SIGNATURE-----

Merge tag 'for-6.6-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:

 - delayed refs fixes:
     - fix race when refilling delayed refs block reserve
     - prevent transaction block reserve underflow when starting
       transaction
     - error message and value adjustments

 - fix build warnings with CONFIG_CC_OPTIMIZE_FOR_SIZE and
   -Wmaybe-uninitialized

 - fix for smatch report where uninitialized data from invalid extent
   buffer range could be returned to the caller

 - fix numeric overflow in statfs when calculating lower threshold
   for a full filesystem

* tag 'for-6.6-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: initialize start_slot in btrfs_log_prealloc_extents
  btrfs: make sure to initialize start and len in find_free_dev_extent
  btrfs: reset destination buffer when read_extent_buffer() gets invalid range
  btrfs: properly report 0 avail for very full file systems
  btrfs: log message if extent item not found when running delayed extent op
  btrfs: remove redundant BUG_ON() from __btrfs_inc_extent_ref()
  btrfs: return -EUCLEAN for delayed tree ref with a ref count not equals to 1
  btrfs: prevent transaction block reserve underflow when starting transaction
  btrfs: fix race when refilling delayed refs block reserve
2023-09-26 09:44:08 -07:00
Josef Bacik
b4c639f699 btrfs: initialize start_slot in btrfs_log_prealloc_extents
Jens reported a compiler warning when using
CONFIG_CC_OPTIMIZE_FOR_SIZE=y that looks like this

  fs/btrfs/tree-log.c: In function ‘btrfs_log_prealloc_extents’:
  fs/btrfs/tree-log.c:4828:23: warning: ‘start_slot’ may be used
  uninitialized [-Wmaybe-uninitialized]
   4828 |                 ret = copy_items(trans, inode, dst_path, path,
	|                       ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   4829 |                                  start_slot, ins_nr, 1, 0);
	|                                  ~~~~~~~~~~~~~~~~~~~~~~~~~
  fs/btrfs/tree-log.c:4725:13: note: ‘start_slot’ was declared here
   4725 |         int start_slot;
	|             ^~~~~~~~~~

The compiler is incorrect, as we only use this code when ins_len > 0,
and when ins_len > 0 we have start_slot properly initialized.  However
we generally find the -Wmaybe-uninitialized warnings valuable, so
initialize start_slot to get rid of the warning.

Reported-by: Jens Axboe <axboe@kernel.dk>
Tested-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-09-21 18:52:23 +02:00
Linus Torvalds
547635c6ac for-6.6-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmTskOwACgkQxWXV+ddt
 WDsNJw/8CCi41Z7e3LdJsQd2iy3/+oJZUvIGuT5YvshYxTLCbV7AL+diBPnSQs4Q
 /KFMGL7RZBgJzwVoSQtXnESXXgX8VOVfN1zY//k5g6z7BscCEQd73H/M0B8ciZy/
 aBygm9tJ7EtWbGZWNR8yad8YtOgl6xoClrPnJK/DCLwMGPy2o+fnKP3Y9FOKY5KM
 1Sl0Y4FlJ9dTJpxIwYbx4xmuyHrh2OivjU/KnS9SzQlHu0nl6zsIAE45eKem2/EG
 1figY5aFBYPpPYfopbLDalEBR3bQGiViZVJuNEop3AimdcMOXw9jBF3EZYUb5Tgn
 MleMDgmmjLGOE/txGhvTxKj9kci2aGX+fJn3jXbcIMksAA0OQFLPqzGvEQcrs6Ok
 HA0RsmAkS5fWNDCuuo4ZPXEyUPvluTQizkwyoulOfnK+UPJCWaRqbEBMTsvm6M6X
 wFT2czwLpaEU/W6loIZkISUhfbRqVoA3DfHy398QXNzRhSrg8fQJjma1f7mrHvTi
 CzU+OD5YSC2nXktVOnklyTr0XT+7HF69cumlDbr8TS8u1qu8n1keU/7M3MBB4xZk
 BZFJDz8pnsAqpwVA4T434E/w45MDnYlwBw5r+U8Xjyso8xlau+sYXKcim85vT2Q0
 yx/L91P6tdekR1y97p4aDdxw/PgTzdkNGMnsTBMVzgtCj+5pMmE=
 =N7Yn
 -----END PGP SIGNATURE-----

Merge tag 'for-6.6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "No new features, the bulk of the changes are fixes, refactoring and
  cleanups. The notable fix is the scrub performance restoration after
  rewrite in 6.4, though still only partial.

  Fixes:

   - scrub performance drop due to rewrite in 6.4 partially restored:
      - do IO grouping by blg_plug/blk_unplug again
      - avoid unnecessary tree searches when processing stripes, in
        extent and checksum trees
      - the drop is noticeable on fast PCIe devices, -66% and restored
        to -33% of the original
      - backports to 6.4 planned

   - handle more corner cases of transaction commit during orphan
     cleanup or delayed ref processing

   - use correct fsid/metadata_uuid when validating super block

   - copy directory permissions and time when creating a stub subvolume

  Core:

   - debugging feature integrity checker deprecated, to be removed in
     6.7

   - in zoned mode, zones are activated just before the write, making
     error handling easier, now the overcommit mechanism can be enabled
     again which improves performance by avoiding more frequent flushing

   - v0 extent handling completely removed, deprecated long time ago

   - error handling improvements

   - tests:
      - extent buffer bitmap tests
      - pinned extent splitting tests

   - cleanups and refactoring:
      - compression writeback
      - extent buffer bitmap
      - space flushing, ENOSPC handling"

* tag 'for-6.6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (110 commits)
  btrfs: zoned: skip splitting and logical rewriting on pre-alloc write
  btrfs: tests: test invalid splitting when skipping pinned drop extent_map
  btrfs: tests: add a test for btrfs_add_extent_mapping
  btrfs: tests: add extent_map tests for dropping with odd layouts
  btrfs: scrub: move write back of repaired sectors to scrub_stripe_read_repair_worker()
  btrfs: scrub: don't go ordered workqueue for dev-replace
  btrfs: scrub: fix grouping of read IO
  btrfs: scrub: avoid unnecessary csum tree search preparing stripes
  btrfs: scrub: avoid unnecessary extent tree search preparing stripes
  btrfs: copy dir permission and time when creating a stub subvolume
  btrfs: remove pointless empty list check when reading delayed dir indexes
  btrfs: drop redundant check to use fs_devices::metadata_uuid
  btrfs: compare the correct fsid/metadata_uuid in btrfs_validate_super
  btrfs: use the correct superblock to compare fsid in btrfs_validate_super
  btrfs: simplify memcpy either of metadata_uuid or fsid
  btrfs: add a helper to read the superblock metadata_uuid
  btrfs: remove v0 extent handling
  btrfs: output extra debug info if we failed to find an inline backref
  btrfs: move the !zoned assert into run_delalloc_cow
  btrfs: consolidate the error handling in run_delalloc_nocow
  ...
2023-08-28 12:26:57 -07:00
Ruan Jinjie
84af994b85 btrfs: use LIST_HEAD() to initialize the list_head
Use LIST_HEAD() to initialize the list_head instead of open-coding it.

Signed-off-by: Ruan Jinjie <ruanjinjie@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-21 14:54:46 +02:00
Colin Ian King
966de47ff0 btrfs: remove redundant initialization of variables in log_new_ancestors
The variables leaf and slot are initialized when declared but the values
assigned to them are never read as they are being re-assigned later on.
The initializations are redundant and can be removed. Cleans up clang
scan build warnings:

fs/btrfs/tree-log.c:6797:25: warning: Value stored to 'leaf' during its
initialization is never read [deadcode.DeadStores]
fs/btrfs/tree-log.c:6798:7: warning: Value stored to 'slot' during its
initialization is never read [deadcode.DeadStores]

It's been there since b8aa330d2a ("Btrfs: improve performance on fsync
of files with multiple hardlinks") without any usage so it's safe to be
removed.

Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-21 14:52:12 +02:00
Jeff Layton
2a9462de43 btrfs: convert to ctime accessor functions
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.

Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230705190309.579783-27-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-07-13 10:28:04 +02:00
Filipe Manana
fc4026e26b btrfs: do not BUG_ON() when dropping inode items from log root
When dropping inode items from a log tree at drop_inode_items(), we this
BUG_ON() on the result of btrfs_search_slot() because we don't expect an
exact match since having a key with an offset of (u64)-1 is unexpected.
That is generally true, but for dir index keys for example, we can get a
key with such an offset value, even though it's very unlikely and it would
take ages to increase the sequence counter for a dir index up to (u64)-1.
We can deal with an exact match, we just have to delete the key at that
slot, so there is really no need to BUG_ON(), error out or trigger any
warning. So remove the BUG_ON().

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 13:59:39 +02:00
Christoph Hellwig
5cfe76f846 btrfs: rename the bytenr field in struct btrfs_ordered_sum to logical
btrfs_ordered_sum::bytendr stores a logical address.  Make that clear by
renaming it to ->logical.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 13:59:32 +02:00
Filipe Manana
59fcf38817 btrfs: change for_rename argument of btrfs_record_unlink_dir() to bool
The for_rename argument of btrfs_record_unlink_dir() is defined as an
integer, but the argument is in fact used as a boolean. So change it to
a boolean to make its use more clear.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 13:59:26 +02:00
Filipe Manana
acfb5a4f11 btrfs: remove pointless label and goto at btrfs_record_unlink_dir()
There's no point of having a label and goto at btrfs_record_unlink_dir()
because the function is trivial and can just return early if we are not
in a rename context. So remove the label and goto and instead return
early if we are not in a rename.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 13:59:26 +02:00
Filipe Manana
1e75ef039d btrfs: update comments at btrfs_record_unlink_dir() to be more clear
Update the comments at btrfs_record_unlink_dir() so that they mention
where new names are logged and where old names are removed. Also, while
at it make the width of the comments closer to 80 columns and capitalize
the sentences and finish them with punctuation.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 13:59:26 +02:00
Filipe Manana
d67ba263f4 btrfs: use inode_logged() at btrfs_record_unlink_dir()
At btrfs_record_unlink_dir() we directly check the logged_trans field of
the given inodes to check if they were previously logged in the current
transaction, and if any of them were, then we can avoid setting the field
last_unlink_trans of the directory to the id of the current transaction if
we are in a rename path. Avoiding that can later prevent falling back to
a transaction commit if anyone attempts to log the directory.

However the logged_trans field, store in struct btrfs_inode, is transient,
not persisted in the inode item on its subvolume b+tree, so that means
that if an inode is evicted and then loaded again, its original value is
lost and it's reset to 0. So directly checking the logged_trans field can
lead to some false negative, and that only results in a performance impact
as mentioned before.

Instead of directly checking the logged_trans field of the inodes, use the
inode_logged() helper, which will check in the log tree if an inode was
logged before in case its logged_trans field has a value of 0. This way
we can avoid setting the directory inode's last_unlink_trans and cause
future logging attempts of it to fallback to transaction commits. The
following test script shows one example where this happens without this
patch:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nullb0
  MNT=/mnt/nullb0

  num_init_files=10000
  num_new_files=10000

  mkfs.btrfs -f $DEV
  mount -o ssd $DEV $MNT

  mkdir $MNT/testdir
  for ((i = 1; i <= $num_init_files; i++)); do
      echo -n > $MNT/testdir/file_$i
   done

  echo -n > $MNT/testdir/foo

  sync

  # Add some files so that there's more work in the transaction other
  # than just renaming file foo.
  for ((i = 1; i <= $num_new_files; i++)); do
      echo -n > $MNT/testdir/new_file_$i
  done

  # Change the file, fsync it.
  setfattr -n user.x1 -v 123 $MNT/testdir/foo
  xfs_io -c "fsync" $MNT/testdir/foo

  # Now triggger eviction of file foo but no eviction for our test
  # directory, since it is being used by the process below. This will
  # set logged_trans of the file's inode to 0 once it is loaded again.
  (
      cd $MNT/testdir
      while true; do
          :
      done
  ) &
  pid=$!

  echo 2 > /proc/sys/vm/drop_caches

  kill $pid
  wait $pid

  # Move foo out of our testdir. This will set last_unlink_trans
  # of the directory inode to the current transaction, because
  # logged_trans of both the directory and the file are set to 0.
  mv $MNT/testdir/foo $MNT/foo

  # Change file foo again and fsync it.
  # This fsync will result in a transaction commit because the rename
  # above has set last_unlink_trans of the parent directory to the id
  # of the current transaction and because our inode for file foo has
  # last_unlink_trans set to the current transaction, since it was
  # evicted and reloaded and it was previously modified in the current
  # transaction (the xattr addition).
  xfs_io -c "pwrite 0 64K" $MNT/foo
  start=$(date +%s%N)
  xfs_io -c "fsync" $MNT/foo
  end=$(date +%s%N)
  dur=$(( (end - start) / 1000000 ))

  echo "file fsync took: $dur milliseconds"

  umount $MNT

Before this patch:   fsync took 19 milliseconds
After this patch:    fsync took  5 milliseconds

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 13:59:26 +02:00
Filipe Manana
bf1f4fd3fa btrfs: use inode_logged() at need_log_inode()
At need_log_inode() we directly check the ->logged_trans field of the
given inode to check if it was previously logged in the transaction, with
the goal of skipping logging the inode again when it's not necessary.
The ->logged_trans field in not persisted in the inode item or elsewhere,
it's only stored in memory (struct btrfs_inode), so it's transient and
lost once the inode is evicted and then loaded again. Once an inode is
loaded, we are conservative and set ->logged_trans to 0, which may mean
that either the inode was never logged in the current transaction or it
was logged but evicted before being loaded again.

Instead of checking the inode's ->logged_trans field directly, we can
use instead the helper inode_logged(), which will really check if the
inode was logged before in the current transaction in case we have a
->logged_trans field with a value of 0. This will prevent unnecessarily
logging an inode when it's not needed, and in some cases preventing a
transaction commit, in case the logging requires a fallback to a
transaction commit. The following test script shows a scenario where
due to eviction we fallback a transaction commit when trying to fsync
a file that was renamed:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nullb0
  MNT=/mnt/nullb0

  num_init_files=10000
  num_new_files=10000

  mkfs.btrfs -f $DEV
  mount -o ssd $DEV $MNT

  mkdir $MNT/testdir
  for ((i = 1; i <= $num_init_files; i++)); do
      echo -n > $MNT/testdir/file_$i
  done

  echo -n > $MNT/testdir/foo

  sync

  # Add some files so that there's more work in the transaction other
  # than just renaming file foo.
  for ((i = 1; i <= $num_new_files; i++)); do
      echo -n > $MNT/testdir/new_file_$i
  done

  # Fsync the directory first.
  xfs_io -c "fsync" $MNT/testdir

  # Rename file foo.
  mv $MNT/testdir/foo $MNT/testdir/bar

  # Now trigger eviction of the test directory's inode.
  # Once loaded again, it will have logged_trans set to 0 and
  # last_unlink_trans set to the current transaction.
  echo 2 > /proc/sys/vm/drop_caches

  # Fsync file bar (ex-foo).
  # Before the patch the fsync would result in a transaction commit
  # because the inode for file bar has last_unlink_trans set to the
  # current transaction, so it will attempt to log the parent directory
  # as well, which will fallback to a full transaction commit because
  # it also has its last_unlink_trans set to the current transaction,
  # due to the inode eviction.
  start=$(date +%s%N)
  xfs_io -c "fsync" $MNT/testdir/bar
  end=$(date +%s%N)
  dur=$(( (end - start) / 1000000 ))

  echo "file fsync took: $dur milliseconds"

  umount $MNT

Before this patch:  fsync took 22 milliseconds
After this patch:   fsync took  8 milliseconds

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19 13:59:26 +02:00
Shida Zhang
8fd9f4232d btrfs: fix an uninitialized variable warning in btrfs_log_inode
This fixes the following warning reported by gcc 10.2.1 under x86_64:

../fs/btrfs/tree-log.c: In function ‘btrfs_log_inode’:
../fs/btrfs/tree-log.c:6211:9: error: ‘last_range_start’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
 6211 |   ret = insert_dir_log_key(trans, log, path, key.objectid,
      |         ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 6212 |       first_dir_index, last_dir_index);
      |       ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../fs/btrfs/tree-log.c:6161:6: note: ‘last_range_start’ was declared here
 6161 |  u64 last_range_start;
      |      ^~~~~~~~~~~~~~~~

This might be a false positive fixed in later compiler versions but we
want to have it fixed.

Reported-by: k2ci <kernel-bot@kylinos.cn>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Shida Zhang <zhangshida@kylinos.cn>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-26 23:24:04 +02:00
Filipe Manana
5d3e4f1d51 btrfs: use log root when iterating over index keys when logging directory
When logging dir dentries of a directory, we iterate over the subvolume
tree to find dir index keys on leaves modified in the current transaction.
This however is heavy on locking, since btrfs_search_forward() may often
keep locks on extent buffers for quite a while when walking the tree to
find a suitable leaf modified in the current transaction and with a key
not smaller than then the provided minimum key. That means it will block
other tasks trying to access the subvolume tree, which may be common fs
operations like creating, renaming, linking, unlinking, reflinking files,
etc.

A better solution is to iterate the log tree, since it's much smaller than
a subvolume tree and just use plain btrfs_search_slot() (or the wrapper
btrfs_for_each_slot()) and only contains dir index keys added in the
current transaction.

The following bonnie++ test on a non-debug kernel (with Debian's default
kernel config) on a 20G null block device, was used to measure the impact:

   $ cat test.sh
   #!/bin/bash

   DEV=/dev/nullb0
   MNT=/mnt/nullb0

   NR_DIRECTORIES=20
   NR_FILES=20480  # must be a multiple of 1024
   DATASET_SIZE=$(( (8 * 1024 * 1024 * 1024) / 1048576 )) # 8 GiB as megabytes
   DIRECTORY_SIZE=$(( DATASET_SIZE / NR_FILES ))
   NR_FILES=$(( NR_FILES / 1024 ))

   umount $DEV &> /dev/null
   mkfs.btrfs -f $DEV
   mount $DEV $MNT

   bonnie++ -u root -d $MNT \
       -n $NR_FILES:$DIRECTORY_SIZE:$DIRECTORY_SIZE:$NR_DIRECTORIES \
       -r 0 -s $DATASET_SIZE -b

   umount $MNT

Before patchset:

   Version 2.00a       ------Sequential Output------ --Sequential Input- --Random-
                       -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
   Name:Size etc        /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
   debian0          8G  376k  99  1.1g  98  939m  92 1527k  99  3.2g  99  9060 256
   Latency             24920us     207us     680ms    5594us     171us    2891us
   Version 2.00a       ------Sequential Create------ --------Random Create--------
   debian0             -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
                 files  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
                 20/20 20480  96 +++++ +++ 20480  95 20480  99 +++++ +++ 20480  97
   Latency              8708us     137us    5128us    6743us      60us   19712us

After patchset:

   Version 2.00a       ------Sequential Output------ --Sequential Input- --Random-
                       -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
   Name:Size etc        /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
   debian0          8G  384k  99  1.2g  99  971m  91 1533k  99  3.3g  99  9180 309
   Latency             24930us     125us     661ms    5587us      46us    2020us
   Version 2.00a       ------Sequential Create------ --------Random Create--------
   debian0             -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
                 files  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
                 20/20 20480  90 +++++ +++ 20480  99 20480  99 +++++ +++ 20480  97
   Latency              7030us      61us    1246us    4942us      56us   16855us

The patchset consists of this patch plus a previous one that has the
following subject:

   "btrfs: avoid iterating over all indexes when logging directory"

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17 19:52:19 +02:00
Filipe Manana
fa4b8cb173 btrfs: avoid iterating over all indexes when logging directory
When logging a directory, after copying all directory index items from the
subvolume tree to the log tree, we iterate over the subvolume tree to find
all dir index items that are located in leaves COWed (or created) in the
current transaction. If we keep logging a directory several times during
the same transaction, we end up iterating over the same dir index items
everytime we log the directory, wasting time and adding extra lock
contention on the subvolume tree.

So just keep track of the last logged dir index offset in order to start
the search for that index (+1) the next time the directory is logged, as
dir index values (key offsets) come from a monotonically increasing
counter.

The following test measures the difference before and after this change:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/nullb0
  MNT=/mnt/nullb0

  umount $DEV &> /dev/null
  mkfs.btrfs -f $DEV
  mount -o ssd $DEV $MNT

  # Time values in milliseconds.
  declare -a fsync_times
  # Total number of files added to the test directory.
  num_files=1000000
  # Fsync directory after every N files are added.
  fsync_period=100

  mkdir $MNT/testdir

  fsync_total_time=0
  for ((i = 1; i <= $num_files; i++)); do
        echo -n > $MNT/testdir/file_$i

        if [ $((i % fsync_period)) -eq 0 ]; then
                start=$(date +%s%N)
                xfs_io -c "fsync" $MNT/testdir
                end=$(date +%s%N)
                fsync_total_time=$((fsync_total_time + (end - start)))
                fsync_times[i]=$(( (end - start) / 1000000 ))
                echo -n -e "Progress $i / $num_files\r"
        fi
  done

  echo -e "\nHistogram of directory fsync duration in ms:\n"

  printf '%s\n' "${fsync_times[@]}" | \
     perl -MStatistics::Histogram -e '@d = <>; print get_histogram(\@d);'

  fsync_total_time=$((fsync_total_time / 1000000))
  echo -e "\nTotal time spent in fsync: $fsync_total_time ms\n"
  echo

  umount $MNT

The test was run on a non-debug kernel (Debian's default kernel config)
against a 15G null block device.

Result before this change:

   Histogram of directory fsync duration in ms:

   Count: 10000
   Range:  3.000 - 362.000; Mean: 34.556; Median: 31.000; Stddev: 25.751
   Percentiles:  90th: 71.000; 95th: 77.000; 99th: 81.000
      3.000 -    5.278:  1423 #################################
      5.278 -    8.854:  1173 ###########################
      8.854 -   14.467:   591 ##############
     14.467 -   23.277:  1025 #######################
     23.277 -   37.105:  1422 #################################
     37.105 -   58.809:  2036 ###############################################
     58.809 -   92.876:  2316 #####################################################
     92.876 -  146.346:     6 |
    146.346 -  230.271:     6 |
    230.271 -  362.000:     2 |

   Total time spent in fsync: 350527 ms

Result after this change:

   Histogram of directory fsync duration in ms:

   Count: 10000
   Range:  3.000 - 1088.000; Mean:  8.704; Median:  8.000; Stddev: 12.576
   Percentiles:  90th: 12.000; 95th: 14.000; 99th: 17.000
      3.000 -    6.007:  3222 #################################
      6.007 -   11.276:  5197 #####################################################
     11.276 -   20.506:  1551 ################
     20.506 -   36.674:    24 |
     36.674 -  201.552:     1 |
    201.552 -  353.841:     4 |
    353.841 - 1088.000:     1 |

   Total time spent in fsync: 92114 ms

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17 19:52:19 +02:00
Christoph Hellwig
e6b430f817 btrfs: tree-log: factor out a clean_log_buffer helper
The tree-log code has three almost identical copies for the accounting on
an extent_buffer that doesn't need to be written any more.  The only
difference is that walk_down_log_tree passed the bytenr used to find the
buffer instead of extent_buffer.start and calculates the length using the
nodesize, while the other two callers look at the extent_buffer.len
field that must always be equivalent to the nodesize.

Factor the code into a common helper.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17 18:01:22 +02:00
Anand Jain
fdf8d595f4 btrfs: open code btrfs_bin_search()
btrfs_bin_search() is a simple wrapper that searches for the whole slots
by calling btrfs_generic_bin_search() with the starting slot/first_slot
preset to 0.

This simple wrapper can be open coded as btrfs_bin_search().

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17 18:01:15 +02:00
Josef Bacik
79b02ec1d8 btrfs: replace btrfs_wait_tree_block_writeback by wait_on_extent_buffer_writeback
This is used in the tree-log code and is a holdover from previous
iterations of extent buffer writeback.  We can simply use
wait_on_extent_buffer_writeback here, and remove
btrfs_wait_tree_block_writeback completely as it's equivalent (waiting
on page write writeback).

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15 19:38:54 +01:00
Josef Bacik
190a83391b btrfs: rename btrfs_clean_tree_block to btrfs_clear_buffer_dirty
btrfs_clean_tree_block is a misnomer, it's just
clear_extent_buffer_dirty with some extra accounting around it.  Rename
this to btrfs_clear_buffer_dirty to make it more clear it belongs with
it's setter, btrfs_mark_buffer_dirty.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15 19:38:53 +01:00
Josef Bacik
c4e54a6571 btrfs: replace clearing extent buffer dirty bit with btrfs_clean_block
Now that we're passing in the trans into btrfs_clean_tree_block, we can
easily roll in the handling of the !trans case and replace all
occurrences of

	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
		clear_extent_buffer_dirty(eb);

with

	btrfs_tree_lock(eb);
	btrfs_clean_tree_block(eb);
	btrfs_tree_unlock(eb);

We need the lock because if we are actually dirty we need to make sure
we aren't racing with anything that's starting writeout currently.  This
also makes sure that we're accounting fs_info->dirty_metadata_bytes
appropriately.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15 19:38:53 +01:00
Josef Bacik
ed25dab3a0 btrfs: add trans argument to btrfs_clean_tree_block
We check the header generation in the extent buffer against the current
running transaction id to see if it's safe to clear DIRTY on this
buffer.  Generally speaking if we're clearing the buffer dirty we're
holding the transaction open, but in the case of cleaning up an aborted
transaction we don't, so we have extra checks in that path to check the
transid.  To allow for a future cleanup go ahead and pass in the trans
handle so we don't have to rely on ->running_transaction being set.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15 19:38:53 +01:00
Filipe Manana
235e1c7b87 btrfs: use a single variable to track return value for log_dir_items()
We currently use 'ret' and 'err' to track the return value for
log_dir_items(), which is confusing and likely the cause for previous
bugs where log_dir_items() did not return an error when it should, fixed
in previous patches.

So change this and use only a single variable, 'ret', to track the return
value. This is simpler and makes it similar to most of the existing code.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13 17:50:34 +01:00
Filipe Manana
5cce1780dc btrfs: use a negative value for BTRFS_LOG_FORCE_COMMIT
Currently we use the value 1 for BTRFS_LOG_FORCE_COMMIT, but that value
has a few inconveniences:

1) If it's ever used by btrfs_log_inode(), or any function down the call
   chain, we have to remember to btrfs_set_log_full_commit(), which is
   repetitive and has a chance to be forgotten in future use cases.
   btrfs_log_inode_parent() only calls btrfs_set_log_full_commit() when
   it gets a negative value from btrfs_log_inode();

2) Down the call chain of btrfs_log_inode(), we may have functions that
   need to force a log commit, but can return either an error (negative
   value), false (0) or true (1). So they are forced to return some
   random negative to force a log commit - using BTRFS_LOG_FORCE_COMMIT
   would make the intention more clear. Currently the only example is
   flush_dir_items_batch().

So turn BTRFS_LOG_FORCE_COMMIT into a negative value. The chosen value
is -(MAX_ERRNO + 1), so that it does not overlap any errno value and makes
it easier to debug.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13 17:50:34 +01:00
Filipe Manana
6afaed53cc btrfs: simplify update of last_dir_index_offset when logging a directory
When logging a directory, we always set the inode's last_dir_index_offset
to the offset of the last dir index item we found. This is using an extra
field in the log context structure, and it makes more sense to update it
only after we insert dir index items, and we could directly update the
inode's last_dir_index_offset field instead.

So make this simpler by updating the inode's last_dir_index_offset only
when we actually insert dir index keys in the log tree, and getting rid
of the last_dir_item_offset field in the log context structure.

Reported-by: David Arendt <admin@prnet.org>
Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/
Reported-by: Maxim Mikityanskiy <maxtram95@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/Y8voyTXdnPDz8xwY@mail.gmail.com/
Reported-by: Hunter Wardlaw <wardlawhunter@gmail.com>
Link: https://bugzilla.suse.com/show_bug.cgi?id=1207231
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216851
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-06 23:08:17 +01:00
Filipe Manana
09e44868f1 btrfs: do not abort transaction on failure to update log root
When syncing a log, if we fail to update a log root in the log root tree,
we are aborting the transaction if the failure was not -ENOSPC. This is
excessive because there is a chance that a transaction commit can succeed,
and therefore avoid to turn the filesystem into RO mode. All we need to be
careful about is to mark the log for a full commit, which we already do,
to make sure no one commits a super block pointing to an outdated log root
tree.

So don't abort the transaction if we fail to update a log root in the log
root tree, and log an error if the failure is not -ENOSPC, so that it does
not go completely unnoticed.

CC: stable@vger.kernel.org # 6.0+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 15:43:31 +01:00
Filipe Manana
16199ad9eb btrfs: do not abort transaction on failure to write log tree when syncing log
When syncing the log, if we fail to write log tree extent buffers, we mark
the log for a full commit and abort the transaction. However we don't need
to abort the transaction, all we really need to do is to make sure no one
can commit a superblock pointing to new log tree roots. Just because we
got a failure writing extent buffers for a log tree, it does not mean we
will also fail to do a transaction commit.

One particular case is if due to a bug somewhere, when writing log tree
extent buffers, the tree checker detects some corruption and the writeout
fails because of that. Aborting the transaction can be very disruptive for
a user, specially if the issue happened on a root filesystem. One example
is the scenario in the Link tag below, where an isolated corruption on log
tree leaves was causing transaction aborts when syncing the log.

Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 15:43:30 +01:00
Filipe Manana
94cd63ae67 btrfs: add missing setup of log for full commit at add_conflicting_inode()
When logging conflicting inodes, if we reach the maximum limit of inodes,
we return BTRFS_LOG_FORCE_COMMIT to force a transaction commit. However
we don't mark the log for full commit (with btrfs_set_log_full_commit()),
which means that once we leave the log transaction and before we commit
the transaction, some other task may sync the log, which is incomplete
as we have not logged all conflicting inodes, leading to some inconsistent
in case that log ends up being replayed.

So also call btrfs_set_log_full_commit() at add_conflicting_inode().

Fixes: e09d94c9e4 ("btrfs: log conflicting inodes without holding log mutex of the initial inode")
CC: stable@vger.kernel.org # 6.1
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 15:43:30 +01:00
Filipe Manana
8bb6898da6 btrfs: fix directory logging due to race with concurrent index key deletion
Sometimes we log a directory without holding its VFS lock, so while we
logging it, dir index entries may be added or removed. This typically
happens when logging a dentry from a parent directory that points to a
new directory, through log_new_dir_dentries(), or when while logging
some other inode we also need to log its parent directories (through
btrfs_log_all_parents()).

This means that while we are at log_dir_items(), we may not find a dir
index key we found before, because it was deleted in the meanwhile, so
a call to btrfs_search_slot() may return 1 (key not found). In that case
we return from log_dir_items() with a success value (the variable 'err'
has a value of 0). This can lead to a few problems, specially in the case
where the variable 'last_offset' has a value of (u64)-1 (and it's
initialized to that when it was declared):

1) By returning from log_dir_items() with success (0) and a value of
   (u64)-1 for '*last_offset_ret', we end up not logging any other dir
   index keys that follow the missing, just deleted, index key. The
   (u64)-1 value makes log_directory_changes() not call log_dir_items()
   again;

2) Before returning with success (0), log_dir_items(), will log a dir
   index range item covering a range from the last old dentry index
   (stored in the variable 'last_old_dentry_offset') to the value of
   'last_offset'. If 'last_offset' has a value of (u64)-1, then it means
   if the log is persisted and replayed after a power failure, it will
   cause deletion of all the directory entries that have an index number
   between last_old_dentry_offset + 1 and (u64)-1;

3) We can end up returning from log_dir_items() with
   ctx->last_dir_item_offset having a lower value than
   inode->last_dir_index_offset, because the former is set to the current
   key we are processing at process_dir_items_leaf(), and at the end of
   log_directory_changes() we set inode->last_dir_index_offset to the
   current value of ctx->last_dir_item_offset. So if for example a
   deletion of a lower dir index key happened, we set
   ctx->last_dir_item_offset to that index value, then if we return from
   log_dir_items() because btrfs_search_slot() returned 1, we end up
   returning from log_dir_items() with success (0) and then
   log_directory_changes() sets inode->last_dir_index_offset to a lower
   value than it had before.
   This can result in unpredictable and unexpected behaviour when we
   need to log again the directory in the same transaction, and can result
   in ending up with a log tree leaf that has duplicated keys, as we do
   batch insertions of dir index keys into a log tree.

So fix this by making log_dir_items() move on to the next dir index key
if it does not find the one it was looking for.

Reported-by: David Arendt <admin@prnet.org>
Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 15:43:30 +01:00
Filipe Manana
6d3d970b27 btrfs: fix missing error handling when logging directory items
When logging a directory, at log_dir_items(), if we get an error when
attempting to search the subvolume tree for a dir index item, we end up
returning 0 (success) from log_dir_items() because 'err' is left with a
value of 0.

This can lead to a few problems, specially in the case the variable
'last_offset' has a value of (u64)-1 (and it's initialized to that when
it was declared):

1) By returning from log_dir_items() with success (0) and a value of
   (u64)-1 for '*last_offset_ret', we end up not logging any other dir
   index keys that follow the missing, just deleted, index key. The
   (u64)-1 value makes log_directory_changes() not call log_dir_items()
   again;

2) Before returning with success (0), log_dir_items(), will log a dir
   index range item covering a range from the last old dentry index
   (stored in the variable 'last_old_dentry_offset') to the value of
   'last_offset'. If 'last_offset' has a value of (u64)-1, then it means
   if the log is persisted and replayed after a power failure, it will
   cause deletion of all the directory entries that have an index number
   between last_old_dentry_offset + 1 and (u64)-1;

3) We can end up returning from log_dir_items() with
   ctx->last_dir_item_offset having a lower value than
   inode->last_dir_index_offset, because the former is set to the current
   key we are processing at process_dir_items_leaf(), and at the end of
   log_directory_changes() we set inode->last_dir_index_offset to the
   current value of ctx->last_dir_item_offset. So if for example a
   deletion of a lower dir index key happened, we set
   ctx->last_dir_item_offset to that index value, then if we return from
   log_dir_items() because btrfs_search_slot() returned an error, we end up
   returning without any error from log_dir_items() and then
   log_directory_changes() sets inode->last_dir_index_offset to a lower
   value than it had before.
   This can result in unpredictable and unexpected behaviour when we
   need to log again the directory in the same transaction, and can result
   in ending up with a log tree leaf that has duplicated keys, as we do
   batch insertions of dir index keys into a log tree.

Fix this by setting 'err' to the value of 'ret' in case
btrfs_search_slot() or btrfs_previous_item() returned an error. That will
result in falling back to a full transaction commit.

Reported-by: David Arendt <admin@prnet.org>
Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/
Fixes: e02119d5a7 ("Btrfs: Add a write ahead tree log to optimize synchronous operations")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-12 15:43:29 +01:00
Filipe Manana
fee4c19937 btrfs: fix fscrypt name leak after failure to join log transaction
When logging a new name, we don't expect to fail joining a log transaction
since we know at least one of the inodes was logged before in the current
transaction. However if we fail for some unexpected reason, we end up not
freeing the fscrypt name we previously allocated. So fix that by freeing
the name in case we failed to join a log transaction.

Fixes: ab3c5c18e8 ("btrfs: setup qstr from dentrys using fscrypt helper")
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-20 19:43:47 +01:00
Filipe Manana
3eb4234424 btrfs: remove outdated logic from overwrite_item() and add assertion
As of commit 193df62457 ("btrfs: search for last logged dir index if
it's not cached in the inode"), the overwrite_item() function is always
called for a root that is from a fs/subvolume tree. In other words, now
it's only used during log replay to modify a fs/subvolume tree. Therefore
we can remove the logic that checks if we are dealing with a log tree at
overwrite_item().

So remove that logic, replacing it with an assertion and document that if
we ever need to support a log root there, we will need to clone the leaf
from the fs/subvolume tree and then release it before modifying the log
tree, which is needed to avoid a potential deadlock, similar to the one
recently fixed by a patch with the subject:

  "btrfs: do not modify log tree while holding a leaf from fs tree locked"

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:59 +01:00
Filipe Manana
3a8d1db341 btrfs: unify overwrite_item() and do_overwrite_item()
After commit 193df62457 ("btrfs: search for last logged dir index if
it's not cached in the inode"), there are no more callers of
do_overwrite_item(), except overwrite_item().

Originally both used to be the same function, but were split in
commit 086dcbfa50 ("btrfs: insert items in batches when logging a
directory when possible"), as there was the need to execute all logic
of overwrite_item() but skip the tree search, since in the context of
directory logging we already had a path with a leaf to copy data from.

So unify them again as there is no more need to have them split.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:59 +01:00
Christoph Hellwig
103c19723c btrfs: split the bio submission path into a separate file
The code used by btrfs_submit_bio only interacts with the rest of
volumes.c through __btrfs_map_block (which itself is a more generic
version of two exported helpers) and does not really have anything
to do with volumes.c.  Create a new bio.c file and a bio.h header
going along with it for the btrfs_bio-based storage layer, which
will grow even more going forward.

Also update the file with my copyright notice given that a large
part of the moved code was written or rewritten by me.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:57 +01:00
Qu Wenruo
97e3823933 btrfs: introduce a bitmap based csum range search function
Although we have an existing function, btrfs_lookup_csums_range(), to
find all data checksums for a range, it's based on a btrfs_ordered_sum
list.

For the incoming RAID56 data checksum verification at RMW time, we don't
want to waste time by allocating temporary memory.

So this patch will introduce a new helper, btrfs_lookup_csums_bitmap().
It will use bitmap based result, which will be a perfect fit for later
RAID56 usage.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:57 +01:00
Qu Wenruo
789d6a3a87 btrfs: concentrate all tree block parentness check parameters into one structure
There are several different tree block parentness check parameters used
across several helpers:

- level
  Mandatory

- transid
  Under most cases it's mandatory, but there are several backref cases
  which skips this check.

- owner_root
- first_key
  Utilized by most top-down tree search routine. Otherwise can be
  skipped.

Those four members are not always mandatory checks, and some of them are
the same u64, which means if some arguments got swapped compiler will
not catch it.

Furthermore if we're going to further expand the parentness check, we
need to modify quite some helpers just to add one more parameter.

This patch will concentrate all these members into a structure called
btrfs_tree_parent_check, and pass that structure for the following
helpers:

- btrfs_read_extent_buffer()
- read_tree_block()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:56 +01:00
David Sterba
e55cf7ca85 btrfs: pass btrfs_inode to btrfs_add_delayed_iput
The function is for internal interfaces so we should use the
btrfs_inode.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:55 +01:00
Josef Bacik
aa5d3003dd btrfs: move orphan prototypes into orphan.h
Move these out of ctree.h into orphan.h to cut down on code in ctree.h.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:47 +01:00
Josef Bacik
af142b6f44 btrfs: move file prototypes to file.h
Move these out of ctree.h into file.h to cut down on code in ctree.h.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:46 +01:00
Josef Bacik
7c8ede1628 btrfs: move file-item prototypes into their own header
Move these prototypes out of ctree.h and into file-item.h.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:46 +01:00
Josef Bacik
f2b39277b8 btrfs: move dir-item prototypes into dir-item.h
Move these prototypes out of ctree.h and into their own header file.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:46 +01:00
David Sterba
43dd529abe btrfs: update function comments
Update, reformat or reword function comments. This also removes the kdoc
marker so we don't get reports when the function name is missing.

Changes made:

- remove kdoc markers
- reformat the brief description to be a proper sentence
- reword to imperative voice
- align parameter list
- fix typos

Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:45 +01:00
Josef Bacik
45c40c8f95 btrfs: move root tree prototypes to their own header
Move all the root-tree.c prototypes to root-tree.h, and then update all
the necessary files to include the new header.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:44 +01:00
Josef Bacik
a0231804af btrfs: move extent-tree helpers into their own header file
Move all the extent tree related prototypes to extent-tree.h out of
ctree.h, and then go include it everywhere needed so everything
compiles.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:44 +01:00
Omar Sandoval
94a48aef49 btrfs: extend btrfs_dir_item type to store encryption status
For directories with encrypted files/filenames, we need to store a flag
indicating this fact. There's no room in other fields, so we'll need to
borrow a bit from dir_type. Since it's now a combination of type and
flags, we rename it to dir_flags to reflect its new usage.

The new flag, FT_ENCRYPTED, indicates a directory containing encrypted
data, which is orthogonal to file type; therefore, add the new
flag, and make conversion from directory type to file type strip the
flag.

As the file types almost never change we can afford to use the bits.
Actual usage will be guarded behind an incompat bit, this patch only
adds the support for later use by fscrypt.

Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:43 +01:00
Sweet Tea Dorminy
6db7531882 btrfs: use struct fscrypt_str instead of struct qstr
While struct qstr is more natural without fscrypt, since it's provided
by dentries, struct fscrypt_str is provided by the fscrypt handlers
processing dentries, and is thus more natural in the fscrypt world.
Replace all of the struct qstr uses with struct fscrypt_str.

Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:43 +01:00
Sweet Tea Dorminy
ab3c5c18e8 btrfs: setup qstr from dentrys using fscrypt helper
Most places where we get a struct qstr, we are doing so from a dentry.
With fscrypt, the dentry's name may be encrypted on-disk, so fscrypt
provides a helper to convert a dentry name to the appropriate disk name
if necessary. Convert each of the dentry name accesses to use
fscrypt_setup_filename(), then convert the resulting fscrypt_name back
to an unencrypted qstr. This does not work for nokey names, but the
specific locations that could spawn nokey names are noted.

At present, since there are no encrypted directories, nothing goes down
the filename encryption paths.

Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:43 +01:00
Sweet Tea Dorminy
e43eec81c5 btrfs: use struct qstr instead of name and namelen pairs
Many functions throughout btrfs take name buffer and name length
arguments. Most of these functions at the highest level are usually
called with these arguments extracted from a supplied dentry's name.
But the entire name can be passed instead, making each function a little
more elegant.

Each function whose arguments are currently the name and length
extracted from a dentry is herein converted to instead take a pointer to
the name in the dentry. The couple of calls to these calls without a
struct dentry are converted to create an appropriate qstr to pass in.
Additionally, every function which is only called with a name/len
extracted directly from a qstr is also converted.

This change has positive effect on stack consumption, frame of many
functions is reduced but this will be used in the future for fscrypt
related structures.

Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:43 +01:00
David Sterba
e2896e7910 btrfs: sink gfp_t parameter to btrfs_qgroup_trace_extent
All callers pass GFP_NOFS, we can drop the parameter and use it
directly.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:43 +01:00
Josef Bacik
ad1ac5012c btrfs: move btrfs_map_token to accessors
This is specific to the item-accessor code, move it out of ctree.h into
accessor.h/.c and then update the users to include the new header file.
This un-inlines btrfs_init_map_token, however this is only called once
per function so it's not critical to be inlined.  This also saves 904
bytes of code on a release build.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:42 +01:00
Josef Bacik
c7f13d428e btrfs: move fs wide helpers out of ctree.h
We have several fs wide related helpers in ctree.h.  The bulk of these
are the incompat flag test helpers, but there are things such as
btrfs_fs_closing() and the read only helpers that also aren't directly
related to the ctree code.  Move these into a fs.h header, which will
serve as the location for file system wide related helpers.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05 18:00:41 +01:00
Filipe Manana
796787c978 btrfs: do not modify log tree while holding a leaf from fs tree locked
When logging an inode in full mode, or when logging xattrs or when logging
the dir index items of a directory, we are modifying the log tree while
holding a read lock on a leaf from the fs/subvolume tree. This can lead to
a deadlock in rare circumstances, but it is a real possibility, and it was
recently reported by syzbot with the following trace from lockdep:

   WARNING: possible circular locking dependency detected
   6.1.0-rc5-next-20221116-syzkaller #0 Not tainted
   ------------------------------------------------------
   syz-executor.1/16154 is trying to acquire lock:
   ffff88807e3084a0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0xa1/0xf30 fs/btrfs/delayed-inode.c:256

   but task is already holding lock:
   ffff88807df33078 (btrfs-log-00){++++}-{3:3}, at: __btrfs_tree_lock+0x32/0x3d0 fs/btrfs/locking.c:197

   which lock already depends on the new lock.

   the existing dependency chain (in reverse order) is:

   -> #2 (btrfs-log-00){++++}-{3:3}:
          down_read_nested+0x9e/0x450 kernel/locking/rwsem.c:1634
          __btrfs_tree_read_lock+0x32/0x350 fs/btrfs/locking.c:135
          btrfs_tree_read_lock fs/btrfs/locking.c:141 [inline]
          btrfs_read_lock_root_node+0x82/0x3a0 fs/btrfs/locking.c:280
          btrfs_search_slot_get_root fs/btrfs/ctree.c:1678 [inline]
          btrfs_search_slot+0x3ca/0x2c70 fs/btrfs/ctree.c:1998
          btrfs_lookup_csum+0x116/0x3f0 fs/btrfs/file-item.c:209
          btrfs_csum_file_blocks+0x40e/0x1370 fs/btrfs/file-item.c:1021
          log_csums.isra.0+0x244/0x2d0 fs/btrfs/tree-log.c:4258
          copy_items.isra.0+0xbfb/0xed0 fs/btrfs/tree-log.c:4403
          copy_inode_items_to_log+0x13d6/0x1d90 fs/btrfs/tree-log.c:5873
          btrfs_log_inode+0xb19/0x4680 fs/btrfs/tree-log.c:6495
          btrfs_log_inode_parent+0x890/0x2a20 fs/btrfs/tree-log.c:6982
          btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7083
          btrfs_sync_file+0xa41/0x13c0 fs/btrfs/file.c:1921
          vfs_fsync_range+0x13e/0x230 fs/sync.c:188
          generic_write_sync include/linux/fs.h:2856 [inline]
          iomap_dio_complete+0x73a/0x920 fs/iomap/direct-io.c:128
          btrfs_direct_write fs/btrfs/file.c:1536 [inline]
          btrfs_do_write_iter+0xba2/0x1470 fs/btrfs/file.c:1668
          call_write_iter include/linux/fs.h:2160 [inline]
          do_iter_readv_writev+0x20b/0x3b0 fs/read_write.c:735
          do_iter_write+0x182/0x700 fs/read_write.c:861
          vfs_iter_write+0x74/0xa0 fs/read_write.c:902
          iter_file_splice_write+0x745/0xc90 fs/splice.c:686
          do_splice_from fs/splice.c:764 [inline]
          direct_splice_actor+0x114/0x180 fs/splice.c:931
          splice_direct_to_actor+0x335/0x8a0 fs/splice.c:886
          do_splice_direct+0x1ab/0x280 fs/splice.c:974
          do_sendfile+0xb19/0x1270 fs/read_write.c:1255
          __do_sys_sendfile64 fs/read_write.c:1323 [inline]
          __se_sys_sendfile64 fs/read_write.c:1309 [inline]
          __x64_sys_sendfile64+0x259/0x2c0 fs/read_write.c:1309
          do_syscall_x64 arch/x86/entry/common.c:50 [inline]
          do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
          entry_SYSCALL_64_after_hwframe+0x63/0xcd

   -> #1 (btrfs-tree-00){++++}-{3:3}:
          __lock_release kernel/locking/lockdep.c:5382 [inline]
          lock_release+0x371/0x810 kernel/locking/lockdep.c:5688
          up_write+0x2a/0x520 kernel/locking/rwsem.c:1614
          btrfs_tree_unlock_rw fs/btrfs/locking.h:189 [inline]
          btrfs_unlock_up_safe+0x1e3/0x290 fs/btrfs/locking.c:238
          search_leaf fs/btrfs/ctree.c:1832 [inline]
          btrfs_search_slot+0x265e/0x2c70 fs/btrfs/ctree.c:2074
          btrfs_insert_empty_items+0xbd/0x1c0 fs/btrfs/ctree.c:4133
          btrfs_insert_delayed_item+0x826/0xfa0 fs/btrfs/delayed-inode.c:746
          btrfs_insert_delayed_items fs/btrfs/delayed-inode.c:824 [inline]
          __btrfs_commit_inode_delayed_items fs/btrfs/delayed-inode.c:1111 [inline]
          __btrfs_run_delayed_items+0x280/0x590 fs/btrfs/delayed-inode.c:1153
          flush_space+0x147/0xe90 fs/btrfs/space-info.c:728
          btrfs_async_reclaim_metadata_space+0x541/0xc10 fs/btrfs/space-info.c:1086
          process_one_work+0x9bf/0x1710 kernel/workqueue.c:2289
          worker_thread+0x669/0x1090 kernel/workqueue.c:2436
          kthread+0x2e8/0x3a0 kernel/kthread.c:376
          ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308

   -> #0 (&delayed_node->mutex){+.+.}-{3:3}:
          check_prev_add kernel/locking/lockdep.c:3097 [inline]
          check_prevs_add kernel/locking/lockdep.c:3216 [inline]
          validate_chain kernel/locking/lockdep.c:3831 [inline]
          __lock_acquire+0x2a43/0x56d0 kernel/locking/lockdep.c:5055
          lock_acquire kernel/locking/lockdep.c:5668 [inline]
          lock_acquire+0x1e3/0x630 kernel/locking/lockdep.c:5633
          __mutex_lock_common kernel/locking/mutex.c:603 [inline]
          __mutex_lock+0x12f/0x1360 kernel/locking/mutex.c:747
          __btrfs_release_delayed_node.part.0+0xa1/0xf30 fs/btrfs/delayed-inode.c:256
          __btrfs_release_delayed_node fs/btrfs/delayed-inode.c:251 [inline]
          btrfs_release_delayed_node fs/btrfs/delayed-inode.c:281 [inline]
          btrfs_remove_delayed_node+0x52/0x60 fs/btrfs/delayed-inode.c:1285
          btrfs_evict_inode+0x511/0xf30 fs/btrfs/inode.c:5554
          evict+0x2ed/0x6b0 fs/inode.c:664
          dispose_list+0x117/0x1e0 fs/inode.c:697
          prune_icache_sb+0xeb/0x150 fs/inode.c:896
          super_cache_scan+0x391/0x590 fs/super.c:106
          do_shrink_slab+0x464/0xce0 mm/vmscan.c:843
          shrink_slab_memcg mm/vmscan.c:912 [inline]
          shrink_slab+0x388/0x660 mm/vmscan.c:991
          shrink_node_memcgs mm/vmscan.c:6088 [inline]
          shrink_node+0x93d/0x1f30 mm/vmscan.c:6117
          shrink_zones mm/vmscan.c:6355 [inline]
          do_try_to_free_pages+0x3b4/0x17a0 mm/vmscan.c:6417
          try_to_free_mem_cgroup_pages+0x3a4/0xa70 mm/vmscan.c:6732
          reclaim_high.constprop.0+0x182/0x230 mm/memcontrol.c:2393
          mem_cgroup_handle_over_high+0x190/0x520 mm/memcontrol.c:2578
          try_charge_memcg+0xe0c/0x12f0 mm/memcontrol.c:2816
          try_charge mm/memcontrol.c:2827 [inline]
          charge_memcg+0x90/0x3b0 mm/memcontrol.c:6889
          __mem_cgroup_charge+0x2b/0x90 mm/memcontrol.c:6910
          mem_cgroup_charge include/linux/memcontrol.h:667 [inline]
          __filemap_add_folio+0x615/0xf80 mm/filemap.c:852
          filemap_add_folio+0xaf/0x1e0 mm/filemap.c:934
          __filemap_get_folio+0x389/0xd80 mm/filemap.c:1976
          pagecache_get_page+0x2e/0x280 mm/folio-compat.c:104
          find_or_create_page include/linux/pagemap.h:612 [inline]
          alloc_extent_buffer+0x2b9/0x1580 fs/btrfs/extent_io.c:4588
          btrfs_init_new_buffer fs/btrfs/extent-tree.c:4869 [inline]
          btrfs_alloc_tree_block+0x2e1/0x1320 fs/btrfs/extent-tree.c:4988
          __btrfs_cow_block+0x3b2/0x1420 fs/btrfs/ctree.c:440
          btrfs_cow_block+0x2fa/0x950 fs/btrfs/ctree.c:595
          btrfs_search_slot+0x11b0/0x2c70 fs/btrfs/ctree.c:2038
          btrfs_update_root+0xdb/0x630 fs/btrfs/root-tree.c:137
          update_log_root fs/btrfs/tree-log.c:2841 [inline]
          btrfs_sync_log+0xbfb/0x2870 fs/btrfs/tree-log.c:3064
          btrfs_sync_file+0xdb9/0x13c0 fs/btrfs/file.c:1947
          vfs_fsync_range+0x13e/0x230 fs/sync.c:188
          generic_write_sync include/linux/fs.h:2856 [inline]
          iomap_dio_complete+0x73a/0x920 fs/iomap/direct-io.c:128
          btrfs_direct_write fs/btrfs/file.c:1536 [inline]
          btrfs_do_write_iter+0xba2/0x1470 fs/btrfs/file.c:1668
          call_write_iter include/linux/fs.h:2160 [inline]
          do_iter_readv_writev+0x20b/0x3b0 fs/read_write.c:735
          do_iter_write+0x182/0x700 fs/read_write.c:861
          vfs_iter_write+0x74/0xa0 fs/read_write.c:902
          iter_file_splice_write+0x745/0xc90 fs/splice.c:686
          do_splice_from fs/splice.c:764 [inline]
          direct_splice_actor+0x114/0x180 fs/splice.c:931
          splice_direct_to_actor+0x335/0x8a0 fs/splice.c:886
          do_splice_direct+0x1ab/0x280 fs/splice.c:974
          do_sendfile+0xb19/0x1270 fs/read_write.c:1255
          __do_sys_sendfile64 fs/read_write.c:1323 [inline]
          __se_sys_sendfile64 fs/read_write.c:1309 [inline]
          __x64_sys_sendfile64+0x259/0x2c0 fs/read_write.c:1309
          do_syscall_x64 arch/x86/entry/common.c:50 [inline]
          do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
          entry_SYSCALL_64_after_hwframe+0x63/0xcd

   other info that might help us debug this:

   Chain exists of:
     &delayed_node->mutex --> btrfs-tree-00 --> btrfs-log-00

   Possible unsafe locking scenario:

          CPU0                    CPU1
          ----                    ----
     lock(btrfs-log-00);
                                  lock(btrfs-tree-00);
                                  lock(btrfs-log-00);
     lock(&delayed_node->mutex);

Holding a read lock on a leaf from a fs/subvolume tree creates a nasty
lock dependency when we are COWing extent buffers for the log tree and we
have two tasks modifying the log tree, with each one in one of the
following 2 scenarios:

1) Modifying the log tree triggers an extent buffer allocation while
   holding a write lock on a parent extent buffer from the log tree.
   Allocating the pages for an extent buffer, or the extent buffer
   struct, can trigger inode eviction and finally the inode eviction
   will trigger a release/remove of a delayed node, which requires
   taking the delayed node's mutex;

2) Allocating a metadata extent for a log tree can trigger the async
   reclaim thread and make us wait for it to release enough space and
   unblock our reservation ticket. The reclaim thread can start flushing
   delayed items, and that in turn results in the need to lock delayed
   node mutexes and in the need to write lock extent buffers of a
   subvolume tree - all this while holding a write lock on the parent
   extent buffer in the log tree.

So one task in scenario 1) running in parallel with another task in
scenario 2) could lead to a deadlock, one wanting to lock a delayed node
mutex while having a read lock on a leaf from the subvolume, while the
other is holding the delayed node's mutex and wants to write lock the same
subvolume leaf for flushing delayed items.

Fix this by cloning the leaf of the fs/subvolume tree, release/unlock the
fs/subvolume leaf and use the clone leaf instead.

Reported-by: syzbot+9b7c21f486f5e7f8d029@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000ccc93c05edc4d8cf@google.com/
CC: stable@vger.kernel.org # 6.0+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-11-23 16:52:15 +01:00
Josef Bacik
26ce911446 btrfs: make can_nocow_extent nowait compatible
If we have NOWAIT specified on our IOCB and we're writing into a
PREALLOC or NOCOW extent then we need to be able to tell
can_nocow_extent that we don't want to wait on any locks or metadata IO.
Fix can_nocow_extent to allow for NOWAIT.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29 17:08:26 +02:00
Josef Bacik
570eb97bac btrfs: unify the lock/unlock extent variants
We have two variants of lock/unlock extent, one set that takes a cached
state, another that does not.  This is slightly annoying, and generally
speaking there are only a few places where we don't have a cached state.
Simplify this by making lock_extent/unlock_extent the only variant and
make it take a cached state, then convert all the callers appropriately.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26 12:28:05 +02:00
Filipe Manana
7059c65831 btrfs: simplify adding and replacing references during log replay
During log replay, when adding/replacing inode references, there are two
special cases that have special code for them:

1) When we have an inode with two or more hardlinks in the same directory,
   therefore two or more names encoded in the same inode reference item,
   and one of the hard links gets renamed to the old name of another hard
   link - that is, the index number for a name changes. This was added in
   commit 0d836392ca ("Btrfs: fix mount failure after fsync due to
   hard link recreation"), and is covered by test case generic/502 from
   fstests;

2) When we have several inodes that got renamed to an old name of some
   other inode, in a cascading style. The code to deal with this special
   case was added in commit 6b5fc433a7 ("Btrfs: fix fsync after
   succession of renames of different files"), and is covered by test
   cases generic/526 and generic/527 from fstests.

Both cases can be deal with by making sure __add_inode_ref() is always
called by add_inode_ref() for every name encoded in the inode reference
item, and not just for the first name that has a conflict. With such
change we no longer need that special casing for the two cases mentioned
before. So do those changes.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-26 12:27:57 +02:00