Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use is_tdp_mmu_page() instead of querying sp->tdp_mmu_page directly so
that all users benefit if KVM ever finds a way to optimize the logic.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221012181702.3663607-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_mmu_{init,uninit}_tdp_mmu() behind tdp_mmu_enabled. This makes
these functions consistent with the rest of the calls into the TDP MMU
from mmu.c, and which is now possible since tdp_mmu_enabled is only
modified when the x86 vendor module is loaded. i.e. It will never change
during the lifetime of a VM.
This change also enabled removing the stub definitions for 32-bit KVM,
as the compiler will just optimize the calls out like it does for all
the other TDP MMU functions.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change tdp_mmu to a read-only parameter and drop the per-vm
tdp_mmu_enabled. For 32-bit KVM, make tdp_mmu_enabled a macro that is
always false so that the compiler can continue omitting cals to the TDP
MMU.
The TDP MMU was introduced in 5.10 and has been enabled by default since
5.15. At this point there are no known functionality gaps between the
TDP MMU and the shadow MMU, and the TDP MMU uses less memory and scales
better with the number of vCPUs. In other words, there is no good reason
to disable the TDP MMU on a live system.
Purposely do not drop tdp_mmu=N support (i.e. do not force 64-bit KVM to
always use the TDP MMU) since tdp_mmu=N is still used to get test
coverage of KVM's shadow MMU TDP support, which is used in 32-bit KVM.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Re-check sp->nx_huge_page_disallowed under the tdp_mmu_pages_lock spinlock
when adding a new shadow page in the TDP MMU. To ensure the NX reclaim
kthread can't see a not-yet-linked shadow page, the page fault path links
the new page table prior to adding the page to possible_nx_huge_pages.
If the page is zapped by different task, e.g. because dirty logging is
disabled, between linking the page and adding it to the list, KVM can end
up triggering use-after-free by adding the zapped SP to the aforementioned
list, as the zapped SP's memory is scheduled for removal via RCU callback.
The bug is detected by the sanity checks guarded by CONFIG_DEBUG_LIST=y,
i.e. the below splat is just one possible signature.
------------[ cut here ]------------
list_add corruption. prev->next should be next (ffffc9000071fa70), but was ffff88811125ee38. (prev=ffff88811125ee38).
WARNING: CPU: 1 PID: 953 at lib/list_debug.c:30 __list_add_valid+0x79/0xa0
Modules linked in: kvm_intel
CPU: 1 PID: 953 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #71
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__list_add_valid+0x79/0xa0
RSP: 0018:ffffc900006efb68 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff888116cae8a0 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 0000000100001872 RDI: ffff888277c5b4c8
RBP: ffffc90000717000 R08: ffff888277c5b4c0 R09: ffffc900006efa08
R10: 0000000000199998 R11: 0000000000199a20 R12: ffff888116cae930
R13: ffff88811125ee38 R14: ffffc9000071fa70 R15: ffff88810b794f90
FS: 00007fc0415d2740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000115201006 CR4: 0000000000172ea0
Call Trace:
<TASK>
track_possible_nx_huge_page+0x53/0x80
kvm_tdp_mmu_map+0x242/0x2c0
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Fixes: 61f9447854 ("KVM: x86/mmu: Set disallowed_nx_huge_page in TDP MMU before setting SPTE")
Reported-by: Greg Thelen <gthelen@google.com>
Analyzed-by: David Matlack <dmatlack@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213033030.83345-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Map the leaf SPTE when handling a TDP MMU page fault if and only if the
target level is reached. A recent commit reworked the retry logic and
incorrectly assumed that walking SPTEs would never "fail", as the loop
either bails (retries) or installs parent SPs. However, the iterator
itself will bail early if it detects a frozen (REMOVED) SPTE when
stepping down. The TDP iterator also rereads the current SPTE before
stepping down specifically to avoid walking into a part of the tree that
is being removed, which means it's possible to terminate the loop without
the guts of the loop observing the frozen SPTE, e.g. if a different task
zaps a parent SPTE between the initial read and try_step_down()'s refresh.
Mapping a leaf SPTE at the wrong level results in all kinds of badness as
page table walkers interpret the SPTE as a page table, not a leaf, and
walk into the weeds.
------------[ cut here ]------------
WARNING: CPU: 1 PID: 1025 at arch/x86/kvm/mmu/tdp_mmu.c:1070 kvm_tdp_mmu_map+0x481/0x510
Modules linked in: kvm_intel
CPU: 1 PID: 1025 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_tdp_mmu_map+0x481/0x510
RSP: 0018:ffffc9000072fba8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffffc9000072fcc0 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff888277c5b4c8
RBP: ffff888107d45a10 R08: ffff888277c5b4c0 R09: ffffc9000072fa48
R10: 0000000000000001 R11: 0000000000000001 R12: ffffc9000073a0e0
R13: ffff88810fc54800 R14: ffff888107d1ae60 R15: ffff88810fc54f90
FS: 00007fba9f853740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010aa7a003 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Invalid SPTE change: cannot replace a present leaf
SPTE with another present leaf SPTE mapping a
different PFN!
as_id: 0 gfn: 100200 old_spte: 600000112400bf3 new_spte: 6000001126009f3 level: 2
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu/tdp_mmu.c:559!
invalid opcode: 0000 [#1] SMP
CPU: 1 PID: 1025 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__handle_changed_spte.cold+0x95/0x9c
RSP: 0018:ffffc9000072faf8 EFLAGS: 00010246
RAX: 00000000000000c1 RBX: ffffc90000731000 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 00000000ffffdfff RDI: ffff888277c5b4c8
RBP: 0600000112400bf3 R08: ffff888277c5b4c0 R09: ffffc9000072f9a0
R10: 0000000000000001 R11: 0000000000000001 R12: 06000001126009f3
R13: 0000000000000002 R14: 0000000012600901 R15: 0000000012400b01
FS: 00007fba9f853740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010aa7a003 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_mmu_map+0x3b0/0x510
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Modules linked in: kvm_intel
---[ end trace 0000000000000000 ]---
Fixes: 63d28a25e0 ("KVM: x86/mmu: simplify kvm_tdp_mmu_map flow when guest has to retry")
Cc: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213033030.83345-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A removed SPTE is never present, hence the "if" in kvm_tdp_mmu_map
only fails in the exact same conditions that the earlier loop
tested in order to issue a "break". So, instead of checking twice the
condition (upper level SPTEs could not be created or was frozen), just
exit the loop with a goto---the usual poor-man C replacement for RAII
early returns.
While at it, do not use the "ret" variable for return values of
functions that do not return a RET_PF_* enum. This is clearer
and also makes it possible to initialize ret to RET_PF_RETRY.
Suggested-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the TDP MMU has a mechanism to split huge pages, use it in the
fault path when a huge page needs to be replaced with a mapping at a
lower level.
This change reduces the negative performance impact of NX HugePages.
Prior to this change if a vCPU executed from a huge page and NX
HugePages was enabled, the vCPU would take a fault, zap the huge page,
and mapping the faulting address at 4KiB with execute permissions
enabled. The rest of the memory would be left *unmapped* and have to be
faulted back in by the guest upon access (read, write, or execute). If
guest is backed by 1GiB, a single execute instruction can zap an entire
GiB of its physical address space.
For example, it can take a VM longer to execute from its memory than to
populate that memory in the first place:
$ ./execute_perf_test -s anonymous_hugetlb_1gb -v96
Populating memory : 2.748378795s
Executing from memory : 2.899670885s
With this change, such faults split the huge page instead of zapping it,
which avoids the non-present faults on the rest of the huge page:
$ ./execute_perf_test -s anonymous_hugetlb_1gb -v96
Populating memory : 2.729544474s
Executing from memory : 0.111965688s <---
This change also reduces the performance impact of dirty logging when
eager_page_split=N. eager_page_split=N (abbreviated "eps=N" below) can
be desirable for read-heavy workloads, as it avoids allocating memory to
split huge pages that are never written and avoids increasing the TLB
miss cost on reads of those pages.
| Config: ept=Y, tdp_mmu=Y, 5% writes |
| Iteration 1 dirty memory time |
| --------------------------------------------- |
vCPU Count | eps=N (Before) | eps=N (After) | eps=Y |
------------ | -------------- | ------------- | ------------ |
2 | 0.332305091s | 0.019615027s | 0.006108211s |
4 | 0.353096020s | 0.019452131s | 0.006214670s |
8 | 0.453938562s | 0.019748246s | 0.006610997s |
16 | 0.719095024s | 0.019972171s | 0.007757889s |
32 | 1.698727124s | 0.021361615s | 0.012274432s |
64 | 2.630673582s | 0.031122014s | 0.016994683s |
96 | 3.016535213s | 0.062608739s | 0.044760838s |
Eager page splitting remains beneficial for write-heavy workloads, but
the gap is now reduced.
| Config: ept=Y, tdp_mmu=Y, 100% writes |
| Iteration 1 dirty memory time |
| --------------------------------------------- |
vCPU Count | eps=N (Before) | eps=N (After) | eps=Y |
------------ | -------------- | ------------- | ------------ |
2 | 0.317710329s | 0.296204596s | 0.058689782s |
4 | 0.337102375s | 0.299841017s | 0.060343076s |
8 | 0.386025681s | 0.297274460s | 0.060399702s |
16 | 0.791462524s | 0.298942578s | 0.062508699s |
32 | 1.719646014s | 0.313101996s | 0.075984855s |
64 | 2.527973150s | 0.455779206s | 0.079789363s |
96 | 2.681123208s | 0.673778787s | 0.165386739s |
Further study is needed to determine if the remaining gap is acceptable
for customer workloads or if eager_page_split=N still requires a-priori
knowledge of the VM workload, especially when considering these costs
extrapolated out to large VMs with e.g. 416 vCPUs and 12TB RAM.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20221109185905.486172-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the number of TDP MMU "shadow" pages instead of tracking the pages
themselves. With the NX huge page list manipulation moved out of the common
linking flow, elminating the list-based tracking means the happy path of
adding a shadow page doesn't need to acquire a spinlock and can instead
inc/dec an atomic.
Keep the tracking as the WARN during TDP MMU teardown on leaked shadow
pages is very, very useful for detecting KVM bugs.
Tracking the number of pages will also make it trivial to expose the
counter to userspace as a stat in the future, which may or may not be
desirable.
Note, the TDP MMU needs to use a separate counter (and stat if that ever
comes to be) from the existing n_used_mmu_pages. The TDP MMU doesn't bother
supporting the shrinker nor does it honor KVM_SET_NR_MMU_PAGES (because the
TDP MMU consumes so few pages relative to shadow paging), and including TDP
MMU pages in that counter would break both the shrinker and shadow MMUs,
e.g. if a VM is using nested TDP.
Cc: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Message-Id: <20221019165618.927057-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set nx_huge_page_disallowed in TDP MMU shadow pages before making the SP
visible to other readers, i.e. before setting its SPTE. This will allow
KVM to query the flag when determining if a shadow page can be replaced
by a NX huge page without violating the rules of the mitigation.
Note, the shadow/legacy MMU holds mmu_lock for write, so it's impossible
for another CPU to see a shadow page without an up-to-date
nx_huge_page_disallowed, i.e. only the TDP MMU needs the complicated
dance.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Message-Id: <20221019165618.927057-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename most of the variables/functions involved in the NX huge page
mitigation to provide consistency, e.g. lpage vs huge page, and NX huge
vs huge NX, and also to provide clarity, e.g. to make it obvious the flag
applies only to the NX huge page mitigation, not to any condition that
prevents creating a huge page.
Add a comment explaining what the newly named "possible_nx_huge_pages"
tracks.
Leave the nx_lpage_splits stat alone as the name is ABI and thus set in
stone.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20221019165618.927057-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tag shadow pages that cannot be replaced with an NX huge page regardless
of whether or not zapping the page would allow KVM to immediately create
a huge page, e.g. because something else prevents creating a huge page.
I.e. track pages that are disallowed from being NX huge pages regardless
of whether or not the page could have been huge at the time of fault.
KVM currently tracks pages that were disallowed from being huge due to
the NX workaround if and only if the page could otherwise be huge. But
that fails to handled the scenario where whatever restriction prevented
KVM from installing a huge page goes away, e.g. if dirty logging is
disabled, the host mapping level changes, etc...
Failure to tag shadow pages appropriately could theoretically lead to
false negatives, e.g. if a fetch fault requests a small page and thus
isn't tracked, and a read/write fault later requests a huge page, KVM
will not reject the huge page as it should.
To avoid yet another flag, initialize the list_head and use list_empty()
to determine whether or not a page is on the list of NX huge pages that
should be recovered.
Note, the TDP MMU accounting is still flawed as fixing the TDP MMU is
more involved due to mmu_lock being held for read. This will be
addressed in a future commit.
Fixes: 5bcaf3e171 ("KVM: x86/mmu: Account NX huge page disallowed iff huge page was requested")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221019165618.927057-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Count the pages used by KVM mmu on x86 in memory stats under secondary
pagetable stats (e.g. "SecPageTables" in /proc/meminfo) to give better
visibility into the memory consumption of KVM mmu in a similar way to
how normal user page tables are accounted.
Add the inner helper in common KVM, ARM will also use it to count stats
in a future commit.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Marc Zyngier <maz@kernel.org> # generic KVM changes
Link: https://lore.kernel.org/r/20220823004639.2387269-3-yosryahmed@google.com
Link: https://lore.kernel.org/r/20220823004639.2387269-4-yosryahmed@google.com
[sean: squash x86 usage to workaround modpost issues]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now kvm_tdp_mmu_zap_leafs() only zaps leaf SPTEs but not any non-root
pages within that GFN range anymore, so the comment around it isn't
right.
Fix it by shifting the comment from tdp_mmu_zap_leafs() instead of
duplicating it, as tdp_mmu_zap_leafs() is static and is only called by
kvm_tdp_mmu_zap_leafs().
Opportunistically tweak the blurb about SPTEs being cleared to (a) say
"zapped" instead of "cleared" because "cleared" will be wrong if/when
KVM allows a non-zero value for non-present SPTE (i.e. for Intel TDX),
and (b) to clarify that a flush is needed if and only if a SPTE has been
zapped since MMU lock was last acquired.
Fixes: f47e5bbbc9 ("KVM: x86/mmu: Zap only TDP MMU leafs in zap range and mmu_notifier unmap")
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220728030452.484261-1-kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping collapsible SPTEs in the TDP MMU, don't bottom out on a leaf
SPTE now that KVM doesn't require a PFN to compute the host mapping level,
i.e. now that there's no need to first find a leaf SPTE and then step
back up.
Drop the now unused tdp_iter_step_up(), as it is not the safest of
helpers (using any of the low level iterators requires some understanding
of the various side effects).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715232107.3775620-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the requirement that a pfn be backed by a refcounted, compound or
or ZONE_DEVICE, struct page, and instead rely solely on the host page
tables to identify huge pages. The PageCompound() check is a remnant of
an old implementation that identified (well, attempt to identify) huge
pages without walking the host page tables. The ZONE_DEVICE check was
added as an exception to the PageCompound() requirement. In other words,
neither check is actually a hard requirement, if the primary has a pfn
backed with a huge page, then KVM can back the pfn with a huge page
regardless of the backing store.
Dropping the @pfn parameter will also allow KVM to query the max host
mapping level without having to first get the pfn, which is advantageous
for use outside of the page fault path where KVM wants to take action if
and only if a page can be mapped huge, i.e. avoids the pfn lookup for
gfns that can't be backed with a huge page.
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220715232107.3775620-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently make_huge_page_split_spte() assumes execute permissions can be
granted to any 4K SPTE when splitting huge pages. This is true for the
TDP MMU but is not necessarily true for the shadow MMU, since KVM may be
shadowing a non-executable huge page.
To fix this, pass in the role of the child shadow page where the huge
page will be split and derive the execution permission from that. This
is correct because huge pages are always split with direct shadow page
and thus the shadow page role contains the correct access permissions.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-19-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases, the NX hugepage mitigation for iTLB multihit is not
needed for all guests on a host. Allow disabling the mitigation on a
per-VM basis to avoid the performance hit of NX hugepages on trusted
workloads.
In order to disable NX hugepages on a VM, ensure that the userspace
actor has permission to reboot the system. Since disabling NX hugepages
would allow a guest to crash the system, it is similar to reboot
permissions.
Ideally, KVM would require userspace to prove it has access to KVM's
nx_huge_pages module param, e.g. so that userspace can opt out without
needing full reboot permissions. But getting access to the module param
file info is difficult because it is buried in layers of sysfs and module
glue. Requiring CAP_SYS_BOOT is sufficient for all known use cases.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the check that restricts mapping huge pages into the guest to pfns
that are backed by refcounted 'struct page' memory into the helper that
actually "requires" a 'struct page', host_pfn_mapping_level(). In
addition to deduplicating code, moving the check to the helper eliminates
the subtle requirement that the caller check that the incoming pfn is
backed by a refcounted struct page, and as an added bonus avoids an extra
pfn_to_page() lookup.
Note, the is_error_noslot_pfn() check in kvm_mmu_hugepage_adjust() needs
to stay where it is, as it guards against dereferencing a NULL memslot in
the kvm_slot_dirty_track_enabled() that follows.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429010416.2788472-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename and refactor kvm_is_reserved_pfn() to kvm_pfn_to_refcounted_page()
to better reflect what KVM is actually checking, and to eliminate extra
pfn_to_page() lookups. The kvm_release_pfn_*() an kvm_try_get_pfn()
helpers in particular benefit from "refouncted" nomenclature, as it's not
all that obvious why KVM needs to get/put refcounts for some PG_reserved
pages (ZERO_PAGE and ZONE_DEVICE).
Add a comment to call out that the list of exceptions to PG_reserved is
all but guaranteed to be incomplete. The list has mostly been compiled
by people throwing noodles at KVM and finding out they stick a little too
well, e.g. the ZERO_PAGE's refcount overflowed and ZONE_DEVICE pages
didn't get freed.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220429010416.2788472-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the macros for KVM's shadow PTEs (SPTE) from guest 64-bit PTEs
(PT64). SPTE and PT64 are _mostly_ the same, but the few differences are
quite critical, e.g. *_BASE_ADDR_MASK must differentiate between host and
guest physical address spaces, and SPTE_PERM_MASK (was PT64_PERM_MASK) is
very much specific to SPTEs.
Opportunistically (and temporarily) move most guest macros into paging.h
to clearly associate them with shadow paging, and to ensure that they're
not used as of this commit. A future patch will eliminate them entirely.
Sadly, PT32_LEVEL_BITS is left behind in mmu_internal.h because it's
needed for the quadrant calculation in kvm_mmu_get_page(). The quadrant
calculation is hot enough (when using shadow paging with 32-bit guests)
that adding a per-context helper is undesirable, and burying the
computation in paging_tmpl.h with a forward declaration isn't exactly an
improvement.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614233328.3896033-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use try_cmpxchg64 instead of cmpxchg64 (*ptr, old, new) != old in
tdp_mmu_set_spte_atomic. cmpxchg returns success in ZF flag, so this
change saves a compare after cmpxchg (and related move instruction
in front of cmpxchg). Also, remove explicit assignment to iter->old_spte
when cmpxchg fails, this is what try_cmpxchg does implicitly.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Message-Id: <20220518135111.3535-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently disabling dirty logging with the TDP MMU is extremely slow.
On a 96 vCPU / 96G VM backed with gigabyte pages, it takes ~200 seconds
to disable dirty logging with the TDP MMU, as opposed to ~4 seconds with
the shadow MMU.
When disabling dirty logging, zap non-leaf parent entries to allow
replacement with huge pages instead of recursing and zapping all of the
child, leaf entries. This reduces the number of TLB flushes required.
and reduces the disable dirty log time with the TDP MMU to ~3 seconds.
Opportunistically add a WARN() to catch GFNs that are mapped at a
higher level than their max level.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220525230904.1584480-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand and clean up the page fault stats. The current stats are at best
incomplete, and at worst misleading. Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.
Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check for A/D bits being disabled instead of the access tracking mask
being non-zero when deciding whether or not to attempt to fix a page
fault vian the fast path. Originally, the access tracking mask was
non-zero if and only if A/D bits were disabled by _KVM_ (including not
being supported by hardware), but that hasn't been true since nVMX was
fixed to honor EPTP12's A/D enabling, i.e. since KVM allowed L1 to cause
KVM to not use A/D bits while running L2 despite KVM using them while
running L1.
In other words, don't attempt the fast path just because EPT is enabled.
Note, attempting the fast path for all !PRESENT faults can "fix" a very,
_VERY_ tiny percentage of faults out of mmu_lock by detecting that the
fault is spurious, i.e. has been fixed by a different vCPU, but again the
odds of that happening are vanishingly small. E.g. booting an 8-vCPU VM
gets less than 10 successes out of 30k+ faults, and that's likely one of
the more favorable scenarios. Disabling dirty logging can likely lead to
a rash of collisions between vCPUs for some workloads that operate on a
common set of pages, but penalizing _all_ !PRESENT faults for that one
case is unlikely to be a net positive, not to mention that that problem
is best solved by not zapping in the first place.
The number of spurious faults does scale with the number of vCPUs, e.g. a
255-vCPU VM using TDP "jumps" to ~60 spurious faults detected in the fast
path (again out of 30k), but that's all of 0.2% of faults. Using legacy
shadow paging does get more spurious faults, and a few more detected out
of mmu_lock, but the percentage goes _down_ to 0.08% (and that's ignoring
faults that are reflected into the guest), i.e. the extra detections are
purely due to the sheer number of faults observed.
On the other hand, getting a "negative" in the fast path takes in the
neighborhood of 150-250 cycles. So while it is tempting to keep/extend
the current behavior, such a change needs to come with hard numbers
showing that it's actually a win in the grand scheme, or any scheme for
that matter.
Fixes: 995f00a619 ("x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We are dropping A/D bits (and W bits) in the TDP MMU. Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.
Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.
The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
Use an atomic XCHG to write TDP MMU SPTEs that have volatile bits, even
if mmu_lock is held for write, as volatile SPTEs can be written by other
tasks/vCPUs outside of mmu_lock. If a vCPU uses the to-be-modified SPTE
to write a page, the CPU can cache the translation as WRITABLE in the TLB
despite it being seen by KVM as !WRITABLE, and/or KVM can clobber the
Accessed/Dirty bits and not properly tag the backing page.
Exempt non-leaf SPTEs from atomic updates as KVM itself doesn't modify
non-leaf SPTEs without holding mmu_lock, they do not have Dirty bits, and
KVM doesn't consume the Accessed bit of non-leaf SPTEs.
Dropping the Dirty and/or Writable bits is most problematic for dirty
logging, as doing so can result in a missed TLB flush and eventually a
missed dirty page. In the unlikely event that the only dirty page(s) is
a clobbered SPTE, clear_dirty_gfn_range() will see the SPTE as not dirty
(based on the Dirty or Writable bit depending on the method) and so not
update the SPTE and ultimately not flush. If the SPTE is cached in the
TLB as writable before it is clobbered, the guest can continue writing
the associated page without ever taking a write-protect fault.
For most (all?) file back memory, dropping the Dirty bit is a non-issue.
The primary MMU write-protects its PTEs on writeback, i.e. KVM's dirty
bit is effectively ignored because the primary MMU will mark that page
dirty when the write-protection is lifted, e.g. when KVM faults the page
back in for write.
The Accessed bit is a complete non-issue. Aside from being unused for
non-leaf SPTEs, KVM doesn't do a TLB flush when aging SPTEs, i.e. the
Accessed bit may be dropped anyways.
Lastly, the Writable bit is also problematic as an extension of the Dirty
bit, as KVM (correctly) treats the Dirty bit as volatile iff the SPTE is
!DIRTY && WRITABLE. If KVM fixes an MMU-writable, but !WRITABLE, SPTE
out of mmu_lock, then it can allow the CPU to set the Dirty bit despite
the SPTE being !WRITABLE when it is checked by KVM. But that all depends
on the Dirty bit being problematic in the first place.
Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Venkatesh Srinivas <venkateshs@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
root_role.level is always the same value as shadow_level:
- it's kvm_mmu_get_tdp_level(vcpu) when going through init_kvm_tdp_mmu
- it's the level argument when going through kvm_init_shadow_ept_mmu
- it's assigned directly from new_role.base.level when going
through shadow_mmu_init_context
Remove the duplication and get the level directly from the role.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mmu_role represents the role of the root of the page tables.
It does not need any extended bits, as those govern only KVM's
page table walking; the is_* functions used for page table
walking always use the CPU role.
ext.valid is not present anymore in the MMU role, but an
all-zero MMU role is impossible because the level field is
never zero in the MMU role. So just zap the whole mmu_role
in order to force invalidation after CPUID is updated.
While making this change, which requires touching almost every
occurrence of "mmu_role", rename it to "root_role".
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow memslots and MMIO SPTEs whose gpa range would exceed the host's
MAXPHYADDR, i.e. don't create SPTEs for gfns that exceed host.MAXPHYADDR.
The TDP MMU bounds its zapping based on host.MAXPHYADDR, and so if the
guest, possibly with help from userspace, manages to coerce KVM into
creating a SPTE for an "impossible" gfn, KVM will leak the associated
shadow pages (page tables):
WARNING: CPU: 10 PID: 1122 at arch/x86/kvm/mmu/tdp_mmu.c:57
kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm]
Modules linked in: kvm_intel kvm irqbypass
CPU: 10 PID: 1122 Comm: set_memory_regi Tainted: G W 5.18.0-rc1+ #293
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x4b/0x60 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2d0 [kvm]
kvm_vm_release+0x1d/0x30 [kvm]
__fput+0x82/0x240
task_work_run+0x5b/0x90
exit_to_user_mode_prepare+0xd2/0xe0
syscall_exit_to_user_mode+0x1d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
On bare metal, encountering an impossible gpa in the page fault path is
well and truly impossible, barring CPU bugs, as the CPU will signal #PF
during the gva=>gpa translation (or a similar failure when stuffing a
physical address into e.g. the VMCS/VMCB). But if KVM is running as a VM
itself, the MAXPHYADDR enumerated to KVM may not be the actual MAXPHYADDR
of the underlying hardware, in which case the hardware will not fault on
the illegal-from-KVM's-perspective gpa.
Alternatively, KVM could continue allowing the dodgy behavior and simply
zap the max possible range. But, for hosts with MAXPHYADDR < 52, that's
a (minor) waste of cycles, and more importantly, KVM can't reasonably
support impossible memslots when running on bare metal (or with an
accurate MAXPHYADDR as a VM). Note, limiting the overhead by checking if
KVM is running as a guest is not a safe option as the host isn't required
to announce itself to the guest in any way, e.g. doesn't need to set the
HYPERVISOR CPUID bit.
A second alternative to disallowing the memslot behavior would be to
disallow creating a VM with guest.MAXPHYADDR > host.MAXPHYADDR. That
restriction is undesirable as there are legitimate use cases for doing
so, e.g. using the highest host.MAXPHYADDR out of a pool of heterogeneous
systems so that VMs can be migrated between hosts with different
MAXPHYADDRs without running afoul of the allow_smaller_maxphyaddr mess.
Note that any guest.MAXPHYADDR is valid with shadow paging, and it is
even useful in order to test KVM with MAXPHYADDR=52 (i.e. without
any reserved physical address bits).
The now common kvm_mmu_max_gfn() is inclusive instead of exclusive.
The memslot and TDP MMU code want an exclusive value, but the name
implies the returned value is inclusive, and the MMIO path needs an
inclusive check.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 524a1e4e38 ("KVM: x86/mmu: Don't leak non-leaf SPTEs when zapping all SPTEs")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220428233416.2446833-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All work currently pending will be done first by calling destroy_workqueue,
so there is unnecessary to flush it explicitly.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Lv Ruyi <lv.ruyi@zte.com.cn>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220401083530.2407703-1-lv.ruyi@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Re-introduce zapping only leaf SPTEs in kvm_zap_gfn_range() and
kvm_tdp_mmu_unmap_gfn_range(), this time without losing a pending TLB
flush when processing multiple roots (including nested TDP shadow roots).
Dropping the TLB flush resulted in random crashes when running Hyper-V
Server 2019 in a guest with KSM enabled in the host (or any source of
mmu_notifier invalidations, KSM is just the easiest to force).
This effectively revert commits 873dd12217
and fcb93eb6d0, and thus restores commit
cf3e26427c, plus this delta on top:
bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end,
struct kvm_mmu_page *root;
for_each_tdp_mmu_root_yield_safe(kvm, root, as_id)
- flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, false);
+ flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush);
return flush;
}
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220325230348.2587437-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If kvm->arch.tdp_mmu_zap_wq cannot be created, the failure has
to be propagated up to kvm_mmu_init_vm and kvm_arch_init_vm.
kvm_arch_init_vm also has to undo all the initialization, so
group all the MMU initialization code at the beginning and
handle cleaning up of kvm_page_track_init.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit cf3e26427c.
Multi-vCPU Hyper-V guests started crashing randomly on boot with the
latest kvm/queue and the problem can be bisected the problem to this
particular patch. Basically, I'm not able to boot e.g. 16-vCPU guest
successfully anymore. Both Intel and AMD seem to be affected. Reverting
the commit saves the day.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
is going to be reverted, it's not going to be true anymore that
the zap-page flow does not free any 'struct kvm_mmu_page'. Introduce
an early flush before tdp_mmu_zap_leafs() returns, to preserve
bisectability.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow calling tdp_mmu_set_spte_atomic() with a REMOVED "old" SPTE.
This solves a conundrum introduced by commit 3255530ab1 ("KVM: x86/mmu:
Automatically update iter->old_spte if cmpxchg fails"); if the helper
doesn't update old_spte in the REMOVED case, then theoretically the
caller could get stuck in an infinite loop as it will fail indefinitely
on the REMOVED SPTE. E.g. until recently, clear_dirty_gfn_range() didn't
check for a present SPTE and would have spun until getting rescheduled.
In practice, only the page fault path should "create" a new SPTE, all
other paths should only operate on existing, a.k.a. shadow present,
SPTEs. Now that the page fault path pre-checks for a REMOVED SPTE in all
cases, require all other paths to indirectly pre-check by verifying the
target SPTE is a shadow-present SPTE.
Note, this does not guarantee the actual SPTE isn't REMOVED, nor is that
scenario disallowed. The invariant is only that the caller mustn't
invoke tdp_mmu_set_spte_atomic() if the SPTE was REMOVED when last
observed by the caller.
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check for a REMOVED leaf SPTE prior to attempting to map
the final SPTE when handling a TDP MMU fault. Functionally, this is a
nop as tdp_mmu_set_spte_atomic() will eventually detect the frozen SPTE.
Pre-checking for a REMOVED SPTE is a minor optmization, but the real goal
is to allow tdp_mmu_set_spte_atomic() to have an invariant that the "old"
SPTE is never a REMOVED SPTE.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap defunct roots, a.k.a. roots that have been invalidated after their
last reference was initially dropped, asynchronously via the existing work
queue instead of forcing the work upon the unfortunate task that happened
to drop the last reference.
If a vCPU task drops the last reference, the vCPU is effectively blocked
by the host for the entire duration of the zap. If the root being zapped
happens be fully populated with 4kb leaf SPTEs, e.g. due to dirty logging
being active, the zap can take several hundred seconds. Unsurprisingly,
most guests are unhappy if a vCPU disappears for hundreds of seconds.
E.g. running a synthetic selftest that triggers a vCPU root zap with
~64tb of guest memory and 4kb SPTEs blocks the vCPU for 900+ seconds.
Offloading the zap to a worker drops the block time to <100ms.
There is an important nuance to this change. If the same work item
was queued twice before the work function has run, it would only
execute once and one reference would be leaked. Therefore, now that
queueing and flushing items is not anymore protected by kvm->slots_lock,
kvm_tdp_mmu_invalidate_all_roots() has to check root->role.invalid and
skip already invalid roots. On the other hand, kvm_mmu_zap_all_fast()
must return only after those skipped roots have been zapped as well.
These two requirements can be satisfied only if _all_ places that
change invalid to true now schedule the worker before releasing the
mmu_lock. There are just two, kvm_tdp_mmu_put_root() and
kvm_tdp_mmu_invalidate_all_roots().
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping a TDP MMU root, perform the zap in two passes to avoid
zapping an entire top-level SPTE while holding RCU, which can induce RCU
stalls. In the first pass, zap SPTEs at PG_LEVEL_1G, and then
zap top-level entries in the second pass.
With 4-level paging, zapping a PGD that is fully populated with 4kb leaf
SPTEs take up to ~7 or so seconds (time varies based on kernel config,
number of (v)CPUs, etc...). With 5-level paging, that time can balloon
well into hundreds of seconds.
Before remote TLB flushes were omitted, the problem was even worse as
waiting for all active vCPUs to respond to the IPI introduced significant
overhead for VMs with large numbers of vCPUs.
By zapping 1gb SPTEs (both shadow pages and hugepages) in the first pass,
the amount of work that is done without dropping RCU protection is
strictly bounded, with the worst case latency for a single operation
being less than 100ms.
Zapping at 1gb in the first pass is not arbitrary. First and foremost,
KVM relies on being able to zap 1gb shadow pages in a single shot when
when repacing a shadow page with a hugepage. Zapping a 1gb shadow page
that is fully populated with 4kb dirty SPTEs also triggers the worst case
latency due writing back the struct page accessed/dirty bits for each 4kb
page, i.e. the two-pass approach is guaranteed to work so long as KVM can
cleany zap a 1gb shadow page.
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 52-....: (20999 ticks this GP) idle=7be/1/0x4000000000000000
softirq=15759/15759 fqs=5058
(t=21016 jiffies g=66453 q=238577)
NMI backtrace for cpu 52
Call Trace:
...
mark_page_accessed+0x266/0x2f0
kvm_set_pfn_accessed+0x31/0x40
handle_removed_tdp_mmu_page+0x259/0x2e0
__handle_changed_spte+0x223/0x2c0
handle_removed_tdp_mmu_page+0x1c1/0x2e0
__handle_changed_spte+0x223/0x2c0
handle_removed_tdp_mmu_page+0x1c1/0x2e0
__handle_changed_spte+0x223/0x2c0
zap_gfn_range+0x141/0x3b0
kvm_tdp_mmu_zap_invalidated_roots+0xc8/0x130
kvm_mmu_zap_all_fast+0x121/0x190
kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10
kvm_page_track_flush_slot+0x5c/0x80
kvm_arch_flush_shadow_memslot+0xe/0x10
kvm_set_memslot+0x172/0x4e0
__kvm_set_memory_region+0x337/0x590
kvm_vm_ioctl+0x49c/0xf80
Reported-by: David Matlack <dmatlack@google.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow yielding when zapping SPTEs after the last reference to a valid
root is put. Because KVM must drop all SPTEs in response to relevant
mmu_notifier events, mark defunct roots invalid and reset their refcount
prior to zapping the root. Keeping the refcount elevated while the zap
is in-progress ensures the root is reachable via mmu_notifier until the
zap completes and the last reference to the invalid, defunct root is put.
Allowing kvm_tdp_mmu_put_root() to yield fixes soft lockup issues if the
root in being put has a massive paging structure, e.g. zapping a root
that is backed entirely by 4kb pages for a guest with 32tb of memory can
take hundreds of seconds to complete.
watchdog: BUG: soft lockup - CPU#49 stuck for 485s! [max_guest_memor:52368]
RIP: 0010:kvm_set_pfn_dirty+0x30/0x50 [kvm]
__handle_changed_spte+0x1b2/0x2f0 [kvm]
handle_removed_tdp_mmu_page+0x1a7/0x2b8 [kvm]
__handle_changed_spte+0x1f4/0x2f0 [kvm]
handle_removed_tdp_mmu_page+0x1a7/0x2b8 [kvm]
__handle_changed_spte+0x1f4/0x2f0 [kvm]
tdp_mmu_zap_root+0x307/0x4d0 [kvm]
kvm_tdp_mmu_put_root+0x7c/0xc0 [kvm]
kvm_mmu_free_roots+0x22d/0x350 [kvm]
kvm_mmu_reset_context+0x20/0x60 [kvm]
kvm_arch_vcpu_ioctl_set_sregs+0x5a/0xc0 [kvm]
kvm_vcpu_ioctl+0x5bd/0x710 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x44/0xae
KVM currently doesn't put a root from a non-preemptible context, so other
than the mmu_notifier wrinkle, yielding when putting a root is safe.
Yield-unfriendly iteration uses for_each_tdp_mmu_root(), which doesn't
take a reference to each root (it requires mmu_lock be held for the
entire duration of the walk).
tdp_mmu_next_root() is used only by the yield-friendly iterator.
tdp_mmu_zap_root_work() is explicitly yield friendly.
kvm_mmu_free_roots() => mmu_free_root_page() is a much bigger fan-out,
but is still yield-friendly in all call sites, as all callers can be
traced back to some combination of vcpu_run(), kvm_destroy_vm(), and/or
kvm_create_vm().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the system worker threads to zap the roots invalidated
by the TDP MMU's "fast zap" mechanism, implemented by
kvm_tdp_mmu_invalidate_all_roots().
At this point, apart from allowing some parallelism in the zapping of
roots, the workqueue is a glorified linked list: work items are added and
flushed entirely within a single kvm->slots_lock critical section. However,
the workqueue fixes a latent issue where kvm_mmu_zap_all_invalidated_roots()
assumes that it owns a reference to all invalid roots; therefore, no
one can set the invalid bit outside kvm_mmu_zap_all_fast(). Putting the
invalidated roots on a linked list... erm, on a workqueue ensures that
tdp_mmu_zap_root_work() only puts back those extra references that
kvm_mmu_zap_all_invalidated_roots() had gifted to it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer TLB flushes to the caller when freeing TDP MMU shadow pages instead
of immediately flushing. Because the shadow pages are freed in an RCU
callback, so long as at least one CPU holds RCU, all CPUs are protected.
For vCPUs running in the guest, i.e. consuming TLB entries, KVM only
needs to ensure the caller services the pending TLB flush before dropping
its RCU protections. I.e. use the caller's RCU as a proxy for all vCPUs
running in the guest.
Deferring the flushes allows batching flushes, e.g. when installing a
1gb hugepage and zapping a pile of SPs. And when zapping an entire root,
deferring flushes allows skipping the flush entirely (because flushes are
not needed in that case).
Avoiding flushes when zapping an entire root is especially important as
synchronizing with other CPUs via IPI after zapping every shadow page can
cause significant performance issues for large VMs. The issue is
exacerbated by KVM zapping entire top-level entries without dropping
RCU protection, which can lead to RCU stalls even when zapping roots
backing relatively "small" amounts of guest memory, e.g. 2tb. Removing
the IPI bottleneck largely mitigates the RCU issues, though it's likely
still a problem for 5-level paging. A future patch will further address
the problem by zapping roots in multiple passes to avoid holding RCU for
an extended duration.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When yielding in the TDP MMU iterator, service any pending TLB flush
before dropping RCU protections in anticipation of using the caller's RCU
"lock" as a proxy for vCPUs in the guest.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap only leaf SPTEs in the TDP MMU's zap_gfn_range(), and rename various
functions accordingly. When removing mappings for functional correctness
(except for the stupid VFIO GPU passthrough memslots bug), zapping the
leaf SPTEs is sufficient as the paging structures themselves do not point
at guest memory and do not directly impact the final translation (in the
TDP MMU).
Note, this aligns the TDP MMU with the legacy/full MMU, which zaps only
the rmaps, a.k.a. leaf SPTEs, in kvm_zap_gfn_range() and
kvm_unmap_gfn_range().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that all callers of zap_gfn_range() hold mmu_lock for write, drop
support for zapping with mmu_lock held for read. That all callers hold
mmu_lock for write isn't a random coincidence; now that the paths that
need to zap _everything_ have their own path, the only callers left are
those that need to zap for functional correctness. And when zapping is
required for functional correctness, mmu_lock must be held for write,
otherwise the caller has no guarantees about the state of the TDP MMU
page tables after it has run, e.g. the SPTE(s) it zapped can be
immediately replaced by a vCPU faulting in a page.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a dedicated helper for zapping a TDP MMU root, and use it in the three
flows that do "zap_all" and intentionally do not do a TLB flush if SPTEs
are zapped (zapping an entire root is safe if and only if it cannot be in
use by any vCPU). Because a TLB flush is never required, unconditionally
pass "false" to tdp_mmu_iter_cond_resched() when potentially yielding.
Opportunistically document why KVM must not yield when zapping roots that
are being zapped by kvm_tdp_mmu_put_root(), i.e. roots whose refcount has
reached zero, and further harden the flow to detect improper KVM behavior
with respect to roots that are supposed to be unreachable.
In addition to hardening zapping of roots, isolating zapping of roots
will allow future simplification of zap_gfn_range() by having it zap only
leaf SPTEs, and by removing its tricky "zap all" heuristic. By having
all paths that truly need to free _all_ SPs flow through the dedicated
root zapper, the generic zapper can be freed of those concerns.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't flush the TLBs when zapping all TDP MMU pages, as the only time KVM
uses the slow version of "zap everything" is when the VM is being
destroyed or the owning mm has exited. In either case, KVM_RUN is
unreachable for the VM, i.e. the guest TLB entries cannot be consumed.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-15-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When recovering a potential hugepage that was shattered for the iTLB
multihit workaround, precisely zap only the target page instead of
iterating over the TDP MMU to find the SP that was passed in. This will
allow future simplification of zap_gfn_range() by having it zap only
leaf SPTEs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor __tdp_mmu_set_spte() to work with raw values instead of a
tdp_iter objects so that a future patch can modify SPTEs without doing a
walk, and without having to synthesize a tdp_iter.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-13-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if the new_spte being set by __tdp_mmu_set_spte() is a REMOVED_SPTE,
which is called out by the comment as being disallowed but not actually
checked. Keep the WARN on the old_spte as well, because overwriting a
REMOVED_SPTE in the non-atomic path is also disallowed (as evidence by
lack of splats with the existing WARN).
Fixes: 08f07c800e ("KVM: x86/mmu: Flush TLBs after zap in TDP MMU PF handler")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-12-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add helpers to read and write TDP MMU SPTEs instead of open coding
rcu_dereference() all over the place, and to provide a convenient
location to document why KVM doesn't exempt holding mmu_lock for write
from having to hold RCU (and any future changes to the rules).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-11-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop RCU protection after processing each root when handling MMU notifier
hooks that aren't the "unmap" path, i.e. aren't zapping. Temporarily
drop RCU to let RCU do its thing between roots, and to make it clear that
there's no special behavior that relies on holding RCU across all roots.
Currently, the RCU protection is completely superficial, it's necessary
only to make rcu_dereference() of SPTE pointers happy. A future patch
will rely on holding RCU as a proxy for vCPUs in the guest, e.g. to
ensure shadow pages aren't freed before all vCPUs do a TLB flush (or
rather, acknowledge the need for a flush), but in that case RCU needs to
be held until the flush is complete if and only if the flush is needed
because a shadow page may have been removed. And except for the "unmap"
path, MMU notifier events cannot remove SPs (don't toggle PRESENT bit,
and can't change the PFN for a SP).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-10-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Batch TLB flushes (with other MMUs) when handling ->change_spte()
notifications in the TDP MMU. The MMU notifier path in question doesn't
allow yielding and correcty flushes before dropping mmu_lock.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-9-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Look for a !leaf=>leaf conversion instead of a PFN change when checking
if a SPTE change removed a TDP MMU shadow page. Convert the PFN check
into a WARN, as KVM should never change the PFN of a shadow page (except
when its being zapped or replaced).
From a purely theoretical perspective, it's not illegal to replace a SP
with a hugepage pointing at the same PFN. In practice, it's impossible
as that would require mapping guest memory overtop a kernel-allocated SP.
Either way, the check is odd.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-8-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the "shared" argument of for_each_tdp_mmu_root_yield_safe, thus ensuring
that readers do not ever acquire a reference to an invalid root. After this
patch, all readers except kvm_tdp_mmu_zap_invalidated_roots() treat
refcount=0/valid, refcount=0/invalid and refcount=1/invalid in exactly the
same way. kvm_tdp_mmu_zap_invalidated_roots() is different but it also
does not acquire a reference to the invalid root, and it cannot see
refcount=0/invalid because it is guaranteed to run after
kvm_tdp_mmu_invalidate_all_roots().
Opportunistically add a lockdep assertion to the yield-safe iterator.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Eager page splitting is an optimization; it does not have to be performed on
invalid roots. It is also the only case in which a reader might acquire
a reference to an invalid root, so after this change we know that readers
will skip both dying and invalid roots.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Assert that mmu_lock is held for write by users of the yield-unfriendly
TDP iterator. The nature of a shared walk means that the caller needs to
play nice with other tasks modifying the page tables, which is more or
less the same thing as playing nice with yielding. Theoretically, KVM
could gain a flow where it could legitimately take mmu_lock for read in
a non-preemptible context, but that's highly unlikely and any such case
should be viewed with a fair amount of scrutiny.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the misleading flush "handling" when zapping invalidated TDP MMU
roots, and document that flushing is unnecessary for all flavors of MMUs
when zapping invalid/obsolete roots/pages. The "handling" in the TDP MMU
is dead code, as zap_gfn_range() is called with shared=true, in which
case it will never return true due to the flushing being handled by
tdp_mmu_zap_spte_atomic().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly ignore the result of zap_gfn_range() when putting the last
reference to a TDP MMU root, and add a pile of comments to formalize the
TDP MMU's behavior of deferring TLB flushes to alloc/reuse. Note, this
only affects the !shared case, as zap_gfn_range() subtly never returns
true for "flush" as the flush is handled by tdp_mmu_zap_spte_atomic().
Putting the root without a flush is ok because even if there are stale
references to the root in the TLB, they are unreachable because KVM will
not run the guest with the same ASID without first flushing (where ASID
in this context refers to both SVM's explicit ASID and Intel's implicit
ASID that is constructed from VPID+PCID+EPT4A+etc...).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-5-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix misleading and arguably wrong comments in the TDP MMU's fast zap
flow. The comments, and the fact that actually zapping invalid roots was
added separately, strongly suggests that zapping invalid roots is an
optimization and not required for correctness. That is a lie.
KVM _must_ zap invalid roots before returning from kvm_mmu_zap_all_fast(),
because when it's called from kvm_mmu_invalidate_zap_pages_in_memslot(),
KVM is relying on it to fully remove all references to the memslot. Once
the memslot is gone, KVM's mmu_notifier hooks will be unable to find the
stale references as the hva=>gfn translation is done via the memslots.
If KVM doesn't immediately zap SPTEs and userspace unmaps a range after
deleting a memslot, KVM will fail to zap in response to the mmu_notifier
due to not finding a memslot corresponding to the notifier's range, which
leads to a variation of use-after-free.
The other misleading comment (and code) explicitly states that roots
without a reference should be skipped. While that's technically true,
it's also extremely misleading as it should be impossible for KVM to
encounter a defunct root on the list while holding mmu_lock for write.
Opportunistically add a WARN to enforce that invariant.
Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Fixes: 4c6654bd16 ("KVM: x86/mmu: Tear down roots before kvm_mmu_zap_all_fast returns")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check for present SPTEs when clearing dirty bits in the TDP
MMU. This isn't strictly required for correctness, as setting the dirty
bit in a defunct SPTE will not change the SPTE from !PRESENT to PRESENT.
However, the guarded MMU_WARN_ON() in spte_ad_need_write_protect() would
complain if anyone actually turned on KVM's MMU debugging.
Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-3-seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.
The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a tracepoint that records whenever KVM eagerly splits a huge page
and the error status of the split to indicate if it succeeded or failed
and why.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.
Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.
Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.
Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:
1. Splitting on the vCPU thread interrupts vCPUs execution and is
disruptive to customers whereas splitting on VM ioctl threads can
run in parallel with vCPU execution.
2. Splitting all huge pages at once is more efficient because it does
not require performing VM-exit handling or walking the page table for
every 4KiB page in the memslot, and greatly reduces the amount of
contention on the mmu_lock.
For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.
Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.
Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the allocation of shadow pages from their initialization. This
is in preparation for splitting huge pages outside of the vCPU fault
context, which requires a different allocation mechanism.
No functional changed intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-15-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Derive the page role from the parent shadow page, since the only thing
that changes is the level. This is in preparation for splitting huge
pages during VM-ioctls which do not have access to the vCPU MMU context.
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-14-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The vCPU's mmu_role already has the correct values for direct,
has_4_byte_gpte, access, and ad_disabled. Remove the code that was
redundantly overwriting these fields with the same values.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-13-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of passing a pointer to the root page table and the root level
separately, pass in a pointer to the root kvm_mmu_page struct. This
reduces the number of arguments by 1, cutting down on line lengths.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-12-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the logic to atomically replace an SPTE with an SPTE that
points to a new page table into a single helper function. This will be
used in a follow-up commit to split huge pages, which involves replacing
each huge page SPTE with an SPTE that points to a page table.
Opportunistically drop the call to trace_kvm_mmu_get_page() in
kvm_tdp_mmu_map() since it is redundant with the identical tracepoint in
tdp_mmu_alloc_sp().
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-8-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
First remove tdp_mmu_ from the name since it is redundant given that it
is a static function in tdp_mmu.c. There is a pattern of using tdp_mmu_
as a prefix in the names of static TDP MMU functions, but all of the
other handle_*() variants do not include such a prefix. So drop it
entirely.
Then change "page" to "pt" to convey that this is operating on a page
table rather than an struct page. Purposely use "pt" instead of "sp"
since this function takes the raw RCU-protected page table pointer as an
argument rather than a pointer to the struct kvm_mmu_page.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename 3 functions in tdp_mmu.c that handle shadow pages:
alloc_tdp_mmu_page() -> tdp_mmu_alloc_sp()
tdp_mmu_link_page() -> tdp_mmu_link_sp()
tdp_mmu_unlink_page() -> tdp_mmu_unlink_sp()
These changed make tdp_mmu a consistent prefix before the verb in the
function name, and make it more clear that these functions deal with
kvm_mmu_page structs rather than struct pages.
One could argue that "shadow page" is the wrong term for a page table in
the TDP MMU since it never actually shadows a guest page table.
However, "shadow page" (or "sp" for short) has evolved to become the
standard term in KVM when referring to a kvm_mmu_page struct, and its
associated page table and other metadata, regardless of whether the page
table shadows a guest page table. So this commit just makes the TDP MMU
more consistent with the rest of KVM.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
tdp_mmu_set_spte_atomic() and tdp_mmu_zap_spte_atomic() return a bool
with true indicating the SPTE modification was successful and false
indicating failure. Change these functions to return an int instead
since that is the common practice.
Opportunistically fix up the kernel-doc style for the Return section
above tdp_mmu_set_spte_atomic().
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate a bunch of code that was manually re-reading the spte if the
cmpxchg failed. There is no extra cost of doing this because we already
have the spte value as a result of the cmpxchg (and in fact this
eliminates re-reading the spte), and none of the call sites depend on
iter->old_spte retaining the stale spte value.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check SPTE writable invariants when setting SPTEs rather than in
spte_can_locklessly_be_made_writable(). By the time KVM checks
spte_can_locklessly_be_made_writable(), the SPTE has long been since
corrupted.
Note that these invariants only apply to shadow-present leaf SPTEs (i.e.
not to MMIO SPTEs, non-leaf SPTEs, etc.). Add a comment explaining the
restriction and only instrument the code paths that set shadow-present
leaf SPTEs.
To account for access tracking, also check the SPTE writable invariants
when marking an SPTE as an access track SPTE. This also lets us remove
a redundant WARN from mark_spte_for_access_track().
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230518.1697048-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The "struct kvm *kvm" parameter of kvm_tdp_mmu_get_root() is not used,
so remove it. No functional change intended.
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-5-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap both valid and invalid roots when zapping/unmapping a gfn range, as
KVM must ensure it holds no references to the freed page after returning
from the unmap operation. Most notably, the TDP MMU doesn't zap invalid
roots in mmu_notifier callbacks. This leads to use-after-free and other
issues if the mmu_notifier runs to completion while an invalid root
zapper yields as KVM fails to honor the requirement that there must be
_no_ references to the page after the mmu_notifier returns.
The bug is most easily reproduced by hacking KVM to cause a collision
between set_nx_huge_pages() and kvm_mmu_notifier_release(), but the bug
exists between kvm_mmu_notifier_invalidate_range_start() and memslot
updates as well. Invalidating a root ensures pages aren't accessible by
the guest, and KVM won't read or write page data itself, but KVM will
trigger e.g. kvm_set_pfn_dirty() when zapping SPTEs, and thus completing
a zap of an invalid root _after_ the mmu_notifier returns is fatal.
WARNING: CPU: 24 PID: 1496 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:173 [kvm]
RIP: 0010:kvm_is_zone_device_pfn+0x96/0xa0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0xa8/0xe0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
zap_gfn_range+0x1f3/0x310 [kvm]
kvm_tdp_mmu_zap_invalidated_roots+0x50/0x90 [kvm]
kvm_mmu_zap_all_fast+0x177/0x1a0 [kvm]
set_nx_huge_pages+0xb4/0x190 [kvm]
param_attr_store+0x70/0x100
module_attr_store+0x19/0x30
kernfs_fop_write_iter+0x119/0x1b0
new_sync_write+0x11c/0x1b0
vfs_write+0x1cc/0x270
ksys_write+0x5f/0xe0
do_syscall_64+0x38/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the check for an invalid root out of kvm_tdp_mmu_get_root() and into
the one place it actually matters, tdp_mmu_next_root(), as the other user
already has an implicit validity check. A future bug fix will need to
get references to invalid roots to honor mmu_notifier requests; there's
no point in forcing what will be a common path to open code getting a
reference to a root.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the common TDP MMU zap helper when handling an MMU notifier unmap
event, the two flows are semantically identical. Consolidate the code in
preparation for a future bug fix, as both kvm_tdp_mmu_unmap_gfn_range()
and __kvm_tdp_mmu_zap_gfn_range() are guilty of not zapping SPTEs in
invalid roots.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the TDP MMU is write-protection GFNs for page table protection (as
opposed to for dirty logging, or due to the HVA not being writable), it
checks if the SPTE is already write-protected and if so skips modifying
the SPTE and the TLB flush.
This behavior is incorrect because it fails to check if the SPTE
is write-protected for page table protection, i.e. fails to check
that MMU-writable is '0'. If the SPTE was write-protected for dirty
logging but not page table protection, the SPTE could locklessly be made
writable, and vCPUs could still be running with writable mappings cached
in their TLB.
Fix this by only skipping setting the SPTE if the SPTE is already
write-protected *and* MMU-writable is already clear. Technically,
checking only MMU-writable would suffice; a SPTE cannot be writable
without MMU-writable being set. But check both to be paranoid and
because it arguably yields more readable code.
Fixes: 46044f72c3 ("kvm: x86/mmu: Support write protection for nesting in tdp MMU")
Cc: stable@vger.kernel.org
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-2-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU"). In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After dropping mmu_lock in the TDP MMU, restart the iterator during
tdp_iter_next() and do not advance the iterator. Advancing the iterator
results in skipping the top-level SPTE and all its children, which is
fatal if any of the skipped SPTEs were not visited before yielding.
When zapping all SPTEs, i.e. when min_level == root_level, restarting the
iter and then invoking tdp_iter_next() is always fatal if the current gfn
has as a valid SPTE, as advancing the iterator results in try_step_side()
skipping the current gfn, which wasn't visited before yielding.
Sprinkle WARNs on iter->yielded being true in various helpers that are
often used in conjunction with yielding, and tag the helper with
__must_check to reduce the probabily of improper usage.
Failing to zap a top-level SPTE manifests in one of two ways. If a valid
SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),
the shadow page will be leaked and KVM will WARN accordingly.
WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2a0 [kvm]
kvm_vcpu_release+0x34/0x60 [kvm]
__fput+0x82/0x240
task_work_run+0x5c/0x90
do_exit+0x364/0xa10
? futex_unqueue+0x38/0x60
do_group_exit+0x33/0xa0
get_signal+0x155/0x850
arch_do_signal_or_restart+0xed/0x750
exit_to_user_mode_prepare+0xc5/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x48/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by
kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of
marking a struct page as dirty/accessed after it has been put back on the
free list. This directly triggers a WARN due to encountering a page with
page_count() == 0, but it can also lead to data corruption and additional
errors in the kernel.
WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171
RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0x120/0x1d0 [kvm]
__handle_changed_spte+0x92e/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
zap_gfn_range+0x549/0x620 [kvm]
kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]
mmu_free_root_page+0x219/0x2c0 [kvm]
kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]
kvm_mmu_unload+0x1c/0xa0 [kvm]
kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]
kvm_put_kvm+0x3b1/0x8b0 [kvm]
kvm_vcpu_release+0x4e/0x70 [kvm]
__fput+0x1f7/0x8c0
task_work_run+0xf8/0x1a0
do_exit+0x97b/0x2230
do_group_exit+0xda/0x2a0
get_signal+0x3be/0x1e50
arch_do_signal_or_restart+0x244/0x17f0
exit_to_user_mode_prepare+0xcb/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Note, the underlying bug existed even before commit 1af4a96025 ("KVM:
x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to
tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still
incorrectly advance past a top-level entry when yielding on a lower-level
entry. But with respect to leaking shadow pages, the bug was introduced
by yielding before processing the current gfn.
Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or
callers could jump to their "retry" label. The downside of that approach
is that tdp_mmu_iter_cond_resched() _must_ be called before anything else
in the loop, and there's no easy way to enfornce that requirement.
Ideally, KVM would handling the cond_resched() fully within the iterator
macro (the code is actually quite clean) and avoid this entire class of
bugs, but that is extremely difficult do while also supporting yielding
after tdp_mmu_set_spte_atomic() fails. Yielding after failing to set a
SPTE is very desirable as the "owner" of the REMOVED_SPTE isn't strictly
bounded, e.g. if it's zapping a high-level shadow page, the REMOVED_SPTE
may block operations on the SPTE for a significant amount of time.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 1af4a96025 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed")
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211214033528.123268-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This bit is very close to mean "role.quadrant is not in use", except that
it is false also when the MMU is mapping guest physical addresses
directly. In that case, role.quadrant is indeed not in use, but there
are no guest PTEs at all.
Changing the name and direction of the bit removes the special case,
since a guest with paging disabled, or not considering guest paging
structures as is the case for two-dimensional paging, does not have
to deal with 4-byte guest PTEs.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the "flush" param and return values to/from the TDP MMU's helper for
zapping collapsible SPTEs. Because the helper runs with mmu_lock held
for read, not write, it uses tdp_mmu_zap_spte_atomic(), and the atomic
zap handles the necessary remote TLB flush.
Similarly, because mmu_lock is dropped and re-acquired between zapping
legacy MMUs and zapping TDP MMUs, kvm_mmu_zap_collapsible_sptes() must
handle remote TLB flushes from the legacy MMU before calling into the TDP
MMU.
Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120045046.3940942-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the yield-safe variant of the TDP MMU iterator when handling an
unmapping event from the MMU notifier, as most occurences of the event
allow yielding.
Fixes: e1eed5847b ("KVM: x86/mmu: Allow yielding during MMU notifier unmap/zap, if possible")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211120015008.3780032-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the parameter flush is set, zap_gfn_range() would flush remote tlb
when yield, then tlb flush is not needed outside. So use the return
value of zap_gfn_range() directly instead of OR on it in
kvm_unmap_gfn_range() and kvm_tdp_mmu_unmap_gfn_range().
Fixes: 3039bcc744 ("KVM: Move x86's MMU notifier memslot walkers to generic code")
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Message-Id: <5e16546e228877a4d974f8c0e448a93d52c7a5a9.1637140154.git.houwenlong93@linux.alibaba.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When recursively clearing out disconnected pts, the range based TLB
flush in handle_removed_tdp_mmu_page uses the wrong starting GFN,
resulting in the flush mostly missing the affected range. Fix this by
using base_gfn for the flush.
In response to feedback from David Matlack on the RFC version of this
patch, also move a few definitions into the for loop in the function to
prevent unintended references to them in the future.
Fixes: a066e61f13 ("KVM: x86/mmu: Factor out handling of removed page tables")
CC: stable@vger.kernel.org
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115211704.2621644-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Wrap the read of iter->sptep in tdp_mmu_map_handle_target_level() with
rcu_dereference(). Shadow pages in the TDP MMU, and thus their SPTEs,
are protected by rcu.
This fixes a Sparse warning at tdp_mmu.c:900:51:
warning: incorrect type in argument 1 (different address spaces)
expected unsigned long long [usertype] *sptep
got unsigned long long [noderef] [usertype] __rcu *[usertype] sptep
Fixes: 7158bee4b4 ("KVM: MMU: pass kvm_mmu_page struct to make_spte")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211103161833.3769487-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
"prefetch", "prefault" and "speculative" are used throughout KVM to mean
the same thing. Use a single name, standardizing on "prefetch" which
is already used by various functions such as direct_pte_prefetch,
FNAME(prefetch_gpte), FNAME(pte_prefetch), etc.
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mmu_try_to_unsync_pages checks if page tracking is active for the given
gfn, which requires knowing the memslot. We can pass down the memslot
via make_spte to avoid this lookup.
The memslot is also handy for make_spte's marking of the gfn as dirty:
we can test whether dirty page tracking is enabled, and if so ensure that
pages are mapped as writable with 4K granularity. Apart from the warning,
no functional change is intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The level and A/D bit support of the new SPTE can be found in the role,
which is stored in the kvm_mmu_page struct. This merges two arguments
into one.
For the TDP MMU, the kvm_mmu_page was not used (kvm_tdp_mmu_map does
not use it if the SPTE is already present) so we fetch it just before
calling make_spte.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for removing the ad_disabled argument of make_spte; instead it can
be found in the role of a struct kvm_mmu_page. First of all, the TDP MMU
must set the role accurately.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that make_spte is called directly by the shadow MMU (rather than
wrapped by set_spte), it only has to return one boolean value.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The memslot for the faulting gfn is used throughout the page fault
handling code, so capture it in kvm_page_fault as soon as we know the
gfn and use it in the page fault handling code that has direct access
to the kvm_page_fault struct. Replace various tests using is_noslot_pfn
with more direct tests on fault->slot being NULL.
This, in combination with the subsequent patch, improves "Populate
memory time" in dirty_log_perf_test by 5% when using the legacy MMU.
There is no discerable improvement to the performance of the TDP MMU.
No functional change intended.
Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210813203504.2742757-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
tdp_mmu_map_set_spte_atomic is not taking care of dirty logging anymore,
the only difference that remains is that it takes a vCPU instead of
the struct kvm. Merge the two functions.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This simplifies set_spte, which we want to remove, and unifies code
between the shadow MMU and the TDP MMU. The warning will be added
back later to make_spte as well.
There is a small disadvantage in the TDP MMU; it may unnecessarily mark
a page as dirty twice if two vCPUs end up mapping the same page twice.
However, this is a very small cost for a case that is already rare.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass struct kvm_page_fault to tracepoints instead of extracting the
arguments from the struct. This also lets the kvm_mmu_spte_requested
tracepoint pick the gfn directly from fault->gfn, instead of using
the address.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass struct kvm_page_fault to disallowed_hugepage_adjust() instead of
extracting the arguments from the struct. Tweak a bit the conditions
to avoid long lines.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass struct kvm_page_fault to kvm_mmu_hugepage_adjust() instead of
extracting the arguments from the struct; the results are also stored
in the struct, so the callers are adjusted consequently.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass struct kvm_page_fault to tdp_mmu_map_handle_target_level() instead of
extracting the arguments from the struct.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass struct kvm_page_fault to kvm_tdp_mmu_map() instead of
extracting the arguments from the struct.
Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After any shadow page modification, flushing tlb only on current VCPU
is weird due to other VCPU's tlb might still be stale.
In other words, if there is any mandatory tlb-flushing after shadow page
modification, SET_SPTE_NEED_REMOTE_TLB_FLUSH or remote_flush should be
set and the tlbs of all VCPUs should be flushed. There is not point to
only flush current tlb except when the request is from vCPU's or pCPU's
activities.
If there was any bug that mandatory tlb-flushing is required and
SET_SPTE_NEED_REMOTE_TLB_FLUSH/remote_flush is failed to set, this patch
would expose the bug in a more destructive way. The related code paths
are checked and no missing SET_SPTE_NEED_REMOTE_TLB_FLUSH is found yet.
Currently, there is no optional tlb-flushing after sync page related code
is changed to flush tlb timely. So we can just remove these local flushing
code.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210918005636.3675-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop @shared from tdp_mmu_link_page() and hardcode it to work for
mmu_lock being held for read. The helper has exactly one caller and
in all likelihood will only ever have exactly one caller. Even if KVM
adds a path to install translations without an initiating page fault,
odds are very, very good that the path will just be a wrapper to the
"page fault" handler (both SNP and TDX RFCs propose patches to do
exactly that).
No functional change intended.
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810224554.2978735-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Existing KVM code tracks the number of large pages regardless of their
sizes. Therefore, when large page of 1GB (or larger) is adopted, the
information becomes less useful because lpages counts a mix of 1G and 2M
pages.
So remove the lpages since it is easy for user space to aggregate the info.
Instead, provide a comprehensive page stats of all sizes from 4K to 512G.
Suggested-by: Ben Gardon <bgardon@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Jing Zhang <jingzhangos@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20210803044607.599629-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Factor in whether or not the old/new SPTEs are shadow-present when
adjusting the large page stats in the TDP MMU. A modified MMIO SPTE can
toggle the page size bit, as bit 7 is used to store the MMIO generation,
i.e. is_large_pte() can get a false positive when called on a MMIO SPTE.
Ditto for nuking SPTEs with REMOVED_SPTE, which sets bit 7 in its magic
value.
Opportunistically move the logic below the check to verify at least one
of the old/new SPTEs is shadow present.
Use is/was_leaf even though is/was_present would suffice. The code
generation is roughly equivalent since all flags need to be computed
prior to the code in question, and using the *_leaf flags will minimize
the diff in a future enhancement to account all pages, i.e. will change
the check to "is_leaf != was_leaf".
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Fixes: 1699f65c8b ("kvm/x86: Fix 'lpages' kvm stat for TDM MMU")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20210803044607.599629-3-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This together with the next patch will fix a future race between
kvm_zap_gfn_range and the page fault handler, which will happen
when AVIC memslot is going to be only partially disabled.
The performance impact is minimal since kvm_zap_gfn_range is only
called by users, update_mtrr() and kvm_post_set_cr0().
Both only use it if the guest has non-coherent DMA, in order to
honor the guest's UC memtype.
MTRR and CD setup only happens at boot, and generally in an area
where the page tables should be small (for CD) or should not
include the affected GFNs at all (for MTRRs).
This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the min_level for the TDP iterator at the root level when zapping all
SPTEs to optimize the iterator's try_step_down(). Zapping a non-leaf
SPTE will recursively zap all its children, thus there is no need for the
iterator to attempt to step down. This avoids rereading the top-level
SPTEs after they are zapped by causing try_step_down() to short-circuit.
In most cases, optimizing try_step_down() will be in the noise as the cost
of zapping SPTEs completely dominates the overall time. The optimization
is however helpful if the zap occurs with relatively few SPTEs, e.g. if KVM
is zapping in response to multiple memslot updates when userspace is adding
and removing read-only memslots for option ROMs. In that case, the task
doing the zapping likely isn't a vCPU thread, but it still holds mmu_lock
for read and thus can be a noisy neighbor of sorts.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181414.3376143-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass "all ones" as the end GFN to signal "zap all" for the TDP MMU and
really zap all SPTEs in this case. As is, zap_gfn_range() skips non-leaf
SPTEs whose range exceeds the range to be zapped. If shadow_phys_bits is
not aligned to the range size of top-level SPTEs, e.g. 512gb with 4-level
paging, the "zap all" flows will skip top-level SPTEs whose range extends
beyond shadow_phys_bits and leak their SPs when the VM is destroyed.
Use the current upper bound (based on host.MAXPHYADDR) to detect that the
caller wants to zap all SPTEs, e.g. instead of using the max theoretical
gfn, 1 << (52 - 12). The more precise upper bound allows the TDP iterator
to terminate its walk earlier when running on hosts with MAXPHYADDR < 52.
Add a WARN on kmv->arch.tdp_mmu_pages when the TDP MMU is destroyed to
help future debuggers should KVM decide to leak SPTEs again.
The bug is most easily reproduced by running (and unloading!) KVM in a
VM whose host.MAXPHYADDR < 39, as the SPTE for gfn=0 will be skipped.
=============================================================================
BUG kvm_mmu_page_header (Not tainted): Objects remaining in kvm_mmu_page_header on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
Slab 0x000000004d8f7af1 objects=22 used=2 fp=0x00000000624d29ac flags=0x4000000000000200(slab|zone=1)
CPU: 0 PID: 1582 Comm: rmmod Not tainted 5.14.0-rc2+ #420
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
dump_stack_lvl+0x45/0x59
slab_err+0x95/0xc9
__kmem_cache_shutdown.cold+0x3c/0x158
kmem_cache_destroy+0x3d/0xf0
kvm_mmu_module_exit+0xa/0x30 [kvm]
kvm_arch_exit+0x5d/0x90 [kvm]
kvm_exit+0x78/0x90 [kvm]
vmx_exit+0x1a/0x50 [kvm_intel]
__x64_sys_delete_module+0x13f/0x220
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181414.3376143-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The existing TDP MMU methods to handle dirty logging are vcpu-agnostic
since they can be driven by MMU notifiers and other non-vcpu-specific
events in addition to page faults. However this means that the TDP MMU
is not benefiting from the new vcpu->last_used_slot. Fix that by
introducing a tdp_mmu_map_set_spte_atomic() which is only called during
a TDP page fault and has access to the kvm_vcpu for fast slot lookups.
This improves "Populate memory time" in dirty_log_perf_test by 5%:
Command | Before | After
------------------------------- | ---------------- | -------------
./dirty_log_perf_test -v64 -x64 | 5.472321072s | 5.169832886s
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As alluded to in commit f36f3f2846 ("KVM: add "new" argument to
kvm_arch_commit_memory_region"), a bunch of other places where struct
kvm_memory_slot is used, needs to be refactored to preserve the
"const"ness of struct kvm_memory_slot across-the-board.
Signed-off-by: Hamza Mahfooz <someguy@effective-light.com>
Message-Id: <20210713023338.57108-1-someguy@effective-light.com>
[Do not touch body of slot_rmap_walk_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With the addition of fast page fault support, the TDP-specific MMU has reached
feature parity with the original MMU. All my testing in the last few months
has been done with the TDP MMU; switch the default on 64-bit machines.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make fast_page_fault interoperate with the TDP MMU by leveraging
walk_shadow_page_lockless_{begin,end} to acquire the RCU read lock and
introducing a new helper function kvm_tdp_mmu_fast_pf_get_last_sptep to
grab the lowest level sptep.
Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acquire the RCU read lock in walk_shadow_page_lockless_begin and release
it in walk_shadow_page_lockless_end when the TDP MMU is enabled. This
should not introduce any functional changes but is used in the following
commit to make fast_page_fault interoperate with the TDP MMU.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-4-dmatlack@google.com>
[Use if...else instead of if(){return;}]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration
and apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
PPC:
- Support for the H_RPT_INVALIDATE hypercall
- Conversion of Book3S entry/exit to C
- Bug fixes
S390:
- new HW facilities for guests
- make inline assembly more robust with KASAN and co
x86:
- Allow userspace to handle emulation errors (unknown instructions)
- Lazy allocation of the rmap (host physical -> guest physical address)
- Support for virtualizing TSC scaling on VMX machines
- Optimizations to avoid shattering huge pages at the beginning of live migration
- Support for initializing the PDPTRs without loading them from memory
- Many TLB flushing cleanups
- Refuse to load if two-stage paging is available but NX is not (this has
been a requirement in practice for over a year)
- A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
CR0/CR4/EFER, using the MMU mode everywhere once it is computed
from the CPU registers
- Use PM notifier to notify the guest about host suspend or hibernate
- Support for passing arguments to Hyper-V hypercalls using XMM registers
- Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap on
AMD processors
- Hide Hyper-V hypercalls that are not included in the guest CPUID
- Fixes for live migration of virtual machines that use the Hyper-V
"enlightened VMCS" optimization of nested virtualization
- Bugfixes (not many)
Generic:
- Support for retrieving statistics without debugfs
- Cleanups for the KVM selftests API
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDV9UYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOIRgf/XX8fKLh24RnTOs2ldIu2AfRGVrT4
QMrr8MxhmtukBAszk2xKvBt8/6gkUjdaIC3xqEnVjxaDaUvZaEtP7CQlF5JV45rn
iv1zyxUKucXrnIOr+gCioIT7qBlh207zV35ArKioP9Y83cWx9uAs22pfr6g+7RxO
h8bJZlJbSG6IGr3voANCIb9UyjU1V/l8iEHqRwhmr/A5rARPfD7g8lfMEQeGkzX6
+/UydX2fumB3tl8e2iMQj6vLVdSOsCkehvpHK+Z33EpkKhan7GwZ2sZ05WmXV/nY
QLAYfD10KegoNWl5Ay4GTp4hEAIYVrRJCLC+wnLdc0U8udbfCuTC31LK4w==
=NcRh
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This covers all architectures (except MIPS) so I don't expect any
other feature pull requests this merge window.
ARM:
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration and
apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
PPC:
- Support for the H_RPT_INVALIDATE hypercall
- Conversion of Book3S entry/exit to C
- Bug fixes
S390:
- new HW facilities for guests
- make inline assembly more robust with KASAN and co
x86:
- Allow userspace to handle emulation errors (unknown instructions)
- Lazy allocation of the rmap (host physical -> guest physical
address)
- Support for virtualizing TSC scaling on VMX machines
- Optimizations to avoid shattering huge pages at the beginning of
live migration
- Support for initializing the PDPTRs without loading them from
memory
- Many TLB flushing cleanups
- Refuse to load if two-stage paging is available but NX is not (this
has been a requirement in practice for over a year)
- A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
CR0/CR4/EFER, using the MMU mode everywhere once it is computed
from the CPU registers
- Use PM notifier to notify the guest about host suspend or hibernate
- Support for passing arguments to Hyper-V hypercalls using XMM
registers
- Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap
on AMD processors
- Hide Hyper-V hypercalls that are not included in the guest CPUID
- Fixes for live migration of virtual machines that use the Hyper-V
"enlightened VMCS" optimization of nested virtualization
- Bugfixes (not many)
Generic:
- Support for retrieving statistics without debugfs
- Cleanups for the KVM selftests API"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (314 commits)
KVM: x86: rename apic_access_page_done to apic_access_memslot_enabled
kvm: x86: disable the narrow guest module parameter on unload
selftests: kvm: Allows userspace to handle emulation errors.
kvm: x86: Allow userspace to handle emulation errors
KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
KVM: x86/mmu: Get CR4.SMEP from MMU, not vCPU, in shadow page fault
KVM: x86/mmu: Get CR0.WP from MMU, not vCPU, in shadow page fault
KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
KVM: x86: Enhance comments for MMU roles and nested transition trickiness
KVM: x86/mmu: WARN on any reserved SPTE value when making a valid SPTE
KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
KVM: x86/mmu: Use MMU's role to determine PTTYPE
KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
KVM: x86/mmu: Add a helper to calculate root from role_regs
KVM: x86/mmu: Add helper to update paging metadata
KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
KVM: x86/mmu: Get nested MMU's root level from the MMU's role
...
The root_hpa checks below the top-level check in kvm_mmu_page_fault are
theoretically redundant since there is no longer a way for the root_hpa
to be reset during a page fault. The details of why are described in
commit ddce620821 ("KVM: x86/mmu: Move root_hpa validity checks to top
of page fault handler")
__direct_map, kvm_tdp_mmu_map, and get_mmio_spte are all only reachable
through kvm_mmu_page_fault, therefore their root_hpa checks are
redundant.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The check for is_tdp_mmu_root in kvm_tdp_mmu_map is redundant because
kvm_tdp_mmu_map's only caller (direct_page_fault) already checks
is_tdp_mmu_root.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
TDP MMU iterator's level is identical to page table's actual level. For
instance, for the last level page table (whose entry points to one 4K
page), iter->level is 1 (PG_LEVEL_4K), and in case of 5 level paging,
the iter->level is mmu->shadow_root_level, which is 5. However, struct
kvm_mmu_page's level currently is not set correctly when it is allocated
in kvm_tdp_mmu_map(). When iterator hits non-present SPTE and needs to
allocate a new child page table, currently iter->level, which is the
level of the page table where the non-present SPTE belongs to, is used.
This results in struct kvm_mmu_page's level always having its parent's
level (excpet root table's level, which is initialized explicitly using
mmu->shadow_root_level).
This is kinda wrong, and not consistent with existing non TDP MMU code.
Fortuantely sp->role.level is only used in handle_removed_tdp_mmu_page()
and kvm_tdp_mmu_zap_sp(), and they are already aware of this and behave
correctly. However to make it consistent with legacy MMU code (and fix
the issue that both root page table and its child page table have
shadow_root_level), use iter->level - 1 in kvm_tdp_mmu_map(), and change
handle_removed_tdp_mmu_page() and kvm_tdp_mmu_zap_sp() accordingly.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <bcb6569b6e96cb78aaa7b50640e6e6b53291a74e.1623717884.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently pf_fixed is not increased when prefault is true. This is not
correct, since prefault here really means "async page fault completed".
In that case, the original page fault from the guest was morphed into as
async page fault and pf_fixed was not increased. So when prefault
indicates async page fault is completed, pf_fixed should be increased.
Additionally, currently pf_fixed is also increased even when page fault
is spurious, while legacy MMU increases pf_fixed when page fault returns
RET_PF_EMULATE or RET_PF_FIXED.
To fix above two issues, change to increase pf_fixed when return value
is not RET_PF_SPURIOUS (RET_PF_RETRY has already been ruled out by
reaching here).
More information:
https://lore.kernel.org/kvm/cover.1620200410.git.kai.huang@intel.com/T/#mbb5f8083e58a2cd262231512b9211cbe70fc3bd5
Fixes: bb18842e21 ("kvm: x86/mmu: Add TDP MMU PF handler")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <2ea8b7f5d4f03c99b32bc56fc982e1e4e3d3fc6b.1623717884.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently tdp_mmu_map_handle_target_level() returns 0, which is
RET_PF_RETRY, when page fault is actually fixed. This makes
kvm_tdp_mmu_map() also return RET_PF_RETRY in this case, instead of
RET_PF_FIXED. Fix by initializing ret to RET_PF_FIXED.
Note that kvm_mmu_page_fault() resumes guest on both RET_PF_RETRY and
RET_PF_FIXED, which means in practice returning the two won't make
difference, so this fix alone won't be necessary for stable tree.
Fixes: bb18842e21 ("kvm: x86/mmu: Add TDP MMU PF handler")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <f9e8956223a586cd28c090879a8ff40f5eb6d609.1623717884.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the TDP MMU is in use, wait to allocate the rmaps until the shadow
MMU is actually used. (i.e. a nested VM is launched.) This saves memory
equal to 0.2% of guest memory in cases where the TDP MMU is used and
there are no nested guests involved.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for write protecting large page lazily during dirty log tracking,
for which we will only need to write protect gfns at large page
granularity.
No functional or performance change expected.
Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210429034115.35560-2-zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmC9UH8eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGRDYH/3WgnRz5DfVhjmlD
Lg38mPmbZWhFibXghrYrpbVpTyhjGFRuNtXAt2p7/nYnM71wzI6Qkx6cRKZeB5HE
/SqeksPWUEgJaUuoXeQBrBaG7q/+9ph7Rgaf2wP7k+E00RI3E4pbMubuqFAUeikr
itKFD9aTUsgT5XbG2hH5Ddwh5hBD2C/1PVt3jpLnJkXRCn91uEh+R7SHXP/fsjAd
ZaGOVbAGm+jePCQDBXpVUn+8fJdxvQg7rxWVRRRhi5LXG+pnAezbkGl746zBwaSw
K6lmVSA+eAiVkKu6nR4HJv9Hax1juFbp9xpcCo4jzxO5NJF4jsmytjLEaYFdi4NX
G542808=
=BPDL
-----END PGP SIGNATURE-----
Merge tag 'v5.13-rc5' into x86/cleanups
Pick up dependent changes in order to base further cleanups ontop.
Signed-off-by: Borislav Petkov <bp@suse.de>
This comment was left over from a previous version of the patch that
introduced wrprot_gfn_range, when skip_4k was passed in instead of
min_level.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210526163227.3113557-1-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function name of kdoc of __handle_changed_spte() should be itself,
rather than handle_changed_spte(). Fix the typo.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20210503042446.154695-1-kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Large pages not being created properly may result in increased memory
access time. The 'lpages' kvm stat used to keep track of the current
number of large pages in the system, but with TDP MMU enabled the stat
is not showing the correct number.
This patch extends the lpages counter to cover the TDP case.
Signed-off-by: Md Shahadat Hossain Shahin <shahinmd@amazon.de>
Cc: Bartosz Szczepanek <bsz@amazon.de>
Message-Id: <1619783551459.35424@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In kvm_tdp_mmu_map(), while iterating TDP MMU page table entries, it is
possible SPTE has already been frozen by another thread but the frozen
is not done yet, for instance, when another thread is still in middle of
zapping large page. In this case, the !is_shadow_present_pte() check
for old SPTE in tdp_mmu_for_each_pte() may hit true, and in this case
allocating new page table is unnecessary since tdp_mmu_set_spte_atomic()
later will return false and page table will need to be freed. Add
is_removed_spte() check before allocating new page table to avoid this.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20210429041226.50279-1-kai.huang@intel.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation,
zap under read lock, enable/disably dirty page logging under
read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing
the architecture-specific code
- Some selftests improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
+2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
=AXUi
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
+HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
/uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
=bO1i
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 cleanups from Borislav Petkov:
"Trivial cleanups and fixes all over the place"
* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Remove me from IDE/ATAPI section
x86/pat: Do not compile stubbed functions when X86_PAT is off
x86/asm: Ensure asm/proto.h can be included stand-alone
x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
x86/msr: Make locally used functions static
x86/cacheinfo: Remove unneeded dead-store initialization
x86/process/64: Move cpu_current_top_of_stack out of TSS
tools/turbostat: Unmark non-kernel-doc comment
x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
x86/fpu/math-emu: Fix function cast warning
x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
x86: Fix various typos in comments, take #2
x86: Remove unusual Unicode characters from comments
x86/kaslr: Return boolean values from a function returning bool
x86: Fix various typos in comments
x86/setup: Remove unused RESERVE_BRK_ARRAY()
stacktrace: Move documentation for arch_stack_walk_reliable() to header
x86: Remove duplicate TSC DEADLINE MSR definitions
To avoid saddling a vCPU thread with the work of tearing down an entire
paging structure, take a reference on each root before they become
obsolete, so that the thread initiating the fast invalidation can tear
down the paging structure and (most likely) release the last reference.
As a bonus, this teardown can happen under the MMU lock in read mode so
as not to block the progress of vCPU threads.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide a real mechanism for fast invalidation by marking roots as
invalid so that their reference count will quickly fall to zero
and they will be torn down.
One negative side affect of this approach is that a vCPU thread will
likely drop the last reference to a root and be saddled with the work of
tearing down an entire paging structure. This issue will be resolved in
a later commit.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-13-bgardon@google.com>
[Move the loop to tdp_mmu.c, otherwise compilation fails on 32-bit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU functions which enable and disable dirty logging
to operate under the MMU read lock.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reduce the impact of disabling dirty logging, change the TDP MMU
function which zaps collapsible SPTEs to run under the MMU read lock.
This way, page faults on zapped SPTEs can proceed in parallel with
kvm_mmu_zap_collapsible_sptes.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU function to zap a GFN range to operate under the MMU
read lock.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Protect the contents of the TDP MMU roots list with RCU in preparation
for a future patch which will allow the iterator macro to be used under
the MMU lock in read mode.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reduce dependence on the MMU write lock, don't rely on the assumption
that the atomic operation in kvm_tdp_mmu_get_root will always succeed.
By not relying on that assumption, threads do not need to hold the MMU
lock in write mode in order to take a reference on a TDP MMU root.
In the root iterator, this change means that some roots might have to be
skipped if they are found to have a zero refcount. This will still never
happen as of this patch, but a future patch will need that flexibility to
make the root iterator safe under the MMU read lock.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to parallelize more operations for the TDP MMU, make the
refcount on TDP MMU roots atomic, so that a future patch can allow
multiple threads to take a reference on the root concurrently, while
holding the MMU lock in read mode.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor the yield safe TDP MMU root iterator to be more amenable to
changes in future commits which will allow it to be used under the MMU
lock in read mode. Currently the iterator requires a complicated dance
between the helper functions and different parts of the for loop which
makes it hard to reason about. Moving all the logic into a single function
simplifies the iterator substantially.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_tdp_mmu_put_root and kvm_tdp_mmu_free_root are always called
together, so merge the functions to simplify TDP MMU root refcounting /
freeing.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Minor cleanup to deduplicate the code used to free a struct kvm_mmu_page
in the TDP MMU.
No functional change intended.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU is almost the only user of kvm_mmu_get_root and
kvm_mmu_put_root. There is only one use of put_root in mmu.c for the
legacy / shadow MMU. Open code that one use and move the get / put
functions to the TDP MMU so they can be extended in future commits.
No functional change intended.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-3-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_tdp_mmu_zap_collapsible_sptes unnecessarily removes the const
qualifier from its memlsot argument, leading to a compiler warning. Add
the const annotation and pass it to subsequent functions.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let the TDP MMU yield when unmapping a range in response to a MMU
notification, if yielding is allowed by said notification. There is no
reason to disallow yielding in this case, and in theory the range being
invalidated could be quite large.
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the hva->gfn lookup for MMU notifiers into common code. Every arch
does a similar lookup, and some arch code is all but identical across
multiple architectures.
In addition to consolidating code, this will allow introducing
optimizations that will benefit all architectures without incurring
multiple walks of the memslots, e.g. by taking mmu_lock if and only if a
relevant range exists in the memslots.
The use of __always_inline to avoid indirect call retpolines, as done by
x86, may also benefit other architectures.
Consolidating the lookups also fixes a wart in x86, where the legacy MMU
and TDP MMU each do their own memslot walks.
Lastly, future enhancements to the memslot implementation, e.g. to add an
interval tree to track host address, will need to touch far less arch
specific code.
MIPS, PPC, and arm64 will be converted one at a time in future patches.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use a basic NOT+AND sequence to clear the Accessed bit in TDP MMU SPTEs,
as opposed to the fancy ffs()+clear_bit() logic that was copied from the
legacy MMU. The legacy MMU uses clear_bit() because it is operating on
the SPTE itself, i.e. clearing needs to be atomic. The TDP MMU operates
on a local variable that it later writes to the SPTE, and so doesn't need
to be atomic or even resident in memory.
Opportunistically drop unnecessary initialization of new_spte, it's
guaranteed to be written before being accessed.
Using NOT+AND instead of ffs()+clear_bit() reduces the sequence from:
0x0000000000058be6 <+134>: test %rax,%rax
0x0000000000058be9 <+137>: je 0x58bf4 <age_gfn_range+148>
0x0000000000058beb <+139>: test %rax,%rdi
0x0000000000058bee <+142>: je 0x58cdc <age_gfn_range+380>
0x0000000000058bf4 <+148>: mov %rdi,0x8(%rsp)
0x0000000000058bf9 <+153>: mov $0xffffffff,%edx
0x0000000000058bfe <+158>: bsf %eax,%edx
0x0000000000058c01 <+161>: movslq %edx,%rdx
0x0000000000058c04 <+164>: lock btr %rdx,0x8(%rsp)
0x0000000000058c0b <+171>: mov 0x8(%rsp),%r15
to:
0x0000000000058bdd <+125>: test %rax,%rax
0x0000000000058be0 <+128>: je 0x58beb <age_gfn_range+139>
0x0000000000058be2 <+130>: test %rax,%r8
0x0000000000058be5 <+133>: je 0x58cc0 <age_gfn_range+352>
0x0000000000058beb <+139>: not %rax
0x0000000000058bee <+142>: and %r8,%rax
0x0000000000058bf1 <+145>: mov %rax,%r15
thus eliminating several memory accesses, including a locked access.
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331004942.2444916-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't clear the dirty bit when aging a TDP MMU SPTE (in response to a MMU
notifier event). Prematurely clearing the dirty bit could cause spurious
PML updates if aging a page happened to coincide with dirty logging.
Note, tdp_mmu_set_spte_no_acc_track() flows into __handle_changed_spte(),
so the host PFN will be marked dirty, i.e. there is no potential for data
corruption.
Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331004942.2444916-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove x86's trace_kvm_age_page() tracepoint. It's mostly redundant with
the common trace_kvm_age_hva() tracepoint, and if there is a need for the
extra details, e.g. gfn, referenced, etc... those details should be added
to the common tracepoint so that all architectures and MMUs benefit from
the info.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>