Commit Graph

158 Commits

Author SHA1 Message Date
Sean Christopherson
ffced89220 KVM: x86/mmu: Exempt nested EPT page tables from !USER, CR0.WP=0 logic
Exempt nested EPT shadow pages tables from the CR0.WP=0 handling of
supervisor writes, as EPT doesn't have a U/S bit and isn't affected by
CR0.WP (or CR4.SMEP in the exception to the exception).

Opportunistically refresh the comment to explain what KVM is doing, as
the only record of why KVM shoves in WRITE and drops USER is buried in
years-old changelogs.

Cc: Jon Kohler <jon@nutanix.com>
Cc: Sergey Dyasli <sergey.dyasli@nutanix.com>
Reviewed-by: Jon Kohler <jon@nutanix.com>
Reviewed-by: Sergey Dyasli <sergey.dyasli@nutanix.com>
Link: https://lore.kernel.org/r/20250602234851.54573-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-06-20 13:08:22 -07:00
Sean Christopherson
61146f67e4 KVM: nVMX: Decouple EPT RWX bits from EPT Violation protection bits
Define independent macros for the RWX protection bits that are enumerated
via EXIT_QUALIFICATION for EPT Violations, and tie them to the RWX bits in
EPT entries via compile-time asserts.  Piggybacking the EPTE defines works
for now, but it creates holes in the EPT_VIOLATION_xxx macros and will
cause headaches if/when KVM emulates Mode-Based Execution (MBEC), or any
other features that introduces additional protection information.

Opportunistically rename EPT_VIOLATION_RWX_MASK to EPT_VIOLATION_PROT_MASK
so that it doesn't become stale if/when MBEC support is added.

No functional change intended.

Cc: Jon Kohler <jon@nutanix.com>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/20250227000705.3199706-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2025-02-28 09:14:05 -08:00
Sean Christopherson
0cad68cab1 KVM: x86/mmu: Mark pages/folios dirty at the origin of make_spte()
Move the marking of folios dirty from make_spte() out to its callers,
which have access to the _struct page_, not just the underlying pfn.
Once all architectures follow suit, this will allow removing KVM's ugly
hack where KVM elevates the refcount of VM_MIXEDMAP pfns that happen to
be struct page memory.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-42-seanjc@google.com>
2024-10-25 12:59:08 -04:00
Sean Christopherson
7103853952 KVM: x86/mmu: Add helper to "finish" handling a guest page fault
Add a helper to finish/complete the handling of a guest page, e.g. to
mark the pages accessed and put any held references.  In the near
future, this will allow improving the logic without having to copy+paste
changes into all page fault paths.  And in the less near future, will
allow sharing the "finish" API across all architectures.

No functional change intended.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-41-seanjc@google.com>
2024-10-25 12:59:08 -04:00
Sean Christopherson
fa8fe58d1e KVM: x86/mmu: Add common helper to handle prefetching SPTEs
Deduplicate the prefetching code for indirect and direct MMUs.  The core
logic is the same, the only difference is that indirect MMUs need to
prefetch SPTEs one-at-a-time, as contiguous guest virtual addresses aren't
guaranteed to yield contiguous guest physical addresses.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-40-seanjc@google.com>
2024-10-25 12:59:08 -04:00
Sean Christopherson
447c375c91 KVM: x86/mmu: Add "mmu" prefix fault-in helpers to free up generic names
Prefix x86's faultin_pfn helpers with "mmu" so that the mmu-less names can
be used by common KVM for similar APIs.

No functional change intended.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-38-seanjc@google.com>
2024-10-25 12:59:08 -04:00
Sean Christopherson
6419bc5207 KVM: Rename gfn_to_page_many_atomic() to kvm_prefetch_pages()
Rename gfn_to_page_many_atomic() to kvm_prefetch_pages() to try and
communicate its true purpose, as the "atomic" aspect is essentially a
side effect of the fact that x86 uses the API while holding mmu_lock.
E.g. even if mmu_lock weren't held, KVM wouldn't want to fault-in pages,
as the goal is to opportunistically grab surrounding pages that have
already been accessed and/or dirtied by the host, and to do so quickly.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-12-seanjc@google.com>
2024-10-25 12:55:12 -04:00
Sean Christopherson
661fa987e4 KVM: x86/mmu: Use gfn_to_page_many_atomic() when prefetching indirect PTEs
Use gfn_to_page_many_atomic() instead of gfn_to_pfn_memslot_atomic() when
prefetching indirect PTEs (direct_pte_prefetch_many() already uses the
"to page" APIS).  Functionally, the two are subtly equivalent, as the "to
pfn" API short-circuits hva_to_pfn() if hva_to_pfn_fast() fails, i.e. is
just a wrapper for get_user_page_fast_only()/get_user_pages_fast_only().

Switching to the "to page" API will allow dropping the @atomic parameter
from the entire hva_to_pfn() callchain.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-11-seanjc@google.com>
2024-10-25 12:54:42 -04:00
Sean Christopherson
aa85986e71 KVM: x86/mmu: Mark folio dirty when creating SPTE, not when zapping/modifying
Mark pages/folios dirty when creating SPTEs to map PFNs into the guest,
not when zapping or modifying SPTEs, as marking folios dirty when zapping
or modifying SPTEs can be extremely inefficient.  E.g. when KVM is zapping
collapsible SPTEs to reconstitute a hugepage after disbling dirty logging,
KVM will mark every 4KiB pfn as dirty, even though _at least_ 512 pfns are
guaranteed to be in a single folio (the SPTE couldn't potentially be huge
if that weren't the case).  The problem only becomes worse for 1GiB
HugeTLB pages, as KVM can mark a single folio dirty 512*512 times.

Marking a folio dirty when mapping is functionally safe as KVM drops all
relevant SPTEs in response to an mmu_notifier invalidation, i.e. ensures
that the guest can't dirty a folio after access has been removed.

And because KVM already marks folios dirty when zapping/modifying SPTEs
for KVM reasons, i.e. not in response to an mmu_notifier invalidation,
there is no danger of "prematurely" marking a folio dirty.  E.g. if a
filesystems cleans a folio without first removing write access, then there
already exists races where KVM could mark a folio dirty before remote TLBs
are flushed, i.e. before guest writes are guaranteed to stop.  Furthermore,
x86 is literally the only architecture that marks folios dirty on the
backend; every other KVM architecture marks folios dirty at map time.

x86's unique behavior likely stems from the fact that x86's MMU predates
mmu_notifiers.  Long, long ago, before mmu_notifiers were added, marking
pages dirty when zapping SPTEs was logical, and perhaps even necessary, as
KVM held references to pages, i.e. kept a page's refcount elevated while
the page was mapped into the guest.  At the time, KVM's rmap_remove()
simply did:

        if (is_writeble_pte(*spte))
                kvm_release_pfn_dirty(pfn);
        else
                kvm_release_pfn_clean(pfn);

i.e. dropped the refcount and marked the page dirty at the same time.
After mmu_notifiers were introduced, commit acb66dd051 ("KVM: MMU:
don't hold pagecount reference for mapped sptes pages") removed the
refcount logic, but kept the dirty logic, i.e. converted the above to:

	if (is_writeble_pte(*spte))
		kvm_release_pfn_dirty(pfn);

And for KVM x86, that's essentially how things have stayed over the last
~15 years, without anyone revisiting *why* KVM marks pages/folios dirty at
zap/modification time, e.g. the behavior was blindly carried forward to
the TDP MMU.

Practically speaking, the only downside to marking a folio dirty during
mapping is that KVM could trigger writeback of memory that was never
actually written.  Except that can't actually happen if KVM marks folios
dirty if and only if a writable SPTE is created (as done here), because
KVM always marks writable SPTEs as dirty during make_spte().  See commit
9b51a63024 ("KVM: MMU: Explicitly set D-bit for writable spte."), circa
2015.

Note, KVM's access tracking logic for prefetched SPTEs is a bit odd.  If a
guest PTE is dirty and writable, KVM will create a writable SPTE, but then
mark the SPTE for access tracking.  Which isn't wrong, just a bit odd, as
it results in _more_ precise dirty tracking for MMUs _without_ A/D bits.

To keep things simple, mark the folio dirty before access tracking comes
into play, as an access-tracked SPTE can be restored in the fast page
fault path, i.e. without holding mmu_lock.  While writing SPTEs and
accessing memslots outside of mmu_lock is safe, marking a folio dirty is
not.  E.g. if the fast path gets interrupted _just_ after setting a SPTE,
the primary MMU could theoretically invalidate and free a folio before KVM
marks it dirty.  Unlike the shadow MMU, which waits for CPUs to respond to
an IPI, the TDP MMU only guarantees the page tables themselves won't be
freed (via RCU).

Opportunistically update a few stale comments.

Cc: David Matlack <dmatlack@google.com>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-9-seanjc@google.com>
2024-10-25 12:54:42 -04:00
Sean Christopherson
63c5754472 KVM: x86/mmu: Invert @can_unsync and renamed to @synchronizing
Invert the polarity of "can_unsync" and rename the parameter to
"synchronizing" to allow a future change to set the Accessed bit if KVM
is synchronizing an existing SPTE.  Querying "can_unsync" in that case is
nonsensical, as the fact that KVM can't unsync SPTEs doesn't provide any
justification for setting the Accessed bit.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20241010182427.1434605-7-seanjc@google.com>
2024-10-25 12:54:42 -04:00
Sean Christopherson
989a84c93f KVM: x86/mmu: Trigger unprotect logic only on write-protection page faults
Trigger KVM's various "unprotect gfn" paths if and only if the page fault
was a write to a write-protected gfn.  To do so, add a new page fault
return code, RET_PF_WRITE_PROTECTED, to explicitly and precisely track
such page faults.

If a page fault requires emulation for any MMIO (or any reason besides
write-protection), trying to unprotect the gfn is pointless and risks
putting the vCPU into an infinite loop.  E.g. KVM will put the vCPU into
an infinite loop if the vCPU manages to trigger MMIO on a page table walk.

Fixes: 147277540b ("kvm: svm: Add support for additional SVM NPF error codes")
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240831001538.336683-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-09-09 20:16:19 -07:00
Sean Christopherson
1dc9cc1c4c KVM: x86/mmu: Reword a misleading comment about checking gpte_changed()
Rewrite the comment in FNAME(fetch) to explain why KVM needs to check that
the gPTE is still fresh before continuing the shadow page walk, even if
KVM already has a linked shadow page for the gPTE in question.

No functional change intended.

Link: https://lore.kernel.org/r/20240802203900.348808-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-29 19:05:55 -07:00
Sean Christopherson
7d67b03e6f KVM: x86/mmu: Drop pointless "return" wrapper label in FNAME(fetch)
Drop the pointless and poorly named "out_gpte_changed" label, in
FNAME(fetch), and instead return RET_PF_RETRY directly.

No functional change intended.

Link: https://lore.kernel.org/r/20240802203900.348808-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-29 19:05:55 -07:00
Sean Christopherson
174b6e4a25 KVM: x86/mmu: Decrease indentation in logic to sync new indirect shadow page
Combine the back-to-back if-statements for synchronizing children when
linking a new indirect shadow page in order to decrease the indentation,
and to make it easier to "see" the logic in its entirety.

No functional change intended.

Link: https://lore.kernel.org/r/20240802203900.348808-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-08-29 19:05:55 -07:00
Hou Wenlong
9ecc1c119b KVM: x86/mmu: Only allocate shadowed translation cache for sp->role.level <= KVM_MAX_HUGEPAGE_LEVEL
Only the indirect SP with sp->role.level <= KVM_MAX_HUGEPAGE_LEVEL might
have leaf gptes, so allocation of shadowed translation cache is needed
only for it. Then, it can use sp->shadowed_translation to determine
whether to use the information in the shadowed translation cache or not.
Also, extend the WARN in FNAME(sync_spte)() to ensure that this won't
break shadow_mmu_get_sp_for_split().

Suggested-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/5b0cda8a7456cda476b14fca36414a56f921dd52.1715398655.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-03 14:06:39 -07:00
Paolo Bonzini
31a6cd7f16 KVM VMX changes for 6.10:
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
    L1, as per the SDM.
 
  - Move kvm_vcpu_arch's exit_qualification into x86_exception, as the field is
    used only when synthesizing nested EPT violation, i.e. it's not the vCPU's
    "real" exit_qualification, which is tracked elsewhere.
 
  - Add a sanity check to assert that EPT Violations are the only sources of
    nested PML Full VM-Exits.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmY+qzEACgkQOlYIJqCj
 N/3O0Q/9HZruiL9vzMrLBKgFgWCxQHO2fy+EixuwzVBHunQGOsVnDCO2p+PWnF0p
 kuW/MEZhZfLYnXoDi5/AP12G9qtDhlSNnfSl2gn+BMXqyGSYpcoXuM/zTjM24wLd
 PXKkPirYMpVR2+lHsD7l8YK2I+qc7UfbRkCyJegBgGwUBs13/TBD6Rum3Aa9Q+dX
 IcwjomH+MdHDFPnpfHjksA+G79Ckkqmu/DbOAlCqw1dUSC8oyV9tE/EKStSBzjZ+
 OGMSm7Kl0T+km1JyH60H1ivbUbT3gJxpezoYL9EbO25VPrdldKP+ohqbtew/8ttk
 UP/oW3mL79I7L06ZqqxZKDDj4JGvz53UhhAylZcBPw0P3v9TQF3wm59K4eM9btNt
 eyIaT0SAbcigHAniM+3FPkq443hRxDvLNF5E66Ez03HhhkEz3ZsyNH1oPnQK0Crq
 N1e+NGuKsTAPBzc3sSSrxOHnCajTUQ9WYjOpfdSgWsL6TQOmXIvHl0tE2ILrvDc/
 f+VG62veqa9CCmX5B2lUT0yX9nXvyXKwVpJY9RSQIhB46sA8zjSZsZRCQFkDI5Gx
 pzjxjcXtydAMWpn5qUvpD0B6agMlP6WUJHlu+ezmBQuSUHr+2PHY5dEj9442SusF
 98VGJy8APxDhidK5TaJJXWmDfKNhEaWboMcTnWM1TwY/qLfDsVU=
 =0ncM
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-vmx-6.10' of https://github.com/kvm-x86/linux into HEAD

KVM VMX changes for 6.10:

 - Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
   L1, as per the SDM.

 - Move kvm_vcpu_arch's exit_qualification into x86_exception, as the field is
   used only when synthesizing nested EPT violation, i.e. it's not the vCPU's
   "real" exit_qualification, which is tracked elsewhere.

 - Add a sanity check to assert that EPT Violations are the only sources of
   nested PML Full VM-Exits.
2024-05-12 03:17:17 -04:00
Sean Christopherson
7f01cab849 KVM: x86/mmu: Allow non-zero value for non-present SPTE and removed SPTE
For TD guest, the current way to emulate MMIO doesn't work any more, as KVM
is not able to access the private memory of TD guest and do the emulation.
Instead, TD guest expects to receive #VE when it accesses the MMIO and then
it can explicitly make hypercall to KVM to get the expected information.

To achieve this, the TDX module always enables "EPT-violation #VE" in the
VMCS control.  And accordingly, for the MMIO spte for the shared GPA,
1. KVM needs to set "suppress #VE" bit for the non-present SPTE so that EPT
violation happens on TD accessing MMIO range.  2. On EPT violation, KVM
sets the MMIO spte to clear "suppress #VE" bit so the TD guest can receive
the #VE instead of EPT misconfiguration unlike VMX case.  For the shared GPA
that is not populated yet, EPT violation need to be triggered when TD guest
accesses such shared GPA.  The non-present SPTE value for shared GPA should
set "suppress #VE" bit.

Add "suppress #VE" bit (bit 63) to SHADOW_NONPRESENT_VALUE and
REMOVED_SPTE.  Unconditionally set the "suppress #VE" bit (which is bit 63)
for both AMD and Intel as: 1) AMD hardware doesn't use this bit when
present bit is off; 2) for normal VMX guest, KVM never enables the
"EPT-violation #VE" in VMCS control and "suppress #VE" bit is ignored by
hardware.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <a99cb866897c7083430dce7f24c63b17d7121134.1705965635.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-19 12:15:19 -04:00
Sean Christopherson
d8fa2031fa KVM: x86/mmu: Replace hardcoded value 0 for the initial value for SPTE
The TDX support will need the "suppress #VE" bit (bit 63) set as the
initial value for SPTE.  To reduce code change size, introduce a new macro
SHADOW_NONPRESENT_VALUE for the initial value for the shadow page table
entry (SPTE) and replace hard-coded value 0 for it.  Initialize shadow page
tables with their value.

The plan is to unconditionally set the "suppress #VE" bit for both AMD and
Intel as: 1) AMD hardware uses the bit 63 as NX for present SPTE and
ignored for non-present SPTE; 2) for conventional VMX guests, KVM never
enables the "EPT-violation #VE" in VMCS control and "suppress #VE" bit is
ignored by hardware.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <acdf09bf60cad12c495005bf3495c54f6b3069c9.1705965635.git.isaku.yamahata@intel.com>
[Remove unnecessary CONFIG_X86_64 check. - Paolo]
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-19 12:15:18 -04:00
Sean Christopherson
a946607868 KVM: x86: Move nEPT exit_qualification field from kvm_vcpu_arch to x86_exception
Move the exit_qualification field that is used to track information about
in-flight nEPT violations from "struct kvm_vcpu_arch" to "x86_exception",
i.e. associate the information with the actual nEPT violation instead of
the vCPU.  To handle bits that are pulled from vmcs.EXIT_QUALIFICATION,
i.e. that are propagated from the "original" EPT violation VM-Exit, simply
grab them from the VMCS on-demand when injecting a nEPT Violation or a PML
Full VM-exit.

Aside from being ugly, having an exit_qualification field in kvm_vcpu_arch
is outright dangerous, e.g. see commit d7f0a00e43 ("KVM: VMX: Report
up-to-date exit qualification to userspace").

Opportunstically add a comment to call out that PML Full and EPT Violation
VM-Exits use the same bit to report NMI blocking information.

Link: https://lore.kernel.org/r/20240209221700.393189-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:24:36 -07:00
Binbin Wu
a130066f74 KVM: x86/mmu: Drop non-PA bits when getting GFN for guest's PGD
Drop non-PA bits when getting GFN for guest's PGD with the maximum theoretical
mask for guest MAXPHYADDR.

Do it unconditionally because it's harmless for 32-bit guests, querying 64-bit
mode would be more expensive, and for EPT the mask isn't tied to guest mode.
Using PT_BASE_ADDR_MASK would be technically wrong (PAE paging has 64-bit
elements _except_ for CR3, which has only 32 valid bits), it wouldn't matter
in practice though.

Opportunistically use GENMASK_ULL() to define __PT_BASE_ADDR_MASK.

Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-6-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-11-28 17:54:04 -08:00
Sean Christopherson
0e3223d8d0 KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots
When attempting to allocate a shadow root for a !visible guest root gfn,
e.g. that resides in MMIO space, load a dummy root that is backed by the
zero page instead of immediately synthesizing a triple fault shutdown
(using the zero page ensures any attempt to translate memory will generate
a !PRESENT fault and thus VM-Exit).

Unless the vCPU is racing with memslot activity, KVM will inject a page
fault due to not finding a visible slot in FNAME(walk_addr_generic), i.e.
the end result is mostly same, but critically KVM will inject a fault only
*after* KVM runs the vCPU with the bogus root.

Waiting to inject a fault until after running the vCPU fixes a bug where
KVM would bail from nested VM-Enter if L1 tried to run L2 with TDP enabled
and a !visible root.  Even though a bad root will *probably* lead to
shutdown, (a) it's not guaranteed and (b) the CPU won't read the
underlying memory until after VM-Enter succeeds.  E.g. if L1 runs L2 with
a VMX preemption timer value of '0', then architecturally the preemption
timer VM-Exit is guaranteed to occur before the CPU executes any
instruction, i.e. before the CPU needs to translate a GPA to a HPA (so
long as there are no injected events with higher priority than the
preemption timer).

If KVM manages to get to FNAME(fetch) with a dummy root, e.g. because
userspace created a memslot between installing the dummy root and handling
the page fault, simply unload the MMU to allocate a new root and retry the
instruction.  Use KVM_REQ_MMU_FREE_OBSOLETE_ROOTS to drop the root, as
invoking kvm_mmu_free_roots() while holding mmu_lock would deadlock, and
conceptually the dummy root has indeeed become obsolete.  The only
difference versus existing usage of KVM_REQ_MMU_FREE_OBSOLETE_ROOTS is
that the root has become obsolete due to memslot *creation*, not memslot
deletion or movement.

Reported-by: Reima Ishii <ishiir@g.ecc.u-tokyo.ac.jp>
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Link: https://lore.kernel.org/r/20230729005200.1057358-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31 14:08:24 -04:00
Sean Christopherson
b5b359ac30 KVM: x86/mmu: Disallow guest from using !visible slots for page tables
Explicitly inject a page fault if guest attempts to use a !visible gfn
as a page table.  kvm_vcpu_gfn_to_hva_prot() will naturally handle the
case where there is no memslot, but doesn't catch the scenario where the
gfn points at a KVM-internal memslot.

Letting the guest backdoor its way into accessing KVM-internal memslots
isn't dangerous on its own, e.g. at worst the guest can crash itself, but
disallowing the behavior will simplify fixing how KVM handles !visible
guest root gfns (immediately synthesizing a triple fault when loading the
root is architecturally wrong).

Link: https://lore.kernel.org/r/20230729005200.1057358-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31 14:08:23 -04:00
Sean Christopherson
72e2fb24a0 KVM: x86/mmu: Bug the VM if a vCPU ends up in long mode without PAE enabled
Promote the ASSERT(), which is quite dead code in KVM, into a KVM_BUG_ON()
for KVM's sanity check that CR4.PAE=1 if the vCPU is in long mode when
performing a walk of guest page tables.  The sanity is quite cheap since
neither EFER nor CR4.PAE requires a VMREAD, especially relative to the
cost of walking the guest page tables.

More importantly, the sanity check would have prevented the true badness
fixed by commit 112e66017b ("KVM: nVMX: add missing consistency checks
for CR0 and CR4").  The missed consistency check resulted in some versions
of KVM corrupting the on-stack guest_walker structure due to KVM thinking
there are 4/5 levels of page tables, but wiring up the MMU hooks to point
at the paging32 implementation, which only allocates space for two levels
of page tables in "struct guest_walker32".

Queue a page fault for injection if the assertion fails, as both callers,
FNAME(gva_to_gpa) and FNAME(walk_addr_generic), assume that walker.fault
contains sane info on a walk failure.  E.g. not populating the fault info
could result in KVM consuming and/or exposing uninitialized stack data
before the vCPU is kicked out to userspace, which doesn't happen until
KVM checks for KVM_REQ_VM_DEAD on the next enter.

Move the check below the initialization of "pte_access" so that the
aforementioned to-be-injected page fault doesn't consume uninitialized
stack data.  The information _shouldn't_ reach the guest or userspace,
but there's zero downside to being paranoid in this case.

Link: https://lore.kernel.org/r/20230729004722.1056172-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31 13:48:47 -04:00
Sean Christopherson
20ba462dfd KVM: x86/mmu: Convert "runtime" WARN_ON() assertions to WARN_ON_ONCE()
Convert all "runtime" assertions, i.e. assertions that can be triggered
while running vCPUs, from WARN_ON() to WARN_ON_ONCE().  Every WARN in the
MMU that is tied to running vCPUs, i.e. not contained to loading and
initializing KVM, is likely to fire _a lot_ when it does trigger.  E.g. if
KVM ends up with a bug that causes a root to be invalidated before the
page fault handler is invoked, pretty much _every_ page fault VM-Exit
triggers the WARN.

If a WARN is triggered frequently, the resulting spam usually causes a lot
of damage of its own, e.g. consumes resources to log the WARN and pollutes
the kernel log, often to the point where other useful information can be
lost.  In many case, the damage caused by the spam is actually worse than
the bug itself, e.g. KVM can almost always recover from an unexpectedly
invalid root.

On the flip side, warning every time is rarely helpful for debug and
triage, i.e. a single splat is usually sufficient to point a debugger in
the right direction, and automated testing, e.g. syzkaller, typically runs
with warn_on_panic=1, i.e. will never get past the first WARN anyways.

Lastly, when an assertions fails multiple times, the stack traces in KVM
are almost always identical, i.e. the full splat only needs to be captured
once.  And _if_ there is value in captruing information about the failed
assert, a ratelimited printk() is sufficient and less likely to rack up a
large amount of collateral damage.

Link: https://lore.kernel.org/r/20230729004722.1056172-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31 13:48:44 -04:00
Sean Christopherson
a98b889492 KVM: x86/mmu: Delete pgprintk() and all its usage
Delete KVM's pgprintk() and all its usage, as the code is very prone
to bitrot due to being buried behind MMU_DEBUG, and the functionality has
been rendered almost entirely obsolete by the tracepoints KVM has gained
over the years.  And for the situations where the information provided by
KVM's tracepoints is insufficient, pgprintk() rarely fills in the gaps,
and is almost always far too noisy, i.e. developers end up implementing
custom prints anyways.

Link: https://lore.kernel.org/r/20230729004722.1056172-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31 13:48:39 -04:00
Paolo Bonzini
2fdcc1b324 KVM: x86/mmu: Avoid indirect call for get_cr3
Most of the time, calls to get_guest_pgd result in calling
kvm_read_cr3 (the exception is only nested TDP).  Hardcode
the default instead of using the get_cr3 function, avoiding
a retpoline if they are enabled.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20230322013731.102955-2-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-22 07:46:42 -07:00
Lai Jiangshan
19ace7d6ca KVM: x86/mmu: Skip calling mmu->sync_spte() when the spte is 0
Sync the spte only when the spte is set and avoid the indirect branch.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-5-jiangshanlai@gmail.com
[sean: add wrapper instead of open coding each check]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-16 17:19:55 -07:00
Lai Jiangshan
91ca7672dc kvm: x86/mmu: Remove @no_dirty_log from FNAME(prefetch_gpte)
FNAME(prefetch_gpte) is always called with @no_dirty_log=true.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-4-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-16 17:19:55 -07:00
Lai Jiangshan
9fd4a4e3a3 KVM: x86/mmu: Remove FNAME(invlpg) and use FNAME(sync_spte) to update vTLB instead.
In hardware TLB, invalidating TLB entries means the translations are
removed from the TLB.

In KVM shadowed vTLB, the translations (combinations of shadow paging
and hardware TLB) are generally maintained as long as they remain "clean"
when the TLB of an address space (i.e. a PCID or all) is flushed with
the help of write-protections, sp->unsync, and kvm_sync_page(), where
"clean" in this context means that no updates to KVM's SPTEs are needed.

However, FNAME(invlpg) always zaps/removes the vTLB if the shadow page is
unsync, and thus triggers a remote flush even if the original vTLB entry
is clean, i.e. is usable as-is.

Besides this, FNAME(invlpg) is largely is a duplicate implementation of
FNAME(sync_spte) to invalidate a vTLB entry.

To address both issues, reuse FNAME(sync_spte) to share the code and
slightly modify the semantics, i.e. keep the vTLB entry if it's "clean"
and avoid remote TLB flush.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-3-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-16 17:19:54 -07:00
Lai Jiangshan
ed335278bd KVM: x86/mmu: Allow the roots to be invalid in FNAME(invlpg)
Don't assume the current root to be valid, just check it and remove
the WARN().

Also move the code to check if the root is valid into FNAME(invlpg)
to simplify the code.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216235321.735214-2-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-16 17:19:53 -07:00
Lai Jiangshan
e6722d9211 KVM: x86/mmu: Reduce the update to the spte in FNAME(sync_spte)
Sometimes when the guest updates its pagetable, it adds only new gptes
to it without changing any existed one, so there is no point to update
the sptes for these existed gptes.

Also when the sptes for these unchanged gptes are updated, the AD
bits are also removed since make_spte() is called with prefetch=true
which might result unneeded TLB flushing.

Just do nothing if the gpte's permissions are unchanged.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-7-jiangshanlai@gmail.com
[sean: expand comment to call out A/D bits]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-16 17:19:48 -07:00
Lai Jiangshan
c3c6c9fc5d KVM: x86/mmu: Move the code out of FNAME(sync_page)'s loop body into mmu.c
Rename mmu->sync_page to mmu->sync_spte and move the code out
of FNAME(sync_page)'s loop body into mmu.c.

No functionalities change intended.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-6-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-16 17:19:44 -07:00
Lai Jiangshan
90e444702a KVM: x86/mmu: Move the check in FNAME(sync_page) as kvm_sync_page_check()
Prepare to check mmu->sync_page pointer before calling it.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-3-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-16 12:42:15 -07:00
Lai Jiangshan
753b43c9d1 KVM: x86/mmu: Use 64-bit address to invalidate to fix a subtle bug
FNAME(invlpg)() and kvm_mmu_invalidate_gva() take a gva_t, i.e. unsigned
long, as the type of the address to invalidate.  On 32-bit kernels, the
upper 32 bits of the GPA will get dropped when an L2 GPA address is
invalidated in the shadowed nested TDP MMU.

Convert it to u64 to fix the problem.

Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230216154115.710033-2-jiangshanlai@gmail.com
[sean: tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-03-16 12:41:05 -07:00
Lai Jiangshan
9a96770049 KVM: x86/mmu: Remove FNAME(is_self_change_mapping)
Drop FNAME(is_self_change_mapping) and instead rely on
kvm_mmu_hugepage_adjust() to adjust the hugepage accordingly.  Prior to
commit 4cd071d13c ("KVM: x86/mmu: Move calls to thp_adjust() down a
level"), the hugepage adjustment was done before allocating new shadow
pages, i.e. failed to restrict the hugepage sizes if a new shadow page
resulted in account_shadowed() changing the disallowed hugepage tracking.

Removing FNAME(is_self_change_mapping) fixes a bug reported by Huang Hang
where KVM unnecessarily forces a 4KiB page.  FNAME(is_self_change_mapping)
has a defect in that it blindly disables _all_ hugepage mappings rather
than trying to reduce the size of the hugepage.  If the guest is writing
to a 1GiB page and the 1GiB is self-referential but a 2MiB page is not,
then KVM can and should create a 2MiB mapping.

Add a comment above the call to kvm_mmu_hugepage_adjust() to call out the
new dependency on adjusting the hugepage size after walking indirect PTEs.

Reported-by: Huang Hang <hhuang@linux.alibaba.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20221213125538.81209-1-jiangshanlai@gmail.com
[sean: rework changelog after separating out the emulator change]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-03-14 10:28:57 -04:00
Lai Jiangshan
39fda5d873 KVM: x86/mmu: Detect write #PF to shadow pages during FNAME(fetch) walk
Move the detection of write #PF to shadow pages, i.e. a fault on a write
to a page table that is being shadowed by KVM that is used to translate
the write itself, from FNAME(is_self_change_mapping) to FNAME(fetch).
There is no need to detect the self-referential write before
kvm_faultin_pfn() as KVM does not consume EMULTYPE_WRITE_PF_TO_SP for
accesses that resolve to "error or no-slot" pfns, i.e. KVM doesn't allow
retrying MMIO accesses or writes to read-only memslots.

Detecting the EMULTYPE_WRITE_PF_TO_SP scenario in FNAME(fetch) will allow
dropping FNAME(is_self_change_mapping) entirely, as the hugepage
interaction can be deferred to kvm_mmu_hugepage_adjust().

Cc: Huang Hang <hhuang@linux.alibaba.com>
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20221213125538.81209-1-jiangshanlai@gmail.com
[sean: split to separate patch, write changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-03-14 10:28:56 -04:00
Sean Christopherson
258d985f6e KVM: x86/mmu: Use EMULTYPE flag to track write #PFs to shadow pages
Use a new EMULTYPE flag, EMULTYPE_WRITE_PF_TO_SP, to track page faults
on self-changing writes to shadowed page tables instead of propagating
that information to the emulator via a semi-persistent vCPU flag.  Using
a flag in "struct kvm_vcpu_arch" is confusing, especially as implemented,
as it's not at all obvious that clearing the flag only when emulation
actually occurs is correct.

E.g. if KVM sets the flag and then retries the fault without ever getting
to the emulator, the flag will be left set for future calls into the
emulator.  But because the flag is consumed if and only if both
EMULTYPE_PF and EMULTYPE_ALLOW_RETRY_PF are set, and because
EMULTYPE_ALLOW_RETRY_PF is deliberately not set for direct MMUs, emulated
MMIO, or while L2 is active, KVM avoids false positives on a stale flag
since FNAME(page_fault) is guaranteed to be run and refresh the flag
before it's ultimately consumed by the tail end of reexecute_instruction().

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230202182817.407394-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-03-14 10:28:56 -04:00
Hou Wenlong
1b2dc73604 KVM: x86/mmu: Fix wrong start gfn of tlb flushing with range
When a spte is dropped, the start gfn of tlb flushing should be the gfn
of spte not the base gfn of SP which contains the spte. Also introduce a
helper function to do range-based flushing when a spte is dropped, which
would help prevent future buggy use of
kvm_flush_remote_tlbs_with_address() in such case.

Fixes: c3134ce240 ("KVM: Replace old tlb flush function with new one to flush a specified range.")
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/72ac2169a261976f00c1703e88cda676dfb960f5.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:47 -08:00
Hou Wenlong
c667a3baed KVM: x86/mmu: Move round_gfn_for_level() helper into mmu_internal.h
Rounding down the GFN to a huge page size is a common pattern throughout
KVM, so move round_gfn_for_level() helper in tdp_iter.c to
mmu_internal.h for common usage. Also rename it as gfn_round_for_level()
to use gfn_* prefix and clean up the other call sites.

Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Link: https://lore.kernel.org/r/415c64782f27444898db650e21cf28eeb6441dfa.1665214747.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:45 -08:00
Lai Jiangshan
9e3fbdfd9b kvm: x86/mmu: Don't clear write flooding for direct SP
Although there is no harm, but there is no point to clear write
flooding for direct SP.

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Link: https://lore.kernel.org/r/20230105100310.6700-1-jiangshanlai@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:05:44 -08:00
David Matlack
354c908c06 KVM: x86/mmu: Handle no-slot faults in kvm_faultin_pfn()
Handle faults on GFNs that do not have a backing memslot in
kvm_faultin_pfn() and drop handle_abnormal_pfn(). This eliminates
duplicate code in the various page fault handlers.

Opportunistically tweak the comment about handling gfn > host.MAXPHYADDR
to reflect that the effect of returning RET_PF_EMULATE at that point is
to avoid creating an MMIO SPTE for such GFNs.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29 15:33:21 -05:00
David Matlack
ba6e3fe255 KVM: x86/mmu: Grab mmu_invalidate_seq in kvm_faultin_pfn()
Grab mmu_invalidate_seq in kvm_faultin_pfn() and stash it in struct
kvm_page_fault. The eliminates duplicate code and reduces the amount of
parameters needed for is_page_fault_stale().

Preemptively split out __kvm_faultin_pfn() to a separate function for
use in subsequent commits.

No functional change intended.

Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29 15:33:18 -05:00
Sean Christopherson
55c510e26a KVM: x86/mmu: Rename NX huge pages fields/functions for consistency
Rename most of the variables/functions involved in the NX huge page
mitigation to provide consistency, e.g. lpage vs huge page, and NX huge
vs huge NX, and also to provide clarity, e.g. to make it obvious the flag
applies only to the NX huge page mitigation, not to any condition that
prevents creating a huge page.

Add a comment explaining what the newly named "possible_nx_huge_pages"
tracks.

Leave the nx_lpage_splits stat alone as the name is ABI and thus set in
stone.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20221019165618.927057-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09 12:31:31 -05:00
Sean Christopherson
428e921611 KVM: x86/mmu: Tag disallowed NX huge pages even if they're not tracked
Tag shadow pages that cannot be replaced with an NX huge page regardless
of whether or not zapping the page would allow KVM to immediately create
a huge page, e.g. because something else prevents creating a huge page.

I.e. track pages that are disallowed from being NX huge pages regardless
of whether or not the page could have been huge at the time of fault.
KVM currently tracks pages that were disallowed from being huge due to
the NX workaround if and only if the page could otherwise be huge.  But
that fails to handled the scenario where whatever restriction prevented
KVM from installing a huge page goes away, e.g. if dirty logging is
disabled, the host mapping level changes, etc...

Failure to tag shadow pages appropriately could theoretically lead to
false negatives, e.g. if a fetch fault requests a small page and thus
isn't tracked, and a read/write fault later requests a huge page, KVM
will not reject the huge page as it should.

To avoid yet another flag, initialize the list_head and use list_empty()
to determine whether or not a page is on the list of NX huge pages that
should be recovered.

Note, the TDP MMU accounting is still flawed as fixing the TDP MMU is
more involved due to mmu_lock being held for read.  This will be
addressed in a future commit.

Fixes: 5bcaf3e171 ("KVM: x86/mmu: Account NX huge page disallowed iff huge page was requested")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221019165618.927057-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09 12:31:31 -05:00
Jilin Yuan
b85a97b851 KVM: x86/mmu: fix repeated words in comments
Delete the redundant word 'to'.

Signed-off-by: Jilin Yuan <yuanjilin@cdjrlc.com>
Link: https://lore.kernel.org/r/20220831125217.12313-1-yuanjilin@cdjrlc.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-09-26 12:03:02 -04:00
Chao Peng
20ec3ebd70 KVM: Rename mmu_notifier_* to mmu_invalidate_*
The motivation of this renaming is to make these variables and related
helper functions less mmu_notifier bound and can also be used for non
mmu_notifier based page invalidation. mmu_invalidate_* was chosen to
better describe the purpose of 'invalidating' a page that those
variables are used for.

  - mmu_notifier_seq/range_start/range_end are renamed to
    mmu_invalidate_seq/range_start/range_end.

  - mmu_notifier_retry{_hva} helper functions are renamed to
    mmu_invalidate_retry{_hva}.

  - mmu_notifier_count is renamed to mmu_invalidate_in_progress to
    avoid confusion with mn_active_invalidate_count.

  - While here, also update kvm_inc/dec_notifier_count() to
    kvm_mmu_invalidate_begin/end() to match the change for
    mmu_notifier_count.

No functional change intended.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-3-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-08-19 04:05:41 -04:00
Sean Christopherson
79e48cec6c KVM: x86/mmu: Add optimized helper to retrieve an SPTE's index
Add spte_index() to dedup all the code that calculates a SPTE's index
into its parent's page table and/or spt array.  Opportunistically tweak
the calculation to avoid pointer arithmetic, which is subtle (subtract in
8-byte chunks) and less performant (requires the compiler to generate the
subtraction).

Suggested-by: David Matlack <dmatlack@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220712020724.1262121-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-07-14 11:31:23 -04:00
Hou Wenlong
6e1d2a3f25 KVM: x86/mmu: Replace UNMAPPED_GVA with INVALID_GPA for gva_to_gpa()
The result of gva_to_gpa() is physical address not virtual address,
it is odd that UNMAPPED_GVA macro is used as the result for physical
address. Replace UNMAPPED_GVA with INVALID_GPA and drop UNMAPPED_GVA
macro.

No functional change intended.

Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6104978956449467d3c68f1ad7f2c2f6d771d0ee.1656667239.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2022-07-12 22:31:12 +00:00
Paolo Bonzini
0cd8dc7398 KVM: x86/mmu: pull call to drop_large_spte() into __link_shadow_page()
Before allocating a child shadow page table, all callers check
whether the parent already points to a huge page and, if so, they
drop that SPTE.  This is done by drop_large_spte().

However, dropping the large SPTE is really only necessary before the
sp is installed.  While the sp is returned by kvm_mmu_get_child_sp(),
installing it happens later in __link_shadow_page().  Move the call
there instead of having it in each and every caller.

To ensure that the shadow page is not linked twice if it was present,
do _not_ opportunistically make kvm_mmu_get_child_sp() idempotent:
instead, return an error value if the shadow page already existed.
This is a bit more verbose, but clearer than NULL.

Finally, now that the drop_large_spte() name is not taken anymore,
remove the two underscores in front of __drop_large_spte().

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:59 -04:00
David Matlack
6a97575d5c KVM: x86/mmu: Cache the access bits of shadowed translations
Splitting huge pages requires allocating/finding shadow pages to replace
the huge page. Shadow pages are keyed, in part, off the guest access
permissions they are shadowing. For fully direct MMUs, there is no
shadowing so the access bits in the shadow page role are always ACC_ALL.
But during shadow paging, the guest can enforce whatever access
permissions it wants.

In particular, eager page splitting needs to know the permissions to use
for the subpages, but KVM cannot retrieve them from the guest page
tables because eager page splitting does not have a vCPU.  Fortunately,
the guest access permissions are easy to cache whenever page faults or
FNAME(sync_page) update the shadow page tables; this is an extension of
the existing cache of the shadowed GFNs in the gfns array of the shadow
page.  The access bits only take up 3 bits, which leaves 61 bits left
over for gfns, which is more than enough.

Now that the gfns array caches more information than just GFNs, rename
it to shadowed_translation.

While here, preemptively fix up the WARN_ON() that detects gfn
mismatches in direct SPs. The WARN_ON() was paired with a
pr_err_ratelimited(), which means that users could sometimes see the
WARN without the accompanying error message. Fix this by outputting the
error message as part of the WARN splat, and opportunistically make
them WARN_ONCE() because if these ever fire, they are all but guaranteed
to fire a lot and will bring down the kernel.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:58 -04:00