Move the logic to get the to-be-acknowledge IRQ for a nested VM-Exit from
nested_vmx_vmexit() to vmx_check_nested_events(), which is subtly the one
and only path where KVM invokes nested_vmx_vmexit() with
EXIT_REASON_EXTERNAL_INTERRUPT. A future fix will perform a last-minute
check on L2's nested posted interrupt notification vector, just before
injecting a nested VM-Exit. To handle that scenario correctly, KVM needs
to get the interrupt _before_ injecting VM-Exit, as simply querying the
highest priority interrupt, via kvm_cpu_has_interrupt(), would result in
TOCTOU bug, as a new, higher priority interrupt could arrive between
kvm_cpu_has_interrupt() and kvm_cpu_get_interrupt().
Unfortunately, simply moving the call to kvm_cpu_get_interrupt() doesn't
suffice, as a VMWRITE to GUEST_INTERRUPT_STATUS.SVI is hiding in
kvm_get_apic_interrupt(), and acknowledging the interrupt before nested
VM-Exit would cause the VMWRITE to hit vmcs02 instead of vmcs01.
Open code a rough equivalent to kvm_cpu_get_interrupt() so that the IRQ
is acknowledged after emulating VM-Exit, taking care to avoid the TOCTOU
issue described above.
Opportunistically convert the WARN_ON() to a WARN_ON_ONCE(). If KVM has
a bug that results in a false positive from kvm_cpu_has_interrupt(),
spamming dmesg won't help the situation.
Note, nested_vmx_reflect_vmexit() can never reflect external interrupts as
they are always "wanted" by L0.
Link: https://lore.kernel.org/r/20240906043413.1049633-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When SGX EDECCSSA support was added to KVM in commit 16a7fe3728
("KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest"), it
forgot to clear the X86_FEATURE_SGX_EDECCSSA bit in KVM CPU caps when
KVM SGX is disabled. Fix it.
Fixes: 16a7fe3728 ("KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest")
Signed-off-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240905120837.579102-1-kai.huang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Register the "disable virtualization in an emergency" callback just
before KVM enables virtualization in hardware, as there is no functional
need to keep the callbacks registered while KVM happens to be loaded, but
is inactive, i.e. if KVM hasn't enabled virtualization.
Note, unregistering the callback every time the last VM is destroyed could
have measurable latency due to the synchronize_rcu() needed to ensure all
references to the callback are dropped before KVM is unloaded. But the
latency should be a small fraction of the total latency of disabling
virtualization across all CPUs, and userspace can set enable_virt_at_load
to completely eliminate the runtime overhead.
Add a pointer in kvm_x86_ops to allow vendor code to provide its callback.
There is no reason to force vendor code to do the registration, and either
way KVM would need a new kvm_x86_ops hook.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Farrah Chen <farrah.chen@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240830043600.127750-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename x86's the per-CPU vendor hooks used to enable virtualization in
hardware to align with the recently renamed arch hooks.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-ID: <20240830043600.127750-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a fastpath for HLT VM-Exits by immediately re-entering the guest if
it has a pending wake event. When virtual interrupt delivery is enabled,
i.e. when KVM doesn't need to manually inject interrupts, this allows KVM
to stay in the fastpath run loop when a vIRQ arrives between the guest
doing CLI and STI;HLT. Without AMD's Idle HLT-intercept support, the CPU
generates a HLT VM-Exit even though KVM will immediately resume the guest.
Note, on bare metal, it's relatively uncommon for a modern guest kernel to
actually trigger this scenario, as the window between the guest checking
for a wake event and committing to HLT is quite small. But in a nested
environment, the timings change significantly, e.g. rudimentary testing
showed that ~50% of HLT exits where HLT-polling was successful would be
serviced by this fastpath, i.e. ~50% of the time that a nested vCPU gets
a wake event before KVM schedules out the vCPU, the wake event was pending
even before the VM-Exit.
Link: https://lore.kernel.org/all/20240528041926.3989-3-manali.shukla@amd.com
Link: https://lore.kernel.org/r/20240802195120.325560-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Re-introduce the "split" x2APIC ICR storage that KVM used prior to Intel's
IPI virtualization support, but only for AMD. While not stated anywhere
in the APM, despite stating the ICR is a single 64-bit register, AMD CPUs
store the 64-bit ICR as two separate 32-bit values in ICR and ICR2. When
IPI virtualization (IPIv on Intel, all AVIC flavors on AMD) is enabled,
KVM needs to match CPU behavior as some ICR ICR writes will be handled by
the CPU, not by KVM.
Add a kvm_x86_ops knob to control the underlying format used by the CPU to
store the x2APIC ICR, and tune it to AMD vs. Intel regardless of whether
or not x2AVIC is enabled. If KVM is handling all ICR writes, the storage
format for x2APIC mode doesn't matter, and having the behavior follow AMD
versus Intel will provide better test coverage and ease debugging.
Fixes: 4d1d7942e3 ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Link: https://lore.kernel.org/r/20240719235107.3023592-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename all APIs related to feature MSRs from get_msr_feature() to
get_feature_msr(). The APIs get "feature MSRs", not "MSR features".
And unlike kvm_{g,s}et_msr_common(), the "feature" adjective doesn't
describe the helper itself.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor get_msr_feature() to take the index and data pointer as distinct
parameters in anticipation of eliminating "struct kvm_msr_entry" usage
further up the primary callchain.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename the "INVALID" internal MSR error return code to "UNSUPPORTED" to
try and make it more clear that access was denied because the MSR itself
is unsupported/unknown. "INVALID" is too ambiguous, as it could just as
easily mean the value for WRMSR as invalid.
Avoid UNKNOWN and UNIMPLEMENTED, as the error code is used for MSRs that
_are_ actually implemented by KVM, e.g. if the MSR is unsupported because
an associated feature flag is not present in guest CPUID.
Opportunistically beef up the comments for the internal MSR error codes.
Link: https://lore.kernel.org/r/20240802181935.292540-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move VMX's MSR_TYPE_{R,W,RW} #defines to x86.h, as enums, so that they can
be used by common x86 code, e.g. instead of doing "bool write".
Opportunistically tweak the definitions to make it more obvious that the
values are bitmasks, not arbitrary ascending values.
No functional change intended.
Link: https://lore.kernel.org/r/20240802181935.292540-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
GCC 12.3.0 complains about a potential NULL pointer dereference in
evmcs_load() as hv_get_vp_assist_page() can return NULL. In fact, this
cannot happen because KVM verifies (hv_init_evmcs()) that every CPU has a
valid VP assist page and aborts enabling the feature otherwise. CPU
onlining path is also checked in vmx_hardware_enable().
To make the compiler happy and to future proof the code, add a KVM_BUG_ON()
sentinel. It doesn't seem to be possible (and logical) to observe
evmcs_load() happening without an active vCPU so it is presumed that
kvm_get_running_vcpu() can't return NULL.
No functional change intended.
Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20240816130124.286226-1-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
In prepare_vmcs02_rare(), call vmx_segment_cache_clear() instead of
setting segment_cache.bitmask directly. Using the helper minimizes the
chances of prepare_vmcs02_rare() doing the wrong thing in the future, e.g.
if KVM ends up doing more than just zero the bitmask when purging the
cache.
No functional change intended.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240725175232.337266-2-mlevitsk@redhat.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Synthesize a consistency check VM-Exit (VM-Enter) or VM-Abort (VM-Exit) if
L1 attempts to load/store an MSR via the VMCS MSR lists that userspace has
disallowed access to via an MSR filter. Intel already disallows including
a handful of "special" MSRs in the VMCS lists, so denying access isn't
completely without precedent.
More importantly, the behavior is well-defined _and_ can be communicated
the end user, e.g. to the customer that owns a VM running as L1 on top of
KVM. On the other hand, ignoring userspace MSR filters is all but
guaranteed to result in unexpected behavior as the access will hit KVM's
internal state, which is likely not up-to-date.
Unlike KVM-internal accesses, instruction emulation, and dedicated VMCS
fields, the MSRs in the VMCS load/store lists are 100% guest controlled,
thus making it all but impossible to reason about the correctness of
ignoring the MSR filter. And if userspace *really* wants to deny access
to MSRs via the aforementioned scenarios, userspace can hide the
associated feature from the guest, e.g. by disabling the PMU to prevent
accessing PERF_GLOBAL_CTRL via its VMCS field. But for the MSR lists, KVM
is blindly processing MSRs; the MSR filters are the _only_ way for
userspace to deny access.
This partially reverts commit ac8d6cad3c ("KVM: x86: Only do MSR
filtering when access MSR by rdmsr/wrmsr").
Cc: Hou Wenlong <houwenlong.hwl@antgroup.com>
Cc: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20240722235922.3351122-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
According to the SDM, the meaning of field bit 0 is:
Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit,
and natural-width fields. So there is no 32-bit high field here,
it should be a 32-bit field instead.
Signed-off-by: Qiang Liu <liuq131@chinatelecom.cn>
Link: https://lore.kernel.org/r/20240702064609.52487-1-liuq131@chinatelecom.cn
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use macros in vmx_restore_vmx_misc() instead of open coding everything
using BIT_ULL() and GENMASK_ULL(). Opportunistically split feature bits
and reserved bits into separate variables, and add a comment explaining
the subset logic (it's not immediately obvious that the set of feature
bits is NOT the set of _supported_ feature bits).
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog, drop #defines]
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use vmx_misc_preemption_timer_rate() to get the rate in hardware_setup(),
and open code the rate's bitmask in vmx_misc_preemption_timer_rate() so
that the function looks like all the helpers that grab values from
VMX_BASIC and VMX_MISC MSR values.
No functional change intended.
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog]
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the handful of MSR_IA32_VMX_MISC bit defines that are currently in
msr-indx.h to vmx.h so that all of the VMX_MISC defines and wrappers can
be found in a single location.
Opportunistically use BIT_ULL() instead of open coding hex values, add
defines for feature bits that are architecturally defined, and move the
defines down in the file so that they are colocated with the helpers for
getting fields from VMX_MISC.
No functional change intended.
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog]
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to encode the VMCS revision, size, and supported memory types
in MSR_IA32_VMX_BASIC, i.e. when synthesizing KVM's supported BASIC MSR
value, and delete the now unused VMCS size and memtype shift macros.
For a variety of reasons, KVM has shifted (pun intended) to using helpers
to *get* information from the VMX MSRs, as opposed to defined MASK and
SHIFT macros for direct use. Provide a similar helper for the nested VMX
code, which needs to *set* information, so that KVM isn't left with a mix
of SHIFT macros and dedicated helpers.
Reported-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use macros in vmx_restore_vmx_basic() instead of open coding everything
using BIT_ULL() and GENMASK_ULL(). Opportunistically split feature bits
and reserved bits into separate variables, and add a comment explaining
the subset logic (it's not immediately obvious that the set of feature
bits is NOT the set of _supported_ feature bits).
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog, drop #defines]
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track the "basic" capabilities VMX MSR as a single u64 in vmcs_config
instead of splitting it across three fields, that obviously don't combine
into a single 64-bit value, so that KVM can use the macros that define MSR
bits using their absolute position. Replace all open coded shifts and
masks, many of which are relative to the "high" half, with the appropriate
macro.
Opportunistically use VMX_BASIC_32BIT_PHYS_ADDR_ONLY instead of an open
coded equivalent, and clean up the related comment to not reference a
specific SDM section (to the surprise of no one, the comment is stale).
No functional change intended (though obviously the code generation will
be quite different).
Cc: Shan Kang <shan.kang@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
[sean: split to separate patch, write changelog]
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add defines for the architectural memory types that can be shoved into
various MSRs and registers, e.g. MTRRs, PAT, VMX capabilities MSRs, EPTPs,
etc. While most MSRs/registers support only a subset of all memory types,
the values themselves are architectural and identical across all users.
Leave the goofy MTRR_TYPE_* definitions as-is since they are in a uapi
header, but add compile-time assertions to connect the dots (and sanity
check that the msr-index.h values didn't get fat-fingered).
Keep the VMX_EPTP_MT_* defines so that it's slightly more obvious that the
EPTP holds a single memory type in 3 of its 64 bits; those bits just
happen to be 2:0, i.e. don't need to be shifted.
Opportunistically use X86_MEMTYPE_WB instead of an open coded '6' in
setup_vmcs_config().
No functional change intended.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240605231918.2915961-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Remove an unnecessary EPT TLB flush when enabling hardware.
- Fix a series of bugs that cause KVM to fail to detect nested pending posted
interrupts as valid wake eents for a vCPU executing HLT in L2 (with
HLT-exiting disable by L1).
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRvX0ACgkQOlYIJqCj
N/2Aiw/9Htwy4MfJ2zdTX0ypZx6CUAVY0B7R2q9LVaqlBBL02dLoNWn9ndf7J2pd
TJKtp39sHzf342ghti/Za5+mZgRgXA9IjQ5cvcQQjfmjDdDODygEc12otISeSNqq
uL2jbUZzzjbcQyUrXkeFptVcNFpaiOG0dFfvnoi1csWzXVf7t+CD+8/3kjVm2Qt7
vQXkV4yN7tNiYOvaukfXP7Og9ALpF8g8ok3YmXVXDPMu7+R7G+P6j3mVWr9ABMPj
LOmC+5Z/sscMFw1Io3XHuWoF5socQARXEzJNLCblDaw3GMlSj4LNxif2M/6B7bmR
nQVtiegj9K1Fc3OGOqPJcAIRPI4O9nMmf7uOwvXmOlwDSk7rCxF/yPk7Cto2+UXm
6mnLcH1l0/VaidW+a7rUAcDGIlWwgfw0F6tp2j6FdVl2Lx/IThcrkn0teLY1gAW8
CMi/BfTBEXO5583O3+ZCAzVQzeKnWR3yqwJe0oSftB1/rPkPD8PQ39MH8LuJJJxi
CN1W4R1/taQdOxMZqggDvS1biz7gwpjNGtnWsO9szAgMEXVjf2M1HOZVcT2e2997
81xDMdZaJSfd26tm7PhWtQnVPqyMZ6vqqIiq7FlIbEEkAE75Kbg4fUn/4y4WRnh9
3Gog6MZPu/MA5TbwvcZ/sy/CRfFu0HKm5q98oArhjSyU8C7oGeQ=
=W1/6
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-vmx-6.11' of https://github.com/kvm-x86/linux into HEAD
KVM VMX changes for 6.11
- Remove an unnecessary EPT TLB flush when enabling hardware.
- Fix a series of bugs that cause KVM to fail to detect nested pending posted
interrupts as valid wake eents for a vCPU executing HLT in L2 (with
HLT-exiting disable by L1).
- Misc cleanups
- Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as it reads
'0' and writes from userspace are ignored.
- Update to the newfangled Intel CPU FMS infrastructure.
- Use macros instead of open-coded literals to clean up KVM's manipulation of
FIXED_CTR_CTRL MSRs.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRu3oACgkQOlYIJqCj
N/0f/Q/+PoRFKrr9ENwlVjxmq7DBJOzrEiht5EH89bQdpYL0pcmv6I+n+Z77o08X
l49YFO2zVq26dMCe8EFDuQrZpqKjOS/qEc+/zTsLu4lx8NJD1gqYJLJryejgtdQI
+GefPVIN11TvlDDjuuxSWgKUCAevk8s3PRe+zbUwlsHmw+GVky8dJoe71QbW27rK
hL7Y2pOe5Y8MgRAadxlhm6QmgOnz3RKKYs9t/HMzi2gQP1TuvPxnYtMC3Gz5pVe+
w3Ak7M4fh8Z7FbQsoNY5h3IdigG6eFrssqHX4QpCXr/G5L9vAgUmSR93/M8jLjNv
wAkUulLx7vFeTlOXjqcEJSn0U6mX/48pt68vrPB5ES1Rx28RB5s9tzYXCGtCmSxv
nHmMDc3YUbg6tp2hvliMqjsN0j5l2GQiX7LJwH2Ma9qQFlTHPmFwJGS4hciki6c5
obCK2vXBoS1jyxrZx8qUhIcJl2oigv3hwihN2YqZ0Q4QDwllv8cw4BeABQByYR9x
T91PQ0biiJ9vWCkALbyzYOpy+grdHCblwYW9+FM/qZBGH0ouPzDyZWPrRBLX12pH
fEgDMB3vT9JqQ5tyafd0MHuAVlrDVHYEY+lmXplzFGKEFonBkN7HmDzAOKafuCuj
GnIe0Sa1JnHVPNomx2dnG6Sku6/tPIfERuHEXrR9zkUJsacnfRY=
=pJxP
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.11' of https://github.com/kvm-x86/linux into HEAD
KVM x86/pmu changes for 6.11
- Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as it reads
'0' and writes from userspace are ignored.
- Update to the newfangled Intel CPU FMS infrastructure.
- Use macros instead of open-coded literals to clean up KVM's manipulation of
FIXED_CTR_CTRL MSRs.
Remove support for virtualizing MTRRs on Intel CPUs, along with a nasty CR0.CD
hack, and instead always honor guest PAT on CPUs that support self-snoop.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRuwAACgkQOlYIJqCj
N/32Gg/+Nnnz6TCRno2vursPJme7gvtLdqSxjazAj3u2ZO8IApGYWMyfVpS+ymC9
Wdpj6gRe2ukSxgTsUI2CYoy5V2NxDaA9YgdTPZUVQvqwujVrqZCJ7L393iPYYnC9
No3LXZ+SOYRmomiCzknjC6GOlT2hAZHzQsyaXDlEYok7NAA2L6XybbLonEdA4RYi
V1mS62W5PaA4tUesuxkJjPujXo1nXRWD/aXOruJWjPESdSFSALlx7reFAf2Nwn7K
Uw8yZqhq6vWAZSph0Nz8OrZOS/kULKA3q2zl1B/qJJ0ToAt2VdXS6abXky52RExf
KvP+jBAWMO5kHbIqaMRtCHjbIkbhH8RdUIYNJQEUQ5DdydM5+/RDa+KprmLPcmUn
qvJq+3uyH0MEENtneGegs8uxR+sn6fT32cGMIw790yIywddh562+IJ4Z+C3BuYJi
yszD71odqKT8+knUd2CaZjE9UZyoQNDfj2OCCTzzZOC/6TuJWCh9CYQ1csssHbQR
KcvZCKE6ht8tWwi+2HWj0laOdg1reX2kV869k3xH4uCwEaFIj2Wk+/Bw/lg2Tn5h
5uTnQ01dx5XhAV1klr6IY3VXJ/A8G8895wRfkZEelsA9Wj8qZvNgXhsoXReIUIrn
aR0ppsFcbqHzC50qE2JT4juTD1EPx95LL9zKT8pI9mGKwxCAxUM=
=yb10
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mtrrs-6.11' of https://github.com/kvm-x86/linux into HEAD
KVM x86 MTRR virtualization removal
Remove support for virtualizing MTRRs on Intel CPUs, along with a nasty CR0.CD
hack, and instead always honor guest PAT on CPUs that support self-snoop.
- Add a global struct to consolidate tracking of host values, e.g. EFER, and
move "shadow_phys_bits" into the structure as "maxphyaddr".
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC
bus frequency, because TDX.
- Print the name of the APICv/AVIC inhibits in the relevant tracepoint.
- Clean up KVM's handling of vendor specific emulation to consistently act on
"compatible with Intel/AMD", versus checking for a specific vendor.
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRub0ACgkQOlYIJqCj
N/2LMxAArGzhcWZ6Qdo2aMRaMIPtSBJHmbEgEuHvHMumgsTZQzDcn9cxDi/hNSrc
l8ODOwAM2qNcq95YfwjU7F0ae3E+HRzGvKcBnmZWuQeCDp2HhVEoCphFu1sHst+t
XEJTL02b6OgyJUEU3h40mYk12eiq2S4FCnFYXPCqijwwuL6Y5KQvvTqek3c2/SDn
c+VneutYGax/S0GiiCkYh4wrwWh9g7qm0IX70ycBwJbW5qBFKgyglvHxvL8JLJC9
Nkkw/p2657wcOdraH+fOBuRy2dMwE5fv++1tOjWwB5WAAhSOJPZh0BGYvgA2yfN7
OE+k7APKUQd9Xxtud8H3LrTPoyMA4hz2sdDFyqrrWK9yjpBY7zXNyN50Fxi7VVsm
T8nTIiKAGyRbjotY+m7krXQPXjfZYhVqrJ/jtxESOZLZ93q2gSWU2p/ZXpUPVHnH
+YOBAI1owP3wepaYlrthtI4LQx9lF422dnmeSflztfKFGabRbQZxg3uHMCCxIaGc
lJ6CD546+D45f/uBXRDMqk//qFTqXhKUbDk9sutmU/C2oWufMwW0R8kOyItGPyvk
9PP1vd8vSsIHj+tpwg+i04jBqYDaAcPBOcTZaHm9SYYP+1e11Uu5Vjep37JL1bkA
xJWxnDZOCGcfKQi2jkh51HJ/dOAHXY1GQKMfyAoPQOSonYHvGVY=
=Cf2R
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.11' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.11
- Add a global struct to consolidate tracking of host values, e.g. EFER, and
move "shadow_phys_bits" into the structure as "maxphyaddr".
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC
bus frequency, because TDX.
- Print the name of the APICv/AVIC inhibits in the relevant tracepoint.
- Clean up KVM's handling of vendor specific emulation to consistently act on
"compatible with Intel/AMD", versus checking for a specific vendor.
- Misc cleanups
- Enable halt poll shrinking by default, as Intel found it to be a clear win.
- Setup empty IRQ routing when creating a VM to avoid having to synchronize
SRCU when creating a split IRQCHIP on x86.
- Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag
that arch code can use for hooking both sched_in() and sched_out().
- Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
truncating a bogus value from userspace, e.g. to help userspace detect bugs.
- Mark a vCPU as preempted if and only if it's scheduled out while in the
KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest
memory when retrieving guest state during live migration blackout.
- A few minor cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRuOYACgkQOlYIJqCj
N/1UnQ/8CI5Qfr+/0gzYgtWmtEMczGG+rMNpzD3XVqPjJjXcMcBiQnplnzUVLhha
vlPdYVK7vgmEt003XGzV55mik46LHL+DX/v4hI3HEdblfyCeNLW3fKEWVRB44qJe
o+YUQwSK42SORUp9oXuQINxhA//U9EnI7CQxlJ8w8wenv5IJKfIGr01DefmfGPAV
PKm9t6WLcNqvhZMEyy/zmzM3KVPCJL0NcwI97x6sHxFpQYIDtL0E/VexA4AFqMoT
QK7cSDC/2US41Zvem/r/GzM/ucdF6vb9suzZYBohwhxtVhwJe2CDeYQZvtNKJ1U7
GOHPaKL6nBWdZCm/yyWbbX2nstY1lHqxhN3JD0X8wqU5rNcwm2b8Vfyav0Ehc7H+
jVbDTshOx4YJmIgajoKjgM050rdBK59TdfVL+l+AAV5q/TlHocalYtvkEBdGmIDg
2td9UHSime6sp20vQfczUEz4bgrQsh4l2Fa/qU2jFwLievnBw0AvEaMximkSGMJe
b8XfjmdTjlOesWAejANKtQolfrq14+1wYw0zZZ8PA+uNVpKdoovmcqSOcaDC9bT8
GO/NFUvoG+lkcvJcIlo1SSl81SmGLosijwxWfGvFAqsgpR3/3l3dYp0QtztoCNJO
d3+HnjgYn5o5FwufuTD3eUOXH4AFjG108DH0o25XrIkb2Kymy0o=
=BalU
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-generic-6.11' of https://github.com/kvm-x86/linux into HEAD
KVM generic changes for 6.11
- Enable halt poll shrinking by default, as Intel found it to be a clear win.
- Setup empty IRQ routing when creating a VM to avoid having to synchronize
SRCU when creating a split IRQCHIP on x86.
- Rework the sched_in/out() paths to replace kvm_arch_sched_in() with a flag
that arch code can use for hooking both sched_in() and sched_out().
- Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
truncating a bogus value from userspace, e.g. to help userspace detect bugs.
- Mark a vCPU as preempted if and only if it's scheduled out while in the
KVM_RUN loop, e.g. to avoid marking it preempted and thus writing guest
memory when retrieving guest state during live migration blackout.
- A few minor cleanups
Refine the macros which define maximum General Purpose (GP) and fixed
counter numbers.
Currently the macro KVM_INTEL_PMC_MAX_GENERIC is used to represent the
maximum supported General Purpose (GP) counter number ambiguously across
Intel and AMD platforms. This would cause issues if AMD begins to support
more GP counters than Intel.
Thus a bunch of new macros including vendor specific and vendor
independent are introduced to replace the old macros. The vendor
independent macros are used in x86 common code to hide vendor difference
and eliminate the ambiguity.
No logic changes are introduced in this patch.
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240627021756.144815-1-dapeng1.mi@linux.intel.com
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Check for a Requested Virtual Interrupt, i.e. a virtual interrupt that is
pending delivery, in vmx_has_nested_events() and drop the one-off
kvm_x86_ops.guest_apic_has_interrupt() hook.
In addition to dropping a superfluous hook, this fixes a bug where KVM
would incorrectly treat virtual interrupts _for L2_ as always enabled due
to kvm_arch_interrupt_allowed(), by way of vmx_interrupt_blocked(),
treating IRQs as enabled if L2 is active and vmcs12 is configured to exit
on IRQs, i.e. KVM would treat a virtual interrupt for L2 as a valid wake
event based on L1's IRQ blocking status.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240607172609.3205077-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Check for pending (and notified!) posted interrupts when checking if L2
has a pending wake event, as fully posted/notified virtual interrupt is a
valid wake event for HLT.
Note that KVM must check vmx->nested.pi_pending to avoid prematurely
waking L2, e.g. even if KVM sees a non-zero PID.PIR and PID.0N=1, the
virtual interrupt won't actually be recognized until a notification IRQ is
received by the vCPU or the vCPU does (nested) VM-Enter.
Fixes: 26844fee6a ("KVM: x86: never write to memory from kvm_vcpu_check_block()")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Jim Mattson <jmattson@google.com>
Closes: https://lore.kernel.org/all/20231207010302.2240506-1-jmattson@google.com
Link: https://lore.kernel.org/r/20240607172609.3205077-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the non-VMX chunk of the "interrupt blocked" checks to a separate
helper so that KVM can reuse the code to detect if interrupts are blocked
for L2, e.g. to determine if a virtual interrupt _for L2_ is a valid wake
event. If L1 disables HLT-exiting for L2, nested APICv is enabled, and L2
HLTs, then L2 virtual interrupts are valid wake events, but if and only if
interrupts are unblocked for L2.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240607172609.3205077-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When requesting an immediate exit from L2 in order to inject a pending
event, do so only if the pending event actually requires manual injection,
i.e. if and only if KVM actually needs to regain control in order to
deliver the event.
Avoiding the "immediate exit" isn't simply an optimization, it's necessary
to make forward progress, as the "already expired" VMX preemption timer
trick that KVM uses to force a VM-Exit has higher priority than events
that aren't directly injected.
At present time, this is a glorified nop as all events processed by
vmx_has_nested_events() require injection, but that will not hold true in
the future, e.g. if there's a pending virtual interrupt in vmcs02.RVI.
I.e. if KVM is trying to deliver a virtual interrupt to L2, the expired
VMX preemption timer will trigger VM-Exit before the virtual interrupt is
delivered, and KVM will effectively hang the vCPU in an endless loop of
forced immediate VM-Exits (because the pending virtual interrupt never
goes away).
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240607172609.3205077-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to retrieve the highest pending vector given a Posted
Interrupt descriptor. While the actual operation is straightforward, it's
surprisingly easy to mess up, e.g. if one tries to reuse lapic.c's
find_highest_vector(), which doesn't work with PID.PIR due to the APIC's
IRR and ISR component registers being physically discontiguous (they're
4-byte registers aligned at 16-byte intervals).
To make PIR handling more consistent with respect to IRR and ISR handling,
return -1 to indicate "no interrupt pending".
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240607172609.3205077-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
In the vmx_init() error handling path, the __vmx_exit() is done before
kvm_x86_vendor_exit(). They should follow the same order in vmx_exit().
But currently __vmx_exit() is done after kvm_x86_vendor_exit() in
vmx_exit(). Switch the order of them to fix.
Fixes: e32b120071 ("KVM: VMX: Do _all_ initialization before exposing /dev/kvm to userspace")
Signed-off-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240627010524.3732488-1-kai.huang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove the completely pointess global INVEPT, i.e. EPT TLB flush, from
KVM's VMX enablement path. KVM always does a targeted TLB flush when
using a "new" EPT root, in quotes because "new" simply means a root that
isn't currently being used by the vCPU.
KVM also _deliberately_ runs with stale TLB entries for defunct roots,
i.e. doesn't do a TLB flush when vCPUs stop using roots, precisely because
KVM does the flush on first use. As called out by the comment in
kvm_mmu_load(), the reason KVM flushes on first use is because KVM can't
guarantee the correctness of past hypervisors.
Jumping back to the global INVEPT, when the painfully terse commit
1439442c7b ("KVM: VMX: Enable EPT feature for KVM") was added, the
effective TLB flush being performed was:
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
vpid_sync_vcpu_all(to_vmx(vcpu));
}
I.e. KVM was not flushing EPT TLB entries when allocating a "new" root,
which very strongly suggests that the global INVEPT during hardware
enabling was a misguided hack that addressed the most obvious symptom,
but failed to fix the underlying bug.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20240608001003.3296640-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rewrite the comment above VMCS12_REVISION to unequivocally state that the
ID must never change. KVM_{G,S}ET_NESTED_STATE have been officially
supported for some time now, i.e. changing VMCS12_REVISION would break
userspace.
Opportunistically add a blurb to the CHECK_OFFSET() comment to make it
explicitly clear that new fields are allowed, i.e. that the restriction
on the layout is all about backwards compatibility.
No functional change intended.
Cc: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20240613190103.1054877-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add module descriptions for the vendor modules to fix allmodconfig
'make W=1' warnings:
WARNING: modpost: missing MODULE_DESCRIPTION() in arch/x86/kvm/kvm-intel.o
WARNING: modpost: missing MODULE_DESCRIPTION() in arch/x86/kvm/kvm-amd.o
Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com>
Link: https://lore.kernel.org/r/20240622-md-kvm-v2-1-29a60f7c48b1@quicinc.com
[sean: split kvm.ko change to separate commit]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM unconditionally sets l1tf_flush_l1d in kvm_arch_vcpu_load(),
drop the redundant store from vcpu_run(). The flag is cleared only when
VM-Enter is imminent, deep below vcpu_run(), i.e. barring a KVM bug, it's
impossible for l1tf_flush_l1d to be cleared between loading the vCPU and
calling vcpu_run().
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240522014013.1672962-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fold the guts of kvm_arch_sched_in() into kvm_arch_vcpu_load(), keying
off the recently added kvm_vcpu.scheduled_out as appropriate.
Note, there is a very slight functional change, as PLE shrink updates will
now happen after blasting WBINVD, but that is quite uninteresting as the
two operations do not interact in any way.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240522014013.1672962-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move VMX's {grow,shrink}_ple_window() above vmx_vcpu_load() in preparation
of moving the sched_in logic, which handles shrinking the PLE window, into
vmx_vcpu_load().
No functional change intended.
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240522014013.1672962-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper, intel_pmu_enable_fixed_counter_bits(), to dedup code that
enables fixed counter bits, i.e. when KVM clears bits in the reserved mask
used to detect invalid MSR_CORE_PERF_FIXED_CTR_CTRL values.
No functional change intended.
Cc: Dapeng Mi <dapeng1.mi@linux.intel.com>
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240608000819.3296176-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
After commit 0ec3d6d1f1 "KVM: x86: Fully defer to vendor code to decide
how to force immediate exit", vmx_request_immediate_exit() was removed.
Commit 5f18c642ff "KVM: VMX: Move out vmx_x86_ops to 'main.c' to dispatch
VMX and TDX" added its declaration by accident. Remove it.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20240506075025.2251131-1-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The check_apicv_inhibit_reasons() callback implementation was dropped in
the commit b3f257a846 ("KVM: x86: Track required APICv inhibits with
variable, not callback"), but the definition removal was missed in the
final version patch (it was removed in the v4). Therefore, it should be
dropped, and the vmx_check_apicv_inhibit_reasons() function declaration
should also be removed.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Link: https://lore.kernel.org/r/54abd1d0ccaba4d532f81df61259b9c0e021fbde.1714977229.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Unconditionally honor guest PAT on CPUs that support self-snoop, as
Intel has confirmed that CPUs that support self-snoop always snoop caches
and store buffers. I.e. CPUs with self-snoop maintain cache coherency
even in the presence of aliased memtypes, thus there is no need to trust
the guest behaves and only honor PAT as a last resort, as KVM does today.
Honoring guest PAT is desirable for use cases where the guest has access
to non-coherent DMA _without_ bouncing through VFIO, e.g. when a virtual
(mediated, for all intents and purposes) GPU is exposed to the guest, along
with buffers that are consumed directly by the physical GPU, i.e. which
can't be proxied by the host to ensure writes from the guest are performed
with the correct memory type for the GPU.
Cc: Yiwei Zhang <zzyiwei@google.com>
Suggested-by: Yan Zhao <yan.y.zhao@intel.com>
Suggested-by: Kevin Tian <kevin.tian@intel.com>
Tested-by: Xiangfei Ma <xiangfeix.ma@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20240309010929.1403984-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop KVM's emulation of CR0.CD=1 on Intel CPUs now that KVM no longer
honors guest MTRR memtypes, as forcing UC memory for VMs with
non-coherent DMA only makes sense if the guest is using something other
than PAT to configure the memtype for the DMA region.
Furthermore, KVM has forced WB memory for CR0.CD=1 since commit
fb279950ba ("KVM: vmx: obey KVM_QUIRK_CD_NW_CLEARED"), and no known
VMM in existence disables KVM_X86_QUIRK_CD_NW_CLEARED, let alone does
so with non-coherent DMA.
Lastly, commit fb279950ba ("KVM: vmx: obey KVM_QUIRK_CD_NW_CLEARED") was
from the same author as commit b18d5431ac ("KVM: x86: fix CR0.CD
virtualization"), and followed by a mere month. I.e. forcing UC memory
was likely the result of code inspection or perhaps misdiagnosed failures,
and not the necessitate by a concrete use case.
Update KVM's documentation to note that KVM_X86_QUIRK_CD_NW_CLEARED is now
AMD-only, and to take an erratum for lack of CR0.CD virtualization on
Intel.
Tested-by: Xiangfei Ma <xiangfeix.ma@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20240309010929.1403984-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove KVM's support for virtualizing guest MTRR memtypes, as full MTRR
adds no value, negatively impacts guest performance, and is a maintenance
burden due to it's complexity and oddities.
KVM's approach to virtualizating MTRRs make no sense, at all. KVM *only*
honors guest MTRR memtypes if EPT is enabled *and* the guest has a device
that may perform non-coherent DMA access. From a hardware virtualization
perspective of guest MTRRs, there is _nothing_ special about EPT. Legacy
shadowing paging doesn't magically account for guest MTRRs, nor does NPT.
Unwinding and deciphering KVM's murky history, the MTRR virtualization
code appears to be the result of misdiagnosed issues when EPT + VT-d with
passthrough devices was enabled years and years ago. And importantly, the
underlying bugs that were fudged around by honoring guest MTRR memtypes
have since been fixed (though rather poorly in some cases).
The zapping GFNs logic in the MTRR virtualization code came from:
commit efdfe536d8
Author: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Date: Wed May 13 14:42:27 2015 +0800
KVM: MMU: fix MTRR update
Currently, whenever guest MTRR registers are changed
kvm_mmu_reset_context is called to switch to the new root shadow page
table, however, it's useless since:
1) the cache type is not cached into shadow page's attribute so that
the original root shadow page will be reused
2) the cache type is set on the last spte, that means we should sync
the last sptes when MTRR is changed
This patch fixs this issue by drop all the spte in the gfn range which
is being updated by MTRR
which was a fix for:
commit 0bed3b568b
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Thu Oct 9 16:01:54 2008 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Wed Dec 31 16:51:44 2008 +0200
KVM: Improve MTRR structure
As well as reset mmu context when set MTRR.
which was part of a "MTRR/PAT support for EPT" series that also added:
+ if (mt_mask) {
+ mt_mask = get_memory_type(vcpu, gfn) <<
+ kvm_x86_ops->get_mt_mask_shift();
+ spte |= mt_mask;
+ }
where get_memory_type() was a truly gnarly helper to retrieve the guest
MTRR memtype for a given memtype. And *very* subtly, at the time of that
change, KVM *always* set VMX_EPT_IGMT_BIT,
kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
VMX_EPT_WRITABLE_MASK |
VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT |
VMX_EPT_IGMT_BIT);
which came in via:
commit 928d4bf747
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Thu Nov 6 14:55:45 2008 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Tue Nov 11 21:00:37 2008 +0200
KVM: VMX: Set IGMT bit in EPT entry
There is a potential issue that, when guest using pagetable without vmexit when
EPT enabled, guest would use PAT/PCD/PWT bits to index PAT msr for it's memory,
which would be inconsistent with host side and would cause host MCE due to
inconsistent cache attribute.
The patch set IGMT bit in EPT entry to ignore guest PAT and use WB as default
memory type to protect host (notice that all memory mapped by KVM should be WB).
Note the CommitDates! The AuthorDates strongly suggests Sheng Yang added
the whole "ignoreIGMT things as a bug fix for issues that were detected
during EPT + VT-d + passthrough enabling, but it was applied earlier
because it was a generic fix.
Jumping back to 0bed3b568b ("KVM: Improve MTRR structure"), the other
relevant code, or rather lack thereof, is the handling of *host* MMIO.
That fix came in a bit later, but given the author and timing, it's safe
to say it was all part of the same EPT+VT-d enabling mess.
commit 2aaf69dcee
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Wed Jan 21 16:52:16 2009 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Sun Feb 15 02:47:37 2009 +0200
KVM: MMU: Map device MMIO as UC in EPT
Software are not allow to access device MMIO using cacheable memory type, the
patch limit MMIO region with UC and WC(guest can select WC using PAT and
PCD/PWT).
In addition to the host MMIO and IGMT issues, KVM's MTRR virtualization
was obviously never tested on NPT until much later, which lends further
credence to the theory/argument that this was all the result of
misdiagnosed issues.
Discussion from the EPT+MTRR enabling thread[*] more or less confirms that
Sheng Yang was trying to resolve issues with passthrough MMIO.
* Sheng Yang
: Do you mean host(qemu) would access this memory and if we set it to guest
: MTRR, host access would be broken? We would cover this in our shadow MTRR
: patch, for we encountered this in video ram when doing some experiment with
: VGA assignment.
And in the same thread, there's also what appears to be confirmation of
Intel running into issues with Windows XP related to a guest device driver
mapping DMA with WC in the PAT.
* Avi Kavity
: Sheng Yang wrote:
: > Yes... But it's easy to do with assigned devices' mmio, but what if guest
: > specific some non-mmio memory's memory type? E.g. we have met one issue in
: > Xen, that a assigned-device's XP driver specific one memory region as buffer,
: > and modify the memory type then do DMA.
: >
: > Only map MMIO space can be first step, but I guess we can modify assigned
: > memory region memory type follow guest's?
: >
:
: With ept/npt, we can't, since the memory type is in the guest's
: pagetable entries, and these are not accessible.
[*] https://lore.kernel.org/all/1223539317-32379-1-git-send-email-sheng@linux.intel.com
So, for the most part, what likely happened is that 15 years ago, a few
engineers (a) fixed a #MC problem by ignoring guest PAT and (b) initially
"fixed" passthrough device MMIO by emulating *guest* MTRRs. Except for
the below case, everything since then has been a result of those two
intertwined changes.
The one exception, which is actually yet more confirmation of all of the
above, is the revert of Paolo's attempt at "full" virtualization of guest
MTRRs:
commit 606decd670
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Thu Oct 1 13:12:47 2015 +0200
Revert "KVM: x86: apply guest MTRR virtualization on host reserved pages"
This reverts commit fd717f1101.
It was reported to cause Machine Check Exceptions (bug 104091).
...
commit fd717f1101
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Tue Jul 7 14:38:13 2015 +0200
KVM: x86: apply guest MTRR virtualization on host reserved pages
Currently guest MTRR is avoided if kvm_is_reserved_pfn returns true.
However, the guest could prefer a different page type than UC for
such pages. A good example is that pass-throughed VGA frame buffer is
not always UC as host expected.
This patch enables full use of virtual guest MTRRs.
I.e. Paolo tried to add back KVM's behavior before "Map device MMIO as UC
in EPT" and got the same result: machine checks, likely due to the guest
MTRRs not being trustworthy/sane at all times.
Note, Paolo also tried to enable MTRR virtualization on SVM+NPT, but that
too got reverted. Unfortunately, it doesn't appear that anyone ever found
a smoking gun, i.e. exactly why emulating guest MTRRs via NPT PAT caused
extremely slow boot times doesn't appear to have a definitive root cause.
commit fc07e76ac7
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Thu Oct 1 13:20:22 2015 +0200
Revert "KVM: SVM: use NPT page attributes"
This reverts commit 3c2e7f7de3.
Initializing the mapping from MTRR to PAT values was reported to
fail nondeterministically, and it also caused extremely slow boot
(due to caching getting disabled---bug 103321) with assigned devices.
...
commit 3c2e7f7de3
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Tue Jul 7 14:32:17 2015 +0200
KVM: SVM: use NPT page attributes
Right now, NPT page attributes are not used, and the final page
attribute depends solely on gPAT (which however is not synced
correctly), the guest MTRRs and the guest page attributes.
However, we can do better by mimicking what is done for VMX.
In the absence of PCI passthrough, the guest PAT can be ignored
and the page attributes can be just WB. If passthrough is being
used, instead, keep respecting the guest PAT, and emulate the guest
MTRRs through the PAT field of the nested page tables.
The only snag is that WP memory cannot be emulated correctly,
because Linux's default PAT setting only includes the other types.
In short, honoring guest MTRRs for VMX was initially a workaround of
sorts for KVM ignoring guest PAT *and* for KVM not forcing UC for host
MMIO. And while there *are* known cases where honoring guest MTRRs is
desirable, e.g. passthrough VGA frame buffers, the desired behavior in
that case is to get WC instead of UC, i.e. at this point it's for
performance, not correctness.
Furthermore, the complete absence of MTRR virtualization on NPT and
shadow paging proves that, while KVM theoretically can do better, it's
by no means necessary for correctnesss.
Lastly, since kernels mostly rely on firmware to do MTRR setup, and the
host typically provides guest firmware, honoring guest MTRRs is effectively
honoring *host* userspace memtypes, which is also backwards. I.e. it
would be far better for host userspace to communicate its desired memtype
directly to KVM (or perhaps indirectly via VMAs in the host kernel), not
through guest MTRRs.
Tested-by: Xiangfei Ma <xiangfeix.ma@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20240309010929.1403984-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Keep kvm_apicv_inhibit enum naming consistent with the current pattern by
renaming the reason/enumerator defined as APICV_INHIBIT_REASON_DISABLE to
APICV_INHIBIT_REASON_DISABLED.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Link: https://lore.kernel.org/r/20240506225321.3440701-3-alejandro.j.jimenez@oracle.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Magic numbers are used to manipulate the bit fields of
FIXED_CTR_CTRL MSR. This makes reading code become difficult, so use
pre-defined macros to replace these magic numbers.
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240430005239.13527-3-dapeng1.mi@linux.intel.com
[sean: drop unnecessary curly braces]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Several '_mask' suffixed variables such as, global_ctrl_mask, are
defined in kvm_pmu structure. However the _mask suffix is ambiguous and
misleading since it's not a real mask with positive logic. On the contrary
it represents the reserved bits of corresponding MSRs and these bits
should not be accessed.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240430005239.13527-2-dapeng1.mi@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
* Fixes and debugging help for the #VE sanity check. Also disable
it by default, even for CONFIG_DEBUG_KERNEL, because it was found
to trigger spuriously (most likely a processor erratum as the
exact symptoms vary by generation).
* Avoid WARN() when two NMIs arrive simultaneously during an NMI-disabled
situation (GIF=0 or interrupt shadow) when the processor supports
virtual NMI. While generally KVM will not request an NMI window
when virtual NMIs are supported, in this case it *does* have to
single-step over the interrupt shadow or enable the STGI intercept,
in order to deliver the latched second NMI.
* Drop support for hand tuning APIC timer advancement from userspace.
Since we have adaptive tuning, and it has proved to work well,
drop the module parameter for manual configuration and with it a
few stupid bugs that it had.
Use x86_vfm (vendor, family, module) to detect CPUs that are affected by
PERF_GLOBAL_CTRL bugs instead of manually checking the family and model.
The new VFM infrastructure encodes all information in one handy location.
No functional change intended.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20240520224620.9480-10-tony.luck@intel.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move shadow_phys_bits into "struct kvm_host_values", i.e. into KVM's
global "kvm_host" variable, so that it is automatically exported for use
in vendor modules. Rename the variable/field to maxphyaddr to more
clearly capture what value it holds, now that it's used outside of the
MMU (and because the "shadow" part is more than a bit misleading as the
variable is not at all unique to shadow paging).
Recomputing the raw/true host.MAXPHYADDR on every use can be subtly
expensive, e.g. it will incur a VM-Exit on the CPUID if KVM is running as
a nested hypervisor. Vendor code already has access to the information,
e.g. by directly doing CPUID or by invoking kvm_get_shadow_phys_bits(), so
there's no tangible benefit to making it MMU-only.
Link: https://lore.kernel.org/r/20240423221521.2923759-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add "struct kvm_host_values kvm_host" to hold the various host values
that KVM snapshots during initialization. Bundling the host values into
a single struct simplifies adding new MSRs and other features with host
state/values that KVM cares about, and provides a one-stop shop. E.g.
adding a new value requires one line, whereas tracking each value
individual often requires three: declaration, definition, and export.
No functional change intended.
Link: https://lore.kernel.org/r/20240423221521.2923759-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Print the SPTEs that correspond to the faulting GPA on an unexpected EPT
Violation #VE to help the user debug failures, e.g. to pinpoint which SPTE
didn't have SUPPRESS_VE set.
Opportunistically assert that the underlying exit reason was indeed an EPT
Violation, as the CPU has *really* gone off the rails if a #VE occurs due
to a completely unexpected exit reason.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240518000430.1118488-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dump the VMCS on an unexpected #VE, otherwise it's practically impossible
to figure out why the #VE occurred.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240518000430.1118488-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Always handle #VEs, e.g. due to prove EPT Violation #VE failures, in L0,
as KVM does not expose any #VE capabilities to L1, i.e. any and all #VEs
are KVM's responsibility.
Fixes: 8131cf5b4f ("KVM: VMX: Introduce test mode related to EPT violation VE")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240518000430.1118488-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Point vmcs02.VE_INFORMATION_ADDRESS at the vCPU's #VE info page when
initializing vmcs02, otherwise KVM will run L2 with EPT Violation #VE
enabled and a VE info address pointing at pfn 0.
Fixes: 8131cf5b4f ("KVM: VMX: Introduce test mode related to EPT violation VE")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240518000430.1118488-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't terminate the VM on an unexpected #VE, as it's extremely unlikely
the #VE is fatal to the guest, and even less likely that it presents a
danger to the host. Simply resume the guest on "failure", as the #VE info
page's BUSY field will prevent converting any more EPT Violations to #VEs
for the vCPU (at least, that's what the BUSY field is supposed to do).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240518000430.1118488-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Move a lot of state that was previously stored on a per vcpu
basis into a per-CPU area, because it is only pertinent to the
host while the vcpu is loaded. This results in better state
tracking, and a smaller vcpu structure.
* Add full handling of the ERET/ERETAA/ERETAB instructions in
nested virtualisation. The last two instructions also require
emulating part of the pointer authentication extension.
As a result, the trap handling of pointer authentication has
been greatly simplified.
* Turn the global (and not very scalable) LPI translation cache
into a per-ITS, scalable cache, making non directly injected
LPIs much cheaper to make visible to the vcpu.
* A batch of pKVM patches, mostly fixes and cleanups, as the
upstreaming process seems to be resuming. Fingers crossed!
* Allocate PPIs and SGIs outside of the vcpu structure, allowing
for smaller EL2 mapping and some flexibility in implementing
more or less than 32 private IRQs.
* Purge stale mpidr_data if a vcpu is created after the MPIDR
map has been created.
* Preserve vcpu-specific ID registers across a vcpu reset.
* Various minor cleanups and improvements.
LoongArch:
* Add ParaVirt IPI support.
* Add software breakpoint support.
* Add mmio trace events support.
RISC-V:
* Support guest breakpoints using ebreak
* Introduce per-VCPU mp_state_lock and reset_cntx_lock
* Virtualize SBI PMU snapshot and counter overflow interrupts
* New selftests for SBI PMU and Guest ebreak
* Some preparatory work for both TDX and SNP page fault handling.
This also cleans up the page fault path, so that the priorities
of various kinds of fauls (private page, no memory, write
to read-only slot, etc.) are easier to follow.
x86:
* Minimize amount of time that shadow PTEs remain in the special
REMOVED_SPTE state. This is a state where the mmu_lock is held for
reading but concurrent accesses to the PTE have to spin; shortening
its use allows other vCPUs to repopulate the zapped region while
the zapper finishes tearing down the old, defunct page tables.
* Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field,
which is defined by hardware but left for software use. This lets KVM
communicate its inability to map GPAs that set bits 51:48 on hosts
without 5-level nested page tables. Guest firmware is expected to
use the information when mapping BARs; this avoids that they end up at
a legal, but unmappable, GPA.
* Fixed a bug where KVM would not reject accesses to MSR that aren't
supposed to exist given the vCPU model and/or KVM configuration.
* As usual, a bunch of code cleanups.
x86 (AMD):
* Implement a new and improved API to initialize SEV and SEV-ES VMs, which
will also be extendable to SEV-SNP. The new API specifies the desired
encryption in KVM_CREATE_VM and then separately initializes the VM.
The new API also allows customizing the desired set of VMSA features;
the features affect the measurement of the VM's initial state, and
therefore enabling them cannot be done tout court by the hypervisor.
While at it, the new API includes two bugfixes that couldn't be
applied to the old one without a flag day in userspace or without
affecting the initial measurement. When a SEV-ES VM is created with
the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are
rejected once the VMSA has been encrypted. Also, the FPU and AVX
state will be synchronized and encrypted too.
* Support for GHCB version 2 as applicable to SEV-ES guests. This, once
more, is only accessible when using the new KVM_SEV_INIT2 flow for
initialization of SEV-ES VMs.
x86 (Intel):
* An initial bunch of prerequisite patches for Intel TDX were merged.
They generally don't do anything interesting. The only somewhat user
visible change is a new debugging mode that checks that KVM's MMU
never triggers a #VE virtualization exception in the guest.
* Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
L1, as per the SDM.
Generic:
* Use vfree() instead of kvfree() for allocations that always use vcalloc()
or __vcalloc().
* Remove .change_pte() MMU notifier - the changes to non-KVM code are
small and Andrew Morton asked that I also take those through the KVM
tree. The callback was only ever implemented by KVM (which was also the
original user of MMU notifiers) but it had been nonfunctional ever since
calls to set_pte_at_notify were wrapped with invalidate_range_start
and invalidate_range_end... in 2012.
Selftests:
* Enhance the demand paging test to allow for better reporting and stressing
of UFFD performance.
* Convert the steal time test to generate TAP-friendly output.
* Fix a flaky false positive in the xen_shinfo_test due to comparing elapsed
time across two different clock domains.
* Skip the MONITOR/MWAIT test if the host doesn't actually support MWAIT.
* Avoid unnecessary use of "sudo" in the NX hugepage test wrapper shell
script, to play nice with running in a minimal userspace environment.
* Allow skipping the RSEQ test's sanity check that the vCPU was able to
complete a reasonable number of KVM_RUNs, as the assert can fail on a
completely valid setup. If the test is run on a large-ish system that is
otherwise idle, and the test isn't affined to a low-ish number of CPUs, the
vCPU task can be repeatedly migrated to CPUs that are in deep sleep states,
which results in the vCPU having very little net runtime before the next
migration due to high wakeup latencies.
* Define _GNU_SOURCE for all selftests to fix a warning that was introduced by
a change to kselftest_harness.h late in the 6.9 cycle, and because forcing
every test to #define _GNU_SOURCE is painful.
* Provide a global pseudo-RNG instance for all tests, so that library code can
generate random, but determinstic numbers.
* Use the global pRNG to randomly force emulation of select writes from guest
code on x86, e.g. to help validate KVM's emulation of locked accesses.
* Allocate and initialize x86's GDT, IDT, TSS, segments, and default exception
handlers at VM creation, instead of forcing tests to manually trigger the
related setup.
Documentation:
* Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmZE878UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOukQf+LcvZsWtrC7Wd5K9SQbYXaS4Rk6P6
JHoQW2d0hUN893J2WibEw+l1J/0vn5JumqHXyZgJ7CbaMtXkWWQTwDSDLuURUKpv
XNB3Sb17G87NH+s1tOh0tA9h5upbtlHVHvrtIwdbb9+XHgQ6HTL4uk+HdfO/p9fW
cWBEZAKoWcCIa99Numv3pmq5vdrvBlNggwBugBS8TH69EKMw+V1Vu1SFkIdNDTQk
NJJ28cohoP3wnwlIHaXSmU4RujipPH3Lm/xupyA5MwmzO713eq2yUqV49jzhD5/I
MA4Ruvgrdm4wpp89N9lQMyci91u6q7R9iZfMu0tSg2qYI3UPKIdstd8sOA==
=2lED
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- Move a lot of state that was previously stored on a per vcpu basis
into a per-CPU area, because it is only pertinent to the host while
the vcpu is loaded. This results in better state tracking, and a
smaller vcpu structure.
- Add full handling of the ERET/ERETAA/ERETAB instructions in nested
virtualisation. The last two instructions also require emulating
part of the pointer authentication extension. As a result, the trap
handling of pointer authentication has been greatly simplified.
- Turn the global (and not very scalable) LPI translation cache into
a per-ITS, scalable cache, making non directly injected LPIs much
cheaper to make visible to the vcpu.
- A batch of pKVM patches, mostly fixes and cleanups, as the
upstreaming process seems to be resuming. Fingers crossed!
- Allocate PPIs and SGIs outside of the vcpu structure, allowing for
smaller EL2 mapping and some flexibility in implementing more or
less than 32 private IRQs.
- Purge stale mpidr_data if a vcpu is created after the MPIDR map has
been created.
- Preserve vcpu-specific ID registers across a vcpu reset.
- Various minor cleanups and improvements.
LoongArch:
- Add ParaVirt IPI support
- Add software breakpoint support
- Add mmio trace events support
RISC-V:
- Support guest breakpoints using ebreak
- Introduce per-VCPU mp_state_lock and reset_cntx_lock
- Virtualize SBI PMU snapshot and counter overflow interrupts
- New selftests for SBI PMU and Guest ebreak
- Some preparatory work for both TDX and SNP page fault handling.
This also cleans up the page fault path, so that the priorities of
various kinds of fauls (private page, no memory, write to read-only
slot, etc.) are easier to follow.
x86:
- Minimize amount of time that shadow PTEs remain in the special
REMOVED_SPTE state.
This is a state where the mmu_lock is held for reading but
concurrent accesses to the PTE have to spin; shortening its use
allows other vCPUs to repopulate the zapped region while the zapper
finishes tearing down the old, defunct page tables.
- Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID
field, which is defined by hardware but left for software use.
This lets KVM communicate its inability to map GPAs that set bits
51:48 on hosts without 5-level nested page tables. Guest firmware
is expected to use the information when mapping BARs; this avoids
that they end up at a legal, but unmappable, GPA.
- Fixed a bug where KVM would not reject accesses to MSR that aren't
supposed to exist given the vCPU model and/or KVM configuration.
- As usual, a bunch of code cleanups.
x86 (AMD):
- Implement a new and improved API to initialize SEV and SEV-ES VMs,
which will also be extendable to SEV-SNP.
The new API specifies the desired encryption in KVM_CREATE_VM and
then separately initializes the VM. The new API also allows
customizing the desired set of VMSA features; the features affect
the measurement of the VM's initial state, and therefore enabling
them cannot be done tout court by the hypervisor.
While at it, the new API includes two bugfixes that couldn't be
applied to the old one without a flag day in userspace or without
affecting the initial measurement. When a SEV-ES VM is created with
the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected
once the VMSA has been encrypted. Also, the FPU and AVX state will
be synchronized and encrypted too.
- Support for GHCB version 2 as applicable to SEV-ES guests.
This, once more, is only accessible when using the new
KVM_SEV_INIT2 flow for initialization of SEV-ES VMs.
x86 (Intel):
- An initial bunch of prerequisite patches for Intel TDX were merged.
They generally don't do anything interesting. The only somewhat
user visible change is a new debugging mode that checks that KVM's
MMU never triggers a #VE virtualization exception in the guest.
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig
VM-Exit to L1, as per the SDM.
Generic:
- Use vfree() instead of kvfree() for allocations that always use
vcalloc() or __vcalloc().
- Remove .change_pte() MMU notifier - the changes to non-KVM code are
small and Andrew Morton asked that I also take those through the
KVM tree.
The callback was only ever implemented by KVM (which was also the
original user of MMU notifiers) but it had been nonfunctional ever
since calls to set_pte_at_notify were wrapped with
invalidate_range_start and invalidate_range_end... in 2012.
Selftests:
- Enhance the demand paging test to allow for better reporting and
stressing of UFFD performance.
- Convert the steal time test to generate TAP-friendly output.
- Fix a flaky false positive in the xen_shinfo_test due to comparing
elapsed time across two different clock domains.
- Skip the MONITOR/MWAIT test if the host doesn't actually support
MWAIT.
- Avoid unnecessary use of "sudo" in the NX hugepage test wrapper
shell script, to play nice with running in a minimal userspace
environment.
- Allow skipping the RSEQ test's sanity check that the vCPU was able
to complete a reasonable number of KVM_RUNs, as the assert can fail
on a completely valid setup.
If the test is run on a large-ish system that is otherwise idle,
and the test isn't affined to a low-ish number of CPUs, the vCPU
task can be repeatedly migrated to CPUs that are in deep sleep
states, which results in the vCPU having very little net runtime
before the next migration due to high wakeup latencies.
- Define _GNU_SOURCE for all selftests to fix a warning that was
introduced by a change to kselftest_harness.h late in the 6.9
cycle, and because forcing every test to #define _GNU_SOURCE is
painful.
- Provide a global pseudo-RNG instance for all tests, so that library
code can generate random, but determinstic numbers.
- Use the global pRNG to randomly force emulation of select writes
from guest code on x86, e.g. to help validate KVM's emulation of
locked accesses.
- Allocate and initialize x86's GDT, IDT, TSS, segments, and default
exception handlers at VM creation, instead of forcing tests to
manually trigger the related setup.
Documentation:
- Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (225 commits)
selftests/kvm: remove dead file
KVM: selftests: arm64: Test vCPU-scoped feature ID registers
KVM: selftests: arm64: Test that feature ID regs survive a reset
KVM: selftests: arm64: Store expected register value in set_id_regs
KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scope
KVM: arm64: Only reset vCPU-scoped feature ID regs once
KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs()
KVM: arm64: Rename is_id_reg() to imply VM scope
KVM: arm64: Destroy mpidr_data for 'late' vCPU creation
KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support
KVM: arm64: Fix hvhe/nvhe early alias parsing
KVM: SEV: Allow per-guest configuration of GHCB protocol version
KVM: SEV: Add GHCB handling for termination requests
KVM: SEV: Add GHCB handling for Hypervisor Feature Support requests
KVM: SEV: Add support to handle AP reset MSR protocol
KVM: x86: Explicitly zero kvm_caps during vendor module load
KVM: x86: Fully re-initialize supported_mce_cap on vendor module load
KVM: x86: Fully re-initialize supported_vm_types on vendor module load
KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfns
KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error values
...
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
L1, as per the SDM.
- Move kvm_vcpu_arch's exit_qualification into x86_exception, as the field is
used only when synthesizing nested EPT violation, i.e. it's not the vCPU's
"real" exit_qualification, which is tracked elsewhere.
- Add a sanity check to assert that EPT Violations are the only sources of
nested PML Full VM-Exits.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmY+qzEACgkQOlYIJqCj
N/3O0Q/9HZruiL9vzMrLBKgFgWCxQHO2fy+EixuwzVBHunQGOsVnDCO2p+PWnF0p
kuW/MEZhZfLYnXoDi5/AP12G9qtDhlSNnfSl2gn+BMXqyGSYpcoXuM/zTjM24wLd
PXKkPirYMpVR2+lHsD7l8YK2I+qc7UfbRkCyJegBgGwUBs13/TBD6Rum3Aa9Q+dX
IcwjomH+MdHDFPnpfHjksA+G79Ckkqmu/DbOAlCqw1dUSC8oyV9tE/EKStSBzjZ+
OGMSm7Kl0T+km1JyH60H1ivbUbT3gJxpezoYL9EbO25VPrdldKP+ohqbtew/8ttk
UP/oW3mL79I7L06ZqqxZKDDj4JGvz53UhhAylZcBPw0P3v9TQF3wm59K4eM9btNt
eyIaT0SAbcigHAniM+3FPkq443hRxDvLNF5E66Ez03HhhkEz3ZsyNH1oPnQK0Crq
N1e+NGuKsTAPBzc3sSSrxOHnCajTUQ9WYjOpfdSgWsL6TQOmXIvHl0tE2ILrvDc/
f+VG62veqa9CCmX5B2lUT0yX9nXvyXKwVpJY9RSQIhB46sA8zjSZsZRCQFkDI5Gx
pzjxjcXtydAMWpn5qUvpD0B6agMlP6WUJHlu+ezmBQuSUHr+2PHY5dEj9442SusF
98VGJy8APxDhidK5TaJJXWmDfKNhEaWboMcTnWM1TwY/qLfDsVU=
=0ncM
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-vmx-6.10' of https://github.com/kvm-x86/linux into HEAD
KVM VMX changes for 6.10:
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
L1, as per the SDM.
- Move kvm_vcpu_arch's exit_qualification into x86_exception, as the field is
used only when synthesizing nested EPT violation, i.e. it's not the vCPU's
"real" exit_qualification, which is tracked elsewhere.
- Add a sanity check to assert that EPT Violations are the only sources of
nested PML Full VM-Exits.
To prepare native usage of posted interrupts, move the PID declarations out
of VMX code such that they can be shared.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20240423174114.526704-2-jacob.jun.pan@linux.intel.com
without OBJECT_FILES_NON_STANDARD. This fixes a warning
"Unpatched return thunk in use. This should not happen!" when running
KVM selftests.
* Fix a mostly benign bug in the gfn_to_pfn_cache infrastructure where KVM
would allow userspace to refresh the cache with a bogus GPA. The bug has
existed for quite some time, but was exposed by a new sanity check added in
6.9 (to ensure a cache is either GPA-based or HVA-based).
* Drop an unused param from gfn_to_pfn_cache_invalidate_start() that got left
behind during a 6.9 cleanup.
* Fix a math goof in x86's hugepage logic for KVM_SET_MEMORY_ATTRIBUTES that
results in an array overflow (detected by KASAN).
* Fix a bug where KVM incorrectly clears root_role.direct when userspace sets
guest CPUID.
* Fix a dirty logging bug in the where KVM fails to write-protect SPTEs used
by a nested guest, if KVM is using Page-Modification Logging and the nested
hypervisor is NOT using EPT.
x86 PMU:
* Drop support for virtualizing adaptive PEBS, as KVM's implementation is
architecturally broken without an obvious/easy path forward, and because
exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak
host kernel addresses to the guest.
* Set the enable bits for general purpose counters in PERF_GLOBAL_CTRL at
RESET time, as done by both Intel and AMD processors.
* Disable LBR virtualization on CPUs that don't support LBR callstacks, as
KVM unconditionally uses PERF_SAMPLE_BRANCH_CALL_STACK when creating the
perf event, and would fail on such CPUs.
Tests:
* Fix a flaw in the max_guest_memory selftest that results in it exhausting
the supply of ucall structures when run with more than 256 vCPUs.
* Mark KVM_MEM_READONLY as supported for RISC-V in set_memory_region_test.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmYjdqcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPNRAgAh1AdKBAWnq9bFN2Np1kSAcRAk3bs
REDq/0iD1T9TvIwEmE1lHaRuqvCSO15WW+DKvbs7TS8zA0DyY7X/x8sIIy5YzZ5C
bQ+JXiqk55OAj0sPskBpCvE5qEreuU8qAit57+8OseKWs57EICvJjrfsRnHlmIub
pgGas3I42LjIgsuZRr2kjv+GrvaiikW+wWK6sq3CvPzTtHV196d26AK5l4NOoLkY
0FTbBIYUSJ7wxs92xuTed5mZ7JFZdsa5DVMXF5MRZ9W6g2vZCLbqCNRddRhSAsl0
gKmqZkuPTB7AnGQbJ2h/aKFT0ydsguzqbbKq62sK7ft5f1CUlbp9luDC9w==
=99rq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"This is a bit on the large side, mostly due to two changes:
- Changes to disable some broken PMU virtualization (see below for
details under "x86 PMU")
- Clean up SVM's enter/exit assembly code so that it can be compiled
without OBJECT_FILES_NON_STANDARD. This fixes a warning "Unpatched
return thunk in use. This should not happen!" when running KVM
selftests.
Everything else is small bugfixes and selftest changes:
- Fix a mostly benign bug in the gfn_to_pfn_cache infrastructure
where KVM would allow userspace to refresh the cache with a bogus
GPA. The bug has existed for quite some time, but was exposed by a
new sanity check added in 6.9 (to ensure a cache is either
GPA-based or HVA-based).
- Drop an unused param from gfn_to_pfn_cache_invalidate_start() that
got left behind during a 6.9 cleanup.
- Fix a math goof in x86's hugepage logic for
KVM_SET_MEMORY_ATTRIBUTES that results in an array overflow
(detected by KASAN).
- Fix a bug where KVM incorrectly clears root_role.direct when
userspace sets guest CPUID.
- Fix a dirty logging bug in the where KVM fails to write-protect
SPTEs used by a nested guest, if KVM is using Page-Modification
Logging and the nested hypervisor is NOT using EPT.
x86 PMU:
- Drop support for virtualizing adaptive PEBS, as KVM's
implementation is architecturally broken without an obvious/easy
path forward, and because exposing adaptive PEBS can leak host LBRs
to the guest, i.e. can leak host kernel addresses to the guest.
- Set the enable bits for general purpose counters in
PERF_GLOBAL_CTRL at RESET time, as done by both Intel and AMD
processors.
- Disable LBR virtualization on CPUs that don't support LBR
callstacks, as KVM unconditionally uses
PERF_SAMPLE_BRANCH_CALL_STACK when creating the perf event, and
would fail on such CPUs.
Tests:
- Fix a flaw in the max_guest_memory selftest that results in it
exhausting the supply of ucall structures when run with more than
256 vCPUs.
- Mark KVM_MEM_READONLY as supported for RISC-V in
set_memory_region_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (30 commits)
KVM: Drop unused @may_block param from gfn_to_pfn_cache_invalidate_start()
KVM: selftests: Add coverage of EPT-disabled to vmx_dirty_log_test
KVM: x86/mmu: Fix and clarify comments about clearing D-bit vs. write-protecting
KVM: x86/mmu: Remove function comments above clear_dirty_{gfn_range,pt_masked}()
KVM: x86/mmu: Write-protect L2 SPTEs in TDP MMU when clearing dirty status
KVM: x86/mmu: Precisely invalidate MMU root_role during CPUID update
KVM: VMX: Disable LBR virtualization if the CPU doesn't support LBR callstacks
perf/x86/intel: Expose existence of callback support to KVM
KVM: VMX: Snapshot LBR capabilities during module initialization
KVM: x86/pmu: Do not mask LVTPC when handling a PMI on AMD platforms
KVM: x86: Snapshot if a vCPU's vendor model is AMD vs. Intel compatible
KVM: x86: Stop compiling vmenter.S with OBJECT_FILES_NON_STANDARD
KVM: SVM: Create a stack frame in __svm_sev_es_vcpu_run()
KVM: SVM: Save/restore args across SEV-ES VMRUN via host save area
KVM: SVM: Save/restore non-volatile GPRs in SEV-ES VMRUN via host save area
KVM: SVM: Clobber RAX instead of RBX when discarding spec_ctrl_intercepted
KVM: SVM: Drop 32-bit "support" from __svm_sev_es_vcpu_run()
KVM: SVM: Wrap __svm_sev_es_vcpu_run() with #ifdef CONFIG_KVM_AMD_SEV
KVM: SVM: Create a stack frame in __svm_vcpu_run() for unwinding
KVM: SVM: Remove a useless zeroing of allocated memory
...
To support TDX, KVM is enhanced to operate with #VE. For TDX, KVM uses the
suppress #VE bit in EPT entries selectively, in order to be able to trap
non-present conditions. However, #VE isn't used for VMX and it's a bug
if it happens. To be defensive and test that VMX case isn't broken
introduce an option ept_violation_ve_test and when it's set, BUG the vm.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <d6db6ba836605c0412e166359ba5c46a63c22f86.1705965635.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dump the contents of the #VE info data structure and assert that #VE does
not happen, but do not yet do anything with it.
No functional change intended, separated for clarity only.
Extracted from a patch by Isaku Yamahata <isaku.yamahata@intel.com>.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
TDX uses different ABI to get information about VM exit. Pass intr_info to
the NMI and INTR handlers instead of pulling it from vcpu_vmx in
preparation for sharing the bulk of the handlers with TDX.
When the guest TD exits to VMM, RAX holds status and exit reason, RCX holds
exit qualification etc rather than the VMCS fields because VMM doesn't have
access to the VMCS. The eventual code will be
VMX:
- get exit reason, intr_info, exit_qualification, and etc from VMCS
- call NMI/INTR handlers (common code)
TDX:
- get exit reason, intr_info, exit_qualification, and etc from guest
registers
- call NMI/INTR handlers (common code)
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <0396a9ae70d293c9d0b060349dae385a8a4fbcec.1705965635.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM accesses Virtual Machine Control Structure (VMCS) with VMX instructions
to operate on VM. TDX doesn't allow VMM to operate VMCS directly.
Instead, TDX has its own data structures, and TDX SEAMCALL APIs for VMM to
indirectly operate those data structures. This means we must have a TDX
version of kvm_x86_ops.
The existing global struct kvm_x86_ops already defines an interface which
can be adapted to TDX, but kvm_x86_ops is a system-wide, not per-VM
structure. To allow VMX to coexist with TDs, the kvm_x86_ops callbacks
will have wrappers "if (tdx) tdx_op() else vmx_op()" to pick VMX or
TDX at run time.
To split the runtime switch, the VMX implementation, and the TDX
implementation, add main.c, and move out the vmx_x86_ops hooks in
preparation for adding TDX. Use 'vt' for the naming scheme as a nod to
VT-x and as a concatenation of VmxTdx.
The eventually converted code will look like this:
vmx.c:
vmx_op() { ... }
VMX initialization
tdx.c:
tdx_op() { ... }
TDX initialization
x86_ops.h:
vmx_op();
tdx_op();
main.c:
static vt_op() { if (tdx) tdx_op() else vmx_op() }
static struct kvm_x86_ops vt_x86_ops = {
.op = vt_op,
initialization functions call both VMX and TDX initialization
Opportunistically, fix the name inconsistency from vmx_create_vcpu() and
vmx_free_vcpu() to vmx_vcpu_create() and vmx_vcpu_free().
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Message-Id: <e603c317587f933a9d1bee8728c84e4935849c16.1705965634.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable LBR virtualization if the CPU doesn't support callstacks, which
were introduced in HSW (see commit e9d7f7cd97 ("perf/x86/intel: Add
basic Haswell LBR call stack support"), as KVM unconditionally configures
the perf LBR event with PERF_SAMPLE_BRANCH_CALL_STACK, i.e. LBR
virtualization always fails on pre-HSW CPUs.
Simply disable LBR support on such CPUs, as it has never worked, i.e.
there is no risk of breaking an existing setup, and figuring out a way
to performantly context switch LBRs on old CPUs is not worth the effort.
Fixes: be635e34c2 ("KVM: vmx/pmu: Expose LBR_FMT in the MSR_IA32_PERF_CAPABILITIES")
Cc: Mingwei Zhang <mizhang@google.com>
Cc: Jim Mattson <jmattson@google.com>
Tested-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20240307011344.835640-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Snapshot VMX's LBR capabilities once during module initialization instead
of calling into perf every time a vCPU reconfigures its vPMU. This will
allow massaging the LBR capabilities, e.g. if the CPU doesn't support
callstacks, without having to remember to update multiple locations.
Opportunistically tag vmx_get_perf_capabilities() with __init, as it's
only called from vmx_set_cpu_caps().
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20240307011344.835640-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a WARN_ON_ONCE() sanity check to verify that a nested PML Full VM-Exit
is only synthesized when the original VM-Exit from L2 was an EPT Violation.
While KVM can fallthrough to kvm_mmu_do_page_fault() if an EPT Misconfig
occurs on a stale MMIO SPTE, KVM should not treat the access as a write
(there isn't enough information to know *what* the access was), i.e. KVM
should never try to insert a PML entry in that case.
Link: https://lore.kernel.org/r/20240209221700.393189-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the exit_qualification field that is used to track information about
in-flight nEPT violations from "struct kvm_vcpu_arch" to "x86_exception",
i.e. associate the information with the actual nEPT violation instead of
the vCPU. To handle bits that are pulled from vmcs.EXIT_QUALIFICATION,
i.e. that are propagated from the "original" EPT violation VM-Exit, simply
grab them from the VMCS on-demand when injecting a nEPT Violation or a PML
Full VM-exit.
Aside from being ugly, having an exit_qualification field in kvm_vcpu_arch
is outright dangerous, e.g. see commit d7f0a00e43 ("KVM: VMX: Report
up-to-date exit qualification to userspace").
Opportunstically add a comment to call out that PML Full and EPT Violation
VM-Exits use the same bit to report NMI blocking information.
Link: https://lore.kernel.org/r/20240209221700.393189-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Explicitly clear the EXIT_QUALIFCATION field when injecting an EPT
misconfig into L1, as required by the VMX architecture. Per the SDM:
This field is saved for VM exits due to the following causes:
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs);
system-management interrupts (SMIs) that arrive immediately after the
execution of I/O instructions; task switches; INVEPT; INVLPG; INVPCID;
INVVPID; LGDT; LIDT; LLDT; LTR; SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD;
VMPTRST; VMREAD; VMWRITE; VMXON; WBINVD; WBNOINVD; XRSTORS; XSAVES;
control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to
the APIC-access page; EPT violations; EOI virtualization; APIC-write
emulation; page-modification log full; SPP-related events; and
instruction timeout. For all other VM exits, this field is cleared.
Generating EXIT_QUALIFICATION from vcpu->arch.exit_qualification is wrong
for all (two) paths that lead to nested_ept_inject_page_fault(). For EPT
violations (the common case), vcpu->arch.exit_qualification will have been
set by handle_ept_violation() to vmcs02.EXIT_QUALIFICATION, i.e. contains
the information of a EPT violation and thus is likely non-zero.
For an EPT misconfig, which can reach FNAME(walk_addr_generic) and thus
inject a nEPT misconfig if KVM created an MMIO SPTE that became stale,
vcpu->arch.exit_qualification will hold the information from the last EPT
violation VM-Exit, as vcpu->arch.exit_qualification is _only_ written by
handle_ept_violation().
Fixes: 4704d0befb ("KVM: nVMX: Exiting from L2 to L1")
Link: https://lore.kernel.org/r/20240209221700.393189-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the raw/true host.MAXPHYADDR when deciding whether or not KVM must
intercept #PFs when allow_smaller_maxphyaddr is enabled, as any adjustments
the kernel makes to boot_cpu_data.x86_phys_bits to account for MKTME KeyID
bits do not apply to the guest physical address space. I.e. the KeyID are
off-limits for host physical addresses, but are not reserved for GPAs as
far as hardware is concerned.
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Link: https://lore.kernel.org/r/20240319031111.495006-1-tao1.su@linux.intel.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop support for virtualizing adaptive PEBS, as KVM's implementation is
architecturally broken without an obvious/easy path forward, and because
exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak
host kernel addresses to the guest.
Bug #1 is that KVM doesn't account for the upper 32 bits of
IA32_FIXED_CTR_CTRL when (re)programming fixed counters, e.g
fixed_ctrl_field() drops the upper bits, reprogram_fixed_counters()
stores local variables as u8s and truncates the upper bits too, etc.
Bug #2 is that, because KVM _always_ sets precise_ip to a non-zero value
for PEBS events, perf will _always_ generate an adaptive record, even if
the guest requested a basic record. Note, KVM will also enable adaptive
PEBS in individual *counter*, even if adaptive PEBS isn't exposed to the
guest, but this is benign as MSR_PEBS_DATA_CFG is guaranteed to be zero,
i.e. the guest will only ever see Basic records.
Bug #3 is in perf. intel_pmu_disable_fixed() doesn't clear the upper
bits either, i.e. leaves ICL_FIXED_0_ADAPTIVE set, and
intel_pmu_enable_fixed() effectively doesn't clear ICL_FIXED_0_ADAPTIVE
either. I.e. perf _always_ enables ADAPTIVE counters, regardless of what
KVM requests.
Bug #4 is that adaptive PEBS *might* effectively bypass event filters set
by the host, as "Updated Memory Access Info Group" records information
that might be disallowed by userspace via KVM_SET_PMU_EVENT_FILTER.
Bug #5 is that KVM doesn't ensure LBR MSRs hold guest values (or at least
zeros) when entering a vCPU with adaptive PEBS, which allows the guest
to read host LBRs, i.e. host RIPs/addresses, by enabling "LBR Entries"
records.
Disable adaptive PEBS support as an immediate fix due to the severity of
the LBR leak in particular, and because fixing all of the bugs will be
non-trivial, e.g. not suitable for backporting to stable kernels.
Note! This will break live migration, but trying to make KVM play nice
with live migration would be quite complicated, wouldn't be guaranteed to
work (i.e. KVM might still kill/confuse the guest), and it's not clear
that there are any publicly available VMMs that support adaptive PEBS,
let alone live migrate VMs that support adaptive PEBS, e.g. QEMU doesn't
support PEBS in any capacity.
Link: https://lore.kernel.org/all/20240306230153.786365-1-seanjc@google.com
Link: https://lore.kernel.org/all/ZeepGjHCeSfadANM@google.com
Fixes: c59a1f106f ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Cc: stable@vger.kernel.org
Cc: Like Xu <like.xu.linux@gmail.com>
Cc: Mingwei Zhang <mizhang@google.com>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Zhang Xiong <xiong.y.zhang@intel.com>
Cc: Lv Zhiyuan <zhiyuan.lv@intel.com>
Cc: Dapeng Mi <dapeng1.mi@intel.com>
Cc: Jim Mattson <jmattson@google.com>
Acked-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20240307005833.827147-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
BHI mitigation mode spectre_bhi=auto does not deploy the software
mitigation by default. In a cloud environment, it is a likely scenario
where userspace is trusted but the guests are not trusted. Deploying
system wide mitigation in such cases is not desirable.
Update the auto mode to unconditionally mitigate against malicious
guests. Deploy the software sequence at VMexit in auto mode also, when
hardware mitigation is not available. Unlike the force =on mode,
software sequence is not deployed at syscalls in auto mode.
Suggested-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Branch History Injection (BHI) attacks may allow a malicious application to
influence indirect branch prediction in kernel by poisoning the branch
history. eIBRS isolates indirect branch targets in ring0. The BHB can
still influence the choice of indirect branch predictor entry, and although
branch predictor entries are isolated between modes when eIBRS is enabled,
the BHB itself is not isolated between modes.
Alder Lake and new processors supports a hardware control BHI_DIS_S to
mitigate BHI. For older processors Intel has released a software sequence
to clear the branch history on parts that don't support BHI_DIS_S. Add
support to execute the software sequence at syscall entry and VMexit to
overwrite the branch history.
For now, branch history is not cleared at interrupt entry, as malicious
applications are not believed to have sufficient control over the
registers, since previous register state is cleared at interrupt
entry. Researchers continue to poke at this area and it may become
necessary to clear at interrupt entry as well in the future.
This mitigation is only defined here. It is enabled later.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Co-developed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
* Changes to FPU handling came in via the main s390 pull request
* Only deliver to the guest the SCLP events that userspace has
requested.
* More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same).
* Fix selftests undefined behavior.
x86:
* Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can be
programmed *using the architectural encoding*. The enumeration does
NOT say anything about the encoding when the CPU doesn't report support
the event *in general*. It might support it, and it might support it
using the same encoding that made it into the architectural PMU spec.
* Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly emulates
RDMPC, counter availability, and a variety of other PMC-related
behaviors that depend on guest CPUID and therefore are easier to
validate with selftests than with custom guests (aka kvm-unit-tests).
* Zero out PMU state on AMD if the virtual PMU is disabled, it does not
cause any bug but it wastes time in various cases where KVM would check
if a PMC event needs to be synthesized.
* Optimize triggering of emulated events, with a nice ~10% performance
improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
guest.
* Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
* Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace with an internal error exit code.
* Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
* Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
* Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM
doesn't support yielding in the middle of processing a zap, and 1GiB
granularity resulted in multi-millisecond lags that are quite impolite
for CONFIG_PREEMPT kernels.
* Allocate write-tracking metadata on-demand to avoid the memory overhead when
a kernel is built with i915 virtualization support but the workloads use
neither shadow paging nor i915 virtualization.
* Explicitly initialize a variety of on-stack variables in the emulator that
triggered KMSAN false positives.
* Fix the debugregs ABI for 32-bit KVM.
* Rework the "force immediate exit" code so that vendor code ultimately decides
how and when to force the exit, which allowed some optimization for both
Intel and AMD.
* Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
vCPU creation ultimately failed, causing extra unnecessary work.
* Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
* Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere in the
kernel) are detected earlier and are less likely to hang the kernel.
x86 Xen emulation:
* Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the
gpa but the underlying host virtual address remains the same.
* When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
* Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
* Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
RISC-V:
* Support exception and interrupt handling in selftests
* New self test for RISC-V architectural timer (Sstc extension)
* New extension support (Ztso, Zacas)
* Support userspace emulation of random number seed CSRs.
ARM:
* Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
* Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
* Conversion of KVM's representation of LPIs to an xarray, utilized to
address serialization some of the serialization on the LPI injection
path
* Support for _architectural_ VHE-only systems, advertised through the
absence of FEAT_E2H0 in the CPU's ID register
* Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
* Set reserved bits as zero in CPUCFG.
* Start SW timer only when vcpu is blocking.
* Do not restart SW timer when it is expired.
* Remove unnecessary CSR register saving during enter guest.
* Misc cleanups and fixes as usual.
Generic:
* cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
true on all architectures except MIPS (where Kconfig determines the
available depending on CPU capabilities). It is replaced either by
an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
everywhere else.
* Factor common "select" statements in common code instead of requiring
each architecture to specify it
* Remove thoroughly obsolete APIs from the uapi headers.
* Move architecture-dependent stuff to uapi/asm/kvm.h
* Always flush the async page fault workqueue when a work item is being
removed, especially during vCPU destruction, to ensure that there are no
workers running in KVM code when all references to KVM-the-module are gone,
i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
* Grab a reference to the VM's mm_struct in the async #PF worker itself instead
of gifting the worker a reference, so that there's no need to remember
to *conditionally* clean up after the worker.
Selftests:
* Reduce boilerplate especially when utilize selftest TAP infrastructure.
* Add basic smoke tests for SEV and SEV-ES, along with a pile of library
support for handling private/encrypted/protected memory.
* Fix benign bugs where tests neglect to close() guest_memfd files.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
=mqOV
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
- The biggest change is the rework of the percpu code,
to support the 'Named Address Spaces' GCC feature,
by Uros Bizjak:
- This allows C code to access GS and FS segment relative
memory via variables declared with such attributes,
which allows the compiler to better optimize those accesses
than the previous inline assembly code.
- The series also includes a number of micro-optimizations
for various percpu access methods, plus a number of
cleanups of %gs accesses in assembly code.
- These changes have been exposed to linux-next testing for
the last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally
working handling of FPU switching - which also generates
better code.
- Propagate more RIP-relative addressing in assembly code,
to generate slightly better code.
- Rework the CPU mitigations Kconfig space to be less idiosyncratic,
to make it easier for distros to follow & maintain these options.
- Rework the x86 idle code to cure RCU violations and
to clean up the logic.
- Clean up the vDSO Makefile logic.
- Misc cleanups and fixes.
[ Please note that there's a higher number of merge commits in
this branch (three) than is usual in x86 topic trees. This happened
due to the long testing lifecycle of the percpu changes that
involved 3 merge windows, which generated a longer history
and various interactions with other core x86 changes that we
felt better about to carry in a single branch. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvB0gRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jUqRAAqnEQPiabF5acQlHrwviX+cjSobDlqtH5
9q2AQy9qaEHapzD0XMOxvFye6XIvehGOGxSPvk6CoviSxBND8rb56lvnsEZuLeBV
Bo5QSIL2x42Zrvo11iPHwgXZfTIusU90sBuKDRFkYBAxY3HK2naMDZe8MAsYCUE9
nwgHF8DDc/NYiSOXV8kosWoWpNIkoK/STyH5bvTQZMqZcwyZ49AIeP1jGZb/prbC
e/rbnlrq5Eu6brpM7xo9kELO0Vhd34urV14KrrIpdkmUKytW2KIsyvW8D6fqgDBj
NSaQLLcz0pCXbhF+8Nqvdh/1coR4L7Ymt08P1rfEjCsQgb/2WnSAGUQuC5JoGzaj
ngkbFcZllIbD9gNzMQ1n4Aw5TiO+l9zxCqPC/r58Uuvstr+K9QKlwnp2+B3Q73Ft
rojIJ04NJL6lCHdDgwAjTTks+TD2PT/eBWsDfJ/1pnUWttmv9IjMpnXD5sbHxoiU
2RGGKnYbxXczYdq/ALYDWM6JXpfnJZcXL3jJi0IDcCSsb92xRvTANYFHnTfyzGfw
EHkhbF4e4Vy9f6QOkSP3CvW5H26BmZS9DKG0J9Il5R3u2lKdfbb5vmtUmVTqHmAD
Ulo5cWZjEznlWCAYSI/aIidmBsp9OAEvYd+X7Z5SBIgTfSqV7VWHGt0BfA1heiVv
F/mednG0gGc=
=3v4F
-----END PGP SIGNATURE-----
Merge tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar:
- The biggest change is the rework of the percpu code, to support the
'Named Address Spaces' GCC feature, by Uros Bizjak:
- This allows C code to access GS and FS segment relative memory
via variables declared with such attributes, which allows the
compiler to better optimize those accesses than the previous
inline assembly code.
- The series also includes a number of micro-optimizations for
various percpu access methods, plus a number of cleanups of %gs
accesses in assembly code.
- These changes have been exposed to linux-next testing for the
last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally working handling
of FPU switching - which also generates better code
- Propagate more RIP-relative addressing in assembly code, to generate
slightly better code
- Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
make it easier for distros to follow & maintain these options
- Rework the x86 idle code to cure RCU violations and to clean up the
logic
- Clean up the vDSO Makefile logic
- Misc cleanups and fixes
* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/idle: Select idle routine only once
x86/idle: Let prefer_mwait_c1_over_halt() return bool
x86/idle: Cleanup idle_setup()
x86/idle: Clean up idle selection
x86/idle: Sanitize X86_BUG_AMD_E400 handling
sched/idle: Conditionally handle tick broadcast in default_idle_call()
x86: Increase brk randomness entropy for 64-bit systems
x86/vdso: Move vDSO to mmap region
x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
x86/retpoline: Ensure default return thunk isn't used at runtime
x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
x86/vdso: Use $(addprefix ) instead of $(foreach )
x86/vdso: Simplify obj-y addition
x86/vdso: Consolidate targets and clean-files
x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK
x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO
x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY
x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY
x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS
...
FRED is a replacement for IDT event delivery on x86 and addresses most of
the technical nightmares which IDT exposes:
1) Exception cause registers like CR2 need to be manually preserved in
nested exception scenarios.
2) Hardware interrupt stack switching is suboptimal for nested exceptions
as the interrupt stack mechanism rewinds the stack on each entry which
requires a massive effort in the low level entry of #NMI code to handle
this.
3) No hardware distinction between entry from kernel or from user which
makes establishing kernel context more complex than it needs to be
especially for unconditionally nestable exceptions like NMI.
4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a
problem when the perf NMI takes a fault when collecting a stack trace.
5) Partial restore of ESP when returning to a 16-bit segment
6) Limitation of the vector space which can cause vector exhaustion on
large systems.
7) Inability to differentiate NMI sources
FRED addresses these shortcomings by:
1) An extended exception stack frame which the CPU uses to save exception
cause registers. This ensures that the meta information for each
exception is preserved on stack and avoids the extra complexity of
preserving it in software.
2) Hardware interrupt stack switching is non-rewinding if a nested
exception uses the currently interrupt stack.
3) The entry points for kernel and user context are separate and GS BASE
handling which is required to establish kernel context for per CPU
variable access is done in hardware.
4) NMIs are now nesting protected. They are only reenabled on the return
from NMI.
5) FRED guarantees full restore of ESP
6) FRED does not put a limitation on the vector space by design because it
uses a central entry points for kernel and user space and the CPUstores
the entry type (exception, trap, interrupt, syscall) on the entry stack
along with the vector number. The entry code has to demultiplex this
information, but this removes the vector space restriction.
The first hardware implementations will still have the current
restricted vector space because lifting this limitation requires
further changes to the local APIC.
7) FRED stores the vector number and meta information on stack which
allows having more than one NMI vector in future hardware when the
required local APIC changes are in place.
The series implements the initial FRED support by:
- Reworking the existing entry and IDT handling infrastructure to
accomodate for the alternative entry mechanism.
- Expanding the stack frame to accomodate for the extra 16 bytes FRED
requires to store context and meta information
- Providing FRED specific C entry points for events which have information
pushed to the extended stack frame, e.g. #PF and #DB.
- Providing FRED specific C entry points for #NMI and #MCE
- Implementing the FRED specific ASM entry points and the C code to
demultiplex the events
- Providing detection and initialization mechanisms and the necessary
tweaks in context switching, GS BASE handling etc.
The FRED integration aims for maximum code reuse vs. the existing IDT
implementation to the extent possible and the deviation in hot paths like
context switching are handled with alternatives to minimalize the
impact. The low level entry and exit paths are seperate due to the extended
stack frame and the hardware based GS BASE swichting and therefore have no
impact on IDT based systems.
It has been extensively tested on existing systems and on the FRED
simulation and as of now there are know outstanding problems.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuKPgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWyUEACevJMHU+Ot9zqBPizSWxByM1uunHbp
bjQXhaFeskd3mt7k7HU6GsPRSmC3q4lliP1Y9ypfbU0DvYSI2h/PhMWizjhmot2y
nIvFpl51r/NsI+JHx1oXcFetz0eGHEqBui/4YQ/swgOCMymYgfqgHhazXTdldV3g
KpH9/8W3AeGvw79uzXFH9tjBzTkbvywpam3v0LYNDJWTCuDkilyo8PjhsgRZD4x3
V9f1nLD7nSHZW8XLoktdJJ38bKwI2Lhao91NQ0ErwopekA4/9WphZEKsDpidUSXJ
sn1O148oQ8X92IO2OaQje8XC5pLGr5GqQBGPWzRH56P/Vd3+WOwBxaFoU6Drxc5s
tIe23ZjkVcpA8EEG7BQBZV1Un/NX7XaCCnMniOt0RauXw+1NaslX7t/tnUAh5F1V
TWCH4D0I0oJ0qJ7kNliGn2BP3agYXOVg81xVEUjT6KfHcYU4ImUrwi+BkeNXuXtL
Ch5ADnbYAcUjWLFnAmEmaRtfmfNGY5T7PeGFHW2RRkaOJ88v5g14Voo6gPJaDUPn
wMQ0nLq1xN4xZWF6ZgfRqAhArvh20k38ZujRku5vXEqnhOugQ76TF2UYiFEwOXbQ
8jcM+yEBLGgBz7tGMwmIAml6kfxaFF1KPpdrtcPxNkGlbE6KTSuIolLx2YGUvlSU
6/O8nwZy49ckmQ==
=Ib7w
-----END PGP SIGNATURE-----
Merge tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FRED support from Thomas Gleixner:
"Support for x86 Fast Return and Event Delivery (FRED).
FRED is a replacement for IDT event delivery on x86 and addresses most
of the technical nightmares which IDT exposes:
1) Exception cause registers like CR2 need to be manually preserved
in nested exception scenarios.
2) Hardware interrupt stack switching is suboptimal for nested
exceptions as the interrupt stack mechanism rewinds the stack on
each entry which requires a massive effort in the low level entry
of #NMI code to handle this.
3) No hardware distinction between entry from kernel or from user
which makes establishing kernel context more complex than it needs
to be especially for unconditionally nestable exceptions like NMI.
4) NMI nesting caused by IRET unconditionally reenabling NMIs, which
is a problem when the perf NMI takes a fault when collecting a
stack trace.
5) Partial restore of ESP when returning to a 16-bit segment
6) Limitation of the vector space which can cause vector exhaustion
on large systems.
7) Inability to differentiate NMI sources
FRED addresses these shortcomings by:
1) An extended exception stack frame which the CPU uses to save
exception cause registers. This ensures that the meta information
for each exception is preserved on stack and avoids the extra
complexity of preserving it in software.
2) Hardware interrupt stack switching is non-rewinding if a nested
exception uses the currently interrupt stack.
3) The entry points for kernel and user context are separate and GS
BASE handling which is required to establish kernel context for
per CPU variable access is done in hardware.
4) NMIs are now nesting protected. They are only reenabled on the
return from NMI.
5) FRED guarantees full restore of ESP
6) FRED does not put a limitation on the vector space by design
because it uses a central entry points for kernel and user space
and the CPUstores the entry type (exception, trap, interrupt,
syscall) on the entry stack along with the vector number. The
entry code has to demultiplex this information, but this removes
the vector space restriction.
The first hardware implementations will still have the current
restricted vector space because lifting this limitation requires
further changes to the local APIC.
7) FRED stores the vector number and meta information on stack which
allows having more than one NMI vector in future hardware when the
required local APIC changes are in place.
The series implements the initial FRED support by:
- Reworking the existing entry and IDT handling infrastructure to
accomodate for the alternative entry mechanism.
- Expanding the stack frame to accomodate for the extra 16 bytes FRED
requires to store context and meta information
- Providing FRED specific C entry points for events which have
information pushed to the extended stack frame, e.g. #PF and #DB.
- Providing FRED specific C entry points for #NMI and #MCE
- Implementing the FRED specific ASM entry points and the C code to
demultiplex the events
- Providing detection and initialization mechanisms and the necessary
tweaks in context switching, GS BASE handling etc.
The FRED integration aims for maximum code reuse vs the existing IDT
implementation to the extent possible and the deviation in hot paths
like context switching are handled with alternatives to minimalize the
impact. The low level entry and exit paths are seperate due to the
extended stack frame and the hardware based GS BASE swichting and
therefore have no impact on IDT based systems.
It has been extensively tested on existing systems and on the FRED
simulation and as of now there are no outstanding problems"
* tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/fred: Fix init_task thread stack pointer initialization
MAINTAINERS: Add a maintainer entry for FRED
x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly
x86/fred: Invoke FRED initialization code to enable FRED
x86/fred: Add FRED initialization functions
x86/syscall: Split IDT syscall setup code into idt_syscall_init()
KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling
x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI
x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code
x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user
x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled
x86/traps: Add sysvec_install() to install a system interrupt handler
x86/fred: FRED entry/exit and dispatch code
x86/fred: Add a machine check entry stub for FRED
x86/fred: Add a NMI entry stub for FRED
x86/fred: Add a debug fault entry stub for FRED
x86/idtentry: Incorporate definitions/declarations of the FRED entries
x86/fred: Make exc_page_fault() work for FRED
x86/fred: Allow single-step trap and NMI when starting a new task
x86/fred: No ESPFIX needed when FRED is enabled
...
- Fix several bugs where KVM speciously prevents the guest from utilizing
fixed counters and architectural event encodings based on whether or not
guest CPUID reports support for the _architectural_ encoding.
- Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.
- Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
and a variety of other PMC-related behaviors that depend on guest CPUID,
i.e. are difficult to validate via KVM-Unit-Tests.
- Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
cycles, e.g. when checking if a PMC event needs to be synthesized when
skipping an instruction.
- Optimize triggering of emulated events, e.g. for "count instructions" events
when skipping an instruction, which yields a ~10% performance improvement in
VM-Exit microbenchmarks when a vPMU is exposed to the guest.
- Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrUFQACgkQOlYIJqCj
N/11dhAAnr9e6mPmXvaH4YKcvOGgTmwIQdi5W4IBzGm27ErEb0Vyskx3UATRhRm+
gZyp3wNgEA9LeifICDNu4ypn7HZcl2VtRql6FYcB8Bcu8OiHfU8PhWL0/qrpY20e
zffUj2tDweq2ft9Iks1SQJD0sxFkcXIcSKOffP7pRZJHFTKLltGORXwxzd9HJHPY
nc4nERKegK2yH4A4gY6nZ0oV5L3OMUNHx815db5Y+HxXOIjBCjTQiNNd6mUdyX1N
C5sIiElXLdvRTSDvirHfA32LqNwnajDGox4QKZkB3wszCxJ3kRd4OCkTEKMYKHxd
KoKCJQnAdJFFW9xqbT8nNKXZ+hg2+ZQuoSaBuwKryf7jWi0e6a7jcV0OH+cQSZw7
UNudKhs3r4ambfvnFp2IVZlZREMDB+LAjo2So48Jn/JGCAzqte3XqwVKskn9pS9S
qeauXCdOLioZALYtTBl8RM1rEY5mbwQrpPv9CzbeU09qQ/hpXV14W9GmbyeOZcI1
T1cYgEqlLuifRluwT/hxrY321+4noF116gSK1yb07x/sJU8/lhRooEk9V562066E
qo6nIvc7Bv9gTGLwo6VReKSPcTT/6t3HwgPsRjqe+evso3EFN9f9hG+uPxtO6TUj
pdPm3mkj2KfxDdJLf+Ys16gyGdiwI0ZImIkA0uLdM0zftNsrb4Y=
=vayI
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.9' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.9:
- Fix several bugs where KVM speciously prevents the guest from utilizing
fixed counters and architectural event encodings based on whether or not
guest CPUID reports support for the _architectural_ encoding.
- Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.
- Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
and a variety of other PMC-related behaviors that depend on guest CPUID,
i.e. are difficult to validate via KVM-Unit-Tests.
- Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
cycles, e.g. when checking if a PMC event needs to be synthesized when
skipping an instruction.
- Optimize triggering of emulated events, e.g. for "count instructions" events
when skipping an instruction, which yields a ~10% performance improvement in
VM-Exit microbenchmarks when a vPMU is exposed to the guest.
- Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
- Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace due to an unexpected VM-Exit while the CPU was
vectoring an exception.
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
- Clean up the logic for massaging the passthrough MSR bitmaps when userspace
changes its MSR filter.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrUh4ACgkQOlYIJqCj
N/2CRA//VKa4KE8zgF3xM6Btyt2NegPgmGYVyhmMHTvARyHDIl5nURy++uXseb4f
UXQLGcoGS+CIiaMohQFhCOjoNvv/2LR9P72qVV2WjQjFxVGBchybz8bjrqIDSSvY
TuiPJApIfZtLryFFcowo8jLEBQv3JKgfgn9r2hBwVDcYP13wSz0Z4AWntHIqBxNa
DW75wo7wnBFzy2RfUdtAgucpbmEihqSoKA+YjUT+0GRLBI7rWbFxdEKqe3BIM/7n
4NoJXbOmw7mlhTNumZYsF5sKiyOihBOdtUL1TDgKWjJScgmwG+KCSvrp5Ko4PZpo
uyWWcIbskQ+cTO6dHDoIJTVPsCDxo3PgVJKG1T60CV68NavwxXCUGri1n1ZNyYH/
bXxEW7dTGHX0TDSt3dcyVOYdZFHbaIbqpu1EXlrzBm1hnruQ1C1uBQGHZ/X+Yo86
0qdq9SgXJ48tykr8BDruIHMy0Q8jbXxl67oXR0CdRjJGM+H9f+7RefnRN9wPYFhy
n6Hl3kbezwCZb+8RO34Hq2CpKzNlKRHlJDhUq1ypd2vXPw8FDq1aQYKih0jAzyJQ
yCdUueBJgo8OJtSL4HGEHvgkLHR4/XERgbCOxpSYNbqIjahAwNtbfHryUnJRWRb5
V3QczG/TtGfEpVblbRzn3Atbft4rM5a9Z3+s0siB6C2w8wyPmZg=
=oJso
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-vmx-6.9' of https://github.com/kvm-x86/linux into HEAD
KVM VMX changes for 6.9:
- Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace due to an unexpected VM-Exit while the CPU was
vectoring an exception.
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
- Clean up the logic for massaging the passthrough MSR bitmaps when userspace
changes its MSR filter.
- Explicitly initialize a variety of on-stack variables in the emulator that
triggered KMSAN false positives (though in fairness in KMSAN, it's comically
difficult to see that the uninitialized memory is never truly consumed).
- Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
DR6 and DR7.
- Rework the "force immediate exit" code so that vendor code ultimately
decides how and when to force the exit. This allows VMX to further optimize
handling preemption timer exits, and allows SVM to avoid sending a duplicate
IPI (SVM also has a need to force an exit).
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
vCPU creation ultimately failed, and add WARN to guard against similar bugs.
- Provide a dedicated arch hook for checking if a different vCPU was in-kernel
(for directed yield), and simplify the logic for checking if the currently
loaded vCPU is in-kernel.
- Misc cleanups and fixes.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrRjQACgkQOlYIJqCj
N/2Dzw//b+ptSBAl1kGBRmk/DqsX7J9ZkQYCQOTeh1vXiUM+XRTSQoArN0Oo1roy
3wcEnQ0beVw7jMuzZ8UUuTfU8WUMja/kwltnqXYNHwLnb6yH0I/BIengXWdUdAMc
FmgPZ4qJR2IzKYzvDsc3eEQ515O8UHWakyVDnmLBtiakAeBcUTYceHpEEPpzE5y5
ODASTQKM9o/h8R8JwKFTJ8/mrOLNcsu5SycwFdnmubLJCrNWtJWTijA6y1lh6shn
hbEJex+ESoC2v8p7IP53u1SGJubVlPajt+RkYJtlEI3WVsevp024eYcF4nb1OjXi
qS2Y3W7DQGWvyCBoSzoMY+9nRMgyOOpHYetdiz+9oZOmnjiYWY0ku59U7Gv+Aotj
AUbCn4Ry/OpqsuZ7Oo7i3IT8R7uzsTeNNdxhYBn1OQquBEZ0KBYXlZkGfTk9K0t0
Fhka/5Zu6fBlg5J+zCyaXUGmsGWBo/9HxsC5z1JuKo8fatro5qyqYE5KiM01dkqc
6FET6gL+fFprC5c67JGRPdEtk6F9Emb+6oiTTA8/8q8JQQAKiJKk95Nlq7KzPfVS
A5RQPTuTJ7acE/5CY4zB1DdxCjqgnonBEA2ULnA/J10Rk8orHJRnGJcEwKEyDrZh
HpsxIIqt++i8KffORpCym6zSAVYuQjn1mu7MGth+zuCqhcEpBfc=
=GX0O
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.9' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.9:
- Explicitly initialize a variety of on-stack variables in the emulator that
triggered KMSAN false positives (though in fairness in KMSAN, it's comically
difficult to see that the uninitialized memory is never truly consumed).
- Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
DR6 and DR7.
- Rework the "force immediate exit" code so that vendor code ultimately
decides how and when to force the exit. This allows VMX to further optimize
handling preemption timer exits, and allows SVM to avoid sending a duplicate
IPI (SVM also has a need to force an exit).
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
vCPU creation ultimately failed, and add WARN to guard against similar bugs.
- Provide a dedicated arch hook for checking if a different vCPU was in-kernel
(for directed yield), and simplify the logic for checking if the currently
loaded vCPU is in-kernel.
- Misc cleanups and fixes.
Combine possible_passthrough_msr_slot() and is_valid_passthrough_msr()
into a single function, vmx_get_passthrough_msr_slot(), and have the
combined helper return the slot on success, using a negative value to
indicate "failure".
Combining the operations avoids iterating over the array of passthrough
MSRs twice for relevant MSRs.
Suggested-by: Dongli Zhang <dongli.zhang@oracle.com>
Reviewed-by: Dongli Zhang <dongli.zhang@oracle.com>
Link: https://lore.kernel.org/r/20240223202104.3330974-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The vmx_msr_filter_changed() may directly/indirectly calls only
vmx_enable_intercept_for_msr() or vmx_disable_intercept_for_msr(). Those
two functions may exit immediately if !cpu_has_vmx_msr_bitmap().
vmx_msr_filter_changed()
-> vmx_disable_intercept_for_msr()
-> pt_update_intercept_for_msr()
-> vmx_set_intercept_for_msr()
-> vmx_enable_intercept_for_msr()
-> vmx_disable_intercept_for_msr()
Therefore, we exit early if !cpu_has_vmx_msr_bitmap().
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Link: https://lore.kernel.org/r/20240223202104.3330974-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
According to the is_valid_passthrough_msr(), the LBR MSRs are also
passthrough MSRs, since the commit 1b5ac3226a ("KVM: vmx/pmu:
Pass-through LBR msrs when the guest LBR event is ACTIVE").
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Link: https://lore.kernel.org/r/20240223202104.3330974-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that vmx->req_immediate_exit is used only in the scope of
vmx_vcpu_run(), use force_immediate_exit to detect that KVM should usurp
the VMX preemption to force a VM-Exit and let vendor code fully handle
forcing a VM-Exit.
Opportunsitically drop __kvm_request_immediate_exit() and just have
vendor code call smp_send_reschedule() directly. SVM already does this
when injecting an event while also trying to single-step an IRET, i.e.
it's not exactly secret knowledge that KVM uses a reschedule IPI to force
an exit.
Link: https://lore.kernel.org/r/20240110012705.506918-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Eat VMX treemption timer exits in the fastpath regardless of whether L1 or
L2 is active. The VM-Exit is 100% KVM-induced, i.e. there is nothing
directly related to the exit that KVM needs to do on behalf of the guest,
thus there is no reason to wait until the slow path to do nothing.
Opportunistically add comments explaining why preemption timer exits for
emulating the guest's APIC timer need to go down the slow path.
Link: https://lore.kernel.org/r/20240110012705.506918-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Let the fastpath code decide which exits can/can't be handled in the
fastpath when L2 is active, e.g. when KVM generates a VMX preemption
timer exit to forcefully regain control, there is no "work" to be done and
so such exits can be handled in the fastpath regardless of whether L1 or
L2 is active.
Moving the is_guest_mode() check into the fastpath code also makes it
easier to see that L2 isn't allowed to use the fastpath in most cases,
e.g. it's not immediately obvious why handle_fastpath_preemption_timer()
is called from the fastpath and the normal path.
Link: https://lore.kernel.org/r/20240110012705.506918-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Handle VMX preemption timer VM-Exits due to KVM forcing an exit in the
exit fastpath, i.e. avoid calling back into handle_preemption_timer() for
the same exit. There is no work to be done for forced exits, as the name
suggests the goal is purely to get control back in KVM.
In addition to shaving a few cycles, this will allow cleanly separating
handle_fastpath_preemption_timer() from handle_preemption_timer(), e.g.
it's not immediately obvious why _apparently_ calling
handle_fastpath_preemption_timer() twice on a "slow" exit is necessary:
the "slow" call is necessary to handle exits from L2, which are excluded
from the fastpath by vmx_vcpu_run().
Link: https://lore.kernel.org/r/20240110012705.506918-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Re-enter the guest in the fast path if VMX preeemption timer VM-Exit was
"spurious", i.e. if KVM "soft disabled" the timer by writing -1u and by
some miracle the timer expired before any other VM-Exit occurred. This is
just an intermediate step to cleaning up the preemption timer handling,
optimizing these types of spurious VM-Exits is not interesting as they are
extremely rare/infrequent.
Link: https://lore.kernel.org/r/20240110012705.506918-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Annotate the kvm_entry() tracepoint with "immediate exit" when KVM is
forcing a VM-Exit immediately after VM-Enter, e.g. when KVM wants to
inject an event but needs to first complete some other operation.
Knowing that KVM is (or isn't) forcing an exit is useful information when
debugging issues related to event injection.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240110012705.506918-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Bite the bullet, and open code all direct reads of DR6 and DR7. KVM
currently has a mix of open coded accesses and calls to kvm_get_dr(),
which is confusing and ugly because there's no rhyme or reason as to why
any particular chunk of code uses kvm_get_dr().
The obvious alternative is to force all accesses through kvm_get_dr(),
but it's not at all clear that doing so would be a net positive, e.g. even
if KVM ends up wanting/needing to force all reads through a common helper,
e.g. to play caching games, the cost of reverting this change is likely
lower than the ongoing cost of maintaining weird, arbitrary code.
No functional change intended.
Cc: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Convert kvm_get_dr()'s output parameter to a return value, and clean up
most of the mess that was created by forcing callers to provide a pointer.
No functional change intended.
Acked-by: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
During VMentry VERW is executed to mitigate MDS. After VERW, any memory
access like register push onto stack may put host data in MDS affected
CPU buffers. A guest can then use MDS to sample host data.
Although likelihood of secrets surviving in registers at current VERW
callsite is less, but it can't be ruled out. Harden the MDS mitigation
by moving the VERW mitigation late in VMentry path.
Note that VERW for MMIO Stale Data mitigation is unchanged because of
the complexity of per-guest conditional VERW which is not easy to handle
that late in asm with no GPRs available. If the CPU is also affected by
MDS, VERW is unconditionally executed late in asm regardless of guest
having MMIO access.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-6-a6216d83edb7%40linux.intel.com
Use EFLAGS.CF instead of EFLAGS.ZF to track whether to use VMRESUME versus
VMLAUNCH. Freeing up EFLAGS.ZF will allow doing VERW, which clobbers ZF,
for MDS mitigations as late as possible without needing to duplicate VERW
for both paths.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-5-a6216d83edb7%40linux.intel.com
The VERW mitigation at exit-to-user is enabled via a static branch
mds_user_clear. This static branch is never toggled after boot, and can
be safely replaced with an ALTERNATIVE() which is convenient to use in
asm.
Switch to ALTERNATIVE() to use the VERW mitigation late in exit-to-user
path. Also remove the now redundant VERW in exc_nmi() and
arch_exit_to_user_mode().
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-4-a6216d83edb7%40linux.intel.com
- Make a KVM_REQ_NMI request while handling KVM_SET_VCPU_EVENTS if and only
if the incoming events->nmi.pending is non-zero. If the target vCPU is in
the UNITIALIZED state, the spurious request will result in KVM exiting to
userspace, which in turn causes QEMU to constantly acquire and release
QEMU's global mutex, to the point where the BSP is unable to make forward
progress.
- Fix a type (u8 versus u64) goof that results in pmu->fixed_ctr_ctrl being
incorrectly truncated, and ultimately causes KVM to think a fixed counter
has already been disabled (KVM thinks the old value is '0').
- Fix a stack leak in KVM_GET_MSRS where a failed MSR read from userspace
that is ultimately ignored due to ignore_msrs=true doesn't zero the output
as intended.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmXKt90SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5e5wP/jU3Zuul2e7fb4E6RN/GPhAFSTzG7Cwe
4lVSSSPmOQsEXTKwCOMj7fgwF9qVSLzLRi62MKziTJY/1FDsTcI3xlM7nM2wwQC2
26evIzI3qB54rHQdviuh1jwh6scZH7xLw7kANE+8x4skkm6AZB1IUnj3utR3fEPj
mIUA5kGQxEAEDrn0TFzrRgIw4JngKjrCwmpT+vbmR37flC+Rwv8jr4JY1E3cBAT3
KEilv3Fg07gbvagWGZNSSUNqQos5MsnLifdryKbA/vuIJf+j/01CMo5KtLKshiaX
t4gXPldVZDXdxjH6im0wRAX4s/FpZg3vVje2OxPbzwMVb5+XvLewzjzagQ1lFA3I
gsNXF8uGdYn0fb8T/wQG4ulWBw6A844PSmGONCwLDA+GZuL9xjMIK5d1litvb/im
bEP1Ahv6UcnDNKHqRzuFXQENiS2uQdJNLs7p291oDNkTm/CGjDUgFXPuaCehWrUf
ZZf1dxmIPM/Xt2j19mS/HnTHD114A8t1GTx799kBXbG4x0ScVQclkhRk6yFG3ObA
14uXxxAdEBoZGBJ2yr5FbddvRLswbWugFoxKbtCZ/CHMopOUQcRRmRb7Lm1NHLtg
Ae/sHO6gQ1xcrbwpMCq+6RjFK57yW+n1TB8ZTmAE2RQynGqzReSTlUNtfn3yMg4v
hz+2zGzezoeN
=92ae
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-fixes-6.8-rcN' of https://github.com/kvm-x86/linux into HEAD
KVM x86 fixes for 6.8:
- Make a KVM_REQ_NMI request while handling KVM_SET_VCPU_EVENTS if and only
if the incoming events->nmi.pending is non-zero. If the target vCPU is in
the UNITIALIZED state, the spurious request will result in KVM exiting to
userspace, which in turn causes QEMU to constantly acquire and release
QEMU's global mutex, to the point where the BSP is unable to make forward
progress.
- Fix a type (u8 versus u64) goof that results in pmu->fixed_ctr_ctrl being
incorrectly truncated, and ultimately causes KVM to think a fixed counter
has already been disabled (KVM thinks the old value is '0').
- Fix a stack leak in KVM_GET_MSRS where a failed MSR read from userspace
that is ultimately ignored due to ignore_msrs=true doesn't zero the output
as intended.
We've had issues with gcc and 'asm goto' before, and we created a
'asm_volatile_goto()' macro for that in the past: see commits
3f0116c323 ("compiler/gcc4: Add quirk for 'asm goto' miscompilation
bug") and a9f180345f ("compiler/gcc4: Make quirk for
asm_volatile_goto() unconditional").
Then, much later, we ended up removing the workaround in commit
43c249ea0b ("compiler-gcc.h: remove ancient workaround for gcc PR
58670") because we no longer supported building the kernel with the
affected gcc versions, but we left the macro uses around.
Now, Sean Christopherson reports a new version of a very similar
problem, which is fixed by re-applying that ancient workaround. But the
problem in question is limited to only the 'asm goto with outputs'
cases, so instead of re-introducing the old workaround as-is, let's
rename and limit the workaround to just that much less common case.
It looks like there are at least two separate issues that all hit in
this area:
(a) some versions of gcc don't mark the asm goto as 'volatile' when it
has outputs:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98619https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110420
which is easy to work around by just adding the 'volatile' by hand.
(b) Internal compiler errors:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110422
which are worked around by adding the extra empty 'asm' as a
barrier, as in the original workaround.
but the problem Sean sees may be a third thing since it involves bad
code generation (not an ICE) even with the manually added 'volatile'.
but the same old workaround works for this case, even if this feels a
bit like voodoo programming and may only be hiding the issue.
Reported-and-tested-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/all/20240208220604.140859-1-seanjc@google.com/
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Cc: Andrew Pinski <quic_apinski@quicinc.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use vmx_get_exit_qual() to read the exit qualification.
vcpu->arch.exit_qualification is cached for EPT violation only and even
for EPT violation, it is stale at this point because the up-to-date
value is cached later in handle_ept_violation().
Fixes: 70bcd708df ("KVM: vmx: expose more information for KVM_INTERNAL_ERROR_DELIVERY_EV exits")
Signed-off-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20231229022652.300095-1-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use a u64 instead of a u8 when taking a snapshot of pmu->fixed_ctr_ctrl
when reprogramming fixed counters, as truncating the value results in KVM
thinking fixed counter 2 is already disabled (the bug also affects fixed
counters 3+, but KVM doesn't yet support those). As a result, if the
guest disables fixed counter 2, KVM will get a false negative and fail to
reprogram/disable emulation of the counter, which can leads to incorrect
counts and spurious PMIs in the guest.
Fixes: 76d287b234 ("KVM: x86/pmu: Drop "u8 ctrl, int idx" for reprogram_fixed_counter()")
Cc: stable@vger.kernel.org
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20240123221220.3911317-1-mizhang@google.com
[sean: rewrite changelog to call out the effects of the bug]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Snapshot the event selectors for the events that KVM emulates in software,
which is currently instructions retired and branch instructions retired.
The event selectors a tied to the underlying CPU, i.e. are constant for a
given platform even though perf doesn't manage the mappings as such.
Getting the event selectors from perf isn't exactly cheap, especially if
mitigations are enabled, as at least one indirect call is involved.
Snapshot the values in KVM instead of optimizing perf as working with the
raw event selectors will be required if KVM ever wants to emulate events
that aren't part of perf's uABI, i.e. that don't have an "enum perf_hw_id"
entry.
Link: https://lore.kernel.org/r/20231110022857.1273836-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add and use kvm_for_each_pmc() to dedup a variety of open coded for-loops
that iterate over valid PMCs given a bitmap (and because seeing checkpatch
whine about bad macro style is always amusing).
No functional change intended.
Link: https://lore.kernel.org/r/20231110022857.1273836-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a common helper for *internal* PMC lookups, and delete the ops hook
and Intel's implementation. Keep AMD's implementation, but rename it to
amd_pmu_get_pmc() to make it somewhat more obvious that it's suited for
both KVM-internal and guest-initiated lookups.
Because KVM tracks all counters in a single bitmap, getting a counter
when iterating over a bitmap, e.g. of all valid PMCs, requires a small
amount of math, that while simple, isn't super obvious and doesn't use the
same semantics as PMC lookups from RDPMC! Although AMD doesn't support
fixed counters, the common PMU code still behaves as if there a split, the
high half of which just happens to always be empty.
Opportunstically add a comment to explain both what is going on, and why
KVM uses a single bitmap, e.g. the boilerplate for iterating over separate
bitmaps could be done via macros, so it's not (just) about deduplicating
code.
Link: https://lore.kernel.org/r/20231110022857.1273836-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a common define to "officially" solidify KVM's split of counters,
i.e. to commit to using bits 31:0 to track general purpose counters and
bits 63:32 to track fixed counters (which only Intel supports). KVM
already bleeds this behavior all over common PMU code, and adding a KVM-
defined macro allows clarifying that the value is a _base_, as oppposed to
the _flag_ that is used to access fixed PMCs via RDPMC (which perf
confusingly calls INTEL_PMC_FIXED_RDPMC_BASE).
No functional change intended.
Link: https://lore.kernel.org/r/20231110022857.1273836-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the purging of common PMU metadata from intel_pmu_refresh() to
kvm_pmu_refresh(), and invoke the vendor refresh() hook if and only if
the VM is supposed to have a vPMU.
KVM already denies access to the PMU based on kvm->arch.enable_pmu, as
get_gp_pmc_amd() returns NULL for all PMCs in that case, i.e. KVM already
violates AMD's architecture by not virtualizing a PMU (kernels have long
since learned to not panic when the PMU is unavailable). But configuring
the PMU as if it were enabled causes unwanted side effects, e.g. calls to
kvm_pmu_trigger_event() waste an absurd number of cycles due to the
all_valid_pmc_idx bitmap being non-zero.
Fixes: b1d66dad65 ("KVM: x86/svm: Add module param to control PMU virtualization")
Reported-by: Konstantin Khorenko <khorenko@virtuozzo.com>
Closes: https://lore.kernel.org/all/20231109180646.2963718-2-khorenko@virtuozzo.com
Link: https://lore.kernel.org/r/20231110022857.1273836-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When FRED is enabled, call fred_entry_from_kvm() to handle IRQ/NMI in
IRQ/NMI induced VM exits.
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20231205105030.8698-33-xin3.li@intel.com
Explicitly check for attempts to read unsupported PMC types instead of
letting the bounds check fail. Functionally, letting the check fail is
ok, but it's unnecessarily subtle and does a poor job of documenting the
architectural behavior that KVM is emulating.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor KVM's handling of ECX for RDPMC to treat the FIXED modifier as an
explicit value, not a flag (minus one wart). While non-architectural PMUs
do use bit 31 as a flag (for "fast" reads), architectural PMUs use the
upper half of ECX to encode the type. From the SDM:
ECX[31:16] specifies type of PMC while ECX[15:0] specifies the index of
the PMC to be read within that type
Note, that the known supported types are 4000H and 2000H, i.e. look a lot
like flags, doesn't contradict the above statement that ECX[31:16] holds
the type, at least not by any sane reading of the SDM.
Keep the explicitly clearing of the FIXED "flag", as KVM subtly relies on
that behavior to disallow unsupported types while allowing the correct
indices for fixed counters. This wart will be cleaned up in short order.
Opportunistically grab the per-type bitmask in the if-else blocks to
eliminate the one-off usage of the local "fixed" bool.
Reported-by: Jim Mattson <jmattson@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Inject #GP on RDPMC if the "fast" flag is set for architectural Intel
PMUs, i.e. if the PMU version is non-zero. Per Intel's SDM, and confirmed
on bare metal, the "fast" flag is supported only for non-architectural
PMUs, and is reserved for architectural PMUs.
If the processor does not support architectural performance monitoring
(CPUID.0AH:EAX[7:0]=0), ECX[30:0] specifies the index of the PMC to be
read. Setting ECX[31] selects “fast” read mode if supported. In this mode,
RDPMC returns bits 31:0 of the PMC in EAX while clearing EDX to zero.
If the processor does support architectural performance monitoring
(CPUID.0AH:EAX[7:0] ≠ 0), ECX[31:16] specifies type of PMC while ECX[15:0]
specifies the index of the PMC to be read within that type. The following
PMC types are currently defined:
— General-purpose counters use type 0. The index x (to read IA32_PMCx)
must be less than the value enumerated by CPUID.0AH.EAX[15:8] (thus
ECX[15:8] must be zero).
— Fixed-function counters use type 4000H. The index x (to read
IA32_FIXED_CTRx) can be used if either CPUID.0AH.EDX[4:0] > x or
CPUID.0AH.ECX[x] = 1 (thus ECX[15:5] must be 0).
— Performance metrics use type 2000H. This type can be used only if
IA32_PERF_CAPABILITIES.PERF_METRICS_AVAILABLE[bit 15]=1. For this type,
the index in ECX[15:0] is implementation specific.
Opportunistically WARN if KVM ever actually tries to complete RDPMC for a
non-architectural PMU, and drop the non-existent "support" for fast RDPMC,
as KVM doesn't support such PMUs, i.e. kvm_pmu_rdpmc() should reject the
RDPMC before getting to the Intel code.
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Fixes: 67f4d4288c ("KVM: x86: rdpmc emulation checks the counter incorrectly")
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the handling of "fast" RDPMC instructions, which drop bits 63:32 of
the count, to Intel. The "fast" flag, and all modifiers for that matter,
are Intel-only and aren't supported by AMD.
Opportunistically replace open coded bit crud with proper #defines, and
add comments to try and disentangle the flags vs. values mess for
non-architectural vs. architectural PMUs.
Fixes: ca724305a2 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Apply the pre-intercepts RDPMC validity check only to AMD, and rename all
relevant functions to make it as clear as possible that the check is not a
standard PMC index check. On Intel, the basic rule is that only invalid
opcodes and privilege/permission/mode checks have priority over VM-Exit,
i.e. RDPMC with an invalid index should VM-Exit, not #GP. While the SDM
doesn't explicitly call out RDPMC, it _does_ explicitly use RDMSR of a
non-existent MSR as an example where VM-Exit has priority over #GP, and
RDPMC is effectively just a variation of RDMSR.
Manually testing on various Intel CPUs confirms this behavior, and the
inverted priority was introduced for SVM compatibility, i.e. was not an
intentional change for Intel PMUs. On AMD, *all* exceptions on RDPMC have
priority over VM-Exit.
Check for a NULL kvm_pmu_ops.check_rdpmc_early instead of using a RET0
static call so as to provide a convenient location to document the
difference between Intel and AMD, and to again try to make it as obvious
as possible that the early check is a one-off thing, not a generic "is
this PMC valid?" helper.
Fixes: 8061252ee0 ("KVM: SVM: Add intercept checks for remaining twobyte instructions")
Cc: Jim Mattson <jmattson@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Get the event selectors used to effectively request fixed counters for
perf events from perf itself instead of hardcoding them in KVM and hoping
that they match the underlying hardware. While fixed counters 0 and 1 use
architectural events, as of ffbe4ab0be ("perf/x86/intel: Extend the
ref-cycles event to GP counters") fixed counter 2 (reference TSC cycles)
may use a software-defined pseudo-encoding or a real hardware-defined
encoding.
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Closes: https://lkml.kernel.org/r/4281eee7-6423-4ec8-bb18-c6aeee1faf2c%40linux.intel.com
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Set the eventsel for all fixed counters during PMU initialization, the
eventsel is hardcoded and consumed if and only if the counter is supported,
i.e. there is no reason to redo the setup every time the PMU is refreshed.
Configuring all KVM-supported fixed counter also eliminates a potential
pitfall if/when KVM supports discontiguous fixed counters, in which case
configuring only nr_arch_fixed_counters will be insufficient (ignoring the
fact that KVM will need many other changes to support discontiguous fixed
counters).
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop KVM's enumeration of Intel's architectural event encodings, and
instead open code the three encodings (of which only two are real) that
KVM uses to emulate fixed counters. Now that KVM doesn't incorrectly
enforce the availability of architectural encodings, there is no reason
for KVM to ever care about the encodings themselves, at least not in the
current format of an array indexed by the encoding's position in CPUID.
Opportunistically add a comment to explain why KVM cares about eventsel
values for fixed counters.
Suggested-by: Jim Mattson <jmattson@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove KVM's bogus restriction that the guest can't program an event whose
encoding matches an unsupported architectural event. The enumeration of
an architectural event only says that if a CPU supports an architectural
event, then the event can be programmed using the architectural encoding.
The enumeration does NOT say anything about the encoding when the CPU
doesn't report support the architectural event.
Preventing the guest from counting events whose encoding happens to match
an architectural event breaks existing functionality whenever Intel adds
an architectural encoding that was *ever* used for a CPU that doesn't
enumerate support for the architectural event, even if the encoding is for
the exact same event!
E.g. the architectural encoding for Top-Down Slots is 0x01a4. Broadwell
CPUs, which do not support the Top-Down Slots architectural event, 0x01a4
is a valid, model-specific event. Denying guest usage of 0x01a4 if/when
KVM adds support for Top-Down slots would break any Broadwell-based guest.
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Closes: https://lore.kernel.org/all/2004baa6-b494-462c-a11f-8104ea152c6a@linux.intel.com
Fixes: a21864486f ("KVM: x86/pmu: Fix available_event_types check for REF_CPU_CYCLES event")
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Treat fixed counters as available when they are supported, i.e. don't
silently ignore an enabled fixed counter just because guest CPUID says the
associated general purpose architectural event is unavailable.
KVM originally treated fixed counters as always available, but that got
changed as part of a fix to avoid confusing REF_CPU_CYCLES, which does NOT
map to an architectural event, with the actual architectural event used
associated with bit 7, TOPDOWN_SLOTS.
The commit justified the change with:
If the event is marked as unavailable in the Intel guest CPUID
0AH.EBX leaf, we need to avoid any perf_event creation, whether
it's a gp or fixed counter.
but that justification doesn't mesh with reality. The Intel SDM uses
"architectural events" to refer to both general purpose events (the ones
with the reverse polarity mask in CPUID.0xA.EBX) and the events for fixed
counters, e.g. the SDM makes statements like:
Each of the fixed-function PMC can count only one architectural
performance event.
but the fact that fixed counter 2 (TSC reference cycles) doesn't have an
associated general purpose architectural makes trying to apply the mask
from CPUID.0xA.EBX impossible.
Furthermore, the lack of enumeration for an architectural event in CPUID
only means the CPU doesn't officially support the architectural encoding,
i.e. it doesn't mean using the architectural encoding _won't_ work, it
sipmly means there are no guarantees that it will work as expected. E.g.
if KVM is running in a VM that advertises a fixed counters but not the
corresponding architectural event encoding, and perf decides to use a
general purpose counter instead of a fixed counter, odds are very good
that the underlying hardware actually does support the architectrual
encoding, and that programming the encoding will count the right thing.
In other words, asking perf to count the event will probably work, whereas
intentionally doing nothing is obviously guaranteed to fail.
Note, at the time of the change, KVM didn't enforce hardware support, i.e.
didn't prevent userspace from enumerating support in guest CPUID.0xA.EBX
for architectural events that aren't supported in hardware. I.e. silently
dropping the fixed counter didn't somehow protection against counting the
wrong event, it just enforced guest CPUID. And practically speaking, this
issue is almost certainly limited to running KVM on a funky virtual CPU
model. No known real hardware has an asymmetric PMU where a fixed counter
is supported but the associated architectural event is not.
Fixes: a21864486f ("KVM: x86/pmu: Fix available_event_types check for REF_CPU_CYCLES event")
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
switch a memory area between guest_memfd and regular anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees
confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new guest_memfd
and page attributes infrastructure. This is mostly useful for testing,
since there is no pKVM-like infrastructure to provide a meaningfully
reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages during
CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf
TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually care
about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a stable TSC",
because some of them don't expect the "TSC stable" bit (added to the pvclock
ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
flushes on nested transitions, i.e. always satisfies flush requests. This
allows running bleeding edge versions of VMware Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
- On AMD machines with vNMI, always rely on hardware instead of intercepting
IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB
base granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with
a prefix branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV
support to that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing flag
in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix the
various bugs that were lurking due to lack of said annotation.
There are two non-KVM patches buried in the middle of guest_memfd support:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmWcMWkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO15gf/WLmmg3SET6Uzw9iEq2xo28831ZA+
6kpILfIDGKozV5safDmMvcInlc/PTnqOFrsKyyN4kDZ+rIJiafJdg/loE0kPXBML
wdR+2ix5kYI1FucCDaGTahskBDz8Lb/xTpwGg9BFLYFNmuUeHc74o6GoNvr1uliE
4kLZL2K6w0cSMPybUD+HqGaET80ZqPwecv+s1JL+Ia0kYZJONJifoHnvOUJ7DpEi
rgudVdgzt3EPjG0y1z6MjvDBXTCOLDjXajErlYuZD3Ej8N8s59Dh2TxOiDNTLdP4
a4zjRvDmgyr6H6sz+upvwc7f4M4p+DBvf+TkWF54mbeObHUYliStqURIoA==
=66Ws
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Generic:
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all
architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be
resized. guest_memfd files do however support PUNCH_HOLE, which can
be used to switch a memory area between guest_memfd and regular
anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that
guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in
the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new
guest_memfd and page attributes infrastructure. This is mostly
useful for testing, since there is no pKVM-like infrastructure to
provide a meaningfully reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages
during CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in
non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with
a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually
care about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a
stable TSC", because some of them don't expect the "TSC stable" bit
(added to the pvclock ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for
TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM
always flushes on nested transitions, i.e. always satisfies flush
requests. This allows running bleeding edge versions of VMware
Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV
support.
- On AMD machines with vNMI, always rely on hardware instead of
intercepting IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters
and other state prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events
using a dedicated field instead of snapshotting the "previous"
counter. If the hardware PMC count triggers overflow that is
recognized in the same VM-Exit that KVM manually bumps an event
count, KVM would pend PMIs for both the hardware-triggered overflow
and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be
problematic for subsystems that require no regressions for W=1
builds.
- Advertise all of the host-supported CPUID bits that enumerate
IA32_SPEC_CTRL "features".
- Don't force a masterclock update when a vCPU synchronizes to the
current TSC generation, as updating the masterclock can cause
kvmclock's time to "jump" unexpectedly, e.g. when userspace
hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter
fault paths, partly as a super minor optimization, but mostly to
make KVM play nice with position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the
code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV
"emulation" at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base
granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with a prefix
branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV support to
that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list
selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing
flag in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix
the various bugs that were lurking due to lack of said annotation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits)
x86/kvm: Do not try to disable kvmclock if it was not enabled
KVM: x86: add missing "depends on KVM"
KVM: fix direction of dependency on MMU notifiers
KVM: introduce CONFIG_KVM_COMMON
KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
RISC-V: KVM: selftests: Add get-reg-list test for STA registers
RISC-V: KVM: selftests: Add steal_time test support
RISC-V: KVM: selftests: Add guest_sbi_probe_extension
RISC-V: KVM: selftests: Move sbi_ecall to processor.c
RISC-V: KVM: Implement SBI STA extension
RISC-V: KVM: Add support for SBI STA registers
RISC-V: KVM: Add support for SBI extension registers
RISC-V: KVM: Add SBI STA info to vcpu_arch
RISC-V: KVM: Add steal-update vcpu request
RISC-V: KVM: Add SBI STA extension skeleton
RISC-V: paravirt: Implement steal-time support
RISC-V: Add SBI STA extension definitions
RISC-V: paravirt: Add skeleton for pv-time support
RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr()
...
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options.
[ mingo: Converted a few more uses in comments/messages as well. ]
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ariel Miculas <amiculas@cisco.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality
checks for most virtual address usage in 64-bit mode, such that only the most
significant bit of the untranslated address bits must match the polarity of the
last translated address bit. This allows software to use ignored, untranslated
address bits for metadata, e.g. to efficiently tag pointers for address
sanitization.
LAM can be enabled separately for user pointers and supervisor pointers, and
for userspace LAM can be select between 48-bit and 57-bit masking
- 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15.
- 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6.
For user pointers, LAM enabling utilizes two previously-reserved high bits from
CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and
61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.:
- CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers
- CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers
- CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers
For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with
the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.:
- CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers
The modified LAM canonicality checks:
- LAM_S48 : [ 1 ][ metadata ][ 1 ]
63 47
- LAM_U48 : [ 0 ][ metadata ][ 0 ]
63 47
- LAM_S57 : [ 1 ][ metadata ][ 1 ]
63 56
- LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ]
63 56
- LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ]
63 56..47
The bulk of KVM support for LAM is to emulate LAM's modified canonicality
checks. The approach taken by KVM is to "fill" the metadata bits using the
highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended
to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value
from the raw, untagged virtual address is kept for the canonicality check. This
untagging allows
Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM
touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26],
enabling via CR3 and CR4 bits, etc.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW+k4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5KygQAKTSEmfdox6MSYzGVzAVHBD/8oSTZAGf
4l96Np3sZiX0ujWP7aW1GaIdGL27Yf1bQrKIrODR4xepaosVPpoZZbnLFQ4Jm16D
OuwEQL06LV91Lv5XuPkNdq3nMVi1X3wjiKLvP451oCGv8JdxsjXSlFr8ZmDoCfmS
NCjkPyitdK+/xOMY5WcrkHD/6VMMiM+5A+CrG7DkaTaqBJQSUXG1NvTKhhxey6Rq
OZv0GPv7QVMhHv1NX0Y3LyoiGyWXAoFRnbk/N3yVBOnXcpJ+HBwWiNLRpxmZOQj/
CTo0VvUH/ZkN6zGvAb75/9puFHNliA/QCW1hp+ShXnNdn1eNdS7nhhPrzVqtCTy2
QeNWM/z5v9Wa1norPqDxzqWlh2bWW8JU0soX7Q+quN0d7YjVvmmUluL3Lw/V2zmb
gFM2ZY43QHlmLVic4sSraK1LEcYFzjexzpTLhee2gNp+l2y0D0c1/hXukCk6YNUM
gad9DH8P9d7By7Eyr0ZaPHSJbuBW1PqZhot5gCg9nCn4pnT2/y7wXsLj6VAw8gdr
dWNu2MZWDuH0/d4aKfw2veAECbHUK2daok4ufPDj5nYLVVWCs4HU0U7HlYL2CX7/
TdWOCwtpFtKoN1NHz8mpET7xldxLPnFkByL+SxypTZurAZXoSnEG71IbO5pJ2iIf
wHQkXgM+XimA
=qUZ2
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-lam-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 support for virtualizing Linear Address Masking (LAM)
Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality
checks for most virtual address usage in 64-bit mode, such that only the most
significant bit of the untranslated address bits must match the polarity of the
last translated address bit. This allows software to use ignored, untranslated
address bits for metadata, e.g. to efficiently tag pointers for address
sanitization.
LAM can be enabled separately for user pointers and supervisor pointers, and
for userspace LAM can be select between 48-bit and 57-bit masking
- 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15.
- 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6.
For user pointers, LAM enabling utilizes two previously-reserved high bits from
CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and
61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.:
- CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers
- CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers
- CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers
For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with
the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.:
- CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers
The modified LAM canonicality checks:
- LAM_S48 : [ 1 ][ metadata ][ 1 ]
63 47
- LAM_U48 : [ 0 ][ metadata ][ 0 ]
63 47
- LAM_S57 : [ 1 ][ metadata ][ 1 ]
63 56
- LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ]
63 56
- LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ]
63 56..47
The bulk of KVM support for LAM is to emulate LAM's modified canonicality
checks. The approach taken by KVM is to "fill" the metadata bits using the
highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended
to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value
from the raw, untagged virtual address is kept for the canonicality check. This
untagging allows
Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM
touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26],
enabling via CR3 and CR4 bits, etc.
- Fix a variety of bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW/rsSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Q8gQAJc4y9NOd09kYXpI+DhkTVe6v07dmYds
NzBI2uViqxXFwA5pTs5VTVVYAl1FEmK6NvIVnJdc3epSYRSqyaeN/Z2NoulNxekj
/jLA/aA4+dTeJf2lfMFeH65IIuSJhuhyGeZV31RfW3NzEmlglcsb74QkHnJB8rLQ
RFJXZcOxSSap72AWxKmxk0alRaI6ONZ9NyqOWFWjZdQuAE7id9Ae5OixKUrlJkmR
6CbY8ra51MFIXQEsomVlcl5b1DNiv0drPPf5YaC9T4CERtt5yZxpvZeTPhq70evm
OutoZpzfi69cF1fFCxqN5cWZSt1C/Bu3xp8+ILI1+bZkMCV/ty85DU6hfMZQZzcV
JeJkRg/AAgOrG4dtHskwg9LDMs867kgbaqZ8l8K7Dt8rGmcLc5/rZ1ZdjTStFj6V
ukmVKMAVgkmh88u62wQ5HjrN1IE1oE6nmDp3zivfPuohEr49A8mAT02A2x9AVxAr
HvmwfDMA92xOGSRAN9Gt0mbOA+G0WZe4A36XgPEXloYeskYZgHzgW2hT6VWTd86O
ydU9s4L8g+Fy4jcObAiKsT8YwFgAMfVXZKTXvuTME4m/WUNBCrYCwqEOp/NM5qrk
qYWVXxOMMjZo71tQfvSPu1TWCtW/4ckvmqMrdQosgwLFy5pSqgXEwTruDvbJ1KWU
KhIWVbUfmgFA
=+Emh
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.8:
- Fix a variety of bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW+7sSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5/pwQAL8jIapIWP54VWxWlcTZFtCptGSobGlv
cBS4L091/bYuMB/jO0pPtD+apzsYt3WmJ+tRsNA7Yctzh9BDE3XxbV7pKVIUpz9P
TLCtYU2hPzp3vC6WCryjtU0OHxEnYMGHE1RCB7/bRblz+q6td7+MLZHcEUdwv83l
3pVM5+tNyQBog40frEVf+z7wrXzz2FgnauJn70X1UUs40VuiTzi6FqfLn6QK95xQ
8QPpjGFep7wQ6RgC4cPKiWSaP5PypCCpr4lMSKrKAf4iaKJdO1CYxEPeu0LcyFhR
DUM3zb+AZ/FVrisRWUnjke4Epb87ikoMQBlflrI9+o4cNJQaxEHAzTMGO+u4oucy
KwnXtNYM3lKGvDEvoUSBDphNayzcchn+0qk8YKB+XvClYSOtGi+NsWUB4x+M6crM
960cidF/CzYZL/IDj9GW2Tb+IiPJarmazdbqDmMpQiAKz0KE3tezGiysB6d6VJs1
V+KWOaSzAT9GsBKvGnPDHQaZ20vK+YsGB/TMWvpg3rFLTyV5QFM17UNdXyJlX0g8
G0v+gf7j3MKm156H2yYW0XhIAfhstc1Xb8fTDQjJ3pZn6us2NAtFgnrIpbL31Z7E
yaSgZuxetswbNwVSECUGlH4/zAtQudBfAt837Nu4eSCjMrJE4SPrrwpbTqp0SPXd
1VZbGc70QFf7
=O4hV
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.8:
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
'hv_evmcs_vmptr'/'hv_evmcs_map'/'hv_evmcs' fields in 'struct nested_vmx'
should not be used when !CONFIG_KVM_HYPERV, hide them when
!CONFIG_KVM_HYPERV.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-16-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
There's a number of 'vmx->nested.hv_evmcs' accesses in nested.c, introduce
'nested_vmx_evmcs()' accessor to hide them all in !CONFIG_KVM_HYPERV case.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-15-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
In order to get rid of raw 'vmx->nested.hv_evmcs_vmptr' accesses when
!CONFIG_KVM_HYPERV, introduce a pair of helpers:
nested_vmx_is_evmptr12_valid() to check that eVMPTR points to a valid
address.
nested_vmx_is_evmptr12_valid() to check that eVMPTR either points to a
valid address or is in 'pending' port-migration state (meaning it is
supposed to be valid but the exact address wasn't acquired from guest's
memory yet).
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-14-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Hyper-V emulation in KVM is a fairly big chunk and in some cases it may be
desirable to not compile it in to reduce module sizes as well as the attack
surface. Introduce CONFIG_KVM_HYPERV option to make it possible.
Note, there's room for further nVMX/nSVM code optimizations when
!CONFIG_KVM_HYPERV, this will be done in follow-up patches.
Reorganize Makefile a bit so all CONFIG_HYPERV and CONFIG_KVM_HYPERV files
are grouped together.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-13-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
In preparation for making Hyper-V emulation optional, move Hyper-V specific
guest_cpuid_has_evmcs() to hyperv.h.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-12-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
To avoid overloading handle_vmclear() with Hyper-V specific details and to
prepare the code to making Hyper-V emulation optional, create a dedicated
nested_evmcs_handle_vmclear() helper.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-9-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
As a preparation to making Hyper-V emulation optional, introduce a helper
to handle pending KVM_REQ_HV_TLB_FLUSH requests.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-8-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Some Enlightened VMCS related code is needed both by Hyper-V on KVM and
KVM on Hyper-V. As a preparation to making Hyper-V emulation optional,
create dedicated 'hyperv_evmcs.{ch}' files which are used by both.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-7-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
hyperv.{ch} is currently a mix of stuff which is needed by both Hyper-V on
KVM and KVM on Hyper-V. As a preparation to making Hyper-V emulation
optional, put KVM-on-Hyper-V specific code into dedicated files.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-4-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Hyper-V partition assist page is used when KVM runs on top of Hyper-V and
is not used for Windows/Hyper-V guests on KVM, this means that 'hv_pa_pg'
placement in 'struct kvm_hv' is unfortunate. As a preparation to making
Hyper-V emulation optional, move 'hv_pa_pg' to 'struct kvm_arch' and put it
under CONFIG_HYPERV.
While on it, introduce hv_get_partition_assist_page() helper to allocate
partition assist page. Move the comment explaining why we use a single page
for all vCPUs from VMX and expand it a bit.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-3-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Update a PMC's sample period in pmc_write_counter() to deduplicate code
across all callers of pmc_write_counter(). Opportunistically move
pmc_write_counter() into pmc.c now that it's doing more work. WRMSR isn't
such a hot path that an extra CALL+RET pair will be problematic, and the
order of function definitions needs to be changed anyways, i.e. now is a
convenient time to eat the churn.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the common (or at least "ignored") aspects of resetting the vPMU to
common x86 code, along with the stop/release helpers that are no used only
by the common pmu.c.
There is no need to manually handle fixed counters as all_valid_pmc_idx
tracks both fixed and general purpose counters, and resetting the vPMU is
far from a hot path, i.e. the extra bit of overhead to the PMC from the
index is a non-issue.
Zero fixed_ctr_ctrl in common code even though it's Intel specific.
Ensuring it's zero doesn't harm AMD/SVM in any way, and stopping the fixed
counters via all_valid_pmc_idx, but not clearing the associated control
bits, would be odd/confusing.
Make the .reset() hook optional as SVM no longer needs vendor specific
handling.
Cc: stable@vger.kernel.org
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Instruction with %rip-relative address operand is one byte shorter than
its absolute address counterpart and is also compatible with position
independent executable (-fpie) build.
No functional changes intended.
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Link: https://lore.kernel.org/r/20231031075312.47525-1-ubizjak@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the governed feature framework to track if Linear Address Masking (LAM)
is "enabled", i.e. if LAM can be used by the guest.
Using the framework to avoid the relative expensive call guest_cpuid_has()
during cr3 and vmexit handling paths for LAM.
No functional change intended.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-14-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add support to allow guests to set the new CR3 control bits for Linear
Address Masking (LAM) and add implementation to get untagged address for
user pointers.
LAM modifies the canonical check for 64-bit linear addresses, allowing
software to use the masked/ignored address bits for metadata. Hardware
masks off the metadata bits before using the linear addresses to access
memory. LAM uses two new CR3 non-address bits, LAM_U48 (bit 62) and
LAM_U57 (bit 61), to configure LAM for user pointers. LAM also changes
VMENTER to allow both bits to be set in VMCS's HOST_CR3 and GUEST_CR3 for
virtualization.
When EPT is on, CR3 is not trapped by KVM and it's up to the guest to set
any of the two LAM control bits. However, when EPT is off, the actual CR3
used by the guest is generated from the shadow MMU root which is different
from the CR3 that is *set* by the guest, and KVM needs to manually apply
any active control bits to VMCS's GUEST_CR3 based on the cached CR3 *seen*
by the guest.
KVM manually checks guest's CR3 to make sure it points to a valid guest
physical address (i.e. to support smaller MAXPHYSADDR in the guest). Extend
this check to allow the two LAM control bits to be set. After check, LAM
bits of guest CR3 will be stripped off to extract guest physical address.
In case of nested, for a guest which supports LAM, both VMCS12's HOST_CR3
and GUEST_CR3 are allowed to have the new LAM control bits set, i.e. when
L0 enters L1 to emulate a VMEXIT from L2 to L1 or when L0 enters L2
directly. KVM also manually checks VMCS12's HOST_CR3 and GUEST_CR3 being
valid physical address. Extend such check to allow the new LAM control bits
too.
Note, LAM doesn't have a global control bit to turn on/off LAM completely,
but purely depends on hardware's CPUID to determine it can be enabled or
not. That means, when EPT is on, even when KVM doesn't expose LAM to guest,
the guest can still set LAM control bits in CR3 w/o causing problem. This
is an unfortunate virtualization hole. KVM could choose to intercept CR3 in
this case and inject fault but this would hurt performance when running a
normal VM w/o LAM support. This is undesirable. Just choose to let the
guest do such illegal thing as the worst case is guest being killed when
KVM eventually find out such illegal behaviour and that the guest is
misbehaving.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-12-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add support to allow guests to set the new CR4 control bit for LAM and add
implementation to get untagged address for supervisor pointers.
LAM modifies the canonicality check applied to 64-bit linear addresses for
data accesses, allowing software to use of the untranslated address bits for
metadata and masks the metadata bits before using them as linear addresses
to access memory. LAM uses CR4.LAM_SUP (bit 28) to configure and enable LAM
for supervisor pointers. It also changes VMENTER to allow the bit to be set
in VMCS's HOST_CR4 and GUEST_CR4 to support virtualization. Note CR4.LAM_SUP
is allowed to be set even not in 64-bit mode, but it will not take effect
since LAM only applies to 64-bit linear addresses.
Move CR4.LAM_SUP out of CR4_RESERVED_BITS, its reservation depends on vcpu
supporting LAM or not. Leave it intercepted to prevent guest from setting
the bit if LAM is not exposed to guest as well as to avoid vmread every time
when KVM fetches its value, with the expectation that guest won't toggle the
bit frequently.
Set CR4.LAM_SUP bit in the emulated IA32_VMX_CR4_FIXED1 MSR for guests to
allow guests to enable LAM for supervisor pointers in nested VMX operation.
Hardware is not required to do TLB flush when CR4.LAM_SUP toggled, KVM
doesn't need to emulate TLB flush based on it. There's no other features
or vmx_exec_controls connection, and no other code needed in
{kvm,vmx}_set_cr4().
Skip address untag for instruction fetches (which includes branch targets),
operand of INVLPG instructions, and implicit system accesses, all of which
are not subject to untagging. Note, get_untagged_addr() isn't invoked for
implicit system accesses as there is no reason to do so, but check the
flag anyways for documentation purposes.
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-11-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stub in vmx_get_untagged_addr() and wire up calls from the emulator (via
get_untagged_addr()) and "direct" calls from various VM-Exit handlers in
VMX where LAM untagging is supposed to be applied. Defer implementing
the guts of vmx_get_untagged_addr() to future patches purely to make the
changes easier to consume.
LAM is active only for 64-bit linear addresses and several types of
accesses are exempted.
- Cases need to untag address (handled in get_vmx_mem_address())
Operand(s) of VMX instructions and INVPCID.
Operand(s) of SGX ENCLS.
- Cases LAM doesn't apply to (no change needed)
Operand of INVLPG.
Linear address in INVPCID descriptor.
Linear address in INVVPID descriptor.
BASEADDR specified in SECS of ECREATE.
Note:
- LAM doesn't apply to write to control registers or MSRs
- LAM masking is applied before walking page tables, i.e. the faulting
linear address in CR2 doesn't contain the metadata.
- The guest linear address saved in VMCS doesn't contain metadata.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-10-binbin.wu@linux.intel.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove kvm_vcpu_is_illegal_gpa() and use !kvm_vcpu_is_legal_gpa() instead.
The "illegal" helper actually predates the "legal" helper, the only reason
the "illegal" variant wasn't removed by commit 4bda0e9786 ("KVM: x86:
Add a helper to check for a legal GPA") was to avoid code churn. Now that
CR3 has a dedicated helper, there are fewer callers, and so the code churn
isn't that much of a deterrent.
No functional change intended.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-8-binbin.wu@linux.intel.com
[sean: provide a bit of history in the changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add and use kvm_vcpu_is_legal_cr3() to check CR3's legality to provide
a clear distinction between CR3 and GPA checks. This will allow exempting
bits from kvm_vcpu_is_legal_cr3() without affecting general GPA checks,
e.g. for upcoming features that will use high bits in CR3 for feature
enabling.
No functional change intended.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-7-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently in mmu_notifier invalidate path, hva range is recorded and then
checked against by mmu_invalidate_retry_hva() in the page fault handling
path. However, for the soon-to-be-introduced private memory, a page fault
may not have a hva associated, checking gfn(gpa) makes more sense.
For existing hva based shared memory, gfn is expected to also work. The
only downside is when aliasing multiple gfns to a single hva, the
current algorithm of checking multiple ranges could result in a much
larger range being rejected. Such aliasing should be uncommon, so the
impact is expected small.
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Xu Yilun <yilun.xu@intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
[sean: convert vmx_set_apic_access_page_addr() to gfn-based API]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Xu Yilun <yilun.xu@linux.intel.com>
Message-Id: <20231027182217.3615211-4-seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
- Clean up handling "failures" when KVM detects it can't emulate the "skip"
action for an instruction that has already been partially emulated. Drop a
hack in the SVM code that was fudging around the emulator code not giving
SVM enough information to do the right thing.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8GHYSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hwkQAIR8l1gWz/caz29biBzmRnDS+aZOXcYM
8V8WBJqJgMKE9egibF4sADAlhInXzg19Xr7bQs6VfuvmdXrCn0UJ/nLorX+H85A2
pph6iNlWO6tyQAjvk/AieaeUyZOqpCFmKOgxfN2Fr/Lrn7u3AdjXC20qPeFJSLXr
YOTCQ704yvjjJp4yVA8JlclAQu38hanKiO5SZdlLzbuhUgWwQk4DVP2ZsYnhX+RO
F6exxORvMnYF/LJe/kR2/DMLf2JWvyUmjRrGWoeRoksOw5BlXMc5HyTPHSJ2jDac
lJaNtmZkTY1bDVWZk7N03ze5aFJa4DaqJdIFLtgujrFW8thog0P48aH6vmKi4UAA
bXme9GFYbmJTkemaGRnrzidFV12uPNvvanS+1PDOw4sn4HpscoMSpZw5PeH2kBwV
6uKNCJCwLtk8oe50yroKD7rJ/ASB7CeoqzbIL9s2TA0HSAskIf65T4eZp01uniyd
Q98yCdrG2mudsg5aU5yMfe0LwZby5BB5kUCqIe4hyRC68GJR8wkAzhaFRgCn4aJE
yaTyjnT2V3PGMEEJOPFdSF3VQGztljzQiXlEvBVj3zvMGQNTo2NhmS3ka4W+wW5G
avRYv8dITlGRs6J2gV1vp8Eb5LzDrwRpRURSmzeP5rR58saKdljTZgNfOzfLeFr1
WhLzonLz52IS
=U0fq
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.7:
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
- Clean up handling "failures" when KVM detects it can't emulate the "skip"
action for an instruction that has already been partially emulated. Drop a
hack in the SVM code that was fudging around the emulator code not giving
SVM enough information to do the right thing.
- Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
- Zap EPT entries when non-coherent DMA assignment stops/start to prevent
using stale entries with the wrong memtype.
- Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y, as
there's zero reason to ignore guest PAT if the effective MTRR memtype is WB.
This will also allow for future optimizations of handling guest MTRR updates
for VMs with non-coherent DMA and the quirk enabled.
- Harden the fast page fault path to guard against encountering an invalid
root when walking SPTEs.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8FG8SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5tYMP+gJd3raPnpmai4NyaFaZNP6/5YsXuUMj
XBvHH7hBGHmjd1sV+O62fhUvNk4+M/1f1rERutP4s7yXEXxQfC9G/MQFgLBfyiW8
xR+RQkNrz8HsG8mHFBZ0Ei6OofhP+BRTYDRU7kbctKDh/4Hp5AOZAxYHs/ZhOho1
Lw6upZbQLCkdt72eEKbfocg6Tf400hWEyarBRXFe4KJzWq7KMjAPgqA/3Vx0lF6u
zX73Zr6tV0mcf3QXd58Q4CUwOuwMo1aTangmOhEeC09JplF2okLV36h6WrCF8qqO
gvmDrMA450Yc215peOJGBJzoZJrNjMIHZ2m+4Ifag6Z/jJoam4vjzUZmmrzx+Gbj
Ot5lmXCVRXCdHmUNdYQ6yR27WaVP3C3ItkxwNZGMPoh2G08NGyLLY1kwzRyITEH4
M9jYTRBZaeue57ad5Ms9FaneBLWwPxajTX90rWZbl2kzfd8PG5cF1VroESBLoa0f
I2kDcd7988xLTOMl1sfO8ci21Ve7rQc0hA6WlOXrDxb26OvYrftYXeXOCowN6kqP
czXIu5ZPmLI1btimZQXGMdxKkw5wwe3wDC3y5gKrm+rTfORUXoOUDoITIpmPCnAp
Dzfr5la3RI1GjHhzR80x4vXQC9BgJ9WrEwJub/RqVfE3T3ohw+NZl+AeM1xB9eT1
2mJWm6GFEm9Y
=Zfbr
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mmu-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 MMU changes for 6.7:
- Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
- Zap EPT entries when non-coherent DMA assignment stops/start to prevent
using stale entries with the wrong memtype.
- Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y, as
there's zero reason to ignore guest PAT if the effective MTRR memtype is WB.
This will also allow for future optimizations of handling guest MTRR updates
for VMs with non-coherent DMA and the quirk enabled.
- Harden the fast page fault path to guard against encountering an invalid
root when walking SPTEs.
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8EugSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5xS0P+gPTDO81CUZO70LrO2W4E7toRBf/F9x1
/v5D/76p9hG32Z6+BJs/xxDxJFagw75MtoR5oKivtXiip3TxbfOyDOlaQkIRo85E
/d95il/LRidL3Mv3TXRj1lykXnxSSz9tigAGEZti1Y9Fn9fXEIwurJH7dU5cBI1E
fin5bsDaTNRjG4jjTiEUbnKPRTlD/S7CQJn4CaYvZhMv/eJkYDLyBBVy4VLoLzvD
ctL6VJQLGPVxbxr9mEmulaqMrSuDIQQLkRVQJAViKyerBInTEc5d/GPCHuE8O3zi
0r/QSJbMS9titWLz07NhJ1UH4VJNyaEhRlyJPSFhBW4h6dzUb3EXdUe0Hwa+JH/S
H2cVqsANItTCIhvDtuEGIRDahu0eD+63h90InJ0gEVL1kSJS+UWZHB71PkUEQgAV
2OsuT1D26fuxrv+0b9ioBZURycqKw++zGsrwyVhe77eBgqBJ12tbL4TAD+QNjaQ5
HZTCe6YV83gZoOMeVkoTGSf96s9lGORgxsaAIXmFuLB9RVCVXhVh0ph2HZsnV8Hw
ZXEXpBEFo7GUhb0NIvsk2W73QL87A3fLv15yITWc8KuC7/dXP9z6KpSKjFySS69X
uWD1MVx6shhvbg97UzoJlXc3/z0aVzmdZJudE5d0gcFvAjIItqp6ICPOoKxfj8pT
tqRZu3kVHd61
=sfp8
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.7:
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
- Purge VMX's posted interrupt descriptor *before* loading APIC state when
handling KVM_SET_LAPIC. Purging the PID after loading APIC state results in
lost APIC timer IRQs as the APIC timer can be armed as part of loading APIC
state, i.e. can immediately pend an IRQ if the expiry is in the past.
- Clear the ICR.BUSY bit when handling trap-like x2APIC writes to suppress a
WARN due to KVM expecting the BUSY bit to be cleared when sending IPIs.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8DrkSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Z54P/jQbjmwbvAVDa1g2HGr16ouFb3v+rCgV
eXiN2/8tDlQl9JkvZsjOY1AtJauS3RZu/SncT3IxCCvHVrKKt0xgnhWT//rAMX3N
zrrFxXJmilFdd2ijsuK8flHVFO5i06Kx1NRjSmAMb76et1et1EI0I62F1rom8ocn
l0tryTkV0qhWKlgxzLBNzzhzxxA2Mvb6vFhut+nfa0IisnQ+roh5dV4JS7Cdhy+5
qIQ4J86JdDR6kmraZLCv8r7vIQn5EQPVCAC2WWalds7iWUW3ixy01NLweVLaVtA3
xWRHYK7azvu3SJ9HvmSMRZzzTElQBYnE2d37ycyYewHbDUJ6FCXxh7H+BehYaVBW
CK6GLaMHY8vyXLcB2cRAzZ7GgBSSDevL11/CMc2ueGc51AOsDCxFh6v69TU+/PiQ
dMOYiNTuwV9QC3raIXPCc2Q9rqGp20xBqXIv5XLEyIxqcFQESvtRggg6zJdBZ3zB
T5/xAXDf++rKFiu1wskFAbwsk3M4T36u1WlK9iayC9dPvCDGRzsle3tt9npmoj2X
3e0Uz7fkRLki1YZW1qLmvqoYJ9bX9B9BjuKkORIqSqXuwcgPYEzHt1GcRByI2FSk
KSTnNwgs/Bs498LsDdU1Z740ZkYFGmu2nK+CUvwxP+uejPsnlhik5kGqLSIeA7zA
9kDpcdV+tZKJ
=atZ2
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-apic-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 APIC changes for 6.7:
- Purge VMX's posted interrupt descriptor *before* loading APIC state when
handling KVM_SET_LAPIC. Purging the PID after loading APIC state results in
lost APIC timer IRQs as the APIC timer can be armed as part of loading APIC
state, i.e. can immediately pend an IRQ if the expiry is in the past.
- Clear the ICR.BUSY bit when handling trap-like x2APIC writes. This avoids a
WARN, due to KVM expecting the BUSY bit to be cleared when sending IPIs.
Convert all module params to octal permissions to improve code readability
and to make checkpatch happy:
WARNING: Symbolic permissions 'S_IRUGO' are not preferred. Consider using
octal permissions '0444'.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Link: https://lore.kernel.org/r/20231013113020.77523-1-flyingpeng@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
For KVM_X86_QUIRK_CD_NW_CLEARED is on, remove the IPAT (ignore PAT) bit in
EPT memory types when cache is disabled and non-coherent DMA are present.
To correctly emulate CR0.CD=1, UC + IPAT are required as memtype in EPT.
However, as with commit fb279950ba ("KVM: vmx: obey
KVM_QUIRK_CD_NW_CLEARED"), WB + IPAT are now returned to workaround a BIOS
issue that guest MTRRs are enabled too late. Without this workaround, a
super slow guest boot-up is expected during the pre-guest-MTRR-enabled
period due to UC as the effective memory type for all guest memory.
Absent emulating CR0.CD=1 with UC, it makes no sense to set IPAT when KVM
is honoring the guest memtype.
Removing the IPAT bit in this patch allows effective memory type to honor
PAT values as well, as WB is the weakest memtype. It means if a guest
explicitly claims UC as the memtype in PAT, the effective memory is UC
instead of previous WB. If, for some unknown reason, a guest meets a slow
boot-up issue with the removal of IPAT, it's desired to fix the blamed PAT
in the guest.
Returning guest MTRR type as if CR0.CD=0 is also not preferred because
KVMs ABI for the quirk also requires KVM to force WB memtype regardless of
guest MTRRs to workaround the slow guest boot-up issue.
In the future, honoring guest PAT will also allow KVM to more precisely
zap SPTEs when the effective memtype changes. E.g. by not forcing WB when
CR0.CD=1, instead of zapping SPTEs when guest MTRRs change, KVM can skip
MTRR-induced zaps if CR0.CD=1 and zap SPTEs for non-WB MTRR ranges when
CR0.CD is toggled (WB MTRR SPTEs can be kept because they're WB regardless
of CR0.CD).
The change of removing IPAT has been verified with normal boot-up time
on old OVMF of commit c9e5618f84b0cb54a9ac2d7604f7b7e7859b45a7 as well,
dated back to Apr 14 2015.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/r/20230714065326.20557-1-yan.y.zhao@intel.com
[sean: massage changelog to apply patch without full series]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor and rename can_emulate_instruction() to allow vendor code to
return more than true/false, e.g. to explicitly differentiate between
"retry", "fault", and "unhandleable". For now, just do the plumbing, a
future patch will expand SVM's implementation to signal outright failure
if KVM attempts EMULTYPE_SKIP on an SEV guest.
No functional change intended (or rather, none that are visible to the
guest or userspace).
Link: https://lore.kernel.org/r/20230825013621.2845700-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When running android emulator (which is based on QEMU 2.12) on
certain Intel hosts with kernel version 6.3-rc1 or above, guest
will freeze after loading a snapshot. This is almost 100%
reproducible. By default, the android emulator will use snapshot
to speed up the next launching of the same android guest. So
this breaks the android emulator badly.
I tested QEMU 8.0.4 from Debian 12 with an Ubuntu 22.04 guest by
running command "loadvm" after "savevm". The same issue is
observed. At the same time, none of our AMD platforms is impacted.
More experiments show that loading the KVM module with
"enable_apicv=false" can workaround it.
The issue started to show up after commit 8e6ed96cdd ("KVM: x86:
fire timer when it is migrated and expired, and in oneshot mode").
However, as is pointed out by Sean Christopherson, it is introduced
by commit 967235d320 ("KVM: vmx: clear pending interrupts on
KVM_SET_LAPIC"). commit 8e6ed96cdd ("KVM: x86: fire timer when
it is migrated and expired, and in oneshot mode") just makes it
easier to hit the issue.
Having both commits, the oneshot lapic timer gets fired immediately
inside the KVM_SET_LAPIC call when loading the snapshot. On Intel
platforms with APIC virtualization and posted interrupt processing,
this eventually leads to setting the corresponding PIR bit. However,
the whole PIR bits get cleared later in the same KVM_SET_LAPIC call
by apicv_post_state_restore. This leads to timer interrupt lost.
The fix is to move vmx_apicv_post_state_restore to the beginning of
the KVM_SET_LAPIC call and rename to vmx_apicv_pre_state_restore.
What vmx_apicv_post_state_restore does is actually clearing any
former apicv state and this behavior is more suitable to carry out
in the beginning.
Fixes: 967235d320 ("KVM: vmx: clear pending interrupts on KVM_SET_LAPIC")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Haitao Shan <hshan@google.com>
Link: https://lore.kernel.org/r/20230913000215.478387-1-hshan@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Performance counters are defined to have width less than 64 bits. The
vPMU code maintains the counters in u64 variables but assumes the value
to fit within the defined width. However, for Intel non-full-width
counters (MSR_IA32_PERFCTRx) the value receieved from the guest is
truncated to 32 bits and then sign-extended to full 64 bits. If a
negative value is set, it's sign-extended to 64 bits, but then in
kvm_pmu_incr_counter() it's incremented, truncated, and compared to the
previous value for overflow detection.
That previous value is not truncated, so it always evaluates bigger than
the truncated new one, and a PMI is injected. If the PMI handler writes
a negative counter value itself, the vCPU never quits the PMI loop.
Turns out that Linux PMI handler actually does write the counter with
the value just read with RDPMC, so when no full-width support is exposed
via MSR_IA32_PERF_CAPABILITIES, and the guest initializes the counter to
a negative value, it locks up.
This has been observed in the field, for example, when the guest configures
atop to use perfevents and runs two instances of it simultaneously.
To address the problem, maintain the invariant that the counter value
always fits in the defined bit width, by truncating the received value
in the respective set_msr methods. For better readability, factor the
out into a helper function, pmc_write_counter(), shared by vmx and svm
parts.
Fixes: 9cd803d496 ("KVM: x86: Update vPMCs when retiring instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Roman Kagan <rkagan@amazon.de>
Link: https://lore.kernel.org/all/20230504120042.785651-1-rkagan@amazon.de
Tested-by: Like Xu <likexu@tencent.com>
[sean: tweak changelog, s/set/write in the helper]
Signed-off-by: Sean Christopherson <seanjc@google.com>
* Clean up vCPU targets, always returning generic v8 as the preferred target
* Trap forwarding infrastructure for nested virtualization (used for traps
that are taken from an L2 guest and are needed by the L1 hypervisor)
* FEAT_TLBIRANGE support to only invalidate specific ranges of addresses
when collapsing a table PTE to a block PTE. This avoids that the guest
refills the TLBs again for addresses that aren't covered by the table PTE.
* Fix vPMU issues related to handling of PMUver.
* Don't unnecessary align non-stack allocations in the EL2 VA space
* Drop HCR_VIRT_EXCP_MASK, which was never used...
* Don't use smp_processor_id() in kvm_arch_vcpu_load(),
but the cpu parameter instead
* Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
* Remove prototypes without implementations
RISC-V:
* Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
* Added ONE_REG interface for SATP mode
* Added ONE_REG interface to enable/disable multiple ISA extensions
* Improved error codes returned by ONE_REG interfaces
* Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
* Added get-reg-list selftest for KVM RISC-V
s390:
* PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
* Guest debug fixes (Ilya)
x86:
* Clean up KVM's handling of Intel architectural events
* Intel bugfixes
* Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug
registers and generate/handle #DBs
* Clean up LBR virtualization code
* Fix a bug where KVM fails to set the target pCPU during an IRTE update
* Fix fatal bugs in SEV-ES intrahost migration
* Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)
* Retry APIC map recalculation if a vCPU is added/enabled
* Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
* Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR cannot diverge from the default when TSC scaling is disabled
up related code
* Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
* Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
* Fix KVM's handling of !visible guest roots to avoid premature triple fault
injection
* Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface
that is needed by external users (currently only KVMGT), and fix a variety
of issues in the process
This last item had a silly one-character bug in the topic branch that
was sent to me. Because it caused pretty bad selftest failures in
some configurations, I decided to squash in the fix. So, while the
exact commit ids haven't been in linux-next, the code has (from the
kvm-x86 tree).
Generic:
* Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass
action specific data without needing to constantly update the main handlers.
* Drop unused function declarations
Selftests:
* Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
* Add support for printf() in guest code and covert all guest asserts to use
printf-based reporting
* Clean up the PMU event filter test and add new testcases
* Include x86 selftests in the KVM x86 MAINTAINERS entry
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT1m0kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMNgggAiN7nz6UC423FznuI+yO3TLm8tkx1
CpKh5onqQogVtchH+vrngi97cfOzZb1/AtifY90OWQi31KEWhehkeofcx7G6ERhj
5a9NFADY1xGBsX4exca/VHDxhnzsbDWaWYPXw5vWFWI6erft9Mvy3tp1LwTvOzqM
v8X4aWz+g5bmo/DWJf4Wu32tEU6mnxzkrjKU14JmyqQTBawVmJ3RYvHVJ/Agpw+n
hRtPAy7FU6XTdkmq/uCT+KUHuJEIK0E/l1js47HFAqSzwdW70UDg14GGo1o4ETxu
RjZQmVNvL57yVgi6QU38/A0FWIsWQm5IlaX1Ug6x8pjZPnUKNbo9BY4T1g==
=W+4p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Clean up vCPU targets, always returning generic v8 as the preferred
target
- Trap forwarding infrastructure for nested virtualization (used for
traps that are taken from an L2 guest and are needed by the L1
hypervisor)
- FEAT_TLBIRANGE support to only invalidate specific ranges of
addresses when collapsing a table PTE to a block PTE. This avoids
that the guest refills the TLBs again for addresses that aren't
covered by the table PTE.
- Fix vPMU issues related to handling of PMUver.
- Don't unnecessary align non-stack allocations in the EL2 VA space
- Drop HCR_VIRT_EXCP_MASK, which was never used...
- Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu
parameter instead
- Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
- Remove prototypes without implementations
RISC-V:
- Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
- Added ONE_REG interface for SATP mode
- Added ONE_REG interface to enable/disable multiple ISA extensions
- Improved error codes returned by ONE_REG interfaces
- Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
- Added get-reg-list selftest for KVM RISC-V
s390:
- PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
- Guest debug fixes (Ilya)
x86:
- Clean up KVM's handling of Intel architectural events
- Intel bugfixes
- Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use
debug registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE
update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to
reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to
skip it)
- Retry APIC map recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie
the "emergency disabling" behavior to KVM actually being loaded,
and move all of the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the
TSC ratio MSR cannot diverge from the default when TSC scaling is
disabled up related code
- Add a framework to allow "caching" feature flags so that KVM can
check if the guest can use a feature without needing to search
guest CPUID
- Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
- Fix KVM's handling of !visible guest roots to avoid premature
triple fault injection
- Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the
API surface that is needed by external users (currently only
KVMGT), and fix a variety of issues in the process
Generic:
- Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier
events to pass action specific data without needing to constantly
update the main handlers.
- Drop unused function declarations
Selftests:
- Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
- Add support for printf() in guest code and covert all guest asserts
to use printf-based reporting
- Clean up the PMU event filter test and add new testcases
- Include x86 selftests in the KVM x86 MAINTAINERS entry"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits)
KVM: x86/mmu: Include mmu.h in spte.h
KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots
KVM: x86/mmu: Disallow guest from using !visible slots for page tables
KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page
KVM: x86/mmu: Harden new PGD against roots without shadow pages
KVM: x86/mmu: Add helper to convert root hpa to shadow page
drm/i915/gvt: Drop final dependencies on KVM internal details
KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers
KVM: x86/mmu: Drop @slot param from exported/external page-track APIs
KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled
KVM: x86/mmu: Assert that correct locks are held for page write-tracking
KVM: x86/mmu: Rename page-track APIs to reflect the new reality
KVM: x86/mmu: Drop infrastructure for multiple page-track modes
KVM: x86/mmu: Use page-track notifiers iff there are external users
KVM: x86/mmu: Move KVM-only page-track declarations to internal header
KVM: x86: Remove the unused page-track hook track_flush_slot()
drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region()
KVM: x86: Add a new page-track hook to handle memslot deletion
drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot
KVM: x86: Reject memslot MOVE operations if KVMGT is attached
...
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTueMwSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hp4P/i/UmIJEJupryUrD/ZXcSjqmupCtv4JS
Z2o1KIAPbM5GUX4iyF1cnZrI4Ac5zMtULN8Tp3ATOp3AqKy72AqB1Z82e+v6SKis
KfSXlDFCPFisrwv3Ys7JEu9vIS8oqITHmSBk8OAmElwujdQ5jYLZjwGbCXbM9qas
yCFGLqD4fjX8XqkZLmXggjT99MPSgiTPoKL592Wq4JR8mY4hyQqJzBepDjb94sT7
wrsAv1B+BchGDguk0+nOdmHM4emGrZU7fVqi3OFPofSlwAAdkqZObleb422KB058
5bcpNow+9VH5pzgq8XSAU7DLNgH9aXH0PcVU8ASU6P0D9fceKoOFuL47nnFbwz0t
vKafcXNWFs8xHE4iyzvAAsZK/X8GR0ngNByPnamATMsjt2tTmsa5BOyAPkIN+GpT
DzZCIk27SbdGC3lGYlSV+5ob/+sOr6m384DkvSZnU6JiiFLlZiTxURj1/9Zvfka8
2co2wnf8cJxnKFUThFfuxs9XpKgvhkOE8LauwCSo4MAQM95Pen+NAK960RBWj0xl
wof5kIGmKbwmMXyg2Sr+EKqe5KRPba22Yi3x24tURAXafKK/AW7T8dgEEXOll7dp
pKmTPAevwUk9wYIGultjhEBXKYgMOeD2BVoTa5je5h1Da28onrSJ7aLQUixHHs0J
gLdtzs8M9K9t
=yGM1
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.6:
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
- Misc cleanups
- Fix a bug where KVM reads a stale vmcs.IDT_VECTORING_INFO_FIELD when trying
to handle NMI VM-Exits
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTufN0SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5tIsP/0J3wexeADGWuj7cckymPBdbZbt4Jkd7
LDpOPEjCgFew+uAt7xXRfV4AOnXiSTrdos2tpjQGuNPeg18AAwv6Ulq67ia3AF7E
t/0A0Lp/TK+L+tuGDcEYhBAm+TXyM7yknbnw+meL+VHBK5MfucGAimBcsR6zhZNA
VeXgB4+XJ9PS+p01ixQFwrBXs1Orm9UOGJ6P8OlGWoNFYJVX70t+Rxk4Rgs/buUk
pXHllofEL70MchrIJ/0rZUh9CY/foFnpb76h4QASbI401yQsJV+p1FPgu4kyVSfE
aBhshJBxbrS9bcQ2K0Bl++JXFc1BDkhxcEIUh/P8t9bmG2vzYlKs+ifVtXeD7uYb
wENIWNO8FsYnTj9e8dpQFfi7spiemcMnayd/TEmt0cyJdC8vPgSR1TnmrLlrM/Fs
msOZyaOxZaxHjYtEvk5H/u834GgWwNq3fxw0Ap6ic+pJ2gcSay4NQGRtJx2wB4MY
VdR6w1wMttJpDMmQgmY+pVI91RGjE3O/bLUzKySGSrgQZhqW6I+/itT4IXt9pBST
A3pi9WCsbzQr1v4/97a/OO2zKsdA7WOD/l0CcUoEjBzRxbhSazASC8PJHnKDBPhE
OsD5DEKh03bVfgIMGev9fTbfudAfLomRX1JrGx8DXUBYgckgieXM5U89pf9Fpr//
24dstKOTCGwD
=6/Oc
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-vmx-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM: x86: VMX changes for 6.6:
- Misc cleanups
- Fix a bug where KVM reads a stale vmcs.IDT_VECTORING_INFO_FIELD when trying
to handle NMI VM-Exits
Reset the mask of available "registers" and refresh the IDT vectoring
info snapshot in vmx_vcpu_enter_exit(), before KVM potentially handles a
an NMI VM-Exit. One of the "registers" that KVM VMX lazily loads is the
vmcs.VM_EXIT_INTR_INFO field, which is holds the vector+type on "exception
or NMI" VM-Exits, i.e. is needed to identify NMIs. Clearing the available
registers bitmask after handling NMIs results in KVM querying info from
the last VM-Exit that read vmcs.VM_EXIT_INTR_INFO, and leads to both
missed NMIs and spurious NMIs in the host.
Opportunistically grab vmcs.IDT_VECTORING_INFO_FIELD early in the VM-Exit
path too, e.g. to guard against similar consumption of stale data. The
field is read on every "normal" VM-Exit, and there's no point in delaying
the inevitable.
Reported-by: Like Xu <like.xu.linux@gmail.com>
Fixes: 11df586d77 ("KVM: VMX: Handle NMI VM-Exits in noinstr region")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230825014532.2846714-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Delete KVM's printk about KVM_SET_TSS_ADDR not being called. When the
printk was added by commit 776e58ea3d ("KVM: unbreak userspace that does
not sets tss address"), KVM also stuffed a "hopefully safe" value, i.e.
the message wasn't purely informational. For reasons unknown, ostensibly
to try and help people running outdated qemu-kvm versions, the message got
left behind when KVM's stuffing was removed by commit 4918c6ca68
("KVM: VMX: Require KVM_SET_TSS_ADDR being called prior to running a VCPU").
Today, the message is completely nonsensical, as it has been over a decade
since KVM supported userspace running a Real Mode guest, on a CPU without
unrestricted guest support, without doing KVM_SET_TSS_ADDR before KVM_RUN.
I.e. KVM's ABI has required KVM_SET_TSS_ADDR for 10+ years.
To make matters worse, the message is prone to false positives as it
triggers when simply *creating* a vCPU due to RESET putting vCPUs into
Real Mode, even when the user has no intention of ever *running* the vCPU
in a Real Mode. E.g. KVM selftests stuff 64-bit mode and never touch Real
Mode, but trigger the message even though they run just fine without
doing KVM_SET_TSS_ADDR. Creating "dummy" vCPUs, e.g. to probe features,
can also trigger the message. In both scenarios, the message confuses
users and falsely implies that they've done something wrong.
Reported-by: Thorsten Glaser <t.glaser@tarent.de>
Closes: https://lkml.kernel.org/r/f1afa6c0-cde2-ab8b-ea71-bfa62a45b956%40tarent.de
Link: https://lore.kernel.org/r/20230815174215.433222-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Track "VMX exposed to L1" via a governed feature flag instead of using a
dedicated helper to provide the same functionality. The main goal is to
drive convergence between VMX and SVM with respect to querying features
that are controllable via module param (SVM likes to cache nested
features), avoiding the guest CPUID lookups at runtime is just a bonus
and unlikely to provide any meaningful performance benefits.
Note, X86_FEATURE_VMX is set in kvm_cpu_caps if and only if "nested" is
true, and the CPU obviously supports VMX if KVM+VMX is running. I.e. the
check on "nested" is now implicitly down by the kvm_cpu_cap_has() check
in kvm_governed_feature_check_and_set().
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Reviwed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the governed feature framework to track if XSAVES is "enabled", i.e.
if XSAVES can be used by the guest. Add a comment in the SVM code to
explain the very unintuitive logic of deliberately NOT checking if XSAVES
is enumerated in the guest CPUID model.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename the XSAVES secondary execution control to follow KVM's preferred
style so that XSAVES related logic can use common macros that depend on
KVM's preferred style.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230815203653.519297-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Check KVM CPU capabilities instead of raw VMX support for XSAVES when
determining whether or not XSAVER can/should be exposed to the guest.
Practically speaking, it's nonsensical/impossible for a CPU to support
"enable XSAVES" without XSAVES being supported natively. The real
motivation for checking kvm_cpu_cap_has() is to allow using the governed
feature's standard check-and-set logic.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Recompute whether or not XSAVES is enabled for the guest only if the
guest's CPUID model changes instead of redoing the computation every time
KVM generates vmcs01's secondary execution controls. The boot_cpu_has()
and cpu_has_vmx_xsaves() checks should never change after KVM is loaded,
and if they do the kernel/KVM is hosed.
Opportunistically add a comment explaining _why_ XSAVES is effectively
exposed to the guest if and only if XSAVE is also exposed to the guest.
Practically speaking, no functional change intended (KVM will do fewer
computations, but should still see the same xsaves_enabled value whenever
KVM looks at it).
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
In VMX, ept_level looks better than tdp_level and is consistent with
SVM's get_npt_level().
Signed-off-by: Shiyuan Gao <gaoshiyuan@baidu.com>
Link: https://lore.kernel.org/r/20230810113853.98114-1-gaoshiyuan@baidu.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move them to one place so the static call conversion gets simpler.
No functional change.
[ dhansen: merge against recent x86/apic changes ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Drop the @offset and @multiplier params from the kvm_x86_ops hooks for
propagating TSC offsets/multipliers into hardware, and instead have the
vendor implementations pull the information directly from the vCPU
structure. The respective vCPU fields _must_ be written at the same
time in order to maintain consistent state, i.e. it's not random luck
that the value passed in by all callers is grabbed from the vCPU.
Explicitly grabbing the value from the vCPU field in SVM's implementation
in particular will allow for additional cleanup without introducing even
more subtle dependencies. Specifically, SVM can skip the WRMSR if guest
state isn't loaded, i.e. svm_prepare_switch_to_guest() will load the
correct value for the vCPU prior to entering the guest.
This also reconciles KVM's handling of related values that are stored in
the vCPU, as svm_write_tsc_offset() already assumes/requires the caller
to have updated l1_tsc_offset.
Link: https://lore.kernel.org/r/20230729011608.1065019-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Bail from vmx_emergency_disable() without processing the list of loaded
VMCSes if CR4.VMXE=0, i.e. if the CPU can't be post-VMXON. It should be
impossible for the list to have entries if VMX is already disabled, and
even if that invariant doesn't hold, VMCLEAR will #UD anyways, i.e.
processing the list is pointless even if it somehow isn't empty.
Assuming no existing KVM bugs, this should be a glorified nop. The
primary motivation for the change is to avoid having code that looks like
it does VMCLEAR, but then skips VMXON, which is nonsensical.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-20-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Set kvm_rebooting when virtualization is disabled in an emergency so that
KVM eats faults on virtualization instructions even if kvm_reboot() isn't
reached.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable migration when probing VMX support during module load to ensure
the CPU is stable, mostly to match similar SVM logic, where allowing
migration effective requires deliberately writing buggy code. As a bonus,
KVM won't report the wrong CPU to userspace if VMX is unsupported, but in
practice that is a very, very minor bonus as the only way that reporting
the wrong CPU would actually matter is if hardware is broken or if the
system is misconfigured, i.e. if KVM gets migrated from a CPU that _does_
support VMX to a CPU that does _not_ support VMX.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-16-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that VMX is disabled in emergencies via the virt callbacks, move the
VMXOFF helpers into KVM, the only remaining user.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fold the raw CPUID check for VMX into kvm_is_vmx_supported(), its sole
user. Keep the check even though KVM also checks X86_FEATURE_VMX, as the
intent is to provide a unique error message if VMX is unsupported by
hardware, whereas X86_FEATURE_VMX may be clear due to firmware and/or
kernel actions.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use KVM VMX's reboot/crash callback to do VMXOFF in an emergency instead
of manually and blindly doing VMXOFF. There's no need to attempt VMXOFF
if a hypervisor, i.e. KVM, isn't loaded/active, i.e. if the CPU can't
possibly be post-VMXON.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Provide dedicated helpers to (un)register virt hooks used during an
emergency crash/reboot, and WARN if there is an attempt to overwrite
the registered callback, or an attempt to do an unpaired unregister.
Opportunsitically use rcu_assign_pointer() instead of RCU_INIT_POINTER(),
mainly so that the set/unset paths are more symmetrical, but also because
any performance gains from using RCU_INIT_POINTER() are meaningless for
this code.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
VMCLEAR active VMCSes before any emergency reboot, not just if the kernel
may kexec into a new kernel after a crash. Per Intel's SDM, the VMX
architecture doesn't require the CPU to flush the VMCS cache on INIT. If
an emergency reboot doesn't RESET CPUs, cached VMCSes could theoretically
be kept and only be written back to memory after the new kernel is booted,
i.e. could effectively corrupt memory after reboot.
Opportunistically remove the setting of the global pointer to NULL to make
checkpatch happy.
Cc: Andrew Cooper <Andrew.Cooper3@citrix.com>
Link: https://lore.kernel.org/r/20230721201859.2307736-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Assert that the number of known fixed_pmc_events matches the max number of
fixed counters supported by KVM, and clean up related code.
Opportunistically extend setup_fixed_pmc_eventsel()'s use of
array_index_nospec() to cover fixed_counters, as nr_arch_fixed_counters is
set based on userspace input (but capped using KVM-controlled values).
Link: https://lore.kernel.org/r/20230607010206.1425277-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Walk only the "real", i.e. non-pseudo, architectural events when checking
if a hardware event is available, i.e. isn't disabled by guest CPUID.
Skipping pseudo-arch events in the loop body is unnecessarily convoluted,
especially now that KVM has enums that delineate between real and pseudo
events.
Link: https://lore.kernel.org/r/20230607010206.1425277-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add "enum intel_pmu_architectural_events" to replace the magic numbers for
the (pseudo-)architectural events, and to give a meaningful name to each
event so that new readers don't need psychic powers to understand what the
code is doing.
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Reviewed-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230607010206.1425277-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove the superfluous flush of the current TLB in VMX's handling of
migration of the APIC-access page, as a full TLB flush on all vCPUs will
have already been performed in response to kvm_unmap_gfn_range() *if*
there were SPTEs pointing at the APIC-access page. And if there were no
valid SPTEs, then there can't possibly be TLB entries to flush.
The extra flush was added by commit fb6c819843 ("kvm: vmx: Flush TLB
when the APIC-access address changes"), with the justification of "because
the SDM says so". The SDM said, and still says:
As detailed in Section xx.x.x, an access to the APIC-access page might
not cause an APIC-access VM exit if software does not properly invalidate
information that may be cached from the EPT paging structures. If EPT was
in use on a logical processor at one time with EPTP X, it is recommended
that software use the INVEPT instruction with the “single-context” INVEPT
type and with EPTP X in the INVEPT descriptor before a VM entry on the
same logical processor that enables EPT with EPTP X and either (a) the
"virtualize APIC accesses" VM- execution control was changed from 0 to 1;
or (b) the value of the APIC-access address was changed.
But the "recommendation" for (b) is predicated on there actually being
a valid EPT translation *and* possible TLB entries for the GPA (or guest
VA when using shadow paging). It's possible that a different vCPU has
established a mapping for the new page, but the current vCPU can't have
entered the guest, i.e. can't have created a TLB entry, between flushing
the old mappings and changing its vmcs.APIC_ACCESS_ADDR.
kvm_unmap_gfn_range() waits for all vCPUs to ack KVM_REQ_APIC_PAGE_RELOAD,
and then flushes remote TLBs (which may or may not also pend a request).
Thus the vCPU is guaranteed to update vmcs.APIC_ACCESS_ADDR before
re-entering the guest and before it can possibly create new TLB entries.
In other words, KVM does flush in this case, it just does so earlier
on while handling the page migration.
Note, VMX also flushes if the vCPU is migrated to a new pCPU, i.e. if
the vCPU is migrated to a pCPU that entered the guest for a different
vCPU.
Suggested-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Reviewed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230721233858.2343941-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM snapshots the host's MSR_IA32_ARCH_CAPABILITIES, drop the
similar snapshot/cache of whether or not KVM is allowed to manipulate
MSR_IA32_MCU_OPT_CTRL.FB_CLEAR_DIS. The motivation for the cache was
presumably to avoid the RDMSR, e.g. boot_cpu_has_bug() is quite cheap, and
modifying the vCPU's MSR_IA32_ARCH_CAPABILITIES is an infrequent option
and a relatively slow path.
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230607004311.1420507-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Snapshot the host's MSR_IA32_ARCH_CAPABILITIES, if it's supported, instead
of reading the MSR every time KVM wants to query the host state, e.g. when
initializing the default value during vCPU creation. The paths that query
ARCH_CAPABILITIES aren't particularly performance sensitive, but creating
vCPUs is a frequent enough operation that burning 8 bytes is a good
trade-off.
Alternatively, KVM could add a field in kvm_caps and thus skip the
on-demand calculations entirely, but a pure snapshot isn't possible due to
the way KVM handles the l1tf_vmx_mitigation module param. And unlike the
other "supported" fields in kvm_caps, KVM doesn't enforce the "supported"
value, i.e. KVM treats ARCH_CAPABILITIES like a CPUID leaf and lets
userspace advertise whatever it wants. Those problems are solvable, but
it's not clear there is real benefit versus snapshotting the host value,
and grabbing the host value will allow additional cleanup of KVM's
FB_CLEAR_CTRL code.
Link: https://lore.kernel.org/all/20230524061634.54141-2-chao.gao@intel.com
Cc: Chao Gao <chao.gao@intel.com>
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230607004311.1420507-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use sysfs_emit() instead of the sprintf() for sysfs entries. sysfs_emit()
knows the maximum of the temporary buffer used for outputting sysfs
content and avoids overrunning the buffer length.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230625073438.57427-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stuff CR0 and/or CR4 to be compliant with a restricted guest if and only
if KVM itself is not configured to utilize unrestricted guests, i.e. don't
stuff CR0/CR4 for a restricted L2 that is running as the guest of an
unrestricted L1. Any attempt to VM-Enter a restricted guest with invalid
CR0/CR4 values should fail, i.e. in a nested scenario, KVM (as L0) should
never observe a restricted L2 with incompatible CR0/CR4, since nested
VM-Enter from L1 should have failed.
And if KVM does observe an active, restricted L2 with incompatible state,
e.g. due to a KVM bug, fudging CR0/CR4 instead of letting VM-Enter fail
does more harm than good, as KVM will often neglect to undo the side
effects, e.g. won't clear rmode.vm86_active on nested VM-Exit, and thus
the damage can easily spill over to L1. On the other hand, letting
VM-Enter fail due to bad guest state is more likely to contain the damage
to L2 as KVM relies on hardware to perform most guest state consistency
checks, i.e. KVM needs to be able to reflect a failed nested VM-Enter into
L1 irrespective of (un)restricted guest behavior.
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Fixes: bddd82d19e ("KVM: nVMX: KVM needs to unset "unrestricted guest" VM-execution control in vmcs02 if vmcs12 doesn't set it")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230613203037.1968489-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reject KVM_SET_SREGS{2} with -EINVAL if the incoming CR0 is invalid,
e.g. due to setting bits 63:32, illegal combinations, or to a value that
isn't allowed in VMX (non-)root mode. The VMX checks in particular are
"fun" as failure to disallow Real Mode for an L2 that is configured with
unrestricted guest disabled, when KVM itself has unrestricted guest
enabled, will result in KVM forcing VM86 mode to virtual Real Mode for
L2, but then fail to unwind the related metadata when synthesizing a
nested VM-Exit back to L1 (which has unrestricted guest enabled).
Opportunistically fix a benign typo in the prototype for is_valid_cr4().
Cc: stable@vger.kernel.org
Reported-by: syzbot+5feef0b9ee9c8e9e5689@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/000000000000f316b705fdf6e2b4@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230613203037.1968489-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vmread_error() to report VM-Fail on VMREAD for the "asm goto" case,
now that trampoline case has yet another wrapper around vmread_error() to
play nice with instrumentation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230721235637.2345403-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark vmread_error_trampoline() as noinstr, and add a second trampoline
for the CONFIG_CC_HAS_ASM_GOTO_OUTPUT=n case to enable instrumentation
when handling VM-Fail on VMREAD. VMREAD is used in various noinstr
flows, e.g. immediately after VM-Exit, and objtool rightly complains that
the call to the error trampoline leaves a no-instrumentation section
without annotating that it's safe to do so.
vmlinux.o: warning: objtool: vmx_vcpu_enter_exit+0xc9:
call to vmread_error_trampoline() leaves .noinstr.text section
Note, strictly speaking, enabling instrumentation in the VM-Fail path
isn't exactly safe, but if VMREAD fails the kernel/system is likely hosed
anyways, and logging that there is a fatal error is more important than
*maybe* encountering slightly unsafe instrumentation.
Reported-by: Su Hui <suhui@nfschina.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230721235637.2345403-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The pid_table of ipiv is the persistent memory allocated by
per-vcpu, which should be counted into the memory cgroup.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <CAPm50aLxCQ3TQP2Lhc0PX3y00iTRg+mniLBqNDOC=t9CLxMwwA@mail.gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaHFgSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5twMP/15ZJFqZVigVQoATJeeR9tWUuyJe95xM
lyfnTel91Sg8XOamdwBGi7jLpaDgj34Jm0cfM7/4LbJk2/taeaCLYmJd5w9FXvaw
EkytQGO85hVNe2XuY+h+XxSIxpflKxgFuUnOwcDk2QbKgASzNSG/mJ9ZBx8PNVXD
FnyOqpbbYDFspWWvUOAI/RkHnr/dALjXJsSUMvuh3nz5e1NTyubjCAZg+/bse2nR
s8FrcSh4B0Lg0h4r2fdJ4sAiM/qWhcCIhq5svyTAcUG0T4rMS40LrosJOw3wkBRM
dyZYXy6GEENeCFJPhenF1mTE1embFyZp89PV/FCNRZXODbnM4kheJFT9gucAjlKi
ZafRcutrkYIVf4lZCMofDfQGLX/GCEJnwUPKyGygIsPoDRrdR7OLrFycON5bxocr
9NBNG+2teQFbnt5irB/bBGojtIZtu3OEylkuRjQUQ3lJYQ5r6LddarI9acIu1SHt
4rRfh8QN5qmMvVblaQzggOr6BPtmPr8QqMEMFncaUMCsV/82hRAEfvj2rifGFJNo
Axz1ajMfirxyM45WzredUkzzsbphiiegPBELCLRZfHmaEhJ8P7t7wvri0bXt9YdI
vjSfX+6ulOgDC+xAazE0gEJO4Uh5+g3Y+1e0fr43ltWzUOWdCQskzD3LE9DkqIXj
KAaCuHYbYpIZ
=MwqV
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86/pmu changes for 6.5:
- Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes
included along the way
Disable PMU support when running on AMD and perf reports fewer than four
general purpose counters. All AMD PMUs must define at least four counters
due to AMD's legacy architecture hardcoding the number of counters
without providing a way to enumerate the number of counters to software,
e.g. from AMD's APM:
The legacy architecture defines four performance counters (PerfCtrn)
and corresponding event-select registers (PerfEvtSeln).
Virtualizing fewer than four counters can lead to guest instability as
software expects four counters to be available. Rather than bleed AMD
details into the common code, just define a const unsigned int and
provide a convenient location to document why Intel and AMD have different
mins (in particular, AMD's lack of any way to enumerate less than four
counters to the guest).
Keep the minimum number of counters at Intel at one, even though old P6
and Core Solo/Duo processor effectively require a minimum of two counters.
KVM can, and more importantly has up until this point, supported a vPMU so
long as the CPU has at least one counter. Perf's support for P6/Core CPUs
does require two counters, but perf will happily chug along with a single
counter when running on a modern CPU.
Cc: Jim Mattson <jmattson@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: set Intel min to '1', not '2']
Link: https://lore.kernel.org/r/20230603011058.1038821-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the Intel PMU implementation of pmc_is_enabled() to common x86 code
as pmc_is_globally_enabled(), and drop AMD's implementation. AMD PMU
currently supports only v1, and thus not PERF_GLOBAL_CONTROL, thus the
semantics for AMD are unchanged. And when support for AMD PMU v2 comes
along, the common behavior will also Just Work.
Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the handling of GLOBAL_CTRL, GLOBAL_STATUS, and GLOBAL_OVF_CTRL,
a.k.a. GLOBAL_STATUS_RESET, from Intel PMU code to generic x86 PMU code.
AMD PerfMonV2 defines three registers that have the same semantics as
Intel's variants, just with different names and indices. Conveniently,
since KVM virtualizes GLOBAL_CTRL on Intel only for PMU v2 and above, and
AMD's version shows up in v2, KVM can use common code for the existence
check as well.
Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reject userspace writes to MSR_CORE_PERF_GLOBAL_STATUS that attempt to set
reserved bits. Allowing userspace to stuff reserved bits doesn't harm KVM
itself, but it's architecturally wrong and the guest can't clear the
unsupported bits, e.g. makes the guest's PMI handler very confused.
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: rewrite changelog to avoid use of #GP, rebase on name change]
Link: https://lore.kernel.org/r/20230603011058.1038821-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move reprogram_counters() out of Intel specific PMU code and into pmu.h so
that it can be used to implement AMD PMU v2 support.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: rewrite changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename global_ovf_ctrl_mask to global_status_mask to avoid confusion now
that Intel has renamed GLOBAL_OVF_CTRL to GLOBAL_STATUS_RESET in PMU v4.
GLOBAL_OVF_CTRL and GLOBAL_STATUS_RESET are the same MSR index, i.e. are
just different names for the same thing, but the SDM provides different
entries in the IA-32 Architectural MSRs table, which gets really confusing
when looking at PMU v4 definitions since it *looks* like GLOBAL_STATUS has
bits that don't exist in GLOBAL_OVF_CTRL, but in reality the bits are
simply defined in the GLOBAL_STATUS_RESET entry.
No functional change intended.
Cc: Like Xu <like.xu.linux@gmail.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Re-request an APIC-access page reload if there is a relevant mmu_notifier
invalidation in-progress when KVM retrieves the backing pfn, i.e. stall
vCPUs until the backing pfn for the APIC-access page is "officially"
stable. Relying on the primary MMU to not make changes after invoking
->invalidate_range() works, e.g. any additional changes to a PRESENT PTE
would also trigger an ->invalidate_range(), but using ->invalidate_range()
to fudge around KVM not honoring past and in-progress invalidations is a
bit hacky.
Honoring invalidations will allow using KVM's standard mmu_notifier hooks
to detect APIC-access page reloads, which will in turn allow removing
KVM's implementation of ->invalidate_range() (the APIC-access page case is
a true one-off).
Opportunistically add a comment to explain why doing nothing if a memslot
isn't found is functionally correct.
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230602011518.787006-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Per Intel's SDM, unsupported ENCLS leafs result in a #GP, not a #UD.
SGX1 is a special snowflake as the SGX1 flag is used by the CPU as a
"soft" disable, e.g. if software disables machine check reporting, i.e.
having SGX but not SGX1 is effectively "SGX completely unsupported" and
and thus #UDs.
Fixes: 9798adbc04 ("KVM: VMX: Frame in ENCLS handler for SGX virtualization")
Cc: Binbin Wu <binbin.wu@linux.intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230405234556.696927-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Inject a #GP when emulating/forwarding a valid ENCLS leaf if the vCPU has
paging disabled, e.g. if KVM is intercepting ECREATE to enforce additional
restrictions. The pseudocode in the SDM lists all #GP triggers, including
CR0.PG=0, as being checked after the ENLCS-exiting checks, i.e. the
VM-Exit will occur before the CPU performs the CR0.PG check.
Fixes: 70210c044b ("KVM: VMX: Add SGX ENCLS[ECREATE] handler to enforce CPUID restrictions")
Cc: Binbin Wu <binbin.wu@linux.intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230405234556.696927-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
After commit 2de154f541 ("KVM: x86/pmu: Provide "error" semantics
for unsupported-but-known PMU MSRs"), the guest_cpuid_has(DS) check
is not necessary any more since if the guest supports X86_FEATURE_DS,
it never returns 1. And if the guest does not support this feature,
the set_msr handler will get false from kvm_pmu_is_valid_msr() before
reaching this point. Therefore, the check will not be true in all cases
and can be safely removed, which also simplifies the code and improves
its readability.
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Link: https://lore.kernel.org/r/20230411130338.8592-1-cloudliang@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the common check-and-set handling of PAT MSR writes out of vendor
code and into kvm_set_msr_common(). This aligns writes with reads, which
are already handled in common code, i.e. makes the handling of reads and
writes symmetrical in common code.
Alternatively, the common handling in kvm_get_msr_common() could be moved
to vendor code, but duplicating code is generally undesirable (even though
the duplicatated code is trivial in this case), and guest writes to PAT
should be rare, i.e. the overhead of the extra function call is a
non-issue in practice.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Open code setting "vcpu->arch.pat" in vmx_set_msr() instead of bouncing
through kvm_set_msr_common() to get to the same code in kvm_mtrr_set_msr().
This aligns VMX with SVM, avoids hiding a very simple operation behind a
relatively complicated function call (finding the PAT MSR case in
kvm_set_msr_common() is non-trivial), and most importantly, makes it clear
that not unwinding the VMCS updates if kvm_set_msr_common() isn't a bug
(because kvm_set_msr_common() can never fail for PAT).
Opportunistically set vcpu->arch.pat before updating the VMCS info so that
a future patch can move the common bits (back) into kvm_set_msr_common()
without a functional change.
Note, MSR_IA32_CR_PAT is 0x277, and is very subtly handled by
case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
in kvm_set_msr_common().
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Wenyao Hai <haiwenyao@uniontech.com>
[sean: massage changelog, hoist setting vcpu->arch.pat up]
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_is_cr4_bit_set() to read guest CR4.UMIP when sanity checking that
a descriptor table VM-Exit occurs if and only if guest.CR4.UMIP=1. UMIP
can't be guest-owned, i.e. using kvm_read_cr4_bits() to decache guest-
owned bits isn't strictly necessary, but eliminating raw reads of
vcpu->arch.cr4 is desirable as it makes it easy to visually audit KVM for
correctness.
Opportunistically add a compile-time assertion that UMIP isn't guest-owned
as letting the guest own UMIP isn't compatible with emulation (or any CR4
bit that is emulated by KVM).
Opportunistically change the WARN_ON() to a ONCE variant. When the WARN
fires, it fires _a lot_, and spamming the kernel logs ends up doing more
harm than whatever led to KVM's unnecessary emulation.
Reported-by: Robert Hoo <robert.hu@intel.com>
Link: https://lore.kernel.org/all/20230310125718.1442088-4-robert.hu@intel.com
Link: https://lore.kernel.org/r/20230413231914.1482782-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Advertise UMIP as emulated if and only if the host doesn't natively
support UMIP, otherwise vmx_umip_emulated() is misleading when the host
_does_ support UMIP. Of the four users of vmx_umip_emulated(), two
already check for native support, and the logic in vmx_set_cpu_caps() is
relevant if and only if UMIP isn't natively supported as UMIP is set in
KVM's caps by kvm_set_cpu_caps() when UMIP is present in hardware.
That leaves KVM's stuffing of X86_CR4_UMIP into the default cr4_fixed1
value enumerated for nested VMX. In that case, checking for (lack of)
host support is actually a bug fix of sorts, as enumerating UMIP support
based solely on descriptor table exiting works only because KVM doesn't
sanity check MSR_IA32_VMX_CR4_FIXED1. E.g. if a (very theoretical) host
supported UMIP in hardware but didn't allow UMIP+VMX, KVM would advertise
UMIP but not actually emulate UMIP. Of course, KVM would explode long
before it could run a nested VM on said theoretical CPU, as KVM doesn't
modify host CR4 when enabling VMX, i.e. would load an "illegal" value into
vmcs.HOST_CR4.
Reported-by: Robert Hoo <robert.hu@intel.com>
Link: https://lore.kernel.org/all/20230310125718.1442088-2-robert.hu@intel.com
Link: https://lore.kernel.org/r/20230413231914.1482782-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the comment about keeping the hosts CR4.MCE loaded in hardware above
the code that actually modifies the hardware CR4 value.
No functional change indented.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230410125017.1305238-3-xiaoyao.li@intel.com
[sean: elaborate in changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Directly use vcpu->arch.cr4 is not recommended since it gets stale value
if the cr4 is not available.
Use kvm_read_cr4() instead to ensure correct value.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230410125017.1305238-2-xiaoyao.li@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Explicitly check the vCPU's supported XCR0 when determining whether or not
the XFRM for ECREATE is valid. Checking CPUID works because KVM updates
guest CPUID.0x12.1 to restrict the leaf to a subset of the guest's allowed
XCR0, but that is rather subtle and KVM should not modify guest CPUID
except for modeling true runtime behavior (allowed XFRM is most definitely
not "runtime" behavior).
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230503160838.3412617-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* More phys_to_virt conversions
* Improvement of AP management for VSIE (nested virtualization)
ARM64:
* Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
* New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features
being moved to VMMs rather than be implemented in the kernel.
* Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one.
This last part allows the NV timer code to be implemented on
top.
* A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
* The usual selftest fixes and improvements.
KVM x86 changes for 6.4:
* Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
* Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
* Move AMD_PSFD to cpufeatures.h and purge KVM's definition
* Avoid unnecessary writes+flushes when the guest is only adding new PTEs
* Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations
when emulating invalidations
* Clean up the range-based flushing APIs
* Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
* Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
* Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
* Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, similar to CPUID features
* Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES
* Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
x86 AMD:
* Add support for virtual NMIs
* Fixes for edge cases related to virtual interrupts
x86 Intel:
* Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is
not being reported due to userspace not opting in via prctl()
* Fix a bug in emulation of ENCLS in compatibility mode
* Allow emulation of NOP and PAUSE for L2
* AMX selftests improvements
* Misc cleanups
MIPS:
* Constify MIPS's internal callbacks (a leftover from the hardware enabling
rework that landed in 6.3)
Generic:
* Drop unnecessary casts from "void *" throughout kvm_main.c
* Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct
size by 8 bytes on 64-bit kernels by utilizing a padding hole
Documentation:
* Fix goof introduced by the conversion to rST
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32
Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI
WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC
huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY
XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb
j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw==
=S2Hq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"s390:
- More phys_to_virt conversions
- Improvement of AP management for VSIE (nested virtualization)
ARM64:
- Numerous fixes for the pathological lock inversion issue that
plagued KVM/arm64 since... forever.
- New framework allowing SMCCC-compliant hypercalls to be forwarded
to userspace, hopefully paving the way for some more features being
moved to VMMs rather than be implemented in the kernel.
- Large rework of the timer code to allow a VM-wide offset to be
applied to both virtual and physical counters as well as a
per-timer, per-vcpu offset that complements the global one. This
last part allows the NV timer code to be implemented on top.
- A small set of fixes to make sure that we don't change anything
affecting the EL1&0 translation regime just after having having
taken an exception to EL2 until we have executed a DSB. This
ensures that speculative walks started in EL1&0 have completed.
- The usual selftest fixes and improvements.
x86:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is
enabled, and by giving the guest control of CR0.WP when EPT is
enabled on VMX (VMX-only because SVM doesn't support per-bit
controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long"
return as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Avoid unnecessary writes+flushes when the guest is only adding new
PTEs
- Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s
optimizations when emulating invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a
single A/D bit using a LOCK AND instead of XCHG, and skip all of
the "handle changed SPTE" overhead associated with writing the
entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid
having to walk (potentially) all descriptors during insertion and
deletion, which gets quite expensive if the guest is spamming
fork()
- Disallow virtualizing legacy LBRs if architectural LBRs are
available, the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably
PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features
- Overhaul the vmx_pmu_caps selftest to better validate
PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- AMD SVM:
- Add support for virtual NMIs
- Fixes for edge cases related to virtual interrupts
- Intel AMX:
- Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if
XTILE_DATA is not being reported due to userspace not opting in
via prctl()
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- AMX selftests improvements
- Misc cleanups
MIPS:
- Constify MIPS's internal callbacks (a leftover from the hardware
enabling rework that landed in 6.3)
Generic:
- Drop unnecessary casts from "void *" throughout kvm_main.c
- Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the
struct size by 8 bytes on 64-bit kernels by utilizing a padding
hole
Documentation:
- Fix goof introduced by the conversion to rST"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits)
KVM: s390: pci: fix virtual-physical confusion on module unload/load
KVM: s390: vsie: clarifications on setting the APCB
KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA
KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state
KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init()
KVM: selftests: Test the PMU event "Instructions retired"
KVM: selftests: Copy full counter values from guest in PMU event filter test
KVM: selftests: Use error codes to signal errors in PMU event filter test
KVM: selftests: Print detailed info in PMU event filter asserts
KVM: selftests: Add helpers for PMC asserts in PMU event filter test
KVM: selftests: Add a common helper for the PMU event filter guest code
KVM: selftests: Fix spelling mistake "perrmited" -> "permitted"
KVM: arm64: vhe: Drop extra isb() on guest exit
KVM: arm64: vhe: Synchronise with page table walker on MMU update
KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc()
KVM: arm64: nvhe: Synchronise with page table walker on TLBI
KVM: arm64: Handle 32bit CNTPCTSS traps
KVM: arm64: nvhe: Synchronise with page table walker on vcpu run
KVM: arm64: vgic: Don't acquire its_lock before config_lock
KVM: selftests: Add test to verify KVM's supported XCR0
...
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGuYgSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5kQUP/jV5Q8ZeVCzlf6ZCeAHnWX/Hahsv6i6H
ooNL8W6p8FI5xlYOWh8J02JpmLUrNWURCPqvr0oYLm4r1UlJ/OGjyuKB8d7SZ7z/
RaLN7tppMod527J+Qm3ptHQbTKAGHe4dEoiX46cuvTEcCxrsVykYltvfD1rNuSQA
VcaNJkkcHv/KuItUHLAuntCAiFvbD1gYNLfUAC7e0htGjLRLxg3+ugHEiFcJ3c6y
z4ged1toYLGD962jWSIgokFbivfUNZT25WlZjBliMa/E8+ckTAzmc67UJYvhNBOM
HyAHs0hp+XtSgfcCgNkI+WDrFXXgxa+QQcMFvRWacS3Hx6tgJoQ51FRMevmumn0O
zBPk3+BOquhknqb5NbmwRZoLExffo+86fFlDcgszzvV4Y/vBfp/XTsuJZCnaiMDZ
wdmJoF4mhRDtgt7yORltpjHqp3yRmLqMNUb3sxXLRA9D+edo9mr8SXujOnukmXoH
o/ZpEollTPUQ7od/uDIvDyosWvb65IbYwsKGdOanfBacVrxy5OPM38mPF7u9AyzD
Gn81H/OhwhpTSBAX7kLMGeK/QGkyIBEUM1levdmcAk0nKYQzHzsI7tMYfqwXuQSu
qKAcF+qtpOReWmb4KaJZ7c0HQIBQHOKQ6exXxnQJuLjnAHS0674NxMDkT5a1EGRL
Q9OPSTSYBMDC
=FOnk
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-vmx-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM VMX changes for 6.4:
- Fix a bug in emulation of ENCLS in compatibility mode
- Allow emulation of NOP and PAUSE for L2
- Misc cleanups
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGtd4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Z9kP/i3WZ40hevvQvB/5cEpxxmxYDwCYnnjM
hiQgK5jT4SrMTmVjLgkNdI2PogQoS4CX+GC7lcA9bvse84hjuPvgOflb2B+p2UQi
Ytbr9g/tfKNIpnKIk9mcPcSObN9vm2Kgt7n28rtPrHWj89eQzgc66eijqdpKBLxA
c3crVR8krwYAQK0tmzHq1+H6hB369YbHAHyTTRRI/bNWnqKblnvUbt0NL2aBusa9
rNMaOdRtinLpy2dmuX/b3japRB8QTnlf7zpPIF4cBEhbYXy5woClZpf1D2fCA6Er
XFbEoYawMVd9UeJYbW4z5yErLT83eYoGp4U0eFXWp6fvh8nZlgCGvBKE9g4mmqwj
aSLaTR5eVN2qlw6jXVeg3unCo8Eyl36AwYwve2L6sFmBvZvNV5iz2eQ7rrOe4oE3
dnTUaLQ8I2SVg04MbYmCq5W+frTL/I7kqNpbccL1Z3R5WO4y5gz63mug6NfLIvhR
t45TAIaifxBfcXQsBZM3v2KUK/xQrD3AbJmFKh54L2CKqiGaNWsMLX+6NZ7LZWgf
8rEqsVkkQDgF7z8eXai4TR26nYfSX6g9gDqtOH73L87aJ7PJk5cRoDWQ1sWs1e/l
4HA/L0Bo/3pnKAa0ZWxJOixmzqY49gNQf3dj8gt3jk3y2ijbAivshiSpPBmIxn0u
QLeOf/LGvipl
=m18F
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.4:
- Disallow virtualizing legacy LBRs if architectural LBRs are available,
the two are mutually exclusive in hardware
- Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES)
after KVM_RUN, and overhaul the vmx_pmu_caps selftest to better
validate PERF_CAPABILITIES
- Apply PMU filters to emulated events and add test coverage to the
pmu_event_filter selftest
- Misc cleanups and fixes
- Tweak FNAME(sync_spte) to avoid unnecessary writes+flushes when the
guest is only adding new PTEs
- Overhaul .sync_page() and .invlpg() to share the .sync_page()
implementation, i.e. utilize .sync_page()'s optimizations when emulating
invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGsvASHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5XnoP/0D8rQmrA0xPHK81zYS1E71tsR/itO/T
CQMSB4PhEqvcRUaWOuhLBRUW+noWzaOkjkMYK2uoPTdtme7v9+Ar7EtfrWYHrBWD
IxHCAymo3a5dQPUc3Nb77u6HjRAOokPSqSz5jE4qAjlniW09feruro2Phi+BTme4
JjxTc/7Oh0Fu26+mK7mJHiw3fV1x3YznnnRPrKGrVQes5L6ozNICkUZ6nvuJUVMk
lTNHNQbG8PqJZnfWG7VIKRn1vdfXwEfnvyucGVEqFfPLkOXqJHyqMVmIOtvsH7C5
l8j36+lBZwtFh2jk2EsXOTb6sS7l1MSvyHLlbaJaqqffP+77Hf1n0fROur0k9Yse
jJJejJWxZ/SvjMt/bOA+4ybGafZH0lt20DsDWnat5GSQ1EVT1CInN2p8OY8pdecR
QOJBqnNUOykC7/Pyad+IxTxwrOSNCYh+5aYG8AdGquZvNUEwjffVJqrmxDvklY8Z
DTYwGKgNY7NsP/dV0WYYElsAuHiKwiDZL15KftiQebO1fPcZDpTzDo83/8UMfGxh
yegngcNX9Qi7lWtLkUMy8A99UvejM0QrS/Zt8v1zjlQ8PjreZLLBWsNpe0ufIMRk
31ZAC2OS4Koi3wZ54tA7Z1Kh11meGhAk5Ti7sNke0rDqB9UMmj6UKw121cSRvW7q
W6O4U3YeGpKx
=zb4u
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-mmu-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 MMU changes for 6.4:
- Tweak FNAME(sync_spte) to avoid unnecessary writes+flushes when the
guest is only adding new PTEs
- Overhaul .sync_page() and .invlpg() to share the .sync_page()
implementation, i.e. utilize .sync_page()'s optimizations when emulating
invalidations
- Clean up the range-based flushing APIs
- Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single
A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle
changed SPTE" overhead associated with writing the entire entry
- Track the number of "tail" entries in a pte_list_desc to avoid having
to walk (potentially) all descriptors during insertion and deletion,
which gets quite expensive if the guest is spamming fork()
- Misc cleanups
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmRGr2sSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5b80P/2ayACpc7iV2DysXkrxOdn1JmMu9BeHd
3oMb7bydf79LMNAO+NKPqVjo74yZ/Lh8UyufJGgF3HnSCdumx5Iklyx6/2PUHu/I
8xT1H7VlIGQMcNy0G4hMus34ZcafJl4y+BXgMEqEErLcy3n598UvFGJ+C0/4lnux
2Gk7dLASHq/mVVKReBM/kD4RhCVy5Venz6zkk9KbwDLHAmfejVK5bSqDYAnO1WtV
IBWetxlVyMZCnfPV2drhzgNVwiHvYvCaMBW+cUk5cH8Z2r0VZVDERmc1D4/rd04t
xs9lMk6CdNU7REQfblA0xMgeO/dNAXq5Fs4FfcM8OTBZU32KKafPhgW1uj2Sv+9l
nbb1XxZ7C0EcBhKVbUD6zRl05vjHwxlRgoi0yWUqERthFKNXHV42JJgaNn4fxDYS
tOBKBNkM9z6tCGN2aZv6GwhsEyY2y7oLdbZUGK9/FM3mF1VBASms1BTwokJXTxCD
pkOpAGeN5hxOlC4/wl6iHJTrz9oaJUj5E5kMD1oK6oQJgnnfqH0kVTG/ui/OUtJg
8N3amYO/d7InFvuE0f9R6TqZVhTN2QefHmNJaEldsmYp1NMI8Ep8JIhQKRA2LZVE
CGRxyrPj5CESerAItAI6tshEre5W8aScEzhpmd6HgHmahhQJsCEj+3q/J8FPWLG/
iQ3GnggrklfU
=qj7D
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.4' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.4:
- Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled,
and by giving the guest control of CR0.WP when EPT is enabled on VMX
(VMX-only because SVM doesn't support per-bit controls)
- Add CR0/CR4 helpers to query single bits, and clean up related code
where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return
as a bool
- Move AMD_PSFD to cpufeatures.h and purge KVM's definition
- Misc cleanups
Extend VMX's nested intercept logic for emulated instructions to handle
"pause" interception, in quotes because KVM's emulator doesn't filter out
NOPs when checking for nested intercepts. Failure to allow emulation of
NOPs results in KVM injecting a #UD into L2 on any NOP that collides with
the emulator's definition of PAUSE, i.e. on all single-byte NOPs.
For PAUSE itself, honor L1's PAUSE-exiting control, but ignore PLE to
avoid unnecessarily injecting a #UD into L2. Per the SDM, the first
execution of PAUSE after VM-Entry is treated as the beginning of a new
loop, i.e. will never trigger a PLE VM-Exit, and so L1 can't expect any
given execution of PAUSE to deterministically exit.
... the processor considers this execution to be the first execution of
PAUSE in a loop. (It also does so for the first execution of PAUSE at
CPL 0 after VM entry.)
All that said, the PLE side of things is currently a moot point, as KVM
doesn't expose PLE to L1.
Note, vmx_check_intercept() is still wildly broken when L1 wants to
intercept an instruction, as KVM injects a #UD instead of synthesizing a
nested VM-Exit. That issue extends far beyond NOP/PAUSE and needs far
more effort to fix, i.e. is a problem for the future.
Fixes: 07721feee4 ("KVM: nVMX: Don't emulate instructions in guest mode")
Cc: Mathias Krause <minipli@grsecurity.net>
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230405002359.418138-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename the Hyper-V hooks for TLB flushing to match the naming scheme used
by all the other TLB flushing hooks, e.g. in kvm_x86_ops, vendor code,
arch hooks from common code, etc.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230405003133.419177-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fix a "reprogam" => "reprogram" typo in kvm_pmu_request_counter_reprogam().
Fixes: 68fb4757e8 ("KVM: x86/pmu: Defer reprogram_counter() to kvm_pmu_handle_event()")
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230310113349.31799-1-likexu@tencent.com
[sean: trim the changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
A valid pmc is always tested before using pmu->reprogram_pmi. Eliminate
this part of the redundancy by setting the counter's bitmask directly,
and in addition, trigger KVM_REQ_PMU only once to save more cpu cycles.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230214050757.9623-4-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Invert the flows in intel_pmu_{g,s}et_msr()'s case statements so that
they follow the kernel's preferred style of:
if (<not valid>)
return <error>
<commit change>
return <success>
which is also the style used by every other {g,s}et_msr() helper (except
AMD's PMU variant, which doesn't use a switch statement).
Modify the "set" paths with costly side effects, i.e. that reprogram
counters, to skip only the side effects, i.e. to perform reserved bits
checks even if the value is unchanged. None of the reserved bits checks
are expensive, so there's no strong justification for skipping them, and
guarding only the side effect makes it slightly more obvious what is being
skipped and why.
No functional change intended (assuming no reserved bit bugs).
Link: https://lkml.kernel.org/r/Y%2B6cfen%2FCpO3%2FdLO%40google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Zero out the LBR capabilities during PMU refresh to avoid exposing LBRs
to the guest against userspace's wishes. If userspace modifies the
guest's CPUID model or invokes KVM_CAP_PMU_CAPABILITY to disable vPMU
after an initial KVM_SET_CPUID2, but before the first KVM_RUN, KVM will
retain the previous LBR info due to bailing before refreshing the LBR
descriptor.
Note, this is a very theoretical bug, there is no known use case where a
VMM would deliberately enable the vPMU via KVM_SET_CPUID2, and then later
disable the vPMU.
Link: https://lore.kernel.org/r/20230311004618.920745-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add macros to track the range of VMX feature MSRs that are emulated by
KVM to reduce the maintenance cost of extending the set of emulated MSRs.
Note, KVM doesn't necessarily emulate all known/consumed VMX MSRs, e.g.
PROCBASED_CTLS3 is consumed by KVM to enable IPI virtualization, but is
not emulated as KVM doesn't emulate/virtualize IPI virtualization for
nested guests.
No functional change intended.
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230311004618.920745-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Virtualize FLUSH_L1D so that the guest can use the performant L1D flush
if one of the many mitigations might require a flush in the guest, e.g.
Linux provides an option to flush the L1D when switching mms.
Passthrough MSR_IA32_FLUSH_CMD for write when it's supported in hardware
and exposed to the guest, i.e. always let the guest write it directly if
FLUSH_L1D is fully supported.
Forward writes to hardware in host context on the off chance that KVM
ends up emulating a WRMSR, or in the really unlikely scenario where
userspace wants to force a flush. Restrict these forwarded WRMSRs to
the known command out of an abundance of caution. Passing through the
MSR means the guest can throw any and all values at hardware, but doing
so in host context is arguably a bit more dangerous.
Link: https://lkml.kernel.org/r/CALMp9eTt3xzAEoQ038bJQ9LN0ZOXrSWsN7xnNUD%2B0SS%3DWwF7Pg%40mail.gmail.com
Link: https://lore.kernel.org/all/20230201132905.549148-2-eesposit@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322011440.2195485-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dedup the handling of MSR_IA32_PRED_CMD across VMX and SVM by moving the
logic to kvm_set_msr_common(). Now that the MSR interception toggling is
handled as part of setting guest CPUID, the VMX and SVM paths are
identical.
Opportunistically massage the code to make it a wee bit denser.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230322011440.2195485-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passthrough MSR_IA32_PRED_CMD based purely on whether or not the MSR is
supported and enabled, i.e. don't wait until the first write. There's no
benefit to deferred passthrough, and the extra logic only adds complexity.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20230322011440.2195485-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert the recently added virtualizing of MSR_IA32_FLUSH_CMD, as both
the VMX and SVM are fatally buggy to guests that use MSR_IA32_FLUSH_CMD or
MSR_IA32_PRED_CMD, and because the entire foundation of the logic is
flawed.
The most immediate problem is an inverted check on @cmd that results in
rejecting legal values. SVM doubles down on bugs and drops the error,
i.e. silently breaks all guest mitigations based on the command MSRs.
The next issue is that neither VMX nor SVM was updated to mark
MSR_IA32_FLUSH_CMD as being a possible passthrough MSR,
which isn't hugely problematic, but does break MSR filtering and triggers
a WARN on VMX designed to catch this exact bug.
The foundational issues stem from the MSR_IA32_FLUSH_CMD code reusing
logic from MSR_IA32_PRED_CMD, which in turn was likely copied from KVM's
support for MSR_IA32_SPEC_CTRL. The copy+paste from MSR_IA32_SPEC_CTRL
was misguided as MSR_IA32_PRED_CMD (and MSR_IA32_FLUSH_CMD) is a
write-only MSR, i.e. doesn't need the same "deferred passthrough"
shenanigans as MSR_IA32_SPEC_CTRL.
Revert all MSR_IA32_FLUSH_CMD enabling in one fell swoop so that there is
no point where KVM advertises, but does not support, L1D_FLUSH.
This reverts commits 45cf86f261,
723d5fb0ff, and
a807b78ad0.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lkml.kernel.org/r/20230317190432.GA863767%40dev-arch.thelio-3990X
Cc: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Message-Id: <20230322011440.2195485-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow enabling LBR support if the CPU supports architectural LBRs.
Traditional LBR support is absent on CPU models that have architectural
LBRs, and KVM doesn't yet support arch LBRs, i.e. KVM will pass through
non-existent MSRs if userspace enables LBRs for the guest.
Cc: stable@vger.kernel.org
Cc: Yang Weijiang <weijiang.yang@intel.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: be635e34c2 ("KVM: vmx/pmu: Expose LBR_FMT in the MSR_IA32_PERF_CAPABILITIES")
Tested-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230128001427.2548858-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
sgx_get_encls_gva() uses is_long_mode() to check 64-bit mode, however,
SGX system leaf instructions are valid in compatibility mode, should
use is_64_bit_mode() instead.
Fixes: 70210c044b ("KVM: VMX: Add SGX ENCLS[ECREATE] handler to enforce CPUID restrictions")
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230404032502.27798-1-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't report an error code to L1 when synthesizing a nested VM-Exit and
L2 is in Real Mode. Per Intel's SDM, regarding the error code valid bit:
This bit is always 0 if the VM exit occurred while the logical processor
was in real-address mode (CR0.PE=0).
The bug was introduced by a recent fix for AMD's Paged Real Mode, which
moved the error code suppression from the common "queue exception" path
to the "inject exception" path, but missed VMX's "synthesize VM-Exit"
path.
Fixes: b97f074583 ("KVM: x86: determine if an exception has an error code only when injecting it.")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322143300.2209476-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add helpers to check if a specific CR0/CR4 bit is set to avoid a plethora
of implicit casts from the "unsigned long" return of kvm_read_cr*_bits(),
and to make each caller's intent more obvious.
Defer converting helpers that do truly ugly casts from "unsigned long" to
"int", e.g. is_pse(), to a future commit so that their conversion is more
isolated.
Opportunistically drop the superfluous pcid_enabled from kvm_set_cr3();
the local variable is used only once, immediately after its declaration.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230322045824.22970-2-binbin.wu@linux.intel.com
[sean: move "obvious" conversions to this commit, massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Guests like grsecurity that make heavy use of CR0.WP to implement kernel
level W^X will suffer from the implied VMEXITs.
With EPT there is no need to intercept a guest change of CR0.WP, so
simply make it a guest owned bit if we can do so.
This implies that a read of a guest's CR0.WP bit might need a VMREAD.
However, the only potentially affected user seems to be kvm_init_mmu()
which is a heavy operation to begin with. But also most callers already
cache the full value of CR0 anyway, so no additional VMREAD is needed.
The only exception is nested_vmx_load_cr3().
This change is VMX-specific, as SVM has no such fine grained control
register intercept control.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-7-minipli@grsecurity.net
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Make use of the kvm_read_cr{0,4}_bits() helper functions when we only
want to know the state of certain bits instead of the whole register.
This not only makes the intent cleaner, it also avoids a potential
VMREAD in case the tested bits aren't guest owned.
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-5-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
nested_vmx_setup_ctls_msrs() is used to set up the various VMX MSR
controls for nested VMX. But it is a bit lengthy, just add helpers
to setup the configuration of VMX MSRs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Link: https://lore.kernel.org/r/20230119141946.585610-2-yu.c.zhang@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
nested_vmx_setup_ctls_msrs() initializes the vmcs_conf.nested,
which stores the global VMX MSR configurations when nested is
supported, regardless of any particular CPUID settings for one
VM.
Commit 6defc59184 ("KVM: nVMX: include conditional controls
in /dev/kvm KVM_GET_MSRS") added the some feature flags for
secondary proc-based controls, so that those features can be
available in KVM_GET_MSRS. Yet this commit did not remove the
obsolete comments in nested_vmx_setup_ctls_msrs().
Just fix the comments, and no functional change intended.
Fixes: 6defc59184 ("KVM: nVMX: include conditional controls in /dev/kvm KVM_GET_MSRS")
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Link: https://lore.kernel.org/r/20230119141946.585610-1-yu.c.zhang@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_mmu_invalidate_addr() instead open calls to mmu->invlpg().
No functional change intended.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Expose IA32_FLUSH_CMD to the guest if the guest CPUID enumerates
support for this MSR. As with IA32_PRED_CMD, permission for
unintercepted writes to this MSR will be granted to the guest after
the first non-zero write.
Co-developed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20230201132905.549148-2-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename enable_evmcs to __kvm_is_using_evmcs to match its wrapper, and to
avoid confusion with enabling eVMCS for nested virtualization, i.e. have
"enable eVMCS" be reserved for "enable eVMCS support for L1".
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230211003534.564198-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Wrap enable_evmcs in a helper and stub it out when CONFIG_HYPERV=n in
order to eliminate the static branch nop placeholders. clang-14 is clever
enough to elide the nop, but gcc-12 is not. Stubbing out the key reduces
the size of kvm-intel.ko by ~7.5% (200KiB) when compiled with gcc-12
(there are a _lot_ of VMCS accesses throughout KVM).
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230211003534.564198-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the macros that define the set of VMCS controls that are supported
by eVMCS1 from hyperv.h to hyperv.c, i.e. make them "private". The
macros should never be consumed directly by KVM at-large since the "final"
set of supported controls depends on guest CPUID.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230211003534.564198-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Code indentation should use tabs where possible and miss a '*'.
Signed-off-by: Rong Tao <rongtao@cestc.cn>
Message-Id: <tencent_A492CB3F9592578451154442830EA1B02C07@qq.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Code indentation should use tabs where possible.
Signed-off-by: Rong Tao <rongtao@cestc.cn>
Message-Id: <tencent_31E6ACADCB6915E157CF5113C41803212107@qq.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
nested_vmx_check_controls() has already run by the time KVM checks host state,
so the "host address space size" exit control can only be set on x86-64 hosts.
Simplify the condition at the cost of adding some dead code to 32-bit kernels.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The effective values of the guest CR0 and CR4 registers may differ from
those included in the VMCS12. In particular, disabling EPT forces
CR4.PAE=1 and disabling unrestricted guest mode forces CR0.PG=CR0.PE=1.
Therefore, checks on these bits cannot be delegated to the processor
and must be performed by KVM.
Reported-by: Reima ISHII <ishiir@g.ecc.u-tokyo.ac.jp>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Remove a superfluous variables from apic_get_tmcct()
- Fix various edge cases in x2APIC MSR emulation
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Reset xAPIC when userspace forces "impossible" x2APIC => xAPIC transition
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmPsB58SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5CK0P/1hhxUWokhNJX0skgf8uKhxTf8bLAq5F
xr221M4Ac9YwjJaS0p4PJVSLVJxcVXHsyvanCOQh6AE8q1Ugz+iDLr2gAI+fHbJY
lnczpAj1UhhttaLSOl13/31TaJdE2Ep0/q3+5vf1qQrOJYkElKpiDYbf3M8T5G72
pguUFhKKKeZcCB99Jpr0u0HupiwCZoYWvdx7mvzRhi11bWaUyYIWc9CBETmAb4kN
1UAmov16UrVOFAg/ssde6qPgUsAgB8XwJjta6oIQLeEm70L5ci6g/2Tw0IEwMybR
yLCCST9eATl2U/hPV4KwBzSN1gHCAx4JDp4TKBR8ic+c+Z8CceIZln05fz6rQ8Sz
ljyaRVFhaQZyZpjrZJ0h3kqMG1JT/Q4Hj9dq8RZJ0K73KVuCspxaJDHqp6a2p9D0
dDacDkD3LFIPBdem3hHcpmV2XduaMfQwspObJORarkkQTZZS6erxmPvK/6Quvmbk
UdD+6hvuSQA8rxNKXF+fOBsnK/1xYvzkVis0sxMwthkSDvENdcPbmlD6kHLz52cg
Jt+yw/85oIg7zBgEkG2c8+5bB2hw0SRPQBlW4j29jYUhRwXwHxuovllFS2GU7iIc
fVNtocw5Q9WATp752va4bVjv9XeYBmExn99fd3xvFenTa/ya4+5gNFK8vc9zL++J
x3fDhAPXmQHJ
=ieB+
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-apic-6.3' of https://github.com/kvm-x86/linux into HEAD
KVM x86 APIC changes for 6.3:
- Remove a superfluous variables from apic_get_tmcct()
- Fix various edge cases in x2APIC MSR emulation
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Reset xAPIC when userspace forces "impossible" x2APIC => xAPIC transition
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmPsL4USHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5fvQP/jOhCos/8VrNPJ5vtVkELSgbefbLFPbR
ThCefVekbnbqkJ4PdxLFOw/nzK+NREnoet02lvLXIeBt243qMeDWbNuGncZ+rqqX
ohJ6ALIS7ag2egG2ZllM4KTV1jWnm7bG6C8QsJwrFuG7wHe69lPYNnv34OD4l8QO
PR7reXBl7iyqQehF0rCqkYvtpv1QI+VlVd3ODCg/0vaZX4AOPZI6X1hX2+myUfTy
LI1oQ88SQ0ptoH5o7xBtNQw7Zknm/SP82Djzpg/1Wpr3cZv4g/1vblNcxpU/D+3I
Cp8xM42c82GIX1Zk6uYfsoCyQZ7Bd38llbgcLM5Fi0F2IuKJKoN1iuH77RJ1Juqf
v+SkRmFAr5Uf3UYVp4ck4FxTRH58ooDPeIv2jdaguyE9NgRfbVsghn6QDC+gkZMx
z4xdwCBXgsAAkhJwOLqDy98ZrQZoy1kxlmG2jLIe5RvOzI4WQDUJkJAd+u0dBD/W
U7PRqbqfJFtvvKN784BTa4CO8m+KwaNz4Xrwcg4YtBnKBgDU/cxFUZnnSEHdi9Pr
tVf462dfReK3slK3rkPw5HlacFdQsgfX6+VX1eeFKY+gE88TXoZks/X7ma24MXEw
hOu6VZMat1NjkfcgUcMffBVZlejK7C6oXTeVmqVKsx6hUs+zzqxpQ05AT4TMbAUI
gPTHJyy9ByHO
=WXGG
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-vmx-6.3' of https://github.com/kvm-x86/linux into HEAD
KVM VMX changes for 6.3:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
- Add support for created masked events for the PMU filter to allow
userspace to heavily restrict what events the guest can use without
needing to create an absurd number of events
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel SPR
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmPsFZ4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5eKEP/0qeZsOQot53wkf+wNiGh1X6qDacBPFP
A8GAPC70fEisxAt776DeKEBwikHpARPglCt1Il9dFvkG+0jgYpvPu8UGF1LpouKX
cD/7itr2k8GZlXZBg2Rgu3TRyFBJEGHT6tAu7PBhZyL6yWQDUxao8FPFrRGfmJ7O
Z6eFMo1cERNHICQm+W/2TBd1xguiF+m4CXKlA70R4wzM37aPF9o5HvmIwAvPzyhU
w4WzcIQbjVPs1VpBTzwPqRmyZ8omSlDYo7VqmsDiRtJbucqgbhFI2wR+nyImFCa9
D2pI5TV3CFTt0fvd8SZpH19nR3S6cMLCXONOsijmvR2BmS3PhJMP4dMm5m4R06nF
RBtnTj9fkbeL1ghFEkMxHBZVTG3bBlO4ySOxIqNHCvPjqQ37mJ+xP4C8kcIC9p5F
+xL3AvZ7zenPv3A29SY9YH+QvZLBwyDJzAsveLeYkLFoJxoDT4glOY/Wpi1rkZ17
/zHDZWoF49l1Eu3Bql0hFetkCreUNFGpa4moUmEC0evYOvV2WCb+39TDXZ8CPCGD
+cDiRnD8MFQpBw47F03EnFheFHxiJoL0Clv5vvM3C+xOq2J9WVG9mqQWCk+4ta2B
Um4D++0a9lwvJhOImaR7uyiV3K7oVm+rU8+46x+nTNGaIP2bnE+vronY+b6KGeUx
7+xzTKlYygGe
=ev5v
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.3' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.3:
- Add support for created masked events for the PMU filter to allow
userspace to heavily restrict what events the guest can use without
needing to create an absurd number of events
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel SPR
KVM enables 'Enlightened VMCS' and 'Enlightened MSR Bitmap' when running as
a nested hypervisor on top of Hyper-V. When MSR bitmap is updated,
evmcs_touch_msr_bitmap function uses current_vmcs per-cpu variable to mark
that the msr bitmap was changed.
vmx_vcpu_create() modifies the msr bitmap via vmx_disable_intercept_for_msr
-> vmx_msr_bitmap_l01_changed which in the end calls this function. The
function checks for current_vmcs if it is null but the check is
insufficient because current_vmcs is not initialized. Because of this, the
code might incorrectly write to the structure pointed by current_vmcs value
left by another task. Preemption is not disabled, the current task can be
preempted and moved to another CPU while current_vmcs is accessed multiple
times from evmcs_touch_msr_bitmap() which leads to crash.
The manipulation of MSR bitmaps by callers happens only for vmcs01 so the
solution is to use vmx->vmcs01.vmcs instead of current_vmcs.
BUG: kernel NULL pointer dereference, address: 0000000000000338
PGD 4e1775067 P4D 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
...
RIP: 0010:vmx_msr_bitmap_l01_changed+0x39/0x50 [kvm_intel]
...
Call Trace:
vmx_disable_intercept_for_msr+0x36/0x260 [kvm_intel]
vmx_vcpu_create+0xe6/0x540 [kvm_intel]
kvm_arch_vcpu_create+0x1d1/0x2e0 [kvm]
kvm_vm_ioctl_create_vcpu+0x178/0x430 [kvm]
kvm_vm_ioctl+0x53f/0x790 [kvm]
__x64_sys_ioctl+0x8a/0xc0
do_syscall_64+0x5c/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: ceef7d10df ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexandru Matei <alexandru.matei@uipath.com>
Link: https://lore.kernel.org/r/20230123221208.4964-1-alexandru.matei@uipath.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Values of base settings for nested proc-based VM-Execution control MSR come
from the ones for non-nested. And for SECONDARY_EXEC_ENABLE_VMFUNC flag,
KVM currently a) first mask off it from vmcs_conf->cpu_based_2nd_exec_ctrl;
b) then check it against the same source; c) and reset it again if host has
it.
So just simplify this, by not masking off SECONDARY_EXEC_ENABLE_VMFUNC in
the first place.
No functional change.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Link: https://lore.kernel.org/r/20221109075413.1405803-3-yu.c.zhang@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Explicitly disable VMFUNC in vmcs01 to document that KVM doesn't support
any VM-Functions for L1. WARN in the dedicated VMFUNC handler if an exit
occurs while L1 is active, but keep the existing handlers as fallbacks to
avoid killing the VM as an unexpected VMFUNC VM-Exit isn't fatal
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Link: https://lore.kernel.org/r/20221109075413.1405803-2-yu.c.zhang@linux.intel.com
[sean: don't kill the VM on an unexpected VMFUNC from L1, reword changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add helpers to print unimplemented MSR accesses and condition all such
prints on report_ignored_msrs, i.e. honor userspace's request to not
print unimplemented MSRs. Even though vcpu_unimpl() is ratelimited,
printing can still be problematic, e.g. if a print gets stalled when host
userspace is writing MSRs during live migration, an effective stall can
result in very noticeable disruption in the guest.
E.g. the profile below was taken while calling KVM_SET_MSRS on the PMU
counters while the PMU was disabled in KVM.
- 99.75% 0.00% [.] __ioctl
- __ioctl
- 99.74% entry_SYSCALL_64_after_hwframe
do_syscall_64
sys_ioctl
- do_vfs_ioctl
- 92.48% kvm_vcpu_ioctl
- kvm_arch_vcpu_ioctl
- 85.12% kvm_set_msr_ignored_check
svm_set_msr
kvm_set_msr_common
printk
vprintk_func
vprintk_default
vprintk_emit
console_unlock
call_console_drivers
univ8250_console_write
serial8250_console_write
uart_console_write
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230124234905.3774678-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Limit kvm_pmu_cap.num_counters_gp during kvm_init_pmu_capability() based
on the vendor PMU capabilities so that consuming num_counters_gp naturally
does the right thing. This fixes a mostly theoretical bug where KVM could
over-report its PMU support in KVM_GET_SUPPORTED_CPUID for leaf 0xA, e.g.
if the number of counters reported by perf is greater than KVM's
hardcoded internal limit. Incorporating input from the AMD PMU also
avoids over-reporting MSRs to save when running on AMD.
Link: https://lore.kernel.org/r/20230124234905.3774678-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
After commit ("02791a5c362b KVM: x86/pmu: Use PERF_TYPE_RAW
to merge reprogram_{gp,fixed}counter()"), vPMU starts to directly
use the hardware event eventsel and unit_mask to reprogram perf_event,
and the event_type field in the "struct kvm_event_hw_type_mapping"
is simply no longer being used.
Convert the struct into an anonymous struct as the current name is
obsolete as the structure no longer has any mapping semantics, and
placing the struct definition directly above its sole user makes its
easier to understand what the array is filling in.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20221205122048.16023-1-likexu@tencent.com
[sean: drop new comment, use anonymous struct]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move VMX's handling of NMI VM-Exits into vmx_vcpu_enter_exit() so that
the NMI is handled prior to leaving the safety of noinstr. Handling the
NMI after leaving noinstr exposes the kernel to potential ordering
problems as an instrumentation-induced fault, e.g. #DB, #BP, #PF, etc.
will unblock NMIs when IRETing back to the faulting instruction.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Split the asm subroutines for handling NMIs versus IRQs that occur in the
guest so that the NMI handler can be called from a noinstr section. As a
bonus, the NMI path doesn't need an indirect branch.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use a dedicated entry for invoking the NMI handler from KVM VMX's VM-Exit
path for 32-bit even though using a dedicated entry for 32-bit isn't
strictly necessary. Exposing a single symbol will allow KVM to reference
the entry point in assembly code without having to resort to more #ifdefs
(or #defines). identry.h is intended to be included from asm files only
once, and so simply including idtentry.h in KVM assembly isn't an option.
Bypassing the ESP fixup and CR3 switching in the standard NMI entry code
is safe as KVM always handles NMIs that occur in the guest on a kernel
stack, with a kernel CR3.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tag to_vmx() and to_kvm_vmx() __always_inline as they both just reflect
the passed in pointer (the embedded struct is the first field in the
container), and drop the @vmx param from vmx_vcpu_enter_exit(), which
likely existed purely to make noinstr validation happy.
Amusingly, when the compiler decides to not inline the helpers, e.g. for
KASAN builds, to_vmx() and to_kvm_vmx() may end up pointing at the same
symbol, which generates very confusing objtool warnings. E.g. the use of
to_vmx() in a future patch led to objtool complaining about to_kvm_vmx(),
and only once all use of to_kvm_vmx() was commented out did to_vmx() pop
up in the obj tool report.
vmlinux.o: warning: objtool: vmx_vcpu_enter_exit+0x160: call to to_kvm_vmx()
leaves .noinstr.text section
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tag all evmcs_{read,write}() helpers __always_inline so that they can be
freely used in noinstr sections, e.g. to get the VM-Exit reason in
vcpu_vmx_enter_exit() (in a future patch). For consistency and to avoid
more spot fixes in the future, e.g. see commit 010050a863 ("x86/kvm:
Always inline evmcs_write64()"), tag all accessors even though
evmcs_read32() is the only anticipated use case in the near future. In
practice, non-KASAN builds are all but guaranteed to inline the helpers
anyways.
vmlinux.o: warning: objtool: vmx_vcpu_enter_exit+0x107: call to evmcs_read32()
leaves .noinstr.text section
Reported-by: kernel test robot <lkp@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Allow instrumentation in the VM-Fail path of __vmcs_readl() so that the
helper can be used in noinstr functions, e.g. to get the exit reason in
vmx_vcpu_enter_exit() in order to handle NMI VM-Exits in the noinstr
section. While allowing instrumentation isn't technically safe, KVM has
much bigger problems if VMREAD fails in a noinstr section.
Note, all other VMX instructions also allow instrumentation in their
VM-Fail paths for similar reasons, VMREAD was simply omitted by commit
3ebccdf373 ("x86/kvm/vmx: Move guest enter/exit into .noinstr.text")
because VMREAD wasn't used in a noinstr section at the time.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add an extra special noinstr-friendly helper to test+mark a "register"
available and use it when caching vmcs.EXIT_QUALIFICATION and
vmcs.VM_EXIT_INTR_INFO. Make the caching helpers __always_inline too so
that they can be used in noinstr functions.
A future fix will move VMX's handling of NMI exits into the noinstr
vmx_vcpu_enter_exit() so that the NMI is processed before any kind of
instrumentation can trigger a fault and thus IRET, i.e. so that KVM
doesn't invoke the NMI handler with NMIs enabled.
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221213060912.654668-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
__vmx_vcpu_run_flags() returns "unsigned int" and uses only 2 bits of it
so using "unsigned long" is very much pointless. Furthermore,
__vmx_vcpu_run() and vmx_spec_ctrl_restore_host() take an "unsigned int",
i.e. actually relying on an "unsigned long" value won't work.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/Y3e7UW0WNV2AZmsZ@p183
Signed-off-by: Sean Christopherson <seanjc@google.com>
Access @flags using 32-bit operands when saving and testing @flags for
VMX_RUN_VMRESUME, as using 8-bit operands is unnecessarily fragile due
to relying on VMX_RUN_VMRESUME being in bits 0-7. The behavior of
treating @flags a single byte is a holdover from when the param was
"bool launched", i.e. is not deliberate.
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20221119003747.2615229-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When checking if a pmu event the guest is attempting to program should
be filtered, only consider the event select + unit mask in that
decision. Use an architecture specific mask to mask out all other bits,
including bits 35:32 on Intel. Those bits are not part of the event
select and should not be considered in that decision.
Fixes: 66bb8a065f ("KVM: x86: PMU Event Filter")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20221220161236.555143-2-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop cpu_dirty_logging_count in favor of nr_memslots_dirty_logging.
Both fields count the number of memslots that have dirty-logging enabled,
with the only difference being that cpu_dirty_logging_count is only
incremented when using PML. So while nr_memslots_dirty_logging is not a
direct replacement for cpu_dirty_logging_count, it can be combined with
enable_pml to get the same information.
Signed-off-by: David Matlack <dmatlack@google.com>
Link: https://lore.kernel.org/r/20230105214303.2919415-1-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Intercept reads to invalid (non-existent) and write-only x2APIC registers
when configuring VMX's MSR bitmaps for x2APIC+APICv. When APICv is fully
enabled, Intel hardware doesn't validate the registers on RDMSR and
instead blindly retrieves data from the vAPIC page, i.e. it's software's
responsibility to intercept reads to non-existent and write-only MSRs.
Fixes: 8d14695f95 ("x86, apicv: add virtual x2apic support")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Don't clear the "read" bits for x2APIC registers above SELF_IPI (APIC regs
0x400 - 0xff0, MSRs 0x840 - 0x8ff). KVM doesn't emulate registers in that
space (there are a smattering of AMD-only extensions) and so should
intercept reads in order to inject #GP. When APICv is fully enabled,
Intel hardware doesn't validate the registers on RDMSR and instead blindly
retrieves data from the vAPIC page, i.e. it's software's responsibility to
intercept reads to non-existent MSRs.
Fixes: 8d14695f95 ("x86, apicv: add virtual x2apic support")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20230107011025.565472-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The first half or so patches fix semi-urgent, real-world relevant APICv
and AVIC bugs.
The second half fixes a variety of AVIC and optimized APIC map bugs
where KVM doesn't play nice with various edge cases that are
architecturally legal(ish), but are unlikely to occur in most real world
scenarios
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When serializing and deserializing kvm_sregs, attributes of the segment
descriptors are stored by user space. For unusable segments,
vmx_segment_access_rights skips all attributes and sets them to 0.
This means we zero out the DPL (Descriptor Privilege Level) for unusable
entries.
Unusable segments are - contrary to their name - usable in 64bit mode and
are used by guests to for example create a linear map through the
NULL selector.
VMENTER checks if SS.DPL is correct depending on the CS segment type.
For types 9 (Execute Only) and 11 (Execute Read), CS.DPL must be equal to
SS.DPL [1].
We have seen real world guests setting CS to a usable segment with DPL=3
and SS to an unusable segment with DPL=3. Once we go through an sregs
get/set cycle, SS.DPL turns to 0. This causes the virtual machine to crash
reproducibly.
This commit changes the attribute logic to always preserve attributes for
unusable segments. According to [2] SS.DPL is always saved on VM exits,
regardless of the unusable bit so user space applications should have saved
the information on serialization correctly.
[3] specifies that besides SS.DPL the rest of the attributes of the
descriptors are undefined after VM entry if unusable bit is set. So, there
should be no harm in setting them all to the previous state.
[1] Intel SDM Vol 3C 26.3.1.2 Checks on Guest Segment Registers
[2] Intel SDM Vol 3C 27.3.2 Saving Segment Registers and Descriptor-Table
Registers
[3] Intel SDM Vol 3C 26.3.2.2 Loading Guest Segment Registers and
Descriptor-Table Registers
Cc: Alexander Graf <graf@amazon.de>
Cc: stable@vger.kernel.org
Signed-off-by: Hendrik Borghorst <hborghor@amazon.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221114164823.69555-1-hborghor@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the per-vendor required APICv inhibits with a variable instead of
calling into vendor code every time KVM wants to query the set of
required inhibits. The required inhibits are a property of the vendor's
virtualization architecture, i.e. are 100% static.
Using a variable allows the compiler to inline the check, e.g. generate
a single-uop TEST+Jcc, and thus eliminates any desire to avoid checking
inhibits for performance reasons.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inhibit APICv/AVIC if the optimized physical map is disabled so that KVM
KVM provides consistent APIC behavior if xAPIC IDs are aliased due to
vcpu_id being truncated and the x2APIC hotplug hack isn't enabled. If
the hotplug hack is disabled, events that are emulated by KVM will follow
architectural behavior (all matching vCPUs receive events, even if the
"match" is due to truncation), whereas APICv and AVIC will deliver events
only to the first matching vCPU, i.e. the vCPU that matches without
truncation.
Note, the "extra" inhibit is needed because KVM deliberately ignores
mismatches due to truncation when applying the APIC_ID_MODIFIED inhibit
so that large VMs (>255 vCPUs) can run with APICv/AVIC.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the APIC access page allocation helper function to common x86 code,
the allocation routine is virtually identical between APICv (VMX) and
AVIC (SVM). Keep APICv's gfn_to_page() + put_page() sequence, which
verifies that a backing page can be allocated, i.e. that the system isn't
under heavy memory pressure. Forcing the backing page to be populated
isn't strictly necessary, but skipping the effective prefetch only delays
the inevitable.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do compatibility checks when enabling hardware to effectively add
compatibility checks when onlining a CPU. Abort enabling, i.e. the
online process, if the (hotplugged) CPU is incompatible with the known
good setup.
At init time, KVM does compatibility checks to ensure that all online
CPUs support hardware virtualization and a common set of features. But
KVM uses hotplugged CPUs without such compatibility checks. On Intel
CPUs, this leads to #GP if the hotplugged CPU doesn't support VMX, or
VM-Entry failure if the hotplugged CPU doesn't support all features
enabled by KVM.
Note, this is little more than a NOP on SVM, as SVM already checks for
full SVM support during hardware enabling.
Opportunistically add a pr_err() if setup_vmcs_config() fails, and
tweak all error messages to output which CPU failed.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the .check_processor_compatibility() callback from kvm_x86_init_ops
to kvm_x86_ops to allow a future patch to do compatibility checks during
CPU hotplug.
Do kvm_ops_update() before compat checks so that static_call() can be
used during compat checks.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reorder code in vmx.c so that the VMX support check helpers reside above
the hardware enabling helpers, which will allow KVM to perform support
checks during hardware enabling (in a future patch).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do basic VMX/SVM support checks directly in vendor code instead of
implementing them via kvm_x86_ops hooks. Beyond the superficial benefit
of providing common messages, which isn't even clearly a net positive
since vendor code can provide more precise/detailed messages, there's
zero advantage to bouncing through common x86 code.
Consolidating the checks will also simplify performing the checks
across all CPUs (in a future patch).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use this_cpu_has() instead of boot_cpu_has() to perform the effective
"disabled by BIOS?" checks for VMX. This will allow consolidating code
between vmx_disabled_by_bios() and vmx_check_processor_compat().
Checking the boot CPU isn't a strict requirement as any divergence in VMX
enabling between the boot CPU and other CPUs will result in KVM refusing
to load thanks to the aforementioned vmx_check_processor_compat().
Furthermore, using the boot CPU was an unintentional change introduced by
commit a4d0b2fdbc ("KVM: VMX: Use VMX feature flag to query BIOS
enabling"). Prior to using the feature flags, KVM checked the raw MSR
value from the current CPU.
Reported-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-36-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KBUILD_MODNAME to specify the vendor module name instead of manually
writing out the name to make it a bit more obvious that the name isn't
completely arbitrary. A future patch will also use KBUILD_MODNAME to
define pr_fmt, at which point using KBUILD_MODNAME for kvm_x86_ops.name
further reinforces the intended usage of kvm_x86_ops.name.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_arch_check_processor_compat() and its support code now that all
architecture implementations are nops.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Eric Farman <farman@linux.ibm.com> # s390
Acked-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the CPU compatibility checks to pure x86 code, i.e. drop x86's use
of the common kvm_x86_check_cpu_compat() arch hook. x86 is the only
architecture that "needs" to do per-CPU compatibility checks, moving
the logic to x86 will allow dropping the common code, and will also
give x86 more control over when/how the compatibility checks are
performed, e.g. TDX will need to enable hardware (do VMXON) in order to
perform compatibility checks.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tag vmcs_config and vmx_capability structs as __init, the canonical
configuration is generated during hardware_setup() and must never be
modified after that point.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Call kvm_init() only after _all_ setup is complete, as kvm_init() exposes
/dev/kvm to userspace and thus allows userspace to create VMs (and call
other ioctls). E.g. KVM will encounter a NULL pointer when attempting to
add a vCPU to the per-CPU loaded_vmcss_on_cpu list if userspace is able to
create a VM before vmx_init() configures said list.
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP
CPU: 6 PID: 1143 Comm: stable Not tainted 6.0.0-rc7+ #988
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:vmx_vcpu_load_vmcs+0x68/0x230 [kvm_intel]
<TASK>
vmx_vcpu_load+0x16/0x60 [kvm_intel]
kvm_arch_vcpu_load+0x32/0x1f0 [kvm]
vcpu_load+0x2f/0x40 [kvm]
kvm_arch_vcpu_create+0x231/0x310 [kvm]
kvm_vm_ioctl+0x79f/0xe10 [kvm]
? handle_mm_fault+0xb1/0x220
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f5a6b05743b
</TASK>
Modules linked in: vhost_net vhost vhost_iotlb tap kvm_intel(+) kvm irqbypass
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the guts of kvm_arch_init() to a new helper, kvm_x86_vendor_init(),
so that VMX can do _all_ arch and vendor initialization before calling
kvm_init(). Calling kvm_init() must be the _very_ last step during init,
as kvm_init() exposes /dev/kvm to userspace, i.e. allows creating VMs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move Hyper-V's eVMCS initialization to a dedicated helper to clean up
vmx_init(), and add a comment to call out that the Hyper-V init code
doesn't need to be unwound if vmx_init() ultimately fails.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221130230934.1014142-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't disable the eVMCS static key on module exit, kvm_intel.ko owns the
key so there can't possibly be users after the kvm_intel.ko is unloaded,
at least not without much bigger issues.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reset the eVMCS controls in the per-CPU VP assist page during hardware
disabling instead of waiting until kvm-intel's module exit. The controls
are activated if and only if KVM creates a VM, i.e. don't need to be
reset if hardware is never enabled.
Doing the reset during hardware disabling will naturally fix a potential
NULL pointer deref bug once KVM disables CPU hotplug while enabling and
disabling hardware (which is necessary to fix a variety of bugs). If the
kernel is running as the root partition, the VP assist page is unmapped
during CPU hot unplug, and so KVM's clearing of the eVMCS controls needs
to occur with CPU hot(un)plug disabled, otherwise KVM could attempt to
write to a CPU's VP assist page after it's unmapped.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221130230934.1014142-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 9bcb90650e ("KVM: VMX: Get rid of eVMCS specific VMX controls
sanitization") dropped 'vmcs_conf' sanitization for KVM-on-Hyper-V because
there's no known Hyper-V version which would expose a feature
unsupported in eVMCS in VMX feature MSRs. This works well for all
currently existing Hyper-V version, however, future Hyper-V versions
may add features which are supported by KVM and are currently missing
in eVMCSv1 definition (e.g. APIC virtualization, PML,...). When this
happens, existing KVMs will get broken. With the inverted 'unsupported
by eVMCSv1' checks, we can resurrect vmcs_conf sanitization and make
KVM future proof.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221104144708.435865-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to restoring vmcs_conf sanitization for KVM-on-Hyper-V,
(and for completeness) add tertiary VM-execution controls to
'evmcs_supported_ctrls'.
No functional change intended as KVM doesn't yet expose
MSR_IA32_VMX_PROCBASED_CTLS3 to its guests.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221104144708.435865-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a new feature gets implemented in KVM, EVMCS1_UNSUPPORTED_* defines
need to be adjusted to avoid the situation when the feature is exposed
to the guest but there's no corresponding eVMCS field[s] for it. This
is not obvious and fragile. Invert 'unsupported by eVMCSv1' check and
make it 'supported by eVMCSv1' instead, this way it's much harder to
make a mistake. New features will get added to EVMCS1_SUPPORTED_*
defines when the corresponding fields are added to eVMCS definition.
No functional change intended. EVMCS1_SUPPORTED_* defines are composed
by taking KVM_{REQUIRED,OPTIONAL}_VMX_ defines and filtering out what
was previously known as EVMCS1_UNSUPPORTED_*.
From all the controls, SECONDARY_EXEC_TSC_SCALING requires special
handling as it's actually present in eVMCSv1 definition but is not
currently supported for Hyper-V-on-KVM, just for KVM-on-Hyper-V. As
evmcs_supported_ctrls will be used for both scenarios, just add it
there instead of EVMCS1_SUPPORTED_2NDEXEC.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221104144708.435865-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The only unsupported primary processor-based VM-execution control at the
moment is CPU_BASED_ACTIVATE_TERTIARY_CONTROLS and KVM doesn't expose it
in nested VMX feature MSRs anyway (see nested_vmx_setup_ctls_msrs())
but in preparation to inverting "unsupported with eVMCS" checks (and
for completeness) it's better to sanitize MSR_IA32_VMX_PROCBASED_CTLS/
MSR_IA32_VMX_TRUE_PROCBASED_CTLS too.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221104144708.435865-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 9bcb90650e ("KVM: VMX: Get rid of eVMCS specific VMX controls
sanitization") dropped 'vmcs_conf' sanitization for KVM-on-Hyper-V because
there's no known Hyper-V version which would expose a feature
unsupported in eVMCS in VMX feature MSRs. This works well for all
currently existing Hyper-V version, however, future Hyper-V versions
may add features which are supported by KVM and are currently missing
in eVMCSv1 definition (e.g. APIC virtualization, PML,...). When this
happens, existing KVMs will get broken. With the inverted 'unsupported
by eVMCSv1' checks, we can resurrect vmcs_conf sanitization and make
KVM future proof.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221104144708.435865-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to restoring vmcs_conf sanitization for KVM-on-Hyper-V,
(and for completeness) add tertiary VM-execution controls to
'evmcs_supported_ctrls'.
No functional change intended as KVM doesn't yet expose
MSR_IA32_VMX_PROCBASED_CTLS3 to its guests.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221104144708.435865-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a new feature gets implemented in KVM, EVMCS1_UNSUPPORTED_* defines
need to be adjusted to avoid the situation when the feature is exposed
to the guest but there's no corresponding eVMCS field[s] for it. This
is not obvious and fragile. Invert 'unsupported by eVMCSv1' check and
make it 'supported by eVMCSv1' instead, this way it's much harder to
make a mistake. New features will get added to EVMCS1_SUPPORTED_*
defines when the corresponding fields are added to eVMCS definition.
No functional change intended. EVMCS1_SUPPORTED_* defines are composed
by taking KVM_{REQUIRED,OPTIONAL}_VMX_ defines and filtering out what
was previously known as EVMCS1_UNSUPPORTED_*.
From all the controls, SECONDARY_EXEC_TSC_SCALING requires special
handling as it's actually present in eVMCSv1 definition but is not
currently supported for Hyper-V-on-KVM, just for KVM-on-Hyper-V. As
evmcs_supported_ctrls will be used for both scenarios, just add it
there instead of EVMCS1_SUPPORTED_2NDEXEC.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221104144708.435865-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The only unsupported primary processor-based VM-execution control at the
moment is CPU_BASED_ACTIVATE_TERTIARY_CONTROLS and KVM doesn't expose it
in nested VMX feature MSRs anyway (see nested_vmx_setup_ctls_msrs())
but in preparation to inverting "unsupported with eVMCS" checks (and
for completeness) it's better to sanitize MSR_IA32_VMX_PROCBASED_CTLS/
MSR_IA32_VMX_TRUE_PROCBASED_CTLS too.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20221104144708.435865-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When stuffing the allowed secondary execution controls for nested VMX in
response to CPUID updates, don't set the allowed-1 bit for a feature that
isn't supported by KVM, i.e. isn't allowed by the canonical vmcs_config.
WARN if KVM attempts to manipulate a feature that isn't supported. All
features that are currently stuffed are always advertised to L1 for
nested VMX if they are supported in KVM's base configuration, and no
additional features should ever be added to the CPUID-induced stuffing
(updating VMX MSRs in response to CPUID updates is a long-standing KVM
flaw that is slowly being fixed).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213062306.667649-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set ENABLE_USR_WAIT_PAUSE in KVM's supported VMX MSR configuration if the
feature is supported in hardware and enabled in KVM's base, non-nested
configuration, i.e. expose ENABLE_USR_WAIT_PAUSE to L1 if it's supported.
This fixes a bug where saving/restoring, i.e. migrating, a vCPU will fail
if WAITPKG (the associated CPUID feature) is enabled for the vCPU, and
obviously allows L1 to enable the feature for L2.
KVM already effectively exposes ENABLE_USR_WAIT_PAUSE to L1 by stuffing
the allowed-1 control ina vCPU's virtual MSR_IA32_VMX_PROCBASED_CTLS2 when
updating secondary controls in response to KVM_SET_CPUID(2), but (a) that
depends on flawed code (KVM shouldn't touch VMX MSRs in response to CPUID
updates) and (b) runs afoul of vmx_restore_control_msr()'s restriction
that the guest value must be a strict subset of the supported host value.
Although no past commit explicitly enabled nested support for WAITPKG,
doing so is safe and functionally correct from an architectural
perspective as no additional KVM support is needed to virtualize TPAUSE,
UMONITOR, and UMWAIT for L2 relative to L1, and KVM already forwards
VM-Exits to L1 as necessary (commit bf653b78f9, "KVM: vmx: Introduce
handle_unexpected_vmexit and handle WAITPKG vmexit").
Note, KVM always keeps the hosts MSR_IA32_UMWAIT_CONTROL resident in
hardware, i.e. always runs both L1 and L2 with the host's power management
settings for TPAUSE and UMWAIT. See commit bf09fb6cba ("KVM: VMX: Stop
context switching MSR_IA32_UMWAIT_CONTROL") for more details.
Fixes: e69e72faa3 ("KVM: x86: Add support for user wait instructions")
Cc: stable@vger.kernel.org
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reported-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20221213062306.667649-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly drop the result of kvm_vcpu_write_guest() when writing the
"launch state" as part of VMCLEAR emulation, and add a comment to call
out that KVM's behavior is architecturally valid. Intel's pseudocode
effectively says that VMCLEAR is a nop if the target VMCS address isn't
in memory, e.g. if the address points at MMIO.
Add a FIXME to call out that suppressing failures on __copy_to_user() is
wrong, as memory (a memslot) does exist in that case. Punt the issue to
the future as open coding kvm_vcpu_write_guest() just to make sure the
guest dies with -EFAULT isn't worth the extra complexity. The flaw will
need to be addressed if KVM ever does something intelligent on uaccess
failures, e.g. to support post-copy demand paging, but in that case KVM
will need a more thorough overhaul, i.e. VMCLEAR shouldn't need to open
code a core KVM helper.
No functional change intended.
Reported-by: coverity-bot <keescook+coverity-bot@chromium.org>
Addresses-Coverity-ID: 1527765 ("Error handling issues")
Fixes: 587d7e72ae ("kvm: nVMX: VMCLEAR should not cause the vCPU to shut down")
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221220154224.526568-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the check on IA32_FEATURE_CONTROL being locked, i.e. read-only from
the guest, into the helper to check the overall validity of the incoming
value. Opportunistically rename the helper to make it clear that it
returns a bool.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220607232353.3375324-3-seanjc@google.com
Allow userspace to set all supported bits in MSR IA32_FEATURE_CONTROL
irrespective of the guest CPUID model, e.g. via KVM_SET_MSRS. KVM's ABI
is that userspace is allowed to set MSRs before CPUID, i.e. can set MSRs
to values that would fault according to the guest CPUID model.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220607232353.3375324-2-seanjc@google.com
Declare vmread_error_trampoline() as an opaque symbol so that it cannot
be called from C code, at least not without some serious fudging. The
trampoline always passes parameters on the stack so that the inline
VMREAD sequence doesn't need to clobber registers. regparm(0) was
originally added to document the stack behavior, but it ended up being
confusing because regparm(0) is a nop for 64-bit targets.
Opportunustically wrap the trampoline and its declaration in #ifdeffery
to make it even harder to invoke incorrectly, to document why it exists,
and so that it's not left behind if/when CONFIG_CC_HAS_ASM_GOTO_OUTPUT
is true for all supported toolchains.
No functional change intended.
Cc: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220928232015.745948-1-seanjc@google.com
Reword the comments that (attempt to) document nVMX's overrides of the
CR0/4 read shadows for L2 after calling vmx_set_cr0/4(). The important
behavior that needs to be documented is that KVM needs to override the
shadows to account for L1's masks even though the shadows are set by the
common helpers (and that setting the shadows first would result in the
correct shadows being clobbered).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20220831000721.4066617-1-seanjc@google.com
According to Intel's document on Indirect Branch Restricted
Speculation, "Enabling IBRS does not prevent software from controlling
the predicted targets of indirect branches of unrelated software
executed later at the same predictor mode (for example, between two
different user applications, or two different virtual machines). Such
isolation can be ensured through use of the Indirect Branch Predictor
Barrier (IBPB) command." This applies to both basic and enhanced IBRS.
Since L1 and L2 VMs share hardware predictor modes (guest-user and
guest-kernel), hardware IBRS is not sufficient to virtualize
IBRS. (The way that basic IBRS is implemented on pre-eIBRS parts,
hardware IBRS is actually sufficient in practice, even though it isn't
sufficient architecturally.)
For virtual CPUs that support IBRS, add an indirect branch prediction
barrier on emulated VM-exit, to ensure that the predicted targets of
indirect branches executed in L1 cannot be controlled by software that
was executed in L2.
Since we typically don't intercept guest writes to IA32_SPEC_CTRL,
perform the IBPB at emulated VM-exit regardless of the current
IA32_SPEC_CTRL.IBRS value, even though the IBPB could technically be
deferred until L1 sets IA32_SPEC_CTRL.IBRS, if IA32_SPEC_CTRL.IBRS is
clear at emulated VM-exit.
This is CVE-2022-2196.
Fixes: 5c911beff2 ("KVM: nVMX: Skip IBPB when switching between vmcs01 and vmcs02")
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221019213620.1953281-3-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
At this point in time, most guests (in the default, out-of-the-box
configuration) are likely to use IA32_SPEC_CTRL. Therefore, drop the
compiler hint that it is unlikely for KVM to be intercepting WRMSR of
IA32_SPEC_CTRL.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221019213620.1953281-2-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>