From Dave [1]:
"""
It was a mistake to introduce core/acpi.c and putting ACPI dependency on
cxl_core when adding the extended linear cache support.
"""
Current implementation calls hmat_get_extended_linear_cache_size() of
the ACPI subsystem. That external reference causes issue running
cxl_test as there is no way to "mock" that function and ignore it when
using cxl test.
Instead of working around that using cxlrd ops and extensively
expanding cxl_test code [1], just move HMAT calls out of the core
module to cxl_acpi. Implement this by adding a @cache_size member to
struct cxl_root_decoder. During initialization the cache size is
determined and added to the root decoder object in cxl_acpi. Later on
in cxl_core the cache_size parameter is used to setup extended linear
caching.
[1] https://patch.msgid.link/20250610172938.139428-1-dave.jiang@intel.com
[ dj: Remove core/acpi.o from tools/testing/cxl/Kbuild ]
[ dj: Add kdoc for cxlrd->cache_size ]
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://patch.msgid.link/20250711151529.787470-1-rrichter@amd.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
CXL spec 3.2 section 8.2.10.9.11.1 describes the device patrol scrub
control feature. The device patrol scrub proactively locates and makes
corrections to errors in regular cycle.
Allow specifying the number of hours within which the patrol scrub must be
completed, subject to minimum and maximum limits reported by the device.
Also allow disabling scrub allowing trade-off error rates against
performance.
Add support for patrol scrub control on CXL memory devices.
Register with the EDAC device driver, which retrieves the scrub attribute
descriptors from EDAC scrub and exposes the sysfs scrub control attributes
to userspace. For example, scrub control for the CXL memory device
"cxl_mem0" is exposed in /sys/bus/edac/devices/cxl_mem0/scrubX/.
Additionally, add support for region-based CXL memory patrol scrub control.
CXL memory regions may be interleaved across one or more CXL memory
devices. For example, region-based scrub control for "cxl_region1" is
exposed in /sys/bus/edac/devices/cxl_region1/scrubX/.
[dj: A few formatting fixes from Jonathan]
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Co-developed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Shiju Jose <shiju.jose@huawei.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Link: https://patch.msgid.link/20250521124749.817-4-shiju.jose@huawei.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Add CXL Features support. Setup code for enabling in kernel usage of CXL
Features. Expecting EDAC/RAS to utilize CXL Features in kernel for
things such as memory sparing. Also prepartion for enabling of CXL FWCTL
support to issue allowed Features from user space.
When PCIe AER is in FW-First, OS should process CXL Protocol errors from
CPER records. Introduce support for handling and logging CXL Protocol
errors.
The defined trace events cxl_aer_uncorrectable_error and
cxl_aer_correctable_error trace native CXL AER endpoint errors. Reuse them
to trace FW-First Protocol errors.
Since the CXL code is required to be called from process context and
GHES is in interrupt context, use workqueues for processing.
Similar to CXL CPER event handling, use kfifo to handle errors as it
simplifies queue processing by providing lock free fifo operations.
Add the ability for the CXL sub-system to register a workqueue to
process CXL CPER protocol errors.
[DJ: return cxl_cper_register_prot_err_work() directly in cxl_ras_init()]
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Reviewed-by: Li Ming <ming.li@zohomail.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://patch.msgid.link/20250310223839.31342-2-Smita.KoralahalliChannabasappa@amd.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Below is a setup with extended linear cache configuration with an example
layout of memory region shown below presented as a single memory region
consists of 256G memory where there's 128G of DRAM and 128G of CXL memory.
The kernel sees a region of total 256G of system memory.
128G DRAM 128G CXL memory
|-----------------------------------|-------------------------------------|
Data resides in either DRAM or far memory (FM) with no replication. Hot
data is swapped into DRAM by the hardware behind the scenes. When error is
detected in one location, it is possible that error also resides in the
aliased location. Therefore when a memory location that is flagged by MCE
is part of the special region, the aliased memory location needs to be
offlined as well.
Add an mce notify callback to identify if the MCE address location is part
of an extended linear cache region and handle accordingly.
Added symbol export to set_mce_nospec() in x86 code in order to call
set_mce_nospec() from the CXL MCE notify callback.
Link: https://lore.kernel.org/linux-cxl/668333b17e4b2_5639294fd@dwillia2-xfh.jf.intel.com.notmuch/
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Li Ming <ming.li@zohomail.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://patch.msgid.link/20250226162224.3633792-5-dave.jiang@intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
The current cxl region size only indicates the size of the CXL memory
region without accounting for the extended linear cache size. Retrieve the
cache size from HMAT and append that to the cxl region size for the cxl
region range that matches the SRAT range that has extended linear cache
enabled.
The SRAT defines the whole memory range that includes the extended linear
cache and the CXL memory region. The new HMAT ECN/ECR to the Memory Side
Cache Information Structure defines the size of the extended linear cache
size and matches to the SRAT Memory Affinity Structure by the memory
proxmity domain. Add a helper to match the cxl range to the SRAT memory
range in order to retrieve the cache size.
There are several places that checks the cxl region range against the
decoder range. Use new helper to check between the two ranges and address
the new cache size.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Li Ming <ming.li@zohomail.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://patch.msgid.link/20250226162224.3633792-3-dave.jiang@intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
CXL spec r3.2 8.2.9.6.1 Get Supported Features (Opcode 0500h)
The command retrieve the list of supported device-specific features
(identified by UUID) and general information about each Feature.
The driver will retrieve the Feature entries in order to make checks and
provide information for the Get Feature and Set Feature command. One of
the main piece of information retrieved are the effects a Set Feature
command would have for a particular feature. The retrieved Feature
entries are stored in the cxl_mailbox context.
The setup of Features is initiated via devm_cxl_setup_features() during the
pci probe function before the cxl_memdev is enumerated.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Li Ming <ming.li@zohomail.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Tested-by: Shiju Jose <shiju.jose@huawei.com>
Link: https://patch.msgid.link/20250220194438.2281088-3-dave.jiang@intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Provide a callback function to the CDAT parser in order to parse the
Device Scoped Memory Affinity Structure (DSMAS). Each DSMAS structure
contains the DPA range and its associated attributes in each entry. See
the CDAT specification for details. The device handle and the DPA range
is saved and to be associated with the DSLBIS locality data when the
DSLBIS entries are parsed. The xarray is a local variable. When the
total path performance data is calculated and storred this xarray can be
discarded.
Coherent Device Attribute Table 1.03 2.1 Device Scoped memory Affinity
Structure (DSMAS)
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/170319619355.2212653.2675953129671561293.stgit@djiang5-mobl3
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL PMU devices can be found from entries in the Register
Locator DVSEC.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230526095824.16336-4-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL is using tracepoints for reporting RAS capability register payloads
for AER events, and has plans to use tracepoints for the output payload
of Get Poison List and Get Event Records commands. For organization
purposes it would be nice to keep those all under a single + local CXL
trace system. This also organization also potentially helps in the
future when CXL drivers expand beyond generic memory expanders, however
that would also entail a move away from the expander-specific
cxl_dev_state context, save that for later.
Note that the powerpc-specific drivers/misc/cxl/ also defines a 'cxl'
trace system, however, it is unlikely that a single platform will ever
load both drivers simultaneously.
Cc: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167051869176.436579.9728373544811641087.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL 2.0 allows for dynamic provisioning of new memory regions (system
physical address resources like "System RAM" and "Persistent Memory").
Whereas DDR and PMEM resources are conveyed statically at boot, CXL
allows for assembling and instantiating new regions from the available
capacity of CXL memory expanders in the system.
Sysfs with an "echo $region_name > $create_region_attribute" interface
is chosen as the mechanism to initiate the provisioning process. This
was chosen over ioctl() and netlink() to keep the configuration
interface entirely in a pseudo-fs interface, and it was chosen over
configfs since, aside from this one creation event, the interface is
read-mostly. I.e. configfs supports cases where an object is designed to
be provisioned each boot, like an iSCSI storage target, and CXL region
creation is mostly for PMEM regions which are created usually once
per-lifetime of a server instance. This is an improvement over nvdimm
that pre-created "seed" devices that tended to confuse users looking to
determine which devices are active and which are idle.
Recall that the major change that CXL brings over previous persistent
memory architectures is the ability to dynamically define new regions.
Compare that to drivers like 'nfit' where the region configuration is
statically defined by platform firmware.
Regions are created as a child of a root decoder that encompasses an
address space with constraints. When created through sysfs, the root
decoder is explicit. When created from an LSA's region structure a root
decoder will possibly need to be inferred by the driver.
Upon region creation through sysfs, a vacant region is created with a
unique name. Regions have a number of attributes that must be configured
before the region can be bound to the driver where HDM decoder program
is completed.
An example of creating a new region:
- Allocate a new region name:
region=$(cat /sys/bus/cxl/devices/decoder0.0/create_pmem_region)
- Create a new region by name:
while
region=$(cat /sys/bus/cxl/devices/decoder0.0/create_pmem_region)
! echo $region > /sys/bus/cxl/devices/decoder0.0/create_pmem_region
do true; done
- Region now exists in sysfs:
stat -t /sys/bus/cxl/devices/decoder0.0/$region
- Delete the region, and name:
echo $region > /sys/bus/cxl/devices/decoder0.0/delete_region
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784333909.1758207.794374602146306032.stgit@dwillia2-xfh.jf.intel.com
[djbw: simplify locking, reword changelog]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The CXL specification claims S3 support at a hardware level, but at a
system software level there are some missing pieces. Section 9.4 (CXL
2.0) rightly claims that "CXL mem adapters may need aux power to retain
memory context across S3", but there is no enumeration mechanism for the
OS to determine if a given adapter has that support. Moreover the save
state and resume image for the system may inadvertantly end up in a CXL
device that needs to be restored before the save state is recoverable.
I.e. a circular dependency that is not resolvable without a third party
save-area.
Arrange for the cxl_mem driver to fail S3 attempts. This still nominaly
allows for suspend, but requires unbinding all CXL memory devices before
the suspend to ensure the typical DRAM flow is taken. The cxl_mem unbind
flow is intended to also tear down all CXL memory regions associated
with a given cxl_memdev.
It is reasonable to assume that any device participating in a System RAM
range published in the EFI memory map is covered by aux power and
save-area outside the device itself. So this restriction can be
minimized in the future once pre-existing region enumeration support
arrives, and perhaps a spec update to clarify if the EFI memory map is
sufficent for determining the range of devices managed by
platform-firmware for S3 support.
Per Rafael, if the CXL configuration prevents suspend then it should
fail early before tasks are frozen, and mem_sleep should stop showing
'mem' as an option [1]. Effectively CXL augments the platform suspend
->valid() op since, for example, the ACPI ops are not aware of the CXL /
PCI dependencies. Given the split role of platform firmware vs OS
provisioned CXL memory it is up to the cxl_mem driver to determine if
the CXL configuration has elements that platform firmware may not be
prepared to restore.
Link: https://lore.kernel.org/r/CAJZ5v0hGVN_=3iU8OLpHY3Ak35T5+JcBM-qs8SbojKrpd0VXsA@mail.gmail.com [1]
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Len Brown <len.brown@intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/165066828317.3907920.5690432272182042556.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Unlike the decoder enumeration for "root decoders" described by platform
firmware, standard decoders can be enumerated from the component
registers space once the base address has been identified (via PCI,
ACPI, or another mechanism).
Add common infrastructure for HDM (Host-managed-Device-Memory) Decoder
enumeration and share it between host-bridge, upstream switch port, and
cxl_test defined decoders.
The locking model for switch level decoders is to hold the port lock
over the enumeration. This facilitates moving the dport and decoder
enumeration to a 'port' driver. For now, the only enumerator of decoder
resources is the cxl_acpi root driver.
Co-developed-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/164374688404.395335.9239248252443123526.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The core houses infrastructure for decoder resources. A CXL port's
dports are more closely related to decoder infrastructure than topology
enumeration. Implement generic PCI based dport enumeration in the core,
i.e. arrange for existing root port enumeration from cxl_acpi to share
code with switch port enumeration which just amounts to a small
difference in a pci_walk_bus() invocation once the appropriate 'struct
pci_bus' has been retrieved.
Set the convention that decoder objects are registered after all dports
are enumerated. This enables userspace to know when the CXL core is
finished establishing 'dportX' links underneath the 'portX' object.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/164368114191.354031.5270501846455462665.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
It turns out that the usb example of specifying the subsystem namespace
at build time is not preferred. The rationale for that preference has
become more apparent as CXL patches with plain EXPORT_SYMBOL_GPL beg the
question, "why would any code other than CXL care about this symbol?".
Make the namespace explicit.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/163676356810.3618264.601632777702192938.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that the internals of mailbox operations are abstracted from the PCI
specifics a bulk of infrastructure can move to the core.
The CXL_PMEM driver intends to proxy LIBNVDIMM UAPI and driver requests
to the equivalent functionality provided by the CXL hardware mailbox
interface. In support of that intent move the mailbox implementation to
a shared location for the CXL_PCI driver native IOCTL path and CXL_PMEM
nvdimm command proxy path to share.
A unit test framework seeks to implement a unit test backend transport
for mailbox commands to communicate mocked up payloads. It can reuse all
of the mailbox infrastructure minus the PCI specifics, so that also gets
moved to the core.
Finally with the mailbox infrastructure and ioctl handling being
transport generic there is no longer any need to pass file
file_operations to devm_cxl_add_memdev(). That allows all the ioctl
boilerplate to move into the core for unit test reuse.
No functional change intended, just code movement.
Acked-by: Ben Widawsky <ben.widawsky@intel.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/163116435233.2460985.16197340449713287180.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The motivation for moving cxl_memdev allocation to the core (beyond
better file organization of sysfs attributes in core/ and drivers in
cxl/), is that device lifetime is longer than module lifetime. The cxl_pci
module should be free to come and go without needing to coordinate with
devices that need the text associated with cxl_memdev_release() to stay
resident. The move fixes a use after free bug when looping driver
load / unload with CONFIG_DEBUG_KOBJECT_RELEASE=y.
Another motivation for disconnecting cxl_memdev creation from cxl_pci is
to enable other drivers, like a unit test driver, to registers memdevs.
Fixes: b39cb1052a ("cxl/mem: Register CXL memX devices")
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162792540495.368511.9748638751088219595.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The register mapping infrastructure is large enough to move to its own
compilation unit. This also cleans up an unnecessary include of <mem.h>
core/bus.c.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162800068975.665205.12895551621746585289.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Refactor the pmem / nvdimm-bridge functionality from core/bus.c to
core/pmem.c. Introduce drivers/core/core.h to communicate data
structures and helpers between the core bus and other functionality that
registers devices on the bus.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162792538899.368511.3881663908293411300.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL core is growing, and it's already arguably unmanageable. To support
future growth, move core functionality to a new directory and rename the
file to represent just bus support. Future work will remove non-bus
functionality.
Note that mem.h is renamed to cxlmem.h to avoid a namespace collision
with the global ARCH=um mem.h header.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/162792537866.368511.8915631504621088321.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>