Annotate the kvm_entry() tracepoint with "immediate exit" when KVM is
forcing a VM-Exit immediately after VM-Enter, e.g. when KVM wants to
inject an event but needs to first complete some other operation.
Knowing that KVM is (or isn't) forcing an exit is useful information when
debugging issues related to event injection.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240110012705.506918-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove reexecute_instruction()'s final check on the MMU being direct, as
EMULTYPE_WRITE_PF_TO_SP is only ever set if the MMU is indirect, i.e. is a
shadow MMU. Prior to commit 93c05d3ef2 ("KVM: x86: improve
reexecute_instruction"), the flag simply didn't exist (and KVM actually
returned "true" unconditionally for both types of MMUs). I.e. the
explicit check for a direct MMU is simply leftover artifact from old code.
Link: https://lore.kernel.org/r/20240203002343.383056-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM doesn't pointlessly acquire mmu_lock for direct MMUs, drop
the dedicated path entirely and always query indirect_shadow_pages when
deciding whether or not to try unprotecting the gfn. For indirect, a.k.a.
shadow MMUs, checking indirect_shadow_pages is harmless; unless *every*
shadow page was somehow zapped while KVM was attempting to emulate the
instruction, indirect_shadow_pages is guaranteed to be non-zero.
Well, unless the instruction used a direct hugepage with 2-level paging
for its code page, but in that case, there's obviously nothing to
unprotect. And in the extremely unlikely case all shadow pages were
zapped, there's again obviously nothing to unprotect.
Link: https://lore.kernel.org/r/20240203002343.383056-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop KVM's completely pointless acquisition of mmu_lock when deciding
whether or not to unprotect any shadow pages residing at the gfn before
resuming the guest to let it retry an instruction that KVM failed to
emulated. In this case, indirect_shadow_pages is used as a coarse-grained
heuristic to check if there is any chance of there being a relevant shadow
page to unprotected. But acquiring mmu_lock largely defeats any benefit
to the heuristic, as taking mmu_lock for write is likely far more costly
to the VM as a whole than unnecessarily walking mmu_page_hash.
Furthermore, the current code is already prone to false negatives and
false positives, as it drops mmu_lock before checking the flag and
unprotecting shadow pages. And as evidenced by the lack of bug reports,
neither false positives nor false negatives are problematic. A false
positive simply means that KVM will try to unprotect shadow pages that
have already been zapped. And a false negative means that KVM will
resume the guest without unprotecting the gfn, i.e. if a shadow page was
_just_ created, the vCPU will hit the same page fault and do the whole
dance all over again, and detect and unprotect the shadow page the second
time around (or not, if something else zaps it first).
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
[sean: drop READ_ONCE() and comment change, rewrite changelog]
Link: https://lore.kernel.org/r/20240203002343.383056-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Bite the bullet, and open code all direct reads of DR6 and DR7. KVM
currently has a mix of open coded accesses and calls to kvm_get_dr(),
which is confusing and ugly because there's no rhyme or reason as to why
any particular chunk of code uses kvm_get_dr().
The obvious alternative is to force all accesses through kvm_get_dr(),
but it's not at all clear that doing so would be a net positive, e.g. even
if KVM ends up wanting/needing to force all reads through a common helper,
e.g. to play caching games, the cost of reverting this change is likely
lower than the ongoing cost of maintaining weird, arbitrary code.
No functional change intended.
Cc: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Convert kvm_get_dr()'s output parameter to a return value, and clean up
most of the mess that was created by forcing callers to provide a pointer.
No functional change intended.
Acked-by: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that all relevant kernel changes and selftests are in place, enable the
new capability.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-17-paul@xen.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
As noted in [1] the KVM_GUEST_USES_PFN usage flag is never set by any
callers of kvm_gpc_init(), and for good reason: the implementation is
incomplete/broken. And it's not clear that there will ever be a user of
KVM_GUEST_USES_PFN, as coordinating vCPUs with mmu_notifier events is
non-trivial.
Remove KVM_GUEST_USES_PFN and all related code, e.g. dropping
KVM_GUEST_USES_PFN also makes the 'vcpu' argument redundant, to avoid
having to reason about broken code as __kvm_gpc_refresh() evolves.
Moreover, all existing callers specify KVM_HOST_USES_PFN so the usage
check in hva_to_pfn_retry() and hence the 'usage' argument to
kvm_gpc_init() are also redundant.
[1] https://lore.kernel.org/all/ZQiR8IpqOZrOpzHC@google.com
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-6-paul@xen.org
[sean: explicitly call out that guest usage is incomplete]
Signed-off-by: Sean Christopherson <seanjc@google.com>
At the moment pages are marked dirty by open-coded calls to
mark_page_dirty_in_slot(), directly deferefencing the gpa and memslot
from the cache. After a subsequent patch these may not always be set
so add a helper now so that caller will protected from the need to know
about this detail.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-5-paul@xen.org
[sean: decrease indentation, use gpa_to_gfn()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
When emulating an atomic access on behalf of the guest, mark the target
gfn dirty if the CMPXCHG by KVM is attempted and doesn't fault. This
fixes a bug where KVM effectively corrupts guest memory during live
migration by writing to guest memory without informing userspace that the
page is dirty.
Marking the page dirty got unintentionally dropped when KVM's emulated
CMPXCHG was converted to do a user access. Before that, KVM explicitly
mapped the guest page into kernel memory, and marked the page dirty during
the unmap phase.
Mark the page dirty even if the CMPXCHG fails, as the old data is written
back on failure, i.e. the page is still written. The value written is
guaranteed to be the same because the operation is atomic, but KVM's ABI
is that all writes are dirty logged regardless of the value written. And
more importantly, that's what KVM did before the buggy commit.
Huge kudos to the folks on the Cc list (and many others), who did all the
actual work of triaging and debugging.
Fixes: 1c2361f667 ("KVM: x86: Use __try_cmpxchg_user() to emulate atomic accesses")
Cc: stable@vger.kernel.org
Cc: David Matlack <dmatlack@google.com>
Cc: Pasha Tatashin <tatashin@google.com>
Cc: Michael Krebs <mkrebs@google.com>
base-commit: 6769ea8da8a93ed4630f1ce64df6aafcaabfce64
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20240215010004.1456078-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Remove redundant newlines from error messages.
- Delete an unused variable in the AMX test (which causes build failures when
compiling with -Werror).
- Fail instead of skipping tests if open(), e.g. of /dev/kvm, fails with an
error code other than ENOENT (a Hyper-V selftest bug resulted in an EMFILE,
and the test eventually got skipped).
- Fix TSC related bugs in several Hyper-V selftests.
- Fix a bug in the dirty ring logging test where a sem_post() could be left
pending across multiple runs, resulting in incorrect synchronization between
the main thread and the vCPU worker thread.
- Relax the dirty log split test's assertions on 4KiB mappings to fix false
positives due to the number of mappings for memslot 0 (used for code and
data that is NOT being dirty logged) changing, e.g. due to NUMA balancing.
- Have KVM's gtod_is_based_on_tsc() return "bool" instead of an "int" (the
function generates boolean values, and all callers treat the return value as
a bool).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmXKupQSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5DiQP/RNSgLrE9+/3oyqo9zpbhio2dKqz4dIk
8Ga1ZE4R89dyMB9jGKtWn3rEkyma3TsB+neVpG9ohHV6j25JJ0vNAkxQu3Gt+gkl
uM1lh/IfXPnAKyuy6dW9tpgZYE1v2/KfdWjeEzzxfPjzY/LX3yFiiCKEnUmfjjzZ
sSz91nV4KYS4b4xLWTIcBgNJuyLJuL05htTLmCu7t8DKOBHwHxXjSn8qqG8OvAjs
FOhf0zgGJKBFdKOw2Y8XeDdKO0RTEyEPHaFILcLEsuhoVIbY5OUmLe32pAFzzMbG
hPawUZ5CzC++e339gUgGkRNY80iSnGcYVcZa+ohxOsNBdOWko9z/eGWZUV7qkYDK
dkPHMoDnSzUCE2eSYbEB1eR/KOfziJCWMS9SAIJbJxIGb1HYajikwAEZ6FNp3R+u
MyCuNlV9TfsGgt4Dx8RctMeH2ROpORRu7h3WPFUBgG2/jOzPk/OR6U8hSzvmhTvL
MykZ8IaLmUIYoK/nCY2iwy50lQRxtZ/htqWn3sidCBGY0DXdNlMhvd3Vk9jtUvY5
Fgof0b564eYfk/qO3cMIDd2WFaDejP28JVSn0CNm6z9i54ubCKkSBEb4kTYXXnVK
YBHvbZ21Vjg52trudvK5UPt599sxxNBNiSV32ckLFKHS4ZVGSFSBSbsAWiQF157i
CbYntmtJhM+D
=infW
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-selftests-6.8-rcN' of https://github.com/kvm-x86/linux into HEAD
KVM selftests fixes/cleanups (and one KVM x86 cleanup) for 6.8:
- Remove redundant newlines from error messages.
- Delete an unused variable in the AMX test (which causes build failures when
compiling with -Werror).
- Fail instead of skipping tests if open(), e.g. of /dev/kvm, fails with an
error code other than ENOENT (a Hyper-V selftest bug resulted in an EMFILE,
and the test eventually got skipped).
- Fix TSC related bugs in several Hyper-V selftests.
- Fix a bug in the dirty ring logging test where a sem_post() could be left
pending across multiple runs, resulting in incorrect synchronization between
the main thread and the vCPU worker thread.
- Relax the dirty log split test's assertions on 4KiB mappings to fix false
positives due to the number of mappings for memslot 0 (used for code and
data that is NOT being dirty logged) changing, e.g. due to NUMA balancing.
- Have KVM's gtod_is_based_on_tsc() return "bool" instead of an "int" (the
function generates boolean values, and all callers treat the return value as
a bool).
- Make a KVM_REQ_NMI request while handling KVM_SET_VCPU_EVENTS if and only
if the incoming events->nmi.pending is non-zero. If the target vCPU is in
the UNITIALIZED state, the spurious request will result in KVM exiting to
userspace, which in turn causes QEMU to constantly acquire and release
QEMU's global mutex, to the point where the BSP is unable to make forward
progress.
- Fix a type (u8 versus u64) goof that results in pmu->fixed_ctr_ctrl being
incorrectly truncated, and ultimately causes KVM to think a fixed counter
has already been disabled (KVM thinks the old value is '0').
- Fix a stack leak in KVM_GET_MSRS where a failed MSR read from userspace
that is ultimately ignored due to ignore_msrs=true doesn't zero the output
as intended.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmXKt90SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5e5wP/jU3Zuul2e7fb4E6RN/GPhAFSTzG7Cwe
4lVSSSPmOQsEXTKwCOMj7fgwF9qVSLzLRi62MKziTJY/1FDsTcI3xlM7nM2wwQC2
26evIzI3qB54rHQdviuh1jwh6scZH7xLw7kANE+8x4skkm6AZB1IUnj3utR3fEPj
mIUA5kGQxEAEDrn0TFzrRgIw4JngKjrCwmpT+vbmR37flC+Rwv8jr4JY1E3cBAT3
KEilv3Fg07gbvagWGZNSSUNqQos5MsnLifdryKbA/vuIJf+j/01CMo5KtLKshiaX
t4gXPldVZDXdxjH6im0wRAX4s/FpZg3vVje2OxPbzwMVb5+XvLewzjzagQ1lFA3I
gsNXF8uGdYn0fb8T/wQG4ulWBw6A844PSmGONCwLDA+GZuL9xjMIK5d1litvb/im
bEP1Ahv6UcnDNKHqRzuFXQENiS2uQdJNLs7p291oDNkTm/CGjDUgFXPuaCehWrUf
ZZf1dxmIPM/Xt2j19mS/HnTHD114A8t1GTx799kBXbG4x0ScVQclkhRk6yFG3ObA
14uXxxAdEBoZGBJ2yr5FbddvRLswbWugFoxKbtCZ/CHMopOUQcRRmRb7Lm1NHLtg
Ae/sHO6gQ1xcrbwpMCq+6RjFK57yW+n1TB8ZTmAE2RQynGqzReSTlUNtfn3yMg4v
hz+2zGzezoeN
=92ae
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-fixes-6.8-rcN' of https://github.com/kvm-x86/linux into HEAD
KVM x86 fixes for 6.8:
- Make a KVM_REQ_NMI request while handling KVM_SET_VCPU_EVENTS if and only
if the incoming events->nmi.pending is non-zero. If the target vCPU is in
the UNITIALIZED state, the spurious request will result in KVM exiting to
userspace, which in turn causes QEMU to constantly acquire and release
QEMU's global mutex, to the point where the BSP is unable to make forward
progress.
- Fix a type (u8 versus u64) goof that results in pmu->fixed_ctr_ctrl being
incorrectly truncated, and ultimately causes KVM to think a fixed counter
has already been disabled (KVM thinks the old value is '0').
- Fix a stack leak in KVM_GET_MSRS where a failed MSR read from userspace
that is ultimately ignored due to ignore_msrs=true doesn't zero the output
as intended.
The ioctl()s to get and set KVM's debug registers are broken for 32 bit
kernels as they'd only copy half of the user register state because of a
UAPI and in-kernel type mismatch (__u64 vs. unsigned long; 8 vs. 4
bytes).
This makes it impossible for userland to set anything but DR0 without
resorting to bit folding tricks.
Switch to a loop for copying debug registers that'll implicitly do the
type conversion for us, if needed.
There are likely no users (left) for 32bit KVM, fix the bug nonetheless.
Fixes: a1efbe77c1 ("KVM: x86: Add support for saving&restoring debug registers")
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240203124522.592778-4-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
Commit 6abe9c1386 ("KVM: X86: Move ignore_msrs handling upper the
stack") changed the 'ignore_msrs' handling, including sanitizing return
values to the caller. This was fine until commit 12bc2132b1 ("KVM:
X86: Do the same ignore_msrs check for feature msrs") which allowed
non-existing feature MSRs to be ignored, i.e. to not generate an error
on the ioctl() level. It even tried to preserve the sanitization of the
return value. However, the logic is flawed, as '*data' will be
overwritten again with the uninitialized stack value of msr.data.
Fix this by simplifying the logic and always initializing msr.data,
vanishing the need for an additional error exit path.
Fixes: 12bc2132b1 ("KVM: X86: Do the same ignore_msrs check for feature msrs")
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240203124522.592778-2-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
Snapshot the event selectors for the events that KVM emulates in software,
which is currently instructions retired and branch instructions retired.
The event selectors a tied to the underlying CPU, i.e. are constant for a
given platform even though perf doesn't manage the mappings as such.
Getting the event selectors from perf isn't exactly cheap, especially if
mitigations are enabled, as at least one indirect call is involved.
Snapshot the values in KVM instead of optimizing perf as working with the
raw event selectors will be required if KVM ever wants to emulate events
that aren't part of perf's uABI, i.e. that don't have an "enum perf_hw_id"
entry.
Link: https://lore.kernel.org/r/20231110022857.1273836-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
gtod_is_based_on_tsc() is boolean in nature, i.e. it returns '1' for good
clocksources and '0' otherwise. Moreover, its result is used raw by
kvm_get_time_and_clockread()/kvm_get_walltime_and_clockread() which are
'bool'.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20240109141121.1619463-6-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Since commit b0563468ee ("x86/CPU/AMD: Disable XSAVES on AMD family 0x17")
kernel unconditionally clears the XSAVES CPU feature bit on Zen1/2 CPUs.
Because KVM CPU caps are initialized from the kernel boot CPU features this
makes the XSAVES feature also unavailable for KVM guests in this case.
At the same time the XSAVEC feature is left enabled.
Unfortunately, having XSAVEC but no XSAVES in CPUID breaks Hyper-V enabled
Windows Server 2016 VMs that have more than one vCPU.
Let's at least give users hint in the kernel log what could be wrong since
these VMs currently simply hang at boot with a black screen - giving no
clue what suddenly broke them and how to make them work again.
Trigger the kernel message hint based on the particular guest ID written to
the Guest OS Identity Hyper-V MSR implemented by KVM.
Defer this check to when the L1 Hyper-V hypervisor enables SVM in EFER
since we want to limit this message to Hyper-V enabled Windows guests only
(Windows session running nested as L2) but the actual Guest OS Identity MSR
write is done by L1 and happens before it enables SVM.
Fixes: b0563468ee ("x86/CPU/AMD: Disable XSAVES on AMD family 0x17")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <b83ab45c5e239e5d148b0ae7750133a67ac9575c.1706127425.git.maciej.szmigiero@oracle.com>
[Move some checks before mutex_lock(), rename function. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As the kvm api(https://docs.kernel.org/virt/kvm/api.html) reads,
KVM_CREATE_PIT2 call is only valid after enabling in-kernel irqchip
support via KVM_CREATE_IRQCHIP.
Without this check, I can create PIT first and enable irqchip-split
then, which may cause the PIT invalid because of lacking of in-kernel
PIC to inject the interrupt.
Signed-off-by: Tengfei Yu <moehanabichan@gmail.com>
Message-Id: <20240125050823.4893-1-moehanabichan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_ioctl_x86_set_vcpu_events() routine makes 'KVM_REQ_NMI'
request for a vcpu even when its 'events->nmi.pending' is zero.
Ex:
qemu_thread_start
kvm_vcpu_thread_fn
qemu_wait_io_event
qemu_wait_io_event_common
process_queued_cpu_work
do_kvm_cpu_synchronize_post_init/_reset
kvm_arch_put_registers
kvm_put_vcpu_events (cpu, level=[2|3])
This leads vCPU threads in QEMU to constantly acquire & release the
global mutex lock, delaying the guest boot due to lock contention.
Add check to make KVM_REQ_NMI request only if vcpu has NMI pending.
Fixes: bdedff2631 ("KVM: x86: Route pending NMIs from userspace through process_nmi()")
Cc: stable@vger.kernel.org
Signed-off-by: Prasad Pandit <pjp@fedoraproject.org>
Link: https://lore.kernel.org/r/20240103075343.549293-1-ppandit@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Apply the pre-intercepts RDPMC validity check only to AMD, and rename all
relevant functions to make it as clear as possible that the check is not a
standard PMC index check. On Intel, the basic rule is that only invalid
opcodes and privilege/permission/mode checks have priority over VM-Exit,
i.e. RDPMC with an invalid index should VM-Exit, not #GP. While the SDM
doesn't explicitly call out RDPMC, it _does_ explicitly use RDMSR of a
non-existent MSR as an example where VM-Exit has priority over #GP, and
RDPMC is effectively just a variation of RDMSR.
Manually testing on various Intel CPUs confirms this behavior, and the
inverted priority was introduced for SVM compatibility, i.e. was not an
intentional change for Intel PMUs. On AMD, *all* exceptions on RDPMC have
priority over VM-Exit.
Check for a NULL kvm_pmu_ops.check_rdpmc_early instead of using a RET0
static call so as to provide a convenient location to document the
difference between Intel and AMD, and to again try to make it as obvious
as possible that the early check is a one-off thing, not a generic "is
this PMC valid?" helper.
Fixes: 8061252ee0 ("KVM: SVM: Add intercept checks for remaining twobyte instructions")
Cc: Jim Mattson <jmattson@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the recently introduced guard(mutex) infrastructure acquire and
automatically release vendor_module_lock when the guard goes out of scope.
Drop the inner __kvm_x86_vendor_init(), its sole purpose was to simplify
releasing vendor_module_lock in error paths.
No functional change intended.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20231030141728.1406118-1-nik.borisov@suse.com
[sean: rewrite changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
switch a memory area between guest_memfd and regular anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees
confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new guest_memfd
and page attributes infrastructure. This is mostly useful for testing,
since there is no pKVM-like infrastructure to provide a meaningfully
reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages during
CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf
TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually care
about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a stable TSC",
because some of them don't expect the "TSC stable" bit (added to the pvclock
ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
flushes on nested transitions, i.e. always satisfies flush requests. This
allows running bleeding edge versions of VMware Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
- On AMD machines with vNMI, always rely on hardware instead of intercepting
IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB
base granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with
a prefix branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV
support to that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing flag
in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix the
various bugs that were lurking due to lack of said annotation.
There are two non-KVM patches buried in the middle of guest_memfd support:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmWcMWkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO15gf/WLmmg3SET6Uzw9iEq2xo28831ZA+
6kpILfIDGKozV5safDmMvcInlc/PTnqOFrsKyyN4kDZ+rIJiafJdg/loE0kPXBML
wdR+2ix5kYI1FucCDaGTahskBDz8Lb/xTpwGg9BFLYFNmuUeHc74o6GoNvr1uliE
4kLZL2K6w0cSMPybUD+HqGaET80ZqPwecv+s1JL+Ia0kYZJONJifoHnvOUJ7DpEi
rgudVdgzt3EPjG0y1z6MjvDBXTCOLDjXajErlYuZD3Ej8N8s59Dh2TxOiDNTLdP4
a4zjRvDmgyr6H6sz+upvwc7f4M4p+DBvf+TkWF54mbeObHUYliStqURIoA==
=66Ws
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Generic:
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all
architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be
resized. guest_memfd files do however support PUNCH_HOLE, which can
be used to switch a memory area between guest_memfd and regular
anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that
guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in
the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new
guest_memfd and page attributes infrastructure. This is mostly
useful for testing, since there is no pKVM-like infrastructure to
provide a meaningfully reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages
during CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in
non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with
a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually
care about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a
stable TSC", because some of them don't expect the "TSC stable" bit
(added to the pvclock ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for
TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM
always flushes on nested transitions, i.e. always satisfies flush
requests. This allows running bleeding edge versions of VMware
Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV
support.
- On AMD machines with vNMI, always rely on hardware instead of
intercepting IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters
and other state prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events
using a dedicated field instead of snapshotting the "previous"
counter. If the hardware PMC count triggers overflow that is
recognized in the same VM-Exit that KVM manually bumps an event
count, KVM would pend PMIs for both the hardware-triggered overflow
and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be
problematic for subsystems that require no regressions for W=1
builds.
- Advertise all of the host-supported CPUID bits that enumerate
IA32_SPEC_CTRL "features".
- Don't force a masterclock update when a vCPU synchronizes to the
current TSC generation, as updating the masterclock can cause
kvmclock's time to "jump" unexpectedly, e.g. when userspace
hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter
fault paths, partly as a super minor optimization, but mostly to
make KVM play nice with position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the
code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV
"emulation" at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base
granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with a prefix
branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV support to
that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list
selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing
flag in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix
the various bugs that were lurking due to lack of said annotation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits)
x86/kvm: Do not try to disable kvmclock if it was not enabled
KVM: x86: add missing "depends on KVM"
KVM: fix direction of dependency on MMU notifiers
KVM: introduce CONFIG_KVM_COMMON
KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
RISC-V: KVM: selftests: Add get-reg-list test for STA registers
RISC-V: KVM: selftests: Add steal_time test support
RISC-V: KVM: selftests: Add guest_sbi_probe_extension
RISC-V: KVM: selftests: Move sbi_ecall to processor.c
RISC-V: KVM: Implement SBI STA extension
RISC-V: KVM: Add support for SBI STA registers
RISC-V: KVM: Add support for SBI extension registers
RISC-V: KVM: Add SBI STA info to vcpu_arch
RISC-V: KVM: Add steal-update vcpu request
RISC-V: KVM: Add SBI STA extension skeleton
RISC-V: paravirt: Implement steal-time support
RISC-V: Add SBI STA extension definitions
RISC-V: paravirt: Add skeleton for pv-time support
RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr()
...
- A micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWb2i8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iFIQ//RjqKWmEBfv0UVCNgtRgkUKOvYVkfhC1R
FykHWbSE+/oDODS7B+gbWqzl9Fq2Oxx9re4KZuMfnojE96KZ6H1flQn7z3UVRUrf
pfMx13E+uyf7qbVZktqH38lUS4s/AHdX2PKCiXlU/0hIkiBdjbAl3ylyqMv7ytIL
Fi2N9iYJN+eLlMkc3A5IK83xNiU8rb0gO6Uywn3nUbqadY/YX2gDpND5kfzRIneR
lTKy4rX3+E65qYB2Ly1wDr7e0Q0rgaTzPctx6twFrxQXK+MsHiartJhM5juND/tU
DEjSW9ISOHlitKEJI/zbdrvJlr5AKDNy2zHYmQQuqY6+YHRamCKqwIjLIPkKj52g
lAbosNwvp/o8W3zUHgUfVZR5hVxN863zV2qa/ehoQ3b/9kNjQC8actILjYEgIVu9
av1sd+nETbjCUABIF9H9uAoRbgc+wQs2nupJZrjvginFz8+WVhgaBdJDMYCNAmjc
fNMjGtRS7YXiIMj09ZAXFThVW302FdbTgggDh/qlQlDOXFu5HRbyuWR+USr4/jkP
qs2G6m/BHDs9HxDRo/no+ccSrUBV5phfhZbO7qwjTf2NJJvPHW+cxGpT00zU2v8A
lgfVI7SDkxwbyi1gacJ054GqEhsWuEdi40ikqxjhL8Oq4xwwsey/PiaIxjkDQx92
Gj3XUSDnGEs=
=kUav
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
and a micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
* tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arch/x86: Fix typos
x86/head_64: Use TESTB instead of TESTL in secondary_startup_64_no_verify()
x86/docs: Remove reference to syscall trampoline in PTI
x86/Kconfig: Remove obsolete config X86_32_SMP
x86/io: Remove the unused 'bw' parameter from the BUILDIO() macro
x86/mtrr: Document missing function parameters in kernel-doc
x86/setup: Make relocated_ramdisk a local variable of relocate_initrd()
To workaround Xen guests that don't expect Xen PV clocks to be marked as being
based on a stable TSC, add a Xen config knob to allow userspace to opt out of
KVM setting the "TSC stable" bit in Xen PV clocks. Note, the "TSC stable" bit
was added to the PVCLOCK ABI by KVM without an ack from Xen, i.e. KVM isn't
entirely blameless for the buggy guest behavior.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWXASsSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5R54P/iQPQBs4dJmNkPiA6uSq1O5/8hN4P59z
aapJNgDiny/D9/zPbOxGWR31W7lvCgiES/lp3KcHZmwbeAwJpdT6a0cJWGRlGuov
gccK8AoYcnwSU98sPisnFv7dJ66ogJfXVkPKKaWo+zVW53XUq2XpIie4eWaOweBt
QsXpTGYpGajv1Bf/MgRtNtlkVAo1w8XL1L0NWRugzCk2CAYezz8IT1874GNZoJbd
GJfVP+76FdNw+4/CxiaBwxP0gHfBIiAsJzGqbmMPhGG2xJn+KGs5FTEf37Pta8cl
aMHAq6/JAoabJfP39MexVkopMaFlPbDwIWfkLWf6wSP86KHei+t9kLC0E4/R2NJ+
GKlrBB6Gj+gzFR4fZ75hIwS/4REMt6zVCbS7uSRrCduqrlEFcY5ED2NesoL9wZrB
WMDIxIGIVDdRxc9WLypKmBj7KTgL0qXBxnsAcPiDRf1sk6SGajkesWxA1C1Nzo/H
yNfqq0gjdPZVB2RIGN6DpWQFu3d+ZQnG2ToKIBW7OkvJ5USYiDSo4VozhESgYHRZ
UJDhJ73QYESynClP6ST+9cxNof3FXCEPDeKr5NcmjVZxlJcdeUDNRqv0LUxQ56BI
FvHMHtSs4WLYHZZVzsdh+Yhnc9rEGfoL0NwDPBCcOXjuNMvNQmuzSldc/VDGm/qt
sCtxYMms5n7u
=3v8F
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-xen-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM Xen change for 6.8:
To workaround Xen guests that don't expect Xen PV clocks to be marked as being
based on a stable TSC, add a Xen config knob to allow userspace to opt out of
KVM setting the "TSC stable" bit in Xen PV clocks. Note, the "TSC stable" bit
was added to the PVCLOCK ABI by KVM without an ack from Xen, i.e. KVM isn't
entirely blameless for the buggy guest behavior.
Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality
checks for most virtual address usage in 64-bit mode, such that only the most
significant bit of the untranslated address bits must match the polarity of the
last translated address bit. This allows software to use ignored, untranslated
address bits for metadata, e.g. to efficiently tag pointers for address
sanitization.
LAM can be enabled separately for user pointers and supervisor pointers, and
for userspace LAM can be select between 48-bit and 57-bit masking
- 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15.
- 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6.
For user pointers, LAM enabling utilizes two previously-reserved high bits from
CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and
61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.:
- CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers
- CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers
- CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers
For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with
the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.:
- CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers
The modified LAM canonicality checks:
- LAM_S48 : [ 1 ][ metadata ][ 1 ]
63 47
- LAM_U48 : [ 0 ][ metadata ][ 0 ]
63 47
- LAM_S57 : [ 1 ][ metadata ][ 1 ]
63 56
- LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ]
63 56
- LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ]
63 56..47
The bulk of KVM support for LAM is to emulate LAM's modified canonicality
checks. The approach taken by KVM is to "fill" the metadata bits using the
highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended
to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value
from the raw, untagged virtual address is kept for the canonicality check. This
untagging allows
Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM
touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26],
enabling via CR3 and CR4 bits, etc.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW+k4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5KygQAKTSEmfdox6MSYzGVzAVHBD/8oSTZAGf
4l96Np3sZiX0ujWP7aW1GaIdGL27Yf1bQrKIrODR4xepaosVPpoZZbnLFQ4Jm16D
OuwEQL06LV91Lv5XuPkNdq3nMVi1X3wjiKLvP451oCGv8JdxsjXSlFr8ZmDoCfmS
NCjkPyitdK+/xOMY5WcrkHD/6VMMiM+5A+CrG7DkaTaqBJQSUXG1NvTKhhxey6Rq
OZv0GPv7QVMhHv1NX0Y3LyoiGyWXAoFRnbk/N3yVBOnXcpJ+HBwWiNLRpxmZOQj/
CTo0VvUH/ZkN6zGvAb75/9puFHNliA/QCW1hp+ShXnNdn1eNdS7nhhPrzVqtCTy2
QeNWM/z5v9Wa1norPqDxzqWlh2bWW8JU0soX7Q+quN0d7YjVvmmUluL3Lw/V2zmb
gFM2ZY43QHlmLVic4sSraK1LEcYFzjexzpTLhee2gNp+l2y0D0c1/hXukCk6YNUM
gad9DH8P9d7By7Eyr0ZaPHSJbuBW1PqZhot5gCg9nCn4pnT2/y7wXsLj6VAw8gdr
dWNu2MZWDuH0/d4aKfw2veAECbHUK2daok4ufPDj5nYLVVWCs4HU0U7HlYL2CX7/
TdWOCwtpFtKoN1NHz8mpET7xldxLPnFkByL+SxypTZurAZXoSnEG71IbO5pJ2iIf
wHQkXgM+XimA
=qUZ2
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-lam-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 support for virtualizing Linear Address Masking (LAM)
Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality
checks for most virtual address usage in 64-bit mode, such that only the most
significant bit of the untranslated address bits must match the polarity of the
last translated address bit. This allows software to use ignored, untranslated
address bits for metadata, e.g. to efficiently tag pointers for address
sanitization.
LAM can be enabled separately for user pointers and supervisor pointers, and
for userspace LAM can be select between 48-bit and 57-bit masking
- 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15.
- 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6.
For user pointers, LAM enabling utilizes two previously-reserved high bits from
CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and
61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.:
- CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers
- CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers
- CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers
For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with
the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.:
- CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers
The modified LAM canonicality checks:
- LAM_S48 : [ 1 ][ metadata ][ 1 ]
63 47
- LAM_U48 : [ 0 ][ metadata ][ 0 ]
63 47
- LAM_S57 : [ 1 ][ metadata ][ 1 ]
63 56
- LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ]
63 56
- LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ]
63 56..47
The bulk of KVM support for LAM is to emulate LAM's modified canonicality
checks. The approach taken by KVM is to "fill" the metadata bits using the
highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended
to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value
from the raw, untagged virtual address is kept for the canonicality check. This
untagging allows
Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM
touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26],
enabling via CR3 and CR4 bits, etc.
- Fix a variety of bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW/rsSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Q8gQAJc4y9NOd09kYXpI+DhkTVe6v07dmYds
NzBI2uViqxXFwA5pTs5VTVVYAl1FEmK6NvIVnJdc3epSYRSqyaeN/Z2NoulNxekj
/jLA/aA4+dTeJf2lfMFeH65IIuSJhuhyGeZV31RfW3NzEmlglcsb74QkHnJB8rLQ
RFJXZcOxSSap72AWxKmxk0alRaI6ONZ9NyqOWFWjZdQuAE7id9Ae5OixKUrlJkmR
6CbY8ra51MFIXQEsomVlcl5b1DNiv0drPPf5YaC9T4CERtt5yZxpvZeTPhq70evm
OutoZpzfi69cF1fFCxqN5cWZSt1C/Bu3xp8+ILI1+bZkMCV/ty85DU6hfMZQZzcV
JeJkRg/AAgOrG4dtHskwg9LDMs867kgbaqZ8l8K7Dt8rGmcLc5/rZ1ZdjTStFj6V
ukmVKMAVgkmh88u62wQ5HjrN1IE1oE6nmDp3zivfPuohEr49A8mAT02A2x9AVxAr
HvmwfDMA92xOGSRAN9Gt0mbOA+G0WZe4A36XgPEXloYeskYZgHzgW2hT6VWTd86O
ydU9s4L8g+Fy4jcObAiKsT8YwFgAMfVXZKTXvuTME4m/WUNBCrYCwqEOp/NM5qrk
qYWVXxOMMjZo71tQfvSPu1TWCtW/4ckvmqMrdQosgwLFy5pSqgXEwTruDvbJ1KWU
KhIWVbUfmgFA
=+Emh
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.8:
- Fix a variety of bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW+7sSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5/pwQAL8jIapIWP54VWxWlcTZFtCptGSobGlv
cBS4L091/bYuMB/jO0pPtD+apzsYt3WmJ+tRsNA7Yctzh9BDE3XxbV7pKVIUpz9P
TLCtYU2hPzp3vC6WCryjtU0OHxEnYMGHE1RCB7/bRblz+q6td7+MLZHcEUdwv83l
3pVM5+tNyQBog40frEVf+z7wrXzz2FgnauJn70X1UUs40VuiTzi6FqfLn6QK95xQ
8QPpjGFep7wQ6RgC4cPKiWSaP5PypCCpr4lMSKrKAf4iaKJdO1CYxEPeu0LcyFhR
DUM3zb+AZ/FVrisRWUnjke4Epb87ikoMQBlflrI9+o4cNJQaxEHAzTMGO+u4oucy
KwnXtNYM3lKGvDEvoUSBDphNayzcchn+0qk8YKB+XvClYSOtGi+NsWUB4x+M6crM
960cidF/CzYZL/IDj9GW2Tb+IiPJarmazdbqDmMpQiAKz0KE3tezGiysB6d6VJs1
V+KWOaSzAT9GsBKvGnPDHQaZ20vK+YsGB/TMWvpg3rFLTyV5QFM17UNdXyJlX0g8
G0v+gf7j3MKm156H2yYW0XhIAfhstc1Xb8fTDQjJ3pZn6us2NAtFgnrIpbL31Z7E
yaSgZuxetswbNwVSECUGlH4/zAtQudBfAt837Nu4eSCjMrJE4SPrrwpbTqp0SPXd
1VZbGc70QFf7
=O4hV
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.8:
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW8gYSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5sGUP/iadHMz7Up1X29IDGtq58LRORNVXp2Ln
2dqoj8IKZeSr+mPMw2GvZyuiLqVPMs4Et21WJfCO7HgKd/NPMDORwRndhJYweFRY
yk+5NJLvXYuo8UR3b2QYy8XUghEqP+j5eYyon6UdCiPACcBGTpgoj4pU7SLM7l4T
EOge42ya5YxD/1oWr5vyifNrOJCPNTBYcC0as5//+RdnmQYqYZ26Z73b0B8Pdct4
XMWwgoKlmLTmei0YntXtGaDGimCvTYP8EPM4tOWgiBSWMhQXWbAh/0biDfd3eZVO
Hoe4HvstdjUNbpO3h3Zo78Ob7ehk4kx/6r0nlQnz5JxzGnuDjYCDIVUlYn0mw5Yi
nu4ztr8M3VRksDbpmAjSO9XFEKIYxlYQfzZ1UuTy8ehdBYTDl/3lPAbh2ApUYE72
Tt2PXmFGz2j1sjG38Gh94s48Za5OxHoVlfq8iGhU4v7UjuxnMNHfExOWd66SwZgx
5tZkr4rj/pWt21wr7jaVqFGzuftIC5G4ZEBhh7JcW89oamFrykgQUu5z4dhBMO75
G7DAVh9eSH2SKkmJH1ClXriveazTK7fqMx8sZzzRnusMz09qH7SIdjSzmp7H5utw
pWBfatft0n0FTI1r+hxGueiJt7dFlrIz0Q4hHyBN4saoVH121bZioc0pq1ob6MIk
Y2Ou4xJBt14F
=bjfs
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-hyperv-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 Hyper-V changes for 6.8:
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
- When checking if a _running_ vCPU is "in-kernel", i.e. running at CPL0,
get the CPL directly instead of relying on preempted_in_kernel, which
is valid if and only if the vCPU was preempted, i.e. NOT running.
- Set .owner for various KVM file_operations so that files refcount the
KVM module until KVM is done executing _all_ code, including the last
few instructions of kvm_put_kvm(). And then revert the misguided
attempt to rely on "struct kvm" refcounts to pin KVM-the-module.
- Fix a benign "return void" that was recently introduced.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmVyeV0SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5aJIP/izKZivi/kZjuuKp2c1W2XM+mBZlM+Yj
qYcdV0rZygQJOZXTpMaEVg7iUtvbwAT495nm8sXr/IxXw+omMcP+qyLRCZ6JafYy
B19buCnAt2DymlJOurFzlIEeWtunkxk/gFLMB/BnSrok88cKz5PMxAVFPPBXsTms
ZqSFlDhzG0G4Mxhr8t0elyjd4HrCbNjCn1MhJg+uzFHKakfOvbST5jO02LkTeIM2
VFrqWZo1C6uPDrA8TzWzik54qOrDFrodNv/XvIJ0szgVOc+7Iwxy80A/v7o7jBET
igH+6F3cbST5uoKFrFn7pPJdTOfX2u18DXcpxiYIu+24ToKyqdE1Np9M5W4ZMX/9
Im5ilykfylHpRYAL4tECD6Jzd/Q/xIvpe8Uk6HTfFAtb/UdMY35/1keBnnkI2oj8
/4USM7AHNiqoAs4+OE4kZslrFG8ttv3vIOr7Mtk2UjGyGp8TH8sRFYPJKToXsQIJ
Gs96rsbiU+oo/IDp3UiRhWtwpwfKGbkDLp4r/3X6UOx6Re5u1ITVIoM14qFQaw3W
CKdHKN/MoreYLS5gasjaGRSyQNJPonaS10l8SqzWflrUBZYfyjCNKliihjKood2g
JykH4p69IFTWADT2VbrGCQVKfY1GJCxGwpGePFmChTsPUiQ2P+AbHCmaefnIRRbK
8UR/OmsDtFRZ
=gWp0
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-fixes-6.7-rcN' of https://github.com/kvm-x86/linux into kvm-master
KVM fixes for 6.7-rcN:
- When checking if a _running_ vCPU is "in-kernel", i.e. running at CPL0,
get the CPL directly instead of relying on preempted_in_kernel, which
is valid if and only if the vCPU was preempted, i.e. NOT running.
- Set .owner for various KVM file_operations so that files refcount the
KVM module until KVM is done executing _all_ code, including the last
few instructions of kvm_put_kvm(). And then revert the misguided
attempt to rely on "struct kvm" refcounts to pin KVM-the-module.
- Fix a benign "return void" that was recently introduced.
Unless explicitly told to do so (by passing 'clocksource=tsc' and
'tsc=stable:socket', and then jumping through some hoops concerning
potential CPU hotplug) Xen will never use TSC as its clocksource.
Hence, by default, a Xen guest will not see PVCLOCK_TSC_STABLE_BIT set
in either the primary or secondary pvclock memory areas. This has
led to bugs in some guest kernels which only become evident if
PVCLOCK_TSC_STABLE_BIT *is* set in the pvclocks. Hence, to support
such guests, give the VMM a new Xen HVM config flag to tell KVM to
forcibly clear the bit in the Xen pvclocks.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20231102162128.2353459-1-paul@xen.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Hyper-V emulation in KVM is a fairly big chunk and in some cases it may be
desirable to not compile it in to reduce module sizes as well as the attack
surface. Introduce CONFIG_KVM_HYPERV option to make it possible.
Note, there's room for further nVMX/nSVM code optimizations when
!CONFIG_KVM_HYPERV, this will be done in follow-up patches.
Reorganize Makefile a bit so all CONFIG_HYPERV and CONFIG_KVM_HYPERV files
are grouped together.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-13-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Hyper-V partition assist page is used when KVM runs on top of Hyper-V and
is not used for Windows/Hyper-V guests on KVM, this means that 'hv_pa_pg'
placement in 'struct kvm_hv' is unfortunate. As a preparation to making
Hyper-V emulation optional, move 'hv_pa_pg' to 'struct kvm_arch' and put it
under CONFIG_HYPERV.
While on it, introduce hv_get_partition_assist_page() helper to allocate
partition assist page. Move the comment explaining why we use a single page
for all vCPUs from VMX and expand it a bit.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-3-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The requested info will be stored in 'guest_xsave->region' referenced by
the incoming pointer "struct kvm_xsave *guest_xsave", thus there is no need
to explicitly use return void expression for a void function "static void
kvm_vcpu_ioctl_x86_get_xsave(...)". The issue is caught with [-Wpedantic].
Fixes: 2d287ec65e79 ("x86/fpu: Allow caller to constrain xfeatures when copying to uabi buffer")
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231007064019.17472-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop kvm_vcpu_reset()'s call to kvm_pmu_reset(), the call is performed
only for RESET, which is really just the same thing as vCPU creation,
and kvm_arch_vcpu_create() *just* called kvm_pmu_init(), i.e. there can't
possibly be any work to do.
Unlike Intel, AMD's amd_pmu_refresh() does fill all_valid_pmc_idx even if
guest CPUID is empty, but everything that is at all dynamic is guaranteed
to be '0'/NULL, e.g. it should be impossible for KVM to have already
created a perf event.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't force a masterclock update when a vCPU synchronizes to the current
TSC generation, e.g. when userspace hotplugs a pre-created vCPU into the
VM. Unnecessarily updating the masterclock is undesirable as it can cause
kvmclock's time to jump, which is particularly painful on systems with a
stable TSC as kvmclock _should_ be fully reliable on such systems.
The unexpected time jumps are due to differences in the TSC=>nanoseconds
conversion algorithms between kvmclock and the host's CLOCK_MONOTONIC_RAW
(the pvclock algorithm is inherently lossy). When updating the
masterclock, KVM refreshes the "base", i.e. moves the elapsed time since
the last update from the kvmclock/pvclock algorithm to the
CLOCK_MONOTONIC_RAW algorithm. Synchronizing kvmclock with
CLOCK_MONOTONIC_RAW is the lesser of evils when the TSC is unstable, but
adds no real value when the TSC is stable.
Prior to commit 7f187922dd ("KVM: x86: update masterclock values on TSC
writes"), KVM did NOT force an update when synchronizing a vCPU to the
current generation.
commit 7f187922dd
Author: Marcelo Tosatti <mtosatti@redhat.com>
Date: Tue Nov 4 21:30:44 2014 -0200
KVM: x86: update masterclock values on TSC writes
When the guest writes to the TSC, the masterclock TSC copy must be
updated as well along with the TSC_OFFSET update, otherwise a negative
tsc_timestamp is calculated at kvm_guest_time_update.
Once "if (!vcpus_matched && ka->use_master_clock)" is simplified to
"if (ka->use_master_clock)", the corresponding "if (!ka->use_master_clock)"
becomes redundant, so remove the do_request boolean and collapse
everything into a single condition.
Before that, KVM only re-synced the masterclock if the masterclock was
enabled or disabled Note, at the time of the above commit, VMX
synchronized TSC on *guest* writes to MSR_IA32_TSC:
case MSR_IA32_TSC:
kvm_write_tsc(vcpu, msr_info);
break;
which is why the changelog specifically says "guest writes", but the bug
that was being fixed wasn't unique to guest write, i.e. a TSC write from
the host would suffer the same problem.
So even though KVM stopped synchronizing on guest writes as of commit
0c899c25d7 ("KVM: x86: do not attempt TSC synchronization on guest
writes"), simply reverting commit 7f187922dd is not an option. Figuring
out how a negative tsc_timestamp could be computed requires a bit more
sleuthing.
In kvm_write_tsc() (at the time), except for KVM's "less than 1 second"
hack, KVM snapshotted the vCPU's current TSC *and* the current time in
nanoseconds, where kvm->arch.cur_tsc_nsec is the current host kernel time
in nanoseconds:
ns = get_kernel_ns();
...
if (usdiff < USEC_PER_SEC &&
vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
...
} else {
/*
* We split periods of matched TSC writes into generations.
* For each generation, we track the original measured
* nanosecond time, offset, and write, so if TSCs are in
* sync, we can match exact offset, and if not, we can match
* exact software computation in compute_guest_tsc()
*
* These values are tracked in kvm->arch.cur_xxx variables.
*/
kvm->arch.cur_tsc_generation++;
kvm->arch.cur_tsc_nsec = ns;
kvm->arch.cur_tsc_write = data;
kvm->arch.cur_tsc_offset = offset;
matched = false;
pr_debug("kvm: new tsc generation %llu, clock %llu\n",
kvm->arch.cur_tsc_generation, data);
}
...
/* Keep track of which generation this VCPU has synchronized to */
vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
Note that the above creates a new generation and sets "matched" to false!
But because kvm_track_tsc_matching() looks for matched+1, i.e. doesn't
require the vCPU that creates the new generation to match itself, KVM
would immediately compute vcpus_matched as true for VMs with a single vCPU.
As a result, KVM would skip the masterlock update, even though a new TSC
generation was created:
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
atomic_read(&vcpu->kvm->online_vcpus));
if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
if (!ka->use_master_clock)
do_request = 1;
if (!vcpus_matched && ka->use_master_clock)
do_request = 1;
if (do_request)
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
On hardware without TSC scaling support, vcpu->tsc_catchup is set to true
if the guest TSC frequency is faster than the host TSC frequency, even if
the TSC is otherwise stable. And for that mode, kvm_guest_time_update(),
by way of compute_guest_tsc(), uses vcpu->arch.this_tsc_nsec, a.k.a. the
kernel time at the last TSC write, to compute the guest TSC relative to
kernel time:
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
{
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
vcpu->arch.virtual_tsc_mult,
vcpu->arch.virtual_tsc_shift);
tsc += vcpu->arch.this_tsc_write;
return tsc;
}
Except the "kernel_ns" passed to compute_guest_tsc() isn't the current
kernel time, it's the masterclock snapshot!
spin_lock(&ka->pvclock_gtod_sync_lock);
use_master_clock = ka->use_master_clock;
if (use_master_clock) {
host_tsc = ka->master_cycle_now;
kernel_ns = ka->master_kernel_ns;
}
spin_unlock(&ka->pvclock_gtod_sync_lock);
if (vcpu->tsc_catchup) {
u64 tsc = compute_guest_tsc(v, kernel_ns);
if (tsc > tsc_timestamp) {
adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
tsc_timestamp = tsc;
}
}
And so when KVM skips the masterclock update after a TSC write, i.e. after
a new TSC generation is started, the "kernel_ns-vcpu->arch.this_tsc_nsec"
is *guaranteed* to generate a negative value, because this_tsc_nsec was
captured after ka->master_kernel_ns.
Forcing a masterclock update essentially fudged around that problem, but
in a heavy handed way that introduced undesirable side effects, i.e.
unnecessarily forces a masterclock update when a new vCPU joins the party
via hotplug.
Note, KVM forces masterclock updates in other weird ways that are also
likely unnecessary, e.g. when establishing a new Xen shared info page and
when userspace creates a brand new vCPU. But the Xen thing is firmly a
separate mess, and there are no known userspace VMMs that utilize kvmclock
*and* create new vCPUs after the VM is up and running. I.e. the other
issues are future problems.
Reported-by: Dongli Zhang <dongli.zhang@oracle.com>
Closes: https://lore.kernel.org/all/20230926230649.67852-1-dongli.zhang@oracle.com
Fixes: 7f187922dd ("KVM: x86: update masterclock values on TSC writes")
Cc: David Woodhouse <dwmw2@infradead.org>
Reviewed-by: Dongli Zhang <dongli.zhang@oracle.com>
Tested-by: Dongli Zhang <dongli.zhang@oracle.com>
Link: https://lore.kernel.org/r/20231018195638.1898375-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When querying whether or not a vCPU "is" running in kernel mode, directly
get the CPL if the vCPU is the currently loaded vCPU. In scenarios where
a guest is profiled via perf-kvm, querying vcpu->arch.preempted_in_kernel
from kvm_guest_state() is wrong if vCPU is actively running, i.e. isn't
scheduled out due to being preempted and so preempted_in_kernel is stale.
This affects perf/core's ability to accurately tag guest RIP with
PERF_RECORD_MISC_GUEST_{KERNEL|USER} and record it in the sample. This
causes perf/tool to fail to connect the vCPU RIPs to the guest kernel
space symbols when parsing these samples due to incorrect PERF_RECORD_MISC
flags:
Before (perf-report of a cpu-cycles sample):
1.23% :58945 [unknown] [u] 0xffffffff818012e0
After:
1.35% :60703 [kernel.vmlinux] [g] asm_exc_page_fault
Note, checking preempted_in_kernel in kvm_arch_vcpu_in_kernel() is awful
as nothing in the API's suggests that it's safe to use if and only if the
vCPU was preempted. That can be cleaned up in the future, for now just
fix the glaring correctness bug.
Note #2, checking vcpu->preempted is NOT safe, as getting the CPL on VMX
requires VMREAD, i.e. is correct if and only if the vCPU is loaded. If
the target vCPU *was* preempted, then it can be scheduled back in after
the check on vcpu->preempted in kvm_vcpu_on_spin(), i.e. KVM could end up
trying to do VMREAD on a VMCS that isn't loaded on the current pCPU.
Signed-off-by: Like Xu <likexu@tencent.com>
Fixes: e1bfc24577 ("KVM: Move x86's perf guest info callbacks to generic KVM")
Link: https://lore.kernel.org/r/20231123075818.12521-1-likexu@tencent.com
[sean: massage changelong, add Fixes]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stub in vmx_get_untagged_addr() and wire up calls from the emulator (via
get_untagged_addr()) and "direct" calls from various VM-Exit handlers in
VMX where LAM untagging is supposed to be applied. Defer implementing
the guts of vmx_get_untagged_addr() to future patches purely to make the
changes easier to consume.
LAM is active only for 64-bit linear addresses and several types of
accesses are exempted.
- Cases need to untag address (handled in get_vmx_mem_address())
Operand(s) of VMX instructions and INVPCID.
Operand(s) of SGX ENCLS.
- Cases LAM doesn't apply to (no change needed)
Operand of INVLPG.
Linear address in INVPCID descriptor.
Linear address in INVVPID descriptor.
BASEADDR specified in SECS of ECREATE.
Note:
- LAM doesn't apply to write to control registers or MSRs
- LAM masking is applied before walking page tables, i.e. the faulting
linear address in CR2 doesn't contain the metadata.
- The guest linear address saved in VMCS doesn't contain metadata.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-10-binbin.wu@linux.intel.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Introduce a new interface get_untagged_addr() to kvm_x86_ops to untag
the metadata from linear address. Call the interface in linearization
of instruction emulator for 64-bit mode.
When enabled feature like Intel Linear Address Masking (LAM) or AMD Upper
Address Ignore (UAI), linear addresses may be tagged with metadata that
needs to be dropped prior to canonicality checks, i.e. the metadata is
ignored.
Introduce get_untagged_addr() to kvm_x86_ops to hide the vendor specific
code, as sadly LAM and UAI have different semantics. Pass the emulator
flags to allow vendor specific implementation to precisely identify the
access type (LAM doesn't untag certain accesses).
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-9-binbin.wu@linux.intel.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add and use kvm_vcpu_is_legal_cr3() to check CR3's legality to provide
a clear distinction between CR3 and GPA checks. This will allow exempting
bits from kvm_vcpu_is_legal_cr3() without affecting general GPA checks,
e.g. for upcoming features that will use high bits in CR3 for feature
enabling.
No functional change intended.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-7-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a new x86 VM type, KVM_X86_SW_PROTECTED_VM, to serve as a development
and testing vehicle for Confidential (CoCo) VMs, and potentially to even
become a "real" product in the distant future, e.g. a la pKVM.
The private memory support in KVM x86 is aimed at AMD's SEV-SNP and
Intel's TDX, but those technologies are extremely complex (understatement),
difficult to debug, don't support running as nested guests, and require
hardware that's isn't universally accessible. I.e. relying SEV-SNP or TDX
for maintaining guest private memory isn't a realistic option.
At the very least, KVM_X86_SW_PROTECTED_VM will enable a variety of
selftests for guest_memfd and private memory support without requiring
unique hardware.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20231027182217.3615211-24-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let x86 track the number of address spaces on a per-VM basis so that KVM
can disallow SMM memslots for confidential VMs. Confidentials VMs are
fundamentally incompatible with emulating SMM, which as the name suggests
requires being able to read and write guest memory and register state.
Disallowing SMM will simplify support for guest private memory, as KVM
will not need to worry about tracking memory attributes for multiple
address spaces (SMM is the only "non-default" address space across all
architectures).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow creating hugepages with mixed memory attributes, e.g. shared
versus private, as mapping a hugepage in this case would allow the guest
to access memory with the wrong attributes, e.g. overlaying private memory
with a shared hugepage.
Tracking whether or not attributes are mixed via the existing
disallow_lpage field, but use the most significant bit in 'disallow_lpage'
to indicate a hugepage has mixed attributes instead using the normal
refcounting. Whether or not attributes are mixed is binary; either they
are or they aren't. Attempting to squeeze that info into the refcount is
unnecessarily complex as it would require knowing the previous state of
the mixed count when updating attributes. Using a flag means KVM just
needs to ensure the current status is reflected in the memslots.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialize run->exit_reason to KVM_EXIT_UNKNOWN early in KVM_RUN to reduce
the probability of exiting to userspace with a stale run->exit_reason that
*appears* to be valid.
To support fd-based guest memory (guest memory without a corresponding
userspace virtual address), KVM will exit to userspace for various memory
related errors, which userspace *may* be able to resolve, instead of using
e.g. BUS_MCEERR_AR. And in the more distant future, KVM will also likely
utilize the same functionality to let userspace "intercept" and handle
memory faults when the userspace mapping is missing, i.e. when fast gup()
fails.
Because many of KVM's internal APIs related to guest memory use '0' to
indicate "success, continue on" and not "exit to userspace", reporting
memory faults/errors to userspace will set run->exit_reason and
corresponding fields in the run structure fields in conjunction with a
a non-zero, negative return code, e.g. -EFAULT or -EHWPOISON. And because
KVM already returns -EFAULT in many paths, there's a relatively high
probability that KVM could return -EFAULT without setting run->exit_reason,
in which case reporting KVM_EXIT_UNKNOWN is much better than reporting
whatever exit reason happened to be in the run structure.
Note, KVM must wait until after run->immediate_exit is serviced to
sanitize run->exit_reason as KVM's ABI is that run->exit_reason is
preserved across KVM_RUN when run->immediate_exit is true.
Link: https://lore.kernel.org/all/20230908222905.1321305-1-amoorthy@google.com
Link: https://lore.kernel.org/all/ZFFbwOXZ5uI%2Fgdaf@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-19-seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new KVM exit type to allow userspace to handle memory faults that
KVM cannot resolve, but that userspace *may* be able to handle (without
terminating the guest).
KVM will initially use KVM_EXIT_MEMORY_FAULT to report implicit
conversions between private and shared memory. With guest private memory,
there will be two kind of memory conversions:
- explicit conversion: happens when the guest explicitly calls into KVM
to map a range (as private or shared)
- implicit conversion: happens when the guest attempts to access a gfn
that is configured in the "wrong" state (private vs. shared)
On x86 (first architecture to support guest private memory), explicit
conversions will be reported via KVM_EXIT_HYPERCALL+KVM_HC_MAP_GPA_RANGE,
but reporting KVM_EXIT_HYPERCALL for implicit conversions is undesriable
as there is (obviously) no hypercall, and there is no guarantee that the
guest actually intends to convert between private and shared, i.e. what
KVM thinks is an implicit conversion "request" could actually be the
result of a guest code bug.
KVM_EXIT_MEMORY_FAULT will be used to report memory faults that appear to
be implicit conversions.
Note! To allow for future possibilities where KVM reports
KVM_EXIT_MEMORY_FAULT and fills run->memory_fault on _any_ unresolved
fault, KVM returns "-EFAULT" (-1 with errno == EFAULT from userspace's
perspective), not '0'! Due to historical baggage within KVM, exiting to
userspace with '0' from deep callstacks, e.g. in emulation paths, is
infeasible as doing so would require a near-complete overhaul of KVM,
whereas KVM already propagates -errno return codes to userspace even when
the -errno originated in a low level helper.
Report the gpa+size instead of a single gfn even though the initial usage
is expected to always report single pages. It's entirely possible, likely
even, that KVM will someday support sub-page granularity faults, e.g.
Intel's sub-page protection feature allows for additional protections at
128-byte granularity.
Link: https://lore.kernel.org/all/20230908222905.1321305-5-amoorthy@google.com
Link: https://lore.kernel.org/all/ZQ3AmLO2SYv3DszH@google.com
Cc: Anish Moorthy <amoorthy@google.com>
Cc: David Matlack <dmatlack@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20231027182217.3615211-10-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a "version 2" of KVM_SET_USER_MEMORY_REGION so that additional
information can be supplied without setting userspace up to fail. The
padding in the new kvm_userspace_memory_region2 structure will be used to
pass a file descriptor in addition to the userspace_addr, i.e. allow
userspace to point at a file descriptor and map memory into a guest that
is NOT mapped into host userspace.
Alternatively, KVM could simply add "struct kvm_userspace_memory_region2"
without a new ioctl(), but as Paolo pointed out, adding a new ioctl()
makes detection of bad flags a bit more robust, e.g. if the new fd field
is guarded only by a flag and not a new ioctl(), then a userspace bug
(setting a "bad" flag) would generate out-of-bounds access instead of an
-EINVAL error.
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Message-Id: <20231027182217.3615211-9-seanjc@google.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
- Clean up handling "failures" when KVM detects it can't emulate the "skip"
action for an instruction that has already been partially emulated. Drop a
hack in the SVM code that was fudging around the emulator code not giving
SVM enough information to do the right thing.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8GHYSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hwkQAIR8l1gWz/caz29biBzmRnDS+aZOXcYM
8V8WBJqJgMKE9egibF4sADAlhInXzg19Xr7bQs6VfuvmdXrCn0UJ/nLorX+H85A2
pph6iNlWO6tyQAjvk/AieaeUyZOqpCFmKOgxfN2Fr/Lrn7u3AdjXC20qPeFJSLXr
YOTCQ704yvjjJp4yVA8JlclAQu38hanKiO5SZdlLzbuhUgWwQk4DVP2ZsYnhX+RO
F6exxORvMnYF/LJe/kR2/DMLf2JWvyUmjRrGWoeRoksOw5BlXMc5HyTPHSJ2jDac
lJaNtmZkTY1bDVWZk7N03ze5aFJa4DaqJdIFLtgujrFW8thog0P48aH6vmKi4UAA
bXme9GFYbmJTkemaGRnrzidFV12uPNvvanS+1PDOw4sn4HpscoMSpZw5PeH2kBwV
6uKNCJCwLtk8oe50yroKD7rJ/ASB7CeoqzbIL9s2TA0HSAskIf65T4eZp01uniyd
Q98yCdrG2mudsg5aU5yMfe0LwZby5BB5kUCqIe4hyRC68GJR8wkAzhaFRgCn4aJE
yaTyjnT2V3PGMEEJOPFdSF3VQGztljzQiXlEvBVj3zvMGQNTo2NhmS3ka4W+wW5G
avRYv8dITlGRs6J2gV1vp8Eb5LzDrwRpRURSmzeP5rR58saKdljTZgNfOzfLeFr1
WhLzonLz52IS
=U0fq
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.7:
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
- Clean up handling "failures" when KVM detects it can't emulate the "skip"
action for an instruction that has already been partially emulated. Drop a
hack in the SVM code that was fudging around the emulator code not giving
SVM enough information to do the right thing.
- Handle NMI/SMI requests after PMU/PMI requests so that a PMI=>NMI doesn't
require redoing the entire run loop due to the NMI not being detected until
the final kvm_vcpu_exit_request() check before entering the guest.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8G/sSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5/FQP/1B0tk5TMe/Xfe/q4ng+J2eMr10TpbH5
uWRpxN6seRmH7cqfZwsNH86FubNRf3h9U/jOK3C9Q9dIhrq9MB1dZePDjF/xmZcz
4lhM76fHTeRNxJ1o+j2ApiK9U2dDAbBTLA8iGi+OTs/sAuvbNUELY7d3Ht2TqJjb
e9tGT+SavbTsg0UHEmteFHepMCe577AchL2T6jPbUaaVB05N7uD/qvIGDOLQvyaC
KHWqY5f+eFN+3JdGEefCiS4XCAWXBPSs7Ybq5SduxS7rnB7m96Vkidwk1DLjnyUt
+KNtb8JXBsMMuyaYZHrl4mPZyvOfmZxXOz9CzCYXzcQlsnkJqIyy3CiZFVEAqdq2
kXtOhNEqByAKVCWvcoJvfO/VGd/w3KP5XYP3GHXJ8gsS3sDORnL5PYWIvPNfjdlu
x7nsnk7PbaGdspSPqfKblwUvET1fePs1yjKECUMl4iJ6Wfr+QfKEpPUXQ6f79r+h
DrhPE9DIWyMMbre0p8E7uTFsteVerUx/GVDh7jtn6LCUKwWmKAZ43sKR2d35GAvG
x7ZKCcKl5U9vmC8c6q/eAZUE7CeNy1QBGXhYX6oP28NGxl5AzZ/Q8aYMsv0uqhyF
cwYbVKA5Wl5fovMrnjs8wwkKqa9cHdzy7JmhyhBV5k5ggfSUeD7mG0UM5eRxr6ZM
TOa/97QeXa7v
=mjsy
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM PMU change for 6.7:
- Handle NMI/SMI requests after PMU/PMI requests so that a PMI=>NMI doesn't
require redoing the entire run loop due to the NMI not being detected until
the final kvm_vcpu_exit_request() check before entering the guest.
- Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
- Use the fast path directly from the timer callback when delivering Xen timer
events. Avoid the problematic races with using the fast path by ensuring
the hrtimer isn't running when (re)starting the timer or saving the timer
information (for userspace).
- Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8He8SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5KyQP+wUH3n6hhJGScsSCpWXK6r8q+Y2ZBftY
ecXuoTfeBJmsoTbnExF7K600DtbxHY5jjxt3ROmoUCertCFRCoq6pi5v4rbRDDQ1
fmGkht43A6zAuHQ0Ntvkq4rNEmISAbzLP4EXOxZJ/Hxld91T8IutMFo7NN/YfOSx
nb+qgb7B25T7ODGvzahRjxnoevCHBN/TdKeDrvsoWeMpVw+CDYqquQOcLfHMaBAN
DqGwZzpdVqRQqg3TOuBGCiv5IcvskjkFUh0y6cEYkCR/MruLoT6CygoLImEV2naW
RU0ZU9Y4cjf+BV/faQEdP6mDQwwCUHWLxDpXUVn03KQYQHlA7q6UgRKxy35ixZ5w
Euxvg4m2ZGgJjsVLqTTMUlbLSNxD6wWZAVxGH7w8XghKrNmoj1IoajPZS+1rwyO2
5rUynMKf3HMT6oeqqZH95aChlUMiAvaPYPc+ogku8Bt1zJQVv/xnk/6T95Vw6C/t
KfYsV80rmJd/EL/fUXYX3mCMcZGHyv80QlOEc0uR4f25HGszCG8qHiSaUtnvQUjQ
xaguSuO1Cf7sdhHPWj4p/US+Jerrgd8nzoQGvKUOkdLsQzU71xwjvTZNlmmBYKKO
zgGIXZfaXa4JibAqnRrC+V8UdDPOwKvOEzmH0joLEzkTISnIG2LycvZ6tG7sTcMU
0sIg2dvhJx/G
=Z2eM
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-xen-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 Xen changes for 6.7:
- Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
- Use the fast path directly from the timer callback when delivering Xen timer
events. Avoid the problematic races with using the fast path by ensuring
the hrtimer isn't running when (re)starting the timer or saving the timer
information (for userspace).
- Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag.
- Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
- Zap EPT entries when non-coherent DMA assignment stops/start to prevent
using stale entries with the wrong memtype.
- Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y, as
there's zero reason to ignore guest PAT if the effective MTRR memtype is WB.
This will also allow for future optimizations of handling guest MTRR updates
for VMs with non-coherent DMA and the quirk enabled.
- Harden the fast page fault path to guard against encountering an invalid
root when walking SPTEs.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8FG8SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5tYMP+gJd3raPnpmai4NyaFaZNP6/5YsXuUMj
XBvHH7hBGHmjd1sV+O62fhUvNk4+M/1f1rERutP4s7yXEXxQfC9G/MQFgLBfyiW8
xR+RQkNrz8HsG8mHFBZ0Ei6OofhP+BRTYDRU7kbctKDh/4Hp5AOZAxYHs/ZhOho1
Lw6upZbQLCkdt72eEKbfocg6Tf400hWEyarBRXFe4KJzWq7KMjAPgqA/3Vx0lF6u
zX73Zr6tV0mcf3QXd58Q4CUwOuwMo1aTangmOhEeC09JplF2okLV36h6WrCF8qqO
gvmDrMA450Yc215peOJGBJzoZJrNjMIHZ2m+4Ifag6Z/jJoam4vjzUZmmrzx+Gbj
Ot5lmXCVRXCdHmUNdYQ6yR27WaVP3C3ItkxwNZGMPoh2G08NGyLLY1kwzRyITEH4
M9jYTRBZaeue57ad5Ms9FaneBLWwPxajTX90rWZbl2kzfd8PG5cF1VroESBLoa0f
I2kDcd7988xLTOMl1sfO8ci21Ve7rQc0hA6WlOXrDxb26OvYrftYXeXOCowN6kqP
czXIu5ZPmLI1btimZQXGMdxKkw5wwe3wDC3y5gKrm+rTfORUXoOUDoITIpmPCnAp
Dzfr5la3RI1GjHhzR80x4vXQC9BgJ9WrEwJub/RqVfE3T3ohw+NZl+AeM1xB9eT1
2mJWm6GFEm9Y
=Zfbr
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mmu-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 MMU changes for 6.7:
- Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
- Zap EPT entries when non-coherent DMA assignment stops/start to prevent
using stale entries with the wrong memtype.
- Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y, as
there's zero reason to ignore guest PAT if the effective MTRR memtype is WB.
This will also allow for future optimizations of handling guest MTRR updates
for VMs with non-coherent DMA and the quirk enabled.
- Harden the fast page fault path to guard against encountering an invalid
root when walking SPTEs.
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8EugSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5xS0P+gPTDO81CUZO70LrO2W4E7toRBf/F9x1
/v5D/76p9hG32Z6+BJs/xxDxJFagw75MtoR5oKivtXiip3TxbfOyDOlaQkIRo85E
/d95il/LRidL3Mv3TXRj1lykXnxSSz9tigAGEZti1Y9Fn9fXEIwurJH7dU5cBI1E
fin5bsDaTNRjG4jjTiEUbnKPRTlD/S7CQJn4CaYvZhMv/eJkYDLyBBVy4VLoLzvD
ctL6VJQLGPVxbxr9mEmulaqMrSuDIQQLkRVQJAViKyerBInTEc5d/GPCHuE8O3zi
0r/QSJbMS9titWLz07NhJ1UH4VJNyaEhRlyJPSFhBW4h6dzUb3EXdUe0Hwa+JH/S
H2cVqsANItTCIhvDtuEGIRDahu0eD+63h90InJ0gEVL1kSJS+UWZHB71PkUEQgAV
2OsuT1D26fuxrv+0b9ioBZURycqKw++zGsrwyVhe77eBgqBJ12tbL4TAD+QNjaQ5
HZTCe6YV83gZoOMeVkoTGSf96s9lGORgxsaAIXmFuLB9RVCVXhVh0ph2HZsnV8Hw
ZXEXpBEFo7GUhb0NIvsk2W73QL87A3fLv15yITWc8KuC7/dXP9z6KpSKjFySS69X
uWD1MVx6shhvbg97UzoJlXc3/z0aVzmdZJudE5d0gcFvAjIItqp6ICPOoKxfj8pT
tqRZu3kVHd61
=sfp8
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.7:
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
Service NMI and SMI requests after PMI requests in vcpu_enter_guest() so
that KVM does not need to cancel and redo the VM-Enter if the guest
configures its PMIs to be delivered as NMIs (likely) or SMIs (unlikely).
Because APIC emulation "injects" NMIs via KVM_REQ_NMI, handling PMI
requests after NMI requests (the likely case) means KVM won't detect the
pending NMI request until the final check for outstanding requests.
Detecting requests at the final stage is costly as KVM has already loaded
guest state, potentially queued events for injection, disabled IRQs,
dropped SRCU, etc., most of which needs to be unwound.
Note that changing the order of request processing doesn't change the end
result, as KVM's final check for outstanding requests prevents entering
the guest until all requests are serviced. I.e. KVM will ultimately
coalesce events (or not) regardless of the ordering.
Using SPEC2017 benchmark programs running along with Intel vtune in a VM
demonstrates that the following code change reduces 800~1500 canceled
VM-Enters per second.
Some glory details:
Probe the invocation to vmx_cancel_injection():
$ perf probe -a vmx_cancel_injection
$ perf stat -a -e probe:vmx_cancel_injection -I 10000 # per 10 seconds
Partial results when SPEC2017 with Intel vtune are running in the VM:
On kernel without the change:
10.010018010 14254 probe:vmx_cancel_injection
20.037646388 15207 probe:vmx_cancel_injection
30.078739816 15261 probe:vmx_cancel_injection
40.114033258 15085 probe:vmx_cancel_injection
50.149297460 15112 probe:vmx_cancel_injection
60.185103088 15104 probe:vmx_cancel_injection
On kernel with the change:
10.003595390 40 probe:vmx_cancel_injection
20.017855682 31 probe:vmx_cancel_injection
30.028355883 34 probe:vmx_cancel_injection
40.038686298 31 probe:vmx_cancel_injection
50.048795162 20 probe:vmx_cancel_injection
60.069057747 19 probe:vmx_cancel_injection
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20231002040839.2630027-1-mizhang@google.com
[sean: hoist PMU/PMI above SMI too, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Hyper-V enabled Windows Server 2022 KVM VM cannot be started on Zen1 Ryzen
since it crashes at boot with SYSTEM_THREAD_EXCEPTION_NOT_HANDLED +
STATUS_PRIVILEGED_INSTRUCTION (in other words, because of an unexpected #GP
in the guest kernel).
This is because Windows tries to set bit 8 in MSR_AMD64_TW_CFG and can't
handle receiving a #GP when doing so.
Give this MSR the same treatment that commit 2e32b71906
("x86, kvm: Add MSR_AMD64_BU_CFG2 to the list of ignored MSRs") gave
MSR_AMD64_BU_CFG2 under justification that this MSR is baremetal-relevant
only.
Although apparently it was then needed for Linux guests, not Windows as in
this case.
With this change, the aforementioned guest setup is able to finish booting
successfully.
This issue can be reproduced either on a Summit Ridge Ryzen (with
just "-cpu host") or on a Naples EPYC (with "-cpu host,stepping=1" since
EPYC is ordinarily stepping 2).
Alternatively, userspace could solve the problem by using MSR filters, but
forcing every userspace to define a filter isn't very friendly and doesn't
add much, if any, value. The only potential hiccup is if one of these
"baremetal-only" MSRs ever requires actual emulation and/or has F/M/S
specific behavior. But if that happens, then KVM can still punt *that*
handling to userspace since userspace MSR filters "win" over KVM's default
handling.
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1ce85d9c7c9e9632393816cf19c902e0a3f411f1.1697731406.git.maciej.szmigiero@oracle.com
[sean: call out MSR filtering alternative]
Signed-off-by: Sean Christopherson <seanjc@google.com>
The 'kvmclock_periodic_sync' is a readonly param that cannot change after
bootup.
The kvm_arch_vcpu_postcreate() is not going to schedule the
kvmclock_sync_work if kvmclock_periodic_sync == false.
As a result, the "if (!kvmclock_periodic_sync)" can never be true if the
kvmclock_sync_work = kvmclock_sync_fn() is scheduled.
Link: https://lore.kernel.org/kvm/a461bf3f-c17e-9c3f-56aa-726225e8391d@oracle.com
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Link: https://lore.kernel.org/r/20231001213637.76686-1-dongli.zhang@oracle.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stop kicking vCPUs in kvm_arch_sync_dirty_log() when PML is disabled.
Kicking vCPUs when PML is disabled serves no purpose and could
negatively impact guest performance.
This restores KVM's behavior to prior to 5.12 commit a018eba538 ("KVM:
x86: Move MMU's PML logic to common code"), which replaced a
static_call_cond(kvm_x86_flush_log_dirty) with unconditional calls to
kvm_vcpu_kick().
Fixes: a018eba538 ("KVM: x86: Move MMU's PML logic to common code")
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20231016221228.1348318-1-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Convert all module params to octal permissions to improve code readability
and to make checkpatch happy:
WARNING: Symbolic permissions 'S_IRUGO' are not preferred. Consider using
octal permissions '0444'.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Link: https://lore.kernel.org/r/20231013113020.77523-1-flyingpeng@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Truncate writes to PMU counters to the counter's width to avoid spurious
overflows when emulating counter events in software.
- Set the LVTPC entry mask bit when handling a PMI (to match Intel-defined
architectural behavior).
- Treat KVM_REQ_PMI as a wake event instead of queueing host IRQ work to
kick the guest out of emulated halt.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmUp1FESHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5IRsQAIsk+UwTP+q+ZzkpkSOJ+ocmKU97/GbW
snB+F5FwNXnWEPzHIV+Ldv+WUpmHilTrylk2t5jLyew783TPxTnLmNAa+D3iSSBP
jSGzCIqR2uRHOxhuJgkKvdOkfuS7vob1KcKrfOwKCSss78VhKGkMGIi66/81RTxo
zxpzva+F2YtbCwKWXewOvR4CsWhjVqOGRTCmjF6t8PpFDGqwZdu0ornBHC2gvkUI
iDHWVBg5Rz/akqxjEVL94SP5qdFSaVG+F3Z8xpnn+tfPncEK/xPFdGHGKwOy5Jvt
4dQLc6TGmS2+NGPU3eAJOr+GZKryQth1CI+5RDlnoKQXjQ3laJwjmgyCRbUYLoZh
/R7f5YJrhGheUvCCmagY1g2x41qp/CTG1RnX1SVTIGH9h+5LSVcCukCL9Tx2/B4v
eU8nrzhUuijSqG6TiyAV5hvFqMQf3LWWcjSSW58kIWmXLpqdb/Xp6wiFHjOM7wZM
c1br+6AwKZwKNdqn3/cnlBnLc+1jq/PWFnuF9svjKn5JTOyg8kddmyWUkDqiLOeZ
/jqqwRJQUZppy4DxFHdkuQxnTsrztNzs/vhQtF6MIgFRULrs4FaiTUxuAs72skqm
Fv/IIuyHWjST9HY8dgTx8PLqUevEc7zekmhN1Cj5KwhlHxKYWSZfew80CO7h2qhJ
IvAC70QC+BsW
=g8g3
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.6-fixes' of https://github.com/kvm-x86/linux into HEAD
KVM x86/pmu fixes for 6.6:
- Truncate writes to PMU counters to the counter's width to avoid spurious
overflows when emulating counter events in software.
- Set the LVTPC entry mask bit when handling a PMI (to match Intel-defined
architectural behavior).
- Treat KVM_REQ_PMI as a wake event instead of queueing host IRQ work to
kick the guest out of emulated halt.
Mask off xfeatures that aren't exposed to the guest only when saving guest
state via KVM_GET_XSAVE{2} instead of modifying user_xfeatures directly.
Preserving the maximal set of xfeatures in user_xfeatures restores KVM's
ABI for KVM_SET_XSAVE, which prior to commit ad856280dd ("x86/kvm/fpu:
Limit guest user_xfeatures to supported bits of XCR0") allowed userspace
to load xfeatures that are supported by the host, irrespective of what
xfeatures are exposed to the guest.
There is no known use case where userspace *intentionally* loads xfeatures
that aren't exposed to the guest, but the bug fixed by commit ad856280dd
was specifically that KVM_GET_SAVE{2} would save xfeatures that weren't
exposed to the guest, e.g. would lead to userspace unintentionally loading
guest-unsupported xfeatures when live migrating a VM.
Restricting KVM_SET_XSAVE to guest-supported xfeatures is especially
problematic for QEMU-based setups, as QEMU has a bug where instead of
terminating the VM if KVM_SET_XSAVE fails, QEMU instead simply stops
loading guest state, i.e. resumes the guest after live migration with
incomplete guest state, and ultimately results in guest data corruption.
Note, letting userspace restore all host-supported xfeatures does not fix
setups where a VM is migrated from a host *without* commit ad856280dd,
to a target with a subset of host-supported xfeatures. However there is
no way to safely address that scenario, e.g. KVM could silently drop the
unsupported features, but that would be a clear violation of KVM's ABI and
so would require userspace to opt-in, at which point userspace could
simply be updated to sanitize the to-be-loaded XSAVE state.
Reported-by: Tyler Stachecki <stachecki.tyler@gmail.com>
Closes: https://lore.kernel.org/all/20230914010003.358162-1-tstachecki@bloomberg.net
Fixes: ad856280dd ("x86/kvm/fpu: Limit guest user_xfeatures to supported bits of XCR0")
Cc: stable@vger.kernel.org
Cc: Leonardo Bras <leobras@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Message-Id: <20230928001956.924301-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Plumb an xfeatures mask into __copy_xstate_to_uabi_buf() so that KVM can
constrain which xfeatures are saved into the userspace buffer without
having to modify the user_xfeatures field in KVM's guest_fpu state.
KVM's ABI for KVM_GET_XSAVE{2} is that features that are not exposed to
guest must not show up in the effective xstate_bv field of the buffer.
Saving only the guest-supported xfeatures allows userspace to load the
saved state on a different host with a fewer xfeatures, so long as the
target host supports the xfeatures that are exposed to the guest.
KVM currently sets user_xfeatures directly to restrict KVM_GET_XSAVE{2} to
the set of guest-supported xfeatures, but doing so broke KVM's historical
ABI for KVM_SET_XSAVE, which allows userspace to load any xfeatures that
are supported by the *host*.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230928001956.924301-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap KVM TDP when noncoherent DMA assignment starts (noncoherent dma count
transitions from 0 to 1) or stops (noncoherent dma count transitions
from 1 to 0). Before the zap, test if guest MTRR is to be honored after
the assignment starts or was honored before the assignment stops.
When there's no noncoherent DMA device, EPT memory type is
((MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT)
When there're noncoherent DMA devices, EPT memory type needs to honor
guest CR0.CD and MTRR settings.
So, if noncoherent DMA count transitions between 0 and 1, EPT leaf entries
need to be zapped to clear stale memory type.
This issue might be hidden when the device is statically assigned with
VFIO adding/removing MMIO regions of the noncoherent DMA devices for
several times during guest boot, and current KVM MMU will call
kvm_mmu_zap_all_fast() on the memslot removal.
But if the device is hot-plugged, or if the guest has mmio_always_on for
the device, the MMIO regions of it may only be added for once, then there's
no path to do the EPT entries zapping to clear stale memory type.
Therefore do the EPT zapping when noncoherent assignment starts/stops to
ensure stale entries cleaned away.
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065223.20432-1-yan.y.zhao@intel.com
[sean: fix misspelled words in comment and changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
The legacy API for setting the TSC is fundamentally broken, and only
allows userspace to set a TSC "now", without any way to account for
time lost between the calculation of the value, and the kernel eventually
handling the ioctl.
To work around this, KVM has a hack which, if a TSC is set with a value
which is within a second's worth of the last TSC "written" to any vCPU in
the VM, assumes that userspace actually intended the two TSC values to be
in sync and adjusts the newly-written TSC value accordingly.
Thus, when a VMM restores a guest after suspend or migration using the
legacy API, the TSCs aren't necessarily *right*, but at least they're
in sync.
This trick falls down when restoring a guest which genuinely has been
running for less time than the 1 second of imprecision KVM allows for in
in the legacy API. On *creation*, the first vCPU starts its TSC counting
from zero, and the subsequent vCPUs synchronize to that. But then when
the VMM tries to restore a vCPU's intended TSC, because the VM has been
alive for less than 1 second and KVM's default TSC value for new vCPU's is
'0', the intended TSC is within a second of the last "written" TSC and KVM
incorrectly adjusts the intended TSC in an attempt to synchronize.
But further hacks can be piled onto KVM's existing hackish ABI, and
declare that the *first* value written by *userspace* (on any vCPU)
should not be subject to this "correction", i.e. KVM can assume that the
first write from userspace is not an attempt to sync up with TSC values
that only come from the kernel's default vCPU creation.
To that end: Add a flag, kvm->arch.user_set_tsc, protected by
kvm->arch.tsc_write_lock, to record that a TSC for at least one vCPU in
the VM *has* been set by userspace, and make the 1-second slop hack only
trigger if user_set_tsc is already set.
Note that userspace can explicitly request a *synchronization* of the
TSC by writing zero. For the purpose of user_set_tsc, an explicit
synchronization counts as "setting" the TSC, i.e. if userspace then
subsequently writes an explicit non-zero value which happens to be within
1 second of the previous value, the new value will be "corrected". This
behavior is deliberate, as treating explicit synchronization as "setting"
the TSC preserves KVM's existing behaviour inasmuch as possible (KVM
always applied the 1-second "correction" regardless of whether the write
came from userspace vs. the kernel).
Reported-by: Yong He <alexyonghe@tencent.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217423
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Original-by: Oliver Upton <oliver.upton@linux.dev>
Original-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Tested-by: Yong He <alexyonghe@tencent.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231008025335.7419-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Zap SPTEs when CR0.CD is toggled if and only if KVM's MMU is honoring
guest MTRRs, which is the only time that KVM incorporates the guest's
CR0.CD into the final memtype.
Suggested-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065122.20315-1-yan.y.zhao@intel.com
[sean: rephrase shortlog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
On certain CPUs, Linux guests expect HWCR.TscFreqSel[bit 24] to be
set. If it isn't set, they complain:
[Firmware Bug]: TSC doesn't count with P0 frequency!
Allow userspace (and the guest) to set this bit in the virtual HWCR to
eliminate the above complaint.
Allow the guest to write the bit even though its is R/O on *some* CPUs.
Like many bits in HWRC, TscFreqSel is not architectural at all. On Family
10h[1], it was R/W and powered on as 0. In Family 15h, one of the "changes
relative to Family 10H Revision D processors[2] was:
• MSRC001_0015 [Hardware Configuration (HWCR)]:
• Dropped TscFreqSel; TSC can no longer be selected to run at NB P0-state.
Despite the "Dropped" above, that same document later describes
HWCR[bit 24] as follows:
TscFreqSel: TSC frequency select. Read-only. Reset: 1. 1=The TSC
increments at the P0 frequency
If the guest clears the bit, the worst case scenario is the guest will be
no worse off than it is today, e.g. the whining may return after a guest
clears the bit and kexec()'s into a new kernel.
[1] https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/31116.pdf
[2] https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/42301_15h_Mod_00h-0Fh_BKDG.pdf,
Signed-off-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20230929230246.1954854-3-jmattson@google.com
[sean: elaborate on why the bit is writable by the guest]
Signed-off-by: Sean Christopherson <seanjc@google.com>
When populating the guest's PV wall clock information, KVM currently does
a simple 'kvm_get_real_ns() - get_kvmclock_ns(kvm)'. This is an antipattern
which should be avoided; when working with the relationship between two
clocks, it's never correct to obtain one of them "now" and then the other
at a slightly different "now" after an unspecified period of preemption
(which might not even be under the control of the kernel, if this is an
L1 hosting an L2 guest under nested virtualization).
Add a kvm_get_wall_clock_epoch() function to return the guest wall clock
epoch in nanoseconds using the same method as __get_kvmclock() — by using
kvm_get_walltime_and_clockread() to calculate both the wall clock and KVM
clock time from a *single* TSC reading.
The condition using get_cpu_tsc_khz() is equivalent to the version in
__get_kvmclock() which separately checks for the CONSTANT_TSC feature or
the per-CPU cpu_tsc_khz. Which is what get_cpu_tsc_khz() does anyway.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/bfc6d3d7cfb88c47481eabbf5a30a264c58c7789.camel@infradead.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add support for the AMD Selective Branch Predictor Barrier (SBPB) by
advertising the CPUID bit and handling PRED_CMD writes accordingly.
Note, like SRSO_NO and IBPB_BRTYPE before it, advertise support for SBPB
even if it's not enumerated by in the raw CPUID. Some CPUs that gained
support via a uCode patch don't report SBPB via CPUID (the kernel forces
the flag).
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/a4ab1e7fe50096d50fde33e739ed2da40b41ea6a.1692919072.git.jpoimboe@kernel.org
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Treat EMULTYPE_SKIP failures on SEV guests as unhandleable emulation
instead of simply resuming the guest, and drop the hack-a-fix which
effects that behavior for the INT3/INTO injection path. If KVM can't
skip an instruction for which KVM has already done partial emulation,
resuming the guest is undesirable as doing so may corrupt guest state.
Link: https://lore.kernel.org/r/20230825013621.2845700-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor and rename can_emulate_instruction() to allow vendor code to
return more than true/false, e.g. to explicitly differentiate between
"retry", "fault", and "unhandleable". For now, just do the plumbing, a
future patch will expand SVM's implementation to signal outright failure
if KVM attempts EMULTYPE_SKIP on an SEV guest.
No functional change intended (or rather, none that are visible to the
guest or userspace).
Link: https://lore.kernel.org/r/20230825013621.2845700-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Userspace can directly modify the content of vCPU's CR0, CR3, and CR4 via
KVM_SYNC_X86_SREGS and KVM_SET_SREGS{,2}. Make sure that KVM flushes guest
TLB entries and paging-structure caches if a (partial) guest TLB flush is
architecturally required based on the CRn changes. To keep things simple,
flush whenever KVM resets the MMU context, i.e. if any bits in CR0, CR3,
CR4, or EFER are modified. This is extreme overkill, but stuffing state
from userspace is not such a hot path that preserving guest TLB state is a
priority.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230814222358.707877-3-mhal@rbox.co
[sean: call out that the flushing on MMU context resets is for simplicity]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop the vcpu->arch.cr0 assignment after static_call(kvm_x86_set_cr0).
CR0 was already set by {vmx,svm}_set_cr0().
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230814222358.707877-2-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
When the irq_work callback, kvm_pmi_trigger_fn(), is invoked during a
VM-exit that also invokes __kvm_perf_overflow() as a result of
instruction emulation, kvm_pmu_deliver_pmi() will be called twice
before the next VM-entry.
Calling kvm_pmu_deliver_pmi() twice is unlikely to be problematic now that
KVM sets the LVTPC mask bit when delivering a PMI. But using IRQ work to
trigger the PMI is still broken, albeit very theoretically.
E.g. if the self-IPI to trigger IRQ work is be delayed long enough for the
vCPU to be migrated to a different pCPU, then it's possible for
kvm_pmi_trigger_fn() to race with the kvm_pmu_deliver_pmi() from
KVM_REQ_PMI and still generate two PMIs.
KVM could set the mask bit using an atomic operation, but that'd just be
piling on unnecessary code to workaround what is effectively a hack. The
*only* reason KVM uses IRQ work is to ensure the PMI is treated as a wake
event, e.g. if the vCPU just executed HLT.
Remove the irq_work callback for synthesizing a PMI, and all of the
logic for invoking it. Instead, to prevent a vcpu from leaving C0 with
a PMI pending, add a check for KVM_REQ_PMI to kvm_vcpu_has_events().
Fixes: 9cd803d496 ("KVM: x86: Update vPMCs when retiring instructions")
Signed-off-by: Jim Mattson <jmattson@google.com>
Tested-by: Mingwei Zhang <mizhang@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20230925173448.3518223-2-mizhang@google.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stop zapping invalidate TDP MMU roots via work queue now that KVM
preserves TDP MMU roots until they are explicitly invalidated. Zapping
roots asynchronously was effectively a workaround to avoid stalling a vCPU
for an extended during if a vCPU unloaded a root, which at the time
happened whenever the guest toggled CR0.WP (a frequent operation for some
guest kernels).
While a clever hack, zapping roots via an unbound worker had subtle,
unintended consequences on host scheduling, especially when zapping
multiple roots, e.g. as part of a memslot. Because the work of zapping a
root is no longer bound to the task that initiated the zap, things like
the CPU affinity and priority of the original task get lost. Losing the
affinity and priority can be especially problematic if unbound workqueues
aren't affined to a small number of CPUs, as zapping multiple roots can
cause KVM to heavily utilize the majority of CPUs in the system, *beyond*
the CPUs KVM is already using to run vCPUs.
When deleting a memslot via KVM_SET_USER_MEMORY_REGION, the async root
zap can result in KVM occupying all logical CPUs for ~8ms, and result in
high priority tasks not being scheduled in in a timely manner. In v5.15,
which doesn't preserve unloaded roots, the issues were even more noticeable
as KVM would zap roots more frequently and could occupy all CPUs for 50ms+.
Consuming all CPUs for an extended duration can lead to significant jitter
throughout the system, e.g. on ChromeOS with virtio-gpu, deleting memslots
is a semi-frequent operation as memslots are deleted and recreated with
different host virtual addresses to react to host GPU drivers allocating
and freeing GPU blobs. On ChromeOS, the jitter manifests as audio blips
during games due to the audio server's tasks not getting scheduled in
promptly, despite the tasks having a high realtime priority.
Deleting memslots isn't exactly a fast path and should be avoided when
possible, and ChromeOS is working towards utilizing MAP_FIXED to avoid the
memslot shenanigans, but KVM is squarely in the wrong. Not to mention
that removing the async zapping eliminates a non-trivial amount of
complexity.
Note, one of the subtle behaviors hidden behind the async zapping is that
KVM would zap invalidated roots only once (ignoring partial zaps from
things like mmu_notifier events). Preserve this behavior by adding a flag
to identify roots that are scheduled to be zapped versus roots that have
already been zapped but not yet freed.
Add a comment calling out why kvm_tdp_mmu_invalidate_all_roots() can
encounter invalid roots, as it's not at all obvious why zapping
invalidated roots shouldn't simply zap all invalid roots.
Reported-by: Pattara Teerapong <pteerapong@google.com>
Cc: David Stevens <stevensd@google.com>
Cc: Yiwei Zhang<zzyiwei@google.com>
Cc: Paul Hsia <paulhsia@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230916003916.2545000-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bury the declaration of the page-track helpers that are intended only for
internal KVM use in a "private" header. In addition to guarding against
unwanted usage of the internal-only helpers, dropping their definitions
avoids exposing other structures that should be KVM-internal, e.g. for
memslots. This is a baby step toward making kvm_host.h a KVM-internal
header in the very distant future.
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20230729013535.1070024-22-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new page-track hook, track_remove_region(), that is called when a
memslot DELETE operation is about to be committed. The "remove" hook
will be used by KVMGT and will effectively replace the existing
track_flush_slot() altogether now that KVM itself doesn't rely on the
"flush" hook either.
The "flush" hook is flawed as it's invoked before the memslot operation
is guaranteed to succeed, i.e. KVM might ultimately keep the existing
memslot without notifying external page track users, a.k.a. KVMGT. In
practice, this can't currently happen on x86, but there are no guarantees
that won't change in the future, not to mention that "flush" does a very
poor job of describing what is happening.
Pass in the gfn+nr_pages instead of the slot itself so external users,
i.e. KVMGT, don't need to exposed to KVM internals (memslots). This will
help set the stage for additional cleanups to the page-track APIs.
Opportunistically align the existing srcu_read_lock_held() usage so that
the new case doesn't stand out like a sore thumb (and not aligning the
new code makes bots unhappy).
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230729013535.1070024-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow moving memslots if the VM has external page-track users, i.e. if
KVMGT is being used to expose a virtual GPU to the guest, as KVMGT doesn't
correctly handle moving memory regions.
Note, this is potential ABI breakage! E.g. userspace could move regions
that aren't shadowed by KVMGT without harming the guest. However, the
only known user of KVMGT is QEMU, and QEMU doesn't move generic memory
regions. KVM's own support for moving memory regions was also broken for
multiple years (albeit for an edge case, but arguably moving RAM is
itself an edge case), e.g. see commit edd4fa37ba ("KVM: x86: Allocate
new rmap and large page tracking when moving memslot").
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20230729013535.1070024-17-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move x86's implementation of kvm_arch_flush_shadow_{all,memslot}() into
mmu.c, and make kvm_mmu_zap_all() static as it was globally visible only
for kvm_arch_flush_shadow_all(). This will allow refactoring
kvm_arch_flush_shadow_memslot() to call kvm_mmu_zap_all() directly without
having to expose kvm_mmu_zap_all_fast() outside of mmu.c. Keeping
everything in mmu.c will also likely simplify supporting TDX, which
intends to do zap only relevant SPTEs on memslot updates.
No functional change intended.
Suggested-by: Yan Zhao <yan.y.zhao@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20230729013535.1070024-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTueMwSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hp4P/i/UmIJEJupryUrD/ZXcSjqmupCtv4JS
Z2o1KIAPbM5GUX4iyF1cnZrI4Ac5zMtULN8Tp3ATOp3AqKy72AqB1Z82e+v6SKis
KfSXlDFCPFisrwv3Ys7JEu9vIS8oqITHmSBk8OAmElwujdQ5jYLZjwGbCXbM9qas
yCFGLqD4fjX8XqkZLmXggjT99MPSgiTPoKL592Wq4JR8mY4hyQqJzBepDjb94sT7
wrsAv1B+BchGDguk0+nOdmHM4emGrZU7fVqi3OFPofSlwAAdkqZObleb422KB058
5bcpNow+9VH5pzgq8XSAU7DLNgH9aXH0PcVU8ASU6P0D9fceKoOFuL47nnFbwz0t
vKafcXNWFs8xHE4iyzvAAsZK/X8GR0ngNByPnamATMsjt2tTmsa5BOyAPkIN+GpT
DzZCIk27SbdGC3lGYlSV+5ob/+sOr6m384DkvSZnU6JiiFLlZiTxURj1/9Zvfka8
2co2wnf8cJxnKFUThFfuxs9XpKgvhkOE8LauwCSo4MAQM95Pen+NAK960RBWj0xl
wof5kIGmKbwmMXyg2Sr+EKqe5KRPba22Yi3x24tURAXafKK/AW7T8dgEEXOll7dp
pKmTPAevwUk9wYIGultjhEBXKYgMOeD2BVoTa5je5h1Da28onrSJ7aLQUixHHs0J
gLdtzs8M9K9t
=yGM1
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.6:
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
- Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
- Add support for printf() in guest code and covert all guest asserts to use
printf-based reporting
- Clean up the PMU event filter test and add new testcases
- Include x86 selftests in the KVM x86 MAINTAINERS entry
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTueu4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5wvIQAK8jWhb1Y4CzrJmcZyYYIR6apgtXl4vB
KbhFIFHi5ZeZXlpXA2o/FW8Q9LNmcRLtxoapb09t/eyb0+ODllDPt/aSG7p6Y4p9
rNb1g6Hj77LTaG5gMy7/lbk9ERzf61+MKUuucU7WzjlY8oyd+lm+y2cx2O3+S/89
C5cp2CGnqK2NMbUnzYN8izMrdvtwDvgQvm3H7Ah8yrGXJkcemVggXibuh+2coTfo
p2RKrY+A4Syw/edNe0GVZYoSVJdwPEif8o0gAz5PwC2LTjpf9Iobt89KEx08BkVw
ms0MFbwLS66MoSYIVoZkBdy/Tri5aCKxHGqu7taEWhogjbzrPvktA6PNYihO4zGa
OSjA/oyAPvFJ4cLuBlrVh/xPWVoGX/6Sx3dBP5TI3zyR0FAqZkoAPDivWhflOpTt
q3aoHr6THGRzqHOCYuX7nwzhqBFSSHUF1zy/P7rThSzieSzUiJiANUwBjTeB9Wsr
5Cn+KQ8XOZw1LVcoeI9y97xcHh9HeP3seO+MFie8OH9QK4nUqgqEbF8sp7WF0rB6
6rZ1lht9a2Qx4xdtqSMBkQdgnnaiCZ7jBtEFMK6kSQ67zvorlCwkOue3TrtorJ4H
1XI/DGAzltEfCLMAq+4FkHkkEr84S3gRjaLlI9aHWlVrSk1wxM87R16jgVfJp74R
gTNAzCys2KwM
=dHTQ
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-selftests-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM: x86: Selftests changes for 6.6:
- Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
- Add support for printf() in guest code and covert all guest asserts to use
printf-based reporting
- Clean up the PMU event filter test and add new testcases
- Include x86 selftests in the KVM x86 MAINTAINERS entry
- Add support for TLB range invalidation of Stage-2 page tables,
avoiding unnecessary invalidations. Systems that do not implement
range invalidation still rely on a full invalidation when dealing
with large ranges.
- Add infrastructure for forwarding traps taken from a L2 guest to
the L1 guest, with L0 acting as the dispatcher, another baby step
towards the full nested support.
- Simplify the way we deal with the (long deprecated) 'CPU target',
resulting in a much needed cleanup.
- Fix another set of PMU bugs, both on the guest and host sides,
as we seem to never have any shortage of those...
- Relax the alignment requirements of EL2 VA allocations for
non-stack allocations, as we were otherwise wasting a lot of that
precious VA space.
- The usual set of non-functional cleanups, although I note the lack
of spelling fixes...
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmTsXrUPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDZpIQAJUM1rNEOJ8ExYRfoG1LaTfcOm5TD6D1IWlO
uCUx4xLMBudw/55HusmUSdiomQ3Xg5UdRaU7vX5OYwPbdoWebjEUfgdP3jCA/TiW
mZTMv3x9hOvp+EOS/UnS469cERvg1/KfwcdOQsWL0HsCFZnu2XmQHWPD++vovLNp
F1892ij875mC6C6mOR60H2nyjIiCuqWh/8eKBkp65CARCbFDYxWhqBnmcmTvoquh
E87pQDPdtgXc0KlOWCABh5bYOu1WGVEXE5f3ixtdY9cQakkSI3NkFKw27/mIWS4q
TCsagByNnPFDXTglb1dJopNdluLMFi1iXhRJX78R/PYaHxf4uFafWcQk1U7eDdLg
1kPANggwYe4KNAQZUvRhH7lIPWHCH0r4c1qHV+FsiOZVoDOSKHo4RW1ZFtirJSNW
LNJMdk+8xyae0S7z164EpZB/tpFttX4gl3YvUT/T+4gH8+CRFAaoAlK39CoGDPpk
f+P2GE1Z5YupF16YjpZtBnan55KkU1b6eORl5zpnAtoaz5WGXqj1t4qo0Q6e9WB9
X4rdDVhH7vRUmhjmSP6PuEygb84hnITLdGpkH2BmWj/4uYuCN+p+U2B2o/QdMJoo
cPxdflLOU/+1gfAFYPtHVjVKCqzhwbw3iLXQpO12gzRYqE13rUnAr7RuGDf5fBVC
LW7Pv81o
=DKhx
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 6.6
- Add support for TLB range invalidation of Stage-2 page tables,
avoiding unnecessary invalidations. Systems that do not implement
range invalidation still rely on a full invalidation when dealing
with large ranges.
- Add infrastructure for forwarding traps taken from a L2 guest to
the L1 guest, with L0 acting as the dispatcher, another baby step
towards the full nested support.
- Simplify the way we deal with the (long deprecated) 'CPU target',
resulting in a much needed cleanup.
- Fix another set of PMU bugs, both on the guest and host sides,
as we seem to never have any shortage of those...
- Relax the alignment requirements of EL2 VA allocations for
non-stack allocations, as we were otherwise wasting a lot of that
precious VA space.
- The usual set of non-functional cleanups, although I note the lack
of spelling fixes...
Use the governed feature framework to track if XSAVES is "enabled", i.e.
if XSAVES can be used by the guest. Add a comment in the SVM code to
explain the very unintuitive logic of deliberately NOT checking if XSAVES
is enumerated in the guest CPUID model.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop the WARN in KVM_RUN that asserts that KVM isn't using the hypervisor
timer, a.k.a. the VMX preemption timer, for a vCPU that is in the
UNINITIALIZIED activity state. The intent of the WARN is to sanity check
that KVM won't drop a timer interrupt due to an unexpected transition to
UNINITIALIZED, but unfortunately userspace can use various ioctl()s to
force the unexpected state.
Drop the sanity check instead of switching from the hypervisor timer to a
software based timer, as the only reason to switch to a software timer
when a vCPU is blocking is to ensure the timer interrupt wakes the vCPU,
but said interrupt isn't a valid wake event for vCPUs in UNINITIALIZED
state *and* the interrupt will be dropped in the end.
Reported-by: Yikebaer Aizezi <yikebaer61@gmail.com>
Closes: https://lore.kernel.org/all/CALcu4rbFrU4go8sBHk3FreP+qjgtZCGcYNpSiEXOLm==qFv7iQ@mail.gmail.com
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230808232057.2498287-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move kvm_arch_flush_remote_tlbs_memslot() to common code and drop
"arch_" from the name. kvm_arch_flush_remote_tlbs_memslot() is just a
range-based TLB invalidation where the range is defined by the memslot.
Now that kvm_flush_remote_tlbs_range() can be called from common code we
can just use that and drop a bunch of duplicate code from the arch
directories.
Note this adds a lockdep assertion for slots_lock being held when
calling kvm_flush_remote_tlbs_memslot(), which was previously only
asserted on x86. MIPS has calls to kvm_flush_remote_tlbs_memslot(),
but they all hold the slots_lock, so the lockdep assertion continues to
hold true.
Also drop the CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT ifdef gating
kvm_flush_remote_tlbs_memslot(), since it is no longer necessary.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaoqin Huang <shahuang@redhat.com>
Acked-by: Anup Patel <anup@brainfault.org>
Acked-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230811045127.3308641-7-rananta@google.com
The declaration got placed in the .c file of the caller, but that
causes a warning for the definition:
arch/x86/kernel/cpu/bugs.c:682:6: error: no previous prototype for 'gds_ucode_mitigated' [-Werror=missing-prototypes]
Move it to a header where both sides can observe it instead.
Fixes: 81ac7e5d74 ("KVM: Add GDS_NO support to KVM")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: stable@kernel.org
Link: https://lore.kernel.org/all/20230809130530.1913368-2-arnd%40kernel.org
* Add Base GDS mitigation
* Support GDS_NO under KVM
* Fix a documentation typo
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTJh5YACgkQaDWVMHDJ
krAzAw/8DzjhAYEa7a1AodCBMNg8uNOPnLNoRPPNhaN5Iw6W3zXYDBDKT9PyjAIx
RoIM0aHx/oY9nCpK441o25oCWAAyzk6E5/+q9hMa7B4aHUGKqiDUC6L9dC8UiiSN
yvoBv4g7F81QnmyazwYI64S6vnbr4Cqe7K/mvVqQ/vbJiugD25zY8mflRV9YAuMk
Oe7Ff/mCA+I/kqyKhJE3cf3qNhZ61FsFI886fOSvIE7g4THKqo5eGPpIQxR4mXiU
Ri2JWffTaeHr2m0sAfFeLH4VTZxfAgBkNQUEWeG6f2kDGTEKibXFRsU4+zxjn3gl
xug+9jfnKN1ceKyNlVeJJZKAfr2TiyUtrlSE5d+subIRKKBaAGgnCQDasaFAluzd
aZkOYz30PCebhN+KTrR84FySHCaxnev04jqdtVGAQEDbTvyNagFUdZFGhWijJShV
l2l4A0gFSYJmPfPVuuAwOJnnZtA1sRH9oz/Sny3+z9BKloZh+Nc/+Cu9zC8SLjaU
BF3Qv2gU9HKTJ+MSy2JrGS52cONfpO5ngFHoOMilZ1KBHrfSb1eiy32PDT+vK60Y
PFEmI8SWl7bmrO1snVUCfGaHBsHJSu5KMqwBGmM4xSRzJpyvRe493xC7+nFvqNLY
vFOFc4jGeusOXgiLPpfGduppkTGcM7sy75UMLwTSLcQbDK99mus=
=ZAPY
-----END PGP SIGNATURE-----
Merge tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/gds fixes from Dave Hansen:
"Mitigate Gather Data Sampling issue:
- Add Base GDS mitigation
- Support GDS_NO under KVM
- Fix a documentation typo"
* tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Fix backwards on/off logic about YMM support
KVM: Add GDS_NO support to KVM
x86/speculation: Add Kconfig option for GDS
x86/speculation: Add force option to GDS mitigation
x86/speculation: Add Gather Data Sampling mitigation
Drop the @offset and @multiplier params from the kvm_x86_ops hooks for
propagating TSC offsets/multipliers into hardware, and instead have the
vendor implementations pull the information directly from the vCPU
structure. The respective vCPU fields _must_ be written at the same
time in order to maintain consistent state, i.e. it's not random luck
that the value passed in by all callers is grabbed from the vCPU.
Explicitly grabbing the value from the vCPU field in SVM's implementation
in particular will allow for additional cleanup without introducing even
more subtle dependencies. Specifically, SVM can skip the WRMSR if guest
state isn't loaded, i.e. svm_prepare_switch_to_guest() will load the
correct value for the vCPU prior to entering the guest.
This also reconciles KVM's handling of related values that are stored in
the vCPU, as svm_write_tsc_offset() already assumes/requires the caller
to have updated l1_tsc_offset.
Link: https://lore.kernel.org/r/20230729011608.1065019-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Snapshot the host's MSR_IA32_ARCH_CAPABILITIES, if it's supported, instead
of reading the MSR every time KVM wants to query the host state, e.g. when
initializing the default value during vCPU creation. The paths that query
ARCH_CAPABILITIES aren't particularly performance sensitive, but creating
vCPUs is a frequent enough operation that burning 8 bytes is a good
trade-off.
Alternatively, KVM could add a field in kvm_caps and thus skip the
on-demand calculations entirely, but a pure snapshot isn't possible due to
the way KVM handles the l1tf_vmx_mitigation module param. And unlike the
other "supported" fields in kvm_caps, KVM doesn't enforce the "supported"
value, i.e. KVM treats ARCH_CAPABILITIES like a CPUID leaf and lets
userspace advertise whatever it wants. Those problems are solvable, but
it's not clear there is real benefit versus snapshotting the host value,
and grabbing the host value will allow additional cleanup of KVM's
FB_CLEAR_CTRL code.
Link: https://lore.kernel.org/all/20230524061634.54141-2-chao.gao@intel.com
Cc: Chao Gao <chao.gao@intel.com>
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230607004311.1420507-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove x86_emulate_ops::guest_has_long_mode along with its implementation,
emulator_guest_has_long_mode(). It has been unused since commit
1d0da94cda ("KVM: x86: do not go through ctxt->ops when emulating rsm").
No functional change intended.
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230718101809.1249769-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
In a spirit of using a sledgehammer to crack a nut, make sync_regs() feed
__set_sregs() and kvm_vcpu_ioctl_x86_set_vcpu_events() with kernel's own
copy of data.
Both __set_sregs() and kvm_vcpu_ioctl_x86_set_vcpu_events() assume they
have exclusive rights to structs they operate on. While this is true when
coming from an ioctl handler (caller makes a local copy of user's data),
sync_regs() breaks this contract; a pointer to a user-modifiable memory
(vcpu->run->s.regs) is provided. This can lead to a situation when incoming
data is checked and/or sanitized only to be re-set by a user thread running
in parallel.
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Fixes: 01643c51bf ("KVM: x86: KVM_CAP_SYNC_REGS")
Link: https://lore.kernel.org/r/20230728001606.2275586-2-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reject KVM_SET_SREGS{2} with -EINVAL if the incoming CR0 is invalid,
e.g. due to setting bits 63:32, illegal combinations, or to a value that
isn't allowed in VMX (non-)root mode. The VMX checks in particular are
"fun" as failure to disallow Real Mode for an L2 that is configured with
unrestricted guest disabled, when KVM itself has unrestricted guest
enabled, will result in KVM forcing VM86 mode to virtual Real Mode for
L2, but then fail to unwind the related metadata when synthesizing a
nested VM-Exit back to L1 (which has unrestricted guest enabled).
Opportunistically fix a benign typo in the prototype for is_valid_cr4().
Cc: stable@vger.kernel.org
Reported-by: syzbot+5feef0b9ee9c8e9e5689@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/000000000000f316b705fdf6e2b4@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230613203037.1968489-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Temporarily acquire kvm->srcu for read when potentially emulating WRMSR in
the VM-Exit fastpath handler, as several of the common helpers used during
emulation expect the caller to provide SRCU protection. E.g. if the guest
is counting instructions retired, KVM will query the PMU event filter when
stepping over the WRMSR.
dump_stack+0x85/0xdf
lockdep_rcu_suspicious+0x109/0x120
pmc_event_is_allowed+0x165/0x170
kvm_pmu_trigger_event+0xa5/0x190
handle_fastpath_set_msr_irqoff+0xca/0x1e0
svm_vcpu_run+0x5c3/0x7b0 [kvm_amd]
vcpu_enter_guest+0x2108/0x2580
Alternatively, check_pmu_event_filter() could acquire kvm->srcu, but this
isn't the first bug of this nature, e.g. see commit 5c30e8101e ("KVM:
SVM: Skip WRMSR fastpath on VM-Exit if next RIP isn't valid"). Providing
protection for the entirety of WRMSR emulation will allow reverting the
aforementioned commit, and will avoid having to play whack-a-mole when new
uses of SRCU-protected structures are inevitably added in common emulation
helpers.
Fixes: dfdeda67ea ("KVM: x86/pmu: Prevent the PMU from counting disallowed events")
Reported-by: Greg Thelen <gthelen@google.com>
Reported-by: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230721224337.2335137-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As was attempted commit 14717e2031 ("kvm: Conditionally register IRQ
bypass consumer"): "if we don't support a mechanism for bypassing IRQs,
don't register as a consumer. Initially this applied to AMD processors,
but when AVIC support was implemented for assigned devices,
kvm_arch_has_irq_bypass() was always returning true.
We can still skip registering the consumer where enable_apicv
or posted-interrupts capability is unsupported or globally disabled.
This eliminates meaningless dev_info()s when the connect fails
between producer and consumer", such as on Linux hosts where enable_apicv
or posted-interrupts capability is unsupported or globally disabled.
Cc: Alex Williamson <alex.williamson@redhat.com>
Reported-by: Yong He <alexyonghe@tencent.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217379
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20230724111236.76570-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The code was blindly assuming that kvm_cpu_get_interrupt never returns -1
when there is a pending interrupt.
While this should be true, a bug in KVM can still cause this.
If -1 is returned, the code before this patch was converting it to 0xFF,
and 0xFF interrupt was injected to the guest, which results in an issue
which was hard to debug.
Add WARN_ON_ONCE to catch this case and skip the injection
if this happens again.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230726135945.260841-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Gather Data Sampling (GDS) is a transient execution attack using
gather instructions from the AVX2 and AVX512 extensions. This attack
allows malicious code to infer data that was previously stored in
vector registers. Systems that are not vulnerable to GDS will set the
GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM
guests that may think they are on vulnerable systems that are, in
fact, not affected. Guests that are running on affected hosts where
the mitigation is enabled are protected as if they were running
on an unaffected system.
On all hosts that are not affected or that are mitigated, set the
GDS_NO bit.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
* Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the stage-2
fault path.
* Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
* Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
* Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
* Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
* Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
* Ensure timer IRQs are consistently released in the init failure
paths.
* Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
* Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
RISC-V:
* Redirect AMO load/store misaligned traps to KVM guest
* Trap-n-emulate AIA in-kernel irqchip for KVM guest
* Svnapot support for KVM Guest
s390:
* New uvdevice secret API
* CMM selftest and fixes
* fix racy access to target CPU for diag 9c
x86:
* Fix missing/incorrect #GP checks on ENCLS
* Use standard mmu_notifier hooks for handling APIC access page
* Drop now unnecessary TR/TSS load after VM-Exit on AMD
* Print more descriptive information about the status of SEV and SEV-ES during
module load
* Add a test for splitting and reconstituting hugepages during and after
dirty logging
* Add support for CPU pinning in demand paging test
* Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
* Add a "nx_huge_pages=never" option to effectively avoid creating NX hugepage
recovery threads (because nx_huge_pages=off can be toggled at runtime)
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups, fixes and comments
Generic:
* Miscellaneous bugfixes and cleanups
Selftests:
* Generate dependency files so that partial rebuilds work as expected
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmSgHrIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroORcAf+KkBlXwQMf+Q0Hy6Mfe0OtkKmh0Ae
6HJ6dsuMfOHhWv5kgukh+qvuGUGzHq+gpVKmZg2yP3h3cLHOLUAYMCDm+rjXyjsk
F4DbnJLfxq43Pe9PHRKFxxSecRcRYCNox0GD5UYL4PLKcH0FyfQrV+HVBK+GI8L3
FDzUcyJkR12Lcj1qf++7fsbzfOshL0AJPmidQCoc6wkLJpUEr/nYUqlI1Kx3YNuQ
LKmxFHS4l4/O/px3GKNDrLWDbrVlwciGIa3GZLS52PZdW3mAqT+cqcPcYK6SW71P
m1vE80VbNELX5q3YSRoOXtedoZ3Pk97LEmz/xQAsJ/jri0Z5Syk0Ok0m/Q==
=AMXp
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the
stage-2 fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact
with services that live in the Secure world. pKVM intervenes on
FF-A calls to guarantee the host doesn't misuse memory donated to
the hyp or a pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set
configuration from userspace, but the intent is to relax this
limitation and allow userspace to select a feature set consistent
with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the
hypervisor when running in protected mode, as the host is untrusted
at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization
Traps (FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has
broken hardware A/D state management.
RISC-V:
- Redirect AMO load/store misaligned traps to KVM guest
- Trap-n-emulate AIA in-kernel irqchip for KVM guest
- Svnapot support for KVM Guest
s390:
- New uvdevice secret API
- CMM selftest and fixes
- fix racy access to target CPU for diag 9c
x86:
- Fix missing/incorrect #GP checks on ENCLS
- Use standard mmu_notifier hooks for handling APIC access page
- Drop now unnecessary TR/TSS load after VM-Exit on AMD
- Print more descriptive information about the status of SEV and
SEV-ES during module load
- Add a test for splitting and reconstituting hugepages during and
after dirty logging
- Add support for CPU pinning in demand paging test
- Add support for AMD PerfMonV2, with a variety of cleanups and minor
fixes included along the way
- Add a "nx_huge_pages=never" option to effectively avoid creating NX
hugepage recovery threads (because nx_huge_pages=off can be toggled
at runtime)
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Add a maintainer's handbook to document KVM x86 processes,
preferred coding style, testing expectations, etc.
- Misc cleanups, fixes and comments
Generic:
- Miscellaneous bugfixes and cleanups
Selftests:
- Generate dependency files so that partial rebuilds work as
expected"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (153 commits)
Documentation/process: Add a maintainer handbook for KVM x86
Documentation/process: Add a label for the tip tree handbook's coding style
KVM: arm64: Fix misuse of KVM_ARM_VCPU_POWER_OFF bit index
RISC-V: KVM: Remove unneeded semicolon
RISC-V: KVM: Allow Svnapot extension for Guest/VM
riscv: kvm: define vcpu_sbi_ext_pmu in header
RISC-V: KVM: Expose IMSIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel virtualization of AIA IMSIC
RISC-V: KVM: Expose APLIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel emulation of AIA APLIC
RISC-V: KVM: Implement device interface for AIA irqchip
RISC-V: KVM: Skeletal in-kernel AIA irqchip support
RISC-V: KVM: Set kvm_riscv_aia_nr_hgei to zero
RISC-V: KVM: Add APLIC related defines
RISC-V: KVM: Add IMSIC related defines
RISC-V: KVM: Implement guest external interrupt line management
KVM: x86: Remove PRIx* definitions as they are solely for user space
s390/uv: Update query for secret-UVCs
s390/uv: replace scnprintf with sysfs_emit
s390/uvdevice: Add 'Lock Secret Store' UVC
...
- Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaHFgSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5twMP/15ZJFqZVigVQoATJeeR9tWUuyJe95xM
lyfnTel91Sg8XOamdwBGi7jLpaDgj34Jm0cfM7/4LbJk2/taeaCLYmJd5w9FXvaw
EkytQGO85hVNe2XuY+h+XxSIxpflKxgFuUnOwcDk2QbKgASzNSG/mJ9ZBx8PNVXD
FnyOqpbbYDFspWWvUOAI/RkHnr/dALjXJsSUMvuh3nz5e1NTyubjCAZg+/bse2nR
s8FrcSh4B0Lg0h4r2fdJ4sAiM/qWhcCIhq5svyTAcUG0T4rMS40LrosJOw3wkBRM
dyZYXy6GEENeCFJPhenF1mTE1embFyZp89PV/FCNRZXODbnM4kheJFT9gucAjlKi
ZafRcutrkYIVf4lZCMofDfQGLX/GCEJnwUPKyGygIsPoDRrdR7OLrFycON5bxocr
9NBNG+2teQFbnt5irB/bBGojtIZtu3OEylkuRjQUQ3lJYQ5r6LddarI9acIu1SHt
4rRfh8QN5qmMvVblaQzggOr6BPtmPr8QqMEMFncaUMCsV/82hRAEfvj2rifGFJNo
Axz1ajMfirxyM45WzredUkzzsbphiiegPBELCLRZfHmaEhJ8P7t7wvri0bXt9YdI
vjSfX+6ulOgDC+xAazE0gEJO4Uh5+g3Y+1e0fr43ltWzUOWdCQskzD3LE9DkqIXj
KAaCuHYbYpIZ
=MwqV
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86/pmu changes for 6.5:
- Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Fix a longstanding bug in the reporting of the number of entries returned by
KVM_GET_CPUID2
- Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaGMMSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5iDIP/0PwY3J5odTEUTnAyuDFPimd5PBt9k/O
B414wdpSKVgzq+0An4qM9mKRnklVIh2p8QqQTvDhcBUg3xb6CX9xZ4ery7hp/T5O
tr5bAXs2AYX6jpxvsopt+w+E9j6fvkJhcJCRU9im3QbrqwUE+ecyU5OHvmv2n/GO
syVZJbPOYuoLPKDjlSMrScE6fWEl9UOvHc5BK/vafTeyisMG3vv1BSmJj6GuiNNk
TS1RRIg//cOZghQyDfdXt0azTmakNZyNn35xnoX9x8SRmdRykyUjQeHmeqWxPDso
kiGO+CGancfS57S6ZtCkJjqEWZ1o/zKdOxr8MMf/3nJhv4kY7/5XtlVoACv5soW9
bZEmNiXIaSbvKNMwAlLJxHFbLa1sMdSCb345CIuMdt5QiWJ53ZiTyIAJX6+eL+Zf
8nkeekgPf5VUs6Zt0RdRPyvo+W7Vp9BtI87yDXm1nQKpbys2pt6CD3YB/oF4QViG
a5cyGoFuqRQbS3nmbshIlR7EanTuxbhLZKrNrFnolZ5e624h3Cnk2hVsfTznVGiX
vNHWM80phk1CWB9McErrZVkGfjlyVyBL13CBB2XF7Dl6PfF6/N22a9bOuTJD3tvk
PlNx4hvZm3esvvyGpjfbSajTKYE8O7rxiE1KrF0BpZ5IUl5WSiTr6XCy/yI/mIeM
hay2IWhPOF2z
=D0BH
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.5:
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double().
The cmpxchg128() family of functions is basically & functionally
the same as cmpxchg_double(), but with a saner interface: instead
of a 6-parameter horror that forced u128 - u64/u64-halves layout
details on the interface and exposed users to complexity,
fragility & bugs, use a natural 3-parameter interface with u128 types.
- Restructure the generated atomic headers, and add
kerneldoc comments for all of the generic atomic{,64,_long}_t
operations. Generated definitions are much cleaner now,
and come with documentation.
- Implement lock_set_cmp_fn() on lockdep, for defining an ordering
when taking multiple locks of the same type. This gets rid of
one use of lockdep_set_novalidate_class() in the bcache code.
- Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended
variable shadowing generating garbage code on Clang on certain
ARM builds.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSav3wRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gDyxAAjCHQjpolrre7fRpyiTDwqzIKT27H04vQ
zrQVlVc42WBnn9pe8LthGy43/RvYvqlZvLoLONA4fMkuYriM6nSMsoZjeUmE+6Rs
QAElQC74P5YvEBOa67VNY3/M7sj22ftDe7ODtVV8OrnPjMk1sQNRvaK025Cs3yig
8MAI//hHGNmyVAp1dPYZMJNqxGCvluReLZ4SaUJFCMrg7YgUXgCBj/5Gi07TlKxn
sT8BFCssoEW/B9FXkh59B1t6FBCZoSy4XSZfsZe0uVAUJ4XDEOO+zBgaWFCedNQT
wP323ryBgMrkzUKA8j2/o5d3QnMA1GcBfHNNlvAl/fOfrxWXzDZnOEY26YcaLMa0
YIuRF/JNbPZlt6DCUVBUEvMPpfNYi18dFN0rat1a6xL2L4w+tm55y3mFtSsg76Ka
r7L2nWlRrAGXnuA+VEPqkqbSWRUSWOv5hT2Mcyb5BqqZRsxBETn6G8GVAzIO6j6v
giyfUdA8Z9wmMZ7NtB6usxe3p1lXtnZ/shCE7ZHXm6xstyZrSXaHgOSgAnB9DcuJ
7KpGIhhSODQSwC/h/J0KEpb9Pr/5jCWmXAQ2DWnZK6ndt1jUfFi8pfK58wm0AuAM
o9t8Mx3o8wZjbMdt6up9OIM1HyFiMx2BSaZK+8f/bWemHQ0xwez5g4k5O5AwVOaC
x9Nt+Tp0Ze4=
=DsYj
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double()
The cmpxchg128() family of functions is basically & functionally the
same as cmpxchg_double(), but with a saner interface.
Instead of a 6-parameter horror that forced u128 - u64/u64-halves
layout details on the interface and exposed users to complexity,
fragility & bugs, use a natural 3-parameter interface with u128
types.
- Restructure the generated atomic headers, and add kerneldoc comments
for all of the generic atomic{,64,_long}_t operations.
The generated definitions are much cleaner now, and come with
documentation.
- Implement lock_set_cmp_fn() on lockdep, for defining an ordering when
taking multiple locks of the same type.
This gets rid of one use of lockdep_set_novalidate_class() in the
bcache code.
- Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended variable
shadowing generating garbage code on Clang on certain ARM builds.
* tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
locking/atomic: scripts: fix ${atomic}_dec_if_positive() kerneldoc
percpu: Fix self-assignment of __old in raw_cpu_generic_try_cmpxchg()
locking/atomic: treewide: delete arch_atomic_*() kerneldoc
locking/atomic: docs: Add atomic operations to the driver basic API documentation
locking/atomic: scripts: generate kerneldoc comments
docs: scripts: kernel-doc: accept bitwise negation like ~@var
locking/atomic: scripts: simplify raw_atomic*() definitions
locking/atomic: scripts: simplify raw_atomic_long*() definitions
locking/atomic: scripts: split pfx/name/sfx/order
locking/atomic: scripts: restructure fallback ifdeffery
locking/atomic: scripts: build raw_atomic_long*() directly
locking/atomic: treewide: use raw_atomic*_<op>()
locking/atomic: scripts: add trivial raw_atomic*_<op>()
locking/atomic: scripts: factor out order template generation
locking/atomic: scripts: remove leftover "${mult}"
locking/atomic: scripts: remove bogus order parameter
locking/atomic: xtensa: add preprocessor symbols
locking/atomic: x86: add preprocessor symbols
locking/atomic: sparc: add preprocessor symbols
locking/atomic: sh: add preprocessor symbols
...
- Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of higher-frequency
SMT cores and lower-frequency non-SMT cores), under the old code
lower-priority CPUs pulled tasks from the higher-priority cores if
more than one SMT sibling was busy - resulting in many unnecessary
task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores with more
than one busy sibling and allows lower-priority CPUs to pull tasks, which
avoids superfluous migrations and lets lower-priority cores inspect all SMT
siblings for the busiest queue.
- Implement the 'runnable boosting' feature in the EAS balancer: consider CPU
contention in frequency, EAS max util & load-balance busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves other key
workloads unchanged.
- Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it
into the build_sched_topology() helper function and building
it dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
- Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations.
- Fix task_struct::saved_state handling.
- Fix various rq clock update bugs, unearthed by turning on the rq clock
debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger by
creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
- Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation
to (maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSatWQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j62xAAuGOx1LcDfRGC6WGQzp1zOdlsVQtnDvlS
qL58zYSHgizprpVQ3j87SBaG4CHCdvd2Bo36yW0lNZS4nd203qdq7fkrMb3hPP/w
egUQUzMegf5fF6BWldKeMjuHSt+twFQz/ZAKK8iSbAir6CHNAqbNst1oL0i/+Tyk
o33hBs1hT5tnbFb1NSVZkX4k+qT3LzTW4K2QgjjGtkScr6yHh2BdEVefyigWOjdo
9s02d00ll9a2r+F5txlN7Dnw6TN7rmTXGMOJU5bZvBE90/anNiAorMXHJdEKCyUR
u9+JtBdJWiCplGa/tSRcxT16ZW1VdtTnd9q66TDhXREd2UNDFqBEyg5Wl77K4Tlf
vKFajmj/to+cTbuv6m6TVR+zyXpdEpdL6F04P44U3qiJvDobBqeDNKHHIqpmbHXl
AXUXcPWTVAzXX1Ce5M+BeAgTBQ1T7C5tELILrTNQHJvO1s9VVBRFZ/l65Ps4vu7T
wIZ781IFuopk0zWqHovNvgKrJ7oFmOQQZFttQEe8n6nafkjI7u+IZ8FayiGaUMRr
4GawFGUCEdYh8z9qyslGKe8Q/Rphfk6hxMFRYUJpDmubQ0PkMeDjDGq77jDGl1PF
VqwSDEyOaBJs7Gqf/mem00JtzBmXhkhm1SEjggHMI2IQbr/eeBXoLQOn3CDapO/N
PiDbtX760ic=
=EWQA
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of
higher-frequency SMT cores and lower-frequency non-SMT cores),
under the old code lower-priority CPUs pulled tasks from the
higher-priority cores if more than one SMT sibling was busy -
resulting in many unnecessary task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores
with more than one busy sibling and allows lower-priority CPUs
to pull tasks, which avoids superfluous migrations and lets
lower-priority cores inspect all SMT siblings for the busiest
queue.
- Implement the 'runnable boosting' feature in the EAS balancer:
consider CPU contention in frequency, EAS max util & load-balance
busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves
other key workloads unchanged.
Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it into
the build_sched_topology() helper function and building it
dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations
- Fix task_struct::saved_state handling
- Fix various rq clock update bugs, unearthed by turning on the rq
clock debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger
by creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or
CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation to
(maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings"
* tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop()
sched/core: Fixed missing rq clock update before calling set_rq_offline()
sched/deadline: Update GRUB description in the documentation
sched/deadline: Fix bandwidth reclaim equation in GRUB
sched/wait: Fix a kthread_park race with wait_woken()
sched/topology: Mark set_sched_topology() __init
sched/fair: Rename variable cpu_util eff_util
arm64/arch_timer: Fix MMIO byteswap
sched/fair, cpufreq: Introduce 'runnable boosting'
sched/fair: Refactor CPU utilization functions
cpuidle: Use local_clock_noinstr()
sched/clock: Provide local_clock_noinstr()
x86/tsc: Provide sched_clock_noinstr()
clocksource: hyper-v: Provide noinstr sched_clock()
clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX
x86/vdso: Fix gettimeofday masking
math64: Always inline u128 version of mul_u64_u64_shr()
s390/time: Provide sched_clock_noinstr()
loongarch: Provide noinstr sched_clock_read()
...
Refresh comments about msrs_to_save, emulated_msrs, and msr_based_features
to remove stale references left behind by commit 2374b7310b (KVM:
x86/pmu: Use separate array for defining "PMU MSRs to save"), and to
better reflect the current reality, e.g. emulated_msrs is no longer just
for MSRs that are "kvm-specific".
Reported-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230607004636.1421424-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
If AMD Performance Monitoring Version 2 (PerfMonV2) is detected by
the guest, it can use a new scheme to manage the Core PMCs using the
new global control and status registers.
In addition to benefiting from the PerfMonV2 functionality in the same
way as the host (higher precision), the guest also can reduce the number
of vm-exits by lowering the total number of MSRs accesses.
In terms of implementation details, amd_is_valid_msr() is resurrected
since three newly added MSRs could not be mapped to one vPMC.
The possibility of emulating PerfMonV2 on the mainframe has also
been eliminated for reasons of precision.
Co-developed-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: drop "Based on the observed HW." comments]
Link: https://lore.kernel.org/r/20230603011058.1038821-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
As test_bit() returns bool, explicitly converting result to bool is
unnecessary. Get rid of '!!'.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230605200158.118109-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Replace an #ifdef on CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS with a
cpu_feature_enabled() check on X86_FEATURE_PKU. The macro magic of
DISABLED_MASK_BIT_SET() means that cpu_feature_enabled() provides the
same end result (no code generated) when PKU is disabled by Kconfig.
No functional change intended.
Cc: Jon Kohler <jon@nutanix.com>
Reviewed-by: Jon Kohler <jon@nutanix.com>
Link: https://lore.kernel.org/r/20230602010550.785722-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM honors past and in-progress mmu_notifier invalidations when
reloading the APIC-access page, use KVM's "standard" invalidation hooks
to trigger a reload and delete the one-off usage of invalidate_range().
Aside from eliminating one-off code in KVM, dropping KVM's use of
invalidate_range() will allow common mmu_notifier to redefine the API to
be more strictly focused on invalidating secondary TLBs that share the
primary MMU's page tables.
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230602011518.787006-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
There is no VMENTER_L1D_FLUSH_NESTED_VM. It should be
ARCH_CAP_SKIP_VMENTRY_L1DFLUSH.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230524061634.54141-3-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently hv_read_tsc_page_tsc() (ab)uses the (valid) time value of
U64_MAX as an error return. This breaks the clean wrap-around of the
clock.
Modify the function signature to return a boolean state and provide
another u64 pointer to store the actual time on success. This obviates
the need to steal one time value and restores the full counter width.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.775630881@infradead.org
Now that we have raw_atomic*_<op>() definitions, there's no need to use
arch_atomic*_<op>() definitions outside of the low-level atomic
definitions.
Move treewide users of arch_atomic*_<op>() over to the equivalent
raw_atomic*_<op>().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230605070124.3741859-19-mark.rutland@arm.com
Increment vcpu->stat.exits when handling a fastpath VM-Exit without
going through any part of the "slow" path. Not bumping the exits stat
can result in wildly misleading exit counts, e.g. if the primary reason
the guest is exiting is to program the TSC deadline timer.
Fixes: 404d5d7bff ("KVM: X86: Introduce more exit_fastpath_completion enum values")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230602011920.787844-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the common check-and-set handling of PAT MSR writes out of vendor
code and into kvm_set_msr_common(). This aligns writes with reads, which
are already handled in common code, i.e. makes the handling of reads and
writes symmetrical in common code.
Alternatively, the common handling in kvm_get_msr_common() could be moved
to vendor code, but duplicating code is generally undesirable (even though
the duplicatated code is trivial in this case), and guest writes to PAT
should be rare, i.e. the overhead of the extra function call is a
non-issue in practice.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop handling of MSR_IA32_CR_PAT from mtrr.c now that SVM and VMX handle
writes without bouncing through kvm_set_msr_common(). PAT isn't truly an
MTRR even though it affects memory types, and more importantly KVM enables
hardware virtualization of guest PAT (by NOT setting "ignore guest PAT")
when a guest has non-coherent DMA, i.e. KVM doesn't need to zap SPTEs when
the guest PAT changes.
The read path is and always has been trivial, i.e. burying it in the MTRR
code does more harm than good.
WARN and continue for the PAT case in kvm_set_msr_common(), as that code
is _currently_ reached if and only if KVM is buggy. Defer cleaning up the
lack of symmetry between the read and write paths to a future patch.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the MTRR macros to identify the ranges of possible MTRR MSRs instead
of bounding the ranges with a mismash of open coded values and unrelated
MSR indices. Carving out the gap for the machine check MSRs in particular
is confusing, as it's easy to incorrectly think the case statement handles
MCE MSRs instead of skipping them.
Drop the range-based funneling of MSRs between the end of the MCE MSRs
and MTRR_DEF_TYPE, i.e. 0x2A0-0x2FF, and instead handle MTTR_DEF_TYPE as
the one-off case that it is.
Extract PAT (0x277) as well in anticipation of dropping PAT "handling"
from the MTRR code.
Keep the range-based handling for the variable+fixed MTRRs even though
capturing unknown MSRs 0x214-0x24F is arguably "wrong". There is a gap in
the fixed MTRRs, 0x260-0x267, i.e. the MTRR code needs to filter out
unknown MSRs anyways, and using a single range generates marginally better
code for the big switch statement.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add MSR_IA32_TSX_CTRL into msrs_to_save[] to explicitly tell userspace to
save/restore the register value during migration. Missing this may cause
userspace that relies on KVM ioctl(KVM_GET_MSR_INDEX_LIST) fail to port the
value to the target VM.
In addition, there is no need to add MSR_IA32_TSX_CTRL when
ARCH_CAP_TSX_CTRL_MSR is not supported in kvm_get_arch_capabilities(). So
add the checking in kvm_probe_msr_to_save().
Fixes: c11f83e062 ("KVM: vmx: implement MSR_IA32_TSX_CTRL disable RTM functionality")
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20230509032348.1153070-1-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* More phys_to_virt conversions
* Improvement of AP management for VSIE (nested virtualization)
ARM64:
* Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
* New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
* Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
* A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
* The usual selftest fixes and improvements.
KVM x86 changes for 6.4:
* Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
* Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
* Move AMD_PSFD to cpufeatures.h and purge KVM's definition
* Avoid unnecessary writes+flushes when the guest is only adding new PTEs
* Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations
when emulating invalidations
* Clean up the range-based flushing APIs
* Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
* Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
* Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
* Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, similar to CPUID features
* Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES
* Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
x86 AMD:
* Add support for virtual NMIs
* Fixes for edge cases related to virtual interrupts
x86 Intel:
* Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
* Fix a bug in emulation of ENCLS in compatibility mode
* Allow emulation of NOP and PAUSE for L2
* AMX selftests improvements
* Misc cleanups
MIPS:
* Constify MIPS's internal callbacks (a leftover from the hardware enabling
rework that landed in 6.3)
Generic:
* Drop unnecessary casts from "void *" throughout kvm_main.c
* Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct
size by 8 bytes on 64-bit kernels by utilizing a padding hole
Documentation:
* Fix goof introduced by the conversion to rST
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32
Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI
WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC
huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY
XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb
j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw==
=S2Hq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"s390:
- More phys_to_virt conversions
- Improvement of AP management for VSIE (nested virtualization)
ARM64:
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features being
moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one. This
last part allows the NV timer code to be implemented on top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
x86:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is
enabled, and by giving the guest control of CR0.WP when EPT is
enabled on VMX (VMX-only because SVM doesn't support per-bit
controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long"
return as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Avoid unnecessary writes+flushes when the guest is only adding new
PTEs
- Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s
optimizations when emulating invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a
single A/D bit using a LOCK AND instead of XCHG, and skip all of
the "handle changed SPTE" overhead associated with writing the
entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid
having to walk (potentially) all descriptors during insertion and
deletion, which gets quite expensive if the guest is spamming
fork()
- Disallow virtualizing legacy LBRs if architectural LBRs are
available, the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably
PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features
- Overhaul the vmx_pmu_caps selftest to better validate
PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- AMD SVM:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Intel AMX:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if
XTILE_DATA is not being reported due to userspace not opting in
via prctl()
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- AMX selftests improvements
- Misc cleanups
MIPS:
- Constify MIPS's internal callbacks (a leftover from the hardware
enabling rework that landed in 6.3)
Generic:
- Drop unnecessary casts from "void *" throughout kvm_main.c
- Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the
struct size by 8 bytes on 64-bit kernels by utilizing a padding
hole
Documentation:
- Fix goof introduced by the conversion to rST"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits)
KVM: s390: pci: fix virtual-physical confusion on module unload/load
KVM: s390: vsie: clarifications on setting the APCB
KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA
KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state
KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init()
KVM: selftests: Test the PMU event "Instructions retired"
KVM: selftests: Copy full counter values from guest in PMU event filter test
KVM: selftests: Use error codes to signal errors in PMU event filter test
KVM: selftests: Print detailed info in PMU event filter asserts
KVM: selftests: Add helpers for PMC asserts in PMU event filter test
KVM: selftests: Add a common helper for the PMU event filter guest code
KVM: selftests: Fix spelling mistake "perrmited" -> "permitted"
KVM: arm64: vhe: Drop extra isb() on guest exit
KVM: arm64: vhe: Synchronise with page table walker on MMU update
KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
KVM: arm64: nvhe: Synchronise with page table walker on TLBI
KVM: arm64: Handle 32bit CNTPCTSS traps
KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
KVM: arm64: vgic: Don't acquire its_lock before config_lock
KVM: selftests: Add test to verify KVM's supported XCR0
...
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some
major architectures it's not even consistently available.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK438RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jJ5Q/5AZ0HGpyqwdFK8GmGznyu5qjP5HwV9pPq
gZQScqSy4tZEeza4TFMi83CoXSg9uJ7GlYJqqQMKm78LGEPomnZtXXC7oWvTA9M5
M/jAvzytmvZloSCXV6kK7jzSejMHhag97J/BjTYhZYQpJ9T+hNC87XO6J6COsKr9
lPIYqkFrIkQNr6B0U11AQfFejRYP1ics2fnbnZL86G/zZAc6x8EveM3KgSer2iHl
KbrO+xcYyGY8Ef9P2F72HhEGFfM3WslpT1yzqR3sm4Y+fuMG0oW3qOQuMJx0ZhxT
AloterY0uo6gJwI0P9k/K4klWgz81Tf/zLb0eBAtY2uJV9Fo3YhPHuZC7jGPGAy3
JusW2yNYqc8erHVEMAKDUsl/1KN4TE2uKlkZy98wno+KOoMufK5MA2e2kPPqXvUi
Jk9RvFolnWUsexaPmCftti0OCv3YFiviVAJ/t0pchfmvvJA2da0VC9hzmEXpLJVF
25nBTV/1uAOrWvOpCyo3ElrC2CkQVkFmK5rXMDdvf6ib0Nid4vFcCkCSLVfu+ePB
11mi7QYro+CcnOug1K+yKogUDmsZgV/u1kUwgQzTIpZ05Kkb49gUiXw9L2RGcBJh
yoDoiI66KPR7PWQ2qBdQoXug4zfEEtWG0O9HNLB0FFRC3hu7I+HHyiUkBWs9jasK
PA5+V7HcQRk=
=Wp7f
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGuLISHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5NOMQAKy1Od54yzQsIKyAZZJVfOEm7N5VLQgz
+jLilXgHd8dm/g0g/KVCDPFoZ/ut2Tf5Dn4WwyoPWOpgGsOyTwdDIJabf9rustkA
goZFcfUXz+P1nangTidrj6CFYgGmVS13Uu//H19X4bSzT+YifVevJ4QkRVElj9Mh
VBUeXppC/gMGBZ9tKEzl+AU3FwJ58cB88q4boovBFYiDdciv/fF86t02Lc+dCIX1
6hTcOAnjAcp3eJY0wPQJUAEScufDKcMf6tSrsB/yWXv9KB9ANXFNXry8/+lW/Ux/
oOUmUVdRXrrsRUqtYk9+KuMoIN7CL1SBV0RCm5ApqwqwnTVdHS+odHU3c2s7E/uU
QXIW4vwSne3W9Y4YApDgFjwDwmzY85dvblWlWBnR2LW2I3Or48xK+S8LpWG+lj6l
EDf7RzeqAipJ1qUq6qDYJlyg/YsyYlcoErtra423skg38HBWxQXdqkVIz3SYdKjA
0OcBQIRI28KzJDn1gU6P3Q0Wr/cKsx9EGy6+jWBhf4Yf3eHP7+3WUTrg/Up0q8ny
0j/+cbe5kBb6k2T9y2X6jm6TVbPV5FyMBOF/UxmqEbRLmxXjBe8tMnFwV+qN871I
gk5HTSIkX39GU9kNA3h5HoWjdNeRfhazKR9ZVrELVc1zjHnGLthXBPZbIAUsPPMx
vgM6jf8NwLXZ
=9xNX
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.4:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Don't advertisze XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
- Overhaul the AMX selftests to improve coverage and cleanup the test
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGt50SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5MskP/2PhSrdgHxCwfpqpdVe/q5OWwFuhn3wG
f5QKMpEBg4wJFeIE3eGJEaDlg776nWtWDNgUmqdjoZ8vyyadkPX9CV2Y2Hq0M7Tw
d0gKPjQrz2BavyDYoPNfs4pfshs4EvDTswBkhdAt8KTZhGZosJOywQIp61V3ePqr
1rDP6C4+CmwTRAK0f7egslyJ2pZXiUcvhITvzx8XhIAQh6nEK4gUZ/l3hLmg38kD
Af23kiLnP8lHUUx4BQtRAnTw0SZXJ8DcKtoFkzEH8mdj4g6EqXpxy48zuyZcqWVi
4XIFr+WECPsV5gdqWN9rMDqIG2ib+2heKDmcdUptcVuvr1ktv0reQybmgVck4CKX
fTAdu86/LBaQmIHwNHaNFPwdUby4QQZ8ajafPC62oc+B6N1lQg8bbCwnvO6KGlGl
FaQTnzaZq7ft4tfQRXOMu1AbLZLK7dIqJHHhxR3MkBkd4MAcZ1bVKkvlJLqsOKNw
TEsreXErY7AsegZK73Rn4IN/CJGBof5bZ2NIchmiN+0UfMsd9zGn66Als6oRNh4E
tRUhFONPIEmydy9UB50qe6b98ElB6R++opZbvkVW2hy8lMy3iJrCvUbOs1nx3wbn
cxvIuTfw/dAFf70S03/zudf7lYHs2wKV1rrIAebyTd4NnvWdVB8OaSHgZswMgVjb
UzzQfnQ+u9so
=BY10
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-selftests-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM selftests, and an AMX/XCR0 bugfix, for 6.4:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
- Overhaul the AMX selftests to improve coverage and cleanup the test
- Misc cleanups
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGtd4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Z9kP/i3WZ40hevvQvB/5cEpxxmxYDwCYnnjM
hiQgK5jT4SrMTmVjLgkNdI2PogQoS4CX+GC7lcA9bvse84hjuPvgOflb2B+p2UQi
Ytbr9g/tfKNIpnKIk9mcPcSObN9vm2Kgt7n28rtPrHWj89eQzgc66eijqdpKBLxA
c3crVR8krwYAQK0tmzHq1+H6hB369YbHAHyTTRRI/bNWnqKblnvUbt0NL2aBusa9
rNMaOdRtinLpy2dmuX/b3japRB8QTnlf7zpPIF4cBEhbYXy5woClZpf1D2fCA6Er
XFbEoYawMVd9UeJYbW4z5yErLT83eYoGp4U0eFXWp6fvh8nZlgCGvBKE9g4mmqwj
aSLaTR5eVN2qlw6jXVeg3unCo8Eyl36AwYwve2L6sFmBvZvNV5iz2eQ7rrOe4oE3
dnTUaLQ8I2SVg04MbYmCq5W+frTL/I7kqNpbccL1Z3R5WO4y5gz63mug6NfLIvhR
t45TAIaifxBfcXQsBZM3v2KUK/xQrD3AbJmFKh54L2CKqiGaNWsMLX+6NZ7LZWgf
8rEqsVkkQDgF7z8eXai4TR26nYfSX6g9gDqtOH73L87aJ7PJk5cRoDWQ1sWs1e/l
4HA/L0Bo/3pnKAa0ZWxJOixmzqY49gNQf3dj8gt3jk3y2ijbAivshiSpPBmIxn0u
QLeOf/LGvipl
=m18F
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.4:
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
- Tweak FNAME(sync_spte) to avoid unnecessary writes+flushes when the
guest is only adding new PTEs
- Overhaul .sync_page() and .invlpg() to share the .sync_page()
implementation, i.e. utilize .sync_page()'s optimizations when emulating
invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGsvASHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5XnoP/0D8rQmrA0xPHK81zYS1E71tsR/itO/T
CQMSB4PhEqvcRUaWOuhLBRUW+noWzaOkjkMYK2uoPTdtme7v9+Ar7EtfrWYHrBWD
IxHCAymo3a5dQPUc3Nb77u6HjRAOokPSqSz5jE4qAjlniW09feruro2Phi+BTme4
JjxTc/7Oh0Fu26+mK7mJHiw3fV1x3YznnnRPrKGrVQes5L6ozNICkUZ6nvuJUVMk
lTNHNQbG8PqJZnfWG7VIKRn1vdfXwEfnvyucGVEqFfPLkOXqJHyqMVmIOtvsH7C5
l8j36+lBZwtFh2jk2EsXOTb6sS7l1MSvyHLlbaJaqqffP+77Hf1n0fROur0k9Yse
jJJejJWxZ/SvjMt/bOA+4ybGafZH0lt20DsDWnat5GSQ1EVT1CInN2p8OY8pdecR
QOJBqnNUOykC7/Pyad+IxTxwrOSNCYh+5aYG8AdGquZvNUEwjffVJqrmxDvklY8Z
DTYwGKgNY7NsP/dV0WYYElsAuHiKwiDZL15KftiQebO1fPcZDpTzDo83/8UMfGxh
yegngcNX9Qi7lWtLkUMy8A99UvejM0QrS/Zt8v1zjlQ8PjreZLLBWsNpe0ufIMRk
31ZAC2OS4Koi3wZ54tA7Z1Kh11meGhAk5Ti7sNke0rDqB9UMmj6UKw121cSRvW7q
W6O4U3YeGpKx
=zb4u
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 MMU changes for 6.4:
- Tweak FNAME(sync_spte) to avoid unnecessary writes+flushes when the
guest is only adding new PTEs
- Overhaul .sync_page() and .invlpg() to share the .sync_page()
implementation, i.e. utilize .sync_page()'s optimizations when emulating
invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
- Misc cleanups
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGr2sSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5b80P/2ayACpc7iV2DysXkrxOdn1JmMu9BeHd
3oMb7bydf79LMNAO+NKPqVjo74yZ/Lh8UyufJGgF3HnSCdumx5Iklyx6/2PUHu/I
8xT1H7VlIGQMcNy0G4hMus34ZcafJl4y+BXgMEqEErLcy3n598UvFGJ+C0/4lnux
2Gk7dLASHq/mVVKReBM/kD4RhCVy5Venz6zkk9KbwDLHAmfejVK5bSqDYAnO1WtV
IBWetxlVyMZCnfPV2drhzgNVwiHvYvCaMBW+cUk5cH8Z2r0VZVDERmc1D4/rd04t
xs9lMk6CdNU7REQfblA0xMgeO/dNAXq5Fs4FfcM8OTBZU32KKafPhgW1uj2Sv+9l
nbb1XxZ7C0EcBhKVbUD6zRl05vjHwxlRgoi0yWUqERthFKNXHV42JJgaNn4fxDYS
tOBKBNkM9z6tCGN2aZv6GwhsEyY2y7oLdbZUGK9/FM3mF1VBASms1BTwokJXTxCD
pkOpAGeN5hxOlC4/wl6iHJTrz9oaJUj5E5kMD1oK6oQJgnnfqH0kVTG/ui/OUtJg
8N3amYO/d7InFvuE0f9R6TqZVhTN2QefHmNJaEldsmYp1NMI8Ep8JIhQKRA2LZVE
CGRxyrPj5CESerAItAI6tshEre5W8aScEzhpmd6HgHmahhQJsCEj+3q/J8FPWLG/
iQ3GnggrklfU
=qj7D
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.4:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Misc cleanups
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmRCZIwPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDoZ8P/ioXAdDbAE4hTuyD2YdKJ3IGWN3pg52Z7xc2
rBXXFrbK9+n9FEc3AVdHoGsRPDP0Ynl+apj+aB0Klr/Fl0KKqac+W0ARX9rn1mI1
HjeygFPaGnXjMUp0BjeSLS+g3b0gebELJ6R1QEe1/MIPb8Se7M1y3ZpMWdhe0PPL
vyzw3LZq2OAlLgWKZhAfhh03qdr2kqJxypYs6nMrcexfn8dXT78dsYKW1nXmqKcE
61Gg23MDPUoexYpUhm+ym5t8hltoI1di8faPmxEpaFzpSDyAg8V5vo6LiW9jn3cf
RX0Sikk1laiRAhVbbIFCKC148vFyKxum3scpKyb91Qc+sK1kmIcxvEqlc6SfG9je
+5ndZwAfXtW6SMSOyX8y5fXbee7M0sx3n3le9BNgwXfmLWg/GHXJ544dJgVIlf/e
0Z+8QnP1IUDfARR/b2FlW7A7XLzNHQzO379ekcAdUptbGwlS9CrW6SJ83QR7K6fB
bh0aSSELKsD7pX8wnNyNACvmz2zL12ITlDKdZWUr8MSxyTjgVy7s0BDsQT3sbrA1
1sH++RvUWfC2k7tVT3vjZFzUDlPw3bnZmo5YMWRTMbXEdr1V5rDw5F5IXit13KeT
8bk0hnJgnLmyoX2A17v5dkFMIKD7p13tqDRdfFcn0ru63HIKxgkS3ITkDmsAQELK
DHT7RBE0
=Bhta
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.4
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
Add a helper, kvm_get_filtered_xcr0(), to dedup code that needs to account
for XCR0 features that require explicit opt-in on a per-process basis. In
addition to documenting when KVM should/shouldn't consult
xstate_get_guest_group_perm(), the helper will also allow sanitizing the
filtered XCR0 to avoid enumerating architecturally illegal XCR0 values,
e.g. XTILE_CFG without XTILE_DATA.
No functional changes intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
[sean: rename helper, move to x86.h, massage changelog]
Reviewed-by: Aaron Lewis <aaronlewis@google.com>
Tested-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20230405004520.421768-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM disallows changing feature MSRs, i.e. PERF_CAPABILITIES,
after running a vCPU, WARN and bug the VM if the PMU is refreshed after
the vCPU has run.
Note, KVM has disallowed CPUID updates after running a vCPU since commit
feb627e8d6 ("KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN"), i.e.
PERF_CAPABILITIES was the only remaining way to trigger a PMU refresh
after KVM_RUN.
Cc: Like Xu <like.xu.linux@gmail.com>
Link: https://lore.kernel.org/r/20230311004618.920745-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disallow writes to feature MSRs after KVM_RUN to prevent userspace from
changing the vCPU model after running the vCPU. Similar to guest CPUID,
KVM uses feature MSRs to configure intercepts, determine what operations
are/aren't allowed, etc. Changing the capabilities while the vCPU is
active will at best yield unpredictable guest behavior, and at worst
could be dangerous to KVM.
Allow writing the current value, e.g. so that userspace can blindly set
all MSRs when emulating RESET, and unconditionally allow writes to
MSR_IA32_UCODE_REV so that userspace can emulate patch loads.
Special case the VMX MSRs to keep the generic list small, i.e. so that
KVM can do a linear walk of the generic list without incurring meaningful
overhead.
Cc: Like Xu <like.xu.linux@gmail.com>
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add VMX MSRs to the runtime list of feature MSRs by iterating over the
range of emulated MSRs instead of manually defining each MSR in the "all"
list. Using the range definition reduces the cost of emulating a new VMX
MSR, e.g. prevents forgetting to add an MSR to the list.
Extracting the VMX MSRs from the "all" list, which is a compile-time
constant, also shrinks the list to the point where the compiler can
heavily optimize code that iterates over the list.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename kvm_init_msr_list() to kvm_init_msr_lists() to clarify that it
initializes multiple lists: MSRs to save, emulated MSRs, and feature MSRs.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Virtualize FLUSH_L1D so that the guest can use the performant L1D flush
if one of the many mitigations might require a flush in the guest, e.g.
Linux provides an option to flush the L1D when switching mms.
Passthrough MSR_IA32_FLUSH_CMD for write when it's supported in hardware
and exposed to the guest, i.e. always let the guest write it directly if
FLUSH_L1D is fully supported.
Forward writes to hardware in host context on the off chance that KVM
ends up emulating a WRMSR, or in the really unlikely scenario where
userspace wants to force a flush. Restrict these forwarded WRMSRs to
the known command out of an abundance of caution. Passing through the
MSR means the guest can throw any and all values at hardware, but doing
so in host context is arguably a bit more dangerous.
Link: https://lkml.kernel.org/r/CALMp9eTt3xzAEoQ038bJQ9LN0ZOXrSWsN7xnNUD%2B0SS%3DWwF7Pg%40mail.gmail.com
Link: https://lore.kernel.org/all/20230201132905.549148-2-eesposit@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322011440.2195485-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dedup the handling of MSR_IA32_PRED_CMD across VMX and SVM by moving the
logic to kvm_set_msr_common(). Now that the MSR interception toggling is
handled as part of setting guest CPUID, the VMX and SVM paths are
identical.
Opportunistically massage the code to make it a wee bit denser.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230322011440.2195485-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
smatch reports
arch/x86/kvm/x86.c:199:20: warning: symbol
'mitigate_smt_rsb' was not declared. Should it be static?
This variable is only used in one file so it should be static.
Signed-off-by: Tom Rix <trix@redhat.com>
Link: https://lore.kernel.org/r/20230404010141.1913667-1-trix@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The 'longmode' field is a bit annoying as it blows an entire __u32 to
represent a boolean value. Since other architectures are looking to add
support for KVM_EXIT_HYPERCALL, now is probably a good time to clean it
up.
Redefine the field (and the remaining padding) as a set of flags.
Preserve the existing ABI by using bit 0 to indicate if the guest was in
long mode and requiring that the remaining 31 bits must be zero.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230404154050.2270077-2-oliver.upton@linux.dev
When introduced, IRQFD resampling worked on POWER8 with XICS. However
KVM on POWER9 has never implemented it - the compatibility mode code
("XICS-on-XIVE") misses the kvm_notify_acked_irq() call and the native
XIVE mode does not handle INTx in KVM at all.
This moved the capability support advertising to platforms and stops
advertising it on XIVE, i.e. POWER9 and later.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Anup Patel <anup@brainfault.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20220504074807.3616813-1-aik@ozlabs.ru>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When injecting an exception into a vCPU in Real Mode, suppress the error
code by clearing the flag that tracks whether the error code is valid, not
by clearing the error code itself. The "typo" was introduced by recent
fix for SVM's funky Paged Real Mode.
Opportunistically hoist the logic above the tracepoint so that the trace
is coherent with respect to what is actually injected (this was also the
behavior prior to the buggy commit).
Fixes: b97f074583 ("KVM: x86: determine if an exception has an error code only when injecting it.")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322143300.2209476-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear vcpu->mmio_needed when injecting an exception from the emulator to
squash a (legitimate) warning about vcpu->mmio_needed being true at the
start of KVM_RUN without a callback being registered to complete the
userspace MMIO exit. Suppressing the MMIO write exit is inarguably wrong
from an architectural perspective, but it is the least awful hack-a-fix
due to shortcomings in KVM's uAPI, not to mention that KVM already
suppresses MMIO writes in this scenario.
Outside of REP string instructions, KVM doesn't provide a way to resume
an instruction at the exact point where it was "interrupted" if said
instruction partially completed before encountering an MMIO access. For
MMIO reads, KVM immediately exits to userspace upon detecting MMIO as
userspace provides the to-be-read value in a buffer, and so KVM can safely
(more or less) restart the instruction from the beginning. When the
emulator re-encounters the MMIO read, KVM will service the MMIO by getting
the value from the buffer instead of exiting to userspace, i.e. KVM won't
put the vCPU into an infinite loop.
On an emulated MMIO write, KVM finishes the instruction before exiting to
userspace, as exiting immediately would ultimately hang the vCPU due to
the aforementioned shortcoming of KVM not being able to resume emulation
in the middle of an instruction.
For the vast majority of _emulated_ instructions, deferring the userspace
exit doesn't cause problems as very few x86 instructions (again ignoring
string operations) generate multiple writes. But for instructions that
generate multiple writes, e.g. PUSHA (multiple pushes onto the stack),
deferring the exit effectively results in only the final write triggering
an exit to userspace. KVM does support multiple MMIO "fragments", but
only for page splits; if an instruction performs multiple distinct MMIO
writes, the number of fragments gets reset when the next MMIO write comes
along and any previous MMIO writes are dropped.
Circling back to the warning, if a deferred MMIO write coincides with an
exception, e.g. in this case a #SS due to PUSHA underflowing the stack
after queueing a write to an MMIO page on a previous push, KVM injects
the exceptions and leaves the deferred MMIO pending without registering a
callback, thus triggering the splat.
Sweep the problem under the proverbial rug as dropping MMIO writes is not
unique to the exception scenario (see above), i.e. instructions like PUSHA
are fundamentally broken with respect to MMIO, and have been since KVM's
inception.
Reported-by: zhangjianguo <zhangjianguo18@huawei.com>
Reported-by: syzbot+760a73552f47a8cd0fd9@syzkaller.appspotmail.com
Reported-by: syzbot+8accb43ddc6bd1f5713a@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322141220.2206241-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To be able to trace invocations of smp_send_reschedule(), rename the
arch-specific definitions of it to arch_smp_send_reschedule() and wrap it
into an smp_send_reschedule() that contains a tracepoint.
Changes to include the declaration of the tracepoint were driven by the
following coccinelle script:
@func_use@
@@
smp_send_reschedule(...);
@include@
@@
#include <trace/events/ipi.h>
@no_include depends on func_use && !include@
@@
#include <...>
+
+ #include <trace/events/ipi.h>
[csky bits]
[riscv bits]
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230307143558.294354-6-vschneid@redhat.com
If !guest_cpuid_has(vcpu, X86_FEATURE_PCID), CR4.PCIDE would have been in
vcpu->arch.cr4_guest_rsvd_bits and failed earlier kvm_is_valid_cr4() check.
Remove this meaningless check.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Fixes: 4683d758f4 ("KVM: x86: Supplement __cr4_reserved_bits() with X86_FEATURE_PCID check")
Link: https://lore.kernel.org/r/20230308072936.1293101-1-robert.hu@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add support for SVM's Virtual NMIs implementation, which adds proper
tracking of virtual NMI blocking, and an intr_ctrl flag that software can
set to mark a virtual NMI as pending. Pending virtual NMIs are serviced
by hardware if/when virtual NMIs become unblocked, i.e. act more or less
like real NMIs.
Introduce two new kvm_x86_ops callbacks so to support SVM's vNMI, as KVM
needs to treat a pending vNMI as partially injected. Specifically, if
two NMIs (for L1) arrive concurrently in KVM's software model, KVM's ABI
is to inject one and pend the other. Without vNMI, KVM manually tracks
the pending NMI and uses NMI windows to detect when the NMI should be
injected.
With vNMI, the pending NMI is simply stuffed into the VMCB and handed
off to hardware. This means that KVM needs to be able to set a vNMI
pending on-demand, and also query if a vNMI is pending, e.g. to honor the
"at most one NMI pending" rule and to preserve all NMIs across save and
restore.
Warn if KVM attempts to open an NMI window when vNMI is fully enabled,
as the above logic should prevent KVM from ever getting to
kvm_check_and_inject_events() with two NMIs pending _in software_, and
the "at most one NMI pending" logic should prevent having an NMI pending
in hardware and an NMI pending in software if NMIs are also blocked, i.e.
if KVM can't immediately inject the second NMI.
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Co-developed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230227084016.3368-11-santosh.shukla@amd.com
[sean: rewrite shortlog and changelog, massage code comments]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the asynchronous NMI queue to handle pending NMIs coming in from
userspace during KVM_SET_VCPU_EVENTS so that all of KVM's logic for
handling multiple NMIs goes through process_nmi(). This will simplify
supporting SVM's upcoming "virtual NMI" functionality, which will need
changes KVM manages pending NMIs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Save all pending NMIs in KVM_GET_VCPU_EVENTS, and queue KVM_REQ_NMI if one
or more NMIs are pending after KVM_SET_VCPU_EVENTS in order to re-evaluate
pending NMIs with respect to NMI blocking.
KVM allows multiple NMIs to be pending in order to faithfully emulate bare
metal handling of simultaneous NMIs (on bare metal, truly simultaneous
NMIs are impossible, i.e. one will always arrive first and be consumed).
Support for simultaneous NMIs botched the save/restore though. KVM only
saves one pending NMI, but allows userspace to restore 255 pending NMIs
as kvm_vcpu_events.nmi.pending is a u8, and KVM's internal state is stored
in an unsigned int.
Fixes: 7460fb4a34 ("KVM: Fix simultaneous NMIs")
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-8-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tweak the code and comment that deals with concurrent NMIs to explicitly
call out that x86 allows exactly one pending NMI, but that KVM needs to
temporarily allow two pending NMIs in order to workaround the fact that
the target vCPU cannot immediately recognize an incoming NMI, unlike bare
metal.
No functional change intended.
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-7-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't raise KVM_REQ_EVENT if no NMIs are pending at the end of
process_nmi(). Finishing process_nmi() without a pending NMI will become
much more likely when KVM gains support for AMD's vNMI, which allows
pending vNMIs in hardware, i.e. doesn't require explicit injection.
Signed-off-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20230227084016.3368-6-santosh.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add helpers to check if a specific CR0/CR4 bit is set to avoid a plethora
of implicit casts from the "unsigned long" return of kvm_read_cr*_bits(),
and to make each caller's intent more obvious.
Defer converting helpers that do truly ugly casts from "unsigned long" to
"int", e.g. is_pse(), to a future commit so that their conversion is more
isolated.
Opportunistically drop the superfluous pcid_enabled from kvm_set_cr3();
the local variable is used only once, immediately after its declaration.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-2-binbin.wu@linux.intel.com
[sean: move "obvious" conversions to this commit, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
If paging is disabled, there are no permission bits to emulate.
Micro-optimize this case to avoid unnecessary work.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-4-minipli@grsecurity.net
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
There is no need to unload the MMU roots with TDP enabled when only
CR0.WP has changed -- the paging structures are still valid, only the
permission bitmap needs to be updated.
One heavy user of toggling CR0.WP is grsecurity's KERNEXEC feature to
implement kernel W^X.
The optimization brings a huge performance gain for this case as the
following micro-benchmark running 'ssdd 10 50000' from rt-tests[1] on a
grsecurity L1 VM shows (runtime in seconds, lower is better):
legacy TDP shadow
kvm-x86/next@d8708b 8.43s 9.45s 70.3s
+patch 5.39s 5.63s 70.2s
For legacy MMU this is ~36% faster, for TDP MMU even ~40% faster. Also
TDP and legacy MMU now both have a similar runtime which vanishes the
need to disable TDP MMU for grsecurity.
Shadow MMU sees no measurable difference and is still slow, as expected.
[1] https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-3-minipli@grsecurity.net
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
The @root_hpa for kvm_mmu_invalidate_addr() is called with @mmu->root.hpa
or INVALID_PAGE where @mmu->root.hpa is to invalidate gva for the current
root (the same meaning as KVM_MMU_ROOT_CURRENT) and INVALID_PAGE is to
invalidate gva for all roots (the same meaning as KVM_MMU_ROOTS_ALL).
Change the argument type of kvm_mmu_invalidate_addr() and use
KVM_MMU_ROOT_XXX instead so that we can reuse the function for
kvm_mmu_invpcid_gva() and nested_ept_invalidate_addr() for invalidating
gva for different set of roots.
No fuctionalities changed.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-9-jiangshanlai@gmail.com
[sean: massage comment slightly]
Signed-off-by: Sean Christopherson <seanjc@google.com>
FNAME(invlpg)() and kvm_mmu_invalidate_gva() take a gva_t, i.e. unsigned
long, as the type of the address to invalidate. On 32-bit kernels, the
upper 32 bits of the GPA will get dropped when an L2 GPA address is
invalidated in the shadowed nested TDP MMU.
Convert it to u64 to fix the problem.
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-2-jiangshanlai@gmail.com
[sean: tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
All kvm_arch_vm_ioctl() implementations now only deal with "int"
types as return values, so we can change the return type of these
functions to use "int" instead of "long".
Signed-off-by: Thomas Huth <thuth@redhat.com>
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20230208140105.655814-7-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_GET_NR_MMU_PAGES ioctl is quite questionable on 64-bit hosts
since it fails to return the full 64 bits of the value that can be
set with the corresponding KVM_SET_NR_MMU_PAGES call. Its "long" return
value is truncated into an "int" in the kvm_arch_vm_ioctl() function.
Since this ioctl also never has been used by userspace applications
(QEMU, Google's internal VMM, kvmtool and CrosVM have been checked),
it's likely the best if we remove this badly designed ioctl before
anybody really tries to use it.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230208140105.655814-4-thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use a new EMULTYPE flag, EMULTYPE_WRITE_PF_TO_SP, to track page faults
on self-changing writes to shadowed page tables instead of propagating
that information to the emulator via a semi-persistent vCPU flag. Using
a flag in "struct kvm_vcpu_arch" is confusing, especially as implemented,
as it's not at all obvious that clearing the flag only when emulation
actually occurs is correct.
E.g. if KVM sets the flag and then retries the fault without ever getting
to the emulator, the flag will be left set for future calls into the
emulator. But because the flag is consumed if and only if both
EMULTYPE_PF and EMULTYPE_ALLOW_RETRY_PF are set, and because
EMULTYPE_ALLOW_RETRY_PF is deliberately not set for direct MMUs, emulated
MMIO, or while L2 is active, KVM avoids false positives on a stale flag
since FNAME(page_fault) is guaranteed to be run and refresh the flag
before it's ultimately consumed by the tail end of reexecute_instruction().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Two patches sorting out confusion between virtual and physical
addresses, which currently are the same on s390.
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world,
some of them affecting architecurally legal but unlikely to
happen in practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at this
point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just
let the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how
to do initialization.
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
the correct hypercall instruction instead of relying on KVM to patch
in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
/WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
=goe1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
where possible, when supporting a debug registers swap feature for
SEV-ES guests
- Add support for AMD's version of eIBRS called Automatic IBRS which is
a set-and-forget control of indirect branch restriction speculation
resources on privilege change
- Add support for a new x86 instruction - LKGS - Load kernel GS which is
part of the FRED infrastructure
- Reset SPEC_CTRL upon init to accomodate use cases like kexec which
rediscover
- Other smaller fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmP1RDIACgkQEsHwGGHe
VUohBw//ZB9ZRqsrKdm6D9YaP2x4Zb+kqKqo6rjYeWaYqyPyCwDujPwh+pb3Oq1t
aj62muDv1t/wEJc8mKNkfXkjEEtBVAOcpb5YIpKreoEvNKyevol83Ih0u5iJcTRE
E5qf8HDS8b/JZrcazJJLl6WQmQNH5RiKSu5bbCpRhoeOcyo5pRYR5MztK9vNmAQk
GMdwHsUSU+jN8uiE4HnpaOb/luhgFindRwZVTpdjJegQWLABS8cl3CKeTv4+PW45
isvv37XnQP248wsptIEVRHeG6g3g/HtvwRx7DikUw06QwUyUK7H9hJssOoSP8TL9
u4psRwfWnJ1OxU6klL+s0Ii+pjQ97wXmK/oqK7QkdUwhWqR/mQAW2e9kWHAngyDn
A6mKbzSM6HFAeSXQpB9cMb6uvYRD44SngDFe3WXtEK8jiiQ70ikUm4E28I5KJOPg
s+RyioHk0NFRHYSOOBqNG1NKz6ED7L3GbgbbzxkgMh21AAyI3X351t+PtGoLV5ew
eqOsM7lbg9Scg1LvPk1JcoALS8USWqgar397rz9qGUs+OkPWBtEBCmTdMz/Eb+2t
g/WHdLS5/ajSs5gNhT99W3DeqZMPDEkgBRSeyBBmY3CUD3gBL2wXEktRXv504zBR
RC4oyUPX3c9E2ib6GATLE3kBLbcz9hTWbMxF+X3lLJvTVd/Qc2o=
=v/ZC
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Cache the AMD debug registers in per-CPU variables to avoid MSR
writes where possible, when supporting a debug registers swap feature
for SEV-ES guests
- Add support for AMD's version of eIBRS called Automatic IBRS which is
a set-and-forget control of indirect branch restriction speculation
resources on privilege change
- Add support for a new x86 instruction - LKGS - Load kernel GS which
is part of the FRED infrastructure
- Reset SPEC_CTRL upon init to accomodate use cases like kexec which
rediscover
- Other smaller fixes and cleanups
* tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/amd: Cache debug register values in percpu variables
KVM: x86: Propagate the AMD Automatic IBRS feature to the guest
x86/cpu: Support AMD Automatic IBRS
x86/cpu, kvm: Add the SMM_CTL MSR not present feature
x86/cpu, kvm: Add the Null Selector Clears Base feature
x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf
x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature
KVM: x86: Move open-coded CPUID leaf 0x80000021 EAX bit propagation code
x86/cpu, kvm: Add support for CPUID_80000021_EAX
x86/gsseg: Add the new <asm/gsseg.h> header to <asm/asm-prototypes.h>
x86/gsseg: Use the LKGS instruction if available for load_gs_index()
x86/gsseg: Move load_gs_index() to its own new header file
x86/gsseg: Make asm_load_gs_index() take an u16
x86/opcode: Add the LKGS instruction to x86-opcode-map
x86/cpufeature: Add the CPU feature bit for LKGS
x86/bugs: Reset speculation control settings on init
x86/cpu: Remove redundant extern x86_read_arch_cap_msr()
When calling the KVM_GET_DEBUGREGS ioctl, on some configurations, there
might be some unitialized portions of the kvm_debugregs structure that
could be copied to userspace. Prevent this as is done in the other kvm
ioctls, by setting the whole structure to 0 before copying anything into
it.
Bonus is that this reduces the lines of code as the explicit flag
setting and reserved space zeroing out can be removed.
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <x86@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: stable <stable@kernel.org>
Reported-by: Xingyuan Mo <hdthky0@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Message-Id: <20230214103304.3689213-1-gregkh@linuxfoundation.org>
Tested-by: Xingyuan Mo <hdthky0@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move the SVM-specific "host flags" into vcpu_svm (extracted from the
vNMI enabling series)
- A handful for fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmPsH7kSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5/dQQAJSVCYA7F7LcfJf+c1ULG0XCd8rHnXdR
EGTygTnWrzwTCRaunOBPE4AJRxKdkwTKy+yfnnQVRdYYfRe1SZKpUQ2XNEDGn0+v
zVfOmSFFcCWXmJeY8y5n1GlDH4ENO3G7nD1ncDQ0I9PazmOsmxChoVZ9afFJ5bpo
73hjcYVfUDYxGkeRLWSSSFtWIGguE8BkpRH3wZ8MGZi+ueoFUJPPBKHeDtxCV2/T
KcJLne8tQVTiWCdMO3EFwxgIvsjQDoT0gZYLYNHJ6KqD9Szc3jA9v2ryTm5IYlpb
akYUqePaD0SGrrfDBrwz3bLu3fehDu7eduXESRlzzb8S4xP7/qXeo9KeVN+b4MBb
nmBBFncvMWbC8Po5wB5OVAfAa7ACmGiXeBV8pfgGI6FTq1fpc4VNm2PevKkDvlqN
O2eZ1KuNkwBnbIPj3JVPPnsJcUjYXFjZyzfpMV1T+ExmL/IYceatX4S7zfgL5nUg
3qFi5mX2Cufk2EBvBu+Dkpt/H4lze+ysZRciMC+v7Q4LWAYZ8HW1a44pnBVUJMPM
bWiJ1/O8RIWM1tWIrlO38+ZZalbu3spIVMBXKzqEGXvpUwJ4UgZM1tFiWvISTVFe
2X6N3d7aT/DQ1PzZU6BsyVZWAFaodHBauMcr9FUkWqqGu3HOhqC4rSJZ9eRR7V5O
WSp1gTVY1JXy
=AVpx
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.3' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.3:
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move the SVM-specific "host flags" into vcpu_svm (extracted from the
vNMI enabling series)
- A handful for fixes and cleanups
- Add support for created masked events for the PMU filter to allow
userspace to heavily restrict what events the guest can use without
needing to create an absurd number of events
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel SPR
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmPsFZ4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5eKEP/0qeZsOQot53wkf+wNiGh1X6qDacBPFP
A8GAPC70fEisxAt776DeKEBwikHpARPglCt1Il9dFvkG+0jgYpvPu8UGF1LpouKX
cD/7itr2k8GZlXZBg2Rgu3TRyFBJEGHT6tAu7PBhZyL6yWQDUxao8FPFrRGfmJ7O
Z6eFMo1cERNHICQm+W/2TBd1xguiF+m4CXKlA70R4wzM37aPF9o5HvmIwAvPzyhU
w4WzcIQbjVPs1VpBTzwPqRmyZ8omSlDYo7VqmsDiRtJbucqgbhFI2wR+nyImFCa9
D2pI5TV3CFTt0fvd8SZpH19nR3S6cMLCXONOsijmvR2BmS3PhJMP4dMm5m4R06nF
RBtnTj9fkbeL1ghFEkMxHBZVTG3bBlO4ySOxIqNHCvPjqQ37mJ+xP4C8kcIC9p5F
+xL3AvZ7zenPv3A29SY9YH+QvZLBwyDJzAsveLeYkLFoJxoDT4glOY/Wpi1rkZ17
/zHDZWoF49l1Eu3Bql0hFetkCreUNFGpa4moUmEC0evYOvV2WCb+39TDXZ8CPCGD
+cDiRnD8MFQpBw47F03EnFheFHxiJoL0Clv5vvM3C+xOq2J9WVG9mqQWCk+4ta2B
Um4D++0a9lwvJhOImaR7uyiV3K7oVm+rU8+46x+nTNGaIP2bnE+vronY+b6KGeUx
7+xzTKlYygGe
=ev5v
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.3' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.3:
- Add support for created masked events for the PMU filter to allow
userspace to heavily restrict what events the guest can use without
needing to create an absurd number of events
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel SPR
By default, KVM/SVM will intercept attempts by the guest to transition
out of C0. However, the KVM_CAP_X86_DISABLE_EXITS capability can be used
by a VMM to change this behavior. To mitigate the cross-thread return
address predictions bug (X86_BUG_SMT_RSB), a VMM must not be allowed to
override the default behavior to intercept C0 transitions.
Use a module parameter to control the mitigation on processors that are
vulnerable to X86_BUG_SMT_RSB. If the processor is vulnerable to the
X86_BUG_SMT_RSB bug and the module parameter is set to mitigate the bug,
KVM will not allow the disabling of the HLT, MWAIT and CSTATE exits.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <4019348b5e07148eb4d593380a5f6713b93c9a16.1675956146.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As of commit bccf2150fe ("KVM: Per-vcpu inodes"), __msr_io() doesn't
return a negative value. Remove unnecessary checks.
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230107001256.2365304-7-mhal@rbox.co
[sean: call out commit which left behind the unnecessary check]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Replace `1` with the actual mutex_is_locked() check.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230107001256.2365304-5-mhal@rbox.co
[sean: delete the comment that explained the hardocded '1']
Signed-off-by: Sean Christopherson <seanjc@google.com>
Replace srcu_dereference()+rcu_assign_pointer() sequence with
a single rcu_replace_pointer().
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230107001256.2365304-4-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reduce time spent holding kvm->lock: unlock mutex before calling
synchronize_srcu(). There is no need to hold kvm->lock until all vCPUs
have been kicked, KVM only needs to guarantee that all vCPUs will switch
to the new filter before exiting to userspace.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230107001256.2365304-3-mhal@rbox.co
[sean: expand changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Instead of re-defining the "host flags" bits, just expose dedicated
helpers for each of the two remaining flags that are consumed by the
emulator. The emulator never consumes both "is guest" and "is SMM" in
close proximity, so there is no motivation to avoid additional indirect
branches.
Also while at it, garbage collect the recently removed host flags.
No functional change is intended.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20221129193717.513824-6-mlevitsk@redhat.com
[sean: fix CONFIG_KVM_SMM=n builds, tweak names of wrappers]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Provide "error" semantics (read zeros, drop writes) for userspace accesses
to MSRs that are ultimately unsupported for whatever reason, but for which
KVM told userspace to save and restore the MSR, i.e. for MSRs that KVM
included in KVM_GET_MSR_INDEX_LIST.
Previously, KVM special cased a few PMU MSRs that were problematic at one
point or another. Extend the treatment to all PMU MSRs, e.g. to avoid
spurious unsupported accesses.
Note, the logic can also be used for non-PMU MSRs, but as of today only
PMU MSRs can end up being unsupported after KVM told userspace to save and
restore them.
Link: https://lore.kernel.org/r/20230124234905.3774678-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Limit the set of MSRs for fixed PMU counters based on the number of fixed
counters actually supported by the host so that userspace doesn't waste
time saving and restoring dummy values.
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: split for !enable_pmu logic, drop min(), write changelog]
Link: https://lore.kernel.org/r/20230124234905.3774678-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Omit all PMU MSRs from the "MSRs to save" list if the PMU is disabled so
that userspace doesn't waste time saving and restoring dummy values. KVM
provides "error" semantics (read zeros, drop writes) for such known-but-
unsupported MSRs, i.e. has fudged around this issue for quite some time.
Keep the "error" semantics as-is for now, the logic will be cleaned up in
a separate patch.
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Weijiang Yang <weijiang.yang@intel.com>
Link: https://lore.kernel.org/r/20230124234905.3774678-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move all potential to-be-saved PMU MSRs into a separate array so that a
future patch can easily omit all PMU MSRs from the list when the PMU is
disabled.
No functional change intended.
Link: https://lore.kernel.org/r/20230124234905.3774678-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add helpers to print unimplemented MSR accesses and condition all such
prints on report_ignored_msrs, i.e. honor userspace's request to not
print unimplemented MSRs. Even though vcpu_unimpl() is ratelimited,
printing can still be problematic, e.g. if a print gets stalled when host
userspace is writing MSRs during live migration, an effective stall can
result in very noticeable disruption in the guest.
E.g. the profile below was taken while calling KVM_SET_MSRS on the PMU
counters while the PMU was disabled in KVM.
- 99.75% 0.00% [.] __ioctl
- __ioctl
- 99.74% entry_SYSCALL_64_after_hwframe
do_syscall_64
sys_ioctl
- do_vfs_ioctl
- 92.48% kvm_vcpu_ioctl
- kvm_arch_vcpu_ioctl
- 85.12% kvm_set_msr_ignored_check
svm_set_msr
kvm_set_msr_common
printk
vprintk_func
vprintk_default
vprintk_emit
console_unlock
call_console_drivers
univ8250_console_write
serial8250_console_write
uart_console_write
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230124234905.3774678-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Limit kvm_pmu_cap.num_counters_gp during kvm_init_pmu_capability() based
on the vendor PMU capabilities so that consuming num_counters_gp naturally
does the right thing. This fixes a mostly theoretical bug where KVM could
over-report its PMU support in KVM_GET_SUPPORTED_CPUID for leaf 0xA, e.g.
if the number of counters reported by perf is greater than KVM's
hardcoded internal limit. Incorporating input from the AMD PMU also
avoids over-reporting MSRs to save when running on AMD.
Link: https://lore.kernel.org/r/20230124234905.3774678-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add the AMD Automatic IBRS feature bit to those being propagated to the guest,
and enable the guest EFER bit.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-9-kim.phillips@amd.com
Avoid type casts that are needed for IS_ERR() and use
IS_ERR_VALUE() instead.
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Link: https://lore.kernel.org/r/202211161718436948912@zte.com.cn
Signed-off-by: Sean Christopherson <seanjc@google.com>
When building a list of filter events, it can sometimes be a challenge
to fit all the events needed to adequately restrict the guest into the
limited space available in the pmu event filter. This stems from the
fact that the pmu event filter requires each event (i.e. event select +
unit mask) be listed, when the intention might be to restrict the
event select all together, regardless of it's unit mask. Instead of
increasing the number of filter events in the pmu event filter, add a
new encoding that is able to do a more generalized match on the unit mask.
Introduce masked events as another encoding the pmu event filter
understands. Masked events has the fields: mask, match, and exclude.
When filtering based on these events, the mask is applied to the guest's
unit mask to see if it matches the match value (i.e. umask & mask ==
match). The exclude bit can then be used to exclude events from that
match. E.g. for a given event select, if it's easier to say which unit
mask values shouldn't be filtered, a masked event can be set up to match
all possible unit mask values, then another masked event can be set up to
match the unit mask values that shouldn't be filtered.
Userspace can query to see if this feature exists by looking for the
capability, KVM_CAP_PMU_EVENT_MASKED_EVENTS.
This feature is enabled by setting the flags field in the pmu event
filter to KVM_PMU_EVENT_FLAG_MASKED_EVENTS.
Events can be encoded by using KVM_PMU_ENCODE_MASKED_ENTRY().
It is an error to have a bit set outside the valid bits for a masked
event, and calls to KVM_SET_PMU_EVENT_FILTER will return -EINVAL in
such cases, including the high bits of the event select (35:32) if
called on Intel.
With these updates the filter matching code has been updated to match on
a common event. Masked events were flexible enough to handle both event
types, so they were used as the common event. This changes how guest
events get filtered because regardless of the type of event used in the
uAPI, they will be converted to masked events. Because of this there
could be a slight performance hit because instead of matching the filter
event with a lookup on event select + unit mask, it does a lookup on event
select then walks the unit masks to find the match. This shouldn't be a
big problem because I would expect the set of common event selects to be
small, and if they aren't the set can likely be reduced by using masked
events to generalize the unit mask. Using one type of event when
filtering guest events allows for a common code path to be used.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20221220161236.555143-5-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The scaling information in subleaf 1 should match the values set by KVM in
the 'vcpu_info' sub-structure 'time_info' (a.k.a. pvclock_vcpu_time_info)
which is shared with the guest, but is not directly available to the VMM.
The offset values are not set since a TSC offset is already applied.
The TSC frequency should also be set in sub-leaf 2.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230106103600.528-3-pdurrant@amazon.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop cpu_dirty_logging_count in favor of nr_memslots_dirty_logging.
Both fields count the number of memslots that have dirty-logging enabled,
with the only difference being that cpu_dirty_logging_count is only
incremented when using PML. So while nr_memslots_dirty_logging is not a
direct replacement for cpu_dirty_logging_count, it can be combined with
enable_pml to get the same information.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230105214303.2919415-1-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The first half or so patches fix semi-urgent, real-world relevant APICv
and AVIC bugs.
The second half fixes a variety of AVIC and optimized APIC map bugs
where KVM doesn't play nice with various edge cases that are
architecturally legal(ish), but are unlikely to occur in most real world
scenarios
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the per-vendor required APICv inhibits with a variable instead of
calling into vendor code every time KVM wants to query the set of
required inhibits. The required inhibits are a property of the vendor's
virtualization architecture, i.e. are 100% static.
Using a variable allows the compiler to inline the check, e.g. generate
a single-uop TEST+Jcc, and thus eliminates any desire to avoid checking
inhibits for performance reasons.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Free the APIC access page memslot if any vCPU enables x2APIC and SVM's
AVIC is enabled to prevent accesses to the virtual APIC on vCPUs with
x2APIC enabled. On AMD, if its "hybrid" mode is enabled (AVIC is enabled
when x2APIC is enabled even without x2AVIC support), keeping the APIC
access page memslot results in the guest being able to access the virtual
APIC page as x2APIC is fully emulated by KVM. I.e. hardware isn't aware
that the guest is operating in x2APIC mode.
Exempt nested SVM's update of APICv state from the new logic as x2APIC
can't be toggled on VM-Exit. In practice, invoking the x2APIC logic
should be harmless precisely because it should be a glorified nop, but
play it safe to avoid latent bugs, e.g. with dropping the vCPU's SRCU
lock.
Intel doesn't suffer from the same issue as APICv has fully independent
VMCS controls for xAPIC vs. x2APIC virtualization. Technically, KVM
should provide bus error semantics and not memory semantics for the APIC
page when x2APIC is enabled, but KVM already provides memory semantics in
other scenarios, e.g. if APICv/AVIC is enabled and the APIC is hardware
disabled (via APIC_BASE MSR).
Note, checking apic_access_memslot_enabled without taking locks relies
it being set during vCPU creation (before kvm_vcpu_reset()). vCPUs can
race to set the inhibit and delete the memslot, i.e. can get false
positives, but can't get false negatives as apic_access_memslot_enabled
can't be toggled "on" once any vCPU reaches KVM_RUN.
Opportunistically drop the "can" while updating avic_activate_vmcb()'s
comment, i.e. to state that KVM _does_ support the hybrid mode. Move
the "Note:" down a line to conform to preferred kernel/KVM multi-line
comment style.
Opportunistically update the apicv_update_lock comment, as it isn't
actually used to protect apic_access_memslot_enabled (which is protected
by slots_lock).
Fixes: 0e311d33bf ("KVM: SVM: Introduce hybrid-AVIC mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable CPU hotplug when enabling/disabling hardware to prevent the
corner case where if the following sequence occurs:
1. A hotplugged CPU marks itself online in cpu_online_mask
2. The hotplugged CPU enables interrupt before invoking KVM's ONLINE
callback
3 hardware_{en,dis}able_all() is invoked on another CPU
the hotplugged CPU will be included in on_each_cpu() and thus get sent
through hardware_{en,dis}able_nolock() before kvm_online_cpu() is called.
start_secondary { ...
set_cpu_online(smp_processor_id(), true); <- 1
...
local_irq_enable(); <- 2
...
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); <- 3
}
KVM currently fudges around this race by keeping track of which CPUs have
done hardware enabling (see commit 1b6c016818 "KVM: Keep track of which
cpus have virtualization enabled"), but that's an inefficient, convoluted,
and hacky solution.
Signed-off-by: Chao Gao <chao.gao@intel.com>
[sean: split to separate patch, write changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The CPU STARTING section doesn't allow callbacks to fail. Move KVM's
hotplug callback to ONLINE section so that it can abort onlining a CPU in
certain cases to avoid potentially breaking VMs running on existing CPUs.
For example, when KVM fails to enable hardware virtualization on the
hotplugged CPU.
Place KVM's hotplug state before CPUHP_AP_SCHED_WAIT_EMPTY as it ensures
when offlining a CPU, all user tasks and non-pinned kernel tasks have left
the CPU, i.e. there cannot be a vCPU task around. So, it is safe for KVM's
CPU offline callback to disable hardware virtualization at that point.
Likewise, KVM's online callback can enable hardware virtualization before
any vCPU task gets a chance to run on hotplugged CPUs.
Drop kvm_x86_check_processor_compatibility()'s WARN that IRQs are
disabled, as the ONLINE section runs with IRQs disabled. The WARN wasn't
intended to be a requirement, e.g. disabling preemption is sufficient,
the IRQ thing was purely an aggressive sanity check since the helper was
only ever invoked via SMP function call.
Rename KVM's CPU hotplug callbacks accordingly.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
[sean: drop WARN that IRQs are disabled]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do compatibility checks when enabling hardware to effectively add
compatibility checks when onlining a CPU. Abort enabling, i.e. the
online process, if the (hotplugged) CPU is incompatible with the known
good setup.
At init time, KVM does compatibility checks to ensure that all online
CPUs support hardware virtualization and a common set of features. But
KVM uses hotplugged CPUs without such compatibility checks. On Intel
CPUs, this leads to #GP if the hotplugged CPU doesn't support VMX, or
VM-Entry failure if the hotplugged CPU doesn't support all features
enabled by KVM.
Note, this is little more than a NOP on SVM, as SVM already checks for
full SVM support during hardware enabling.
Opportunistically add a pr_err() if setup_vmcs_config() fails, and
tweak all error messages to output which CPU failed.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the .check_processor_compatibility() callback from kvm_x86_init_ops
to kvm_x86_ops to allow a future patch to do compatibility checks during
CPU hotplug.
Do kvm_ops_update() before compat checks so that static_call() can be
used during compat checks.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do basic VMX/SVM support checks directly in vendor code instead of
implementing them via kvm_x86_ops hooks. Beyond the superficial benefit
of providing common messages, which isn't even clearly a net positive
since vendor code can provide more precise/detailed messages, there's
zero advantage to bouncing through common x86 code.
Consolidating the checks will also simplify performing the checks
across all CPUs (in a future patch).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_arch_check_processor_compat() and its support code now that all
architecture implementations are nops.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Eric Farman <farman@linux.ibm.com> # s390
Acked-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the CPU compatibility checks to pure x86 code, i.e. drop x86's use
of the common kvm_x86_check_cpu_compat() arch hook. x86 is the only
architecture that "needs" to do per-CPU compatibility checks, moving
the logic to x86 will allow dropping the common code, and will also
give x86 more control over when/how the compatibility checks are
performed, e.g. TDX will need to enable hardware (do VMXON) in order to
perform compatibility checks.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_arch_init() and kvm_arch_exit() now that all implementations
are nops.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Eric Farman <farman@linux.ibm.com> # s390
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20221130230934.1014142-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acquire a new mutex, vendor_module_lock, in kvm_x86_vendor_init() while
doing hardware setup to ensure that concurrent calls are fully serialized.
KVM rejects attempts to load vendor modules if a different module has
already been loaded, but doesn't handle the case where multiple vendor
modules are loaded at the same time, and module_init() doesn't run under
the global module_mutex.
Note, in practice, this is likely a benign bug as no platform exists that
supports both SVM and VMX, i.e. barring a weird VM setup, one of the
vendor modules is guaranteed to fail a support check before modifying
common KVM state.
Alternatively, KVM could perform an atomic CMPXCHG on .hardware_enable,
but that comes with its own ugliness as it would require setting
.hardware_enable before success is guaranteed, e.g. attempting to load
the "wrong" could result in spurious failure to load the "right" module.
Introduce a new mutex as using kvm_lock is extremely deadlock prone due
to kvm_lock being taken under cpus_write_lock(), and in the future, under
under cpus_read_lock(). Any operation that takes cpus_read_lock() while
holding kvm_lock would potentially deadlock, e.g. kvm_timer_init() takes
cpus_read_lock() to register a callback. In theory, KVM could avoid
such problematic paths, i.e. do less setup under kvm_lock, but avoiding
all calls to cpus_read_lock() is subtly difficult and thus fragile. E.g.
updating static calls also acquires cpus_read_lock().
Inverting the lock ordering, i.e. always taking kvm_lock outside
cpus_read_lock(), is not a viable option as kvm_lock is taken in various
callbacks that may be invoked under cpus_read_lock(), e.g. x86's
kvmclock_cpufreq_notifier().
The lockdep splat below is dependent on future patches to take
cpus_read_lock() in hardware_enable_all(), but as above, deadlock is
already is already possible.
======================================================
WARNING: possible circular locking dependency detected
6.0.0-smp--7ec93244f194-init2 #27 Tainted: G O
------------------------------------------------------
stable/251833 is trying to acquire lock:
ffffffffc097ea28 (kvm_lock){+.+.}-{3:3}, at: hardware_enable_all+0x1f/0xc0 [kvm]
but task is already holding lock:
ffffffffa2456828 (cpu_hotplug_lock){++++}-{0:0}, at: hardware_enable_all+0xf/0xc0 [kvm]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (cpu_hotplug_lock){++++}-{0:0}:
cpus_read_lock+0x2a/0xa0
__cpuhp_setup_state+0x2b/0x60
__kvm_x86_vendor_init+0x16a/0x1870 [kvm]
kvm_x86_vendor_init+0x23/0x40 [kvm]
0xffffffffc0a4d02b
do_one_initcall+0x110/0x200
do_init_module+0x4f/0x250
load_module+0x1730/0x18f0
__se_sys_finit_module+0xca/0x100
__x64_sys_finit_module+0x1d/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (kvm_lock){+.+.}-{3:3}:
__lock_acquire+0x16f4/0x30d0
lock_acquire+0xb2/0x190
__mutex_lock+0x98/0x6f0
mutex_lock_nested+0x1b/0x20
hardware_enable_all+0x1f/0xc0 [kvm]
kvm_dev_ioctl+0x45e/0x930 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(cpu_hotplug_lock);
lock(kvm_lock);
lock(cpu_hotplug_lock);
lock(kvm_lock);
*** DEADLOCK ***
1 lock held by stable/251833:
#0: ffffffffa2456828 (cpu_hotplug_lock){++++}-{0:0}, at: hardware_enable_all+0xf/0xc0 [kvm]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the guts of kvm_arch_init() to a new helper, kvm_x86_vendor_init(),
so that VMX can do _all_ arch and vendor initialization before calling
kvm_init(). Calling kvm_init() must be the _very_ last step during init,
as kvm_init() exposes /dev/kvm to userspace, i.e. allows creating VMs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_arch_hardware_setup() and kvm_arch_hardware_unsetup() now that
all implementations are nops.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Eric Farman <farman@linux.ibm.com> # s390
Acked-by: Anup Patel <anup@brainfault.org>
Message-Id: <20221130230934.1014142-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that kvm_arch_hardware_setup() is called immediately after
kvm_arch_init(), fold the guts of kvm_arch_hardware_(un)setup() into
kvm_arch_{init,exit}() as a step towards dropping one of the hooks.
To avoid having to unwind various setup, e.g registration of several
notifiers, slot in the vendor hardware setup before the registration of
said notifiers and callbacks. Introducing a functional change while
moving code is less than ideal, but the alternative is adding a pile of
unwinding code, which is much more error prone, e.g. several attempts to
move the setup code verbatim all introduced bugs.
Add a comment to document that kvm_ops_update() is effectively the point
of no return, e.g. it sets the kvm_x86_ops.hardware_enable canary and so
needs to be unwound.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_arch_init()'s call to kvm_timer_init() down a few lines below
the XCR0 configuration code. A future patch will move hardware setup
into kvm_arch_init() and slot in vendor hardware setup before the call
to kvm_timer_init() so that timer initialization (among other stuff)
doesn't need to be unwound if vendor setup fails. XCR0 setup on the
other hand needs to happen before vendor hardware setup.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* Change tdp_mmu to a read-only parameter
* Separate TDP and shadow MMU page fault paths
* Enable Hyper-V invariant TSC control
selftests:
* Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Normally, genuine Hyper-V doesn't expose architectural invariant TSC
(CPUID.80000007H:EDX[8]) to its guests by default. A special PV MSR
(HV_X64_MSR_TSC_INVARIANT_CONTROL, 0x40000118) and corresponding CPUID
feature bit (CPUID.0x40000003.EAX[15]) were introduced. When bit 0 of the
PV MSR is set, invariant TSC bit starts to show up in CPUID. When the
feature is exposed to Hyper-V guests, reenlightenment becomes unneeded.
Add the feature to KVM. Keep CPUID output intact when the feature
wasn't exposed to L1 and implement the required logic for hiding
invariant TSC when the feature was exposed and invariant TSC control
MSR wasn't written to. Copy genuine Hyper-V behavior and forbid to
disable the feature once it was enabled.
For the reference, for linux guests, support for the feature was added
in commit dce7cd6275 ("x86/hyperv: Allow guests to enable InvariantTSC").
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221013095849.705943-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* several fixes to nested VMX execution controls
* fixes and clarification to the documentation for Xen emulation
* do not unnecessarily release a pmu event with zero period
* MMU fixes
* fix Coverity warning in kvm_hv_flush_tlb()
selftests:
* fixes for the ucall mechanism in selftests
* other fixes mostly related to compilation with clang
Normally, genuine Hyper-V doesn't expose architectural invariant TSC
(CPUID.80000007H:EDX[8]) to its guests by default. A special PV MSR
(HV_X64_MSR_TSC_INVARIANT_CONTROL, 0x40000118) and corresponding CPUID
feature bit (CPUID.0x40000003.EAX[15]) were introduced. When bit 0 of the
PV MSR is set, invariant TSC bit starts to show up in CPUID. When the
feature is exposed to Hyper-V guests, reenlightenment becomes unneeded.
Add the feature to KVM. Keep CPUID output intact when the feature
wasn't exposed to L1 and implement the required logic for hiding
invariant TSC when the feature was exposed and invariant TSC control
MSR wasn't written to. Copy genuine Hyper-V behavior and forbid to
disable the feature once it was enabled.
For the reference, for linux guests, support for the feature was added
in commit dce7cd6275 ("x86/hyperv: Allow guests to enable InvariantTSC").
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221013095849.705943-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a sanity check in kvm_handle_memory_failure() to assert that a valid
x86_exception structure is provided if the memory "failure" wants to
propagate a fault into the guest. If a memory failure happens during a
direct guest physical memory access, e.g. for nested VMX, KVM hardcodes
the failure to X86EMUL_IO_NEEDED and doesn't provide an exception pointer
(because the exception struct would just be filled with garbage).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221220153427.514032-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
* Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
* Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option,
which multi-process VMMs such as crosvm rely on (see merge commit 382b5b87a9:
"Fix a number of issues with MTE, such as races on the tags being
initialised vs the PG_mte_tagged flag as well as the lack of support
for VM_SHARED when KVM is involved. Patches from Catalin Marinas and
Peter Collingbourne").
* Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
* Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
* Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
* Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
* Second batch of the lazy destroy patches
* First batch of KVM changes for kernel virtual != physical address support
* Removal of a unused function
x86:
* Allow compiling out SMM support
* Cleanup and documentation of SMM state save area format
* Preserve interrupt shadow in SMM state save area
* Respond to generic signals during slow page faults
* Fixes and optimizations for the non-executable huge page errata fix.
* Reprogram all performance counters on PMU filter change
* Cleanups to Hyper-V emulation and tests
* Process Hyper-V TLB flushes from a nested guest (i.e. from a L2 guest
running on top of a L1 Hyper-V hypervisor)
* Advertise several new Intel features
* x86 Xen-for-KVM:
** Allow the Xen runstate information to cross a page boundary
** Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
** Add support for 32-bit guests in SCHEDOP_poll
* Notable x86 fixes and cleanups:
** One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
** Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
** Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
** Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
** Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
** Advertise (on AMD) that the SMM_CTL MSR is not supported
** Remove unnecessary exports
Generic:
* Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
* Add support for pinning vCPUs in dirty_log_perf_test.
* Rename the so called "perf_util" framework to "memstress".
* Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress tests.
* Add a common ucall implementation; code dedup and pre-work for running
SEV (and beyond) guests in selftests.
* Provide a common constructor and arch hook, which will eventually be
used by x86 to automatically select the right hypercall (AMD vs. Intel).
* A bunch of added/enabled/fixed selftests for ARM64, covering memslots,
breakpoints, stage-2 faults and access tracking.
* x86-specific selftest changes:
** Clean up x86's page table management.
** Clean up and enhance the "smaller maxphyaddr" test, and add a related
test to cover generic emulation failure.
** Clean up the nEPT support checks.
** Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
** Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
Documentation:
* Remove deleted ioctls from documentation
* Clean up the docs for the x86 MSR filter.
* Various fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmOaFrcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPemQgAq49excg2Cc+EsHnZw3vu/QWdA0Rt
KhL3OgKxuHNjCbD2O9n2t5di7eJOTQ7F7T0eDm3xPTr4FS8LQ2327/mQePU/H2CF
mWOpq9RBWLzFsSTeVA2Mz9TUTkYSnDHYuRsBvHyw/n9cL76BWVzjImldFtjYjjex
yAwl8c5itKH6bc7KO+5ydswbvBzODkeYKUSBNdbn6m0JGQST7XppNwIAJvpiHsii
Qgpk0e4Xx9q4PXG/r5DedI6BlufBsLhv0aE9SHPzyKH3JbbUFhJYI8ZD5OhBQuYW
MwxK2KlM5Jm5ud2NZDDlsMmmvd1lnYCFDyqNozaKEWC1Y5rq1AbMa51fXA==
=QAYX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a9: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
x86 Xen-for-KVM:
* Allow the Xen runstate information to cross a page boundary
* Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
* add support for 32-bit guests in SCHEDOP_poll
x86 fixes:
* One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
* Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
* Clean up the MSR filter docs.
* Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
* Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
* Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
* Advertise (on AMD) that the SMM_CTL MSR is not supported
* Remove unnecessary exports
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
Documentation:
* Remove deleted ioctls from documentation
* Various fixes
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmOODb0PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDztsQAInRnsgLl57/SpqhZzExNCllN6AT/bdeB3uz
rnw3ScJOV174uNKp8lnPWoTvu2YUGiVtBp6tFHhDI8le7zHX438ZT8KE5mcs8p5i
KfFKnb8SHV2DDpqkcy24c0Xl/6vsg1qkKrdfJb49yl5ZakRITDpynW/7tn6dXsxX
wASeGFdCYeW4g2xMQzsCbtx6LgeQ8uomBmzRfPrOtZHYYxAn6+4Mj4595EC1sWxM
AQnbp8tW3Vw46saEZAQvUEOGOW9q0Nls7G21YqQ52IA+ZVDK1LmAF2b1XY3edjkk
pX8EsXOURfqdasBxfSfF3SgnUazoz9GHpSzp1cTVTktrPp40rrT7Ldtml0ktq69d
1malPj47KVMDsIq0kNJGnMxciXFgAHw+VaCQX+k4zhIatNwviMbSop2fEoxj22jc
4YGgGOxaGrnvmAJhreCIbr4CkZk5CJ8Zvmtfg+QM6npIp8BY8896nvORx/d4i6tT
H4caadd8AAR56ANUyd3+KqF3x0WrkaU0PLHJLy1tKwOXJUUTjcpvIfahBAAeUlSR
qEFrtb+EEMPgAwLfNOICcNkPZR/yyuYvM+FiUQNVy5cNiwFkpztpIctfOFaHySGF
K07O2/a1F6xKL0OKRUg7hGKknF9ecmux4vHhiUMuIk9VOgNTWobHozBDorLKXMzC
aWa6oGVC
=iIPT
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.2' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.2
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
* kvm-arm64/dirty-ring:
: .
: Add support for the "per-vcpu dirty-ring tracking with a bitmap
: and sprinkles on top", courtesy of Gavin Shan.
:
: This branch drags the kvmarm-fixes-6.1-3 tag which was already
: merged in 6.1-rc4 so that the branch is in a working state.
: .
KVM: Push dirty information unconditionally to backup bitmap
KVM: selftests: Automate choosing dirty ring size in dirty_log_test
KVM: selftests: Clear dirty ring states between two modes in dirty_log_test
KVM: selftests: Use host page size to map ring buffer in dirty_log_test
KVM: arm64: Enable ring-based dirty memory tracking
KVM: Support dirty ring in conjunction with bitmap
KVM: Move declaration of kvm_cpu_dirty_log_size() to kvm_dirty_ring.h
KVM: x86: Introduce KVM_REQ_DIRTY_RING_SOFT_FULL
Signed-off-by: Marc Zyngier <maz@kernel.org>
Pull Xen-for-KVM changes from David Woodhouse:
* add support for 32-bit guests in SCHEDOP_poll
* the rest of the gfn-to-pfn cache API cleanup
"I still haven't reinstated the last of those patches to make gpc->len
immutable."
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Several symbols are not used by vendor modules but still exported.
Removing them ensures that new coupling between kvm.ko and kvm-*.ko
is noticed and reviewed.
Co-developed-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't snapshot tsc_khz into per-cpu cpu_tsc_khz if the host TSC is
constant, in which case the actual TSC frequency will never change and thus
capturing TSC during initialization is unnecessary, KVM can simply use
tsc_khz. This value is snapshotted from
kvm_timer_init->kvmclock_cpu_online->tsc_khz_changed(NULL)
On CPUs with constant TSC, but not a hardware-specified TSC frequency,
snapshotting cpu_tsc_khz and using that to set a VM's target TSC frequency
can lead to VM to think its TSC frequency is not what it actually is if
refining the TSC completes after KVM snapshots tsc_khz. The actual
frequency never changes, only the kernel's calculation of what that
frequency is changes.
Ideally, KVM would not be able to race with TSC refinement, or would have
a hook into tsc_refine_calibration_work() to get an alert when refinement
is complete. Avoiding the race altogether isn't practical as refinement
takes a relative eternity; it's deliberately put on a work queue outside of
the normal boot sequence to avoid unnecessarily delaying boot.
Adding a hook is doable, but somewhat gross due to KVM's ability to be
built as a module. And if the TSC is constant, which is likely the case
for every VMX/SVM-capable CPU produced in the last decade, the race can be
hit if and only if userspace is able to create a VM before TSC refinement
completes; refinement is slow, but not that slow.
For now, punt on a proper fix, as not taking a snapshot can help some uses
cases and not taking a snapshot is arguably correct irrespective of the
race with refinement.
Signed-off-by: Anton Romanov <romanton@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220608183525.1143682-1-romanton@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Treat any exception during instruction decode for EMULTYPE_SKIP as a
"full" emulation failure, i.e. signal failure instead of queuing the
exception. When decoding purely to skip an instruction, KVM and/or the
CPU has already done some amount of emulation that cannot be unwound,
e.g. on an EPT misconfig VM-Exit KVM has already processeed the emulated
MMIO. KVM already does this if a #UD is encountered, but not for other
exceptions, e.g. if a #PF is encountered during fetch.
In SVM's soft-injection use case, queueing the exception is particularly
problematic as queueing exceptions while injecting events can put KVM
into an infinite loop due to bailing from VM-Enter to service the newly
pending exception. E.g. multiple warnings to detect such behavior fire:
------------[ cut here ]------------
WARNING: CPU: 3 PID: 1017 at arch/x86/kvm/x86.c:9873 kvm_arch_vcpu_ioctl_run+0x1de5/0x20a0 [kvm]
Modules linked in: kvm_amd ccp kvm irqbypass
CPU: 3 PID: 1017 Comm: svm_nested_soft Not tainted 6.0.0-rc1+ #220
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x1de5/0x20a0 [kvm]
Call Trace:
kvm_vcpu_ioctl+0x223/0x6d0 [kvm]
__x64_sys_ioctl+0x85/0xc0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
WARNING: CPU: 3 PID: 1017 at arch/x86/kvm/x86.c:9987 kvm_arch_vcpu_ioctl_run+0x12a3/0x20a0 [kvm]
Modules linked in: kvm_amd ccp kvm irqbypass
CPU: 3 PID: 1017 Comm: svm_nested_soft Tainted: G W 6.0.0-rc1+ #220
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x12a3/0x20a0 [kvm]
Call Trace:
kvm_vcpu_ioctl+0x223/0x6d0 [kvm]
__x64_sys_ioctl+0x85/0xc0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
---[ end trace 0000000000000000 ]---
Fixes: 6ea6e84309 ("KVM: x86: inject exceptions produced by x86_decode_insn")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220930233632.1725475-1-seanjc@google.com
Drop the @gpa param from the exported check()+refresh() helpers and limit
changing the cache's GPA to the activate path. All external users just
feed in gpc->gpa, i.e. this is a fancy nop.
Allowing users to change the GPA at check()+refresh() is dangerous as
those helpers explicitly allow concurrent calls, e.g. KVM could get into
a livelock scenario. It's also unclear as to what the expected behavior
should be if multiple tasks attempt to refresh with different GPAs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Make kvm_gpc_refresh() use kvm instance cached in gfn_to_pfn_cache.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
[sean: leave kvm_gpc_unmap() as-is]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Make kvm_gpc_check() use kvm instance cached in gfn_to_pfn_cache.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Move the assignment of immutable properties @kvm, @vcpu, and @usage to
the initializer. Make _activate() and _deactivate() use stored values.
Note, @len is also effectively immutable for most cases, but not in the
case of the Xen runstate cache, which may be split across two pages and
the length of the first segment will depend on its address.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
[sean: handle @len in a separate patch]
Signed-off-by: Sean Christopherson <seanjc@google.com>
[dwmw2: acknowledge that @len can actually change for some use cases]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
If a triple fault was fixed by kvm_x86_ops.nested_ops->triple_fault (by
turning it into a vmexit), there is no need to leave vcpu_enter_guest().
Any vcpu->requests will be caught later before the actual vmentry,
and in fact vcpu_enter_guest() was not initializing the "r" variable.
Depending on the compiler's whims, this could cause the
x86_64/triple_fault_event_test test to fail.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: 92e7d5c83a ("KVM: x86: allow L1 to not intercept triple fault")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a triple fault was fixed by kvm_x86_ops.nested_ops->triple_fault (by
turning it into a vmexit), there is no need to leave vcpu_enter_guest().
Any vcpu->requests will be caught later before the actual vmentry,
and in fact vcpu_enter_guest() was not initializing the "r" variable.
Depending on the compiler's whims, this could cause the
x86_64/triple_fault_event_test test to fail.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: 92e7d5c83a ("KVM: x86: allow L1 to not intercept triple fault")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Formalize "gpc" as the acronym and use it in function names.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Closer inspection of the Xen code shows that we aren't supposed to be
using the XEN_RUNSTATE_UPDATE flag unconditionally. It should be
explicitly enabled by guests through the HYPERVISOR_vm_assist hypercall.
If we randomly set the top bit of ->state_entry_time for a guest that
hasn't asked for it and doesn't expect it, that could make the runtimes
fail to add up and confuse the guest. Without the flag it's perfectly
safe for a vCPU to read its own vcpu_runstate_info; just not for one
vCPU to read *another's*.
I briefly pondered adding a word for the whole set of VMASST_TYPE_*
flags but the only one we care about for HVM guests is this, so it
seemed a bit pointless.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221127122210.248427-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fixes for Xen emulation. While nobody should be enabling it in
the kernel (the only public users of the feature are the selftests),
the bug effectively allows userspace to read arbitrary memory.
* Correctness fixes for nested hypervisors that do not intercept INIT
or SHUTDOWN on AMD; the subsequent CPU reset can cause a use-after-free
when it disables virtualization extensions. While downgrading the panic
to a WARN is quite easy, the full fix is a bit more laborious; there
are also tests. This is the bulk of the pull request.
* Fix race condition due to incorrect mmu_lock use around
make_mmu_pages_available().
Generic:
* Obey changes to the kvm.halt_poll_ns module parameter in VMs
not using KVM_CAP_HALT_POLL, restoring behavior from before
the introduction of the capability
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmODI84UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPVJwgAombWOBf549JiHGPtwejuQO20nTSj
Om9pzWQ9dR182P+ju/FdqSPXt/Lc8i+z5zSXDrV3HQ6/a3zIItA+bOAUiMFvHNAQ
w/7pEb1MzVOsEg2SXGOjZvW3WouB4Z4R0PosInYjrFrRGRAaw5iaTOZHGezE44t2
WBWk1PpdMap7J/8sjNT1ble72ig9JdSW4qeJUQ1GWxHCigI5sESCQVqF446KM0jF
gTYPGX5TqpbWiIejF0yNew9yNKMi/yO4Pz8I5j3vtopeHx24DCIqUAGaEg6ykErX
vnzYbVP7NaFrqtje49PsK6i1cu2u7uFPArj0dxo3DviQVZVHV1q6tNmI4A==
=Qgei
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"x86:
- Fixes for Xen emulation. While nobody should be enabling it in the
kernel (the only public users of the feature are the selftests),
the bug effectively allows userspace to read arbitrary memory.
- Correctness fixes for nested hypervisors that do not intercept INIT
or SHUTDOWN on AMD; the subsequent CPU reset can cause a
use-after-free when it disables virtualization extensions. While
downgrading the panic to a WARN is quite easy, the full fix is a
bit more laborious; there are also tests. This is the bulk of the
pull request.
- Fix race condition due to incorrect mmu_lock use around
make_mmu_pages_available().
Generic:
- Obey changes to the kvm.halt_poll_ns module parameter in VMs not
using KVM_CAP_HALT_POLL, restoring behavior from before the
introduction of the capability"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: Update gfn_to_pfn_cache khva when it moves within the same page
KVM: x86/xen: Only do in-kernel acceleration of hypercalls for guest CPL0
KVM: x86/xen: Validate port number in SCHEDOP_poll
KVM: x86/mmu: Fix race condition in direct_page_fault
KVM: x86: remove exit_int_info warning in svm_handle_exit
KVM: selftests: add svm part to triple_fault_test
KVM: x86: allow L1 to not intercept triple fault
kvm: selftests: add svm nested shutdown test
KVM: selftests: move idt_entry to header
KVM: x86: forcibly leave nested mode on vCPU reset
KVM: x86: add kvm_leave_nested
KVM: x86: nSVM: harden svm_free_nested against freeing vmcb02 while still in use
KVM: x86: nSVM: leave nested mode on vCPU free
KVM: Obey kvm.halt_poll_ns in VMs not using KVM_CAP_HALT_POLL
KVM: Avoid re-reading kvm->max_halt_poll_ns during halt-polling
KVM: Cap vcpu->halt_poll_ns before halting rather than after
To allow flushing individual GVAs instead of always flushing the whole
VPID a per-vCPU structure to pass the requests is needed. Use standard
'kfifo' to queue two types of entries: individual GVA (GFN + up to 4095
following GFNs in the lower 12 bits) and 'flush all'.
The size of the fifo is arbitrarily set to '16'.
Note, kvm_hv_flush_tlb() only queues 'flush all' entries for now and
kvm_hv_vcpu_flush_tlb() doesn't actually read the fifo just resets the
queue before returning -EOPNOTSUPP (which triggers full TLB flush) so
the functional change is very small but the infrastructure is prepared
to handle individual GVA flush requests.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-10-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to implementing fine-grained Hyper-V TLB flush and
L2 TLB flush, resurrect dedicated KVM_REQ_HV_TLB_FLUSH request bit. As
KVM_REQ_TLB_FLUSH_GUEST is a stronger operation, clear KVM_REQ_HV_TLB_FLUSH
request in kvm_vcpu_flush_tlb_guest().
The flush itself is temporary handled by kvm_vcpu_flush_tlb_guest().
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear KVM_REQ_TLB_FLUSH_CURRENT in kvm_vcpu_flush_tlb_all() instead of in
its sole caller that processes KVM_REQ_TLB_FLUSH. Regardless of why/when
kvm_vcpu_flush_tlb_all() is called, flushing "all" TLB entries also
flushes "current" TLB entries.
Ideally, there will never be another caller of kvm_vcpu_flush_tlb_all(),
and moving the handling "requires" extra work to document the ordering
requirement, but future Hyper-V paravirt TLB flushing support will add
similar logic for flush "guest" (Hyper-V can flush a subset of "guest"
entries). And in the Hyper-V case, KVM needs to do more than just clear
the request, the queue of GPAs to flush also needs to purged, and doing
all only in the request path is undesirable as kvm_vcpu_flush_tlb_guest()
does have multiple callers (though it's unlikely KVM's paravirt TLB flush
will coincide with Hyper-V's paravirt TLB flush).
Move the logic even though it adds extra "work" so that KVM will be
consistent with how flush requests are processed when the Hyper-V support
lands.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To make terminology between Hyper-V-on-KVM and KVM-on-Hyper-V consistent,
rename 'enable_direct_tlbflush' to 'enable_l2_tlb_flush'. The change
eliminates the use of confusing 'direct' and adds the missing underscore.
No functional change.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This fixes three issues in nested SVM:
1) in the shutdown_interception() vmexit handler we call kvm_vcpu_reset().
However, if running nested and L1 doesn't intercept shutdown, the function
resets vcpu->arch.hflags without properly leaving the nested state.
This leaves the vCPU in inconsistent state and later triggers a kernel
panic in SVM code. The same bug can likely be triggered by sending INIT
via local apic to a vCPU which runs a nested guest.
On VMX we are lucky that the issue can't happen because VMX always
intercepts triple faults, thus triple fault in L2 will always be
redirected to L1. Plus, handle_triple_fault() doesn't reset the vCPU.
INIT IPI can't happen on VMX either because INIT events are masked while
in VMX mode.
Secondarily, KVM doesn't honour SHUTDOWN intercept bit of L1 on SVM.
A normal hypervisor should always intercept SHUTDOWN, a unit test on
the other hand might want to not do so.
Finally, the guest can trigger a kernel non rate limited printk on SVM
from the guest, which is fixed as well.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is SVM correctness fix - although a sane L1 would intercept
SHUTDOWN event, it doesn't have to, so we have to honour this.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221103141351.50662-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While not obivous, kvm_vcpu_reset() leaves the nested mode by clearing
'vcpu->arch.hflags' but it does so without all the required housekeeping.
On SVM, it is possible to have a vCPU reset while in guest mode because
unlike VMX, on SVM, INIT's are not latched in SVM non root mode and in
addition to that L1 doesn't have to intercept triple fault, which should
also trigger L1's reset if happens in L2 while L1 didn't intercept it.
If one of the above conditions happen, KVM will continue to use vmcb02
while not having in the guest mode.
Later the IA32_EFER will be cleared which will lead to freeing of the
nested guest state which will (correctly) free the vmcb02, but since
KVM still uses it (incorrectly) this will lead to a use after free
and kernel crash.
This issue is assigned CVE-2022-3344
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221103141351.50662-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
add kvm_leave_nested which wraps a call to nested_ops->leave_nested
into a function.
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221103141351.50662-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
DE_CFG contains the LFENCE serializing bit, restore it on resume too.
This is relevant to older families due to the way how they do S3.
Unify and correct naming while at it.
Fixes: e4d0e84e49 ("x86/cpu/AMD: Make LFENCE a serializing instruction")
Reported-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Reported-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VCPU isn't expected to be runnable when the dirty ring becomes soft
full, until the dirty pages are harvested and the dirty ring is reset
from userspace. So there is a check in each guest's entrace to see if
the dirty ring is soft full or not. The VCPU is stopped from running if
its dirty ring has been soft full. The similar check will be needed when
the feature is going to be supported on ARM64. As Marc Zyngier suggested,
a new event will avoid pointless overhead to check the size of the dirty
ring ('vcpu->kvm->dirty_ring_size') in each guest's entrance.
Add KVM_REQ_DIRTY_RING_SOFT_FULL. The event is raised when the dirty ring
becomes soft full in kvm_dirty_ring_push(). The event is only cleared in
the check, done in the newly added helper kvm_dirty_ring_check_request().
Since the VCPU is not runnable when the dirty ring becomes soft full, the
KVM_REQ_DIRTY_RING_SOFT_FULL event is always set to prevent the VCPU from
running until the dirty pages are harvested and the dirty ring is reset by
userspace.
kvm_dirty_ring_soft_full() becomes a private function with the newly added
helper kvm_dirty_ring_check_request(). The alignment for the various event
definitions in kvm_host.h is changed to tab character by the way. In order
to avoid using 'container_of()', the argument @ring is replaced by @vcpu
in kvm_dirty_ring_push().
Link: https://lore.kernel.org/kvmarm/87lerkwtm5.wl-maz@kernel.org
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110104914.31280-2-gshan@redhat.com
Add the mask KVM_MSR_FILTER_RANGE_VALID_MASK for the flags in the
struct kvm_msr_filter_range. This simplifies checks that validate
these flags, and makes it easier to introduce new flags in the future.
No functional change intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220921151525.904162-5-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the mask KVM_MSR_FILTER_VALID_MASK for the flag in the struct
kvm_msr_filter. This makes it easier to introduce new flags in the
future.
No functional change intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220921151525.904162-4-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the mask KVM_MSR_EXIT_REASON_VALID_MASK for the MSR exit reason
flags. This simplifies checks that validate these flags, and makes it
easier to introduce new flags in the future.
No functional change intended.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220921151525.904162-3-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hidden processor flags HF_SMM_MASK and HF_SMM_INSIDE_NMI_MASK
are not needed if CONFIG_KVM_SMM is turned off. Remove the
definitions altogether and the code that uses them.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This ensures that all the relevant code is compiled out, in fact
the process_smi stub can be removed too.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-9-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Vendor-specific code that deals with SMI injection and saving/restoring
SMM state is not needed if CONFIG_KVM_SMM is disabled, so remove the
four callbacks smi_allowed, enter_smm, leave_smm and enable_smi_window.
The users in svm/nested.c and x86.c also have to be compiled out; the
amount of #ifdef'ed code is small and it's not worth moving it to
smm.c.
enter_smm is now used only within #ifdef CONFIG_KVM_SMM, and the stub
can therefore be removed.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some users of KVM implement the UEFI variable store through a paravirtual device
that does not require the "SMM lockbox" component of edk2; allow them to
compile out system management mode, which is not a full implementation
especially in how it interacts with nested virtualization.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that RSM is implemented in a single emulator callback, there is no
point in going through other callbacks for the sake of modifying
processor state. Just invoke KVM's own internal functions directly,
and remove the callbacks that were only used by em_rsm; the only
substantial difference is in the handling of the segment registers
and descriptor cache, which have to be parsed into a struct kvm_segment
instead of a struct desc_struct.
This also fixes a bug where emulator_set_segment was shifting the
limit left by 12 if the G bit is set, but the limit had not been
shifted right upon entry to SMM.
The emulator context is still used to restore EIP and the general
purpose registers.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some users of KVM implement the UEFI variable store through a paravirtual
device that does not require the "SMM lockbox" component of edk2, and
would like to compile out system management mode. In preparation for
that, move the SMM exit code out of emulate.c and into a new file.
The code is still written as a series of invocations of the emulator
callbacks, but the two exiting_smm and leave_smm callbacks are merged
into one, and all the code from em_rsm is now part of the callback.
This removes all knowledge of the format of the SMM save state area
from the emulator. Further patches will clean up the code and
invoke KVM's own functions to access control registers, descriptor
caches, etc.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some users of KVM implement the UEFI variable store through a paravirtual
device that does not require the "SMM lockbox" component of edk2, and
would like to compile out system management mode. In preparation for
that, move the SMM entry code out of x86.c and into a new file.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-3-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create a new header and source with code related to system management
mode emulation. Entry and exit will move there too; for now,
opportunistically rename put_smstate to PUT_SMSTATE while moving
it to smm.h, and adjust the SMM state saving code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There's no caller. Remove it.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220913090537.25195-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_caps.supported_perf_cap directly instead of bouncing through
kvm_get_msr_feature() when checking the incoming value for writes to
PERF_CAPABILITIES.
Note, kvm_get_msr_feature() is guaranteed to succeed when getting
PERF_CAPABILITIES, i.e. dropping that check is a nop.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221006000314.73240-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle PERF_CAPABILITIES directly in kvm_get_msr_feature() now that the
supported value is available in kvm_caps.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221006000314.73240-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialize vcpu->arch.perf_capabilities in x86's kvm_arch_vcpu_create()
instead of deferring initialization to vendor code. For better or worse,
common x86 handles reads and writes to the MSR, and so common x86 should
also handle initializing the MSR.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221006000314.73240-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The AMD PerfMonV2 specification allows for a maximum of 16 GP counters,
but currently only 6 pairs of MSRs are accepted by KVM.
While AMD64_NUM_COUNTERS_CORE is already equal to 6, increasing without
adjusting msrs_to_save_all[] could result in out-of-bounds accesses.
Therefore introduce a macro (named KVM_AMD_PMC_MAX_GENERIC) to
refer to the number of counters supported by KVM.
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Intel Architectural IA32_PMCx MSRs addresses range allows for a
maximum of 8 GP counters, and KVM cannot address any more. Introduce a
local macro (named KVM_INTEL_PMC_MAX_GENERIC) and use it consistently to
refer to the number of counters supported by KVM, thus avoiding possible
out-of-bound accesses.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SDM lists an architectural MSR IA32_CORE_CAPABILITIES (0xCF)
that limits the theoretical maximum value of the Intel GP PMC MSRs
allocated at 0xC1 to 14; likewise the Intel April 2022 SDM adds
IA32_OVERCLOCKING_STATUS at 0x195 which limits the number of event
selection MSRs to 15 (0x186-0x194).
Limiting the maximum number of counters to 14 or 18 based on the currently
allocated MSRs is clearly fragile, and it seems likely that Intel will
even place PMCs 8-15 at a completely different range of MSR indices.
So stop at the maximum number of GP PMCs supported today on Intel
processors.
There are some machines, like Intel P4 with non Architectural PMU, that
may indeed have 18 counters, but those counters are in a completely
different MSR address range and are not supported by KVM.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Fixes: cf05a67b68 ("KVM: x86: omit "impossible" pmu MSRs from MSR list")
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_zap_gfn_range() must be called in an SRCU read-critical section, but
there is no SRCU annotation in __kvm_set_or_clear_apicv_inhibit(). This
can lead to the following warning via
kvm_arch_vcpu_ioctl_set_guest_debug() if a Shadow MMU is in use (TDP
MMU disabled or nesting):
[ 1416.659809] =============================
[ 1416.659810] WARNING: suspicious RCU usage
[ 1416.659839] 6.1.0-dbg-DEV #1 Tainted: G S I
[ 1416.659853] -----------------------------
[ 1416.659854] include/linux/kvm_host.h:954 suspicious rcu_dereference_check() usage!
[ 1416.659856]
...
[ 1416.659904] dump_stack_lvl+0x84/0xaa
[ 1416.659910] dump_stack+0x10/0x15
[ 1416.659913] lockdep_rcu_suspicious+0x11e/0x130
[ 1416.659919] kvm_zap_gfn_range+0x226/0x5e0
[ 1416.659926] ? kvm_make_all_cpus_request_except+0x18b/0x1e0
[ 1416.659935] __kvm_set_or_clear_apicv_inhibit+0xcc/0x100
[ 1416.659940] kvm_arch_vcpu_ioctl_set_guest_debug+0x350/0x390
[ 1416.659946] kvm_vcpu_ioctl+0x2fc/0x620
[ 1416.659955] __se_sys_ioctl+0x77/0xc0
[ 1416.659962] __x64_sys_ioctl+0x1d/0x20
[ 1416.659965] do_syscall_64+0x3d/0x80
[ 1416.659969] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Always take the KVM SRCU read lock in __kvm_set_or_clear_apicv_inhibit()
to protect the GFN to memslot translation. The SRCU read lock is not
technically required when no Shadow MMUs are in use, since the TDP MMU
walks the paging structures from the roots and does not need to look up
GFN translations in the memslots, but make the SRCU locking
unconditional for simplicty.
In most cases, the SRCU locking is taken care of in the vCPU run loop,
but when called through other ioctls (such as KVM_SET_GUEST_DEBUG)
there is no srcu_read_lock.
Tested: ran tools/testing/selftests/kvm/x86_64/debug_regs on a DBG
build. This patch causes the suspicious RCU warning to disappear.
Note that the warning is hit in __kvm_zap_rmaps(), so
kvm_memslots_have_rmaps() must return true in order for this to
repro (i.e. the TDP MMU must be off or nesting in use.)
Reported-by: Greg Thelen <gthelen@google.com>
Fixes: 36222b117e ("KVM: x86: don't disable APICv memslot when inhibited")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20221102205359.1260980-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the gfn_to_pfn_cache lock initialization to another helper and
call the new helper during VM/vCPU creation. There are race
conditions possible due to kvm_gfn_to_pfn_cache_init()'s
ability to re-initialize the cache's locks.
For example: a race between ioctl(KVM_XEN_HVM_EVTCHN_SEND) and
kvm_gfn_to_pfn_cache_init() leads to a corrupted shinfo gpc lock.
(thread 1) | (thread 2)
|
kvm_xen_set_evtchn_fast |
read_lock_irqsave(&gpc->lock, ...) |
| kvm_gfn_to_pfn_cache_init
| rwlock_init(&gpc->lock)
read_unlock_irqrestore(&gpc->lock, ...) |
Rename "cache_init" and "cache_destroy" to activate+deactivate to
avoid implying that the cache really is destroyed/freed.
Note, there more races in the newly named kvm_gpc_activate() that will
be addressed separately.
Fixes: 982ed0de47 ("KVM: Reinstate gfn_to_pfn_cache with invalidation support")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
[sean: call out that this is a bug fix]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221013211234.1318131-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Exempt pending triple faults, a.k.a. KVM_REQ_TRIPLE_FAULT, when asserting
that KVM didn't attempt to queue a new exception during event injection.
KVM needs to emulate the injection itself when emulating Real Mode due to
lack of unrestricted guest support (VMX) and will queue a triple fault if
that emulation fails.
Ideally the assertion would more precisely filter out the emulated Real
Mode triple fault case, but rmode.vm86_active is buried in vcpu_vmx and
can't be queried without a new kvm_x86_ops. And unlike "regular"
exceptions, triple fault cannot put the vCPU into an infinite loop; the
triple fault will force either an exit to userspace or a nested VM-Exit,
and triple fault after nested VM-Exit will force an exit to userspace.
I.e. there is no functional issue, so just suppress the warning for
triple faults.
Opportunistically convert the warning to a one-time thing, when it
fires, it fires _a lot_, and is usually user triggerable, i.e. can be
used to spam the kernel log.
Fixes: 7055fb1131 ("KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions")
Reported-by: kernel test robot <yujie.liu@intel.com>
Link: https://lore.kernel.org/r/202209301338.aca913c3-yujie.liu@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220930230008.1636044-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_X86_SET_MSR_FILTER ioctls contains a pointer in the passed in
struct which means it has a different struct size depending on whether
it gets called from 32bit or 64bit code.
This patch introduces compat code that converts from the 32bit struct to
its 64bit counterpart which then gets used going forward internally.
With this applied, 32bit QEMU can successfully set MSR bitmaps when
running on 64bit kernels.
Reported-by: Andrew Randrianasulu <randrianasulu@gmail.com>
Fixes: 1a155254ff ("KVM: x86: Introduce MSR filtering")
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221017184541.2658-4-graf@amazon.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the next patch we want to introduce a second caller to
set_msr_filter() which constructs its own filter list on the stack.
Refactor the original function so it takes it as argument instead of
reading it through copy_from_user().
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221017184541.2658-3-graf@amazon.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
am sending out early due to me travelling next week. There is a
lone mm patch for which Andrew gave an informal ack at
https://lore.kernel.org/linux-mm/20220817102500.440c6d0a3fce296fdf91bea6@linux-foundation.org.
I will send the bulk of ARM work, as well as other
architectures, at the end of next week.
ARM:
* Account stage2 page table allocations in memory stats.
x86:
* Account EPT/NPT arm64 page table allocations in memory stats.
* Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses.
* Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of
Hyper-V now support eVMCS fields associated with features that are
enumerated to the guest.
* Use KVM's sanitized VMCS config as the basis for the values of nested VMX
capabilities MSRs.
* A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed
a longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed
for good.
* A handful of fixes for memory leaks in error paths.
* Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow.
* Never write to memory from non-sleepable kvm_vcpu_check_block()
* Selftests refinements and cleanups.
* Misc typo cleanups.
Generic:
* remove KVM_REQ_UNHALT
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM2zwcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNpbwf+MlVeOlzE5SBdrJ0TEnLmKUel1lSz
QnZzP5+D65oD0zhCilUZHcg6G4mzZ5SdVVOvrGJvA0eXh25ruLNMF6jbaABkMLk/
FfI1ybN7A82hwJn/aXMI/sUurWv4Jteaad20JC2DytBCnsW8jUqc49gtXHS2QWy4
3uMsFdpdTAg4zdJKgEUfXBmQviweVpjjl3ziRyZZ7yaeo1oP7XZ8LaE1nR2l5m0J
mfjzneNm5QAnueypOh5KhSwIvqf6WHIVm/rIHDJ1HIFbgfOU0dT27nhb1tmPwAcE
+cJnnMUHjZqtCXteHkAxMClyRq0zsEoKk0OGvSOOMoq3Q0DavSXUNANOig==
=/hqX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The first batch of KVM patches, mostly covering x86.
ARM:
- Account stage2 page table allocations in memory stats
x86:
- Account EPT/NPT arm64 page table allocations in memory stats
- Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR
accesses
- Drop eVMCS controls filtering for KVM on Hyper-V, all known
versions of Hyper-V now support eVMCS fields associated with
features that are enumerated to the guest
- Use KVM's sanitized VMCS config as the basis for the values of
nested VMX capabilities MSRs
- A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed a
longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed for
good
- A handful of fixes for memory leaks in error paths
- Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow
- Never write to memory from non-sleepable kvm_vcpu_check_block()
- Selftests refinements and cleanups
- Misc typo cleanups
Generic:
- remove KVM_REQ_UNHALT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
KVM: remove KVM_REQ_UNHALT
KVM: mips, x86: do not rely on KVM_REQ_UNHALT
KVM: x86: never write to memory from kvm_vcpu_check_block()
KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events
KVM: nVMX: Make event request on VMXOFF iff INIT/SIPI is pending
KVM: nVMX: Make an event request if INIT or SIPI is pending on VM-Enter
KVM: SVM: Make an event request if INIT or SIPI is pending when GIF is set
KVM: x86: lapic does not have to process INIT if it is blocked
KVM: x86: Rename kvm_apic_has_events() to make it INIT/SIPI specific
KVM: x86: Rename and expose helper to detect if INIT/SIPI are allowed
KVM: nVMX: Make an event request when pending an MTF nested VM-Exit
KVM: x86: make vendor code check for all nested events
mailmap: Update Oliver's email address
KVM: x86: Allow force_emulation_prefix to be written without a reload
KVM: selftests: Add an x86-only test to verify nested exception queueing
KVM: selftests: Use uapi header to get VMX and SVM exit reasons/codes
KVM: x86: Rename inject_pending_events() to kvm_check_and_inject_events()
KVM: VMX: Update MTF and ICEBP comments to document KVM's subtle behavior
KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions
KVM: x86: Morph pending exceptions to pending VM-Exits at queue time
...
KVM_REQ_UNHALT is now unnecessary because it is replaced by the return
value of kvm_vcpu_block/kvm_vcpu_halt. Remove it.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20220921003201.1441511-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_REQ_UNHALT is a weird request that simply reports the value of
kvm_arch_vcpu_runnable() on exit from kvm_vcpu_halt(). Only
MIPS and x86 are looking at it, the others just clear it. Check
the state of the vCPU directly so that the request is handled
as a nop on all architectures.
No functional change intended, except for corner cases where an
event arrive immediately after a signal become pending or after
another similar host-side event.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20220921003201.1441511-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_check_block() is called while not in TASK_RUNNING, and therefore
it cannot sleep. Writing to guest memory is therefore forbidden, but it
can happen on AMD processors if kvm_check_nested_events() causes a vmexit.
Fortunately, all events that are caught by kvm_check_nested_events() are
also recognized by kvm_vcpu_has_events() through vendor callbacks such as
kvm_x86_interrupt_allowed() or kvm_x86_ops.nested_ops->has_events(), so
remove the call and postpone the actual processing to vcpu_block().
Opportunistically honor the return of kvm_check_nested_events(). KVM
punted on the check in kvm_vcpu_running() because the only error path is
if vmx_complete_nested_posted_interrupt() fails, in which case KVM exits
to userspace with "internal error" i.e. the VM is likely dead anyways so
it wasn't worth overloading the return of kvm_vcpu_running().
Add the check mostly so that KVM is consistent with itself; the return of
the call via kvm_apic_accept_events()=>kvm_check_nested_events() that
immediately follows _is_ checked.
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sean: check and handle return of kvm_check_nested_events()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not return true from kvm_vcpu_has_events() if the vCPU isn' going to
immediately process a pending INIT/SIPI. INIT/SIPI shouldn't be treated
as wake events if they are blocked.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sean: rebase onto refactored INIT/SIPI helpers, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename kvm_apic_has_events() to kvm_apic_has_pending_init_or_sipi() so
that it's more obvious that "events" really just means "INIT or SIPI".
Opportunistically clean up a weirdly worded comment that referenced
kvm_apic_has_events() instead of kvm_apic_accept_events().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename and invert kvm_vcpu_latch_init() to kvm_apic_init_sipi_allowed()
so as to match the behavior of {interrupt,nmi,smi}_allowed(), and expose
the helper so that it can be used by kvm_vcpu_has_events() to determine
whether or not an INIT or SIPI is pending _and_ can be taken immediately.
Opportunistically replaced usage of the "latch" terminology with "blocked"
and/or "allowed", again to align with KVM's terminology used for all other
event types.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Interrupts, NMIs etc. sent while in guest mode are already handled
properly by the *_interrupt_allowed callbacks, but other events can
cause a vCPU to be runnable that are specific to guest mode.
In the case of VMX there are two, the preemption timer and the
monitor trap. The VMX preemption timer is already special cased via
the hv_timer_pending callback, but the purpose of the callback can be
easily extended to MTF or in fact any other event that can occur only
in guest mode.
Rename the callback and add an MTF check; kvm_arch_vcpu_runnable()
now can return true if an MTF is pending, without relying on
kvm_vcpu_running()'s call to kvm_check_nested_events(). Until that call
is removed, however, the patch introduces no functional change.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow force_emulation_prefix to be written by privileged userspace
without reloading KVM. The param does not have any persistent affects
and is trivial to snapshot.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-28-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename inject_pending_events() to kvm_check_and_inject_events() in order
to capture the fact that it handles more than just pending events, and to
(mostly) align with kvm_check_nested_events(), which omits the "inject"
for brevity.
Add a comment above kvm_check_and_inject_events() to provide a high-level
synopsis, and to document a virtualization hole (KVM erratum if you will)
that exists due to KVM not strictly tracking instruction boundaries with
respect to coincident instruction restarts and asynchronous events.
No functional change inteded.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-25-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat pending TRIPLE_FAULTS as pending exceptions. A triple fault is an
exception for all intents and purposes, it's just not tracked as such
because there's no vector associated the exception. E.g. if userspace
were to set vcpu->request_interrupt_window while running L2 and L2 hit a
triple fault, a triple fault nested VM-Exit should be synthesized to L1
before exiting to userspace with KVM_EXIT_IRQ_WINDOW_OPEN.
Link: https://lore.kernel.org/all/YoVHAIGcFgJit1qp@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-23-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Morph pending exceptions to pending VM-Exits (due to interception) when
the exception is queued instead of waiting until nested events are
checked at VM-Entry. This fixes a longstanding bug where KVM fails to
handle an exception that occurs during delivery of a previous exception,
KVM (L0) and L1 both want to intercept the exception (e.g. #PF for shadow
paging), and KVM determines that the exception is in the guest's domain,
i.e. queues the new exception for L2. Deferring the interception check
causes KVM to esclate various combinations of injected+pending exceptions
to double fault (#DF) without consulting L1's interception desires, and
ends up injecting a spurious #DF into L2.
KVM has fudged around the issue for #PF by special casing emulated #PF
injection for shadow paging, but the underlying issue is not unique to
shadow paging in L0, e.g. if KVM is intercepting #PF because the guest
has a smaller maxphyaddr and L1 (but not L0) is using shadow paging.
Other exceptions are affected as well, e.g. if KVM is intercepting #GP
for one of SVM's workaround or for the VMware backdoor emulation stuff.
The other cases have gone unnoticed because the #DF is spurious if and
only if L1 resolves the exception, e.g. KVM's goofs go unnoticed if L1
would have injected #DF anyways.
The hack-a-fix has also led to ugly code, e.g. bailing from the emulator
if #PF injection forced a nested VM-Exit and the emulator finds itself
back in L1. Allowing for direct-to-VM-Exit queueing also neatly solves
the async #PF in L2 mess; no need to set a magic flag and token, simply
queue a #PF nested VM-Exit.
Deal with event migration by flagging that a pending exception was queued
by userspace and check for interception at the next KVM_RUN, e.g. so that
KVM does the right thing regardless of the order in which userspace
restores nested state vs. event state.
When "getting" events from userspace, simply drop any pending excpetion
that is destined to be intercepted if there is also an injected exception
to be migrated. Ideally, KVM would migrate both events, but that would
require new ABI, and practically speaking losing the event is unlikely to
be noticed, let alone fatal. The injected exception is captured, RIP
still points at the original faulting instruction, etc... So either the
injection on the target will trigger the same intercepted exception, or
the source of the intercepted exception was transient and/or
non-deterministic, thus dropping it is ok-ish.
Fixes: a04aead144 ("KVM: nSVM: fix running nested guests when npt=0")
Fixes: feaf0c7dc4 ("KVM: nVMX: Do not generate #DF if #PF happens during exception delivery into L2")
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-22-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Determine whether or not new events can be injected after checking nested
events. If a VM-Exit occurred during nested event handling, any previous
event that needed re-injection is gone from's KVM perspective; the event
is captured in the vmc*12 VM-Exit information, but doesn't exist in terms
of what needs to be done for entry to L1.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-19-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Perform nested event checks before re-injecting exceptions/events into
L2. If a pending exception causes VM-Exit to L1, re-injecting events
into vmcs02 is premature and wasted effort. Take care to ensure events
that need to be re-injected are still re-injected if checking for nested
events "fails", i.e. if KVM needs to force an immediate entry+exit to
complete the to-be-re-injecteed event.
Keep the "can_inject" logic the same for now; it too can be pushed below
the nested checks, but is a slightly riskier change (see past bugs about
events not being properly purged on nested VM-Exit).
Add and/or modify comments to better document the various interactions.
Of note is the comment regarding "blocking" previously injected NMIs and
IRQs if an exception is pending. The old comment isn't wrong strictly
speaking, but it failed to capture the reason why the logic even exists.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-18-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Queue #DF by recursing on kvm_multiple_exception() by way of
kvm_queue_exception_e() instead of open coding the behavior. This will
allow KVM to Just Work when a future commit moves exception interception
checks (for L2 => L1) into kvm_multiple_exception().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-17-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the definition of "struct kvm_queued_exception" out of kvm_vcpu_arch
in anticipation of adding a second instance in kvm_vcpu_arch to handle
exceptions that occur when vectoring an injected exception and are
morphed to VM-Exit instead of leading to #DF.
Opportunistically take advantage of the churn to rename "nr" to "vector".
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-15-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the kvm_x86_ops hook for exception injection to better reflect
reality, and to align with pretty much every other related function name
in KVM.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-14-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a dedicated "exception type" for #DBs, as #DBs can be fault-like or
trap-like depending the sub-type of #DB, and effectively defer the
decision of what to do with the #DB to the caller.
For the emulator's two calls to exception_type(), treat the #DB as
fault-like, as the emulator handles only code breakpoint and general
detect #DBs, both of which are fault-like.
For event injection, which uses exception_type() to determine whether to
set EFLAGS.RF=1 on the stack, keep the current behavior of not setting
RF=1 for #DBs. Intel and AMD explicitly state RF isn't set on code #DBs,
so exempting by failing the "== EXCPT_FAULT" check is correct. The only
other fault-like #DB is General Detect, and despite Intel and AMD both
strongly implying (through omission) that General Detect #DBs should set
RF=1, hardware (multiple generations of both Intel and AMD), in fact does
not. Through insider knowledge, extreme foresight, sheer dumb luck, or
some combination thereof, KVM correctly handled RF for General Detect #DBs.
Fixes: 38827dbd3f ("KVM: x86: Do not update EFLAGS on faulting emulation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-9-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Suppress code breakpoints if MOV/POP SS blocking is active and the guest
CPU is Intel, i.e. if the guest thinks it's running on an Intel CPU.
Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, whereas
AMD (and its descendents) do not.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-6-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extend force_emulation_prefix to an 'int' and use bit 1 as a flag to
indicate that KVM should clear RFLAGS.RF before emulating, e.g. to allow
tests to force emulation of code breakpoints in conjunction with MOV/POP
SS blocking, which is impossible without KVM intervention as VMX
unconditionally sets RFLAGS.RF on intercepted #UD.
Make the behavior controllable so that tests can also test RFLAGS.RF=1
(again in conjunction with code #DBs).
Note, clearing RFLAGS.RF won't create an infinite #DB loop as the guest's
IRET from the #DB handler will return to the instruction and not the
prefix, i.e. the restart won't force emulation.
Opportunistically convert the permissions to the preferred octal format.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-5-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't check for code breakpoints during instruction emulation if the
emulation was triggered by exception interception. Code breakpoints are
the highest priority fault-like exception, and KVM only emulates on
exceptions that are fault-like. Thus, if hardware signaled a different
exception, then the vCPU is already passed the stage of checking for
hardware breakpoints.
This is likely a glorified nop in terms of functionality, and is more for
clarification and is technically an optimization. Intel's SDM explicitly
states vmcs.GUEST_RFLAGS.RF on exception interception is the same as the
value that would have been saved on the stack had the exception not been
intercepted, i.e. will be '1' due to all fault-like exceptions setting RF
to '1'. AMD says "guest state saved ... is the processor state as of the
moment the intercept triggers", but that begs the question, "when does
the intercept trigger?".
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-4-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The return value of emulator_{get|set}_mst_with_filter() is confused,
since msr access error and emulator error are mixed. Although,
KVM_MSR_RET_* doesn't conflict with X86EMUL_IO_NEEDED at present, it is
better to convert msr access error to emulator error if error value is
needed.
So move "r < 0" handling for wrmsr emulation into the set helper function,
then only X86EMUL_* is returned in the helper functions. Also add "r < 0"
check in the get helper function, although KVM doesn't return -errno
today, but assuming that will always hold true is unnecessarily risking.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/09b2847fc3bcb8937fb11738f0ccf7be7f61d9dd.1661930557.git.houwenlong.hwl@antgroup.com
[sean: wrap changelog less aggressively]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update trace function for nested VM entry to support VMX. Existing trace
function only supports nested VMX and the information printed out is AMD
specific.
So, rename trace_kvm_nested_vmrun() to trace_kvm_nested_vmenter(), since
'vmenter' is generic. Add a new field 'isa' to recognize Intel and AMD;
Update the output to print out VMX/SVM related naming respectively, eg.,
vmcb vs. vmcs; npt vs. ept.
Opportunistically update the call site of trace_kvm_nested_vmenter() to
make one line per parameter.
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20220825225755.907001-2-mizhang@google.com
[sean: align indentation, s/update/rename in changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject #UD when emulating XSETBV if CR4.OSXSAVE is not set. This also
covers the "XSAVE not supported" check, as setting CR4.OSXSAVE=1 #GPs if
XSAVE is not supported (and userspace gets to keep the pieces if it
forces incoherent vCPU state).
Add a comment to kvm_emulate_xsetbv() to call out that the CPU checks
CR4.OSXSAVE before checking for intercepts. AMD'S APM implies that #UD
has priority (says that intercepts are checked before #GP exceptions),
while Intel's SDM says nothing about interception priority. However,
testing on hardware shows that both AMD and Intel CPUs prioritize the #UD
over interception.
Fixes: 02d4160fbd ("x86: KVM: add xsetbv to the emulator")
Cc: stable@vger.kernel.org
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220824033057.3576315-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reinstate the per-vCPU guest_supported_xcr0 by partially reverting
commit 988896bb6182; the implicit assessment that guest_supported_xcr0 is
always the same as guest_fpu.fpstate->user_xfeatures was incorrect.
kvm_vcpu_after_set_cpuid() isn't the only place that sets user_xfeatures,
as user_xfeatures is set to fpu_user_cfg.default_features when guest_fpu
is allocated via fpu_alloc_guest_fpstate() => __fpstate_reset().
guest_supported_xcr0 on the other hand is zero-allocated. If userspace
never invokes KVM_SET_CPUID2, supported XCR0 will be '0', whereas the
allowed user XFEATURES will be non-zero.
Practically speaking, the edge case likely doesn't matter as no sane
userspace will live migrate a VM without ever doing KVM_SET_CPUID2. The
primary motivation is to prepare for KVM intentionally and explicitly
setting bits in user_xfeatures that are not set in guest_supported_xcr0.
Because KVM_{G,S}ET_XSAVE can be used to svae/restore FP+SSE state even
if the host doesn't support XSAVE, KVM needs to set the FP+SSE bits in
user_xfeatures even if they're not allowed in XCR0, e.g. because XCR0
isn't exposed to the guest. At that point, the simplest fix is to track
the two things separately (allowed save/restore vs. allowed XCR0).
Fixes: 988896bb61 ("x86/kvm/fpu: Remove kvm_vcpu_arch.guest_supported_xcr0")
Cc: stable@vger.kernel.org
Cc: Leonardo Bras <leobras@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220824033057.3576315-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An invalid argument to KVM_SET_MP_STATE has no effect other than making the
vCPU fail to run at the next KVM_RUN. Since it is extremely unlikely that
any userspace is relying on it, fail with -EINVAL just like for other
architectures.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When allocating memory for mci_ctl2_banks fails, KVM doesn't release
mce_banks leading to memoryleak. Fix this issue by calling kfree()
for it when kcalloc() fails.
Fixes: 281b52780b ("KVM: x86: Add emulation for MSR_IA32_MCx_CTL2 MSRs.")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Message-Id: <20220901122300.22298-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM should not claim to virtualize unknown IA32_ARCH_CAPABILITIES
bits. When kvm_get_arch_capabilities() was originally written, there
were only a few bits defined in this MSR, and KVM could virtualize all
of them. However, over the years, several bits have been defined that
KVM cannot just blindly pass through to the guest without additional
work (such as virtualizing an MSR promised by the
IA32_ARCH_CAPABILITES feature bit).
Define a mask of supported IA32_ARCH_CAPABILITIES bits, and mask off
any other bits that are set in the hardware MSR.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 5b76a3cff0 ("KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20220830174947.2182144-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If vm_init() fails [which can happen, for instance, if a memory
allocation fails during avic_vm_init()], we need to cleanup some
state in order to avoid resource leaks.
Signed-off-by: Junaid Shahid <junaids@google.com>
Link: https://lore.kernel.org/r/20220729224329.323378-1-junaids@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When A/D bits are not available, KVM uses a software access tracking
mechanism, which involves making the SPTEs inaccessible. However,
the clear_young() MMU notifier does not flush TLBs. So it is possible
that there may still be stale, potentially writable, TLB entries.
This is usually fine, but can be problematic when enabling dirty
logging, because it currently only does a TLB flush if any SPTEs were
modified. But if all SPTEs are in access-tracked state, then there
won't be a TLB flush, which means that the guest could still possibly
write to memory and not have it reflected in the dirty bitmap.
So just unconditionally flush the TLBs when enabling dirty logging.
As an alternative, KVM could explicitly check the MMU-Writable bit when
write-protecting SPTEs to decide if a flush is needed (instead of
checking the Writable bit), but given that a flush almost always happens
anyway, so just making it unconditional seems simpler.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20220810224939.2611160-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Documentation formatting fixes
* Make rseq selftest compatible with glibc-2.35
* Fix handling of illegal LEA reg, reg
* Cleanup creation of debugfs entries
* Fix steal time cache handling bug
* Fixes for MMIO caching
* Optimize computation of number of LBRs
* Fix uninitialized field in guest_maxphyaddr < host_maxphyaddr path
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmL0qwIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroML1gf/SK6by+Gi0r7WSkrDjU94PKZ8D6Y3
fErMhratccc9IfL3p90IjCVhEngfdQf5UVHExA5TswgHHAJTpECzuHya9TweQZc5
2rrTvufup0MNALfzkSijrcI80CBvrJc6JyOCkv0BLp7yqXUrnrm0OOMV2XniS7y0
YNn2ZCy44tLqkNiQrLhJQg3EsXu9l7okGpHSVO6iZwC7KKHvYkbscVFa/AOlaAwK
WOZBB+1Ee+/pWhxsngM1GwwM3ZNU/jXOSVjew5plnrD4U7NYXIDATszbZAuNyxqV
5gi+wvTF1x9dC6Tgd3qF7ouAqtT51BdRYaI9aYHOYgvzqdNFHWJu3XauDQ==
=vI6Q
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini:
- Xen timer fixes
- Documentation formatting fixes
- Make rseq selftest compatible with glibc-2.35
- Fix handling of illegal LEA reg, reg
- Cleanup creation of debugfs entries
- Fix steal time cache handling bug
- Fixes for MMIO caching
- Optimize computation of number of LBRs
- Fix uninitialized field in guest_maxphyaddr < host_maxphyaddr path
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (26 commits)
KVM: x86/MMU: properly format KVM_CAP_VM_DISABLE_NX_HUGE_PAGES capability table
Documentation: KVM: extend KVM_CAP_VM_DISABLE_NX_HUGE_PAGES heading underline
KVM: VMX: Adjust number of LBR records for PERF_CAPABILITIES at refresh
KVM: VMX: Use proper type-safe functions for vCPU => LBRs helpers
KVM: x86: Refresh PMU after writes to MSR_IA32_PERF_CAPABILITIES
KVM: selftests: Test all possible "invalid" PERF_CAPABILITIES.LBR_FMT vals
KVM: selftests: Use getcpu() instead of sched_getcpu() in rseq_test
KVM: selftests: Make rseq compatible with glibc-2.35
KVM: Actually create debugfs in kvm_create_vm()
KVM: Pass the name of the VM fd to kvm_create_vm_debugfs()
KVM: Get an fd before creating the VM
KVM: Shove vcpu stats_id init into kvm_vcpu_init()
KVM: Shove vm stats_id init into kvm_create_vm()
KVM: x86/mmu: Add sanity check that MMIO SPTE mask doesn't overlap gen
KVM: x86/mmu: rename trace function name for asynchronous page fault
KVM: x86/xen: Stop Xen timer before changing IRQ
KVM: x86/xen: Initialize Xen timer only once
KVM: SVM: Disable SEV-ES support if MMIO caching is disable
KVM: x86/mmu: Fully re-evaluate MMIO caching when SPTE masks change
KVM: x86: Tag kvm_mmu_x86_module_init() with __init
...
Refresh the PMU if userspace modifies MSR_IA32_PERF_CAPABILITIES. KVM
consumes the vCPU's PERF_CAPABILITIES when enumerating PEBS support, but
relies on CPUID updates to refresh the PMU. I.e. KVM will do the wrong
thing if userspace stuffs PERF_CAPABILITIES _after_ setting guest CPUID.
Opportunistically fix a curly-brace indentation.
Fixes: c59a1f106f ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220727233424.2968356-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_fixup_and_inject_pf_error() was introduced to fixup the error code(
e.g., to add RSVD flag) and inject the #PF to the guest, when guest
MAXPHYADDR is smaller than the host one.
When it comes to nested, L0 is expected to intercept and fix up the #PF
and then inject to L2 directly if
- L2.MAXPHYADDR < L0.MAXPHYADDR and
- L1 has no intention to intercept L2's #PF (e.g., L2 and L1 have the
same MAXPHYADDR value && L1 is using EPT for L2),
instead of constructing a #PF VM Exit to L1. Currently, with PFEC_MASK
and PFEC_MATCH both set to 0 in vmcs02, the interception and injection
may happen on all L2 #PFs.
However, failing to initialize 'fault' in kvm_fixup_and_inject_pf_error()
may cause the fault.async_page_fault being NOT zeroed, and later the #PF
being treated as a nested async page fault, and then being injected to L1.
Instead of zeroing 'fault' at the beginning of this function, we mannually
set the value of 'fault.async_page_fault', because false is the value we
really expect.
Fixes: 897861479c ("KVM: x86: Add helper functions for illegal GPA checking and page fault injection")
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216178
Reported-by: Yang Lixiao <lixiao.yang@intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220718074756.53788-1-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time
/ preempted status", 2021-11-11) open coded the previous call to
kvm_map_gfn, but in doing so it dropped the comparison between the cached
guest physical address and the one in the MSR. This cause an incorrect
cache hit if the guest modifies the steal time address while the memslots
remain the same. This can happen with kexec, in which case the preempted
bit is written at the address used by the old kernel instead of
the old one.
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Fixes: 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time / preempted status")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time
/ preempted status", 2021-11-11) open coded the previous call to
kvm_map_gfn, but in doing so it dropped the comparison between the cached
guest physical address and the one in the MSR. This cause an incorrect
cache hit if the guest modifies the steal time address while the memslots
remain the same. This can happen with kexec, in which case the steal
time data is written at the address used by the old kernel instead of
the old one.
While at it, rename the variable from gfn to gpa since it is a plain
physical address and not a right-shifted one.
Reported-by: Dave Young <ruyang@redhat.com>
Reported-by: Xiaoying Yan <yiyan@redhat.com>
Analyzed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Fixes: 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time / preempted status")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Including:
- Most intrusive patch is small and changes the default
allocation policy for DMA addresses. Before the change the
allocator tried its best to find an address in the first 4GB.
But that lead to performance problems when that space gets
exhaused, and since most devices are capable of 64-bit DMA
these days, we changed it to search in the full DMA-mask
range from the beginning. This change has the potential to
uncover bugs elsewhere, in the kernel or the hardware. There
is a Kconfig option and a command line option to restore the
old behavior, but none of them is enabled by default.
- Add Robin Murphy as reviewer of IOMMU code and maintainer for
the dma-iommu and iova code
- Chaning IOVA magazine size from 1032 to 1024 bytes to save
memory
- Some core code cleanups and dead-code removal
- Support for ACPI IORT RMR node
- Support for multiple PCI domains in the AMD-Vi driver
- ARM SMMU changes from Will Deacon:
- Add even more Qualcomm device-tree compatible strings
- Support dumping of IMP DEF Qualcomm registers on TLB sync
timeout
- Fix reference count leak on device tree node in Qualcomm
driver
- Intel VT-d driver updates from Lu Baolu:
- Make intel-iommu.h private
- Optimize the use of two locks
- Extend the driver to support large-scale platforms
- Cleanup some dead code
- MediaTek IOMMU refactoring and support for TTBR up to 35bit
- Basic support for Exynos SysMMU v7
- VirtIO IOMMU driver gets a map/unmap_pages() implementation
- Other smaller cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmLs3DIACgkQK/BELZcB
GuMizhAAguAnLLOkOLlR9/MhrTZfNXCUX+bfrEIevjFXMw4iPNfCCr4ydQ7EdVK6
ZA/3Z89huYl0d0x/FELolnQi+HOeqYrfTDe4rB7TgNgwZnWa+fdHcyYkgBGyfPaV
ilgjNcx8o//9o4NasyB6kU395jVmFxb735gMTTb+tcO9fr+/qIB6hxrHuCklxrNr
C7wK6kkoDPi5n0QuXCSjXEx2Hk245pAWKPLwqxsUYzHGlLfl7ULOxw65BUBGvn/H
uCsTfJFu7u+ErwQYf0qPuOwRBnRdsx9g5EAnfab8p074SoKWvbNnftIxgIRp8ZEM
YgCbhYa1GOFI4r+XzqRzEbc0/vPSttims4Jqz0KxYs7pr5EoVifrWLJFjJdCdc2h
Tio1gTvOq8HbH63kwYNKJhg4iSC6zVd37ihEhvfFO6LcgFl4iCfd2o9zK7oY40J4
XoOxofVnJ2e3tzdhZ/n5quCXiudHixm6WuVa7QYKscF7Ud0tY1wWKuibdlMQTeNM
68MvtlteKcfs1BrWzZyrFMrFeAfIY8LI82y6jdJuoNMU5LE9+5yelXBdJhnVygZ+
Jglv1TIt6W/z1H5JgXtNVZ1wWgBm7rurOqNyfN8XCd8eP1z321CLfX8ujkhKrIWP
ApG15cwvpnh1JX630+UFiEikTGU0fb2orMdPwYmwuu8DAsoLVHE=
=hI2K
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.20-or-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- The most intrusive patch is small and changes the default allocation
policy for DMA addresses.
Before the change the allocator tried its best to find an address in
the first 4GB. But that lead to performance problems when that space
gets exhaused, and since most devices are capable of 64-bit DMA these
days, we changed it to search in the full DMA-mask range from the
beginning.
This change has the potential to uncover bugs elsewhere, in the
kernel or the hardware. There is a Kconfig option and a command line
option to restore the old behavior, but none of them is enabled by
default.
- Add Robin Murphy as reviewer of IOMMU code and maintainer for the
dma-iommu and iova code
- Chaning IOVA magazine size from 1032 to 1024 bytes to save memory
- Some core code cleanups and dead-code removal
- Support for ACPI IORT RMR node
- Support for multiple PCI domains in the AMD-Vi driver
- ARM SMMU changes from Will Deacon:
- Add even more Qualcomm device-tree compatible strings
- Support dumping of IMP DEF Qualcomm registers on TLB sync
timeout
- Fix reference count leak on device tree node in Qualcomm driver
- Intel VT-d driver updates from Lu Baolu:
- Make intel-iommu.h private
- Optimize the use of two locks
- Extend the driver to support large-scale platforms
- Cleanup some dead code
- MediaTek IOMMU refactoring and support for TTBR up to 35bit
- Basic support for Exynos SysMMU v7
- VirtIO IOMMU driver gets a map/unmap_pages() implementation
- Other smaller cleanups and fixes
* tag 'iommu-updates-v5.20-or-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (116 commits)
iommu/amd: Fix compile warning in init code
iommu/amd: Add support for AVIC when SNP is enabled
iommu/amd: Simplify and Consolidate Virtual APIC (AVIC) Enablement
ACPI/IORT: Fix build error implicit-function-declaration
drivers: iommu: fix clang -wformat warning
iommu/arm-smmu: qcom_iommu: Add of_node_put() when breaking out of loop
iommu/arm-smmu-qcom: Add SM6375 SMMU compatible
dt-bindings: arm-smmu: Add compatible for Qualcomm SM6375
MAINTAINERS: Add Robin Murphy as IOMMU SUBSYTEM reviewer
iommu/amd: Do not support IOMMUv2 APIs when SNP is enabled
iommu/amd: Do not support IOMMU_DOMAIN_IDENTITY after SNP is enabled
iommu/amd: Set translation valid bit only when IO page tables are in use
iommu/amd: Introduce function to check and enable SNP
iommu/amd: Globally detect SNP support
iommu/amd: Process all IVHDs before enabling IOMMU features
iommu/amd: Introduce global variable for storing common EFR and EFR2
iommu/amd: Introduce Support for Extended Feature 2 Register
iommu/amd: Change macro for IOMMU control register bit shift to decimal value
iommu/exynos: Enable default VM instance on SysMMU v7
iommu/exynos: Add SysMMU v7 register set
...
KVM/s390, KVM/x86 and common infrastructure changes for 5.20
x86:
* Permit guests to ignore single-bit ECC errors
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Cleanups for MCE MSR emulation
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
Generic:
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
x86:
* Use try_cmpxchg64 instead of cmpxchg64
* Bugfixes
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* x86/MMU: Allow NX huge pages to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
x86 cleanups:
* Use separate namespaces for guest PTEs and shadow PTEs bitmasks
* PIO emulation
* Reorganize rmap API, mostly around rmap destruction
* Do not workaround very old KVM bugs for L0 that runs with nesting enabled
* new selftests API for CPUID
Split the common x86 parts of kvm_is_valid_cr4(), i.e. the reserved bits
checks, into a separate helper, __kvm_is_valid_cr4(), and export only the
inner helper to vendor code in order to prevent nested VMX from calling
back into vmx_is_valid_cr4() via kvm_is_valid_cr4().
On SVM, this is a nop as SVM doesn't place any additional restrictions on
CR4.
On VMX, this is also currently a nop, but only because nested VMX is
missing checks on reserved CR4 bits for nested VM-Enter. That bug will
be fixed in a future patch, and could simply use kvm_is_valid_cr4() as-is,
but nVMX has _another_ bug where VMXON emulation doesn't enforce VMX's
restrictions on CR0/CR4. The cleanest and most intuitive way to fix the
VMXON bug is to use nested_host_cr{0,4}_valid(). If the CR4 variant
routes through kvm_is_valid_cr4(), using nested_host_cr4_valid() won't do
the right thing for the VMXON case as vmx_is_valid_cr4() enforces VMX's
restrictions if and only if the vCPU is post-VMXON.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return directly if kvm_arch_init() detects an error before doing any real
work, jumping through a label obfuscates what's happening and carries the
unnecessary risk of leaving 'r' uninitialized.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220715230016.3762909-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reject KVM if entry '0' in the host's IA32_PAT MSR is not programmed to
writeback (WB) memtype. KVM subtly relies on IA32_PAT entry '0' to be
programmed to WB by leaving the PAT bits in shadow paging and NPT SPTEs
as '0'. If something other than WB is in PAT[0], at _best_ guests will
suffer very poor performance, and at worst KVM will crash the system by
breaking cache-coherency expecations (e.g. using WC for guest memory).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220715230016.3762909-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The flags for KVM_CAP_X86_USER_SPACE_MSR and KVM_X86_SET_MSR_FILTER
have no protection for their unused bits. Without protection, future
development for these features will be difficult. Add the protection
needed to make it possible to extend these features in the future.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20220714161314.1715227-1-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
intel-iommu.h is not needed in kvm/x86 anymore. Remove its include.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20220514014322.2927339-6-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
'vector' and 'trig_mode' fields of 'struct kvm_lapic_irq' are left
uninitialized in kvm_pv_kick_cpu_op(). While these fields are normally
not needed for APIC_DM_REMRD, they're still referenced by
__apic_accept_irq() for trace_kvm_apic_accept_irq(). Fully initialize
the structure to avoid consuming random stack memory.
Fixes: a183b638b6 ("KVM: x86: make apic_accept_irq tracepoint more generic")
Reported-by: syzbot+d6caa905917d353f0d07@syzkaller.appspotmail.com
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220708125147.593975-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a second CPUID helper, kvm_find_cpuid_entry_index(), to handle KVM
queries for CPUID leaves whose index _may_ be significant, and drop the
index param from the existing kvm_find_cpuid_entry(). Add a WARN in the
inner helper, cpuid_entry2_find(), to detect attempts to retrieve a CPUID
entry whose index is significant without explicitly providing an index.
Using an explicit magic number and letting callers omit the index avoids
confusion by eliminating the myriad cases where KVM specifies '0' as a
dummy value.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some of the statistics values exported by KVM are always only 0 or 1.
It can be useful to export this fact to userspace so that it can track
them specially (for example by polling the value every now and then to
compute a % of time spent in a specific state).
Therefore, add "boolean value" as a new "unit". While it is not exactly
a unit, it walks and quacks like one. In particular, using the type
would be wrong because boolean values could be instantaneous or peak
values (e.g. "is the rmap allocated?") or even two-bucket histograms
(e.g. "number of posted vs. non-posted interrupt injections").
Suggested-by: Amneesh Singh <natto@weirdnatto.in>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change a WARN_ON() to separate WARN_ON_ONCE() if KVM has an outstanding
PIO or MMIO request without an associated callback, i.e. if KVM queued a
userspace I/O exit but didn't actually exit to userspace before moving
on to something else. Warning on every KVM_RUN risks spamming the kernel
if KVM gets into a bad state. Opportunistically split the WARNs so that
it's easier to triage failures when a WARN fires.
Deliberately do not use KVM_BUG_ON(), i.e. don't kill the VM. While the
WARN is all but guaranteed to fire if and only if there's a KVM bug, a
dangling I/O request does not present a danger to KVM (that flag is truly
truly consumed only in a single emulator path), and any such bug is
unlikely to be fatal to the VM (KVM essentially failed to do something it
shouldn't have tried to do in the first place). In other words, note the
bug, but let the VM keep running.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220711232750.1092012-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a "UD" clause to KVM_X86_QUIRK_MWAIT_NEVER_FAULTS to make it clear
that the quirk only controls the #UD behavior of MONITOR/MWAIT. KVM
doesn't currently enforce fault checks when MONITOR/MWAIT are supported,
but that could change in the future. SVM also has a virtualization hole
in that it checks all faults before intercepts, and so "never faults" is
already a lie when running on SVM.
Fixes: bfbcc81bb8 ("KVM: x86: Add a quirk for KVM's "MONITOR/MWAIT are NOPs!" behavior")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220711225753.1073989-4-seanjc@google.com
The result of gva_to_gpa() is physical address not virtual address,
it is odd that UNMAPPED_GVA macro is used as the result for physical
address. Replace UNMAPPED_GVA with INVALID_GPA and drop UNMAPPED_GVA
macro.
No functional change intended.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6104978956449467d3c68f1ad7f2c2f6d771d0ee.1656667239.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
'vector' and 'trig_mode' fields of 'struct kvm_lapic_irq' are left
uninitialized in kvm_pv_kick_cpu_op(). While these fields are normally
not needed for APIC_DM_REMRD, they're still referenced by
__apic_accept_irq() for trace_kvm_apic_accept_irq(). Fully initialize
the structure to avoid consuming random stack memory.
Fixes: a183b638b6 ("KVM: x86: make apic_accept_irq tracepoint more generic")
Reported-by: syzbot+d6caa905917d353f0d07@syzkaller.appspotmail.com
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220708125147.593975-1-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to update KVM's in-kernel local APIC in response to MCG_CAP
being changed by userspace to fix multiple bugs. First and foremost,
KVM needs to check that there's an in-kernel APIC prior to dereferencing
vcpu->arch.apic. Beyond that, any "new" LVT entries need to be masked,
and the APIC version register needs to be updated as it reports out the
number of LVT entries.
Fixes: 4b903561ec ("KVM: x86: Add Corrected Machine Check Interrupt (CMCI) emulation to lapic.")
Reported-by: syzbot+8cdad6430c24f396f158@syzkaller.appspotmail.com
Cc: Siddh Raman Pant <code@siddh.me>
Cc: Jue Wang <juew@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Merge a bug fix and cleanups for {g,s}et_msr_mce() using a base that
predates commit 281b52780b ("KVM: x86: Add emulation for
MSR_IA32_MCx_CTL2 MSRs."), which was written with the intention that it
be applied _after_ the bug fix and cleanups. The bug fix in particular
needs to be sent to stable trees; give them a stable hash to use.
Add helpers to identify CTL (control) and STATUS MCi MSR types instead of
open coding the checks using the offset. Using the offset is perfectly
safe, but unintuitive, as understanding what the code does requires
knowing that the offset calcuation will not affect the lower three bits.
Opportunistically comment the STATUS logic to save readers a trip to
Intel's SDM or AMD's APM to understand the "data != 0" check.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220512222716.4112548-4-seanjc@google.com
Use an explicit case statement to grab the full range of MCx bank MSRs
in {g,s}et_msr_mce(), and manually check only the "end" (the number of
banks configured by userspace may be less than the max). The "default"
trick works, but is a bit odd now, and will be quite odd if/when support
for accessing MCx_CTL2 MSRs is added, which has near identical logic.
Hoist "offset" to function scope so as to avoid curly braces for the case
statement, and because MCx_CTL2 support will need the same variables.
Opportunstically clean up the comment about allowing bit 10 to be cleared
from bank 4.
No functional change intended.
Cc: Jue Wang <juew@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220512222716.4112548-3-seanjc@google.com
Return '1', not '-1', when handling an illegal WRMSR to a MCi_CTL or
MCi_STATUS MSR. The behavior of "all zeros' or "all ones" for CTL MSRs
is architectural, as is the "only zeros" behavior for STATUS MSRs. I.e.
the intent is to inject a #GP, not exit to userspace due to an unhandled
emulation case. Returning '-1' gets interpreted as -EPERM up the stack
and effecitvely kills the guest.
Fixes: 890ca9aefa ("KVM: Add MCE support")
Fixes: 9ffd986c6e ("KVM: X86: #GP when guest attempts to write MCi_STATUS register w/o 0")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220512222716.4112548-2-seanjc@google.com
complete_emulator_pio_in() only has to be called by
complete_sev_es_emulated_ins() now; therefore, all that the function does
now is adjust sev_pio_count and sev_pio_data. Which is the same for
both IN and OUT.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now all callers except emulator_pio_in_emulated are using
__emulator_pio_in/complete_emulator_pio_in explicitly.
Move the "either copy the result or attempt PIO" logic in
emulator_pio_in_emulated, and rename __emulator_pio_in to
just emulator_pio_in.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use __emulator_pio_in() directly for fast PIO instead of bouncing through
emulator_pio_in() now that __emulator_pio_in() fills "val" when handling
in-kernel PIO. vcpu->arch.pio.count is guaranteed to be '0', so this a
pure nop.
emulator_pio_in_emulated is now the last caller of emulator_pio_in.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make emulator_pio_in_out operate directly on the provided buffer
as long as PIO is handled inside KVM.
For input operations, this means that, in the case of in-kernel
PIO, __emulator_pio_in() does not have to be always followed
by complete_emulator_pio_in(). This affects emulator_pio_in() and
kvm_sev_es_ins(); for the latter, that is why the call moves from
advance_sev_es_emulated_ins() to complete_sev_es_emulated_ins().
For output, it means that vcpu->pio.count is never set unnecessarily
and there is no need to clear it; but also vcpu->pio.size must not
be used in kvm_sev_es_outs(), because it will not be updated for
in-kernel OUT.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For now, this is basically an excuse to add back the void* argument to
the function, while removing some knowledge of vcpu->arch.pio* from
its callers. The WARN that vcpu->arch.pio.count is zero is also
extended to OUT operations.
The vcpu->arch.pio* fields still need to be filled even when the PIO is
handled in-kernel as __emulator_pio_in() is always followed by
complete_emulator_pio_in(). But after fixing that, it will be possible to
to only populate the vcpu->arch.pio* fields on userspace exits.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM protects the device list with SRCU, and therefore different calls
to kvm_io_bus_read()/kvm_io_bus_write() can very well see different
incarnations of kvm->buses. If userspace unregisters a device while
vCPUs are running there is no well-defined result. This patch applies
a safe fallback by returning early from emulator_pio_in_out(). This
corresponds to returning zeroes from IN, and dropping the writes on
the floor for OUT.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The caller of kernel_pio already has arguments for most of what kernel_pio
fishes out of vcpu->arch.pio. This is the first step towards ensuring that
vcpu->arch.pio.* is only used when exiting to userspace.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use complete_emulator_pio_in() directly when completing fast PIO, there's
no need to bounce through emulator_pio_in(): the comment about ECX
changing doesn't apply to fast PIO, which isn't used for string I/O.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a tracepoint to track number of doorbells being sent
to signal a running vCPU to process IRQ after being injected.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-17-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When launching a VM with x2APIC and specify more than 255 vCPUs,
the guest kernel can disable x2APIC (e.g. specify nox2apic kernel option).
The VM fallbacks to xAPIC mode, and disable the vCPU ID 255 and greater.
In this case, APICV is deactivated for the disabled vCPUs.
However, the current APICv consistency warning does not account for
this case, which results in a warning.
Therefore, modify warning logic to report only when vCPU APIC mode
is valid.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-15-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APICv should be deactivated on vCPU that has APIC disabled.
Therefore, call kvm_vcpu_update_apicv() when changing
APIC mode, and add additional check for APIC disable mode
when determine APICV activation,
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-9-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch enables MCG_CMCI_P by default in kvm_mce_cap_supported. It
reuses ioctl KVM_X86_SET_MCE to implement injection of UnCorrectable
No Action required (UCNA) errors, signaled via Corrected Machine
Check Interrupt (CMCI).
Neither of the CMCI and UCNA emulations depends on hardware.
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-8-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds the emulation of IA32_MCi_CTL2 registers to KVM. A
separate mci_ctl2_banks array is used to keep the existing mce_banks
register layout intact.
In Machine Check Architecture, in addition to MCG_CMCI_P, bit 30 of
the per-bank register IA32_MCi_CTL2 controls whether Corrected Machine
Check error reporting is enabled.
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-7-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch updates the allocation of mce_banks with the array allocation
API (kcalloc) as a precedent for the later mci_ctl2_banks to implement
per-bank control of Corrected Machine Check Interrupt (CMCI).
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-6-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch calculates the number of lvt entries as part of
KVM_X86_MCE_SETUP conditioned on the presence of MCG_CMCI_P bit in
MCG_CAP and stores result in kvm_lapic. It translats from APIC_LVTx
register to index in lapic_lvt_entry enum. It extends the APIC_LVTx
macro as well as other lapic write/reset handling etc to support
Corrected Machine Check Interrupt.
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-5-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases, the NX hugepage mitigation for iTLB multihit is not
needed for all guests on a host. Allow disabling the mitigation on a
per-VM basis to avoid the performance hit of NX hugepages on trusted
workloads.
In order to disable NX hugepages on a VM, ensure that the userspace
actor has permission to reboot the system. Since disabling NX hugepages
would allow a guest to crash the system, it is similar to reboot
permissions.
Ideally, KVM would require userspace to prove it has access to KVM's
nx_huge_pages module param, e.g. so that userspace can opt out without
needing full reboot permissions. But getting access to the module param
file info is difficult because it is buried in layers of sysfs and module
glue. Requiring CAP_SYS_BOOT is sufficient for all known use cases.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The braces around the KVM_CAP_XSAVE2 block also surround the
KVM_CAP_PMU_CAPABILITY block, likely the result of a merge issue. Simply
move the curly brace back to where it belongs.
Fixes: ba7bb663f5 ("KVM: x86: Provide per VM capability for disabling PMU virtualization")
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a quirk for KVM's behavior of emulating intercepted MONITOR/MWAIT
instructions a NOPs regardless of whether or not they are supported in
guest CPUID. KVM's current behavior was likely motiviated by a certain
fruity operating system that expects MONITOR/MWAIT to be supported
unconditionally and blindly executes MONITOR/MWAIT without first checking
CPUID. And because KVM does NOT advertise MONITOR/MWAIT to userspace,
that's effectively the default setup for any VMM that regurgitates
KVM_GET_SUPPORTED_CPUID to KVM_SET_CPUID2.
Note, this quirk interacts with KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT. The
behavior is actually desirable, as userspace VMMs that want to
unconditionally hide MONITOR/MWAIT from the guest can leave the
MISC_ENABLE quirk enabled.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220608224516.3788274-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore host userspace writes of '0' to F15H_PERF_CTL MSRs KVM reports
in the MSR-to-save list, but the MSRs are ultimately unsupported. All
MSRs in said list must be writable by userspace, e.g. if userspace sends
the list back at KVM without filtering out the MSRs it doesn't need.
Note, reads of said MSRs already have the desired behavior.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore host userspace reads and writes of '0' to PEBS and BTS MSRs that
KVM reports in the MSR-to-save list, but the MSRs are ultimately
unsupported. All MSRs in said list must be writable by userspace, e.g.
if userspace sends the list back at KVM without filtering out the MSRs it
doesn't need.
Fixes: 8183a538cd ("KVM: x86/pmu: Add IA32_DS_AREA MSR emulation to support guest DS")
Fixes: 902caeb684 ("KVM: x86/pmu: Add PEBS_DATA_CFG MSR emulation to support adaptive PEBS")
Fixes: c59a1f106f ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert the hack to allow host-initiated accesses to all "PMU" MSRs,
as intel_is_valid_msr() returns true for _all_ MSRs, regardless of whether
or not it has a snowball's chance in hell of actually being a PMU MSR.
That mostly gets papered over by the actual get/set helpers only handling
MSRs that they knows about, except there's the minor detail that
kvm_pmu_{g,s}et_msr() eat reads and writes when the PMU is disabled.
I.e. KVM will happy allow reads and writes to _any_ MSR if the PMU is
disabled, either via module param or capability.
This reverts commit d1c88a4020.
Fixes: d1c88a4020 ("KVM: x86: always allow host-initiated writes to PMU MSRs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Give userspace full control of the read-only bits in MISC_ENABLES, i.e.
do not modify bits on PMU refresh and do not preserve existing bits when
userspace writes MISC_ENABLES. With a few exceptions where KVM doesn't
expose the necessary controls to userspace _and_ there is a clear cut
association with CPUID, e.g. reserved CR4 bits, KVM does not own the vCPU
and should not manipulate the vCPU model on behalf of "dummy user space".
The argument that KVM is doing userspace a favor because "the order of
setting vPMU capabilities and MSR_IA32_MISC_ENABLE is not strictly
guaranteed" is specious, as attempting to configure MSRs on behalf of
userspace inevitably leads to edge cases precisely because KVM does not
prescribe a specific order of initialization.
Example #1: intel_pmu_refresh() consumes and modifies the vCPU's
MSR_IA32_PERF_CAPABILITIES, and so assumes userspace initializes config
MSRs before setting the guest CPUID model. If userspace sets CPUID
first, then KVM will mark PEBS as available when arch.perf_capabilities
is initialized with a non-zero PEBS format, thus creating a bad vCPU
model if userspace later disables PEBS by writing PERF_CAPABILITIES.
Example #2: intel_pmu_refresh() does not clear PERF_CAP_PEBS_MASK in
MSR_IA32_PERF_CAPABILITIES if there is no vPMU, making KVM inconsistent
in its desire to be consistent.
Example #3: intel_pmu_refresh() does not clear MSR_IA32_MISC_ENABLE_EMON
if KVM_SET_CPUID2 is called multiple times, first with a vPMU, then
without a vPMU. While slightly contrived, it's plausible a VMM could
reflect KVM's default vCPU and then operate on KVM's copy of CPUID to
later clear the vPMU settings, e.g. see KVM's selftests.
Example #4: Enumerating an Intel vCPU on an AMD host will not call into
intel_pmu_refresh() at any point, and so the BTS and PEBS "unavailable"
bits will be left clear, without any way for userspace to set them.
Keep the "R" behavior of the bit 7, "EMON available", for the guest.
Unlike the BTS and PEBS bits, which are fully "RO", the EMON bit can be
written with a different value, but that new value is ignored.
Cc: Like Xu <likexu@tencent.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Message-Id: <20220611005755.753273-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the per-vCPU apicv_active flag into KVM's local APIC instance.
APICv is fully dependent on an in-kernel local APIC, but that's not at
all clear when reading the current code due to the flag being stored in
the generic kvm_vcpu_arch struct.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_vcpu_apicv_active() to check if APICv is active when seeing if a
vCPU is a candidate for directed yield due to a pending ACPIv interrupt.
This will allow moving apicv_active into kvm_lapic without introducing a
potential NULL pointer deref (kvm_vcpu_apicv_active() effectively adds a
pre-check on the vCPU having an in-kernel APIC).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Properly reset the SVE/SME flags on vcpu load
* Fix a vgic-v2 regression regarding accessing the pending
state of a HW interrupt from userspace (and make the code
common with vgic-v3)
* Fix access to the idreg range for protected guests
* Ignore 'kvm-arm.mode=protected' when using VHE
* Return an error from kvm_arch_init_vm() on allocation failure
* A bunch of small cleanups (comments, annotations, indentation)
RISC-V:
* Typo fix in arch/riscv/kvm/vmid.c
* Remove broken reference pattern from MAINTAINERS entry
x86-64:
* Fix error in page tables with MKTME enabled
* Dirty page tracking performance test extended to running a nested
guest
* Disable APICv/AVIC in cases that it cannot implement correctly
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKjTIAUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNhPQgAiIVtp8aepujUM/NhkNyK3SIdLzlS
oZCZiS6bvaecKXi/QvhBU0EBxAEyrovk3lmVuYNd41xI+PDjyaA4SDIl5DnToGUw
bVPNFSYqjpF939vUUKjc0RCdZR4o5g3Od3tvWoHTHviS1a8aAe5o9pcpHpD0D6Mp
Gc/o58nKAOPl3htcFKmjymqo3Y6yvkJU9NB7DCbL8T5mp5pJ959Mw1/LlmBaAzJC
OofrynUm4NjMyAj/mAB1FhHKFyQfjBXLhiVlS0SLiiEA/tn9/OXyVFMKG+n5VkAZ
Q337GMFe2RikEIuMEr3Rc4qbZK3PpxHhaj+6MPRuM0ho/P4yzl2Nyb/OhA==
=h81Q
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"While last week's pull request contained miscellaneous fixes for x86,
this one covers other architectures, selftests changes, and a bigger
series for APIC virtualization bugs that were discovered during 5.20
development. The idea is to base 5.20 development for KVM on top of
this tag.
ARM64:
- Properly reset the SVE/SME flags on vcpu load
- Fix a vgic-v2 regression regarding accessing the pending state of a
HW interrupt from userspace (and make the code common with vgic-v3)
- Fix access to the idreg range for protected guests
- Ignore 'kvm-arm.mode=protected' when using VHE
- Return an error from kvm_arch_init_vm() on allocation failure
- A bunch of small cleanups (comments, annotations, indentation)
RISC-V:
- Typo fix in arch/riscv/kvm/vmid.c
- Remove broken reference pattern from MAINTAINERS entry
x86-64:
- Fix error in page tables with MKTME enabled
- Dirty page tracking performance test extended to running a nested
guest
- Disable APICv/AVIC in cases that it cannot implement correctly"
[ This merge also fixes a misplaced end parenthesis bug introduced in
commit 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on changes to APIC
ID or APIC base") pointed out by Sean Christopherson ]
Link: https://lore.kernel.org/all/20220610191813.371682-1-seanjc@google.com/
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (34 commits)
KVM: selftests: Restrict test region to 48-bit physical addresses when using nested
KVM: selftests: Add option to run dirty_log_perf_test vCPUs in L2
KVM: selftests: Clean up LIBKVM files in Makefile
KVM: selftests: Link selftests directly with lib object files
KVM: selftests: Drop unnecessary rule for STATIC_LIBS
KVM: selftests: Add a helper to check EPT/VPID capabilities
KVM: selftests: Move VMX_EPT_VPID_CAP_AD_BITS to vmx.h
KVM: selftests: Refactor nested_map() to specify target level
KVM: selftests: Drop stale function parameter comment for nested_map()
KVM: selftests: Add option to create 2M and 1G EPT mappings
KVM: selftests: Replace x86_page_size with PG_LEVEL_XX
KVM: x86: SVM: fix nested PAUSE filtering when L0 intercepts PAUSE
KVM: x86: SVM: drop preempt-safe wrappers for avic_vcpu_load/put
KVM: x86: disable preemption around the call to kvm_arch_vcpu_{un|}blocking
KVM: x86: disable preemption while updating apicv inhibition
KVM: x86: SVM: fix avic_kick_target_vcpus_fast
KVM: x86: SVM: remove avic's broken code that updated APIC ID
KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base
KVM: x86: document AVIC/APICv inhibit reasons
KVM: x86/mmu: Set memory encryption "value", not "mask", in shadow PDPTRs
...
Stale Data.
They are a class of MMIO-related weaknesses which can expose stale data
by propagating it into core fill buffers. Data which can then be leaked
using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKXMkMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWGPD/idalLIhhV5F2+hZIKm0WSnsBxAOh9K
7y8xBxpQQ5FUfW3vm7Pg3ro6VJp7w2CzKoD4lGXzGHriusn3qst3vkza9Ay8xu8g
RDwKe6hI+p+Il9BV9op3f8FiRLP9bcPMMReW/mRyYsOnJe59hVNwRAL8OG40PY4k
hZgg4Psfvfx8bwiye5efjMSe4fXV7BUCkr601+8kVJoiaoszkux9mqP+cnnB5P3H
zW1d1jx7d6eV1Y063h7WgiNqQRYv0bROZP5BJkufIoOHUXDpd65IRF3bDnCIvSEz
KkMYJNXb3qh7EQeHS53NL+gz2EBQt+Tq1VH256qn6i3mcHs85HvC68gVrAkfVHJE
QLJE3MoXWOqw+mhwzCRrEXN9O1lT/PqDWw8I4M/5KtGG/KnJs+bygmfKBbKjIVg4
2yQWfMmOgQsw3GWCRjgEli7aYbDJQjany0K/qZTq54I41gu+TV8YMccaWcXgDKrm
cXFGUfOg4gBm4IRjJ/RJn+mUv6u+/3sLVqsaFTs9aiib1dpBSSUuMGBh548Ft7g2
5VbFVSDaLjB2BdlcG7enlsmtzw0ltNssmqg7jTK/L7XNVnvxwUoXw+zP7RmCLEYt
UV4FHXraMKNt2ZketlomC8ui2hg73ylUp4pPdMXCp7PIXp9sVamRTbpz12h689VJ
/s55bWxHkR6S
=LBxT
-----END PGP SIGNATURE-----
Merge tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
Bug the VM, i.e. kill it, if the emulator accesses a non-existent GPR,
i.e. generates an out-of-bounds GPR index. Continuing on all but
gaurantees some form of data corruption in the guest, e.g. even if KVM
were to redirect to a dummy register, KVM would be incorrectly read zeros
and drop writes.
Note, bugging the VM doesn't completely prevent data corruption, e.g. the
current round of emulation will complete before the vCPU bails out to
userspace. But, the very act of killing the guest can also cause data
corruption, e.g. due to lack of file writeback before termination, so
taking on additional complexity to cleanly bail out of the emulator isn't
justified, the goal is purely to stem the bleeding and alert userspace
that something has gone horribly wrong, i.e. to avoid _silent_ data
corruption.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220526210817.3428868-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to show tests
x86:
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Rewrite gfn-pfn cache refresh
* Refuse starting the module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit
Currently nothing prevents preemption in kvm_vcpu_update_apicv.
On SVM, If the preemption happens after we update the
vcpu->arch.apicv_active, the preemption itself will
'update' the inhibition since the AVIC will be first disabled
on vCPU unload and then enabled, when the current task
is loaded again.
Then we will try to update it again, which will lead to a warning
in __avic_vcpu_load, that the AVIC is already enabled.
Fix this by disabling preemption in this code.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The BTS feature (including the ability to set the BTS and BTINT
bits in the DEBUGCTL MSR) is currently unsupported on KVM.
But we may try using the BTS facility on a PEBS enabled guest like this:
perf record -e branches:u -c 1 -d ls
and then we would encounter the following call trace:
[] unchecked MSR access error: WRMSR to 0x1d9 (tried to write 0x00000000000003c0)
at rIP: 0xffffffff810745e4 (native_write_msr+0x4/0x20)
[] Call Trace:
[] intel_pmu_enable_bts+0x5d/0x70
[] bts_event_add+0x54/0x70
[] event_sched_in+0xee/0x290
As it lacks any CPUID indicator or perf_capabilities valid bit
fields to prompt for this information, the platform would hint
the Intel BTS feature unavailable to guest by setting the
BTS_UNAVAIL bit in the IA32_MISC_ENABLE.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220601031925.59693-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fix TDP MMU performance issue with disabling dirty logging
* Fix 5.14 regression with SVM TSC scaling
* Fix indefinite stall on applying live patches
* Fix unstable selftest
* Fix memory leak from wrong copy-and-paste
* Fix missed PV TLB flush when racing with emulation
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKglysUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOJDAgArpPcAnJbeT2VQTQcp94e4tp9k1Sf
gmUewajco4zFVB/sldE0fIporETkaX+FYYPiaNDdNgJ2lUw/HUJBN7KoFEYTZ37N
Xx/qXiIXQYFw1bmxTnacLzIQtD3luMCzOs/6/Q7CAFZIBpUtUEjkMlQOBuxoKeG0
B0iLCTJSw0taWcN170aN8G6T+5+bdR3AJW1k2wkgfESfYF9NfJoTUHQj9WTMzM2R
aBRuXvUI/rWKvQY3DfoRmgg9Ig/SirSC+abbKIs4H08vZIEUlPk3WOZSKpsN/Wzh
3XDnVRxgnaRLx6NI/ouI2UYJCmjPKbNcueGCf5IfUcHvngHjAEG/xxe4Qw==
=zQ9u
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
- syzkaller NULL pointer dereference
- TDP MMU performance issue with disabling dirty logging
- 5.14 regression with SVM TSC scaling
- indefinite stall on applying live patches
- unstable selftest
- memory leak from wrong copy-and-paste
- missed PV TLB flush when racing with emulation
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: do not report a vCPU as preempted outside instruction boundaries
KVM: x86: do not set st->preempted when going back to user space
KVM: SVM: fix tsc scaling cache logic
KVM: selftests: Make hyperv_clock selftest more stable
KVM: x86/MMU: Zap non-leaf SPTEs when disabling dirty logging
x86: drop bogus "cc" clobber from __try_cmpxchg_user_asm()
KVM: x86/mmu: Check every prev_roots in __kvm_mmu_free_obsolete_roots()
entry/kvm: Exit to user mode when TIF_NOTIFY_SIGNAL is set
KVM: Don't null dereference ops->destroy
There are cases that malicious virtual machines can cause CPU stuck (due
to event windows don't open up), e.g., infinite loop in microcode when
nested #AC (CVE-2015-5307). No event window means no event (NMI, SMI and
IRQ) can be delivered. It leads the CPU to be unavailable to host or
other VMs.
VMM can enable notify VM exit that a VM exit generated if no event
window occurs in VM non-root mode for a specified amount of time (notify
window).
Feature enabling:
- The new vmcs field SECONDARY_EXEC_NOTIFY_VM_EXITING is introduced to
enable this feature. VMM can set NOTIFY_WINDOW vmcs field to adjust
the expected notify window.
- Add a new KVM capability KVM_CAP_X86_NOTIFY_VMEXIT so that user space
can query and enable this feature in per-VM scope. The argument is a
64bit value: bits 63:32 are used for notify window, and bits 31:0 are
for flags. Current supported flags:
- KVM_X86_NOTIFY_VMEXIT_ENABLED: enable the feature with the notify
window provided.
- KVM_X86_NOTIFY_VMEXIT_USER: exit to userspace once the exits happen.
- It's safe to even set notify window to zero since an internal hardware
threshold is added to vmcs.notify_window.
VM exit handling:
- Introduce a vcpu state notify_window_exits to records the count of
notify VM exits and expose it through the debugfs.
- Notify VM exit can happen incident to delivery of a vector event.
Allow it in KVM.
- Exit to userspace unconditionally for handling when VM_CONTEXT_INVALID
bit is set.
Nested handling
- Nested notify VM exits are not supported yet. Keep the same notify
window control in vmcs02 as vmcs01, so that L1 can't escape the
restriction of notify VM exits through launching L2 VM.
Notify VM exit is defined in latest Intel Architecture Instruction Set
Extensions Programming Reference, chapter 9.2.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Co-developed-by: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-5-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add kvm_caps to hold a variety of capabilites and defaults that aren't
handled by kvm_cpu_caps because they aren't CPUID bits in order to reduce
the amount of boilerplate code required to add a new feature. The vast
majority (all?) of the caps interact with vendor code and are written
only during initialization, i.e. should be tagged __read_mostly, declared
extern in x86.h, and exported.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220524135624.22988-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For the triple fault sythesized by KVM, e.g. the RSM path or
nested_vmx_abort(), if KVM exits to userspace before the request is
serviced, userspace could migrate the VM and lose the triple fault.
Extend KVM_{G,S}ET_VCPU_EVENTS to support pending triple fault with a
new event KVM_VCPUEVENT_VALID_FAULT_FAULT so that userspace can save and
restore the triple fault event. This extension is guarded by a new KVM
capability KVM_CAP_TRIPLE_FAULT_EVENT.
Note that in the set_vcpu_events path, userspace is able to set/clear
the triple fault request through triple_fault.pending field.
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-2-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Whenever an MSR is part of KVM_GET_MSR_INDEX_LIST, it has to be always
retrievable and settable with KVM_GET_MSR and KVM_SET_MSR. Accept
the PMU MSRs unconditionally in intel_is_valid_msr, if the access was
host-initiated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The information obtained from the interface perf_get_x86_pmu_capability()
doesn't change, so an exported "struct x86_pmu_capability" is introduced
for all guests in the KVM, and it's initialized before hardware_setup().
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-16-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The bit 12 represents "Processor Event Based Sampling Unavailable (RO)" :
1 = PEBS is not supported.
0 = PEBS is supported.
A write to this PEBS_UNAVL available bit will bring #GP(0) when guest PEBS
is enabled. Some PEBS drivers in guest may care about this bit.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20220411101946.20262-13-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the adaptive
PEBS is supported. The PEBS_DATA_CFG MSR and adaptive record enable
bits (IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.
FCx_Adaptive_Record) are also supported.
Adaptive PEBS provides software the capability to configure the PEBS
records to capture only the data of interest, keeping the record size
compact. An overflow of PMCx results in generation of an adaptive PEBS
record with state information based on the selections specified in
MSR_PEBS_DATA_CFG.By default, the record only contain the Basic group.
When guest adaptive PEBS is enabled, the IA32_PEBS_ENABLE MSR will
be added to the perf_guest_switch_msr() and switched during the VMX
transitions just like CORE_PERF_GLOBAL_CTRL MSR.
According to Intel SDM, software is recommended to PEBS Baseline
when the following is true. IA32_PERF_CAPABILITIES.PEBS_BASELINE[14]
&& IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When CPUID.01H:EDX.DS[21] is set, the IA32_DS_AREA MSR exists and points
to the linear address of the first byte of the DS buffer management area,
which is used to manage the PEBS records.
When guest PEBS is enabled, the MSR_IA32_DS_AREA MSR will be added to the
perf_guest_switch_msr() and switched during the VMX transitions just like
CORE_PERF_GLOBAL_CTRL MSR. The WRMSR to IA32_DS_AREA MSR brings a #GP(0)
if the source register contains a non-canonical address.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-11-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the
IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed
and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE
that enable generation of PEBS records. The general-purpose counter bits
start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at
bit IA32_PEBS_ENABLE[32].
When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be
added to the perf_guest_switch_msr() and atomically switched during
the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR.
Based on whether the platform supports x86_pmu.pebs_ept, it has also
refactored the way to add more msrs to arr[] in intel_guest_get_msrs()
for extensibility.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On Intel platforms, the software can use the IA32_MISC_ENABLE[7] bit to
detect whether the processor supports performance monitoring facility.
It depends on the PMU is enabled for the guest, and a software write
operation to this available bit will be ignored. The proposal to ignore
the toggle in KVM is the way to go and that behavior matches bare metal.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-5-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With IPI virtualization enabled, the processor emulates writes to
APIC registers that would send IPIs. The processor sets the bit
corresponding to the vector in target vCPU's PIR and may send a
notification (IPI) specified by NDST and NV fields in target vCPU's
Posted-Interrupt Descriptor (PID). It is similar to what IOMMU
engine does when dealing with posted interrupt from devices.
A PID-pointer table is used by the processor to locate the PID of a
vCPU with the vCPU's APIC ID. The table size depends on maximum APIC
ID assigned for current VM session from userspace. Allocating memory
for PID-pointer table is deferred to vCPU creation, because irqchip
mode and VM-scope maximum APIC ID is settled at that point. KVM can
skip PID-pointer table allocation if !irqchip_in_kernel().
Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its
notification vector to wakeup vector. This can ensure that when an IPI
for blocked vCPUs arrives, VMM can get control and wake up blocked
vCPUs. And if a VCPU is preempted, its posted interrupt notification
is suppressed.
Note that IPI virtualization can only virualize physical-addressing,
flat mode, unicast IPIs. Sending other IPIs would still cause a
trap-like APIC-write VM-exit and need to be handled by VMM.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154510.11938-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce new max_vcpu_ids in KVM for x86 architecture. Userspace
can assign maximum possible vcpu id for current VM session using
KVM_CAP_MAX_VCPU_ID of KVM_ENABLE_CAP ioctl().
This is done for x86 only because the sole use case is to guide
memory allocation for PID-pointer table, a structure needed to
enable VMX IPI.
By default, max_vcpu_ids set as KVM_MAX_VCPU_IDS.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154444.11888-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_arch_vcpu_precreate() targets to handle arch specific VM resource
to be prepared prior to the actual creation of vCPU. For example, x86
platform may need do per-VM allocation based on max_vcpu_ids at the
first vCPU creation. It probably leads to concurrency control on this
allocation as multiple vCPU creation could happen simultaneously. From
the architectual point of view, it's necessary to execute
kvm_arch_vcpu_precreate() under protect of kvm->lock.
Currently only arm64, x86 and s390 have non-nop implementations at the
stage of vCPU pre-creation. Remove the lock acquiring in s390's design
and make sure all architecture can run kvm_arch_vcpu_precreate() safely
under kvm->lock without recrusive lock issue.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154409.11842-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>