mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-09-01 06:39:05 +00:00
loongarch-next
3 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
57d72196df |
irqchip/gic-v5: Add GICv5 ITS support
The GICv5 architecture implements Interrupt Translation Service (ITS) components in order to translate events coming from peripherals into interrupt events delivered to the connected IRSes. Events (ie MSI memory writes to ITS translate frame), are translated by the ITS using tables kept in memory. ITS translation tables for peripherals is kept in memory storage (device table [DT] and Interrupt Translation Table [ITT]) that is allocated by the driver on boot. Both tables can be 1- or 2-level; the structure is chosen by the driver after probing the ITS HW parameters and checking the allowed table splits and supported {device/event}_IDbits. DT table entries are allocated on demand (ie when a device is probed); the DT table is sized using the number of supported deviceID bits in that that's a system design decision (ie the number of deviceID bits implemented should reflect the number of devices expected in a system) therefore it makes sense to allocate a DT table that can cater for the maximum number of devices. DT and ITT tables are allocated using the kmalloc interface; the allocation size may be smaller than a page or larger, and must provide contiguous memory pages. LPIs INTIDs backing the device events are allocated one-by-one and only upon Linux IRQ allocation; this to avoid preallocating a large number of LPIs to cover the HW device MSI vector size whereas few MSI entries are actually enabled by a device. ITS cacheability/shareability attributes are programmed according to the provided firmware ITS description. The GICv5 partially reuses the GICv3 ITS MSI parent infrastructure and adds functions required to retrieve the ITS translate frame addresses out of msi-map and msi-parent properties to implement the GICv5 ITS MSI parent callbacks. Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com> Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com> Co-developed-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-28-12e71f1b3528@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
0f01013258 |
irqchip/gic-v5: Add GICv5 LPI/IPI support
An IRS supports Logical Peripheral Interrupts (LPIs) and implement Linux IPIs on top of it. LPIs are used for interrupt signals that are translated by a GICv5 ITS (Interrupt Translation Service) but also for software generated IRQs - namely interrupts that are not driven by a HW signal, ie IPIs. LPIs rely on memory storage for interrupt routing and state. LPIs state and routing information is kept in the Interrupt State Table (IST). IRSes provide support for 1- or 2-level IST tables configured to support a maximum number of interrupts that depend on the OS configuration and the HW capabilities. On systems that provide 2-level IST support, always allow the maximum number of LPIs; On systems with only 1-level support, limit the number of LPIs to 2^12 to prevent wasting memory (presumably a system that supports a 1-level only IST is not expecting a large number of interrupts). On a 2-level IST system, L2 entries are allocated on demand. The IST table memory is allocated using the kmalloc() interface; the allocation required may be smaller than a page and must be made up of contiguous physical pages if larger than a page. On systems where the IRS is not cache-coherent with the CPUs, cache mainteinance operations are executed to clean and invalidate the allocated memory to the point of coherency making it visible to the IRS components. On GICv5 systems, IPIs are implemented using LPIs. Add an LPI IRQ domain and implement an IPI-specific IRQ domain created as a child/subdomain of the LPI domain to allocate the required number of LPIs needed to implement the IPIs. IPIs are backed by LPIs, add LPIs allocation/de-allocation functions. The LPI INTID namespace is managed using an IDA to alloc/free LPI INTIDs. Associate an IPI irqchip with IPI IRQ descriptors to provide core code with the irqchip.ipi_send_single() method required to raise an IPI. Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com> Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com> Co-developed-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <maz@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-22-12e71f1b3528@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
5cb1b6dab2 |
irqchip/gic-v5: Add GICv5 IRS/SPI support
The GICv5 Interrupt Routing Service (IRS) component implements interrupt management and routing in the GICv5 architecture. A GICv5 system comprises one or more IRSes, that together handle the interrupt routing and state for the system. An IRS supports Shared Peripheral Interrupts (SPIs), that are interrupt sources directly connected to the IRS; they do not rely on memory for storage. The number of supported SPIs is fixed for a given implementation and can be probed through IRS IDR registers. SPI interrupt state and routing are managed through GICv5 instructions. Each core (PE in GICv5 terms) in a GICv5 system is identified with an Interrupt AFFinity ID (IAFFID). An IRS manages a set of cores that are connected to it. Firmware provides a topology description that the driver uses to detect to which IRS a CPU (ie an IAFFID) is associated with. Use probeable information and firmware description to initialize the IRSes and implement GICv5 IRS SPIs support through an SPI-specific IRQ domain. The GICv5 IRS driver: - Probes IRSes in the system to detect SPI ranges - Associates an IRS with a set of cores connected to it - Adds an IRQchip structure for SPI handling SPIs priority is set to a value corresponding to the lowest permissible priority in the system (taking into account the implemented priority bits of the IRS and CPU interface). Since all IRQs are set to the same priority value, the value itself does not matter as long as it is a valid one. Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com> Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com> Co-developed-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <maz@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-21-12e71f1b3528@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org> |