Intel CPUs have a MSR bit to limit CPUID enumeration to leaf two. If
this bit is set by the BIOS then CPUID evaluation including topology
enumeration does not work correctly as the evaluation code does not try
to analyze any leaf greater than two.
This went unnoticed before because the original topology code just
repeated evaluation several times and managed to overwrite the initial
limited information with the correct one later. The new evaluation code
does it once and therefore ends up with the limited and wrong
information.
Cure this by unlocking CPUID right before evaluating anything which
depends on the maximum CPUID leaf being greater than two instead of
rereading stuff after unlock.
Fixes: 22d63660c3 ("x86/cpu: Use common topology code for Intel")
Reported-by: Peter Schneider <pschneider1968@googlemail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Peter Schneider <pschneider1968@googlemail.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/fd3f73dc-a86f-4bcf-9c60-43556a21eb42@googlemail.com
Commit:
7bc263840b ("sched/topology: Consolidate and clean up access to a CPU's max compute capacity")
removed rq->cpu_capacity_orig in favor of using arch_scale_freq_capacity()
calls. Export the underlying percpu symbol on x86 so that external trace
point helper modules can be made to work again.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240530181548.2039216-1-pauld@redhat.com
tl;dr: CPUs with CPUID.80000008H but without CPUID.01H:EDX[CLFSH]
will end up reporting cache_line_size()==0 and bad things happen.
Fill in a default on those to avoid the problem.
Long Story:
The kernel dies a horrible death if c->x86_cache_alignment (aka.
cache_line_size() is 0. Normally, this value is populated from
c->x86_clflush_size.
Right now the code is set up to get c->x86_clflush_size from two
places. First, modern CPUs get it from CPUID. Old CPUs that don't
have leaf 0x80000008 (or CPUID at all) just get some sane defaults
from the kernel in get_cpu_address_sizes().
The vast majority of CPUs that have leaf 0x80000008 also get
->x86_clflush_size from CPUID. But there are oddballs.
Intel Quark CPUs[1] and others[2] have leaf 0x80000008 but don't set
CPUID.01H:EDX[CLFSH], so they skip over filling in ->x86_clflush_size:
cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
if (cap0 & (1<<19))
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
So they: land in get_cpu_address_sizes() and see that CPUID has level
0x80000008 and jump into the side of the if() that does not fill in
c->x86_clflush_size. That assigns a 0 to c->x86_cache_alignment, and
hilarity ensues in code like:
buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
GFP_KERNEL);
To fix this, always provide a sane value for ->x86_clflush_size.
Big thanks to Andy Shevchenko for finding and reporting this and also
providing a first pass at a fix. But his fix was only partial and only
worked on the Quark CPUs. It would not, for instance, have worked on
the QEMU config.
1. https://raw.githubusercontent.com/InstLatx64/InstLatx64/master/GenuineIntel/GenuineIntel0000590_Clanton_03_CPUID.txt
2. You can also get this behavior if you use "-cpu 486,+clzero"
in QEMU.
[ dhansen: remove 'vp_bits_from_cpuid' reference in changelog
because bpetkov brutally murdered it recently. ]
Fixes: fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach")
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Tested-by: Jörn Heusipp <osmanx@heusipp.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240516173928.3960193-1-andriy.shevchenko@linux.intel.com/
Link: https://lore.kernel.org/lkml/5e31cad3-ad4d-493e-ab07-724cfbfaba44@heusipp.de/
Link: https://lore.kernel.org/all/20240517200534.8EC5F33E%40davehans-spike.ostc.intel.com
The new AMD/HYGON topology parser evaluates the SMT information in CPUID leaf
0x8000001e unconditionally while the original code restricted it to CPUs with
family 0x17 and greater.
This breaks family 0x15 CPUs which advertise that leaf and have a non-zero
value in the SMT section. The machine boots, but the scheduler complains loudly
about the mismatch of the core IDs:
WARNING: CPU: 1 PID: 0 at kernel/sched/core.c:6482 sched_cpu_starting+0x183/0x250
WARNING: CPU: 0 PID: 1 at kernel/sched/topology.c:2408 build_sched_domains+0x76b/0x12b0
Add the condition back to cure it.
[ bp: Make it actually build because grandpa is not concerned with
trivial stuff. :-P ]
Fixes: f7fb3b2dd9 ("x86/cpu: Provide an AMD/HYGON specific topology parser")
Closes: https://gitlab.archlinux.org/archlinux/packaging/packages/linux/-/issues/56
Reported-by: Tim Teichmann <teichmanntim@outlook.de>
Reported-by: Christian Heusel <christian@heusel.eu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tim Teichmann <teichmanntim@outlook.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/7skhx6mwe4hxiul64v6azhlxnokheorksqsdbp7qw6g2jduf6c@7b5pvomauugk
Code supporting Intel PCONFIG targets was an early piece of enabling
for MKTME (Multi-Key Total Memory Encryption).
Since MKTME feature enablement did not follow into the kernel, remove
the unused PCONFIG code.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/all/4ddff30d466785b4adb1400f0518783012835141.1715054189.git.alison.schofield%40intel.com
TME (Total Memory Encryption) and MKTME (Multi-Key Total Memory
Encryption) BIOS detection were introduced together here [1] and
are loosely coupled in the Intel CPU init code.
TME is a hardware only feature and its BIOS status is all that needs
to be shared with the kernel user: enabled or disabled. The TME
algorithm the BIOS is using and whether or not the kernel recognizes
that algorithm is useless to the kernel user.
MKTME is a hardware feature that requires kernel support. MKTME
detection code was added in advance of broader kernel support for
MKTME that never followed. So, rather than continuing to spew
needless and confusing messages about BIOS MKTME status, remove
most of the MKTME pieces from detect_tme_early().
Keep one useful message: alert the user when BIOS enabled MKTME
reduces the available physical address bits. Recovery of the MKTME
consumed bits requires a reboot with MKTME disabled in BIOS.
There is no functional change for the user, only a change in boot
messages. Below is one example when both TME and MKTME are enabled
in BIOS with AES_XTS_256 which is unknown to the detect tme code.
Before:
[] x86/tme: enabled by BIOS
[] x86/tme: Unknown policy is active: 0x2
[] x86/mktme: No known encryption algorithm is supported: 0x4
[] x86/mktme: enabled by BIOS
[] x86/mktme: 127 KeyIDs available
After:
[] x86/tme: enabled by BIOS
[] x86/mktme: BIOS enable: x86_phys_bits reduced by 8
[1]
commit cb06d8e3d0 ("x86/tme: Detect if TME and MKTME is activated by BIOS")
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/all/86dfdf6ced8c9b790f9376bf6c7e22b5608f47c2.1715054189.git.alison.schofield%40intel.com
The recent CMCI storm handling rework removed the last case that checks
the return value of machine_check_poll().
Therefore the "error_seen" variable is no longer used, so remove it.
Fixes: 3ed57b41a4 ("x86/mce: Remove old CMCI storm mitigation code")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240523155641.2805411-3-yazen.ghannam@amd.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The MCA_MISC register is used to control the MCA thresholding feature on
AMD systems. Therefore, it is not generally part of the error state that
a user would adjust when testing non-thresholding cases.
However, MCA_MISC is unconditionally written even if a user does not
supply a value. The default value of '0' will be used and clobber the
register.
Write the MCA_MISC register only if the user has given a value for it.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240523155641.2805411-2-yazen.ghannam@amd.com
- Fix regressions of the new x86 CPU VFM (vendor/family/model)
enumeration/matching code
- Fix crash kernel detection on buggy firmware with
non-compliant ACPI MADT tables
- Address Kconfig warning
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZRvZwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iDhg//fWdgn2x4B4hEiCQQVYGpHLua59jduucb
oh+NF1jGu75obRu3gdQJLR7OYjxntWf2ryxpS+kkyLP6sYeMAoL4vnIoi5XJGJ13
VG0BcbXA8asL2KEfVz66AENAGQjAGr7Bcg9urHIuw8Nz6lJqaFyQkdQJfeClWtdL
zkgnCdooP1eREgfrQH5+hhTCrr/GwiFUU+wNKeIIpis1enMZYMiqA5U23w3DKlP8
Jx0cRY7ysa63O/H9oD01edRPkZpfbMqAocVwc9v42zOjlJLZYAtAW4mSC+GhG9X6
iGFWiW1ROBte/HYLE1LdKfahO990Tw0GsIcS42E8AtYfVu/W7U525SyKG100ndYH
nVoUSOPWF8YCT810YtOEM2ueMQKZMEjB8yAp5QQIi2NMcgkFxNdVQiC8zFATisHd
KFdEkH2fDGW9YiUNRBYjI/da3Q2v83JwAIKnYXmoFjcru4iJOPDIFdGZcJDh7oNW
ys/SWSK5dJkbLz+cHm8E5ceLTpZTsFHJm1Vd1W2gU/jkESBW/2i1rZ757ykfHURe
N7JUPI4g0DOVj8Elket9gnKD/xVFg/lsTnA1/5wxdWhWhJzZcM/XyICATno1/BaY
STWUmUr6sTsoB4+2PRuFC2zaRqIstLbkmKOAlHezd4uIwFxznQAg1K8f8kHlqfLH
l3VA8nRbOFc=
=nIcm
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2024-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
- Fix regressions of the new x86 CPU VFM (vendor/family/model)
enumeration/matching code
- Fix crash kernel detection on buggy firmware with
non-compliant ACPI MADT tables
- Address Kconfig warning
* tag 'x86-urgent-2024-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Fix x86_match_cpu() to match just X86_VENDOR_INTEL
crypto: x86/aes-xts - switch to new Intel CPU model defines
x86/topology: Handle bogus ACPI tables correctly
x86/kconfig: Select ARCH_WANT_FRAME_POINTERS again when UNWINDER_FRAME_POINTER=y
Code in v6.9 arch/x86/kernel/smpboot.c was changed by commit
4db64279bc ("x86/cpu: Switch to new Intel CPU model defines") from:
static const struct x86_cpu_id intel_cod_cpu[] = {
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */ <--- 443
{}
};
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
to:
static const struct x86_cpu_id intel_cod_cpu[] = {
X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */
X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */
X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */
{}
};
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
On an Intel CPU with SNC enabled this code previously matched the rule on line
443 to avoid printing messages about insane cache configuration. The new code
did not match any rules.
Expanding the macros for the intel_cod_cpu[] array shows that the old is
equivalent to:
static const struct x86_cpu_id intel_cod_cpu[] = {
[0] = { .vendor = 0, .family = 6, .model = 0x3F, .steppings = 0, .feature = 0, .driver_data = 0 },
[1] = { .vendor = 0, .family = 6, .model = 0x4F, .steppings = 0, .feature = 0, .driver_data = 0 },
[2] = { .vendor = 0, .family = 6, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 1 },
[3] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 0 }
}
while the new code expands to:
static const struct x86_cpu_id intel_cod_cpu[] = {
[0] = { .vendor = 0, .family = 6, .model = 0x3F, .steppings = 0, .feature = 0, .driver_data = 0 },
[1] = { .vendor = 0, .family = 6, .model = 0x4F, .steppings = 0, .feature = 0, .driver_data = 0 },
[2] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 1 },
[3] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 0 }
}
Looking at the code for x86_match_cpu():
const struct x86_cpu_id *x86_match_cpu(const struct x86_cpu_id *match)
{
const struct x86_cpu_id *m;
struct cpuinfo_x86 *c = &boot_cpu_data;
for (m = match;
m->vendor | m->family | m->model | m->steppings | m->feature;
m++) {
...
}
return NULL;
it is clear that there was no match because the ANY entry in the table (array
index 2) is now the loop termination condition (all of vendor, family, model,
steppings, and feature are zero).
So this code was working before because the "ANY" check was looking for any
Intel CPU in family 6. But fails now because the family is a wild card. So the
root cause is that x86_match_cpu() has never been able to match on a rule with
just X86_VENDOR_INTEL and all other fields set to wildcards.
Add a new flags field to struct x86_cpu_id that has a bit set to indicate that
this entry in the array is valid. Update X86_MATCH*() macros to set that bit.
Change the end-marker check in x86_match_cpu() to just check the flags field
for this bit.
Backporter notes: The commit in Fixes is really the one that is broken:
you can't have m->vendor as part of the loop termination conditional in
x86_match_cpu() because it can happen - as it has happened above
- that that whole conditional is 0 albeit vendor == 0 is a valid case
- X86_VENDOR_INTEL is 0.
However, the only case where the above happens is the SNC check added by
4db64279bc so you only need this fix if you have backported that
other commit
4db64279bc ("x86/cpu: Switch to new Intel CPU model defines")
Fixes: 644e9cbbe3 ("Add driver auto probing for x86 features v4")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable+noautosel@kernel.org> # see above
Link: https://lore.kernel.org/r/20240517144312.GBZkdtAOuJZCvxhFbJ@fat_crate.local
The ACPI specification clearly states how the processors should be
enumerated in the MADT:
"To ensure that the boot processor is supported post initialization,
two guidelines should be followed. The first is that OSPM should
initialize processors in the order that they appear in the MADT. The
second is that platform firmware should list the boot processor as the
first processor entry in the MADT.
...
Failure of OSPM implementations and platform firmware to abide by
these guidelines can result in both unpredictable and non optimal
platform operation."
The kernel relies on that ordering to detect the real BSP on crash kernels
which is important to avoid sending a INIT IPI to it as that would cause a
full machine reset.
On a Dell XPS 16 9640 the BIOS ignores this rule and enumerates the CPUs in
the wrong order. As a consequence the kernel falsely detects a crash kernel
and disables the corresponding CPU.
Prevent this by checking the IA32_APICBASE MSR for the BSP bit on the boot
CPU. If that bit is set, then the MADT based BSP detection can be safely
ignored. If the kernel detects a mismatch between the BSP bit and the first
enumerated MADT entry then emit a firmware bug message.
This obviously also has to be taken into account when the boot APIC ID and
the first enumerated APIC ID match. If the boot CPU does not have the BSP
bit set in the APICBASE MSR then there is no way for the boot CPU to
determine which of the CPUs is the real BSP. Sending an INIT to the real
BSP would reset the machine so the only sane way to deal with that is to
limit the number of CPUs to one and emit a corresponding warning message.
Fixes: 5c5682b9f8 ("x86/cpu: Detect real BSP on crash kernels")
Reported-by: Carsten Tolkmit <ctolkmit@ennit.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Carsten Tolkmit <ctolkmit@ennit.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87le48jycb.ffs@tglx
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218837
documented (hopefully adequately) in the respective changelogs. Notable
series include:
- Lucas Stach has provided some page-mapping
cleanup/consolidation/maintainability work in the series "mm/treewide:
Remove pXd_huge() API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being allocated:
number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in largely
similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
Weiner has fixed the page allocator's handling of migratetype requests,
with resulting improvements in compaction efficiency.
- In the series "make the hugetlb migration strategy consistent" Baolin
Wang has fixed a hugetlb migration issue, which should improve hugetlb
allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when memory
almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting" Kairui
Song has optimized pagecache insertion, yielding ~10% performance
improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various page->flags
cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
"mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs. This
is a simple first-cut implementation for now. The series is "support
multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in the
series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts in
the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes
the initialization code so that migration between different memory types
works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant driver
in the series "mm: follow_pte() improvements and acrn follow_pte()
fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to folio
in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size THP's
in the series "mm: add per-order mTHP alloc and swpout counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His series
"mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback instrumentation
in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series "Fix
and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
series "Improve anon_vma scalability for anon VMAs". Intel's test bot
reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
=V3R/
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
- Avoid 'constexpr', which is a keyword in C23
- Allow 'dtbs_check' and 'dt_compatible_check' run independently of
'dt_binding_check'
- Fix weak references to avoid GOT entries in position-independent
code generation
- Convert the last use of 'optional' property in arch/sh/Kconfig
- Remove support for the 'optional' property in Kconfig
- Remove support for Clang's ThinLTO caching, which does not work with
the .incbin directive
- Change the semantics of $(src) so it always points to the source
directory, which fixes Makefile inconsistencies between upstream and
downstream
- Fix 'make tar-pkg' for RISC-V to produce a consistent package
- Provide reasonable default coverage for objtool, sanitizers, and
profilers
- Remove redundant OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc.
- Remove the last use of tristate choice in drivers/rapidio/Kconfig
- Various cleanups and fixes in Kconfig
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmZFlGcVHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsG8voQALC8NtFpduWVfLRj2Qg6Ll/xf1vX
2igcTJEOFHkeqXLGoT8dTDKLEipUBUvKyguPq66CGwVTe2g6zy/nUSXeVtFrUsIa
msLTi8FqhqUo5lodNvGMRf8qqmuqcvnXoiQwIocF92jtsFy14bhiFY+n4HfcFNjj
GOKwqBZYQUwY/VVb090efc7RfS9c7uwABJSBelSoxg3AGZriwjGy7Pw5aSKGgVYi
inqL1eR6qwPP6z7CgQWM99soP+zwybFZmnQrsD9SniRBI4rtAat8Ih5jQFaSUFUQ
lk2w0NQBRFN88/uR2IJ2GWuIlQ74WeJ+QnCqVuQ59tV5zw90wqSmLzngfPD057Dv
JjNuhk0UyXVtpIg3lRtd4810ppNSTe33b9OM4O2H846W/crju5oDRNDHcflUXcwm
Rmn5ho1rb5QVzDVejJbgwidnUInSgJ9PZcvXQ/RJVZPhpgsBzAY9pQexG1G3hviw
y9UDrt6KP6bF9tHjmolmtdIes9Pj0c4dN6/Rdj4HS4hIQ/GDar0tnwvOvtfUctNL
orJlBsA6GeMmDVXKkR0ytOCWRYqWWbyt8g70RVKQJfuHX7/hGyAQPaQ2/u4mQhC2
aevYfbNJMj0VDfGz81HDBKFtkc5n+Ite8l157dHEl2LEabkOkRdNVcn7SNbOvZmd
ZCSnZ31h7woGfNho
=D5B/
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Avoid 'constexpr', which is a keyword in C23
- Allow 'dtbs_check' and 'dt_compatible_check' run independently of
'dt_binding_check'
- Fix weak references to avoid GOT entries in position-independent code
generation
- Convert the last use of 'optional' property in arch/sh/Kconfig
- Remove support for the 'optional' property in Kconfig
- Remove support for Clang's ThinLTO caching, which does not work with
the .incbin directive
- Change the semantics of $(src) so it always points to the source
directory, which fixes Makefile inconsistencies between upstream and
downstream
- Fix 'make tar-pkg' for RISC-V to produce a consistent package
- Provide reasonable default coverage for objtool, sanitizers, and
profilers
- Remove redundant OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc.
- Remove the last use of tristate choice in drivers/rapidio/Kconfig
- Various cleanups and fixes in Kconfig
* tag 'kbuild-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (46 commits)
kconfig: use sym_get_choice_menu() in sym_check_prop()
rapidio: remove choice for enumeration
kconfig: lxdialog: remove initialization with A_NORMAL
kconfig: m/nconf: merge two item_add_str() calls
kconfig: m/nconf: remove dead code to display value of bool choice
kconfig: m/nconf: remove dead code to display children of choice members
kconfig: gconf: show checkbox for choice correctly
kbuild: use GCOV_PROFILE and KCSAN_SANITIZE in scripts/Makefile.modfinal
Makefile: remove redundant tool coverage variables
kbuild: provide reasonable defaults for tool coverage
modules: Drop the .export_symbol section from the final modules
kconfig: use menu_list_for_each_sym() in sym_check_choice_deps()
kconfig: use sym_get_choice_menu() in conf_write_defconfig()
kconfig: add sym_get_choice_menu() helper
kconfig: turn defaults and additional prompt for choice members into error
kconfig: turn missing prompt for choice members into error
kconfig: turn conf_choice() into void function
kconfig: use linked list in sym_set_changed()
kconfig: gconf: use MENU_CHANGED instead of SYMBOL_CHANGED
kconfig: gconf: remove debug code
...
Support for posted interrupts on bare metal
Posted interrupts is a virtualization feature which allows to inject
interrupts directly into a guest without host interaction. The VT-d
interrupt remapping hardware sets the bit which corresponds to the
interrupt vector in a vector bitmap which is either used to inject the
interrupt directly into the guest via a virtualized APIC or in case
that the guest is scheduled out provides a host side notification
interrupt which informs the host that an interrupt has been marked
pending in the bitmap.
This can be utilized on bare metal for scenarios where multiple
devices, e.g. NVME storage, raise interrupts with a high frequency. In
the default mode these interrupts are handles independently and
therefore require a full roundtrip of interrupt entry/exit.
Utilizing posted interrupts this roundtrip overhead can be avoided by
coalescing these interrupt entries to a single entry for the posted
interrupt notification. The notification interrupt then demultiplexes
the pending bits in a memory based bitmap and invokes the corresponding
device specific handlers.
Depending on the usage scenario and device utilization throughput
improvements between 10% and 130% have been measured.
As this is only relevant for high end servers with multiple device
queues per CPU attached and counterproductive for situations where
interrupts are arriving at distinct times, the functionality is opt-in
via a kernel command line parameter.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmZBGUITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYod3xD/98Xa4qZN7eceyyGUhgXnPLOKQzGQ7k
7cmhsoAYjABeXLvuAvtKePL7ky7OPcqVW2E/g0+jdZuRDkRDbnVkM7CDMRTyL0/b
BZLhVAXyANKjK79a5WvjL0zDasYQRQ16MQJ6TPa++mX0KhZSI7KvXWIqPWov5i02
n8UbPUraH5bJi3qGKm6u4n2261Be1gtDag0ZjmGma45/3wsn3bWPoB7iPK6qxmq3
Q7VARPXAcRp5wYACk6mCOM1dOXMUV9CgI5AUk92xGfXi4RAdsFeNSzeQWn9jHWOf
CYbbJjNl4QmGP4IWmy6/Up4vIiEhUCOT2DmHsygrQTs/G+nPnMAe1qUuDuECiofj
iToBL3hn1dHG8uINKOB81MJ33QEGWyYWY8PxxoR3LMTrhVpfChUlJO8T2XK5nu+i
2EA6XLtJiHacpXhn8HQam0aQN9nvi4wT1LzpkhmboyCQuXTiXuJNbyLIh5TdFa1n
DzqAGhRB67z6eGevJJ7kTI1X71W0poMwYlzCU8itnLOK8np0zFQ8bgwwqm9opZGq
V2eSDuZAbqXVolzmaF8NSfM+b/R9URQtWsZ8cEc+/OdVV4HR4zfeqejy60TuV/4G
39CTnn8vPBKcRSS6CAcJhKPhzIvHw4EMhoU4DJKBtwBdM58RyP9NY1wF3rIPJIGh
sl61JBuYYuIZXg==
=bqLN
-----END PGP SIGNATURE-----
Merge tag 'x86-irq-2024-05-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 interrupt handling updates from Thomas Gleixner:
"Add support for posted interrupts on bare metal.
Posted interrupts is a virtualization feature which allows to inject
interrupts directly into a guest without host interaction. The VT-d
interrupt remapping hardware sets the bit which corresponds to the
interrupt vector in a vector bitmap which is either used to inject the
interrupt directly into the guest via a virtualized APIC or in case
that the guest is scheduled out provides a host side notification
interrupt which informs the host that an interrupt has been marked
pending in the bitmap.
This can be utilized on bare metal for scenarios where multiple
devices, e.g. NVME storage, raise interrupts with a high frequency. In
the default mode these interrupts are handles independently and
therefore require a full roundtrip of interrupt entry/exit.
Utilizing posted interrupts this roundtrip overhead can be avoided by
coalescing these interrupt entries to a single entry for the posted
interrupt notification. The notification interrupt then demultiplexes
the pending bits in a memory based bitmap and invokes the
corresponding device specific handlers.
Depending on the usage scenario and device utilization throughput
improvements between 10% and 130% have been measured.
As this is only relevant for high end servers with multiple device
queues per CPU attached and counterproductive for situations where
interrupts are arriving at distinct times, the functionality is opt-in
via a kernel command line parameter"
* tag 'x86-irq-2024-05-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Use existing helper for pending vector check
iommu/vt-d: Enable posted mode for device MSIs
iommu/vt-d: Make posted MSI an opt-in command line option
x86/irq: Extend checks for pending vectors to posted interrupts
x86/irq: Factor out common code for checking pending interrupts
x86/irq: Install posted MSI notification handler
x86/irq: Factor out handler invocation from common_interrupt()
x86/irq: Set up per host CPU posted interrupt descriptors
x86/irq: Reserve a per CPU IDT vector for posted MSIs
x86/irq: Add a Kconfig option for posted MSI
x86/irq: Remove bitfields in posted interrupt descriptor
x86/irq: Unionize PID.PIR for 64bit access w/o casting
KVM: VMX: Move posted interrupt descriptor out of VMX code
goal of freeing them sooner rather than later
- Other code improvements and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmZCW64ACgkQEsHwGGHe
VUq7Dw//ZM+4OX3l0P6NTv4WJ9UDn3IltRm+D61J6hYw19iETlGGAel5T6DI1LPT
GYAoOazd9ouNjwU0YhOn6Se3SVWKxLLOGH+/RIJtqwiCwTy2nGfSPHw3pnTxwtK4
pRttm6fPQWIUuQyDrzmbJGP+va4YDtVtDyBkxNlk8pQTvF7X0QCcu6GjNW9r6+Md
92J2AwzeoDAeIc16vKHru4S3wBCqdP7xZ9GqBb8wrNxBy8taSN4wE9cuwDjev5Yw
ANGeREv3odWvYQ7p0fQVY2j25ddjGNE4qEEJ1iAIJDh9bIHURAF3s1aSPqcMyHyF
eB8NNf7ZjQhycmBX9ci6CHYOKc3i25nWiMoaC1iWZKQEviTt3OCEeKr20mjAfKOz
wlUs55iGrHkbS10kB91Z6lOMDNiIu+x4kuiF5y1W73SDfkY+pYv8zLQL9rhNpYnd
BEcOF+YaJuhi4Y7GUDb0fWdIUZcfGItSJyNbR8jaznJKcP2pjznSUKqM/AphZyuU
bVsVsYkYQiE2vl4xYdmyHnxsfnpuMTVNuPpIonyp1mIa77iDVeiwYabkau+pz8L9
Rv1jhUmYVfawxKiRc6tOQAsxOtAiqrm2GBpZlisw8KtfzZaPC9h7U7bXC4up1TtH
nZVt+qV/8M9nc3Trocb+d8djbrv+Uqh4EHPTBbFEfW6qsMFsXhk=
=8EKr
-----END PGP SIGNATURE-----
Merge tag 'x86_cache_for_v6.10_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 resource control updates from Borislav Petkov:
- Add a tracepoint to read out LLC occupancy of resource monitor IDs
with the goal of freeing them sooner rather than later
- Other code improvements and cleanups
* tag 'x86_cache_for_v6.10_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Add tracepoint for llc_occupancy tracking
x86/resctrl: Rename pseudo_lock_event.h to trace.h
x86/resctrl: Simplify call convention for MSR update functions
x86/resctrl: Pass domain to target CPU
with 32-bit guests, seeing stale instruction bytes, to one working on
a buffer, like the rest of the alternatives code does
- Add a long overdue check to the X86_FEATURE flag modifying functions to warn
when former get changed in a non-compatible way after alternatives have been
patched because those changes will be already wrong
- Other cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmZCT+kACgkQEsHwGGHe
VUraaxAAl6pwAVD19vK6VtTRxgKGW8GBaGjdtSBDSFP3dhyvqd+xC1Vez5HKShMz
Lmg81ZsoeAruGWDo+Av0twgGEd5OagTMHdrJsfWVQlaVXNE1IPm4tWuic4Llh+0X
LSZYrBXpQH7/bsOHFTdvun8NdHVb5Ew8pvYCB06lPrlU7sjBujGsFzyQ1R6xNWmr
IErYqUVtEqexNS9lo45N+1Q5Uzdb9eNnPqMDA0ZbvJEytXWHlqW3ukOjRyNls1BS
HbgIqOk59xuHII/nw+GgsXant2TvJQYFJPC7CculJWp7oLZITn03rj0AMKOS7cm+
zOKDbnvQogw4mf/eVc1X6RbIq+9O5eZcBskIiRVGpFP294Axt8gEwmFcfBI2UsUF
t73Z2ELHuo/iHc02Gd2y+uV98NEmluX+g4efb5ILpdMJiP9J2rl6TA0PIYUx8U3T
794We38nk1YCSZnXZOpso7y+m/lRPocALWHQdtw9Frn8UNzgjidpef8vT2O+Trp5
AYv5ucnChjcUQycMIBGFbqppwjs9vb2y1L6mh4mCB6WrxeAitUw0hjvuYQvKL+wB
0gYqOrL4Z+swYKMC+GAE5HCcQayzsURbjnyzcM4nhKGSiwpaeYKHPqAPPq+oyH18
xMc8KI3n791oeZBUhA5o1ECw5vX3FcgUfAmlYfhMTnqvo+UQALM=
=gaPh
-----END PGP SIGNATURE-----
Merge tag 'x86_alternatives_for_v6.10_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm alternatives updates from Borislav Petkov:
- Switch the in-place instruction patching which lead to at least one
weird bug with 32-bit guests, seeing stale instruction bytes, to one
working on a buffer, like the rest of the alternatives code does
- Add a long overdue check to the X86_FEATURE flag modifying functions
to warn when former get changed in a non-compatible way after
alternatives have been patched because those changes will be already
wrong
- Other cleanups
* tag 'x86_alternatives_for_v6.10_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/alternatives: Remove alternative_input_2()
x86/alternatives: Sort local vars in apply_alternatives()
x86/alternatives: Optimize optimize_nops()
x86/alternatives: Get rid of __optimize_nops()
x86/alternatives: Use a temporary buffer when optimizing NOPs
x86/alternatives: Catch late X86_FEATURE modifiers
one based on the number of CPUs present in the system
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmZB9z8ACgkQEsHwGGHe
VUrOxA/+Mh3eCUMzgqzXRf5PVdDUQO2BBrzQEriWU0PwPjOdqmBtx6l5hlfwAl/Q
4I200RAjCu36V4BN65xhtkdQ20mKtAFXfYlqCSp4C3Q3dxSLt8P/7nwWgDqZ/ry+
IPuB4fs4GPGoolrV7wKn2IYJLPtn44Ef9kEUH2j+Za2f6GYEdD4j0IWsD1+VZwGL
jatFbmPkZQXfYwPOvN2cfF5EMq84XNo3rM82++JcwvdbrbkqO2mT4OWZ6pWylD0x
tiewi3HbVKDDUItv/bTj9QtPqbYfbENHroz3gdwo066F2OZiEA5cn7lPhL05DBYH
FmmicH2yNKAvZlhP/m6YAz+b6H/nLihPen1wcbe+BzJYKJJgDz87QDWrsqbOiBIr
1tamd5hVZZ+XHXLQv140BsetwwZhnrO4N4PtwZNXUw8sehreErIKyEsRy6DIXKYf
nY+Z6NMopyatOnAKd2vhW2wjiAFhQvkKmM4Dlw/VEzTbg7xoXruwKCiulxNrmgnX
eAOHErsv9GF+1ZlnXLoTBo+ctLS1xgDu1GvlXlxGo2Ei2WkHmyzrKVcWZoNXCSgB
Mnpt3Nuzv1dAmGEnZZjotdbm4kSKn3By7pDeDbhynaSepx0G2T/4tvXiyXkoepnq
wJ21MATXUOE8Qq5d+D3V4brC7avcqI8vl+tb7Qi7JK0K3Dv2Wd0=
=enB0
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.10_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS update from Borislav Petkov:
- Change the fixed-size buffer for MCE records to a dynamically sized
one based on the number of CPUs present in the system
* tag 'ras_core_for_v6.10_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Dynamically size space for machine check records
- Rework the x86 CPU vendor/family/model code: introduce the 'VFM'
value that is an 8+8+8 bit concatenation of the vendor/family/model
value, and add macros that work on VFM values. This simplifies the
addition of new Intel models & families, and simplifies existing
enumeration & quirk code.
- Add support for the AMD 0x80000026 leaf, to better parse topology
information.
- Optimize the NUMA allocation layout of more per-CPU data structures
- Improve the workaround for AMD erratum 1386
- Clear TME from /proc/cpuinfo as well, when disabled by the firmware
- Improve x86 self-tests
- Extend the mce_record tracepoint with the ::ppin and ::microcode fields
- Implement recovery for MCE errors in TDX/SEAM non-root mode
- Misc cleanups and fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZBwL0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gfuBAAkfVxMAfXvI4Vn3Em9Pix5zgvOoEshPoI
Pti8+fqgKAaR/Nn+ZCEUk6nou8E6R0Lyo7yDk4aZ0zGmUwQS0IoRTvj721YojCTS
Chr7butXH2xkYYQVBiJvKdHVhPBgs6jvExLyRL4WJ6s6zunS86Xka3nVRKD9QqW6
RpEc83wW9b/oSzxn/Cwzxk9RvXatLL82EMOYPL2B40Lde8EM+zoYsfOwGndGlCB2
gHpnSL1Jzry5kTeG7rromWWVp6YrDW63R2KO+DB0r7rrrtEyXtoCr7OdxruUijPB
sSpzN6etRbUuH0ijMbh7EW8KlUkGBx46Y+1eRMeN/qYy0vuwP9v0vP9n/7fXLjvu
FEI82W07lHjY3OvHh2FzvcHMTWaHVYqwDRLki7ortjtg53F/0l07Cbqxf2zJg+r3
jIaVCifk4qo6Rq+TvHtGcuDYi36u93UKVcfjQN1K/a2WdzJvpDL63PklzBeTno5s
7QBSG1FxEbfIXeQaf/AwfjnfzlQhI9ws1F+GuFAP7mGH8vEnDlGhLv5vsnloxcMB
HnHJE1wOzq6A3ixCFreXccikfsTUgsfmrLExhVs9Er/MsKRsGfSySyFUHA4L/Ygm
6zqfgYwSJzbn5EnfPmiO1R+tNhlcAi0YENeAOle4HQTeBwqebKl+Zh3zbzpgM2I3
cppkgnY/HTQ=
=Zrlk
-----END PGP SIGNATURE-----
Merge tag 'x86-cpu-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Ingo Molnar:
- Rework the x86 CPU vendor/family/model code: introduce the 'VFM'
value that is an 8+8+8 bit concatenation of the vendor/family/model
value, and add macros that work on VFM values. This simplifies the
addition of new Intel models & families, and simplifies existing
enumeration & quirk code.
- Add support for the AMD 0x80000026 leaf, to better parse topology
information
- Optimize the NUMA allocation layout of more per-CPU data structures
- Improve the workaround for AMD erratum 1386
- Clear TME from /proc/cpuinfo as well, when disabled by the firmware
- Improve x86 self-tests
- Extend the mce_record tracepoint with the ::ppin and ::microcode fields
- Implement recovery for MCE errors in TDX/SEAM non-root mode
- Misc cleanups and fixes
* tag 'x86-cpu-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
x86/mm: Switch to new Intel CPU model defines
x86/tsc_msr: Switch to new Intel CPU model defines
x86/tsc: Switch to new Intel CPU model defines
x86/cpu: Switch to new Intel CPU model defines
x86/resctrl: Switch to new Intel CPU model defines
x86/microcode/intel: Switch to new Intel CPU model defines
x86/mce: Switch to new Intel CPU model defines
x86/cpu: Switch to new Intel CPU model defines
x86/cpu/intel_epb: Switch to new Intel CPU model defines
x86/aperfmperf: Switch to new Intel CPU model defines
x86/apic: Switch to new Intel CPU model defines
perf/x86/msr: Switch to new Intel CPU model defines
perf/x86/intel/uncore: Switch to new Intel CPU model defines
perf/x86/intel/pt: Switch to new Intel CPU model defines
perf/x86/lbr: Switch to new Intel CPU model defines
perf/x86/intel/cstate: Switch to new Intel CPU model defines
x86/bugs: Switch to new Intel CPU model defines
x86/bugs: Switch to new Intel CPU model defines
x86/cpu/vfm: Update arch/x86/include/asm/intel-family.h
x86/cpu/vfm: Add new macros to work with (vendor/family/model) values
...
The original topology evaluation code initialized cpu_data::topo::llc_id
with the die ID initialy and then eventually overwrite it with information
gathered from a CPUID leaf.
The conversion analysis failed to spot that particular detail and omitted
this initial assignment under the assumption that each topology evaluation
path will set it up. That assumption is mostly correct, but turns out to be
wrong in case that the CPUID leaf 0x80000006 does not provide a LLC ID.
In that case, LLC ID is invalid and as a consequence the setup of the
scheduling domain CPU masks is incorrect which subsequently causes the
scheduler core to complain about it during CPU hotplug:
BUG: arch topology borken
the CLS domain not a subset of the MC domain
Cure it by reusing legacy_set_llc() and assigning the die ID if the LLC ID
is invalid after all possible parsers have been tried.
Fixes: f7fb3b2dd9 ("x86/cpu: Provide an AMD/HYGON specific topology parser")
Reported-by: Yuezhang Mo <Yuezhang.Mo@sony.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Yuezhang Mo <Yuezhang.Mo@sony.com>
Link: https://lore.kernel.org/r/PUZPR04MB63168AC442C12627E827368581292@PUZPR04MB6316.apcprd04.prod.outlook.com
Kbuild conventionally uses $(obj)/ for generated files, and $(src)/ for
checked-in source files. It is merely a convention without any functional
difference. In fact, $(obj) and $(src) are exactly the same, as defined
in scripts/Makefile.build:
src := $(obj)
When the kernel is built in a separate output directory, $(src) does
not accurately reflect the source directory location. While Kbuild
resolves this discrepancy by specifying VPATH=$(srctree) to search for
source files, it does not cover all cases. For example, when adding a
header search path for local headers, -I$(srctree)/$(src) is typically
passed to the compiler.
This introduces inconsistency between upstream and downstream Makefiles
because $(src) is used instead of $(srctree)/$(src) for the latter.
To address this inconsistency, this commit changes the semantics of
$(src) so that it always points to the directory in the source tree.
Going forward, the variables used in Makefiles will have the following
meanings:
$(obj) - directory in the object tree
$(src) - directory in the source tree (changed by this commit)
$(objtree) - the top of the kernel object tree
$(srctree) - the top of the kernel source tree
Consequently, $(srctree)/$(src) in upstream Makefiles need to be replaced
with $(src).
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
To support posted MSIs, create a posted interrupt descriptor (PID) for each
host CPU. Later on, when setting up interrupt affinity, the IOMMU's
interrupt remapping table entry (IRTE) will point to the physical address
of the matching CPU's PID.
Each PID is initialized with the owner CPU's physical APICID as the
destination.
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240423174114.526704-7-jacob.jun.pan@linux.intel.com
New CPU #defines encode vendor and family as well as model.
[ bp: Squash two resctrl patches into one. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181514.41848-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181513.41829-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181511.41753-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181510.41733-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181505.41654-1-tony.luck%40intel.com
The mm_struct contains a function pointer *get_unmapped_area(), which is
set to either arch_get_unmapped_area() or arch_get_unmapped_area_topdown()
during the initialization of the mm.
Since the function pointer only ever points to two functions that are
named the same across all arch's, a function pointer is not really
required. In addition future changes will want to add versions of the
functions that take additional arguments. So to save a pointers worth of
bytes in mm_struct, and prevent adding additional function pointers to
mm_struct in future changes, remove it and keep the information about
which get_unmapped_area() to use in a flag.
Add the new flag to MMF_INIT_MASK so it doesn't get clobbered on fork by
mmf_init_flags(). Most MM flags get clobbered on fork. In the
pre-existing behavior mm->get_unmapped_area() would get copied to the new
mm in dup_mm(), so not clobbering the flag preserves the existing behavior
around inheriting the topdown-ness.
Introduce a helper, mm_get_unmapped_area(), to easily convert code that
refers to the old function pointer to instead select and call either
arch_get_unmapped_area() or arch_get_unmapped_area_topdown() based on the
flag. Then drop the mm->get_unmapped_area() function pointer. Leave the
get_unmapped_area() pointer in struct file_operations alone. The main
purpose of this change is to reorganize in preparation for future changes,
but it also converts the calls of mm->get_unmapped_area() from indirect
branches into a direct ones.
The stress-ng bigheap benchmark calls realloc a lot, which calls through
get_unmapped_area() in the kernel. On x86, the change yielded a ~1%
improvement there on a retpoline config.
In testing a few x86 configs, removing the pointer unfortunately didn't
result in any actual size reductions in the compiled layout of mm_struct.
But depending on compiler or arch alignment requirements, the change could
shrink the size of mm_struct.
Link: https://lkml.kernel.org/r/20240326021656.202649-3-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240424181507.41693-1-tony.luck@intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240424181506.41673-1-tony.luck@intel.com
In our production environment, after removing monitor groups, those
unused RMIDs get stuck in the limbo list forever because their
llc_occupancy is always larger than the threshold. But the unused RMIDs
can be successfully freed by turning up the threshold.
In order to know how much the threshold should be, perf can be used to
acquire the llc_occupancy of RMIDs in each rdt domain.
Instead of using perf tool to track llc_occupancy and filter the log
manually, it is more convenient for users to use tracepoint to do this
work. So add a new tracepoint that shows the llc_occupancy of busy RMIDs
when scanning the limbo list.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Suggested-by: James Morse <james.morse@arm.com>
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20240408092303.26413-3-haifeng.xu@shopee.com
Now only the pseudo-locking part uses tracepoints to do event tracking,
but other parts of resctrl may need new tracepoints. It is unnecessary
to create separate header files and define CREATE_TRACE_POINTS in
different c files which fragments the resctrl tracing.
Therefore, give the resctrl tracepoint header file a generic name to
support its use for tracepoints that are not specific to pseudo-locking.
No functional change.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20240408092303.26413-2-haifeng.xu@shopee.com
The per-resource MSR update functions cat_wrmsr(), mba_wrmsr_intel(),
and mba_wrmsr_amd() all take three arguments:
(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
struct msr_param contains pointers to both struct rdt_resource and struct
rdt_domain, thus only struct msr_param is necessary.
Pass struct msr_param as a single parameter. Clean up formatting and
fix some fir tree declaration ordering.
No functional change.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Link: https://lore.kernel.org/r/20240308213846.77075-3-tony.luck@intel.com
reset_all_ctrls() and resctrl_arch_update_domains() use on_each_cpu_mask()
to call rdt_ctrl_update() on potentially one CPU from each domain.
But this means rdt_ctrl_update() needs to figure out which domain to
apply changes to. Doing so requires a search of all domains in a resource,
which can only be done safely if cpus_lock is held. Both callers do hold
this lock, but there isn't a way for a function called on another CPU
via IPI to verify this.
Commit
c0d848fcb0 ("x86/resctrl: Remove lockdep annotation that triggers
false positive")
removed the incorrect assertions.
Add the target domain to the msr_param structure and call
rdt_ctrl_update() for each domain separately using
smp_call_function_single(). This means that rdt_ctrl_update() doesn't
need to search for the domain and get_domain_from_cpu() can safely
assert that the cpus_lock is held since the remaining callers do not use
IPI.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Link: https://lore.kernel.org/r/20240308213846.77075-2-tony.luck@intel.com
New CPU #defines encode vendor and family as well as model.
Update the example usage comment in arch/x86/kernel/cpu/match.c
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240416211941.9369-4-tony.luck@intel.com
Fix cpuid_deps[] to list the correct dependencies for GFNI, VAES, and
VPCLMULQDQ. These features don't depend on AVX512, and there exist CPUs
that support these features but not AVX512. GFNI actually doesn't even
depend on AVX.
This prevents GFNI from being unnecessarily disabled if AVX is disabled
to mitigate the GDS vulnerability.
This also prevents all three features from being unnecessarily disabled
if AVX512VL (or its dependency AVX512F) were to be disabled, but it
looks like there isn't any case where this happens anyway.
Fixes: c128dbfa0f ("x86/cpufeatures: Enable new SSE/AVX/AVX512 CPU features")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20240417060434.47101-1-ebiggers@kernel.org
Confusingly, X86_FEATURE_RETPOLINE doesn't mean retpolines are enabled,
as it also includes the original "AMD retpoline" which isn't a retpoline
at all.
Also replace cpu_feature_enabled() with boot_cpu_has() because this is
before alternatives are patched and cpu_feature_enabled()'s fallback
path is slower than plain old boot_cpu_has().
Fixes: ec9404e40e ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/ad3807424a3953f0323c011a643405619f2a4927.1712944776.git.jpoimboe@kernel.org
There's a new conflict between this commit pending in x86/cpu:
63edbaa48a x86/cpu/topology: Add support for the AMD 0x80000026 leaf
And these fixes in x86/urgent:
c064b536a8 x86/cpu/amd: Make the NODEID_MSR union actually work
1b3108f689 x86/cpu/amd: Make the CPUID 0x80000008 parser correct
Resolve them.
Conflicts:
arch/x86/kernel/cpu/topology_amd.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The topology rework missed that early_init_amd() tries to re-enable the
Topology Extensions when the BIOS disabled them.
The new parser is invoked before early_init_amd() so the re-enable attempt
happens too late.
Move it into the AMD specific topology parser code where it belongs.
Fixes: f7fb3b2dd9 ("x86/cpu: Provide an AMD/HYGON specific topology parser")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/878r1j260l.ffs@tglx
A system with NODEID_MSR was reported to crash during early boot without
any output.
The reason is that the union which is used for accessing the bitfields in
the MSR is written wrongly and the resulting executable code accesses the
wrong part of the MSR data.
As a consequence a later division by that value results in 0 and that
result is used for another division as divisor, which obviously does not
work well.
The magic world of C, unions and bitfields:
union {
u64 bita : 3,
bitb : 3;
u64 all;
} x;
x.all = foo();
a = x.bita;
b = x.bitb;
results in the effective executable code of:
a = b = x.bita;
because bita and bitb are treated as union members and therefore both end
up at bit offset 0.
Wrapping the bitfield into an anonymous struct:
union {
struct {
u64 bita : 3,
bitb : 3;
};
u64 all;
} x;
works like expected.
Rework the NODEID_MSR union in exactly that way to cure the problem.
Fixes: f7fb3b2dd9 ("x86/cpu: Provide an AMD/HYGON specific topology parser")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Reported-by: Laura Nao <laura.nao@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Laura Nao <laura.nao@collabora.com>
Link: https://lore.kernel.org/r/20240410194311.596282919@linutronix.de
Closes: https://lore.kernel.org/all/20240322175210.124416-1-laura.nao@collabora.com/
CPUID 0x80000008 ECX.cpu_nthreads describes the number of threads in the
package. The parser uses this value to initialize the SMT domain level.
That's wrong because cpu_nthreads does not describe the number of threads
per physical core. So this needs to set the CORE domain level and let the
later parsers set the SMT shift if available.
Preset the SMT domain level with the assumption of one thread per core,
which is correct ifrt here are no other CPUID leafs to parse, and propagate
cpu_nthreads and the core level APIC bitwidth into the CORE domain.
Fixes: f7fb3b2dd9 ("x86/cpu: Provide an AMD/HYGON specific topology parser")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Reported-by: Laura Nao <laura.nao@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Laura Nao <laura.nao@collabora.com>
Link: https://lore.kernel.org/r/20240410194311.535206450@linutronix.de
For consistency with the other CONFIG_MITIGATION_* options, replace the
CONFIG_SPECTRE_BHI_{ON,OFF} options with a single
CONFIG_MITIGATION_SPECTRE_BHI option.
[ mingo: Fix ]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/3833812ea63e7fdbe36bf8b932e63f70d18e2a2a.1712813475.git.jpoimboe@kernel.org
Unlike most other mitigations' "auto" options, spectre_bhi=auto only
mitigates newer systems, which is confusing and not particularly useful.
Remove it.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/412e9dc87971b622bbbaf64740ebc1f140bff343.1712813475.git.jpoimboe@kernel.org
While syscall hardening helps prevent some BHI attacks, there's still
other low-hanging fruit remaining. Don't classify it as a mitigation
and make it clear that the system may still be vulnerable if it doesn't
have a HW or SW mitigation enabled.
Fixes: ec9404e40e ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/b5951dae3fdee7f1520d5136a27be3bdfe95f88b.1712813475.git.jpoimboe@kernel.org
The ARCH_CAP_RRSBA check isn't correct: RRSBA may have already been
disabled by the Spectre v2 mitigation (or can otherwise be disabled by
the BHI mitigation itself if needed). In that case retpolines are fine.
Fixes: ec9404e40e ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6f56f13da34a0834b69163467449be7f58f253dc.1712813475.git.jpoimboe@kernel.org
So we are using the 'ia32_cap' value in a number of places,
which got its name from MSR_IA32_ARCH_CAPABILITIES MSR register.
But there's very little 'IA32' about it - this isn't 32-bit only
code, nor does it originate from there, it's just a historic
quirk that many Intel MSR names are prefixed with IA32_.
This is already clear from the helper method around the MSR:
x86_read_arch_cap_msr(), which doesn't have the IA32 prefix.
So rename 'ia32_cap' to 'x86_arch_cap_msr' to be consistent with
its role and with the naming of the helper function.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/9592a18a814368e75f8f4b9d74d3883aa4fd1eaf.1712813475.git.jpoimboe@kernel.org
There's no need to keep reading MSR_IA32_ARCH_CAPABILITIES over and
over. It's even read in the BHI sysfs function which is a big no-no.
Just read it once and cache it.
Fixes: ec9404e40e ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/9592a18a814368e75f8f4b9d74d3883aa4fd1eaf.1712813475.git.jpoimboe@kernel.org
topo_set_cpuids() updates cpu_present_map and cpu_possible map. It is
invoked during enumeration and "physical hotplug" operations. In the
latter case this results in a kernel crash because cpu_possible_map is
marked read only after init completes.
There is no reason to update cpu_possible_map in that function. During
enumeration cpu_possible_map is not relevant and gets fully initialized
after enumeration completed. On "physical hotplug" the bit is already set
because the kernel allows only CPUs to be plugged which have been
enumerated and associated to a CPU number during early boot.
Remove the bogus update of cpu_possible_map.
Fixes: 0e53e7b656 ("x86/cpu/topology: Sanitize the APIC admission logic")
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/87ttkc6kwx.ffs@tglx
The definition of spectre_bhi_state() incorrectly returns a const char
* const. This causes the a compiler warning when building with W=1:
warning: type qualifiers ignored on function return type [-Wignored-qualifiers]
2812 | static const char * const spectre_bhi_state(void)
Remove the const qualifier from the pointer.
Fixes: ec9404e40e ("x86/bhi: Add BHI mitigation knob")
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240409230806.1545822-1-daniel.sneddon@linux.intel.com
After alternatives have been patched, changes to the X86_FEATURE flags
won't take effect and could potentially even be wrong.
Warn about it.
This is something which has been long overdue.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Srikanth Aithal <sraithal@amd.com>
Link: https://lore.kernel.org/r/20240327154317.29909-3-bp@alien8.de
Machine check SMIs (MSMI) signaled during SEAM operation (typically
inside TDX guests), on a system with Intel eMCA enabled, might eventually
be reported to the kernel #MC handler with the saved RIP on the stack
pointing to the instruction in kernel code after the SEAMCALL instruction
that entered the SEAM operation. Linux currently says that is a fatal
error and shuts down.
There is a new bit in IA32_MCG_STATUS that, when set to 1, indicates
that the machine check didn't originally occur at that saved RIP, but
during SEAM non-root operation.
Add new entries to the severity table to detect this for both data load
and instruction fetch that set the severity to "AR" (action required).
Increase the width of the mcgmask/mcgres fields in "struct severity"
from unsigned char to unsigned short since the new bit is in position 12.
Action required for these errors is just mark the page as poisoned and
return from the machine check handler.
HW ABI notes:
=============
The SEAM_NR bit in IA32_MCG_STATUS hasn't yet made it into the Intel
Software Developers' Manual. But it is described in section 16.5.2
of "Intel(R) Trust Domain Extensions (Intel(R) TDX) Module Base
Architecture Specification" downloadable from:
https://cdrdv2.intel.com/v1/dl/getContent/733575
Backport notes:
===============
Little value in backporting this patch to stable or LTS kernels as
this is only relevant with support for TDX, which I assume won't be
backported. But for anyone taking this to v6.1 or older, you also
need commit:
a51cbd0d86 ("x86/mce: Use severity table to handle uncorrected errors in kernel")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240408180944.44638-1-tony.luck@intel.com
Branch History Injection (BHI) attacks may allow a malicious application to
influence indirect branch prediction in kernel by poisoning the branch
history. eIBRS isolates indirect branch targets in ring0. The BHB can
still influence the choice of indirect branch predictor entry, and although
branch predictor entries are isolated between modes when eIBRS is enabled,
the BHB itself is not isolated between modes.
Add mitigations against it either with the help of microcode or with
software sequences for the affected CPUs.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmYUKPMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofT8EACJJix+GzGUcJjOvfWFZcxwziY152hO
5XSzHOZZL6oz5Yk/Rye/S9RVTN7aDjn1CEvI0cD/ULxaTP869sS9dDdUcHhEJ//5
6hjqWsWiKc1QmLjBy3Pcb97GZHQXM5a9D1f6jXnJD+0FMLbQHpzSEBit0H4tv/TC
75myGgYihvUbhN9/bL10M5fz+UADU42nChvPWDMr9ukljjCqa46tPTmKUIAW5TWj
/xsyf+Nk+4kZpdaidKGhpof6KCV2rNeevvzUGN8Pv5y13iAmvlyplqTcQ6dlubnZ
CuDX5Ji9spNF9WmhKpLgy5N+Ocb64oVHov98N2zw1sT1N8XOYcSM0fBj7SQIFURs
L7T4jBZS+1c3ZGJPPFWIaGjV8w1ZMhelglwJxjY7ZgRD6fK3mwRx/ks54J8H4HjE
FbirXaZLeKlscDIOKtnxxKoIGwpdGwLKQYi/wEw7F9NhCLSj9wMia+j3uYIUEEHr
6xEiYEtyjcV3ocxagH7eiHyrasOKG64vjx2h1XodusBA2Wrvgm/jXlchUu+wb6B4
LiiZJt+DmOdQ1h5j3r2rt3hw7+nWa7kyq34qfN6NSUCHiedp6q7BClueSaKiOCGk
RoNibNiS+CqaxwGxj/RGuvajEJeEMCsLuCxzT3aeaDBsqscW6Ka/HkGA76Tpb5nJ
E3JyjYE7AlG4rw==
=W0W3
-----END PGP SIGNATURE-----
Merge tag 'nativebhi' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mitigations from Thomas Gleixner:
"Mitigations for the native BHI hardware vulnerabilty:
Branch History Injection (BHI) attacks may allow a malicious
application to influence indirect branch prediction in kernel by
poisoning the branch history. eIBRS isolates indirect branch targets
in ring0. The BHB can still influence the choice of indirect branch
predictor entry, and although branch predictor entries are isolated
between modes when eIBRS is enabled, the BHB itself is not isolated
between modes.
Add mitigations against it either with the help of microcode or with
software sequences for the affected CPUs"
[ This also ends up enabling the full mitigation by default despite the
system call hardening, because apparently there are other indirect
calls that are still sufficiently reachable, and the 'auto' case just
isn't hardened enough.
We'll have some more inevitable tweaking in the future - Linus ]
* tag 'nativebhi' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
KVM: x86: Add BHI_NO
x86/bhi: Mitigate KVM by default
x86/bhi: Add BHI mitigation knob
x86/bhi: Enumerate Branch History Injection (BHI) bug
x86/bhi: Define SPEC_CTRL_BHI_DIS_S
x86/bhi: Add support for clearing branch history at syscall entry
x86/syscall: Don't force use of indirect calls for system calls
x86/bugs: Change commas to semicolons in 'spectre_v2' sysfs file
BHI mitigation mode spectre_bhi=auto does not deploy the software
mitigation by default. In a cloud environment, it is a likely scenario
where userspace is trusted but the guests are not trusted. Deploying
system wide mitigation in such cases is not desirable.
Update the auto mode to unconditionally mitigate against malicious
guests. Deploy the software sequence at VMexit in auto mode also, when
hardware mitigation is not available. Unlike the force =on mode,
software sequence is not deployed at syscalls in auto mode.
Suggested-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Branch history clearing software sequences and hardware control
BHI_DIS_S were defined to mitigate Branch History Injection (BHI).
Add cmdline spectre_bhi={on|off|auto} to control BHI mitigation:
auto - Deploy the hardware mitigation BHI_DIS_S, if available.
on - Deploy the hardware mitigation BHI_DIS_S, if available,
otherwise deploy the software sequence at syscall entry and
VMexit.
off - Turn off BHI mitigation.
The default is auto mode which does not deploy the software sequence
mitigation. This is because of the hardening done in the syscall
dispatch path, which is the likely target of BHI.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Mitigation for BHI is selected based on the bug enumeration. Add bits
needed to enumerate BHI bug.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Newer processors supports a hardware control BHI_DIS_S to mitigate
Branch History Injection (BHI). Setting BHI_DIS_S protects the kernel
from userspace BHI attacks without having to manually overwrite the
branch history.
Define MSR_SPEC_CTRL bit BHI_DIS_S and its enumeration CPUID.BHI_CTRL.
Mitigation is enabled later.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Change the format of the 'spectre_v2' vulnerabilities sysfs file
slightly by converting the commas to semicolons, so that mitigations for
future variants can be grouped together and separated by commas.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Older versions of clang show a warning for amd.c after a fix for a gcc
warning:
arch/x86/kernel/cpu/microcode/amd.c:478:47: error: format specifies type \
'unsigned char' but the argument has type 'u16' (aka 'unsigned short') [-Werror,-Wformat]
"amd-ucode/microcode_amd_fam%02hhxh.bin", family);
~~~~~~ ^~~~~~
%02hx
In clang-16 and higher, this warning is disabled by default, but clang-15 is
still supported, and it's trivial to avoid by adapting the types according
to the range of the passed data and the format string.
[ bp: Massage commit message. ]
Fixes: 2e9064facc ("x86/microcode/amd: Fix snprintf() format string warning in W=1 build")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240405204919.1003409-1-arnd@kernel.org
Modifying a MCA bank's MCA_CTL bits which control which error types to
be reported is done over
/sys/devices/system/machinecheck/
├── machinecheck0
│ ├── bank0
│ ├── bank1
│ ├── bank10
│ ├── bank11
...
sysfs nodes by writing the new bit mask of events to enable.
When the write is accepted, the kernel deletes all current timers and
reinits all banks.
Doing that in parallel can lead to initializing a timer which is already
armed and in the timer wheel, i.e., in use already:
ODEBUG: init active (active state 0) object: ffff888063a28000 object
type: timer_list hint: mce_timer_fn+0x0/0x240 arch/x86/kernel/cpu/mce/core.c:2642
WARNING: CPU: 0 PID: 8120 at lib/debugobjects.c:514
debug_print_object+0x1a0/0x2a0 lib/debugobjects.c:514
Fix that by grabbing the sysfs mutex as the rest of the MCA sysfs code
does.
Reported by: Yue Sun <samsun1006219@gmail.com>
Reported by: xingwei lee <xrivendell7@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/CAEkJfYNiENwQY8yV1LYJ9LjJs%2Bx_-PqMv98gKig55=2vbzffRw@mail.gmail.com
After
034ff37d34 ("x86: rewrite '__copy_user_nocache' function")
rewrote __copy_user_nocache() to use EX_TYPE_UACCESS instead of the
EX_TYPE_COPY exception type, there are no more EX_TYPE_COPY users, so
remove it.
[ bp: Massage commit message. ]
Signed-off-by: Tong Tiangen <tongtiangen@huawei.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240204082627.3892816-2-tongtiangen@huawei.com
The host SNP worthiness can determined later, after alternatives have
been patched, in snp_rmptable_init() depending on cmdline options like
iommu=pt which is incompatible with SNP, for example.
Which means that one cannot use X86_FEATURE_SEV_SNP and will need to
have a special flag for that control.
Use that newly added CC_ATTR_HOST_SEV_SNP in the appropriate places.
Move kdump_sev_callback() to its rightful place, while at it.
Fixes: 216d106c7f ("x86/sev: Add SEV-SNP host initialization support")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Srikanth Aithal <sraithal@amd.com>
Link: https://lore.kernel.org/r/20240327154317.29909-6-bp@alien8.de
Tony encountered this OOPS when the last CPU of a domain goes
offline while running a kernel built with CONFIG_NO_HZ_FULL:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
...
RIP: 0010:__find_nth_andnot_bit+0x66/0x110
...
Call Trace:
<TASK>
? __die()
? page_fault_oops()
? exc_page_fault()
? asm_exc_page_fault()
cpumask_any_housekeeping()
mbm_setup_overflow_handler()
resctrl_offline_cpu()
resctrl_arch_offline_cpu()
cpuhp_invoke_callback()
cpuhp_thread_fun()
smpboot_thread_fn()
kthread()
ret_from_fork()
ret_from_fork_asm()
</TASK>
The NULL pointer dereference is encountered while searching for another
online CPU in the domain (of which there are none) that can be used to
run the MBM overflow handler.
Because the kernel is configured with CONFIG_NO_HZ_FULL the search for
another CPU (in its effort to prefer those CPUs that aren't marked
nohz_full) consults the mask representing the nohz_full CPUs,
tick_nohz_full_mask. On a kernel with CONFIG_CPUMASK_OFFSTACK=y
tick_nohz_full_mask is not allocated unless the kernel is booted with
the "nohz_full=" parameter and because of that any access to
tick_nohz_full_mask needs to be guarded with tick_nohz_full_enabled().
Replace the IS_ENABLED(CONFIG_NO_HZ_FULL) with tick_nohz_full_enabled().
The latter ensures tick_nohz_full_mask can be accessed safely and can be
used whether kernel is built with CONFIG_NO_HZ_FULL enabled or not.
[ Use Ingo's suggestion that combines the two NO_HZ checks into one. ]
Fixes: a4846aaf39 ("x86/resctrl: Add cpumask_any_housekeeping() for limbo/overflow")
Reported-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/ff8dfc8d3dcb04b236d523d1e0de13d2ef585223.1711993956.git.reinette.chatre@intel.com
Closes: https://lore.kernel.org/lkml/ZgIFT5gZgIQ9A9G7@agluck-desk3/
Systems with a large number of CPUs may generate a large number of
machine check records when things go seriously wrong. But Linux has
a fixed-size buffer that can only capture a few dozen errors.
Allocate space based on the number of CPUs (with a minimum value based
on the historical fixed buffer that could store 80 records).
[ bp: Rename local var from tmpp to something more telling: gpool. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Reviewed-by: Avadhut Naik <avadhut.naik@amd.com>
Link: https://lore.kernel.org/r/20240307192704.37213-1-tony.luck@intel.com
When TME is disabled by BIOS, the dmesg output is:
x86/tme: not enabled by BIOS
... and TME functionality is not enabled by the kernel, but the TME feature
is still shown in /proc/cpuinfo.
Clear it.
[ mingo: Clarified changelog ]
Signed-off-by: Bingsong Si <sibs@chinatelecom.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "Huang, Kai" <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20240311071938.13247-1-sibs@chinatelecom.cn
Disable XSAVES only on machines which haven't loaded the microcode
revision containing the erratum fix.
This will come in handy when running archaic OSes as guests. OSes whose
brilliant programmers thought that CPUID is overrated and one should not
query it but use features directly, ala shoot first, ask questions
later... but only if you're alive after the shooting.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: "Maciej S. Szmigiero" <maciej.szmigiero@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20240324200525.GBZgCHhYFsBj12PrKv@fat_crate.local
Currently, the LBR code assumes that LBR Freeze is supported on all processors
when X86_FEATURE_AMD_LBR_V2 is available i.e. CPUID leaf 0x80000022[EAX]
bit 1 is set. This is incorrect as the availability of the feature is
additionally dependent on CPUID leaf 0x80000022[EAX] bit 2 being set,
which may not be set for all Zen 4 processors.
Define a new feature bit for LBR and PMC freeze and set the freeze enable bit
(FLBRI) in DebugCtl (MSR 0x1d9) conditionally.
It should still be possible to use LBR without freeze for profile-guided
optimization of user programs by using an user-only branch filter during
profiling. When the user-only filter is enabled, branches are no longer
recorded after the transition to CPL 0 upon PMI arrival. When branch
entries are read in the PMI handler, the branch stack does not change.
E.g.
$ perf record -j any,u -e ex_ret_brn_tkn ./workload
Since the feature bit is visible under flags in /proc/cpuinfo, it can be
used to determine the feasibility of use-cases which require LBR Freeze
to be supported by the hardware such as profile-guided optimization of
kernels.
Fixes: ca5b7c0d96 ("perf/x86/amd/lbr: Add LbrExtV2 branch record support")
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/69a453c97cfd11c6f2584b19f937fe6df741510f.1711091584.git.sandipan.das@amd.com
- Ensure that the encryption mask at boot is properly propagated on
5-level page tables, otherwise the PGD entry is incorrectly set to
non-encrypted, which causes system crashes during boot.
- Undo the deferred 5-level page table setup as it cannot work with
memory encryption enabled.
- Prevent inconsistent XFD state on CPU hotplug, where the MSR is reset
to the default value but the cached variable is not, so subsequent
comparisons might yield the wrong result and as a consequence the
result prevents updating the MSR.
- Register the local APIC address only once in the MPPARSE enumeration to
prevent triggering the related WARN_ONs() in the APIC and topology code.
- Handle the case where no APIC is found gracefully by registering a fake
APIC in the topology code. That makes all related topology functions
work correctly and does not affect the actual APIC driver code at all.
- Don't evaluate logical IDs during early boot as the local APIC IDs are
not yet enumerated and the invoked function returns an error
code. Nothing requires the logical IDs before the final CPUID
enumeration takes place, which happens after the enumeration.
- Cure the fallout of the per CPU rework on UP which misplaced the
copying of boot_cpu_data to per CPU data so that the final update to
boot_cpu_data got lost which caused inconsistent state and boot
crashes.
- Use copy_from_kernel_nofault() in the kprobes setup as there is no
guarantee that the address can be safely accessed.
- Reorder struct members in struct saved_context to work around another
kmemleak false positive
- Remove the buggy code which tries to update the E820 kexec table for
setup_data as that is never passed to the kexec kernel.
- Update the resource control documentation to use the proper units.
- Fix a Kconfig warning observed with tinyconfig
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmYAUH4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoXzREAC/HVB7yzUEbjbh7dyYRBEgFU19bcyC
JKf9HVmEHj03HstUxF1dxguUhwfHVPNTWpjmy/fRwxqgM9JG+QpV6T4DIldWqchv
AUYFrQBMvql8hTKxRa/Ny75d2IqKPgEEGUuyU+ZHAzEEPwhKrbtVRDPuEiMxpd5I
9B1Pya4EzUyOv1UhPIg7PRoya1msimBZ0mCw4In6ri6xVRm1uC3Ln4LZPylxn96l
f77rz5UToUw0gfgDaezF0z4ml1phGEdSX0Z3hhD0PX12wbJGEdvPzL0qTgEq72Ad
AeLmHx4K8z2zoHMHK7iTEwjoplQxGsWLoezh22cVEEJX0dtzHz6R0ftBCa6uzATJ
C8FF1oDDHAhTL94YmVSTZHr6AdJ6LwgYHO3zXZUhxuB7PNXAT4FmT0zgU1fU3sC1
U/1mIFdgOEUOlGll2Ra5uTUKc0K/dc+yC9dcbz37Kwj3KlfqTN+5BWocjySkHomr
gcv37aU1TJGSC/D1lYWTDWGKVbbP5lk+KIGICT5SBKn0METa/wOo8dE6+T1kIwvS
t2QTlJdzilLcWGVQ8GiNjjRxFtRKY5i9Shi4K+wUvCee4/XJzRrpxrCEY8w/qceV
hc3kfUIon3TCv8+rnlSuNRZBvmFhXMYwMt0gQv4YywB+aOITKTzbGUOazLtRNKAH
lFCnBRS55AB8mg==
=WyQ2
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
- Ensure that the encryption mask at boot is properly propagated on
5-level page tables, otherwise the PGD entry is incorrectly set to
non-encrypted, which causes system crashes during boot.
- Undo the deferred 5-level page table setup as it cannot work with
memory encryption enabled.
- Prevent inconsistent XFD state on CPU hotplug, where the MSR is reset
to the default value but the cached variable is not, so subsequent
comparisons might yield the wrong result and as a consequence the
result prevents updating the MSR.
- Register the local APIC address only once in the MPPARSE enumeration
to prevent triggering the related WARN_ONs() in the APIC and topology
code.
- Handle the case where no APIC is found gracefully by registering a
fake APIC in the topology code. That makes all related topology
functions work correctly and does not affect the actual APIC driver
code at all.
- Don't evaluate logical IDs during early boot as the local APIC IDs
are not yet enumerated and the invoked function returns an error
code. Nothing requires the logical IDs before the final CPUID
enumeration takes place, which happens after the enumeration.
- Cure the fallout of the per CPU rework on UP which misplaced the
copying of boot_cpu_data to per CPU data so that the final update to
boot_cpu_data got lost which caused inconsistent state and boot
crashes.
- Use copy_from_kernel_nofault() in the kprobes setup as there is no
guarantee that the address can be safely accessed.
- Reorder struct members in struct saved_context to work around another
kmemleak false positive
- Remove the buggy code which tries to update the E820 kexec table for
setup_data as that is never passed to the kexec kernel.
- Update the resource control documentation to use the proper units.
- Fix a Kconfig warning observed with tinyconfig
* tag 'x86-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/64: Move 5-level paging global variable assignments back
x86/boot/64: Apply encryption mask to 5-level pagetable update
x86/cpu: Add model number for another Intel Arrow Lake mobile processor
x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Documentation/x86: Document that resctrl bandwidth control units are MiB
x86/mpparse: Register APIC address only once
x86/topology: Handle the !APIC case gracefully
x86/topology: Don't evaluate logical IDs during early boot
x86/cpu: Ensure that CPU info updates are propagated on UP
kprobes/x86: Use copy_from_kernel_nofault() to read from unsafe address
x86/pm: Work around false positive kmemleak report in msr_build_context()
x86/kexec: Do not update E820 kexec table for setup_data
x86/config: Fix warning for 'make ARCH=x86_64 tinyconfig'
If there is no local APIC enumerated and registered then the topology
bitmaps are empty. Therefore, topology_init_possible_cpus() will die with
a division by zero exception.
Prevent this by registering a fake APIC id to populate the topology
bitmap. This also allows to use all topology query interfaces
unconditionally. It does not affect the actual APIC code because either
the local APIC address was not registered or no local APIC could be
detected.
Fixes: f1f758a805 ("x86/topology: Add a mechanism to track topology via APIC IDs")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.242709302@linutronix.de
The local APICs have not yet been enumerated so the logical ID evaluation
from the topology bitmaps does not work and would return an error code.
Skip the evaluation during the early boot CPUID evaluation and only apply
it on the final run.
Fixes: 380414be78 ("x86/cpu/topology: Use topology logical mapping mechanism")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.186943142@linutronix.de
The boot sequence evaluates CPUID information twice:
1) During early boot
2) When finalizing the early setup right before
mitigations are selected and alternatives are patched.
In both cases the evaluation is stored in boot_cpu_data, but on UP the
copying of boot_cpu_data to the per CPU info of the boot CPU happens
between #1 and #2. So any update which happens in #2 is never propagated to
the per CPU info instance.
Consolidate the whole logic and copy boot_cpu_data right before applying
alternatives as that's the point where boot_cpu_data is in it's final
state and not supposed to change anymore.
This also removes the voodoo mb() from smp_prepare_cpus_common() which
had absolutely no purpose.
Fixes: 71eb4893cf ("x86/percpu: Cure per CPU madness on UP")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.127642785@linutronix.de
On AMD processors that support extended CPUID leaf 0x80000026, use the
extended leaf to parse the topology information. In case of a failure,
fall back to parsing the information from CPUID leaf 0xb.
CPUID leaf 0x80000026 exposes the "CCX" and "CCD (Die)" information on
AMD processors which have been mapped to TOPO_TILE_DOMAIN and
TOPO_DIE_DOMAIN respectively.
Since this information was previously not available via CPUID leaf 0xb
or 0x8000001e, the "die_id", "logical_die_id", "max_die_per_pkg",
"die_cpus", and "die_cpus_list" will differ with this addition on
AMD processors that support extended CPUID leaf 0x80000026 and contain
more than one "CCD (Die)" on the package.
For example, following are the changes in the values reported by
"/sys/kernel/debug/x86/topo/cpus/16" after applying this patch on a 4th
Generation AMD EPYC System (1 x 128C/256T):
(CPU16 is the first CPU of the second CCD on the package)
tip:x86/apic tip:x86/apic
+ this patch
online: 1 1
initial_apicid: 80 80
apicid: 80 80
pkg_id: 0 0
die_id: 0 4 *
cu_id: 255 255
core_id: 64 64
logical_pkg_id: 0 0
logical_die_id: 0 4 *
llc_id: 8 8
l2c_id: 65535 65535
amd_node_id: 0 0
amd_nodes_per_pkg: 1 1
num_threads: 256 256
num_cores: 128 128
max_dies_per_pkg: 1 8 *
max_threads_per_core:2 2
[ prateek: commit log, updated comment in topoext_amd.c, changed has_0xb
to has_topoext, rebased the changes on tip:x86/apic, tested the
changes on 4th Gen AMD EPYC system ]
[ mingo: tidy up the changelog a bit more ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240314050432.1710-1-kprateek.nayak@amd.com
Drop 'vp_bits_from_cpuid' as it is not really needed.
No functional changes.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240316120706.4352-1-bp@alien8.de
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmX7sYwTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXiMeCADAUfjuJyU1jrQxjXv0U9u0tng77FAt
iT3+YFLR2Y4l8KRjD6Tpyk4fl/VN5VbJv1zPtSdNaViyri15gJjV7iMPujkx/pqO
pxNfbOVZG7VeKMrudJzP2BHN2mAf8N0qyuVTFyMwLO5EtJrY44t4PtkA1r5cO6Pc
eyoJWBofxH7XjkhOAMk4I3LXZMrq+hmtJ31G3eek6v/VjD1PtxU4f6/gJiqK9fz6
ssvSfII0aCIKman5sYlhl11TO8omz/68L4db25ZLDSCdOrE5ZlQykmUshluuoesw
eTUiuUZEh1O42Lsq7/hdUh+dSVGdTLHa9NKRQyWcruZiZ1idoZIA74ZW
=4vOw
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20240320' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- Use Hyper-V entropy to seed guest random number generator (Michael
Kelley)
- Convert to platform remove callback returning void for vmbus (Uwe
Kleine-König)
- Introduce hv_get_hypervisor_version function (Nuno Das Neves)
- Rename some HV_REGISTER_* defines for consistency (Nuno Das Neves)
- Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_* (Nuno Das
Neves)
- Cosmetic changes for hv_spinlock.c (Purna Pavan Chandra Aekkaladevi)
- Use per cpu initial stack for vtl context (Saurabh Sengar)
* tag 'hyperv-next-signed-20240320' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
x86/hyperv: Use Hyper-V entropy to seed guest random number generator
x86/hyperv: Cosmetic changes for hv_spinlock.c
hyperv-tlfs: Rename some HV_REGISTER_* defines for consistency
hv: vmbus: Convert to platform remove callback returning void
mshyperv: Introduce hv_get_hypervisor_version function
x86/hyperv: Use per cpu initial stack for vtl context
hyperv-tlfs: Change prefix of generic HV_REGISTER_* MSRs to HV_MSR_*
A Hyper-V host provides its guest VMs with entropy in a custom ACPI
table named "OEM0". The entropy bits are updated each time Hyper-V
boots the VM, and are suitable for seeding the Linux guest random
number generator (rng). See a brief description of OEM0 in [1].
Generation 2 VMs on Hyper-V use UEFI to boot. Existing EFI code in
Linux seeds the rng with entropy bits from the EFI_RNG_PROTOCOL.
Via this path, the rng is seeded very early during boot with good
entropy. The ACPI OEM0 table provided in such VMs is an additional
source of entropy.
Generation 1 VMs on Hyper-V boot from BIOS. For these VMs, Linux
doesn't currently get any entropy from the Hyper-V host. While this
is not fundamentally broken because Linux can generate its own entropy,
using the Hyper-V host provided entropy would get the rng off to a
better start and would do so earlier in the boot process.
Improve the rng seeding for Generation 1 VMs by having Hyper-V specific
code in Linux take advantage of the OEM0 table to seed the rng. For
Generation 2 VMs, use the OEM0 table to provide additional entropy
beyond the EFI_RNG_PROTOCOL. Because the OEM0 table is custom to
Hyper-V, parse it directly in the Hyper-V code in the Linux kernel
and use add_bootloader_randomness() to add it to the rng. Once the
entropy bits are read from OEM0, zero them out in the table so
they don't appear in /sys/firmware/acpi/tables/OEM0 in the running
VM. The zero'ing is done out of an abundance of caution to avoid
potential security risks to the rng. Also set the OEM0 data length
to zero so a kexec or other subsequent use of the table won't try
to use the zero'ed bits.
[1] https://download.microsoft.com/download/1/c/9/1c9813b8-089c-4fef-b2ad-ad80e79403ba/Whitepaper%20-%20The%20Windows%2010%20random%20number%20generation%20infrastructure.pdf
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20240318155408.216851-1-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240318155408.216851-1-mhklinux@outlook.com>
Rename HV_REGISTER_GUEST_OSID to HV_REGISTER_GUEST_OS_ID. This matches
the existing HV_X64_MSR_GUEST_OS_ID.
Rename HV_REGISTER_CRASH_* to HV_REGISTER_GUEST_CRASH_*. Including
GUEST_ is consistent with other #defines such as
HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE. The new names also match the TLFS
document more accurately, i.e. HvRegisterGuestCrash*.
Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Link: https://lore.kernel.org/r/1710285687-9160-1-git-send-email-nunodasneves@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <1710285687-9160-1-git-send-email-nunodasneves@linux.microsoft.com>
* Changes to FPU handling came in via the main s390 pull request
* Only deliver to the guest the SCLP events that userspace has
requested.
* More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same).
* Fix selftests undefined behavior.
x86:
* Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can be
programmed *using the architectural encoding*. The enumeration does
NOT say anything about the encoding when the CPU doesn't report support
the event *in general*. It might support it, and it might support it
using the same encoding that made it into the architectural PMU spec.
* Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly emulates
RDMPC, counter availability, and a variety of other PMC-related
behaviors that depend on guest CPUID and therefore are easier to
validate with selftests than with custom guests (aka kvm-unit-tests).
* Zero out PMU state on AMD if the virtual PMU is disabled, it does not
cause any bug but it wastes time in various cases where KVM would check
if a PMC event needs to be synthesized.
* Optimize triggering of emulated events, with a nice ~10% performance
improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
guest.
* Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
* Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace with an internal error exit code.
* Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
* Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
* Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM
doesn't support yielding in the middle of processing a zap, and 1GiB
granularity resulted in multi-millisecond lags that are quite impolite
for CONFIG_PREEMPT kernels.
* Allocate write-tracking metadata on-demand to avoid the memory overhead when
a kernel is built with i915 virtualization support but the workloads use
neither shadow paging nor i915 virtualization.
* Explicitly initialize a variety of on-stack variables in the emulator that
triggered KMSAN false positives.
* Fix the debugregs ABI for 32-bit KVM.
* Rework the "force immediate exit" code so that vendor code ultimately decides
how and when to force the exit, which allowed some optimization for both
Intel and AMD.
* Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
vCPU creation ultimately failed, causing extra unnecessary work.
* Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
* Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere in the
kernel) are detected earlier and are less likely to hang the kernel.
x86 Xen emulation:
* Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the
gpa but the underlying host virtual address remains the same.
* When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
* Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
* Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
RISC-V:
* Support exception and interrupt handling in selftests
* New self test for RISC-V architectural timer (Sstc extension)
* New extension support (Ztso, Zacas)
* Support userspace emulation of random number seed CSRs.
ARM:
* Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
* Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
* Conversion of KVM's representation of LPIs to an xarray, utilized to
address serialization some of the serialization on the LPI injection
path
* Support for _architectural_ VHE-only systems, advertised through the
absence of FEAT_E2H0 in the CPU's ID register
* Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
* Set reserved bits as zero in CPUCFG.
* Start SW timer only when vcpu is blocking.
* Do not restart SW timer when it is expired.
* Remove unnecessary CSR register saving during enter guest.
* Misc cleanups and fixes as usual.
Generic:
* cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
true on all architectures except MIPS (where Kconfig determines the
available depending on CPU capabilities). It is replaced either by
an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
everywhere else.
* Factor common "select" statements in common code instead of requiring
each architecture to specify it
* Remove thoroughly obsolete APIs from the uapi headers.
* Move architecture-dependent stuff to uapi/asm/kvm.h
* Always flush the async page fault workqueue when a work item is being
removed, especially during vCPU destruction, to ensure that there are no
workers running in KVM code when all references to KVM-the-module are gone,
i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
* Grab a reference to the VM's mm_struct in the async #PF worker itself instead
of gifting the worker a reference, so that there's no need to remember
to *conditionally* clean up after the worker.
Selftests:
* Reduce boilerplate especially when utilize selftest TAP infrastructure.
* Add basic smoke tests for SEV and SEV-ES, along with a pile of library
support for handling private/encrypted/protected memory.
* Fix benign bugs where tests neglect to close() guest_memfd files.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
=mqOV
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is hotplugged
as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving policy
wherein we allocate memory across nodes in a weighted fashion rather
than uniformly. This is beneficial in heterogeneous memory environments
appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the process
has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown situations.
The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's series
"Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page faults.
He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction test",
Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
our handling of DAX on archiecctures which have virtually aliasing data
caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
improvements in worst-case mmap_lock hold times during certain
userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability improvements
in his series "Mitigate a vmap lock contention". It realizes a 12x
improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging of
large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages() to
an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which are
configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
=TG55
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmXvZgoACgkQaDWVMHDJ
krC2Eg//aZKBp97/DSzRqXKDwJzVUr0sGJ9cii0gVT1sI+1U6ZZCh/roVH4xOT5/
HqtOOnQ+X0mwUx2VG3Yv2VPI7VW68sJ3/y9D8R4tnMEsyQ4CmDw96Pre3NyKr/Av
jmW7SK94fOkpNFJOMk3zpk7GtRUlCsVkS1P61dOmMYduguhel/V20rWlx83BgnAY
Rf/c3rBjqe8Ri3rzBP5icY/d6OgwoafuhME31DD/j6oKOh+EoQBvA4urj46yMTMX
/mrK7hCm/wqwuOOvgGbo7sfZNBLCYy3SZ3EyF4beDERhPF1DaSvCwOULpGVJroqu
SelFsKXAtEbYrDgsan+MYlx3bQv43q7PbHska1gjkH91plO4nAsssPr5VsusUKmT
sq8jyBaauZb40oLOSgooL4RqAHrfs8q5695Ouwh/DB/XovMezUI1N/BkpGFmqpJI
o2xH9P5q520pkB8pFhN9TbRuFSGe/dbWC24QTq1DUajo3M3RwcwX6ua9hoAKLtDF
pCV5DNcVcXHD3Cxp0M5dQ5JEAiCnW+ZpUWgxPQamGDNW5PEvjDmFwql2uWw/qOuW
lkheOIffq8ejUBQFbN8VXfIzzeeKQNFiIcViaqGITjIwhqdHAzVi28OuIGwtdh3g
ywLzSC8yvyzgKrNBgtFMr3ucKN0FoPxpBro253xt2H7w8srXW64=
=5V9t
-----END PGP SIGNATURE-----
Merge tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RFDS mitigation from Dave Hansen:
"RFDS is a CPU vulnerability that may allow a malicious userspace to
infer stale register values from kernel space. Kernel registers can
have all kinds of secrets in them so the mitigation is basically to
wait until the kernel is about to return to userspace and has user
values in the registers. At that point there is little chance of
kernel secrets ending up in the registers and the microarchitectural
state can be cleared.
This leverages some recent robustness fixes for the existing MDS
vulnerability. Both MDS and RFDS use the VERW instruction for
mitigation"
* tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
KVM/x86: Export RFDS_NO and RFDS_CLEAR to guests
x86/rfds: Mitigate Register File Data Sampling (RFDS)
Documentation/hw-vuln: Add documentation for RFDS
x86/mmio: Disable KVM mitigation when X86_FEATURE_CLEAR_CPU_BUF is set
Introduce x86_64 and arm64 functions to get the hypervisor version
information and store it in a structure for simpler parsing.
Use the new function to get and parse the version at boot time. While at
it, move the printing code to hv_common_init() so it is not duplicated.
Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Link: https://lore.kernel.org/r/1709852618-29110-1-git-send-email-nunodasneves@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <1709852618-29110-1-git-send-email-nunodasneves@linux.microsoft.com>
- The biggest change is the rework of the percpu code,
to support the 'Named Address Spaces' GCC feature,
by Uros Bizjak:
- This allows C code to access GS and FS segment relative
memory via variables declared with such attributes,
which allows the compiler to better optimize those accesses
than the previous inline assembly code.
- The series also includes a number of micro-optimizations
for various percpu access methods, plus a number of
cleanups of %gs accesses in assembly code.
- These changes have been exposed to linux-next testing for
the last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally
working handling of FPU switching - which also generates
better code.
- Propagate more RIP-relative addressing in assembly code,
to generate slightly better code.
- Rework the CPU mitigations Kconfig space to be less idiosyncratic,
to make it easier for distros to follow & maintain these options.
- Rework the x86 idle code to cure RCU violations and
to clean up the logic.
- Clean up the vDSO Makefile logic.
- Misc cleanups and fixes.
[ Please note that there's a higher number of merge commits in
this branch (three) than is usual in x86 topic trees. This happened
due to the long testing lifecycle of the percpu changes that
involved 3 merge windows, which generated a longer history
and various interactions with other core x86 changes that we
felt better about to carry in a single branch. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvB0gRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jUqRAAqnEQPiabF5acQlHrwviX+cjSobDlqtH5
9q2AQy9qaEHapzD0XMOxvFye6XIvehGOGxSPvk6CoviSxBND8rb56lvnsEZuLeBV
Bo5QSIL2x42Zrvo11iPHwgXZfTIusU90sBuKDRFkYBAxY3HK2naMDZe8MAsYCUE9
nwgHF8DDc/NYiSOXV8kosWoWpNIkoK/STyH5bvTQZMqZcwyZ49AIeP1jGZb/prbC
e/rbnlrq5Eu6brpM7xo9kELO0Vhd34urV14KrrIpdkmUKytW2KIsyvW8D6fqgDBj
NSaQLLcz0pCXbhF+8Nqvdh/1coR4L7Ymt08P1rfEjCsQgb/2WnSAGUQuC5JoGzaj
ngkbFcZllIbD9gNzMQ1n4Aw5TiO+l9zxCqPC/r58Uuvstr+K9QKlwnp2+B3Q73Ft
rojIJ04NJL6lCHdDgwAjTTks+TD2PT/eBWsDfJ/1pnUWttmv9IjMpnXD5sbHxoiU
2RGGKnYbxXczYdq/ALYDWM6JXpfnJZcXL3jJi0IDcCSsb92xRvTANYFHnTfyzGfw
EHkhbF4e4Vy9f6QOkSP3CvW5H26BmZS9DKG0J9Il5R3u2lKdfbb5vmtUmVTqHmAD
Ulo5cWZjEznlWCAYSI/aIidmBsp9OAEvYd+X7Z5SBIgTfSqV7VWHGt0BfA1heiVv
F/mednG0gGc=
=3v4F
-----END PGP SIGNATURE-----
Merge tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar:
- The biggest change is the rework of the percpu code, to support the
'Named Address Spaces' GCC feature, by Uros Bizjak:
- This allows C code to access GS and FS segment relative memory
via variables declared with such attributes, which allows the
compiler to better optimize those accesses than the previous
inline assembly code.
- The series also includes a number of micro-optimizations for
various percpu access methods, plus a number of cleanups of %gs
accesses in assembly code.
- These changes have been exposed to linux-next testing for the
last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally working handling
of FPU switching - which also generates better code
- Propagate more RIP-relative addressing in assembly code, to generate
slightly better code
- Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
make it easier for distros to follow & maintain these options
- Rework the x86 idle code to cure RCU violations and to clean up the
logic
- Clean up the vDSO Makefile logic
- Misc cleanups and fixes
* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/idle: Select idle routine only once
x86/idle: Let prefer_mwait_c1_over_halt() return bool
x86/idle: Cleanup idle_setup()
x86/idle: Clean up idle selection
x86/idle: Sanitize X86_BUG_AMD_E400 handling
sched/idle: Conditionally handle tick broadcast in default_idle_call()
x86: Increase brk randomness entropy for 64-bit systems
x86/vdso: Move vDSO to mmap region
x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
x86/retpoline: Ensure default return thunk isn't used at runtime
x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
x86/vdso: Use $(addprefix ) instead of $(foreach )
x86/vdso: Simplify obj-y addition
x86/vdso: Consolidate targets and clean-files
x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK
x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO
x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY
x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY
x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS
...
cure Sparse warnings.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvAFQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hkDRAAwASVCQ88kiGqNQtHibXlK54mAFGsc0xv
T8OPds15DUzoLg/y8lw0X0DHly6MdGXVmygybejNIw2BN4lhLjQ7f4Ria7rv7LDy
FcI1jfvysEMyYRFHGRefb/GBFzuEfKoROwf+QylGmKz0ZK674gNMngsI9pwOBdbe
wElq3IkHoNuTUfH9QA4BvqGam1n122nvVTop3g0PMHWzx9ky8hd/BEUjXFZhfINL
zZk3fwUbER2QYbhHt+BN2GRbdf2BrKvqTkXpKxyXTdnpiqAo0CzBGKerZ62H82qG
n737Nib1lrsfM5yDHySnau02aamRXaGvCJUd6gpac1ZmNpZMWhEOT/0Tr/Nj5ztF
lUAvKqMZn/CwwQky1/XxD0LHegnve0G+syqQt/7x7o1ELdiwTzOWMCx016UeodzB
yyHf3Xx9J8nt3snlrlZBaGEfegg9ePLu5Vir7iXjg3vrloUW8A+GZM62NVxF4HVV
QWF80BfWf8zbLQ/OS1382t1shaioIe5pEXzIjcnyVIZCiiP2/5kP2O6P4XVbwVlo
Ca5eEt8U1rtsLUZaCzI2ZRTQf/8SLMQWyaV+ZmkVwcVdFoARC31EgdE5wYYoZOf6
7Vl+rXd+rZCuTWk0ZgznCZEm75aaqukaQCBa2V8hIVociLFVzhg/Tjedv7s0CspA
hNfxdN1LDZc=
=0eJ7
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups, including a large series from Thomas Gleixner to cure
sparse warnings"
* tag 'x86-cleanups-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/nmi: Drop unused declaration of proc_nmi_enabled()
x86/callthunks: Use EXPORT_PER_CPU_SYMBOL_GPL() for per CPU variables
x86/cpu: Provide a declaration for itlb_multihit_kvm_mitigation
x86/cpu: Use EXPORT_PER_CPU_SYMBOL_GPL() for x86_spec_ctrl_current
x86/uaccess: Add missing __force to casts in __access_ok() and valid_user_address()
x86/percpu: Cure per CPU madness on UP
smp: Consolidate smp_prepare_boot_cpu()
x86/msr: Add missing __percpu annotations
x86/msr: Prepare for including <linux/percpu.h> into <asm/msr.h>
perf/x86/amd/uncore: Fix __percpu annotation
x86/nmi: Remove an unnecessary IS_ENABLED(CONFIG_SMP)
x86/apm_32: Remove dead function apm_get_battery_status()
x86/insn-eval: Fix function param name in get_eff_addr_sib()
kernel to be used as a KVM hypervisor capable of running SNP (Secure
Nested Paging) guests. Roughly speaking, SEV-SNP is the ultimate goal
of the AMD confidential computing side, providing the most
comprehensive confidential computing environment up to date.
This is the x86 part and there is a KVM part which did not get ready
in time for the merge window so latter will be forthcoming in the next
cycle.
- Rework the early code's position-dependent SEV variable references in
order to allow building the kernel with clang and -fPIE/-fPIC and
-mcmodel=kernel
- The usual set of fixes, cleanups and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXvH0wACgkQEsHwGGHe
VUrzmA//VS/n6dhHRnm/nAGngr4PeegkgV1OhyKYFfiZ272rT6P9QvblQrgcY0dc
Ij1DOhEKlke51pTHvMOQ33B3P4Fuc0mx3dpCLY0up5V26kzQiKCjRKEkC4U1bcw8
W4GqMejaR89bE14bYibmwpSib9T/uVsV65eM3xf1iF5UvsnoUaTziymDoy+nb43a
B1pdd5vcl4mBNqXeEvt0qjg+xkMLpWUI9tJDB8mbMl/cnIFGgMZzBaY8oktHSROK
QpuUnKegOgp1RXpfLbNjmZ2Q4Rkk4MNazzDzWq3EIxaRjXL3Qp507ePK7yeA2qa0
J3jCBQc9E2j7lfrIkUgNIzOWhMAXM2YH5bvH6UrIcMi1qsWJYDmkp2MF1nUedjdf
Wj16/pJbeEw1aKKIywJGwsmViSQju158vY3SzXG83U/A/Iz7zZRHFmC/ALoxZptY
Bi7VhfcOSpz98PE3axnG8CvvxRDWMfzBr2FY1VmQbg6VBNo1Xl1aP/IH1I8iQNKg
/laBYl/qP+1286TygF1lthYROb1lfEIJprgi2xfO6jVYUqPb7/zq2sm78qZRfm7l
25PN/oHnuidfVfI/H3hzcGubjOG9Zwra8WWYBB2EEmelf21rT0OLqq+eS4T6pxFb
GNVfc0AzG77UmqbrpkAMuPqL7LrGaSee4NdU3hkEdSphlx1/YTo=
=c1ps
-----END PGP SIGNATURE-----
Merge tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV updates from Borislav Petkov:
- Add the x86 part of the SEV-SNP host support.
This will allow the kernel to be used as a KVM hypervisor capable of
running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP
is the ultimate goal of the AMD confidential computing side,
providing the most comprehensive confidential computing environment
up to date.
This is the x86 part and there is a KVM part which did not get ready
in time for the merge window so latter will be forthcoming in the
next cycle.
- Rework the early code's position-dependent SEV variable references in
order to allow building the kernel with clang and -fPIE/-fPIC and
-mcmodel=kernel
- The usual set of fixes, cleanups and improvements all over the place
* tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/sev: Disable KMSAN for memory encryption TUs
x86/sev: Dump SEV_STATUS
crypto: ccp - Have it depend on AMD_IOMMU
iommu/amd: Fix failure return from snp_lookup_rmpentry()
x86/sev: Fix position dependent variable references in startup code
crypto: ccp: Make snp_range_list static
x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
Documentation: virt: Fix up pre-formatted text block for SEV ioctls
crypto: ccp: Add the SNP_SET_CONFIG command
crypto: ccp: Add the SNP_COMMIT command
crypto: ccp: Add the SNP_PLATFORM_STATUS command
x86/cpufeatures: Enable/unmask SEV-SNP CPU feature
KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safe
crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump
iommu/amd: Clean up RMP entries for IOMMU pages during SNP shutdown
crypto: ccp: Handle legacy SEV commands when SNP is enabled
crypto: ccp: Handle non-volatile INIT_EX data when SNP is enabled
crypto: ccp: Handle the legacy TMR allocation when SNP is enabled
x86/sev: Introduce an SNP leaked pages list
crypto: ccp: Provide an API to issue SEV and SNP commands
...
accessors and splitting the locking, in order to accomodate ARM's MPAM
implementation of hw resource control and be able to use the same
filesystem control interface like on x86. Work by James Morse
- Improve the memory bandwidth throttling heuristic to handle workloads
with not too regular load levels which end up penalized unnecessarily
- Use CPUID to detect the memory bandwidth enforcement limit on AMD
- The usual set of fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXvGP8ACgkQEsHwGGHe
VUo7nw//e3qGYx09qA6UShcIjz4e9cVM3gUraBn82rd4T6oeIfU5ecJn6auJzlVO
cvlRFumaLbrNZXHd+Ww5VG0g0LVEcLmqS2ER295Rbp5gTvbDTNrmIAgriUpxER42
UkVtI4/y+P5980Y0Jl1j5xECACIdXFxJEGO3Eiok0rk3ZRhcFZgf1T2/35F2Jiif
hXAtvmkeTBxldhcdgovdaoR7SIY4MBZjgB1zX5WqJGlFdxfc6RaYbpCnl8rVXF2J
2DSUvHjtXco9MWNDm9c2bwNzXHV3EaAvUiCwmfoNeXCCJEqpyYFaPs3U61RnlwQe
ucAtSXeRx8YmJAVNJTjSR4Cou0stQDJdLZx0yYgoAvhXqwcpePilMzfHwdHkZ/5V
K7Kwl+VbJ1JxnTJgYmcgJ3juF7R7VW+stiKZOTkFYvBsWzXvCK5w+w1JScbdphqa
P878tySa58ehIaEf9/472QpA+zbItENsf1OFytfbJPKAJhnKMG73X4lrt6swSZBW
a1rmTGqG0ufuPiXT9XDajgeFR/15RQWcYtXPVXmWLaIJ+hHhRc57v11qy0uIMs9V
o0uRtdJP2SL+7rEm26VPjBXyS3orf2tvigrXnYeyNpTR/RVhMHL4n+0kxs4p9ELf
3oD4vd/KqyGHo7LO5QMm52eSxfHLpJzgFL02inBgFTFtmWMWpy8=
=v7bo
-----END PGP SIGNATURE-----
Merge tag 'x86_cache_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull resource control updates from Borislav Petkov:
- Rework different aspects of the resctrl code like adding
arch-specific accessors and splitting the locking, in order to
accomodate ARM's MPAM implementation of hw resource control and be
able to use the same filesystem control interface like on x86. Work
by James Morse
- Improve the memory bandwidth throttling heuristic to handle workloads
with not too regular load levels which end up penalized unnecessarily
- Use CPUID to detect the memory bandwidth enforcement limit on AMD
- The usual set of fixes
* tag 'x86_cache_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
x86/resctrl: Remove lockdep annotation that triggers false positive
x86/resctrl: Separate arch and fs resctrl locks
x86/resctrl: Move domain helper migration into resctrl_offline_cpu()
x86/resctrl: Add CPU offline callback for resctrl work
x86/resctrl: Allow overflow/limbo handlers to be scheduled on any-but CPU
x86/resctrl: Add CPU online callback for resctrl work
x86/resctrl: Add helpers for system wide mon/alloc capable
x86/resctrl: Make rdt_enable_key the arch's decision to switch
x86/resctrl: Move alloc/mon static keys into helpers
x86/resctrl: Make resctrl_mounted checks explicit
x86/resctrl: Allow arch to allocate memory needed in resctrl_arch_rmid_read()
x86/resctrl: Allow resctrl_arch_rmid_read() to sleep
x86/resctrl: Queue mon_event_read() instead of sending an IPI
x86/resctrl: Add cpumask_any_housekeeping() for limbo/overflow
x86/resctrl: Move CLOSID/RMID matching and setting to use helpers
x86/resctrl: Allocate the cleanest CLOSID by searching closid_num_dirty_rmid
x86/resctrl: Use __set_bit()/__clear_bit() instead of open coding
x86/resctrl: Track the number of dirty RMID a CLOSID has
x86/resctrl: Allow RMID allocation to be scoped by CLOSID
x86/resctrl: Access per-rmid structures by index
...
programming protocol of disabling the cache around the changes. The
reason behind this is the current algorithm triggering a #VE
exception for TDX guests and unnecessarily complicating things
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXux8sACgkQEsHwGGHe
VUodOw//diEAM3//Ht733soDDMYuc3pnLBgpIvEYtU7nvo7rVuNJASUny+WmQNVl
Szm1ATl88I0H1t54CAdvd398csKlZPmsO/puu/sLiJrvmjXtH4raE/u9lFjpdBwo
yoSbgb8v15No0JlszeE782rJfAHQ01FK7LbEuV0EKF3dx+KDZQPY8E+/LGVNeyh4
X7OWh2RJHUKENYxYgQBBuw2Hkm9HXIgyQiKe9eIrEwpHskCmZ/y8F8LazohVmw8L
XqlUZFCmKPwHsLE44sWq5coXoN28RKZfQ2D7jvhts8AwwU1RRoFv5WgCXhFe0Rfe
dPfLm93PvxxUYV0OHyCsKeJJkA8KH+vuXiaC1iw7Za6Ipkio1LzNAc/pxa/Q4x8Y
dwOM+WI/OdXz8KHQAJlU37ZNGbnA/ETWumNN7SrqqxvKzUbjcjDwZqIqneFT0dg6
c5quB/fgj+lL1xXk9EDE4HrOkzLv3/ax449oLFkJ3JKfRRMAzQalRaTwjTh/hufM
7Eig3iNRN+G6bItXC6XoQjDBEEJP7LplXT8jNQkVbHyMg8WPPToxtJGXBnR73PQp
q8+Iv3gLqM5EPqetdAtElVRhikmPHPqCdcBj47EHCoPFsQ1E9b72BUutDH0MVEG4
BIFCWQ4DS+3OXX/BZf7P5UOcPDcGkP+2PqbUmiBRB5I3174XQDQ=
=nNC0
-----END PGP SIGNATURE-----
Merge tag 'x86_mtrr_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MTRR update from Borislav Petkov:
- Relax the PAT MSR programming which was unnecessarily using the MTRR
programming protocol of disabling the cache around the changes. The
reason behind this is the current algorithm triggering a #VE
exception for TDX guests and unnecessarily complicating things
* tag 'x86_mtrr_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pat: Simplify the PAT programming protocol
in order to save some future enablement effort
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXuxn4ACgkQEsHwGGHe
VUolmQ//djDJa11FTQ5Zfnu8RjH4LFe6ZanLMIP93urT8rRuOfhlOZLHqxFGvJHy
1K1yT34NmHdXBsVWX7MxDmyhRJMOhgkkgGhYaBqZWrcV1RO26PKg8FS5B/a3BsVI
Y7ryOOqWNg0Hf/++Qm0zSq21VEH3Ehq4gYitK0irX/gBbHQMdui63pbLqOHwdszG
bhgMSI42EjZxpbR1ow5Bx7dia0ChBODbV4WeVB0eZo47mSJU4eu8yDPuy5+5ywwA
fOOVWZ2e12HrisfJYxL01vivU/pK0WYB2gJlAKv0tp+Q2ReIvo/vh4w2MHC1c+YT
X8e95rz1jzzlTkEKt4iWE/NZ1XS30z77jGbKVLxl8lsWswTtup48xLw0idLHc39L
M0ayY3yXbWRVxSltucH2DVKMzG8IP5XNeG53qfiMqIHsoYbmnVgxWk/0HrtgcrSL
jvcU4f2hwehO/ZvwlRyRlQACOlDSHGehNHmAVK3BqxYxM2+a9ArTA2KmnbC6+U9u
LAKaXlf+lMo6lszHDqKb+GUePqZ4EX01X4EuSTRX/G6qD4RMZIu1+4sBwfr79miE
uKJvRIT9DH74+OLPeSt/osdbGAK26BzJM9ZnqkdcggOMM/tHPNkQ5YTK/lStP3gl
JAh8ih/Or9p3LQHNKIU1zoT0MOKv6Mbr8n+MPYAhaS/oNpST6Bs=
=h7IU
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu update from Borislav Petkov:
- Have AMD Zen common init code run on all families from Zen1 onwards
in order to save some future enablement effort
* tag 'x86_cpu_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Do the common init on future Zens too
driver core can handle that
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXuxYIACgkQEsHwGGHe
VUrVGBAAgOB8RglOqSCaF2m//92E2TyXKGSpXXuiizuHbV4G7v+yRgunbX99XOBa
wGkeja0rqovmjaSNOK3B4Hp6/eSXycdKgL8KfMRqa7VzGcla4oN097d6Nvz1YPo3
YL/8sJ04wy1CrF2Hgxj9bFF/ni0WFUgRr8GvlzKqeYGm7rRP2V8kNk64beAMa1GR
XTwoqSVq9cA88/Xnw4/qnYG2HxIL+Eu1uJWtkb47EWGD6qzsgC7t+PE0aKrqcTC8
jzcbiINHPK10FxoXGq3xa1yJQH02E83w0EmjhGmQ06/3gHQVoSUFrO0k4rOJJ7KI
GvAOYMGjkG/vuX0a2+FcxYoU/ODUuA8tiHK9x1HBkqLPzkiz3FPwQQ0yjfqOyo95
6dPd2EeUPjSK12xZ2LM22jyfhkIX6v02QjbmkwkP5pVcQ2WQOQVaOQzITZ/5vhLu
/Eaw+wRj8PBf2Jxv8yX885+qT9owkZIH2jSsVajGpMdoOTkS4R0CmUtPq7D43pGb
PEUabjcGBkSLGvHeKV0xmMeGAMDrsYNcqZ09RJdnIJ4LExI7tsR7lw5jwRSf0M/O
3Vg8ZSW4WlWkTzK5ikFitB8p6fWCe2MhE22zdEJhOei4Wzfz1MmvfcgQW6k9i2KB
AqZGlkg148ItHA56+NMUIgKUqPyblQixR97VkpZoHUAlMdaSdd4=
=RL7O
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS fixlet from Borislav Petkov:
- Constify yet another static struct bus_type instance now that the
driver core can handle that
* tag 'ras_core_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Make mce_subsys const
FRED is a replacement for IDT event delivery on x86 and addresses most of
the technical nightmares which IDT exposes:
1) Exception cause registers like CR2 need to be manually preserved in
nested exception scenarios.
2) Hardware interrupt stack switching is suboptimal for nested exceptions
as the interrupt stack mechanism rewinds the stack on each entry which
requires a massive effort in the low level entry of #NMI code to handle
this.
3) No hardware distinction between entry from kernel or from user which
makes establishing kernel context more complex than it needs to be
especially for unconditionally nestable exceptions like NMI.
4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a
problem when the perf NMI takes a fault when collecting a stack trace.
5) Partial restore of ESP when returning to a 16-bit segment
6) Limitation of the vector space which can cause vector exhaustion on
large systems.
7) Inability to differentiate NMI sources
FRED addresses these shortcomings by:
1) An extended exception stack frame which the CPU uses to save exception
cause registers. This ensures that the meta information for each
exception is preserved on stack and avoids the extra complexity of
preserving it in software.
2) Hardware interrupt stack switching is non-rewinding if a nested
exception uses the currently interrupt stack.
3) The entry points for kernel and user context are separate and GS BASE
handling which is required to establish kernel context for per CPU
variable access is done in hardware.
4) NMIs are now nesting protected. They are only reenabled on the return
from NMI.
5) FRED guarantees full restore of ESP
6) FRED does not put a limitation on the vector space by design because it
uses a central entry points for kernel and user space and the CPUstores
the entry type (exception, trap, interrupt, syscall) on the entry stack
along with the vector number. The entry code has to demultiplex this
information, but this removes the vector space restriction.
The first hardware implementations will still have the current
restricted vector space because lifting this limitation requires
further changes to the local APIC.
7) FRED stores the vector number and meta information on stack which
allows having more than one NMI vector in future hardware when the
required local APIC changes are in place.
The series implements the initial FRED support by:
- Reworking the existing entry and IDT handling infrastructure to
accomodate for the alternative entry mechanism.
- Expanding the stack frame to accomodate for the extra 16 bytes FRED
requires to store context and meta information
- Providing FRED specific C entry points for events which have information
pushed to the extended stack frame, e.g. #PF and #DB.
- Providing FRED specific C entry points for #NMI and #MCE
- Implementing the FRED specific ASM entry points and the C code to
demultiplex the events
- Providing detection and initialization mechanisms and the necessary
tweaks in context switching, GS BASE handling etc.
The FRED integration aims for maximum code reuse vs. the existing IDT
implementation to the extent possible and the deviation in hot paths like
context switching are handled with alternatives to minimalize the
impact. The low level entry and exit paths are seperate due to the extended
stack frame and the hardware based GS BASE swichting and therefore have no
impact on IDT based systems.
It has been extensively tested on existing systems and on the FRED
simulation and as of now there are know outstanding problems.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuKPgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWyUEACevJMHU+Ot9zqBPizSWxByM1uunHbp
bjQXhaFeskd3mt7k7HU6GsPRSmC3q4lliP1Y9ypfbU0DvYSI2h/PhMWizjhmot2y
nIvFpl51r/NsI+JHx1oXcFetz0eGHEqBui/4YQ/swgOCMymYgfqgHhazXTdldV3g
KpH9/8W3AeGvw79uzXFH9tjBzTkbvywpam3v0LYNDJWTCuDkilyo8PjhsgRZD4x3
V9f1nLD7nSHZW8XLoktdJJ38bKwI2Lhao91NQ0ErwopekA4/9WphZEKsDpidUSXJ
sn1O148oQ8X92IO2OaQje8XC5pLGr5GqQBGPWzRH56P/Vd3+WOwBxaFoU6Drxc5s
tIe23ZjkVcpA8EEG7BQBZV1Un/NX7XaCCnMniOt0RauXw+1NaslX7t/tnUAh5F1V
TWCH4D0I0oJ0qJ7kNliGn2BP3agYXOVg81xVEUjT6KfHcYU4ImUrwi+BkeNXuXtL
Ch5ADnbYAcUjWLFnAmEmaRtfmfNGY5T7PeGFHW2RRkaOJ88v5g14Voo6gPJaDUPn
wMQ0nLq1xN4xZWF6ZgfRqAhArvh20k38ZujRku5vXEqnhOugQ76TF2UYiFEwOXbQ
8jcM+yEBLGgBz7tGMwmIAml6kfxaFF1KPpdrtcPxNkGlbE6KTSuIolLx2YGUvlSU
6/O8nwZy49ckmQ==
=Ib7w
-----END PGP SIGNATURE-----
Merge tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FRED support from Thomas Gleixner:
"Support for x86 Fast Return and Event Delivery (FRED).
FRED is a replacement for IDT event delivery on x86 and addresses most
of the technical nightmares which IDT exposes:
1) Exception cause registers like CR2 need to be manually preserved
in nested exception scenarios.
2) Hardware interrupt stack switching is suboptimal for nested
exceptions as the interrupt stack mechanism rewinds the stack on
each entry which requires a massive effort in the low level entry
of #NMI code to handle this.
3) No hardware distinction between entry from kernel or from user
which makes establishing kernel context more complex than it needs
to be especially for unconditionally nestable exceptions like NMI.
4) NMI nesting caused by IRET unconditionally reenabling NMIs, which
is a problem when the perf NMI takes a fault when collecting a
stack trace.
5) Partial restore of ESP when returning to a 16-bit segment
6) Limitation of the vector space which can cause vector exhaustion
on large systems.
7) Inability to differentiate NMI sources
FRED addresses these shortcomings by:
1) An extended exception stack frame which the CPU uses to save
exception cause registers. This ensures that the meta information
for each exception is preserved on stack and avoids the extra
complexity of preserving it in software.
2) Hardware interrupt stack switching is non-rewinding if a nested
exception uses the currently interrupt stack.
3) The entry points for kernel and user context are separate and GS
BASE handling which is required to establish kernel context for
per CPU variable access is done in hardware.
4) NMIs are now nesting protected. They are only reenabled on the
return from NMI.
5) FRED guarantees full restore of ESP
6) FRED does not put a limitation on the vector space by design
because it uses a central entry points for kernel and user space
and the CPUstores the entry type (exception, trap, interrupt,
syscall) on the entry stack along with the vector number. The
entry code has to demultiplex this information, but this removes
the vector space restriction.
The first hardware implementations will still have the current
restricted vector space because lifting this limitation requires
further changes to the local APIC.
7) FRED stores the vector number and meta information on stack which
allows having more than one NMI vector in future hardware when the
required local APIC changes are in place.
The series implements the initial FRED support by:
- Reworking the existing entry and IDT handling infrastructure to
accomodate for the alternative entry mechanism.
- Expanding the stack frame to accomodate for the extra 16 bytes FRED
requires to store context and meta information
- Providing FRED specific C entry points for events which have
information pushed to the extended stack frame, e.g. #PF and #DB.
- Providing FRED specific C entry points for #NMI and #MCE
- Implementing the FRED specific ASM entry points and the C code to
demultiplex the events
- Providing detection and initialization mechanisms and the necessary
tweaks in context switching, GS BASE handling etc.
The FRED integration aims for maximum code reuse vs the existing IDT
implementation to the extent possible and the deviation in hot paths
like context switching are handled with alternatives to minimalize the
impact. The low level entry and exit paths are seperate due to the
extended stack frame and the hardware based GS BASE swichting and
therefore have no impact on IDT based systems.
It has been extensively tested on existing systems and on the FRED
simulation and as of now there are no outstanding problems"
* tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/fred: Fix init_task thread stack pointer initialization
MAINTAINERS: Add a maintainer entry for FRED
x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly
x86/fred: Invoke FRED initialization code to enable FRED
x86/fred: Add FRED initialization functions
x86/syscall: Split IDT syscall setup code into idt_syscall_init()
KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling
x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI
x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code
x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user
x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled
x86/traps: Add sysvec_install() to install a system interrupt handler
x86/fred: FRED entry/exit and dispatch code
x86/fred: Add a machine check entry stub for FRED
x86/fred: Add a NMI entry stub for FRED
x86/fred: Add a debug fault entry stub for FRED
x86/idtentry: Incorporate definitions/declarations of the FRED entries
x86/fred: Make exc_page_fault() work for FRED
x86/fred: Allow single-step trap and NMI when starting a new task
x86/fred: No ESPFIX needed when FRED is enabled
...
RFDS is a CPU vulnerability that may allow userspace to infer kernel
stale data previously used in floating point registers, vector registers
and integer registers. RFDS only affects certain Intel Atom processors.
Intel released a microcode update that uses VERW instruction to clear
the affected CPU buffers. Unlike MDS, none of the affected cores support
SMT.
Add RFDS bug infrastructure and enable the VERW based mitigation by
default, that clears the affected buffers just before exiting to
userspace. Also add sysfs reporting and cmdline parameter
"reg_file_data_sampling" to control the mitigation.
For details see:
Documentation/admin-guide/hw-vuln/reg-file-data-sampling.rst
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Currently MMIO Stale Data mitigation for CPUs not affected by MDS/TAA is
to only deploy VERW at VMentry by enabling mmio_stale_data_clear static
branch. No mitigation is needed for kernel->user transitions. If such
CPUs are also affected by RFDS, its mitigation may set
X86_FEATURE_CLEAR_CPU_BUF to deploy VERW at kernel->user and VMentry.
This could result in duplicate VERW at VMentry.
Fix this by disabling mmio_stale_data_clear static branch when
X86_FEATURE_CLEAR_CPU_BUF is enabled.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
- Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace due to an unexpected VM-Exit while the CPU was
vectoring an exception.
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
- Clean up the logic for massaging the passthrough MSR bitmaps when userspace
changes its MSR filter.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrUh4ACgkQOlYIJqCj
N/2CRA//VKa4KE8zgF3xM6Btyt2NegPgmGYVyhmMHTvARyHDIl5nURy++uXseb4f
UXQLGcoGS+CIiaMohQFhCOjoNvv/2LR9P72qVV2WjQjFxVGBchybz8bjrqIDSSvY
TuiPJApIfZtLryFFcowo8jLEBQv3JKgfgn9r2hBwVDcYP13wSz0Z4AWntHIqBxNa
DW75wo7wnBFzy2RfUdtAgucpbmEihqSoKA+YjUT+0GRLBI7rWbFxdEKqe3BIM/7n
4NoJXbOmw7mlhTNumZYsF5sKiyOihBOdtUL1TDgKWjJScgmwG+KCSvrp5Ko4PZpo
uyWWcIbskQ+cTO6dHDoIJTVPsCDxo3PgVJKG1T60CV68NavwxXCUGri1n1ZNyYH/
bXxEW7dTGHX0TDSt3dcyVOYdZFHbaIbqpu1EXlrzBm1hnruQ1C1uBQGHZ/X+Yo86
0qdq9SgXJ48tykr8BDruIHMy0Q8jbXxl67oXR0CdRjJGM+H9f+7RefnRN9wPYFhy
n6Hl3kbezwCZb+8RO34Hq2CpKzNlKRHlJDhUq1ypd2vXPw8FDq1aQYKih0jAzyJQ
yCdUueBJgo8OJtSL4HGEHvgkLHR4/XERgbCOxpSYNbqIjahAwNtbfHryUnJRWRb5
V3QczG/TtGfEpVblbRzn3Atbft4rM5a9Z3+s0siB6C2w8wyPmZg=
=oJso
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-vmx-6.9' of https://github.com/kvm-x86/linux into HEAD
KVM VMX changes for 6.9:
- Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace due to an unexpected VM-Exit while the CPU was
vectoring an exception.
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
- Clean up the logic for massaging the passthrough MSR bitmaps when userspace
changes its MSR filter.
Borislav reported that one of his systems has a broken MADT table which
advertises eight present APICs and 24 non-present APICs in the same
package.
The non-present ones are considered hot-pluggable by the topology
evaluation code, which is obviously bogus as there is no way to hot-plug
within the same package.
As the topology evaluation code accounts for hot-pluggable CPUs in a
package, the maximum number of cores per package is computed wrong, which
in turn causes the uncore performance counter driver to access non-existing
MSRs. It will probably confuse other entities which rely on the maximum
number of cores and threads per package too.
Cure this by ignoring hot-pluggable APIC IDs within a present package.
In theory it would be reasonable to just do this unconditionally, but then
there is this thing called reality^Wvirtualization which ruins
everything. Virtualization is the only existing user of "physical" hotplug
and the virtualization tools allow the above scenario. Whether that is
actually in use or not is unknown.
As it can be argued that the virtualization case is not affected by the
issues which exposed the reported problem, allow the bogosity if the kernel
determined that it is running in a VM for now.
Fixes: 89b0f15f40 ("x86/cpu/topology: Get rid of cpuinfo::x86_max_cores")
Reported-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/87a5nbvccx.ffs@tglx
The idle routine selection is done on every CPU bringup operation and
has a guard in place which is effective after the first invocation,
which is a pointless exercise.
Invoke it once on the boot CPU and mark the related functions __init.
The guard check has to stay as xen_set_default_idle() runs early.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/87edcu6vaq.ffs@tglx
Sparse rightfully complains:
bugs.c:71:9: sparse: warning: incorrect type in initializer (different address spaces)
bugs.c:71:9: sparse: expected void const [noderef] __percpu *__vpp_verify
bugs.c:71:9: sparse: got unsigned long long *
The reason is that x86_spec_ctrl_current which is a per CPU variable is
exported with EXPORT_SYMBOL_GPL().
Use EXPORT_PER_CPU_SYMBOL_GPL() instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240304005104.732288812@linutronix.de
On UP builds Sparse complains rightfully about accesses to cpu_info with
per CPU accessors:
cacheinfo.c:282:30: sparse: warning: incorrect type in initializer (different address spaces)
cacheinfo.c:282:30: sparse: expected void const [noderef] __percpu *__vpp_verify
cacheinfo.c:282:30: sparse: got unsigned int *
The reason is that on UP builds cpu_info which is a per CPU variable on SMP
is mapped to boot_cpu_info which is a regular variable. There is a hideous
accessor cpu_data() which tries to hide this, but it's not sufficient as
some places require raw accessors and generates worse code than the regular
per CPU accessors.
Waste sizeof(struct x86_cpuinfo) memory on UP and provide the per CPU
cpu_info unconditionally. This requires to update the CPU info on the boot
CPU as SMP does. (Ab)use the weakly defined smp_prepare_boot_cpu() function
and implement exactly that.
This allows to use regular per CPU accessors uncoditionally and paves the
way to remove the cpu_data() hackery.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240304005104.622511517@linutronix.de
To clean up the per CPU insanity of UP which causes sparse to be rightfully
unhappy and prevents the usage of the generic per CPU accessors on cpu_info
it is necessary to include <linux/percpu.h> into <asm/msr.h>.
Including <linux/percpu.h> into <asm/msr.h> is impossible because it ends
up in header dependency hell. The problem is that <asm/processor.h>
includes <asm/msr.h>. The inclusion of <linux/percpu.h> results in a
compile fail where the compiler cannot longer handle an include in
<asm/cpufeature.h> which references boot_cpu_data which is
defined in <asm/processor.h>.
The only reason why <asm/msr.h> is included in <asm/processor.h> are the
set/get_debugctlmsr() inlines. They are defined there because <asm/processor.h>
is such a nice dump ground for everything. In fact they belong obviously
into <asm/debugreg.h>.
Move them to <asm/debugreg.h> and fix up the resulting damage which is just
exposing the reliance on random include chains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240304005104.454678686@linutronix.de
The HV_REGISTER_ are used as arguments to hv_set/get_register(), which
delegate to arch-specific mechanisms for getting/setting synthetic
Hyper-V MSRs.
On arm64, HV_REGISTER_ defines are synthetic VP registers accessed via
the get/set vp registers hypercalls. The naming matches the TLFS
document, although these register names are not specific to arm64.
However, on x86 the prefix HV_REGISTER_ indicates Hyper-V MSRs accessed
via rdmsrl()/wrmsrl(). This is not consistent with the TLFS doc, where
HV_REGISTER_ is *only* used for used for VP register names used by
the get/set register hypercalls.
To fix this inconsistency and prevent future confusion, change the
arch-generic aliases used by callers of hv_set/get_register() to have
the prefix HV_MSR_ instead of HV_REGISTER_.
Use the prefix HV_X64_MSR_ for the x86-only Hyper-V MSRs. On x86, the
generic HV_MSR_'s point to the corresponding HV_X64_MSR_.
Move the arm64 HV_REGISTER_* defines to the asm-generic hyperv-tlfs.h,
since these are not specific to arm64. On arm64, the generic HV_MSR_'s
point to the corresponding HV_REGISTER_.
While at it, rename hv_get/set_registers() and related functions to
hv_get/set_msr(), hv_get/set_nested_msr(), etc. These are only used for
Hyper-V MSRs and this naming makes that clear.
Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Link: https://lore.kernel.org/r/1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <1708440933-27125-1-git-send-email-nunodasneves@linux.microsoft.com>
These functions are mostly pointless on UP, but nevertheless the
64-bit UP APIC build already depends on the existence of
topology_apply_cmdline_limits_early(), which caused a build bug,
resolve it by making them available under CONFIG_X86_LOCAL_APIC,
as their prototypes already are.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
MKTME repurposes the high bit of physical address to key id for encryption
key and, even though MAXPHYADDR in CPUID[0x80000008] remains the same,
the valid bits in the MTRR mask register are based on the reduced number
of physical address bits.
detect_tme() in arch/x86/kernel/cpu/intel.c detects TME and subtracts
it from the total usable physical bits, but it is called too late.
Move the call to early_init_intel() so that it is called in setup_arch(),
before MTRRs are setup.
This fixes boot on TDX-enabled systems, which until now only worked with
"disable_mtrr_cleanup". Without the patch, the values written to the
MTRRs mask registers were 52-bit wide (e.g. 0x000fffff_80000800) and
the writes failed; with the patch, the values are 46-bit wide, which
matches the reduced MAXPHYADDR that is shown in /proc/cpuinfo.
Reported-by: Zixi Chen <zixchen@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240131230902.1867092-3-pbonzini%40redhat.com
In commit fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct
value straight away, instead of a two-phase approach"), the initialization
of c->x86_phys_bits was moved after this_cpu->c_early_init(c). This is
incorrect because early_init_amd() expected to be able to reduce the
value according to the contents of CPUID leaf 0x8000001f.
Fortunately, the bug was negated by init_amd()'s call to early_init_amd(),
which does reduce x86_phys_bits in the end. However, this is very
late in the boot process and, most notably, the wrong value is used for
x86_phys_bits when setting up MTRRs.
To fix this, call get_cpu_address_sizes() as soon as X86_FEATURE_CPUID is
set/cleared, and c->extended_cpuid_level is retrieved.
Fixes: fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240131230902.1867092-2-pbonzini%40redhat.com
Now crash codes under kernel/ folder has been split out from kexec
code, crash dumping can be separated from kexec reboot in config
items on x86 with some adjustments.
Here, also change some ifdefs or IS_ENABLED() check to more appropriate
ones, e,g
- #ifdef CONFIG_KEXEC_CORE -> #ifdef CONFIG_CRASH_DUMP
- (!IS_ENABLED(CONFIG_KEXEC_CORE)) - > (!IS_ENABLED(CONFIG_CRASH_RESERVE))
[bhe@redhat.com: don't nest CONFIG_CRASH_DUMP ifdef inside CONFIG_KEXEC_CODE ifdef scope]
Link: https://lore.kernel.org/all/SN6PR02MB4157931105FA68D72E3D3DB8D47B2@SN6PR02MB4157.namprd02.prod.outlook.com/T/#u
Link: https://lkml.kernel.org/r/20240124051254.67105-7-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add a VMX flag in /proc/cpuinfo, ept_5level, so that userspace can query
whether or not the CPU supports 5-level EPT paging. EPT capabilities are
enumerated via MSR, i.e. aren't accessible to userspace without help from
the kernel, and knowing whether or not 5-level EPT is supported is useful
for debug, triage, testing, etc.
For example, when EPT is enabled, bits 51:48 of guest physical addresses
are consumed by the CPU if and only if 5-level EPT is enabled. For CPUs
with MAXPHYADDR > 48, KVM *can't* map all legal guest memory without
5-level EPT, making 5-level EPT support valuable information for userspace.
Reported-by: Yi Lai <yi1.lai@intel.com>
Cc: Tao Su <tao1.su@linux.intel.com>
Cc: Xudong Hao <xudong.hao@intel.com>
Link: https://lore.kernel.org/r/20240110002340.485595-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
get_domain_from_cpu() walks a list of domains to find the one that
contains the specified CPU. This needs to be protected against races
with CPU hotplug when the list is modified. It has recently gained
a lockdep annotation to check this.
The lockdep annotation causes false positives when called via IPI as the
lock is held, but by another process. Remove it.
[ bp: Refresh it ontop of x86/cache. ]
Fixes: fb700810d3 ("x86/resctrl: Separate arch and fs resctrl locks")
Reported-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/ZdUSwOM9UUNpw84Y@agluck-desk3
The programming protocol for the PAT MSR follows the MTRR programming
protocol. However, this protocol is cumbersome and requires disabling
caching (CR0.CD=1), which is not possible on some platforms.
Specifically, a TDX guest is not allowed to set CR0.CD. It triggers
a #VE exception.
It turns out that the requirement to follow the MTRR programming
protocol for PAT programming is unnecessarily strict. The new Intel
Software Developer Manual (http://www.intel.com/sdm) (December 2023)
relaxes this requirement, please refer to the section titled
"Programming the PAT" for more information.
In short, this section provides an alternative PAT update sequence which
doesn't need to disable caches around the PAT update but only to flush
those caches and TLBs.
The AMD documentation does not link PAT programming to MTRR and is there
fore, fine too.
The kernel only needs to flush the TLB after updating the PAT MSR. The
set_memory code already takes care of flushing the TLB and cache when
changing the memory type of a page.
[ bp: Expand commit message. ]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20240124130650.496056-1-kirill.shutemov@linux.intel.com
The VERW mitigation at exit-to-user is enabled via a static branch
mds_user_clear. This static branch is never toggled after boot, and can
be safely replaced with an ALTERNATIVE() which is convenient to use in
asm.
Switch to ALTERNATIVE() to use the VERW mitigation late in exit-to-user
path. Also remove the now redundant VERW in exc_nmi() and
arch_exit_to_user_mode().
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-4-a6216d83edb7%40linux.intel.com
resctrl has one mutex that is taken by the architecture-specific code, and the
filesystem parts. The two interact via cpuhp, where the architecture code
updates the domain list. Filesystem handlers that walk the domains list should
not run concurrently with the cpuhp callback modifying the list.
Exposing a lock from the filesystem code means the interface is not cleanly
defined, and creates the possibility of cross-architecture lock ordering
headaches. The interaction only exists so that certain filesystem paths are
serialised against CPU hotplug. The CPU hotplug code already has a mechanism to
do this using cpus_read_lock().
MPAM's monitors have an overflow interrupt, so it needs to be possible to walk
the domains list in irq context. RCU is ideal for this, but some paths need to
be able to sleep to allocate memory.
Because resctrl_{on,off}line_cpu() take the rdtgroup_mutex as part of a cpuhp
callback, cpus_read_lock() must always be taken first.
rdtgroup_schemata_write() already does this.
Most of the filesystem code's domain list walkers are currently protected by
the rdtgroup_mutex taken in rdtgroup_kn_lock_live(). The exceptions are
rdt_bit_usage_show() and the mon_config helpers which take the lock directly.
Make the domain list protected by RCU. An architecture-specific lock prevents
concurrent writers. rdt_bit_usage_show() could walk the domain list using RCU,
but to keep all the filesystem operations the same, this is changed to call
cpus_read_lock(). The mon_config helpers send multiple IPIs, take the
cpus_read_lock() in these cases.
The other filesystem list walkers need to be able to sleep. Add
cpus_read_lock() to rdtgroup_kn_lock_live() so that the cpuhp callbacks can't
be invoked when file system operations are occurring.
Add lockdep_assert_cpus_held() in the cases where the rdtgroup_kn_lock_live()
call isn't obvious.
Resctrl's domain online/offline calls now need to take the rdtgroup_mutex
themselves.
[ bp: Fold in a build fix: https://lore.kernel.org/r/87zfvwieli.ffs@tglx ]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-25-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
When a CPU is taken offline the resctrl filesystem code needs to check if it
was the CPU nominated to perform the periodic overflow and limbo work. If so,
another CPU needs to be chosen to do this work.
This is currently done in core.c, mixed in with the code that removes the CPU
from the domain's mask, and potentially free()s the domain.
Move the migration of the overflow and limbo helpers into the filesystem code,
into resctrl_offline_cpu(). As resctrl_offline_cpu() runs before the
architecture code has removed the CPU from the domain mask, the callers need to
be told which CPU is being removed, to avoid picking it as the new CPU. This
uses the exclude_cpu feature previously added.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-24-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The resctrl architecture specific code may need to free a domain when a CPU
goes offline, it also needs to reset the CPUs PQR_ASSOC register. Amongst
other things, the resctrl filesystem code needs to clear this CPU from the
cpu_mask of any control and monitor groups.
Currently, this is all done in core.c and called from resctrl_offline_cpu(),
making the split between architecture and filesystem code unclear.
Move the filesystem work to remove the CPU from the control and monitor groups
into a filesystem helper called resctrl_offline_cpu(), and rename the one in
core.c resctrl_arch_offline_cpu().
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-23-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
When a CPU is taken offline resctrl may need to move the overflow or limbo
handlers to run on a different CPU.
Once the offline callbacks have been split, cqm_setup_limbo_handler() will be
called while the CPU that is going offline is still present in the CPU mask.
Pass the CPU to exclude to cqm_setup_limbo_handler() and
mbm_setup_overflow_handler(). These functions can use a variant of
cpumask_any_but() when selecting the CPU. -1 is used to indicate no CPUs need
excluding.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-22-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The resctrl architecture specific code may need to create a domain when a CPU
comes online, it also needs to reset the CPUs PQR_ASSOC register. The resctrl
filesystem code needs to update the rdtgroup_default CPU mask when CPUs are
brought online.
Currently, this is all done in one function, resctrl_online_cpu(). It will
need to be split into architecture and filesystem parts before resctrl can be
moved to /fs/.
Pull the rdtgroup_default update work out as a filesystem specific cpu_online
helper. resctrl_online_cpu() is the obvious name for this, which means the
version in core.c needs renaming.
resctrl_online_cpu() is called by the arch code once it has done the work to
add the new CPU to any domains.
In future patches, resctrl_online_cpu() will take the rdtgroup_mutex itself.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-21-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
resctrl reads rdt_alloc_capable or rdt_mon_capable to determine whether any of
the resources support the corresponding features. resctrl also uses the
static keys that affect the architecture's context-switch code to determine the
same thing.
This forces another architecture to have the same static keys.
As the static key is enabled based on the capable flag, and none of the
filesystem uses of these are in the scheduler path, move the capable flags
behind helpers, and use these in the filesystem code instead of the static key.
After this change, only the architecture code manages and uses the static keys
to ensure __resctrl_sched_in() does not need runtime checks.
This avoids multiple architectures having to define the same static keys.
Cases where the static key implicitly tested if the resctrl filesystem was
mounted all have an explicit check now.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-20-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
rdt_enable_key is switched when resctrl is mounted. It was also previously used
to prevent a second mount of the filesystem.
Any other architecture that wants to support resctrl has to provide identical
static keys.
Now that there are helpers for enabling and disabling the alloc/mon keys,
resctrl doesn't need to switch this extra key, it can be done by the arch code.
Use the static-key increment and decrement helpers, and change resctrl to
ensure the calls are balanced.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-19-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
resctrl enables three static keys depending on the features it has enabled.
Another architecture's context switch code may look different, any static keys
that control it should be buried behind helpers.
Move the alloc/mon logic into arch-specific helpers as a preparatory step for
making the rdt_enable_key's status something the arch code decides.
This means other architectures don't have to mirror the static keys.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-18-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The rdt_enable_key is switched when resctrl is mounted, and used to prevent
a second mount of the filesystem. It also enables the architecture's context
switch code.
This requires another architecture to have the same set of static keys, as
resctrl depends on them too. The existing users of these static keys are
implicitly also checking if the filesystem is mounted.
Make the resctrl_mounted checks explicit: resctrl can keep track of whether it
has been mounted once. This doesn't need to be combined with whether the arch
code is context switching the CLOSID.
rdt_mon_enable_key is never used just to test that resctrl is mounted, but does
also have this implication. Add a resctrl_mounted to all uses of
rdt_mon_enable_key.
This will allow the static key changing to be moved behind resctrl_arch_ calls.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-17-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Depending on the number of monitors available, Arm's MPAM may need to
allocate a monitor prior to reading the counter value. Allocating a
contended resource may involve sleeping.
__check_limbo() and mon_event_count() each make multiple calls to
resctrl_arch_rmid_read(), to avoid extra work on contended systems,
the allocation should be valid for multiple invocations of
resctrl_arch_rmid_read().
The memory or hardware allocated is not specific to a domain.
Add arch hooks for this allocation, which need calling before
resctrl_arch_rmid_read(). The allocated monitor is passed to
resctrl_arch_rmid_read(), then freed again afterwards. The helper
can be called on any CPU, and can sleep.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-16-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
MPAM's cache occupancy counters can take a little while to settle once the
monitor has been configured. The maximum settling time is described to the
driver via a firmware table. The value could be large enough that it makes
sense to sleep. To avoid exposing this to resctrl, it should be hidden behind
MPAM's resctrl_arch_rmid_read().
resctrl_arch_rmid_read() may be called via IPI meaning it is unable to sleep.
In this case, it should return an error if it needs to sleep. This will only
affect MPAM platforms where the cache occupancy counter isn't available
immediately, nohz_full is in use, and there are no housekeeping CPUs in the
necessary domain.
There are three callers of resctrl_arch_rmid_read(): __mon_event_count() and
__check_limbo() are both called from a non-migrateable context.
mon_event_read() invokes __mon_event_count() using smp_call_on_cpu(), which
adds work to the target CPUs workqueue. rdtgroup_mutex() is held, meaning this
cannot race with the resctrl cpuhp callback. __check_limbo() is invoked via
schedule_delayed_work_on() also adds work to a per-cpu workqueue.
The remaining call is add_rmid_to_limbo() which is called in response to
a user-space syscall that frees an RMID. This opportunistically reads the LLC
occupancy counter on the current domain to see if the RMID is over the dirty
threshold. This has to disable preemption to avoid reading the wrong domain's
value. Disabling preemption here prevents resctrl_arch_rmid_read() from
sleeping.
add_rmid_to_limbo() walks each domain, but only reads the counter on one
domain. If the system has more than one domain, the RMID will always be added
to the limbo list. If the RMIDs usage was not over the threshold, it will be
removed from the list when __check_limbo() runs. Make this the default
behaviour. Free RMIDs are always added to the limbo list for each domain.
The user visible effect of this is that a clean RMID is not available for
re-allocation immediately after 'rmdir()' completes. This behaviour was never
portable as it never happened on a machine with multiple domains.
Removing this path allows resctrl_arch_rmid_read() to sleep if its called with
interrupts unmasked. Document this is the expected behaviour, and add
a might_sleep() annotation to catch changes that won't work on arm64.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-15-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Intel is blessed with an abundance of monitors, one per RMID, that can be
read from any CPU in the domain. MPAMs monitors reside in the MMIO MSC,
the number implemented is up to the manufacturer. This means when there are
fewer monitors than needed, they need to be allocated and freed.
MPAM's CSU monitors are used to back the 'llc_occupancy' monitor file. The
CSU counter is allowed to return 'not ready' for a small number of
micro-seconds after programming. To allow one CSU hardware monitor to be
used for multiple control or monitor groups, the CPU accessing the
monitor needs to be able to block when configuring and reading the
counter.
Worse, the domain may be broken up into slices, and the MMIO accesses
for each slice may need performing from different CPUs.
These two details mean MPAMs monitor code needs to be able to sleep, and
IPI another CPU in the domain to read from a resource that has been sliced.
mon_event_read() already invokes mon_event_count() via IPI, which means
this isn't possible. On systems using nohz-full, some CPUs need to be
interrupted to run kernel work as they otherwise stay in user-space
running realtime workloads. Interrupting these CPUs should be avoided,
and scheduling work on them may never complete.
Change mon_event_read() to pick a housekeeping CPU, (one that is not using
nohz_full) and schedule mon_event_count() and wait. If all the CPUs
in a domain are using nohz-full, then an IPI is used as the fallback.
This function is only used in response to a user-space filesystem request
(not the timing sensitive overflow code).
This allows MPAM to hide the slice behaviour from resctrl, and to keep
the monitor-allocation in monitor.c. When the IPI fallback is used on
machines where MPAM needs to make an access on multiple CPUs, the counter
read will always fail.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-14-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The limbo and overflow code picks a CPU to use from the domain's list of online
CPUs. Work is then scheduled on these CPUs to maintain the limbo list and any
counters that may overflow.
cpumask_any() may pick a CPU that is marked nohz_full, which will either
penalise the work that CPU was dedicated to, or delay the processing of limbo
list or counters that may overflow. Perhaps indefinitely. Delaying the overflow
handling will skew the bandwidth values calculated by mba_sc, which expects to
be called once a second.
Add cpumask_any_housekeeping() as a replacement for cpumask_any() that prefers
housekeeping CPUs. This helper will still return a nohz_full CPU if that is the
only option. The CPU to use is re-evaluated each time the limbo/overflow work
runs. This ensures the work will move off a nohz_full CPU once a housekeeping
CPU is available.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-13-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
When switching tasks, the CLOSID and RMID that the new task should use
are stored in struct task_struct. For x86 the CLOSID known by resctrl,
the value in task_struct, and the value written to the CPU register are
all the same thing.
MPAM's CPU interface has two different PARTIDs - one for data accesses
the other for instruction fetch. Storing resctrl's CLOSID value in
struct task_struct implies the arch code knows whether resctrl is using
CDP.
Move the matching and setting of the struct task_struct properties to
use helpers. This allows arm64 to store the hardware format of the
register, instead of having to convert it each time.
__rdtgroup_move_task()s use of READ_ONCE()/WRITE_ONCE() ensures torn
values aren't seen as another CPU may schedule the task being moved
while the value is being changed. MPAM has an additional corner-case
here as the PMG bits extend the PARTID space.
If the scheduler sees a new-CLOSID but old-RMID, the task will dirty an
RMID that the limbo code is not watching causing an inaccurate count.
x86's RMID are independent values, so the limbo code will still be
watching the old-RMID in this circumstance.
To avoid this, arm64 needs both the CLOSID/RMID WRITE_ONCE()d together.
Both values must be provided together.
Because MPAM's RMID values are not unique, the CLOSID must be provided
when matching the RMID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-12-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
MPAM's PMG bits extend its PARTID space, meaning the same PMG value can be used
for different control groups.
This means once a CLOSID is allocated, all its monitoring ids may still be
dirty, and held in limbo.
Instead of allocating the first free CLOSID, on architectures where
CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is enabled, search
closid_num_dirty_rmid[] to find the cleanest CLOSID.
The CLOSID found is returned to closid_alloc() for the free list
to be updated.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-11-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The resctrl CLOSID allocator uses a single 32bit word to track which
CLOSID are free. The setting and clearing of bits is open coded.
Convert the existing open coded bit manipulations of closid_free_map
to use __set_bit() and friends. These don't need to be atomic as this
list is protected by the mutex.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-10-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
MPAM's PMG bits extend its PARTID space, meaning the same PMG value can be
used for different control groups.
This means once a CLOSID is allocated, all its monitoring ids may still be
dirty, and held in limbo.
Keep track of the number of RMID held in limbo each CLOSID has. This will
allow a future helper to find the 'cleanest' CLOSID when allocating.
The array is only needed when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is
defined. This will never be the case on x86.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-9-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
MPAMs RMID values are not unique unless the CLOSID is considered as well.
alloc_rmid() expects the RMID to be an independent number.
Pass the CLOSID in to alloc_rmid(). Use this to compare indexes when
allocating. If the CLOSID is not relevant to the index, this ends up comparing
the free RMID with itself, and the first free entry will be used. With MPAM the
CLOSID is included in the index, so this becomes a walk of the free RMID
entries, until one that matches the supplied CLOSID is found.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-8-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
x86 systems identify traffic using the CLOSID and RMID. The CLOSID is
used to lookup the control policy, the RMID is used for monitoring. For
x86 these are independent numbers.
Arm's MPAM has equivalent features PARTID and PMG, where the PARTID is
used to lookup the control policy. The PMG in contrast is a small number
of bits that are used to subdivide PARTID when monitoring. The
cache-occupancy monitors require the PARTID to be specified when
monitoring.
This means MPAM's PMG field is not unique. There are multiple PMG-0, one
per allocated CLOSID/PARTID. If PMG is treated as equivalent to RMID, it
cannot be allocated as an independent number. Bitmaps like rmid_busy_llc
need to be sized by the number of unique entries for this resource.
Treat the combined CLOSID and RMID as an index, and provide architecture
helpers to pack and unpack an index. This makes the MPAM values unique.
The domain's rmid_busy_llc and rmid_ptrs[] are then sized by index, as
are domain mbm_local[] and mbm_total[].
x86 can ignore the CLOSID field when packing and unpacking an index, and
report as many indexes as RMID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-7-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
x86's RMID are independent of the CLOSID. An RMID can be allocated,
used and freed without considering the CLOSID.
MPAM's equivalent feature is PMG, which is not an independent number,
it extends the CLOSID/PARTID space. For MPAM, only PMG-bits worth of
'RMID' can be allocated for a single CLOSID.
i.e. if there is 1 bit of PMG space, then each CLOSID can have two
monitor groups.
To allow resctrl to disambiguate RMID values for different CLOSID,
everything in resctrl that keeps an RMID value needs to know the CLOSID
too. This will always be ignored on x86.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-6-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
RMIDs are allocated for each monitor or control group directory, because
each of these needs its own RMID. For control groups,
rdtgroup_mkdir_ctrl_mon() later goes on to allocate the CLOSID.
MPAM's equivalent of RMID is not an independent number, so can't be
allocated until the CLOSID is known. An RMID allocation for one CLOSID
may fail, whereas another may succeed depending on how many monitor
groups a control group has.
The RMID allocation needs to move to be after the CLOSID has been
allocated.
Move the RMID allocation out of mkdir_rdt_prepare() to occur in its caller,
after the mkdir_rdt_prepare() call. This allows the RMID allocator to
know the CLOSID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-5-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
When monitoring is supported, each monitor and control group is allocated an
RMID. For control groups, rdtgroup_mkdir_ctrl_mon() later goes on to allocate
the CLOSID.
MPAM's equivalent of RMID are not an independent number, so can't be allocated
until the CLOSID is known. An RMID allocation for one CLOSID may fail, whereas
another may succeed depending on how many monitor groups a control group has.
The RMID allocation needs to move to be after the CLOSID has been allocated.
Move the RMID allocation and mondata dir creation to a helper.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-4-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
rmid_ptrs[] is allocated from dom_data_init() but never free()d.
While the exit text ends up in the linker script's DISCARD section,
the direction of travel is for resctrl to be/have loadable modules.
Add resctrl_put_mon_l3_config() to cleanup any memory allocated
by rdt_get_mon_l3_config().
There is no reason to backport this to a stable kernel.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-3-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Now that __num_cores_per_package and __num_threads_per_package are
available, cpuinfo::x86_max_cores and the related math all over the place
can be replaced with the ready to consume data.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.176147806@linutronix.de
There's no need to enable the common Zen init stuff for each new family
- just do it by default on everything >= 0x17 family.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240201161024.30839-1-bp@alien8.de
Expose properly accounted information and accessors so the fiddling with
other topology variables can be replaced.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.120958987@linutronix.de
It's really a non-intuitive name. Rename it to __max_threads_per_core which
is obvious.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.011307973@linutronix.de
Similar to other sizing information the number of cores per package can be
established from the topology bitmap.
Provide a function for retrieving that information and replace the buggy
hack in the CPUID evaluation with it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.956858282@linutronix.de
Replace the logical package and die management functionality and retrieve
the logical IDs from the topology bitmaps.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.901865302@linutronix.de
With the topology bitmaps in place the logical package and die IDs can
trivially be retrieved by determining the bitmap weight of the relevant
topology domain level up to and including the physical ID in question.
Provide a function to that effect.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.846136196@linutronix.de
No point in creating a mask via fls(). smp_num_siblings is guaranteed to be
a power of 2. So just using (smp_num_siblings - 1) has the same effect.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.791176581@linutronix.de
The early initcall to initialize the primary thread mask is not longer
required because topology_init_possible_cpus() can mark primary threads
correctly when initializing the possible and present map as the number of
SMT threads is already determined correctly.
The XENPV workaround is not longer required because XENPV now registers
fake APIC IDs which will just work like any other enumeration.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.736104257@linutronix.de
Now that all possible APIC IDs are tracked in the topology bitmaps, its
trivial to retrieve the real information from there.
This gets rid of the guesstimates for the maximal packages and dies per
package as the actual numbers can be determined before a single AP has been
brought up.
The number of SMT threads can now be determined correctly from the bitmaps
in all situations. Up to now a system which has SMT disabled in the BIOS
will still claim that it is SMT capable, because the lowest APIC ID bit is
reserved for that and CPUID leaf 0xb/0x1f still enumerates the SMT domain
accordingly. By calculating the bitmap weights of the SMT and the CORE
domain and setting them into relation the SMT disabled in BIOS situation
reports correctly that the system is not SMT capable.
It also handles the situation correctly when a hybrid systems boot CPU does
not have SMT as it takes the SMT capability of the APs fully into account.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.681709880@linutronix.de
It turns out that XEN/PV Dom0 has halfways usable CPUID/MADT enumeration
except that it cannot deal with CPUs which are enumerated as disabled in
MADT.
DomU has no MADT and provides at least rudimentary topology information in
CPUID leaves 1 and 4.
For both it's important that there are not more possible Linux CPUs than
vCPUs provided by the hypervisor.
As this is ensured by counting the vCPUs before enumeration happens:
- lift the restrictions in the CPUID evaluation and the MADT parser
- Utilize MADT registration for Dom0
- Keep the fake APIC ID registration for DomU
- Fix the XEN APIC fake so the readout of the local APIC ID works for
Dom0 via the hypercall and for DomU by returning the registered
fake APIC IDs.
With that the XEN/PV fake approximates usefulness.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.626195405@linutronix.de
There is no point in assigning the CPU numbers during ACPI physical
hotplug. The number of possible hotplug CPUs is known when the possible map
is initialized, so the CPU numbers can be associated to the registered
non-present APIC IDs right there.
This allows to put more code into the __init section and makes the related
data __ro_after_init.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.517339971@linutronix.de
The topology bitmaps track all possible APIC IDs which have been registered
during enumeration. As sizing and further topology information is going to
be derived from these bitmaps, reject attempts to hotplug an APIC ID which
was not registered during enumeration.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.462231229@linutronix.de
Topology on X86 is determined by the registered APIC IDs and the
segmentation information retrieved from CPUID. Depending on the granularity
of the provided CPUID information the most fine grained scheme looks like
this according to Intel terminology:
[PKG][DIEGRP][DIE][TILE][MODULE][CORE][THREAD]
Not enumerated domain levels consume 0 bits in the APIC ID. This allows to
provide a consistent view at the topology and determine other information
precisely like the number of cores in a package on hybrid systems, where
the existing assumption that number or cores == number of threads / threads
per core does not hold.
Provide per domain level bitmaps which record the APIC ID split into the
domain levels to make later evaluation of domain level specific information
simple. This allows to calculate e.g. the logical IDs without any further
extra logic.
Contrary to the existing registration mechanism this records disabled CPUs,
which are subject to later hotplug as well. That's useful for boot time
sizing of package or die dependent allocations without using heuristics.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.406985021@linutronix.de
When a kdump kernel is started from a crashing CPU then there is no
guarantee that this CPU is the real boot CPU (BSP). If the kdump kernel
tries to online the BSP then the INIT sequence will reset the machine.
There is a command line option to prevent this, but in case of nested kdump
kernels this is wrong.
But that command line option is not required at all because the real
BSP is enumerated as the first CPU by firmware. Support for the only
known system which was different (Voyager) got removed long ago.
Detect whether the boot CPU APIC ID is the first APIC ID enumerated by
the firmware. If the first APIC ID enumerated is not matching the boot
CPU APIC ID then skip registering it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.348542071@linutronix.de
Managing possible CPUs is an unreadable and uncomprehensible maze. Aside of
that it's backwards because it applies command line limits after
registering all APICs.
Rewrite it so that it:
- Applies the command line limits upfront so that only the allowed amount
of APIC IDs can be registered.
- Applies eventual late restrictions in an understandable way
- Uses simple min_t() calculations which are trivial to follow.
- Provides a separate function for resetting to UP mode late in the
bringup process.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.290098853@linutronix.de
Move the actually required content of generic_processor_id() into the call
sites and use common helper functions for them. This separates the early
boot registration and the ACPI hotplug mechanism completely which allows
further cleanups and improvements.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.230433953@linutronix.de
Put the processor accounting into a data structure, which will gain more
topology related information in the next steps, and sanitize the accounting.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.111451909@linutronix.de
Having the same check whether the number of assigned CPUs has reached the
nr_cpu_ids limit twice in the same code path is pointless. Repeating the
information that CPUs are ignored over and over is also pointless noise.
Remove the redundant check and reduce the noise by using a pr_warn_once().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.050264369@linutronix.de
Now that all external fiddling with num_processors and disabled_cpus is
gone, move the last user prefill_possible_map() into the topology code too
and remove the global visibility of these variables.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.994756960@linutronix.de
Aside of switching over to the new interface, record the number of
registered CPUs locally, which allows to make num_processors and
disabled_cpus confined to the topology code.
No functional change intended.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.830955273@linutronix.de
generic_processor_info() aside of being a complete misnomer is used for
both early boot registration and ACPI CPU hotplug.
While it's arguable that this can share some code, it results in code which
is hard to understand and kept around post init for no real reason.
Also the call sites do lots of manual fiddling in topology related
variables instead of having proper interfaces for the purpose which handle
the topology internals correctly.
Provide topology_register_apic(), topology_hotplug_apic() and
topology_hotunplug_apic() which have the extra magic of the call sites
incorporated and for now are wrappers around generic_processor_info().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.605007456@linutronix.de
The APIC/CPU registration sits in the middle of the APIC code. In fact this
is a topology evaluation function and has nothing to do with the inner
workings of the local APIC.
Move it out into a file which reflects what this is about.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.543948812@linutronix.de
Detect all possible combinations of mismatch right in the CPUID evaluation
code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154638.867699078@linutronix.de
No more users. Stick it into the ugly code museum.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.395230346@linutronix.de
Now that everything is converted switch it over and remove the intermediate
operation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.334185785@linutronix.de
Switch it over to use the consolidated topology evaluation and remove the
temporary safe guards which are not longer needed.
No functional change intended.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.207750409@linutronix.de
Switch it over to the new topology evaluation mechanism and remove the
random bits and pieces which are sprinkled all over the place.
No functional change intended.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.145745053@linutronix.de
AMD/HYGON uses various methods for topology evaluation:
- Leaf 0x80000008 and 0x8000001e based with an optional leaf 0xb,
which is the preferred variant for modern CPUs.
Leaf 0xb will be superseded by leaf 0x80000026 soon, which is just
another variant of the Intel 0x1f leaf for whatever reasons.
- Subleaf 0x80000008 and NODEID_MSR base
- Legacy fallback
That code is following the principle of random bits and pieces all over the
place which results in multiple evaluations and impenetrable code flows in
the same way as the Intel parsing did.
Provide a sane implementation by clearly separating the three variants and
bringing them in the proper preference order in one place.
This provides the parsing for both AMD and HYGON because there is no point
in having a separate HYGON parser which only differs by 3 lines of
code. Any further divergence between AMD and HYGON can be handled in
different functions, while still sharing the existing parsers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.020038641@linutronix.de
AMD (ab)uses topology_die_id() to store the Node ID information and
topology_max_dies_per_pkg to store the number of nodes per package.
This collides with the proper processor die level enumeration which is
coming on AMD with CPUID 8000_0026, unless there is a correlation between
the two. There is zero documentation about that.
So provide new storage and new accessors which for now still access die_id
and topology_max_die_per_pkg(). Will be mopped up after AMD and HYGON are
converted over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153624.956116738@linutronix.de
Intel CPUs use either topology leaf 0xb/0x1f evaluation or the legacy
SMP/HT evaluation based on CPUID leaf 0x1/0x4.
Move it over to the consolidated topology code and remove the random
topology hacks which are sprinkled into the Intel and the common code.
No functional change intended.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153624.893644349@linutronix.de
detect_extended_topology() along with it's early() variant is a classic
example for duct tape engineering:
- It evaluates an array of subleafs with a boatload of local variables
for the relevant topology levels instead of using an array to save the
enumerated information and propagate it to the right level
- It has no boundary checks for subleafs
- It prevents updating the die_id with a crude workaround instead of
checking for leaf 0xb which does not provide die information.
- It's broken vs. the number of dies evaluation as it uses:
num_processors[DIE_LEVEL] / num_processors[CORE_LEVEL]
which "works" only correctly if there is none of the intermediate
topology levels (MODULE/TILE) enumerated.
There is zero value in trying to "fix" that code as the only proper fix is
to rewrite it from scratch.
Implement a sane parser with proper code documentation, which will be used
for the consolidated topology evaluation in the next step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153624.830571770@linutronix.de
In preparation of a complete replacement for the topology leaf 0xb/0x1f
evaluation, move __max_die_per_package into the common code.
Will be removed once everything is converted over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153624.768188958@linutronix.de
Centaur and Zhaoxin CPUs use only the legacy SMP detection. Remove the
invocations from their 32bit path and exclude them from the 64-bit call
path.
No functional change intended.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153624.706794189@linutronix.de
The legacy topology detection via CPUID leaf 4, which provides the number
of cores in the package and CPUID leaf 1 which provides the number of
logical CPUs in case that FEATURE_HT is enabled and the CMP_LEGACY feature
is not set, is shared for Intel, Centaur and Zhaoxin CPUs.
Lift the code from common.c without the early detection hack and provide it
as common fallback mechanism.
Will be utilized in later changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153624.644448852@linutronix.de
Topology evaluation is a complete disaster and impenetrable mess. It's
scattered all over the place with some vendor implementations doing early
evaluation and some not. The most horrific part is the permanent
overwriting of smt_max_siblings and __max_die_per_package, instead of
establishing them once on the boot CPU and validating the result on the
APs.
The goals are:
- One topology evaluation entry point
- Proper sharing of pointlessly duplicated code
- Proper structuring of the evaluation logic and preferences.
- Evaluating important system wide information only once on the boot CPU
- Making the 0xb/0x1f leaf parsing less convoluted and actually fixing
the short comings of leaf 0x1f evaluation.
Start to consolidate the topology evaluation code by providing the entry
points for the early boot CPU evaluation and for the final parsing on the
boot CPU and the APs.
Move the trivial pieces into that new code:
- The initialization of cpuinfo_x86::topo
- The evaluation of CPUID leaf 1, which presets topo::initial_apicid
- topo_apicid is set to topo::initial_apicid when invoked from early
boot. When invoked for the final evaluation on the boot CPU it reads
the actual APIC ID, which makes apic_get_initial_apicid() obsolete
once everything is converted over.
Provide a temporary helper function topo_converted() which shields off the
not yet converted CPU vendors from invoking code which would break them.
This shielding covers all vendor CPUs which support SMP, but not the
historical pure UP ones as they only need the topology info init and
eventually the initial APIC initialization.
Provide two new members in cpuinfo_x86::topo to store the maximum number of
SMT siblings and the number of dies per package and add them to the debugfs
readout. These two members will be used to populate this information on the
boot CPU and to validate the APs against it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240212153624.581436579@linutronix.de
Make sure the default return thunk is not used after all return
instructions have been patched by the alternatives because the default
return thunk is insufficient when it comes to mitigating Retbleed or
SRSO.
Fix based on an earlier version by David Kaplan <david.kaplan@amd.com>.
[ bp: Fix the compilation error of warn_thunk_thunk being an invisible
symbol, hoist thunk macro into calling.h ]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Co-developed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231010171020.462211-4-david.kaplan@amd.com
Link: https://lore.kernel.org/r/20240104132446.GEZZaxnrIgIyat0pqf@fat_crate.local
Let cpu_init_exception_handling() call cpu_init_fred_exceptions() to
initialize FRED. However if FRED is unavailable or disabled, it falls
back to set up TSS IST and initialize IDT.
Co-developed-by: Xin Li <xin3.li@intel.com>
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-36-xin3.li@intel.com
Because FRED uses the ring 3 FRED entrypoint for SYSCALL and SYSENTER and
ERETU is the only legit instruction to return to ring 3, there is NO need
to setup SYSCALL and SYSENTER MSRs for FRED, except the IA32_STAR MSR.
Split IDT syscall setup code into idt_syscall_init() to make it easy to
skip syscall setup code when FRED is enabled.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-34-xin3.li@intel.com
Add sysvec_install() to install a system interrupt handler into the IDT
or the FRED system interrupt handler table.
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-28-xin3.li@intel.com
Like #DB, when occurred on different ring level, i.e., from user or kernel
context, #MCE needs to be handled on different stack: User #MCE on current
task stack, while kernel #MCE on a dedicated stack.
This is exactly how FRED event delivery invokes an exception handler: ring
3 event on level 0 stack, i.e., current task stack; ring 0 event on the
the FRED machine check entry stub doesn't do stack switch.
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-26-xin3.li@intel.com
Add X86_CR4_FRED macro for the FRED bit in %cr4. This bit must not be
changed after initialization, so add it to the pinned CR4 bits.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-12-xin3.li@intel.com
The memory integrity guarantees of SEV-SNP are enforced through a new
structure called the Reverse Map Table (RMP). The RMP is a single data
structure shared across the system that contains one entry for every 4K
page of DRAM that may be used by SEV-SNP VMs. The APM Volume 2 section
on Secure Nested Paging (SEV-SNP) details a number of steps needed to
detect/enable SEV-SNP and RMP table support on the host:
- Detect SEV-SNP support based on CPUID bit
- Initialize the RMP table memory reported by the RMP base/end MSR
registers and configure IOMMU to be compatible with RMP access
restrictions
- Set the MtrrFixDramModEn bit in SYSCFG MSR
- Set the SecureNestedPagingEn and VMPLEn bits in the SYSCFG MSR
- Configure IOMMU
RMP table entry format is non-architectural and it can vary by
processor. It is defined by the PPR document for each respective CPU
family. Restrict SNP support to CPU models/families which are compatible
with the current RMP table entry format to guard against any undefined
behavior when running on other system types. Future models/support will
handle this through an architectural mechanism to allow for broader
compatibility.
SNP host code depends on CONFIG_KVM_AMD_SEV config flag which may be
enabled even when CONFIG_AMD_MEM_ENCRYPT isn't set, so update the
SNP-specific IOMMU helpers used here to rely on CONFIG_KVM_AMD_SEV
instead of CONFIG_AMD_MEM_ENCRYPT.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Co-developed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Co-developed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Link: https://lore.kernel.org/r/20240126041126.1927228-5-michael.roth@amd.com
Without SEV-SNP, Automatic IBRS protects only the kernel. But when
SEV-SNP is enabled, the Automatic IBRS protection umbrella widens to all
host-side code, including userspace. This protection comes at a cost:
reduced userspace indirect branch performance.
To avoid this performance loss, don't use Automatic IBRS on SEV-SNP
hosts and all back to retpolines instead.
[ mdr: squash in changes from review discussion. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lore.kernel.org/r/20240126041126.1927228-3-michael.roth@amd.com
Add CPU feature detection for Secure Encrypted Virtualization with
Secure Nested Paging. This feature adds a strong memory integrity
protection to help prevent malicious hypervisor-based attacks like
data replay, memory re-mapping, and more.
Since enabling the SNP CPU feature imposes a number of additional
requirements on host initialization and handling legacy firmware APIs
for SEV/SEV-ES guests, only introduce the CPU feature bit so that the
relevant handling can be added, but leave it disabled via a
disabled-features mask.
Once all the necessary changes needed to maintain legacy SEV/SEV-ES
support are introduced in subsequent patches, the SNP feature bit will
be unmasked/enabled.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Jarkko Sakkinen <jarkko@profian.com>
Signed-off-by: Ashish Kalra <Ashish.Kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240126041126.1927228-2-michael.roth@amd.com
Any FRED enabled CPU will always have the following features as its
baseline:
1) LKGS, load attributes of the GS segment but the base address into
the IA32_KERNEL_GS_BASE MSR instead of the GS segment’s descriptor
cache.
2) WRMSRNS, non-serializing WRMSR for faster MSR writes.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-7-xin3.li@intel.com
The kernel test robot reported the following warning after commit
54e35eb861 ("x86/resctrl: Read supported bandwidth sources from CPUID").
even though the issue is present even in the original commit
92bd5a1390 ("x86/resctrl: Add interface to write mbm_total_bytes_config")
which added this function. The reported warning is:
$ make C=1 CHECK=scripts/coccicheck arch/x86/kernel/cpu/resctrl/rdtgroup.o
...
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1621:5-8: Unneeded variable: "ret". Return "0" on line 1655
Remove the local variable 'ret'.
[ bp: Massage commit message, make mbm_config_write_domain() void. ]
Fixes: 92bd5a1390 ("x86/resctrl: Add interface to write mbm_total_bytes_config")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202401241810.jbd8Ipa1-lkp@intel.com/
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/202401241810.jbd8Ipa1-lkp@intel.com
The mba_MBps feedback loop increases throttling when a group is using
more bandwidth than the target set by the user in the schemata file, and
decreases throttling when below target.
To avoid possibly stepping throttling up and down on every poll a flag
"delta_comp" is set whenever throttling is changed to indicate that the
actual change in bandwidth should be recorded on the next poll in
"delta_bw". Throttling is only reduced if the current bandwidth plus
delta_bw is below the user target.
This algorithm works well if the workload has steady bandwidth needs.
But it can go badly wrong if the workload moves to a different phase
just as the throttling level changed. E.g. if the workload becomes
essentially idle right as throttling level is increased, the value
calculated for delta_bw will be more or less the old bandwidth level.
If the workload then resumes, Linux may never reduce throttling because
current bandwidth plus delta_bw is above the target set by the user.
Implement a simpler heuristic by assuming that in the worst case the
currently measured bandwidth is being controlled by the current level of
throttling. Compute how much it may increase if throttling is relaxed to
the next higher level. If that is still below the user target, then it
is ok to reduce the amount of throttling.
Fixes: ba0f26d852 ("x86/intel_rdt/mba_sc: Prepare for feedback loop")
Reported-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Xiaochen Shen <xiaochen.shen@intel.com>
Link: https://lore.kernel.org/r/20240122180807.70518-1-tony.luck@intel.com
If the BMEC (Bandwidth Monitoring Event Configuration) feature is
supported, the bandwidth events can be configured. The maximum supported
bandwidth bitmask can be read from CPUID:
CPUID_Fn80000020_ECX_x03 [Platform QoS Monitoring Bandwidth Event Configuration]
Bits Description
31:7 Reserved
6:0 Identifies the bandwidth sources that can be tracked.
While at it, move the mask checking to mon_config_write() before
iterating over all the domains. Also, print the valid bitmask when the
user tries to configure invalid event configuration value.
The CPUID details are documented in the Processor Programming Reference
(PPR) Vol 1.1 for AMD Family 19h Model 11h B1 - 55901 Rev 0.25 in the
Link tag.
Fixes: dc2a3e8579 ("x86/resctrl: Add interface to read mbm_total_bytes_config")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/669896fa512c7451319fa5ca2fdb6f7e015b5635.1705359148.git.babu.moger@amd.com
The QOS Memory Bandwidth Enforcement Limit is reported by
CPUID_Fn80000020_EAX_x01 and CPUID_Fn80000020_EAX_x02:
Bits Description
31:0 BW_LEN: Size of the QOS Memory Bandwidth Enforcement Limit.
Newer processors can support higher bandwidth limit than the current
hard-coded value. Remove latter and detect using CPUID instead. Also,
update the register variables eax and edx to match the AMD CPUID
definition.
The CPUID details are documented in the Processor Programming Reference
(PPR) Vol 1.1 for AMD Family 19h Model 11h B1 - 55901 Rev 0.25 in the
Link tag below.
Fixes: 4d05bf71f1 ("x86/resctrl: Introduce AMD QOS feature")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/c26a8ca79d399ed076cf8bf2e9fbc58048808289.1705359148.git.babu.moger@amd.com
In a "W=1" build gcc throws a warning:
arch/x86/kernel/cpu/resctrl/core.c: In function ‘cache_alloc_hsw_probe’:
arch/x86/kernel/cpu/resctrl/core.c:139:16: warning: variable ‘h’ set but not used
Switch from wrmsr_safe() to wrmsrl_safe(), and from rdmsr() to rdmsrl()
using a single u64 argument for the MSR value instead of the pair of u32
for the high and low halves.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/ZULCd/TGJL9Dmncf@agluck-desk3
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmWfCRQACgkQaDWVMHDJ
krDUqQ//VCvkpf0mAbYDJa1oTXFW8O5cVTusBtPi8k7cFbtjQpjno/9AqKol+sK8
AKg+y5iHHl7QJmDmEcpS+O9OBbmFOpvDzm3QZhk8RkWS5pe0B108dnINYtS0eP9R
MkzZwfrI2yC6NX4hvHGdD8WGHjrt+oxY0bojehX87JZsyRU+xqc/g1OO7a5bUPQe
3Ip0kKiCeqFv0y+Q1pFMEd9RdZ8XxqzUHCJT3hfgZ6FajJ2eVy6jNrPOm6LozycB
eOtYYNapSgw3k/WhJCOYWHX7kePXibLxBRONLpi6P3U6pMVk4n8wrgl7qPtdW1Qx
nR2UHX5P6eFkxNCuU1BzvmPBROe37C51MFVw29eRnigvuX3j/vfCH1+17xQOVKVv
5JyxYA0rJWqoOz6mX7YaNJHlmrxHzeKXudICyOFuu1j5c8CuGjh8NQsOSCq16XfZ
hPzfYDUS8I7/kHYQPJlnB+kF9pmbyjTM70h74I8D6ZWvXESHJZt+TYPyWfkBXP/P
L9Pwx1onAyoBApGxCWuvgGTLonzNredgYG4ABbqhUqxqncJS9M7Y/yJa+f+3SOkR
T6LxoByuDVld5cIfbOzRwIaRezZDe/NL7rkHm/DWo98OaV3zILsr20Hx1lPZ1Vce
ryZ9lCdZGGxm2jmpzr/VymPQz/E+ezahRHE1+F3su8jpCU41txg=
=1EJI
-----END PGP SIGNATURE-----
Merge tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 TDX updates from Dave Hansen:
"This contains the initial support for host-side TDX support so that
KVM can run TDX-protected guests. This does not include the actual
KVM-side support which will come from the KVM folks. The TDX host
interactions with kexec also needs to be ironed out before this is
ready for prime time, so this code is currently Kconfig'd off when
kexec is on.
The majority of the code here is the kernel telling the TDX module
which memory to protect and handing some additional memory over to it
to use to store TDX module metadata. That sounds pretty simple, but
the TDX architecture is rather flexible and it takes quite a bit of
back-and-forth to say, "just protect all memory, please."
There is also some code tacked on near the end of the series to handle
a hardware erratum. The erratum can make software bugs such as a
kernel write to TDX-protected memory cause a machine check and
masquerade as a real hardware failure. The erratum handling watches
out for these and tries to provide nicer user errors"
* tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/virt/tdx: Make TDX host depend on X86_MCE
x86/virt/tdx: Disable TDX host support when kexec is enabled
Documentation/x86: Add documentation for TDX host support
x86/mce: Differentiate real hardware #MCs from TDX erratum ones
x86/cpu: Detect TDX partial write machine check erratum
x86/virt/tdx: Handle TDX interaction with sleep and hibernation
x86/virt/tdx: Initialize all TDMRs
x86/virt/tdx: Configure global KeyID on all packages
x86/virt/tdx: Configure TDX module with the TDMRs and global KeyID
x86/virt/tdx: Designate reserved areas for all TDMRs
x86/virt/tdx: Allocate and set up PAMTs for TDMRs
x86/virt/tdx: Fill out TDMRs to cover all TDX memory regions
x86/virt/tdx: Add placeholder to construct TDMRs to cover all TDX memory regions
x86/virt/tdx: Get module global metadata for module initialization
x86/virt/tdx: Use all system memory when initializing TDX module as TDX memory
x86/virt/tdx: Add skeleton to enable TDX on demand
x86/virt/tdx: Add SEAMCALL error printing for module initialization
x86/virt/tdx: Handle SEAMCALL no entropy error in common code
x86/virt/tdx: Make INTEL_TDX_HOST depend on X86_X2APIC
x86/virt/tdx: Define TDX supported page sizes as macros
...
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options.
[ mingo: Converted a few more uses in comments/messages as well. ]
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ariel Miculas <amiculas@cisco.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
So the CPU mitigations Kconfig entries - there's 10 meanwhile - are named
in a historically idiosyncratic and hence rather inconsistent fashion
and have become hard to relate with each other over the years:
https://lore.kernel.org/lkml/20231011044252.42bplzjsam3qsasz@treble/
When they were introduced we never expected that we'd eventually have
about a dozen of them, and that more organization would be useful,
especially for Linux distributions that want to enable them in an
informed fashion, and want to make sure all mitigations are configured
as expected.
For example, the current CONFIG_SPECULATION_MITIGATIONS namespace is only
halfway populated, where some mitigations have entries in Kconfig, and
they could be modified, while others mitigations do not have Kconfig entries,
and can not be controlled at build time.
Fine-grained control over these Kconfig entries can help in a number of ways:
1) Users can choose and pick only mitigations that are important for
their workloads.
2) Users and developers can choose to disable mitigations that mangle
the assembly code generation, making it hard to read.
3) Separate Kconfigs for just source code readability,
so that we see *which* butt-ugly piece of crap code is for what
reason...
In most cases, if a mitigation is disabled at compilation time, it
can still be enabled at runtime using kernel command line arguments.
This is the first patch of an initial series that renames various
mitigation related Kconfig options, unifying them under a single
CONFIG_MITIGATION_* namespace:
CONFIG_GDS_FORCE_MITIGATION => CONFIG_MITIGATION_GDS_FORCE
CONFIG_CPU_IBPB_ENTRY => CONFIG_MITIGATION_IBPB_ENTRY
CONFIG_CALL_DEPTH_TRACKING => CONFIG_MITIGATION_CALL_DEPTH_TRACKING
CONFIG_PAGE_TABLE_ISOLATION => CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
CONFIG_RETPOLINE => CONFIG_MITIGATION_RETPOLINE
CONFIG_SLS => CONFIG_MITIGATION_SLS
CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY
CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY
CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO
CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK
Implement step 1/10 of the namespace unification of CPU mitigations related
Kconfig options and rename CONFIG_GDS_FORCE_MITIGATION to
CONFIG_MITIGATION_GDS_FORCE.
[ mingo: Rewrote changelog for clarity. ]
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231121160740.1249350-2-leitao@debian.org
- A micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWb2i8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iFIQ//RjqKWmEBfv0UVCNgtRgkUKOvYVkfhC1R
FykHWbSE+/oDODS7B+gbWqzl9Fq2Oxx9re4KZuMfnojE96KZ6H1flQn7z3UVRUrf
pfMx13E+uyf7qbVZktqH38lUS4s/AHdX2PKCiXlU/0hIkiBdjbAl3ylyqMv7ytIL
Fi2N9iYJN+eLlMkc3A5IK83xNiU8rb0gO6Uywn3nUbqadY/YX2gDpND5kfzRIneR
lTKy4rX3+E65qYB2Ly1wDr7e0Q0rgaTzPctx6twFrxQXK+MsHiartJhM5juND/tU
DEjSW9ISOHlitKEJI/zbdrvJlr5AKDNy2zHYmQQuqY6+YHRamCKqwIjLIPkKj52g
lAbosNwvp/o8W3zUHgUfVZR5hVxN863zV2qa/ehoQ3b/9kNjQC8actILjYEgIVu9
av1sd+nETbjCUABIF9H9uAoRbgc+wQs2nupJZrjvginFz8+WVhgaBdJDMYCNAmjc
fNMjGtRS7YXiIMj09ZAXFThVW302FdbTgggDh/qlQlDOXFu5HRbyuWR+USr4/jkP
qs2G6m/BHDs9HxDRo/no+ccSrUBV5phfhZbO7qwjTf2NJJvPHW+cxGpT00zU2v8A
lgfVI7SDkxwbyi1gacJ054GqEhsWuEdi40ikqxjhL8Oq4xwwsey/PiaIxjkDQx92
Gj3XUSDnGEs=
=kUav
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
and a micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
* tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arch/x86: Fix typos
x86/head_64: Use TESTB instead of TESTL in secondary_startup_64_no_verify()
x86/docs: Remove reference to syscall trampoline in PTI
x86/Kconfig: Remove obsolete config X86_32_SMP
x86/io: Remove the unused 'bw' parameter from the BUILDIO() macro
x86/mtrr: Document missing function parameters in kernel-doc
x86/setup: Make relocated_ramdisk a local variable of relocate_initrd()
- Replace magic numbers in GDT descriptor definitions & handling:
- Introduce symbolic names via macros for descriptor types/fields/flags,
and then use these symbolic names.
- Clean up definitions a bit, such as GDT_ENTRY_INIT()
- Fix/clean up details that became visibly inconsistent after the
symbol-based code was introduced:
- Unify accessed flag handling
- Set the D/B size flag consistently & according to the HW specification
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWb1hQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j7/xAAk2L36n4ZpWqm4oWxMyRDTd713qT+Jzg5
txVr7i8el5RZ8D9WQejzOWemJ/XgirkWuRSFfY+UzZZ+7lmioXWDFLz6PFpyMOwM
OG2yyAAZIQzFhe1LxhurN5G7F+q9Nl/CcDnRWv+FUKs829GOGlaqirKfKwgIFzgw
GUT0eT5gPfIfEFnzMUrix9+KNIZU6s6Lgg5tVpavNw6bKEimg8Mtn4J45voFbg98
l/PU0RaC28vePTMdoBLv/ZZUHS9K/UdGUq600guzk/Zh2plqxGtqjXtaM5/8giPO
JbgQCTP0LaCC0oZf0SAbUW7+TiKD03CP6QzleYyLdhTjLz1CCOswgz0upPjfa/5j
nhgsMCk/CEhr6nMwhJiRNhOrFFFJWX00bpcQ2tyyVO156Q+CfhJxuk1XafeQ5MSs
K4l97IVc/vPQSEZy5Nh6GdGmWljYxP3Ku4eHRkyVGVYf8YyaD2l6CimaRcdPNqqL
w9GLwczLfEzkomfdxsyppwu364O91Lpv6gi6AY4Tj7Hgo1ZMm9ucUO3AsTUz5EJJ
aiqX6o7puIJJkU2O3hKviTzNwTojjjicD/Az66re3lHZBND+luP7LjVY2wIomH5i
bFPVdSCDmCdTrsTkO3f87FHbCVrbNllKLGChvJ66vyC2nJeIM8UHJ/MxYJsGRhqk
87vU1DWYPrQ=
=Y0pg
-----END PGP SIGNATURE-----
Merge tag 'x86-asm-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar:
"Replace magic numbers in GDT descriptor definitions & handling:
- Introduce symbolic names via macros for descriptor
types/fields/flags, and then use these symbolic names.
- Clean up definitions a bit, such as GDT_ENTRY_INIT()
- Fix/clean up details that became visibly inconsistent after the
symbol-based code was introduced:
- Unify accessed flag handling
- Set the D/B size flag consistently & according to the HW
specification"
* tag 'x86-asm-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm: Add DB flag to 32-bit percpu GDT entry
x86/asm: Always set A (accessed) flag in GDT descriptors
x86/asm: Replace magic numbers in GDT descriptors, script-generated change
x86/asm: Replace magic numbers in GDT descriptors, preparations
x86/asm: Provide new infrastructure for GDT descriptors
solution which allows for more timely detection and reporting of
errors
- Start a documentation section which will hold down relevant
RAS features description and how they should be used
- Add new AMD error bank types
- Slim down and remove error type descriptions from the kernel side of
error decoding to rasdaemon which can be used from now on to decode
hw errors on AMD
- Mark pages containing uncorrectable errors as poison so that kdump can
avoid them and thus not cause another panic
- The usual cleanups and fixlets
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmWamqkACgkQEsHwGGHe
VUrkMw/+Jv//z5pKFMXF2GlI/Xefh8pXDB57D22B1T6zNJm+Qq1b58U44WpxoU24
b9gPtkgxjzA3JwoQG+cBDkCSs1xLV3McUS0UoEqQ28QvFN+mzxYKu4ura3F+rcZG
PiCT4gPEYgZirYl0PKYeypnBPq3Krx/RYeTUE0vQ9HtmeBCmH71X1egyB4TqFbFU
7ui9aITLAnLBwgO6On1qviGPvJoEDGAsQ656XoY0Js+8dUeYwAI4qpaaUwtXUo1D
ARGzss55/qTRo2G+IkDDhbJ8e8G+eX22oa0n1tdhNFBqfYAN6gM+t4NiFlNnn+18
nlbaSZfDygciE8DVjEnkVIrRJtkq7uj0dk7LvnqEI2y7J0LybHojC3hDKrqYLK3o
PRgfPwmykOCwZQldGFYbShvmY8KoEQc/V9OWi/+A/M/uTJsForQmHn78Z2YkO9kG
K6VaLuYszSCqz47wf56pHBwtMrivEPmkcxaz9ErkK90vM/NmV7kfLl+R8IK8apNJ
cJkuLBjfgGpBP+AlpXGl9OE0lRJK5MCbEBlbGBBl58REBaB4DNkM4QHItrUSRR82
ADLcfLAIRWT8UwwXieDbWF1jb+4L+IJnXCKGCCQ7+eYxcFI9V9TABD2B8io+Dzvz
evZwLCPKmjuPc2CMcDu/eUdBKLNTn3QAoN/NLcVmzJ23lguQW/M=
=o3UM
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RAS updates from Borislav Petkov:
- Convert the hw error storm handling into a finer-grained, per-bank
solution which allows for more timely detection and reporting of
errors
- Start a documentation section which will hold down relevant RAS
features description and how they should be used
- Add new AMD error bank types
- Slim down and remove error type descriptions from the kernel side of
error decoding to rasdaemon which can be used from now on to decode
hw errors on AMD
- Mark pages containing uncorrectable errors as poison so that kdump
can avoid them and thus not cause another panic
- The usual cleanups and fixlets
* tag 'ras_core_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Handle Intel threshold interrupt storms
x86/mce: Add per-bank CMCI storm mitigation
x86/mce: Remove old CMCI storm mitigation code
Documentation: Begin a RAS section
x86/MCE/AMD: Add new MA_LLC, USR_DP, and USR_CP bank types
EDAC/mce_amd: Remove SMCA Extended Error code descriptions
x86/mce/amd, EDAC/mce_amd: Move long names to decoder module
x86/mce/inject: Clear test status value
x86/mce: Remove redundant check from mce_device_create()
x86/mce: Mark fatal MCE's page as poison to avoid panic in the kdump kernel
and use them everywhere instead of ad-hoc family/model checks. Drop an
ancient AMD errata checking facility as a result
- Fix a fragile initcall ordering in intel_epb
- Do not issue the MFENCE+LFENCE barrier for the TSC deadline and X2APIC
MSRs on AMD as it is not needed there
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmWalaEACgkQEsHwGGHe
VUrDYg/+LjqjJv3OcVZZkx9WVds0kmBCajrf9JxRYgiSTIpiL/usH0QOms8FjHQ6
tYcukj+RJDk2nP5ho3Vs1WNA0mvU0nxC+99u0Ph4zugSMSl0XGOA+YxxTBPXmDGB
1IxH9IloMFPhwDoQ4/ear0IvjIrfE4ESV2Dafe45WzVSdG7/0ijurisaH1kPYraP
wzuNn142Tk0eicaam30sdThXZraO9Paz5MOYbpYEAU4lxNtdH85sQa+Xk0tqJcjD
IwEcQJLE6n3r8t/lNMIlhAsmOVGrD5WltDH9HvEmKT4mzTumSc9DLu3YHHRWyx2K
TMpRYHlVuvGJkJV3CYXi8fhTsV6uMsHEe1+xZ/Rf0iQzOG25v+zen8WK4REWOr/o
VmprG3j7LkEFeeH3CqSOtVSbYmxFILQb6pAbzSlI907b5C6PaEYuudjVXuX01urN
IG3krWHGMJ3AWKDV2Z3hW1TYtbLJyqKPNhqcBJiOuWyCe8cQXfKQBTpP5HuAEZEd
UXc4QpStMvuPqxyQhlPSTAtY7L/UVhBH8oHoXPYiBmcCo7VtJYW6HH9z1ISUc1av
FgKdkpx6vaJiXlD/wI/B5T1oViWQ8udhHpit99rhKl623e7WC2rdguAOVDLn/YIe
cZB+R05yknBWOavH0kcuz9R9xYKMSBcEsRnBKmeOg9R+tTK/7BM=
=afTN
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu feature updates from Borislav Petkov:
- Add synthetic X86_FEATURE flags for the different AMD Zen generations
and use them everywhere instead of ad-hoc family/model checks. Drop
an ancient AMD errata checking facility as a result
- Fix a fragile initcall ordering in intel_epb
- Do not issue the MFENCE+LFENCE barrier for the TSC deadline and
X2APIC MSRs on AMD as it is not needed there
* tag 'x86_cpu_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Add X86_FEATURE_ZEN1
x86/CPU/AMD: Drop now unused CPU erratum checking function
x86/CPU/AMD: Get rid of amd_erratum_1485[]
x86/CPU/AMD: Get rid of amd_erratum_400[]
x86/CPU/AMD: Get rid of amd_erratum_383[]
x86/CPU/AMD: Get rid of amd_erratum_1054[]
x86/CPU/AMD: Move the DIV0 bug detection to the Zen1 init function
x86/CPU/AMD: Move Zenbleed check to the Zen2 init function
x86/CPU/AMD: Rename init_amd_zn() to init_amd_zen_common()
x86/CPU/AMD: Call the spectral chicken in the Zen2 init function
x86/CPU/AMD: Move erratum 1076 fix into the Zen1 init function
x86/CPU/AMD: Move the Zen3 BTC_NO detection to the Zen3 init function
x86/CPU/AMD: Carve out the erratum 1386 fix
x86/CPU/AMD: Add ZenX generations flags
x86/cpu/intel_epb: Don't rely on link order
x86/barrier: Do not serialize MSR accesses on AMD
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmWZaMsACgkQEsHwGGHe
VUpiig//cDmMbajaeInAVVEilmJnw+YYxKCpvgOGdUnL+dAxBJ2SehVeEGZLiMRs
79o5X2In+tdTjXRH1oTxWJWSMx9MW4aGbDbgZDAJoPigdZYkFoWE2p81t5n11LNt
xjMNcnGMbns1aNCdBqGlg0baQ/xJavdFPndziq7kUMS/f3QLRm8Jp7MA+zUkDgCf
DPuJcyFVYq7ffmc9VuVEsrh6yNREOj88Ek1tatDobbOd6LA/a3N/aOjosEwCS9W1
qBVcMSaNt34ySzHV4sd/Uw8Dj3LXmxe2a51O+nsy+AjjkmHPYU9F0jSK4UqZgI3X
+NPl9o8eNz8ACnK9oF/OLogoK3R9ED8vsok0r8OdvziSpi0XXaAJFGJCIYYcwJWb
5aJTVtwKCoOhdV80NIcwjY/QJLTji4LKK46w+HaHy8wNQhAWY3Kt3P4XAn7ERTh6
vBjeeFQtJLmE+KKYcNC90VGf/efztN9AdtYxwdb8JkkFZwOyc7M2MPV74YvQI0iz
O0FCf2PWbQ0hKXwsVvfwn5bZoNXyIcvRc+rGpYi0NaGaiUcq53JY00NateOyhG1Z
ebN30AWeivqW4Mwz3izKddmeOwniWpCbbJHR8E3KGZH/Uy6S9F6UQY14y0NhucKq
RWTwFs5+YWB6rsmJRtUPgkX18hRVl5AjURcBXK7WbR0cONntXHs=
=0Ewr
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode updates from Borislav Petkov:
- Correct minor issues after the microcode revision reporting
sanitization
* tag 'x86_microcode_for_v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/intel: Set new revision only after a successful update
x86/microcode/intel: Remove redundant microcode late updated message
We have no known use for having the CPU track whether GDT descriptors
have been accessed or not.
Simplify the code by adding the flag to the common flags and removing
it everywhere else.
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231219151200.2878271-5-vegard.nossum@oracle.com
Actually replace the numeric values by the new symbolic values.
I used this to find all the existing users of the GDT_ENTRY*() macros:
$ git grep -P 'GDT_ENTRY(_INIT)?\('
Some of the lines will exceed 80 characters, but some of them will be
shorter again in the next couple of patches.
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231219151200.2878271-4-vegard.nossum@oracle.com
We'd like to replace all the magic numbers in various GDT descriptors
with new, semantically meaningful, symbolic values.
In order to be able to verify that the change doesn't cause any actual
changes to the compiled binary code, I've split the change into two
patches:
- Part 1 (this commit): everything _but_ actually replacing the numbers
- Part 2 (the following commit): _only_ replacing the numbers
The reason we need this split for verification is that including new
headers causes some spurious changes to the object files, mostly line
number changes in the debug info but occasionally other subtle codegen
changes.
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231219151200.2878271-3-vegard.nossum@oracle.com
Add an Intel specific hook into machine_check_poll() to keep track of
per-CPU, per-bank corrected error logs (with a stub for the
CONFIG_MCE_INTEL=n case).
When a storm is observed the rate of interrupts is reduced by setting
a large threshold value for this bank in IA32_MCi_CTL2. This bank is
added to the bitmap of banks for this CPU to poll. The polling rate is
increased to once per second.
When a storm ends reset the threshold in IA32_MCi_CTL2 back to 1, remove
the bank from the bitmap for polling, and change the polling rate back
to the default.
If a CPU with banks in storm mode is taken offline, the new CPU that
inherits ownership of those banks takes over management of storm(s) in
the inherited bank(s).
The cmci_discover() function was already very large. These changes
pushed it well over the top. Refactor with three helper functions to
bring it back under control.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231115195450.12963-4-tony.luck@intel.com
This is the core functionality to track CMCI storms at the machine check
bank granularity. Subsequent patches will add the vendor specific hooks
to supply input to the storm detection and take actions on the start/end
of a storm.
machine_check_poll() is called both by the CMCI interrupt code, and for
periodic polls from a timer. Add a hook in this routine to maintain
a bitmap history for each bank showing whether the bank logged an
corrected error or not each time it is polled.
In normal operation the interval between polls of these banks determines
how far to shift the history. The 64 bit width corresponds to about one
second.
When a storm is observed a CPU vendor specific action is taken to reduce
or stop CMCI from the bank that is the source of the storm. The bank is
added to the bitmap of banks for this CPU to poll. The polling rate is
increased to once per second. During a storm each bit in the history
indicates the status of the bank each time it is polled. Thus the
history covers just over a minute.
Declare a storm for that bank if the number of corrected interrupts seen
in that history is above some threshold (defined as 5 in this series,
could be tuned later if there is data to suggest a better value).
A storm on a bank ends if enough consecutive polls of the bank show no
corrected errors (defined as 30, may also change). That calls the CPU
vendor specific function to revert to normal operational mode, and
changes the polling rate back to the default.
[ bp: Massage. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231115195450.12963-3-tony.luck@intel.com
When a "storm" of corrected machine check interrupts (CMCI) is detected
this code mitigates by disabling CMCI interrupt signalling from all of
the banks owned by the CPU that saw the storm.
There are problems with this approach:
1) It is very coarse grained. In all likelihood only one of the banks
was generating the interrupts, but CMCI is disabled for all. This
means Linux may delay seeing and processing errors logged from other
banks.
2) Although CMCI stands for Corrected Machine Check Interrupt, it is
also used to signal when an uncorrected error is logged. This is
a problem because these errors should be handled in a timely manner.
Delete all this code in preparation for a finer grained solution.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20231115195450.12963-2-tony.luck@intel.com
The first few generations of TDX hardware have an erratum. Triggering
it in Linux requires some kind of kernel bug involving relatively exotic
memory writes to TDX private memory and will manifest via
spurious-looking machine checks when reading the affected memory.
Make an effort to detect these TDX-induced machine checks and spit out
a new blurb to dmesg so folks do not think their hardware is failing.
== Background ==
Virtually all kernel memory accesses operations happen in full
cachelines. In practice, writing a "byte" of memory usually reads a 64
byte cacheline of memory, modifies it, then writes the whole line back.
Those operations do not trigger this problem.
This problem is triggered by "partial" writes where a write transaction
of less than cacheline lands at the memory controller. The CPU does
these via non-temporal write instructions (like MOVNTI), or through
UC/WC memory mappings. The issue can also be triggered away from the
CPU by devices doing partial writes via DMA.
== Problem ==
A partial write to a TDX private memory cacheline will silently "poison"
the line. Subsequent reads will consume the poison and generate a
machine check. According to the TDX hardware spec, neither of these
things should have happened.
To add insult to injury, the Linux machine code will present these as a
literal "Hardware error" when they were, in fact, a software-triggered
issue.
== Solution ==
In the end, this issue is hard to trigger. Rather than do something
rash (and incomplete) like unmap TDX private memory from the direct map,
improve the machine check handler.
Currently, the #MC handler doesn't distinguish whether the memory is
TDX private memory or not but just dump, for instance, below message:
[...] mce: [Hardware Error]: CPU 147: Machine Check Exception: f Bank 1: bd80000000100134
[...] mce: [Hardware Error]: RIP 10:<ffffffffadb69870> {__tlb_remove_page_size+0x10/0xa0}
...
[...] mce: [Hardware Error]: Run the above through 'mcelog --ascii'
[...] mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel
[...] Kernel panic - not syncing: Fatal local machine check
Which says "Hardware Error" and "Data load in unrecoverable area of
kernel".
Ideally, it's better for the log to say "software bug around TDX private
memory" instead of "Hardware Error". But in reality the real hardware
memory error can happen, and sadly such software-triggered #MC cannot be
distinguished from the real hardware error. Also, the error message is
used by userspace tool 'mcelog' to parse, so changing the output may
break userspace.
So keep the "Hardware Error". The "Data load in unrecoverable area of
kernel" is also helpful, so keep it too.
Instead of modifying above error log, improve the error log by printing
additional TDX related message to make the log like:
...
[...] mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel
[...] mce: [Hardware Error]: Machine Check: TDX private memory error. Possible kernel bug.
Adding this additional message requires determination of whether the
memory page is TDX private memory. There is no existing infrastructure
to do that. Add an interface to query the TDX module to fill this gap.
== Impact ==
This issue requires some kind of kernel bug to trigger.
TDX private memory should never be mapped UC/WC. A partial write
originating from these mappings would require *two* bugs, first mapping
the wrong page, then writing the wrong memory. It would also be
detectable using traditional memory corruption techniques like
DEBUG_PAGEALLOC.
MOVNTI (and friends) could cause this issue with something like a simple
buffer overrun or use-after-free on the direct map. It should also be
detectable with normal debug techniques.
The one place where this might get nasty would be if the CPU read data
then wrote back the same data. That would trigger this problem but
would not, for instance, set off mechanisms like slab redzoning because
it doesn't actually corrupt data.
With an IOMMU at least, the DMA exposure is similar to the UC/WC issue.
TDX private memory would first need to be incorrectly mapped into the
I/O space and then a later DMA to that mapping would actually cause the
poisoning event.
[ dhansen: changelog tweaks ]
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/all/20231208170740.53979-18-dave.hansen%40intel.com
Add a synthetic feature flag specifically for first generation Zen
machines. There's need to have a generic flag for all Zen generations so
make X86_FEATURE_ZEN be that flag.
Fixes: 30fa92832f ("x86/CPU/AMD: Add ZenX generations flags")
Suggested-by: Brian Gerst <brgerst@gmail.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/dc3835e3-0731-4230-bbb9-336bbe3d042b@amd.com
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious
host and certain physical attacks. A CPU-attested software module
called 'the TDX module' runs inside a new isolated memory range as a
trusted hypervisor to manage and run protected VMs.
Pre-TDX Intel hardware has support for a memory encryption architecture
called MKTME. The memory encryption hardware underpinning MKTME is also
used for Intel TDX. TDX ends up "stealing" some of the physical address
space from the MKTME architecture for crypto-protection to VMs. The
BIOS is responsible for partitioning the "KeyID" space between legacy
MKTME and TDX. The KeyIDs reserved for TDX are called 'TDX private
KeyIDs' or 'TDX KeyIDs' for short.
During machine boot, TDX microcode verifies that the BIOS programmed TDX
private KeyIDs consistently and correctly programmed across all CPU
packages. The MSRs are locked in this state after verification. This
is why MSR_IA32_MKTME_KEYID_PARTITIONING gets used for TDX enumeration:
it indicates not just that the hardware supports TDX, but that all the
boot-time security checks passed.
The TDX module is expected to be loaded by the BIOS when it enables TDX,
but the kernel needs to properly initialize it before it can be used to
create and run any TDX guests. The TDX module will be initialized by
the KVM subsystem when KVM wants to use TDX.
Detect platform TDX support by detecting TDX private KeyIDs.
The TDX module itself requires one TDX KeyID as the 'TDX global KeyID'
to protect its metadata. Each TDX guest also needs a TDX KeyID for its
own protection. Just use the first TDX KeyID as the global KeyID and
leave the rest for TDX guests. If no TDX KeyID is left for TDX guests,
disable TDX as initializing the TDX module alone is useless.
[ dhansen: add X86_FEATURE, replace helper function ]
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Link: https://lore.kernel.org/all/20231208170740.53979-1-dave.hansen%40intel.com
This was meant to be done only when early microcode got updated
successfully. Move it into the if-branch.
Also, make sure the current revision is read unconditionally and only
once.
Fixes: 080990aa33 ("x86/microcode: Rework early revisions reporting")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/ZWjVt5dNRjbcvlzR@a4bf019067fa.jf.intel.com
Commit in Fixes added an AMD-specific microcode callback. However, it
didn't check the CPU vendor the kernel runs on explicitly.
The only reason the Zenbleed check in it didn't run on other x86 vendors
hardware was pure coincidental luck:
if (!cpu_has_amd_erratum(c, amd_zenbleed))
return;
gives true on other vendors because they don't have those families and
models.
However, with the removal of the cpu_has_amd_erratum() in
05f5f73936 ("x86/CPU/AMD: Drop now unused CPU erratum checking function")
that coincidental condition is gone, leading to the zenbleed check
getting executed on other vendors too.
Add the explicit vendor check for the whole callback as it should've
been done in the first place.
Fixes: 522b1d6921 ("x86/cpu/amd: Add a Zenbleed fix")
Cc: <stable@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231201184226.16749-1-bp@alien8.de
After successful update, the late loading routine prints an update
summary similar to:
microcode: load: updated on 128 primary CPUs with 128 siblings
microcode: revision: 0x21000170 -> 0x21000190
Remove the redundant message in the Intel side of the driver.
[ bp: Massage commit message. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/ZWjYhedNfhAUmt0k@a4bf019067fa.jf.intel.com
Setting X86_BUG_AMD_E400 in init_amd() is early enough.
No functional changes.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: http://lore.kernel.org/r/20231120104152.13740-12-bp@alien8.de
Set it in init_amd_gh() unconditionally as that is the F10h init
function.
No functional changes.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: http://lore.kernel.org/r/20231120104152.13740-11-bp@alien8.de
Add X86_FEATURE flags for each Zen generation. They should be used from
now on instead of checking f/m/s.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lore.kernel.org/r/20231120104152.13740-2-bp@alien8.de
The long names of the SMCA banks are only used by the MCE decoder
module.
Move them out of the arch code and into the decoder module.
[ bp: Name the long names array "smca_long_names", drop local ptr in
decode_smca_error(), constify arrays. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231118193248.1296798-5-yazen.ghannam@amd.com
and remove the driver version announcement to avoid version
confusion when distros backport fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmVjFKgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1h/7hAAs5hL1KvrfdW0VpAW91MbX6mtIe7Emc8T
LCiBJtl9UngRdASUC9CGrcIZ5JIps0702gAq0qPVzk5zKxC22ySWsqMZybask+eF
d6E7amMtF+KX0wiCZSuC66StCKA08JfrUXgxvYHnxDjNqERYFmVr1QabGL1IN5lZ
KUrVUyvN8VOnzypOiQ98lXGWDJYwaV7t+IzMMh7mT5OUkoo09e6tFm7IF+NWg5xe
NYCcvZqyo0Ipld7HOjlGHYG+blFkDxJpfTby5UevZybXsPd00cxBzDSR9zs1sYeG
Kt6cgwDhfewfcM1QFVvNV/SDVsPp1BlVvMUa6Xa3vtsnWCit8zQqMbkYYWUaTcIh
yUJvtzh/xZQtxaQ8Z8SbI7EhUBOFJXoHWV9JoEe3gWsWA5thu+4iOCh/P8C2ON3n
6kLSgNQ4GAylH34MWoS84t2Jxv7XmNZljR/78ucRQrJ1JJIEA+r4sJ9hK9btxqf2
0n86StHuwtNXSQwEhDcacqUpFPLZ65Za1Y9AXc69CDuiwj3DvTVBMwjEOBbnGTrZ
dL9QOYG5gkklOx4o5ePj7RoLrzz/j6dj6idmu8FxZZ4q+QB9vvL2lRHusJnUEloE
yxR7WWOB/kyUZT7FriLHRuEP7yQNRSvLs6U7b8uXCHiGcAb2mN0fFi2m/BcJGS4A
hHA0t9WyNBM=
=eYQ4
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2023-11-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode fixes from Ingo Molnar:
"Fix/enhance x86 microcode version reporting: fix the bootup log spam,
and remove the driver version announcement to avoid version confusion
when distros backport fixes"
* tag 'x86-urgent-2023-11-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Rework early revisions reporting
x86/microcode: Remove the driver announcement and version
intel_epb_init() is called as a subsys_initcall() to register cpuhp
callbacks. The callbacks make use of get_cpu_device() which will return
NULL unless register_cpu() has been called. register_cpu() is called
from topology_init(), which is also a subsys_initcall().
This is fragile. Moving the register_cpu() to a different
subsys_initcall() leads to a NULL dereference during boot.
Make intel_epb_init() a late_initcall(), user-space can't provide a
policy before this point anyway.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
AMD systems generally allow MCA "simulation" where MCA registers can be
written with valid data and the full MCA handling flow can be tested by
software.
However, the platform on Scalable MCA systems, can prevent software from
writing data to the MCA registers. There is no architectural way to
determine this configuration. Therefore, the MCE injection module will
check for this behavior by writing and reading back a test status value.
This is done during module init, and the check can run on any CPU with
any valid MCA bank.
If MCA_STATUS writes are ignored by the platform, then there are no side
effects on the hardware state.
If the writes are not ignored, then the test status value will remain in
the hardware MCA_STATUS register. It is likely that the value will not
be overwritten by hardware or software, since the tested CPU and bank
are arbitrary. Therefore, the user may see a spurious, synthetic MCA
error reported whenever MCA is polled for this CPU.
Clear the test value immediately after writing it. It is very unlikely
that a valid MCA error is logged by hardware during the test. Errors
that cause an #MC won't be affected.
Fixes: 891e465a1b ("x86/mce: Check whether writes to MCA_STATUS are getting ignored")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231118193248.1296798-2-yazen.ghannam@amd.com
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmVdgqYTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXhBsCACzUGLF3vOQdrmgTMymzaaOzfLJtvNW
oQ34FwMJMOAyJ6FxM12IJPHA2j+azl9CPjQc5O6F2CBcF8hVj2mDIINQIi+4wpV5
FQv445g2KFml/+AJr/1waz1GmhHtr1rfu7B7NX6tPUtOpxKN7AHAQXWYmHnwK8BJ
5Mh2a/7Lphjin4M1FWCeBTj0JtqF1oVAW2L9jsjqogq1JV0a51DIFutROtaPSC/4
ssTLM5Rqpnw8Z1GWVYD2PObIW4A+h1LV1tNGOIoGW6mX56mPU+KmVA7tTKr8Je/i
z3Jk8bZXFyLvPW2+KNJacbldKNcfwAFpReffNz/FO3R16Stq9Ta1mcE2
=wXju
-----END PGP SIGNATURE-----
Merge tag 'hyperv-fixes-signed-20231121' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv fixes from Wei Liu:
- One fix for the KVP daemon (Ani Sinha)
- Fix for the detection of E820_TYPE_PRAM in a Gen2 VM (Saurabh Sengar)
- Micro-optimization for hv_nmi_unknown() (Uros Bizjak)
* tag 'hyperv-fixes-signed-20231121' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
x86/hyperv: Use atomic_try_cmpxchg() to micro-optimize hv_nmi_unknown()
x86/hyperv: Fix the detection of E820_TYPE_PRAM in a Gen2 VM
hv/hv_kvp_daemon: Some small fixes for handling NM keyfiles
The AMD side of the loader issues the microcode revision for each
logical thread on the system, which can become really noisy on huge
machines. And doing that doesn't make a whole lot of sense - the
microcode revision is already in /proc/cpuinfo.
So in case one is interested in the theoretical support of mixed silicon
steppings on AMD, one can check there.
What is also missing on the AMD side - something which people have
requested before - is showing the microcode revision the CPU had
*before* the early update.
So abstract that up in the main code and have the BSP on each vendor
provide those revision numbers.
Then, dump them only once on driver init.
On Intel, do not dump the patch date - it is not needed.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/CAHk-=wg=%2B8rceshMkB4VnKxmRccVLtBLPBawnewZuuqyx5U=3A@mail.gmail.com
First of all, the print is useless. The driver will either load and say
which microcode revision the machine has or issue an error.
Then, the version number is meaningless and actively confusing, as Yazen
mentioned recently: when a subset of patches are backported to a distro
kernel, one can't assume the driver version is the same as the upstream
one. And besides, the version number of the loader hasn't been used and
incremented for a long time. So drop it.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231115210212.9981-2-bp@alien8.de
mce_device_create() is called only from mce_cpu_online() which in turn
will be called iff MCA support is available. That is, at the time of
mce_device_create() call it's guaranteed that MCA support is available.
No need to duplicate this check so remove it.
[ bp: Massage commit message. ]
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231107165529.407349-1-nik.borisov@suse.com
AMD does not have the requirement for a synchronization barrier when
acccessing a certain group of MSRs. Do not incur that unnecessary
penalty there.
There will be a CPUID bit which explicitly states that a MFENCE is not
needed. Once that bit is added to the APM, this will be extended with
it.
While at it, move to processor.h to avoid include hell. Untangling that
file properly is a matter for another day.
Some notes on the performance aspect of why this is relevant, courtesy
of Kishon VijayAbraham <Kishon.VijayAbraham@amd.com>:
On a AMD Zen4 system with 96 cores, a modified ipi-bench[1] on a VM
shows x2AVIC IPI rate is 3% to 4% lower than AVIC IPI rate. The
ipi-bench is modified so that the IPIs are sent between two vCPUs in the
same CCX. This also requires to pin the vCPU to a physical core to
prevent any latencies. This simulates the use case of pinning vCPUs to
the thread of a single CCX to avoid interrupt IPI latency.
In order to avoid run-to-run variance (for both x2AVIC and AVIC), the
below configurations are done:
1) Disable Power States in BIOS (to prevent the system from going to
lower power state)
2) Run the system at fixed frequency 2500MHz (to prevent the system
from increasing the frequency when the load is more)
With the above configuration:
*) Performance measured using ipi-bench for AVIC:
Average Latency: 1124.98ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 42.6759M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
*) Performance measured using ipi-bench for x2AVIC:
Average Latency: 1172.42ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 40.9432M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
From above, x2AVIC latency is ~4% more than AVIC. However, the expectation is
x2AVIC performance to be better or equivalent to AVIC. Upon analyzing
the perf captures, it is observed significant time is spent in
weak_wrmsr_fence() invoked by x2apic_send_IPI().
With the fix to skip weak_wrmsr_fence()
*) Performance measured using ipi-bench for x2AVIC:
Average Latency: 1117.44ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 42.9608M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
Comparing the performance of x2AVIC with and without the fix, it can be seen
the performance improves by ~4%.
Performance captured using an unmodified ipi-bench using the 'mesh-ipi' option
with and without weak_wrmsr_fence() on a Zen4 system also showed significant
performance improvement without weak_wrmsr_fence(). The 'mesh-ipi' option ignores
CCX or CCD and just picks random vCPU.
Average throughput (10 iterations) with weak_wrmsr_fence(),
Cumulative throughput: 4933374 IPI/s
Average throughput (10 iterations) without weak_wrmsr_fence(),
Cumulative throughput: 6355156 IPI/s
[1] https://github.com/bytedance/kvm-utils/tree/master/microbenchmark/ipi-bench
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230622095212.20940-1-bp@alien8.de
Memory errors don't happen very often, especially fatal ones. However,
in large-scale scenarios such as data centers, that probability
increases with the amount of machines present.
When a fatal machine check happens, mce_panic() is called based on the
severity grading of that error. The page containing the error is not
marked as poison.
However, when kexec is enabled, tools like makedumpfile understand when
pages are marked as poison and do not touch them so as not to cause
a fatal machine check exception again while dumping the previous
kernel's memory.
Therefore, mark the page containing the error as poisoned so that the
kexec'ed kernel can avoid accessing the page.
[ bp: Rewrite commit message and comment. ]
Co-developed-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Zhiquan Li <zhiquan1.li@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Link: https://lore.kernel.org/r/20231014051754.3759099-1-zhiquan1.li@intel.com
Gleixner:
- Restructure the code needed for it and add a temporary initrd mapping
on 32-bit so that the loader can access the microcode blobs. This in
itself is a preparation for the next major improvement:
- Do not load microcode on 32-bit before paging has been enabled.
Handling this has caused an endless stream of headaches, issues, ugly
code and unnecessary hacks in the past. And there really wasn't any
sensible reason to do that in the first place. So switch the 32-bit
loading to happen after paging has been enabled and turn the loader
code "real purrty" again
- Drop mixed microcode steppings loading on Intel - there, a single patch
loaded on the whole system is sufficient
- Rework late loading to track which CPUs have updated microcode
successfully and which haven't, act accordingly
- Move late microcode loading on Intel in NMI context in order to
guarantee concurrent loading on all threads
- Make the late loading CPU-hotplug-safe and have the offlined threads
be woken up for the purpose of the update
- Add support for a minimum revision which determines whether late
microcode loading is safe on a machine and the microcode does not
change software visible features which the machine cannot use anyway
since feature detection has happened already. Roughly, the minimum
revision is the smallest revision number which must be loaded
currently on the system so that late updates can be allowed
- Other nice leanups, fixess, etc all over the place
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmVE0xkACgkQEsHwGGHe
VUrCuBAAhOqqwkYPiGXPWd2hvdn1zGtD5fvEdXn3Orzd+Lwc6YaQTsCxCjIO/0ws
8inpPFuOeGz4TZcplzipi3G5oatPVc7ORDuW+/BvQQQljZOsSKfhiaC29t6dvS6z
UG3sbCXKVwlJ5Kwv3Qe4eWur4Ex6GeFDZkIvBCmbaAdGPFlfu1i2uO1yBooNP1Rs
GiUkp+dP1/KREWwR/dOIsHYL2QjWIWfHQEWit/9Bj46rxE9ERx/TWt3AeKPfKriO
Wp0JKp6QY78jg6a0a2/JVmbT1BKz69Z9aPp6hl4P2MfbBYOnqijRhdezFW0NyqV2
pn6nsuiLIiXbnSOEw0+Wdnw5Q0qhICs5B5eaBfQrwgfZ8pxPHv2Ir777GvUTV01E
Dv0ZpYsHa+mHe17nlK8V3+4eajt0PetExcXAYNiIE+pCb7pLjjKkl8e+lcEvEsO0
QSL3zG5i5RWUMPYUvaFRgepWy3k/GPIoDQjRcUD3P+1T0GmnogNN10MMNhmOzfWU
pyafe4tJUOVsq0HJ7V/bxIHk2p+Q+5JLKh5xBm9janE4BpabmSQnvFWNblVfK4ig
M9ohjI/yMtgXROC4xkNXgi8wE5jfDKBghT6FjTqKWSV45vknF1mNEjvuaY+aRZ3H
MB4P3HCj+PKWJimWHRYnDshcytkgcgVcYDiim8va/4UDrw8O2ks=
=JOZu
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loading updates from Borislac Petkov:
"Major microcode loader restructuring, cleanup and improvements by
Thomas Gleixner:
- Restructure the code needed for it and add a temporary initrd
mapping on 32-bit so that the loader can access the microcode
blobs. This in itself is a preparation for the next major
improvement:
- Do not load microcode on 32-bit before paging has been enabled.
Handling this has caused an endless stream of headaches, issues,
ugly code and unnecessary hacks in the past. And there really
wasn't any sensible reason to do that in the first place. So switch
the 32-bit loading to happen after paging has been enabled and turn
the loader code "real purrty" again
- Drop mixed microcode steppings loading on Intel - there, a single
patch loaded on the whole system is sufficient
- Rework late loading to track which CPUs have updated microcode
successfully and which haven't, act accordingly
- Move late microcode loading on Intel in NMI context in order to
guarantee concurrent loading on all threads
- Make the late loading CPU-hotplug-safe and have the offlined
threads be woken up for the purpose of the update
- Add support for a minimum revision which determines whether late
microcode loading is safe on a machine and the microcode does not
change software visible features which the machine cannot use
anyway since feature detection has happened already. Roughly, the
minimum revision is the smallest revision number which must be
loaded currently on the system so that late updates can be allowed
- Other nice leanups, fixess, etc all over the place"
* tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
x86/microcode/intel: Add a minimum required revision for late loading
x86/microcode: Prepare for minimal revision check
x86/microcode: Handle "offline" CPUs correctly
x86/apic: Provide apic_force_nmi_on_cpu()
x86/microcode: Protect against instrumentation
x86/microcode: Rendezvous and load in NMI
x86/microcode: Replace the all-in-one rendevous handler
x86/microcode: Provide new control functions
x86/microcode: Add per CPU control field
x86/microcode: Add per CPU result state
x86/microcode: Sanitize __wait_for_cpus()
x86/microcode: Clarify the late load logic
x86/microcode: Handle "nosmt" correctly
x86/microcode: Clean up mc_cpu_down_prep()
x86/microcode: Get rid of the schedule work indirection
x86/microcode: Mop up early loading leftovers
x86/microcode/amd: Use cached microcode for AP load
x86/microcode/amd: Cache builtin/initrd microcode early
x86/microcode/amd: Cache builtin microcode too
x86/microcode/amd: Use correct per CPU ucode_cpu_info
...
To help make the move of sysctls out of kernel/sysctl.c not incur a size
penalty sysctl has been changed to allow us to not require the sentinel, the
final empty element on the sysctl array. Joel Granados has been doing all this
work. On the v6.6 kernel we got the major infrastructure changes required to
support this. For v6.7-rc1 we have all arch/ and drivers/ modified to remove
the sentinel. Both arch and driver changes have been on linux-next for a bit
less than a month. It is worth re-iterating the value:
- this helps reduce the overall build time size of the kernel and run time
memory consumed by the kernel by about ~64 bytes per array
- the extra 64-byte penalty is no longer inncurred now when we move sysctls
out from kernel/sysctl.c to their own files
For v6.8-rc1 expect removal of all the sentinels and also then the unneeded
check for procname == NULL.
The last 2 patches are fixes recently merged by Krister Johansen which allow
us again to use softlockup_panic early on boot. This used to work but the
alias work broke it. This is useful for folks who want to detect softlockups
super early rather than wait and spend money on cloud solutions with nothing
but an eventual hung kernel. Although this hadn't gone through linux-next it's
also a stable fix, so we might as well roll through the fixes now.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmVCqKsSHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinEgYQAIpkqRL85DBwems19Uk9A27lkctwZ6Fc
HdslQCObQTsbuKVimZFP4IL2beUfUE0cfLZCXlzp+4nRDOf6vyhyf3w19jPQtI0Q
YdqwTk9y6G5VjDsb35QK0+UBloY/kZ1H3/LW4uCwjXTuksUGmWW2Qvey35696Scv
hDMLADqKQmdpYxLUaNi9QyYbEAjYtOai2ezg3+i7hTG168t1k/Ab2BxIFrPVsCR2
FAiq05L4ugWjNskdsWBjck05JZsx9SK/qcAxpIPoUm4nGiFNHApXE0E0hs3vsnmn
WIHIbxCQw8ZlUDlmw4S+0YH3NFFzFbWfmW8k2b0f2qZTJm/rU4KiJfcJVknkAUVF
raFox6XDW0AUQ9L/NOUJ9ip5rup57GcFrMYocdJ3PPAvvmHKOb1D1O741p75RRcc
9j7zwfIRrzjPUqzhsQS/GFjdJu3lJNmEBK1AcgrVry6WoItrAzJHKPPDC7TwaNmD
eXpjxMl1sYzzHqtVh4hn+xkUYphj/6gTGMV8zdo+/FopFswgeJW9G8kHtlEWKDPk
MRIKwACmfetP6f3ngHunBg+BOipbjCANL7JI0nOhVOQoaULxCCPx+IPJ6GfSyiuH
AbcjH8DGI7fJbUkBFoF0dsRFZ2gH8ds1PYMbWUJ6x3FtuCuv5iIuvQYoaWU6itm7
6f0KvCogg0fU
=Qf50
-----END PGP SIGNATURE-----
Merge tag 'sysctl-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"To help make the move of sysctls out of kernel/sysctl.c not incur a
size penalty sysctl has been changed to allow us to not require the
sentinel, the final empty element on the sysctl array. Joel Granados
has been doing all this work. On the v6.6 kernel we got the major
infrastructure changes required to support this. For v6.7-rc1 we have
all arch/ and drivers/ modified to remove the sentinel. Both arch and
driver changes have been on linux-next for a bit less than a month. It
is worth re-iterating the value:
- this helps reduce the overall build time size of the kernel and run
time memory consumed by the kernel by about ~64 bytes per array
- the extra 64-byte penalty is no longer inncurred now when we move
sysctls out from kernel/sysctl.c to their own files
For v6.8-rc1 expect removal of all the sentinels and also then the
unneeded check for procname == NULL.
The last two patches are fixes recently merged by Krister Johansen
which allow us again to use softlockup_panic early on boot. This used
to work but the alias work broke it. This is useful for folks who want
to detect softlockups super early rather than wait and spend money on
cloud solutions with nothing but an eventual hung kernel. Although
this hadn't gone through linux-next it's also a stable fix, so we
might as well roll through the fixes now"
* tag 'sysctl-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (23 commits)
watchdog: move softlockup_panic back to early_param
proc: sysctl: prevent aliased sysctls from getting passed to init
intel drm: Remove now superfluous sentinel element from ctl_table array
Drivers: hv: Remove now superfluous sentinel element from ctl_table array
raid: Remove now superfluous sentinel element from ctl_table array
fw loader: Remove the now superfluous sentinel element from ctl_table array
sgi-xp: Remove the now superfluous sentinel element from ctl_table array
vrf: Remove the now superfluous sentinel element from ctl_table array
char-misc: Remove the now superfluous sentinel element from ctl_table array
infiniband: Remove the now superfluous sentinel element from ctl_table array
macintosh: Remove the now superfluous sentinel element from ctl_table array
parport: Remove the now superfluous sentinel element from ctl_table array
scsi: Remove now superfluous sentinel element from ctl_table array
tty: Remove now superfluous sentinel element from ctl_table array
xen: Remove now superfluous sentinel element from ctl_table array
hpet: Remove now superfluous sentinel element from ctl_table array
c-sky: Remove now superfluous sentinel element from ctl_talbe array
powerpc: Remove now superfluous sentinel element from ctl_table arrays
riscv: Remove now superfluous sentinel element from ctl_table array
x86/vdso: Remove now superfluous sentinel element from ctl_table array
...
- Limit the hardcoded topology quirk for Hygon CPUs to those which have a
model ID less than 4. The newer models have the topology CPUID leaf 0xB
correctly implemented and are not affected.
- Make SMT control more robust against enumeration failures
SMT control was added to allow controlling SMT at boottime or
runtime. The primary purpose was to provide a simple mechanism to
disable SMT in the light of speculation attack vectors.
It turned out that the code is sensible to enumeration failures and
worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
which means the primary thread mask is not set up correctly. By chance
a XEN/PV boot ends up with smp_num_siblings == 2, which makes the
hotplug control stay at its default value "enabled". So the mask is
never evaluated.
The ongoing rework of the topology evaluation caused XEN/PV to end up
with smp_num_siblings == 1, which sets the SMT control to "not
supported" and the empty primary thread mask causes the hotplug core to
deny the bringup of the APS.
Make the decision logic more robust and take 'not supported' and 'not
implemented' into account for the decision whether a CPU should be
booted or not.
- Fake primary thread mask for XEN/PV
Pretend that all XEN/PV vCPUs are primary threads, which makes the
usage of the primary thread mask valid on XEN/PV. That is consistent
with because all of the topology information on XEN/PV is fake or even
non-existent.
- Encapsulate topology information in cpuinfo_x86
Move the randomly scattered topology data into a separate data
structure for readability and as a preparatory step for the topology
evaluation overhaul.
- Consolidate APIC ID data type to u32
It's fixed width hardware data and not randomly u16, int, unsigned long
or whatever developers decided to use.
- Cure the abuse of cpuinfo for persisting logical IDs.
Per CPU cpuinfo is used to persist the logical package and die
IDs. That's really not the right place simply because cpuinfo is
subject to be reinitialized when a CPU goes through an offline/online
cycle.
Use separate per CPU data for the persisting to enable the further
topology management rework. It will be removed once the new topology
management is in place.
- Provide a debug interface for inspecting topology information
Useful in general and extremly helpful for validating the topology
management rework in terms of correctness or "bug" compatibility.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmU+yX0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoROUD/4vlvKEcpm9rbI5DzLcaq4DFHKbyEZF
cQtzuOSM/9vTc9DHnuoNNLl9TWSYxiVYnejf3E21evfsqspYlzbTH8bId9XBCUid
6B68AJW842M2erNuwj0b0HwF1z++zpDmBDyhGOty/KQhoM8pYOHMvntAmbzJbuso
Dgx6BLVFcboTy6RwlfRa0EE8f9W5V+JbmG/VBDpdyCInal7VrudoVFZmWQnPIft7
zwOJpAoehkp8OKq7geKDf79yWxu9a1sNPd62HtaVEvfHwehHqE6OaMLss1us+0vT
SJ/D6gmRQBOwcXaZL0wL1dG7Km9Et4AisOvzhXGvTa5b2D5oljVoqJ7V7FTf5g3u
y3aqWbeUJzERUbeJt1HoGVAKyA4GtZOvg+TNIysf6F1Z4khl9alfa9jiqjj4g1au
zgItq/ZMBEBmJ7X4FxQUEUVBG2CDsEidyNBDRcimWQUDfBakV/iCs0suD8uu8ZOD
K5jMx8Hi2+xFx7r1YqsfsyMBYOf/zUZw65RbNe+kI992JbJ9nhcODbnbo5MlAsyv
vcqlK5FwXgZ4YAC8dZHU/tyTiqAW7oaOSkqKwTP5gcyNEqsjQHV//q6v+uqtjfYn
1C4oUsRHT2vJiV9ktNJTA4GQHIYF4geGgpG8Ih2SjXsSzdGtUd3DtX1iq0YiLEOk
eHhYsnniqsYB5g==
=xrz8
-----END PGP SIGNATURE-----
Merge tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Thomas Gleixner:
- Limit the hardcoded topology quirk for Hygon CPUs to those which have
a model ID less than 4.
The newer models have the topology CPUID leaf 0xB correctly
implemented and are not affected.
- Make SMT control more robust against enumeration failures
SMT control was added to allow controlling SMT at boottime or
runtime. The primary purpose was to provide a simple mechanism to
disable SMT in the light of speculation attack vectors.
It turned out that the code is sensible to enumeration failures and
worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
which means the primary thread mask is not set up correctly. By
chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes
the hotplug control stay at its default value "enabled". So the mask
is never evaluated.
The ongoing rework of the topology evaluation caused XEN/PV to end up
with smp_num_siblings == 1, which sets the SMT control to "not
supported" and the empty primary thread mask causes the hotplug core
to deny the bringup of the APS.
Make the decision logic more robust and take 'not supported' and 'not
implemented' into account for the decision whether a CPU should be
booted or not.
- Fake primary thread mask for XEN/PV
Pretend that all XEN/PV vCPUs are primary threads, which makes the
usage of the primary thread mask valid on XEN/PV. That is consistent
with because all of the topology information on XEN/PV is fake or
even non-existent.
- Encapsulate topology information in cpuinfo_x86
Move the randomly scattered topology data into a separate data
structure for readability and as a preparatory step for the topology
evaluation overhaul.
- Consolidate APIC ID data type to u32
It's fixed width hardware data and not randomly u16, int, unsigned
long or whatever developers decided to use.
- Cure the abuse of cpuinfo for persisting logical IDs.
Per CPU cpuinfo is used to persist the logical package and die IDs.
That's really not the right place simply because cpuinfo is subject
to be reinitialized when a CPU goes through an offline/online cycle.
Use separate per CPU data for the persisting to enable the further
topology management rework. It will be removed once the new topology
management is in place.
- Provide a debug interface for inspecting topology information
Useful in general and extremly helpful for validating the topology
management rework in terms of correctness or "bug" compatibility.
* tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/apic, x86/hyperv: Use u32 in hv_snp_boot_ap() too
x86/cpu: Provide debug interface
x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids
x86/apic: Use u32 for wakeup_secondary_cpu[_64]()
x86/apic: Use u32 for [gs]et_apic_id()
x86/apic: Use u32 for phys_pkg_id()
x86/apic: Use u32 for cpu_present_to_apicid()
x86/apic: Use u32 for check_apicid_used()
x86/apic: Use u32 for APIC IDs in global data
x86/apic: Use BAD_APICID consistently
x86/cpu: Move cpu_l[l2]c_id into topology info
x86/cpu: Move logical package and die IDs into topology info
x86/cpu: Remove pointless evaluation of x86_coreid_bits
x86/cpu: Move cu_id into topology info
x86/cpu: Move cpu_core_id into topology info
hwmon: (fam15h_power) Use topology_core_id()
scsi: lpfc: Use topology_core_id()
x86/cpu: Move cpu_die_id into topology info
x86/cpu: Move phys_proc_id into topology info
x86/cpu: Encapsulate topology information in cpuinfo_x86
...
- Add new NX-stack self-test
- Improve NUMA partial-CFMWS handling
- Fix #VC handler bugs resulting in SEV-SNP boot failures
- Drop the 4MB memory size restriction on minimal NUMA nodes
- Reorganize headers a bit, in preparation to header dependency reduction efforts
- Misc cleanups & fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU9Ek4RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gIJQ/+Mg6mzMaThyNXqhJszeZJBmDaBv2sqjAB
5tcferg1nJBdNBzX8bJ95UFt9fIqeYAcgH00qlQCYSmyzbC1TQTk9U2Pre1zbOw4
042ONK8sygKSje1zdYleHoBeqwnxD2VNM0NwBElhGjumwHRng/tbLiI9wx6qiz+C
VsFXavkBszHGA1pjy9wZLGixYIH5jCygMpH134Wp+CIhpS+C4nftcGdIL1D5Oil1
6Tm2XeI6uyfiQhm9IOwDjfoYeC7gUjx1rp8rHseGUMJxyO/BX9q5j1ixbsVriqfW
97ucYuRL9mza7ic516C9v7OlAA3AGH2xWV+SYOGK88i9Co4kYzP4WnamxXqOsD8+
popxG55oa6QelhaouTBZvgERpZ4fWupSDs/UccsDaE9leMCerNEbGHEzt/Mm/2sw
xopjMQ0y5Kn6/fS0dLv8U+XHu4ANkvXJkFd6Ny0h/WfgGefuQOOTG9ruYgfeqqB8
dViQ4R7CO8ySjD45KawAZl/EqL86x1M/CI1nlt0YY4vNwUuOJbebL7Jn8w3Fjxm5
FVfUlDmcPdhZfL9Vnrsi6MIou1cU1yJPw4D6sXJ4sg4s7A4ebBcRRrjayVQ4msjv
Q7cvBOMnWEHhOV11pvP50FmQuj74XW3bUqiuWrnK1SypvnhHavF6kc1XYpBLs1xZ
y8nueJW2qPw=
=tT5F
-----END PGP SIGNATURE-----
Merge tag 'x86-mm-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm handling updates from Ingo Molnar:
- Add new NX-stack self-test
- Improve NUMA partial-CFMWS handling
- Fix #VC handler bugs resulting in SEV-SNP boot failures
- Drop the 4MB memory size restriction on minimal NUMA nodes
- Reorganize headers a bit, in preparation to header dependency
reduction efforts
- Misc cleanups & fixes
* tag 'x86-mm-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Drop the 4 MB restriction on minimal NUMA node memory size
selftests/x86/lam: Zero out buffer for readlink()
x86/sev: Drop unneeded #include
x86/sev: Move sev_setup_arch() to mem_encrypt.c
x86/tdx: Replace deprecated strncpy() with strtomem_pad()
selftests/x86/mm: Add new test that userspace stack is in fact NX
x86/sev: Make boot_ghcb_page[] static
x86/boot: Move x86_cache_alignment initialization to correct spot
x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach
x86/sev-es: Allow copy_from_kernel_nofault() in earlier boot
x86_64: Show CR4.PSE on auxiliaries like on BSP
x86/iommu/docs: Update AMD IOMMU specification document URL
x86/sev/docs: Update document URL in amd-memory-encryption.rst
x86/mm: Move arch_memory_failure() and arch_is_platform_page() definitions from <asm/processor.h> to <asm/pgtable.h>
ACPI/NUMA: Apply SRAT proximity domain to entire CFMWS window
x86/numa: Introduce numa_fill_memblks()
- Make IA32_EMULATION boot time configurable with
the new ia32_emulation=<bool> boot option.
- Clean up fast syscall return validation code: convert
it to C and refactor the code.
- As part of this, optimize the canonical RIP test code.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU9DiARHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iNAw//cLn9gBXMVPDiCDVUOTqjkZ+OwIF11Y9v
WatksSe5hrw0Bzl5CiSvtrWpTkKPnhyM8Lc1WD8l0YSMKprdkQfNAvQOPv0IMLjk
XP1pgQhAiXwB87XL/G2sA6RunuK56zlnl7KJiDrQThrS/WOfrq3UkB2vyYEP4GtP
69WZ/WM++u74uEml0+HZ0Z9HVvzwYl1VQPdTYfl52S4H3U8MXL89YEsPr13Ttq88
FMKdXJ/VvItuVM/ZHHqFkGvRJjUtDWePLu29b684Ap6onDJ7uMMw86Gj5UxXtdpB
Axsjuwlca8sCPotcqohay6IdyxIth6lMdvjPv0KhA+/QMrHbDaluv88YQs4k7Add
1GPULH6oeDTHxMPOcJmFuSTpMY8HP6O9ZIXB6ogQRkLaDJKaWr5UQU7L2VBQ/WUy
NRa6mba0XHYrz6U7DmtsdL0idWBJeJokHmaIcGJ/pp6gMznvufm2+SoJ6w6wcYva
VTSTyrAAj/N9/TzJ5i8S2+yDPI9GanFpZJfYbW/rT9XGutvXWVKe3AmUNgR8O+hE
JiEMfpR0TtXXlrik74jur/RPZhaFIE8MeCvJrkJ3oxQlPThYSTMBAlUOtD7kOfNT
onjPrumREX4hOIBU+nnC9VrJMqxX9lz4xDzqw3jvX99Ma0o8Wx/UndWELX8tAYwd
j8M8NWAbv90=
=YkaP
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 entry updates from Ingo Molnar:
- Make IA32_EMULATION boot time configurable with
the new ia32_emulation=<bool> boot option
- Clean up fast syscall return validation code: convert
it to C and refactor the code
- As part of this, optimize the canonical RIP test code
* tag 'x86-entry-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/32: Clean up syscall fast exit tests
x86/entry/64: Use TASK_SIZE_MAX for canonical RIP test
x86/entry/64: Convert SYSRET validation tests to C
x86/entry/32: Remove SEP test for SYSEXIT
x86/entry/32: Convert do_fast_syscall_32() to bool return type
x86/entry/compat: Combine return value test from syscall handler
x86/entry/64: Remove obsolete comment on tracing vs. SYSRET
x86: Make IA32_EMULATION boot time configurable
x86/entry: Make IA32 syscalls' availability depend on ia32_enabled()
x86/elf: Make loading of 32bit processes depend on ia32_enabled()
x86/entry: Compile entry_SYSCALL32_ignore() unconditionally
x86/entry: Rename ignore_sysret()
x86: Introduce ia32_enabled()
virtualization support is disabled in the BIOS on AMD and Hygon
platforms
- A minor cleanup
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmU77KoACgkQEsHwGGHe
VUrophAAtfsB+WhRydin0V6kjQeH+RbiWyx/jOw6eNqvzOzaOPxVXn0cAHRSgAO4
+S8tKIqaWpXNNNKpOIKBVaDkh9qr50/p36/jfVkXi8GOLYrK633F0BMjcG4+/vYQ
A9b5iNiJhZ7xWE6+qRrqdg+o+a6UyPUGz34HNp3KwJVTdaHU2OnXXwuWeiUkgRrJ
uQSfLc4+UIeefIzNy8Tqg083iaENBYMya7U90rzewD64NF0bsA15AEPut/6tnUVq
ej3UU3cqO7nKXyhuZX+zpt856MZFa1rNYVXUAfoAO4xhqdN0Q5LFWO506sqajNx/
hqbT+hKDoC03zuLmbZO21s/uWQdtVFo63FU0h9QBRp1m6Ug5P3rQQCK8ydJc5xwr
Yd7je6UPK9jIKBo9VP1qmsyzGwADNevNf1qGExHI2T6Wml7HgDmPysAHnGiKqRGI
1o9+Yqa+VBt8Wml9M8Ny+dLyr5F/2uq8sMrQedQlXdFMSzVm2JYecukJ5BvUWE/r
Qyll8mTpIdgGXjBt56lMrgH7ibMC5ct/4MvTHOHuA997g/PwuwtWj7QyKXpUq2Rf
o/c3zKKWIFxevjzwU86haCBaz+5xAQlB6dJw61ExxsmUuT/kZzkN15w6aqGZtpns
PsARwnvuwZJ7vfqFLIa0ZkPN4OgnkRX7HlNqrVyKpONDTocZd9E=
=i9On
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Make sure the "svm" feature flag is cleared from /proc/cpuinfo when
virtualization support is disabled in the BIOS on AMD and Hygon
platforms
- A minor cleanup
* tag 'x86_cpu_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Remove redundant 'break' statement
x86/cpu: Clear SVM feature if disabled by BIOS
Intel's CAT implementation
- Other improvements to resctrl code: better configuration,
simplifications, debugging support, fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmU7x3YACgkQEsHwGGHe
VUqj4BAAn9HiQPuBWW5UPVpLoHBmKHtoNuIn2AWD3wcRwFwd+mO1JbPgQzMude0C
QV/Dpm+PPxyFNATtCiRtqns3qHSt8wVMy/mrOKT7R20mmBxIhMb+323YvoamFSzc
gamSKDZJFEp8Dqj2ccnwpFIdPjlTZGuOCumcxrHbrEs10ezsZ1UCSOjlQrRJSrFX
M/KCVmrwVt6VR24Sz3K7e6atWgnl5Gj926VB0wXFSVAHII22Pirx7rdsHZXkgI0z
pBHomVyZxyjzo3XV9szG1h+3iTPIebWH6A+25YGpmh7PZeFzuJhn6XXbpZ35tjSw
3EKjkbwJyDXLLfAV+MMzVYZeCzpxy5MEuTW6aNi4y59k6GAhyeHClq9HWePo8rp7
lMXVfSeFpdtG0n7WUVF2ctm7mAqTF8id2WGNfvXoP/bzB2mkXQ4x1GV+TvxAyex8
OAk7iHk0IhrakfDj1XAE1o0BiSkGKaNo0eT8LnuByaUvHQHSBo/24fFcFOC9V1NL
K4eGfgn7yyXBFWvJch5LtdmG3LHQEJ9Dh4zZ8TkyHOt42Lc32JdHtBrRGdWRMyq9
p5lhLvPwuumjfjTeaXG4ABacdED1a8fiUzydumHmAux+an7irTqxwP51Y9MrxR1O
37+YBgEcO2nmubCUKUjvBga4ztFo0f/hMVqGqnME+tYwr7NzXx8=
=GGQX
-----END PGP SIGNATURE-----
Merge tag 'x86_cache_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 resource control updates from Borislav Petkov:
- Add support for non-contiguous capacity bitmasks being added to
Intel's CAT implementation
- Other improvements to resctrl code: better configuration,
simplifications, debugging support, fixes
* tag 'x86_cache_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Display RMID of resource group
x86/resctrl: Add support for the files of MON groups only
x86/resctrl: Display CLOSID for resource group
x86/resctrl: Introduce "-o debug" mount option
x86/resctrl: Move default group file creation to mount
x86/resctrl: Unwind properly from rdt_enable_ctx()
x86/resctrl: Rename rftype flags for consistency
x86/resctrl: Simplify rftype flag definitions
x86/resctrl: Add multiple tasks to the resctrl group at once
Documentation/x86: Document resctrl's new sparse_masks
x86/resctrl: Add sparse_masks file in info
x86/resctrl: Enable non-contiguous CBMs in Intel CAT
x86/resctrl: Rename arch_has_sparse_bitmaps
x86/resctrl: Fix remaining kernel-doc warnings
machinery and other, general cleanups to the hw mitigations code,
by Josh Poimboeuf
- Improve the return thunk detection by objtool as it is absolutely
important that the default return thunk is not used after returns
have been patched. Future work to detect and report this better is
pending
- Other misc cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmU7mFEACgkQEsHwGGHe
VUpbBxAAtS4X5LCntPWUsDEBU80SBYAunEp0Wd0ttYEj+UrEk4tvnWVGFiIEr47A
PrRKK9JCJtC6ko0+dwPtMi66L/T7mCpoNPI1kzfRG1IHJBfvCTGJhzZsesogvkA2
1X9Je+RCVW4xVybIryxhjMGdB6jUoGEU1a4DmQXq481qiLB3ilvA1bIAaNo9BBYP
rxKPrPcdOxn2NjxuOWg+FXjSc8LuAVSu3HqsgCW2AHJ6XIKEYWEq9FkXhwj9OJOr
ax1F4qD1IY++jYZO9DJiltjeJyj0wC+yp8kDDURoLbcTk85WHlpD5vK0g64mELOA
y0375thHep+vsrtQ/qZAmi/eVTaTekgbi7McahjoZebK7FbKOYRk6GZ+5+m29AVr
DfQSJ7xQQqbCbpimeFmZ+gQf7mFexyDWvjUPyBl+OelOY1umdPM9IZVTnqib5LPr
D2M+uqWfJhSwACi2o05LRv0gyhkAz0bGHrwZPmCVuxE5kBbhOpj4aT87fetUp/MW
8lEFa3PHx/gkh2VOJ7ZgKzpeD75Vjo8TRAXOe4O2jn/L54gNEJ+1mukvrjW3+lp1
ShmcZokl3ldPq6F5ioE+u45hVAfHkaruWM+5Rj3hsA/fdFN3isTVLhIRIsypPTKc
p1ITT8Yhek8vkm9PcRBE5xWRmEZ2XE5ooDld930nJxra8QNVVQw=
=E7c4
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 hw mitigation updates from Borislav Petkov:
- A bunch of improvements, cleanups and fixlets to the SRSO mitigation
machinery and other, general cleanups to the hw mitigations code, by
Josh Poimboeuf
- Improve the return thunk detection by objtool as it is absolutely
important that the default return thunk is not used after returns
have been patched. Future work to detect and report this better is
pending
- Other misc cleanups and fixes
* tag 'x86_bugs_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/retpoline: Document some thunk handling aspects
x86/retpoline: Make sure there are no unconverted return thunks due to KCSAN
x86/callthunks: Delete unused "struct thunk_desc"
x86/vdso: Run objtool on vdso32-setup.o
objtool: Fix return thunk patching in retpolines
x86/srso: Remove unnecessary semicolon
x86/pti: Fix kernel warnings for pti= and nopti cmdline options
x86/calldepth: Rename __x86_return_skl() to call_depth_return_thunk()
x86/nospec: Refactor UNTRAIN_RET[_*]
x86/rethunk: Use SYM_CODE_START[_LOCAL]_NOALIGN macros
x86/srso: Disentangle rethunk-dependent options
x86/srso: Move retbleed IBPB check into existing 'has_microcode' code block
x86/bugs: Remove default case for fully switched enums
x86/srso: Remove 'pred_cmd' label
x86/srso: Unexport untraining functions
x86/srso: Improve i-cache locality for alias mitigation
x86/srso: Fix unret validation dependencies
x86/srso: Fix vulnerability reporting for missing microcode
x86/srso: Print mitigation for retbleed IBPB case
x86/srso: Print actual mitigation if requested mitigation isn't possible
...
In general users, don't have the necessary information to determine
whether late loading of a new microcode version is safe and does not
modify anything which the currently running kernel uses already, e.g.
removal of CPUID bits or behavioural changes of MSRs.
To address this issue, Intel has added a "minimum required version"
field to a previously reserved field in the microcode header. Microcode
updates should only be applied if the current microcode version is equal
to, or greater than this minimum required version.
Thomas made some suggestions on how meta-data in the microcode file could
provide Linux with information to decide if the new microcode is suitable
candidate for late loading. But even the "simpler" option requires a lot of
metadata and corresponding kernel code to parse it, so the final suggestion
was to add the 'minimum required version' field in the header.
When microcode changes visible features, microcode will set the minimum
required version to its own revision which prevents late loading.
Old microcode blobs have the minimum revision field always set to 0, which
indicates that there is no information and the kernel considers it
unsafe.
This is a pure OS software mechanism. The hardware/firmware ignores this
header field.
For early loading there is no restriction because OS visible features
are enumerated after the early load and therefore a change has no
effect.
The check is always enabled, but by default not enforced. It can be
enforced via Kconfig or kernel command line.
If enforced, the kernel refuses to late load microcode with a minimum
required version field which is zero or when the currently loaded
microcode revision is smaller than the minimum required revision.
If not enforced the load happens independent of the revision check to
stay compatible with the existing behaviour, but it influences the
decision whether the kernel is tainted or not. If the check signals that
the late load is safe, then the kernel is not tainted.
Early loading is not affected by this.
[ tglx: Massaged changelog and fixed up the implementation ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.776467264@linutronix.de
Applying microcode late can be fatal for the running kernel when the
update changes functionality which is in use already in a non-compatible
way, e.g. by removing a CPUID bit.
There is no way for admins which do not have access to the vendors deep
technical support to decide whether late loading of such a microcode is
safe or not.
Intel has added a new field to the microcode header which tells the
minimal microcode revision which is required to be active in the CPU in
order to be safe.
Provide infrastructure for handling this in the core code and a command
line switch which allows to enforce it.
If the update is considered safe the kernel is not tainted and the annoying
warning message not emitted. If it's enforced and the currently loaded
microcode revision is not safe for late loading then the load is aborted.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211724.079611170@linutronix.de
Offline CPUs need to be parked in a safe loop when microcode update is
in progress on the primary CPU. Currently, offline CPUs are parked in
mwait_play_dead(), and for Intel CPUs, its not a safe instruction,
because the MWAIT instruction can be patched in the new microcode update
that can cause instability.
- Add a new microcode state 'UCODE_OFFLINE' to report status on per-CPU
basis.
- Force NMI on the offline CPUs.
Wake up offline CPUs while the update is in progress and then return
them back to mwait_play_dead() after microcode update is complete.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.660850472@linutronix.de
The wait for control loop in which the siblings are waiting for the
microcode update on the primary thread must be protected against
instrumentation as instrumentation can end up in #INT3, #DB or #PF,
which then returns with IRET. That IRET reenables NMI which is the
opposite of what the NMI rendezvous is trying to achieve.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.545969323@linutronix.de
stop_machine() does not prevent the spin-waiting sibling from handling
an NMI, which is obviously violating the whole concept of rendezvous.
Implement a static branch right in the beginning of the NMI handler
which is nopped out except when enabled by the late loading mechanism.
The late loader enables the static branch before stop_machine() is
invoked. Each CPU has an nmi_enable in its control structure which
indicates whether the CPU should go into the update routine.
This is required to bridge the gap between enabling the branch and
actually being at the point where it is required to enter the loader
wait loop.
Each CPU which arrives in the stopper thread function sets that flag and
issues a self NMI right after that. If the NMI function sees the flag
clear, it returns. If it's set it clears the flag and enters the
rendezvous.
This is safe against a real NMI which hits in between setting the flag
and sending the NMI to itself. The real NMI will be swallowed by the
microcode update and the self NMI will then let stuff continue.
Otherwise this would end up with a spurious NMI.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.489900814@linutronix.de
with a new handler which just separates the control flow of primary and
secondary CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.433704135@linutronix.de
The current all in one code is unreadable and really not suited for
adding future features like uniform loading with package or system
scope.
Provide a set of new control functions which split the handling of the
primary and secondary CPUs. These will replace the current rendezvous
all in one function in the next step. This is intentionally a separate
change because diff makes an complete unreadable mess otherwise.
So the flow separates the primary and the secondary CPUs into their own
functions which use the control field in the per CPU ucode_ctrl struct.
primary() secondary()
wait_for_all() wait_for_all()
apply_ucode() wait_for_release()
release() apply_ucode()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.377922731@linutronix.de
Add a per CPU control field to ucode_ctrl and define constants for it
which are going to be used to control the loading state machine.
In theory this could be a global control field, but a global control does
not cover the following case:
15 primary CPUs load microcode successfully
1 primary CPU fails and returns with an error code
With global control the sibling of the failed CPU would either try again or
the whole operation would be aborted with the consequence that the 15
siblings do not invoke the apply path and end up with inconsistent software
state. The result in dmesg would be inconsistent too.
There are two additional fields added and initialized:
ctrl_cpu and secondaries. ctrl_cpu is the CPU number of the primary thread
for now, but with the upcoming uniform loading at package or system scope
this will be one CPU per package or just one CPU. Secondaries hands the
control CPU a CPU mask which will be required to release the secondary CPUs
out of the wait loop.
Preparatory change for implementing a properly split control flow for
primary and secondary CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.319959519@linutronix.de
The microcode rendezvous is purely acting on global state, which does
not allow to analyze fails in a coherent way.
Introduce per CPU state where the results are written into, which allows to
analyze the return codes of the individual CPUs.
Initialize the state when walking the cpu_present_mask in the online
check to avoid another for_each_cpu() loop.
Enhance the result print out with that.
The structure is intentionally named ucode_ctrl as it will gain control
fields in subsequent changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.632681010@linutronix.de
The code is too complicated for no reason:
- The return value is pointless as this is a strict boolean.
- It's way simpler to count down from num_online_cpus() and check for
zero.
- The timeout argument is pointless as this is always one second.
- Touching the NMI watchdog every 100ns does not make any sense, neither
does checking every 100ns. This is really not a hotpath operation.
Preload the atomic counter with the number of online CPUs and simplify the
whole timeout logic. Delay for one microsecond and touch the NMI watchdog
once per millisecond.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.204251527@linutronix.de
reload_store() is way too complicated. Split the inner workings out and
make the following enhancements:
- Taint the kernel only when the microcode was actually updated. If. e.g.
the rendezvous fails, then nothing happened and there is no reason for
tainting.
- Return useful error codes
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/20231002115903.145048840@linutronix.de
On CPUs where microcode loading is not NMI-safe the SMT siblings which
are parked in one of the play_dead() variants still react to NMIs.
So if an NMI hits while the primary thread updates the microcode the
resulting behaviour is undefined. The default play_dead() implementation on
modern CPUs is using MWAIT which is not guaranteed to be safe against
a microcode update which affects MWAIT.
Take the cpus_booted_once_mask into account to detect this case and
refuse to load late if the vendor specific driver does not advertise
that late loading is NMI safe.
AMD stated that this is safe, so mark the AMD driver accordingly.
This requirement will be partially lifted in later changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.087472735@linutronix.de
This function has nothing to do with suspend. It's a hotplug
callback. Remove the bogus comment.
Drop the pointless debug printk. The hotplug core provides tracepoints
which track the invocation of those callbacks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.028651784@linutronix.de
Scheduling work on all CPUs to collect the microcode information is just
another extra step for no value. Let the CPU hotplug callback registration
do it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.354748138@linutronix.de
Get rid of the initrd_gone hack which was required to keep
find_microcode_in_initrd() functional after init.
As find_microcode_in_initrd() is now only used during init, mark it
accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.298854846@linutronix.de
Now that the microcode cache is initialized before the APs are brought
up, there is no point in scanning builtin/initrd microcode during AP
loading.
Convert the AP loader to utilize the cache, which in turn makes the CPU
hotplug callback which applies the microcode after initrd/builtin is
gone, obsolete as the early loading during late hotplug operations
including the resume path depends now only on the cache.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.243426023@linutronix.de
There is no reason to scan builtin/initrd microcode on each AP.
Cache the builtin/initrd microcode in an early initcall so that the
early AP loader can utilize the cache.
The existing fs initcall which invoked save_microcode_in_initrd_amd() is
still required to maintain the initrd_gone flag. Rename it accordingly.
This will be removed once the AP loader code is converted to use the
cache.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211723.187566507@linutronix.de
save_microcode_in_initrd_amd() fails to cache builtin microcode and only
scans initrd.
Use find_blobs_in_containers() instead which covers both.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231010150702.495139089@linutronix.de
find_blobs_in_containers() is invoked on every CPU but overwrites
unconditionally ucode_cpu_info of CPU0.
Fix this by using the proper CPU data and move the assignment into the
call site apply_ucode_from_containers() so that the function can be
reused.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231010150702.433454320@linutronix.de
Microcode is applied on the APs during early bringup. There is no point
in trying to apply the microcode again during the hotplug operations and
neither at the point where the microcode device is initialized.
Collect CPU info and microcode revision in setup_online_cpu() for now.
This will move to the CPU hotplug callback later.
[ bp: Leave the starting notifier for the following scenario:
- boot, late load, suspend to disk, resume
without the starting notifier, only the last core manages to update the
microcode upon resume:
# rdmsr -a 0x8b
10000bf
10000bf
10000bf
10000bf
10000bf
10000dc <----
This is on an AMD F10h machine.
For the future, one should check whether potential unification of
the CPU init path could cover the resume path too so that this can
be simplified even more.
tglx: This is caused by the odd handling of APs which try to find the
microcode blob in builtin or initrd instead of caching the microcode
blob during early init before the APs are brought up. Will be cleaned
up in a later step. ]
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231017211723.018821624@linutronix.de
Take a cpu_signature argument and work from there. Move the match()
helper next to the callsite as there is no point for having it in
a header.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115902.797820205@linutronix.de
Nothing needs struct ucode_cpu_info. Make it take struct cpu_signature,
let it return a boolean and simplify the implementation. Rename it now
that the silly name clash with collect_cpu_info() is gone.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211722.851573238@linutronix.de
Deduplicate the early and late apply() functions.
[ bp: Rename the function which does the actual application to
__apply_microcode() to differentiate it from
microcode_ops.apply_microcode(). ]
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231017211722.795508212@linutronix.de
There are situations where the late microcode is loaded into memory but
is not applied:
1) The rendezvous fails
2) The microcode is rejected by the CPUs
If any of this happens then the pointer which was updated at firmware
load time is stale and subsequent CPU hotplug operations either fail to
update or create inconsistent microcode state.
Save the loaded microcode in a separate pointer before the late load is
attempted and when successful, update the hotplug pointer accordingly
via a new microcode_ops callback.
Remove the pointless fallback in the loader to a microcode pointer which
is never populated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115902.505491309@linutronix.de
The early loading code is overly complicated:
- It scans the builtin/initrd for microcode not only on the BSP, but also
on all APs during early boot and then later in the boot process it
scans again to duplicate and save the microcode before initrd goes
away.
That's a pointless exercise because this can be simply done before
bringing up the APs when the memory allocator is up and running.
- Saving the microcode from within the scan loop is completely
non-obvious and a left over of the microcode cache.
This can be done at the call site now which makes it obvious.
Rework the code so that only the BSP scans the builtin/initrd microcode
once during early boot and save it away in an early initcall for later
use.
[ bp: Test and fold in a fix from tglx ontop which handles the need to
distinguish what save_microcode() does depending on when it is
called:
- when on the BSP during early load, it needs to find a newer
revision than the one currently loaded on the BSP
- later, before SMP init, it still runs on the BSP and gets the BSP
revision just loaded and uses that revision to know which patch
to save for the APs. For that it needs to find the exact one as
on the BSP.
]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211722.629085215@linutronix.de
Some variables in pcpu_hot, currently current_task and top_of_stack
are actually per-thread variables implemented as per-CPU variables
and thus stable for the duration of the respective task. There is
already an attempt to eliminate redundant reads from these variables
using this_cpu_read_stable() asm macro, which hides the dependency
on the read memory address. However, the compiler has limited ability
to eliminate asm common subexpressions, so this approach results in a
limited success.
The solution is to allow more aggressive elimination by aliasing
pcpu_hot into a const-qualified const_pcpu_hot, and to read stable
per-CPU variables from this constant copy.
The current per-CPU infrastructure does not support reads from
const-qualified variables. However, when the compiler supports segment
qualifiers, it is possible to declare the const-aliased variable in
the relevant named address space. The compiler considers access to the
variable, declared in this way, as a read from a constant location,
and will optimize reads from the variable accordingly.
By implementing constant-qualified const_pcpu_hot, the compiler can
eliminate redundant reads from the constant variables, reducing the
number of loads from current_task from 3766 to 3217 on a test build,
a -14.6% reduction.
The reduction of loads translates to the following code savings:
text data bss dec hex filename
25,477,353 4389456 808452 30675261 1d4113d vmlinux-old.o
25,476,074 4389440 808452 30673966 1d40c2e vmlinux-new.o
representing a code size reduction of -1279 bytes.
[ mingo: Updated the changelog, EXPORT(const_pcpu_hot). ]
Co-developed-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231020162004.135244-1-ubizjak@gmail.com
CONFIG_RETHUNK, CONFIG_CPU_UNRET_ENTRY and CONFIG_CPU_SRSO are all
tangled up. De-spaghettify the code a bit.
Some of the rethunk-related code has been shuffled around within the
'.text..__x86.return_thunk' section, but otherwise there are no
functional changes. srso_alias_untrain_ret() and srso_alias_safe_ret()
((which are very address-sensitive) haven't moved.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/2845084ed303d8384905db3b87b77693945302b4.1693889988.git.jpoimboe@kernel.org
For enum switch statements which handle all possible cases, remove the
default case so a compiler warning gets printed if one of the enums gets
accidentally omitted from the switch statement.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/fcf6feefab991b72e411c2aed688b18e65e06aed.1693889988.git.jpoimboe@kernel.org
SBPB is only enabled in two distinct cases:
1) when SRSO has been disabled with srso=off
2) when SRSO has been fixed (in future HW)
Simplify the control flow by getting rid of the 'pred_cmd' label and
moving the SBPB enablement check to the two corresponding code sites.
This makes it more clear when exactly SBPB gets enabled.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/bb20e8569cfa144def5e6f25e610804bc4974de2.1693889988.git.jpoimboe@kernel.org
The SRSO default safe-ret mitigation is reported as "mitigated" even if
microcode hasn't been updated. That's wrong because userspace may still
be vulnerable to SRSO attacks due to IBPB not flushing branch type
predictions.
Report the safe-ret + !microcode case as vulnerable.
Also report the microcode-only case as vulnerable as it leaves the
kernel open to attacks.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/a8a14f97d1b0e03ec255c81637afdf4cf0ae9c99.1693889988.git.jpoimboe@kernel.org
When overriding the requested mitigation with IBPB due to retbleed=ibpb,
print the mitigation in the usual format instead of a custom error
message.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/ec3af919e267773d896c240faf30bfc6a1fd6304.1693889988.git.jpoimboe@kernel.org
If the kernel wasn't compiled to support the requested option, print the
actual option that ends up getting used.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/7e7a12ea9d85a9f76ca16a3efb71f262dee46ab1.1693889988.git.jpoimboe@kernel.org
Make the SBPB check more robust against the (possible) case where future
HW has SRSO fixed but doesn't have the SRSO_NO bit set.
Fixes: 1b5277c0ea ("x86/srso: Add SRSO_NO support")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/cee5050db750b391c9f35f5334f8ff40e66c01b9.1693889988.git.jpoimboe@kernel.org
Sanitize the microcode scan loop, fixup printks and move the loading
function for builtin microcode next to the place where it is used and mark
it __init.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115902.389400871@linutronix.de
so it becomes less obfuscated and rename it because there is nothing
generic about it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115902.330295409@linutronix.de
Mixed steppings aren't supported on Intel CPUs. Only one microcode patch
is required for the entire system. The caching of microcode blobs which
match the family and model is therefore pointless and in fact is
dysfunctional as CPU hotplug updates use only a single microcode blob,
i.e. the one where *intel_ucode_patch points to.
Remove the microcode cache and make it an AMD local feature.
[ tglx:
- save only at the end. Otherwise random microcode ends up in the
pointer for early loading
- free the ucode patch pointer in save_microcode_patch() only
after kmemdup() has succeeded, as reported by Andrew Cooper ]
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211722.404362809@linutronix.de
32-bit loads microcode before paging is enabled. The commit which
introduced that has zero justification in the changelog. The cover
letter has slightly more content, but it does not give any technical
justification either:
"The problem in current microcode loading method is that we load a
microcode way, way too late; ideally we should load it before turning
paging on. This may only be practical on 32 bits since we can't get
to 64-bit mode without paging on, but we should still do it as early
as at all possible."
Handwaving word salad with zero technical content.
Someone claimed in an offlist conversation that this is required for
curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires
an microcode update in order to make the usage of PSE safe. But during
early boot, PSE is completely irrelevant and it is evaluated way later.
Neither is it relevant for the AP on single core HT enabled CPUs as the
microcode loading on the AP is not doing anything.
On dual core CPUs there is a theoretical problem if a split of an
executable large page between enabling paging including PSE and loading
the microcode happens. But that's only theoretical, it's practically
irrelevant because the affected dual core CPUs are 64bit enabled and
therefore have paging and PSE enabled before loading the microcode on
the second core. So why would it work on 64-bit but not on 32-bit?
The erratum:
"AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is
Split Into 4-Kbyte Pages
Problem: If software clears the PS (page size) bit in a present PDE
(page directory entry), that will cause linear addresses mapped through
this PDE to use 4-KByte pages instead of using a large page after old
TLB entries are invalidated. Due to this erratum, if a code fetch uses
this PDE before the TLB entry for the large page is invalidated then it
may fetch from a different physical address than specified by either the
old large page translation or the new 4-KByte page translation. This
erratum may also cause speculative code fetches from incorrect addresses."
The practical relevance for this is exactly zero because there is no
splitting of large text pages during early boot-time, i.e. between paging
enable and microcode loading, and neither during CPU hotplug.
IOW, this load microcode before paging enable is yet another voodoo
programming solution in search of a problem. What's worse is that it causes
at least two serious problems:
1) When stackprotector is enabled, the microcode loader code has the
stackprotector mechanics enabled. The read from the per CPU variable
__stack_chk_guard is always accessing the virtual address either
directly on UP or via %fs on SMP. In physical address mode this
results in an access to memory above 3GB. So this works by chance as
the hardware returns the same value when there is no RAM at this
physical address. When there is RAM populated above 3G then the read
is by chance the same as nothing changes that memory during the very
early boot stage. That's not necessarily true during runtime CPU
hotplug.
2) When function tracing is enabled, the relevant microcode loader
functions and the functions invoked from there will call into the
tracing code and evaluate global and per CPU variables in physical
address mode. What could potentially go wrong?
Cure this and move the microcode loading after the early paging enable, use
the new temporary initrd mapping and remove the gunk in the microcode
loader which is required to handle physical address mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
Building with GCC 11.x results in the following warning:
arch/x86/kernel/cpu/microcode/amd.c: In function ‘find_blobs_in_containers’:
arch/x86/kernel/cpu/microcode/amd.c:504:58: error: ‘h.bin’ directive output may be truncated writing 5 bytes into a region of size between 1 and 7 [-Werror=format-truncation=]
arch/x86/kernel/cpu/microcode/amd.c:503:17: note: ‘snprintf’ output between 35 and 41 bytes into a destination of size 36
The issue is that GCC does not know that the family can only be a byte
(it ultimately comes from CPUID). Suggest the right size to the compiler
by marking the argument as char-size ("hh"). While at it, instead of
using the slightly more obscure precision specifier use the width with
zero padding (over 23000 occurrences in kernel sources, vs 500 for
the idiom using the precision).
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Closes: https://lore.kernel.org/oe-kbuild-all/202308252255.2HPJ6x5Q-lkp@intel.com/
Link: https://lore.kernel.org/r/20231016224858.2829248-1-pbonzini@redhat.com
In x86, hardware uses RMID to identify a monitoring group. When a user
creates a monitor group these details are not visible. These details
can help resctrl debugging.
Add RMID(mon_hw_id) to the monitor groups display in the resctrl interface.
Users can see these details when resctrl is mounted with "-o debug" option.
Add RFTYPE_MON_BASE that complements existing RFTYPE_CTRL_BASE and
represents files belonging to monitoring groups.
Other architectures do not use "RMID". Use the name mon_hw_id to refer
to "RMID" in an effort to keep the naming generic.
For example:
$cat /sys/fs/resctrl/mon_groups/mon_grp1/mon_hw_id
3
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-10-babu.moger@amd.com
Files unique to monitoring groups have the RFTYPE_MON flag. When a new
monitoring group is created the resctrl files with flags RFTYPE_BASE
(files common to all resource groups) and RFTYPE_MON (files unique to
monitoring groups) are created to support interacting with the new
monitoring group.
A resource group can support both monitoring and control, also termed
a CTRL_MON resource group. CTRL_MON groups should get both monitoring
and control resctrl files but that is not the case. Only the
RFTYPE_BASE and RFTYPE_CTRL files are created for CTRL_MON groups.
Ensure that files with the RFTYPE_MON flag are created for CTRL_MON groups.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-9-babu.moger@amd.com
In x86, hardware uses CLOSID to identify a control group. When a user
creates a control group this information is not visible to the user. It
can help resctrl debugging.
Add CLOSID(ctrl_hw_id) to the control groups display in the resctrl
interface. Users can see this detail when resctrl is mounted with the
"-o debug" option.
Other architectures do not use "CLOSID". Use the names ctrl_hw_id to refer
to "CLOSID" in an effort to keep the naming generic.
For example:
$cat /sys/fs/resctrl/ctrl_grp1/ctrl_hw_id
1
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-8-babu.moger@amd.com
Add "-o debug" option to mount resctrl filesystem in debug mode. When
in debug mode resctrl displays files that have the new RFTYPE_DEBUG flag
to help resctrl debugging.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-7-babu.moger@amd.com
The default resource group and its files are created during kernel init
time. Upcoming changes will make some resctrl files optional based on
a mount parameter. If optional files are to be added to the default
group based on the mount option, then each new file needs to be created
separately and call kernfs_activate() again.
Create all files of the default resource group during resctrl mount,
destroyed during unmount, to avoid scattering resctrl file addition
across two separate code flows.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-6-babu.moger@amd.com
rdt_enable_ctx() enables the features provided during resctrl mount.
Additions to rdt_enable_ctx() are required to also modify error paths
of rdt_enable_ctx() callers to ensure correct unwinding if errors
are encountered after calling rdt_enable_ctx(). This is error prone.
Introduce rdt_disable_ctx() to refactor the error unwinding of
rdt_enable_ctx() to simplify future additions. This also simplifies
cleanup in rdt_kill_sb().
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-5-babu.moger@amd.com
resctrl associates rftype flags with its files so that files can be chosen
based on the resource, whether it is info or base, and if it is control
or monitor type file. These flags use the RF_ as well as RFTYPE_ prefixes.
Change the prefix to RFTYPE_ for all these flags to be consistent.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-4-babu.moger@amd.com
The rftype flags are bitmaps used for adding files under the resctrl
filesystem. Some of these bitmap defines have one extra level of
indirection which is not necessary.
Drop the RF_* defines and simplify the macros.
[ bp: Massage commit message. ]
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-3-babu.moger@amd.com
The resctrl task assignment for monitor or control group needs to be
done one at a time. For example:
$mount -t resctrl resctrl /sys/fs/resctrl/
$mkdir /sys/fs/resctrl/ctrl_grp1
$echo 123 > /sys/fs/resctrl/ctrl_grp1/tasks
$echo 456 > /sys/fs/resctrl/ctrl_grp1/tasks
$echo 789 > /sys/fs/resctrl/ctrl_grp1/tasks
This is not user-friendly when dealing with hundreds of tasks.
Support multiple task assignment in one command with tasks ids separated
by commas. For example:
$echo 123,456,789 > /sys/fs/resctrl/ctrl_grp1/tasks
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Tan Shaopeng <tan.shaopeng@jp.fujitsu.com>
Link: https://lore.kernel.org/r/20231017002308.134480-2-babu.moger@amd.com
Currently, all valid MCA_ADDR values are assumed to be usable on AMD
systems. However, this is not correct in most cases. Notifiers expecting
usable addresses may then operate on inappropriate values.
Define a helper function to do AMD-specific checks for a usable memory
address. List out all known cases.
[ bp: Tone down the capitalized words. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230613141142.36801-3-yazen.ghannam@amd.com
Define helper functions for legacy and SMCA systems in order to reuse
individual checks in later changes.
Describe what each function is checking for, and correct the XEC bitmask
for SMCA.
No functional change intended.
[ bp: Use "else in amd_mce_is_memory_error() to make the conditional
balanced, for readability. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shuai Xue <xueshuai@linux.alibaba.com>
Link: https://lore.kernel.org/r/20230613141142.36801-2-yazen.ghannam@amd.com
Add the interface in resctrl FS to show if sparse cache allocation
bit masks are supported on the platform. Reading the file returns
either a "1" if non-contiguous 1s are supported and "0" otherwise.
The file path is /sys/fs/resctrl/info/{resource}/sparse_masks, where
{resource} can be either "L2" or "L3".
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Peter Newman <peternewman@google.com>
Link: https://lore.kernel.org/r/7300535160beba41fd8aa073749ec1ee29b4621f.1696934091.git.maciej.wieczor-retman@intel.com
The setting for non-contiguous 1s support in Intel CAT is
hardcoded to false. On these systems, writing non-contiguous
1s into the schemata file will fail before resctrl passes
the value to the hardware.
In Intel CAT CPUID.0x10.1:ECX[3] and CPUID.0x10.2:ECX[3] stopped
being reserved and now carry information about non-contiguous 1s
value support for L3 and L2 cache respectively. The CAT
capacity bitmask (CBM) supports a non-contiguous 1s value if
the bit is set.
The exception are Haswell systems where non-contiguous 1s value
support needs to stay disabled since they can't make use of CPUID
for Cache allocation.
Originally-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Peter Newman <peternewman@google.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Peter Newman <peternewman@google.com>
Link: https://lore.kernel.org/r/1849b487256fe4de40b30f88450cba3d9abc9171.1696934091.git.maciej.wieczor-retman@intel.com
Fix erratum #1485 on Zen4 parts where running with STIBP disabled can
cause an #UD exception. The performance impact of the fix is negligible.
Reported-by: René Rebe <rene@exactcode.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: René Rebe <rene@exactcode.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/D99589F4-BC5D-430B-87B2-72C20370CF57@exactcode.com
The kernel test robot reported kernel-doc warnings here:
arch/x86/kernel/cpu/resctrl/rdtgroup.c:915: warning: Function parameter or member 'of' not described in 'rdt_bit_usage_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:915: warning: Function parameter or member 'seq' not described in 'rdt_bit_usage_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:915: warning: Function parameter or member 'v' not described in 'rdt_bit_usage_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1144: warning: Function parameter or member 'type' not described in '__rdtgroup_cbm_overlaps'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1224: warning: Function parameter or member 'rdtgrp' not described in 'rdtgroup_mode_test_exclusive'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1261: warning: Function parameter or member 'of' not described in 'rdtgroup_mode_write'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1261: warning: Function parameter or member 'buf' not described in 'rdtgroup_mode_write'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1261: warning: Function parameter or member 'nbytes' not described in 'rdtgroup_mode_write'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1261: warning: Function parameter or member 'off' not described in 'rdtgroup_mode_write'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1370: warning: Function parameter or member 'of' not described in 'rdtgroup_size_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1370: warning: Function parameter or member 's' not described in 'rdtgroup_size_show'
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1370: warning: Function parameter or member 'v' not described in 'rdtgroup_size_show'
The first two functions are missing an argument description while the
other three are file callbacks and don't require a kernel-doc comment.
Closes: https://lore.kernel.org/oe-kbuild-all/202310070434.mD8eRNAz-lkp@intel.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Newman <peternewman@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20231011064843.246592-1-maciej.wieczor-retman@intel.com
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)
Remove sentinel element from sld_sysctl and itmt_kern_table. This
removal is safe because register_sysctl_init and register_sysctl
implicitly use the array size in addition to checking for the sentinel.
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> # for x86
Signed-off-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Provide debug files which dump the topology related information of
cpuinfo_x86. This is useful to validate the upcoming conversion of the
topology evaluation for correctness or bug compatibility.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.353191313@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width and fixup a few related usage sites for consistency sake.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.054064391@linutronix.de
The topology IDs which identify the LLC and L2 domains clearly belong to
the per CPU topology information.
Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU
data and the related exports.
This also paves the way to do proper topology evaluation during early boot
because it removes the only per CPU dependency for that.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
Yet another topology related data pair. Rename logical_proc_id to
logical_pkg_id so it fits the common naming conventions.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.745139505@linutronix.de
cpuinfo_x86::x86_coreid_bits is only used by the AMD numa topology code. No
point in evaluating it on non AMD systems.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.687588373@linutronix.de
Rename it to core_id and stick it to the other ID fields.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.566519388@linutronix.de
Rename it to pkg_id which is the terminology used in the kernel.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.329006989@linutronix.de
The topology related information is randomly scattered across cpuinfo_x86.
Create a new structure cpuinfo_topo and move in a first step initial_apicid
and apicid into it.
Aside of being better readable this is in preparation for replacing the
horribly fragile CPU topology evaluation code further down the road.
Consolidate APIC ID fields to u32 as that represents the hardware type.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.269787744@linutronix.de
Hygon processors with a model ID > 3 have CPUID leaf 0xB correctly
populated and don't need the fixed package ID shift workaround. The fixup
is also incorrect when running in a guest.
Fixes: e0ceeae708 ("x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors")
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/tencent_594804A808BD93A4EBF50A994F228E3A7F07@qq.com
Link: https://lore.kernel.org/r/20230814085112.089607918@linutronix.de
The kernel test robot reported kernel-doc warnings here:
monitor.c:34: warning: Cannot understand * @rmid_free_lru A least recently used list of free RMIDs on line 34 - I thought it was a doc line
monitor.c:41: warning: Cannot understand * @rmid_limbo_count count of currently unused but (potentially) on line 41 - I thought it was a doc line
monitor.c:50: warning: Cannot understand * @rmid_entry - The entry in the limbo and free lists. on line 50 - I thought it was a doc line
We don't have a syntax for documenting individual data items via
kernel-doc, so remove the "/**" kernel-doc markers and add a hyphen
for consistency.
Fixes: 6a445edce6 ("x86/intel_rdt/cqm: Add RDT monitoring initialization")
Fixes: 24247aeeab ("x86/intel_rdt/cqm: Improve limbo list processing")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20231006235132.16227-1-rdunlap@infradead.org
c->x86_cache_alignment is initialized from c->x86_clflush_size.
However, commit fbf6449f84 moved c->x86_clflush_size initialization
to later in boot without moving the c->x86_cache_alignment assignment:
fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach")
This presumably left c->x86_cache_alignment set to zero for longer
than it should be.
The result was an oops on 32-bit kernels while accessing a pointer
at 0x20. The 0x20 came from accessing a structure member at offset
0x10 (buffer->cpumask) from a ZERO_SIZE_PTR=0x10. kmalloc() can
evidently return ZERO_SIZE_PTR when it's given 0 as its alignment
requirement.
Move the c->x86_cache_alignment initialization to be after
c->x86_clflush_size has an actual value.
Fixes: fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20231002220045.1014760-1-dave.hansen@linux.intel.com
The SGX EPC reclaimer (ksgxd) may reclaim the SECS EPC page for an
enclave and set secs.epc_page to NULL. The SECS page is used for EAUG
and ELDU in the SGX page fault handler. However, the NULL check for
secs.epc_page is only done for ELDU, not EAUG before being used.
Fix this by doing the same NULL check and reloading of the SECS page as
needed for both EAUG and ELDU.
The SECS page holds global enclave metadata. It can only be reclaimed
when there are no other enclave pages remaining. At that point,
virtually nothing can be done with the enclave until the SECS page is
paged back in.
An enclave can not run nor generate page faults without a resident SECS
page. But it is still possible for a #PF for a non-SECS page to race
with paging out the SECS page: when the last resident non-SECS page A
triggers a #PF in a non-resident page B, and then page A and the SECS
both are paged out before the #PF on B is handled.
Hitting this bug requires that race triggered with a #PF for EAUG.
Following is a trace when it happens.
BUG: kernel NULL pointer dereference, address: 0000000000000000
RIP: 0010:sgx_encl_eaug_page+0xc7/0x210
Call Trace:
? __kmem_cache_alloc_node+0x16a/0x440
? xa_load+0x6e/0xa0
sgx_vma_fault+0x119/0x230
__do_fault+0x36/0x140
do_fault+0x12f/0x400
__handle_mm_fault+0x728/0x1110
handle_mm_fault+0x105/0x310
do_user_addr_fault+0x1ee/0x750
? __this_cpu_preempt_check+0x13/0x20
exc_page_fault+0x76/0x180
asm_exc_page_fault+0x27/0x30
Fixes: 5a90d2c3f5 ("x86/sgx: Support adding of pages to an initialized enclave")
Signed-off-by: Haitao Huang <haitao.huang@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20230728051024.33063-1-haitao.huang%40linux.intel.com
Instead of setting x86_virt_bits to a possibly-correct value and then
correcting it later, do all the necessary checks before setting it.
At this point, the #VC handler references boot_cpu_data.x86_virt_bits,
and in the previous version, it would be triggered by the CPUIDs between
the point at which it is set to 48 and when it is set to the correct
value.
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Adam Dunlap <acdunlap@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jacob Xu <jacobhxu@google.com>
Link: https://lore.kernel.org/r/20230912002703.3924521-3-acdunlap@google.com
When SVM is disabled by BIOS, one cannot use KVM but the
SVM feature is still shown in the output of /proc/cpuinfo.
On Intel machines, VMX is cleared by init_ia32_feat_ctl(),
so do the same on AMD and Hygon processors.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230921114940.957141-1-pbonzini@redhat.com
If the user has requested no SRSO mitigation, other mitigations can use
the lighter-weight SBPB instead of IBPB.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/b20820c3cfd1003171135ec8d762a0b957348497.1693889988.git.jpoimboe@kernel.org
To support live migration, the hypervisor sets the "lowest common
denominator" of features. Probing the microcode isn't allowed because
any detected features might go away after a migration.
As Andy Cooper states:
"Linux must not probe microcode when virtualised. What it may see
instantaneously on boot (owing to MSR_PRED_CMD being fully passed
through) is not accurate for the lifetime of the VM."
Rely on the hypervisor to set the needed IBPB_BRTYPE and SBPB bits.
Fixes: 1b5277c0ea ("x86/srso: Add SRSO_NO support")
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/3938a7209606c045a3f50305d201d840e8c834c7.1693889988.git.jpoimboe@kernel.org
Booting with mitigations=off incorrectly prevents the
X86_FEATURE_{IBPB_BRTYPE,SBPB} CPUID bits from getting set.
Also, future CPUs without X86_BUG_SRSO might still have IBPB with branch
type prediction flushing, in which case SBPB should be used instead of
IBPB. The current code doesn't allow for that.
Also, cpu_has_ibpb_brtype_microcode() has some surprising side effects
and the setting of these feature bits really doesn't belong in the
mitigation code anyway. Move it to earlier.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/869a1709abfe13b673bdd10c2f4332ca253a40bc.1693889988.git.jpoimboe@kernel.org
Reading the 'spec_rstack_overflow' sysfs file can trigger an unnecessary
MSR write, and possibly even a (handled) exception if the microcode
hasn't been updated.
Avoid all that by just checking X86_FEATURE_IBPB_BRTYPE instead, which
gets set by srso_select_mitigation() if the updated microcode exists.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/27d128899cb8aee9eb2b57ddc996742b0c1d776b.1693889988.git.jpoimboe@kernel.org
Another major aspect of supporting running of 32bit processes is the
ability to access 32bit syscalls. Such syscalls can be invoked by
using the legacy int 0x80 handler and sysenter/syscall instructions.
If IA32 emulation is disabled ensure that each of those 3 distinct
mechanisms are also disabled. For int 0x80 a #GP exception would be
generated since the respective descriptor is not going to be loaded at
all. Invoking sysenter will also result in a #GP since IA32_SYSENTER_CS
contains an invalid segment. Finally, syscall instruction cannot really
be disabled so it's configured to execute a minimal handler.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230623111409.3047467-6-nik.borisov@suse.com
The SYSCALL instruction cannot really be disabled in compatibility mode.
The best that can be done is to configure the CSTAR msr to point to a
minimal handler. Currently this handler has a rather misleading name -
ignore_sysret() as it's not really doing anything with sysret.
Give it a more descriptive name.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230623111409.3047467-3-nik.borisov@suse.com
fix a ld.lld linker (in)compatibility quirk and make the x86 SMP init code a bit
more conservative to fix kexec() lockups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmT97boRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jObA//X7nug+d+IMLIs+c4579z4ZhkltMRxJVI
Btf8sdHpwgTUtKaOLmJnGiJ7f0GK5NtoaNtGUJF28aQETVOhco0Fvg/R8k1FE2Tc
CJqw6oy2FjVqD9qzZPCXh6QCvTtGjN5GF+xmoUbf7eZ9U8IVvOxBG+7yDMorQw3P
zzjIccLLg/aDvNLN/yZD2oqw6UGHZuh/Qr/0Q4PkZ7zL+yWV8EC+HOx3rlQklq0x
hh6YMwa4LGr3przUObHsfNS11EDzLDhg2WtTQMr12vlnpUB2eXnXWLklr6rpWjcz
qJiMxkrEkygB7seXnuQ0b4KHN/17zdkJ+t6vZoznUTXs1ohIDLWdiNTSl03qCs9B
V98a1x3MPT6aro9O/5ywyAJwPb0hvsg2S0ODFWab0Z3oRUbIG/k6dTEYlP7qZw8v
EFMtLy6M2EILXetj8q2ZGcA0rKz7pj/z9SosWDzqNj76w7xGwDKrSWoKJckkCwG+
j+ycBuKfrpxVYOF4ywvONSf35QTIW8BR0sM9Lg1GZuwaeincFwLf0cmS4ljGRyZ1
Vsi0SfpIgVQkeY/17onTa1C5X6c2wIE9nq253M58Xnc9B2EWpYImr+4PVZk6s4GI
GExvdPC/rIIwYa0LmvYTTlpHEd7f5qIAhfcEtMAuGSjVDLvmdDGFkaU7TgJ6Jcw2
D12wKSAAgPU=
=S38E
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Fix preemption delays in the SGX code, remove unnecessarily
UAPI-exported code, fix a ld.lld linker (in)compatibility quirk and
make the x86 SMP init code a bit more conservative to fix kexec()
lockups"
* tag 'x86-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Break up long non-preemptible delays in sgx_vepc_release()
x86: Remove the arch_calc_vm_prot_bits() macro from the UAPI
x86/build: Fix linker fill bytes quirk/incompatibility for ld.lld
x86/smp: Don't send INIT to non-present and non-booted CPUs
On large enclaves we hit the softlockup warning with following call trace:
xa_erase()
sgx_vepc_release()
__fput()
task_work_run()
do_exit()
The latency issue is similar to the one fixed in:
8795359e35 ("x86/sgx: Silence softlockup detection when releasing large enclaves")
The test system has 64GB of enclave memory, and all is assigned to a single VM.
Release of 'vepc' takes a longer time and causes long latencies, which triggers
the softlockup warning.
Add cond_resched() to give other tasks a chance to run and reduce
latencies, which also avoids the softlockup detector.
[ mingo: Rewrote the changelog. ]
Fixes: 540745ddbc ("x86/sgx: Introduce virtual EPC for use by KVM guests")
Reported-by: Yu Zhang <yu.zhang@ionos.com>
Signed-off-by: Jack Wang <jinpu.wang@ionos.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Yu Zhang <yu.zhang@ionos.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Haitao Huang <haitao.huang@linux.intel.com>
Cc: stable@vger.kernel.org
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmT0EE8THHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXg5FCACGJ6n2ikhtRHAENHIVY/mTh+HbhO07
ERzjADfqKF43u1Nt9cslgT4MioqwLjQsAu/A0YcJgVxVSOtg7dnbDmurRAjrGT/3
iKqcVvnaiwSV44TkF8evpeMttZSOg29ImmpyQjoZJJvDMfpxleEK53nuKB9EsjKL
Mz/0gSPoNc79bWF+85cVhgPnGIh9nBarxHqVsuWjMhc+UFhzjf9mOtk34qqPfJ1Q
4RsKGEjkVkeXoG6nGd6Gl/+8WoTpenOZQLchhInocY+k9FlAzW1Kr+ICLDx+Topw
8OJ6fv2rMDOejT9aOaA3/imf7LMer0xSUKb6N0sqQAQX8KzwcOYyKtQJ
=rC/v
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20230902' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- Support for SEV-SNP guests on Hyper-V (Tianyu Lan)
- Support for TDX guests on Hyper-V (Dexuan Cui)
- Use SBRM API in Hyper-V balloon driver (Mitchell Levy)
- Avoid dereferencing ACPI root object handle in VMBus driver (Maciej
Szmigiero)
- A few misecllaneous fixes (Jiapeng Chong, Nathan Chancellor, Saurabh
Sengar)
* tag 'hyperv-next-signed-20230902' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (24 commits)
x86/hyperv: Remove duplicate include
x86/hyperv: Move the code in ivm.c around to avoid unnecessary ifdef's
x86/hyperv: Remove hv_isolation_type_en_snp
x86/hyperv: Use TDX GHCI to access some MSRs in a TDX VM with the paravisor
Drivers: hv: vmbus: Bring the post_msg_page back for TDX VMs with the paravisor
x86/hyperv: Introduce a global variable hyperv_paravisor_present
Drivers: hv: vmbus: Support >64 VPs for a fully enlightened TDX/SNP VM
x86/hyperv: Fix serial console interrupts for fully enlightened TDX guests
Drivers: hv: vmbus: Support fully enlightened TDX guests
x86/hyperv: Support hypercalls for fully enlightened TDX guests
x86/hyperv: Add hv_isolation_type_tdx() to detect TDX guests
x86/hyperv: Fix undefined reference to isolation_type_en_snp without CONFIG_HYPERV
x86/hyperv: Add missing 'inline' to hv_snp_boot_ap() stub
hv: hyperv.h: Replace one-element array with flexible-array member
Drivers: hv: vmbus: Don't dereference ACPI root object handle
x86/hyperv: Add hyperv-specific handling for VMMCALL under SEV-ES
x86/hyperv: Add smp support for SEV-SNP guest
clocksource: hyper-v: Mark hyperv tsc page unencrypted in sev-snp enlightened guest
x86/hyperv: Use vmmcall to implement Hyper-V hypercall in sev-snp enlightened guest
drivers: hv: Mark percpu hvcall input arg page unencrypted in SEV-SNP enlightened guest
...
* Fix PKRU covert channel
* Fix -Wmissing-variable-declarations warning for ia32_xyz_class
* Fix kernel-doc annotation warning
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTyK2sACgkQaDWVMHDJ
krCPyA//WbT65hhGZt5UHayoW3Cv8NmS4kRf6FTVMmt1yIvbOtVmWVZeOGMypprC
jYBPOdTf1SdoUxeD1cTTd/rtbYknczaBLC5VGilGb2/663yQl9ThT3ePc6OgUpPW
28ItLslfHGchHbrOgCgUK8Aiv8xRdfNUJoByMTOoce6eGUQsgYaNOq74z1YaLsZ4
afbitcd/vWO9eJfW5DNl26rIP+ksOgA/Iue8uRiEczoPltnbUxGGLCtuuR9B2Xxi
FqfttvcnUy9yFJBnELx4721VtTcmK4Dq5O/ZoJnmVQqRPY9aXpkbwZnH9co8r/uh
GueQj30l6VhEO6XnwPvjsOghXI2vOMrxlL3zGMw5y6pjfUWa4W6f33EV6mByYfml
dfPTXIz9K1QxznHtk6xVhn1X8CFw7L1L7CC/2CPQPETiuqyjWrHqvFBXcsWpKq4N
1GjnpoveNZmWcE7UY9qEHAXGh7ndI+EIux/0WfJJHOE/fzCr06GphQdxNwPGdi5O
T3JkZf6R4GBvfi6e0F6Qn2B02sDl18remmAMi9bAn/M31g+mvAoHqKLlI9EzAGGz
91PzJdHecdvalU6zsCKqi0ETzq11WG7zCfSXs+jeHBe1jsUITpcZCkpVi2pGA2aq
X7qLjJyW+Sx0hdE2IWFhCOfiwGFpXxfegCl1uax3HrZg6rrORbw=
=prt2
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2023-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Dave Hansen:
"The most important fix here adds a missing CPU model to the recent
Gather Data Sampling (GDS) mitigation list to ensure that mitigations
are available on that CPU.
There are also a pair of warning fixes, and closure of a covert
channel that pops up when protection keys are disabled.
Summary:
- Mark all Skylake CPUs as vulnerable to GDS
- Fix PKRU covert channel
- Fix -Wmissing-variable-declarations warning for ia32_xyz_class
- Fix kernel-doc annotation warning"
* tag 'x86-urgent-2023-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu/xstate: Fix PKRU covert channel
x86/irq/i8259: Fix kernel-doc annotation warning
x86/speculation: Mark all Skylake CPUs as vulnerable to GDS
x86/audit: Fix -Wmissing-variable-declarations warning for ia32_xyz_class
Here is a small set of driver core updates and additions for 6.6-rc1.
Included in here are:
- stable kernel documentation updates
- class structure const work from Ivan on various subsystems
- kernfs tweaks
- driver core tests!
- kobject sanity cleanups
- kobject structure reordering to save space
- driver core error code handling fixups
- other minor driver core cleanups
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZPH77Q8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ylZMACePk8SitfaJc6FfFf5I7YK7Nq0V8MAn0nUjgsR
i8NcNpu/Yv4HGrDgTdh/
=PJbk
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is a small set of driver core updates and additions for 6.6-rc1.
Included in here are:
- stable kernel documentation updates
- class structure const work from Ivan on various subsystems
- kernfs tweaks
- driver core tests!
- kobject sanity cleanups
- kobject structure reordering to save space
- driver core error code handling fixups
- other minor driver core cleanups
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (32 commits)
driver core: Call in reversed order in device_platform_notify_remove()
driver core: Return proper error code when dev_set_name() fails
kobject: Remove redundant checks for whether ktype is NULL
kobject: Add sanity check for kset->kobj.ktype in kset_register()
drivers: base: test: Add missing MODULE_* macros to root device tests
drivers: base: test: Add missing MODULE_* macros for platform devices tests
drivers: base: Free devm resources when unregistering a device
drivers: base: Add basic devm tests for platform devices
drivers: base: Add basic devm tests for root devices
kernfs: fix missing kernfs_iattr_rwsem locking
docs: stable-kernel-rules: mention that regressions must be prevented
docs: stable-kernel-rules: fine-tune various details
docs: stable-kernel-rules: make the examples for option 1 a proper list
docs: stable-kernel-rules: move text around to improve flow
docs: stable-kernel-rules: improve structure by changing headlines
base/node: Remove duplicated include
kernfs: attach uuid for every kernfs and report it in fsid
kernfs: add stub helper for kernfs_generic_poll()
x86/resctrl: make pseudo_lock_class a static const structure
x86/MSR: make msr_class a static const structure
...
Convert IBT selftest to asm to fix objtool warning
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTv1QQACgkQaDWVMHDJ
krAUwhAAn6TOwHJK8BSkHeiQhON1nrlP3c5cv0AyZ2NP8RYDrZrSZvhpYBJ6wgKC
Cx5CGq5nn9twYsYS3KsktLKDfR3lRdsQ7K9qtyFtYiaeaVKo+7gEKl/K+klwai8/
gninQWHk0zmSCja8Vi77q52WOMkQKapT8+vaON9EVDO8dVEi+CvhAIfPwMafuiwO
Rk4X86SzoZu9FP79LcCg9XyGC/XbM2OG9eNUTSCKT40qTTKm5y4gix687NvAlaHR
ko5MTsdl0Wfp6Qk0ohT74LnoA2c1g/FluvZIM33ci/2rFpkf9Hw7ip3lUXqn6CPx
rKiZ+pVRc0xikVWkraMfIGMJfUd2rhelp8OyoozD7DB7UZw40Q4RW4N5tgq9Fhe9
MQs3p1v9N8xHdRKl365UcOczUxNAmv4u0nV5gY/4FMC6VjldCl2V9fmqYXyzFS4/
Ogg4FSd7c2JyGFKPs+5uXyi+RY2qOX4+nzHOoKD7SY616IYqtgKoz5usxETLwZ6s
VtJOmJL0h//z0A7tBliB0zd+SQ5UQQBDC2XouQH2fNX2isJMn0UDmWJGjaHgK6Hh
8jVp6LNqf+CEQS387UxckOyj7fu438hDky1Ggaw4YqowEOhQeqLVO4++x+HITrbp
AupXfbJw9h9cMN63Yc0gVxXQ9IMZ+M7UxLtZ3Cd8/PVztNy/clA=
=3UUm
-----END PGP SIGNATURE-----
Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part of Intel's
Control-flow Enforcement Technology (CET).
CET consists of two related security features: shadow stacks and
indirect branch tracking. This series implements just the shadow stack
part of this feature, and just for userspace.
The main use case for shadow stack is providing protection against
return oriented programming attacks. It works by maintaining a
secondary (shadow) stack using a special memory type that has
protections against modification. When executing a CALL instruction,
the processor pushes the return address to both the normal stack and
to the special permission shadow stack. Upon RET, the processor pops
the shadow stack copy and compares it to the normal stack copy.
For more information, refer to the links below for the earlier
versions of this patch set"
Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/
* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
x86/shstk: Change order of __user in type
x86/ibt: Convert IBT selftest to asm
x86/shstk: Don't retry vm_munmap() on -EINTR
x86/kbuild: Fix Documentation/ reference
x86/shstk: Move arch detail comment out of core mm
x86/shstk: Add ARCH_SHSTK_STATUS
x86/shstk: Add ARCH_SHSTK_UNLOCK
x86: Add PTRACE interface for shadow stack
selftests/x86: Add shadow stack test
x86/cpufeatures: Enable CET CR4 bit for shadow stack
x86/shstk: Wire in shadow stack interface
x86: Expose thread features in /proc/$PID/status
x86/shstk: Support WRSS for userspace
x86/shstk: Introduce map_shadow_stack syscall
x86/shstk: Check that signal frame is shadow stack mem
x86/shstk: Check that SSP is aligned on sigreturn
x86/shstk: Handle signals for shadow stack
x86/shstk: Introduce routines modifying shstk
x86/shstk: Handle thread shadow stack
x86/shstk: Add user-mode shadow stack support
...
The Gather Data Sampling (GDS) vulnerability is common to all Skylake
processors. However, the "client" Skylakes* are now in this list:
https://www.intel.com/content/www/us/en/support/articles/000022396/processors.html
which means they are no longer included for new vulnerabilities here:
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
or in other GDS documentation. Thus, they were not included in the
original GDS mitigation patches.
Mark SKYLAKE and SKYLAKE_L as vulnerable to GDS to match all the
other Skylake CPUs (which include Kaby Lake). Also group the CPUs
so that the ones that share the exact same vulnerabilities are next
to each other.
Last, move SRBDS to the end of each line. This makes it clear at a
glance that SKYLAKE_X is unique. Of the five Skylakes, it is the
only "server" CPU and has a different implementation from the
clients of the "special register" hardware, making it immune to SRBDS.
This makes the diff much harder to read, but the resulting table is
worth it.
I very much appreciate the report from Michael Zhivich about this
issue. Despite what level of support a hardware vendor is providing,
the kernel very much needs an accurate and up-to-date list of
vulnerable CPUs. More reports like this are very welcome.
* Client Skylakes are CPUID 406E3/506E3 which is family 6, models
0x4E and 0x5E, aka INTEL_FAM6_SKYLAKE and INTEL_FAM6_SKYLAKE_L.
Reported-by: Michael Zhivich <mzhivich@akamai.com>
Fixes: 8974eb5882 ("x86/speculation: Add Gather Data Sampling mitigation")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
coalescing lots of silly duplicates.
* Use static_calls() instead of indirect calls for apic->foo()
* Tons of cleanups an crap removal along the way
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTvfO8ACgkQaDWVMHDJ
krAP2A//ccii/LuvtTnNEIMMR5w2rwTdHv91ancgFkC8pOeNk37Z8sSLq8tKuLFA
vgjBIysVIqunuRcNCJ+eqwIIxYfU+UGCWHppzLwO+DY3Q7o9EoTL0BgytdAqxpQQ
ntEVarqWq25QYXKFoAqbUTJ1UXa42/8HfiXAX/jvP+ACXfilkGPZre6ASxlXeOhm
XbgPuNQPmXi2WYQH9GCQEsz2Nh80hKap8upK2WbQzzJ3lXsm+xA//4klab0HCYwl
Uc302uVZozyXRMKbAlwmgasTFOLiV8KKriJ0oHoktBpWgkpdR9uv/RDeSaFR3DAl
aFmecD4k/Hqezg4yVl+4YpEn2KjxiwARCm4PMW5AV7lpWBPBHAOOai65yJlAi9U6
bP8pM0+aIx9xg7oWfsTnQ7RkIJ+GZ0w+KZ9LXFM59iu3eV1pAJE3UVyUehe/J1q9
n8OcH0UeHRlAb8HckqVm1AC7IPvfHw4OAPtUq7z3NFDwbq6i651Tu7f+i2bj31cX
77Ames+fx6WjxUjyFbJwaK44E7Qez3waztdBfn91qw+m0b+gnKE3ieDNpJTqmm5b
mKulV7KJwwS6cdqY3+Kr+pIlN+uuGAv7wGzVLcaEAXucDsVn/YAMJHY2+v97xv+n
J9N+yeaYtmSXVlDsJ6dndMrTQMmcasK1CVXKxs+VYq5Lgf+A68w=
=eoKm
-----END PGP SIGNATURE-----
Merge tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 apic updates from Dave Hansen:
"This includes a very thorough rework of the 'struct apic' handlers.
Quite a variety of them popped up over the years, especially in the
32-bit days when odd apics were much more in vogue.
The end result speaks for itself, which is a removal of a ton of code
and static calls to replace indirect calls.
If there's any breakage here, it's likely to be around the 32-bit
museum pieces that get light to no testing these days.
Summary:
- Rework apic callbacks, getting rid of unnecessary ones and
coalescing lots of silly duplicates.
- Use static_calls() instead of indirect calls for apic->foo()
- Tons of cleanups an crap removal along the way"
* tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
x86/apic: Turn on static calls
x86/apic: Provide static call infrastructure for APIC callbacks
x86/apic: Wrap IPI calls into helper functions
x86/apic: Mark all hotpath APIC callback wrappers __always_inline
x86/xen/apic: Mark apic __ro_after_init
x86/apic: Convert other overrides to apic_update_callback()
x86/apic: Replace acpi_wake_cpu_handler_update() and apic_set_eoi_cb()
x86/apic: Provide apic_update_callback()
x86/xen/apic: Use standard apic driver mechanism for Xen PV
x86/apic: Provide common init infrastructure
x86/apic: Wrap apic->native_eoi() into a helper
x86/apic: Nuke ack_APIC_irq()
x86/apic: Remove pointless arguments from [native_]eoi_write()
x86/apic/noop: Tidy up the code
x86/apic: Remove pointless NULL initializations
x86/apic: Sanitize APIC ID range validation
x86/apic: Prepare x2APIC for using apic::max_apic_id
x86/apic: Simplify X2APIC ID validation
x86/apic: Add max_apic_id member
x86/apic: Wrap APIC ID validation into an inline
...
working on. This part makes the loader core code as it is practically
enabled on pretty much every baremetal machine so there's no need to
have the Kconfig items. In addition, there are cleanups which prepare
for future feature enablement.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTskfcACgkQEsHwGGHe
VUo/hBAAiqVqdc0WASHgVYoO9mD1M2T3oHFz8ceX2pGKf/raZ5UJyit7ybWEZEWG
rWXFORRlqOKoKImQm6JhyJsu29Xmi9sTb1WNwEyT8YMdhx8v57hOch3alX7sm2BF
9eOl/77hxt7Pt8keN6gY5w5cydEgBvi8bVe8sfU3hJMwieAMH0q5syRx7fDizcVd
qoTicHRjfj5Q8BL5NXtdPEMENYPyV89DVjnUM1HVPpCkoHxmOujewgjs4gY7PsGp
qAGB1+IG3aqOWHM9SDIJp5U9tNX2huhqRTcZsNEe8qHTXCv8F8zRzK0J8giM1wed
5aAGC4AfMh/gjryXeMj1nnwoAf5TQw4dK+y+BYXIykdQDV1up+HdDtjrBmJ5Kslf
n/8uGLdLLqMQVEE2hT3r1Ft1RqVf3UwWOxzc+KASjKCj0F5djt+F2JDNGoN0sMD9
JDj3Dtvo2e1+aZlcvXWSmMCVMT0By1mbFqirEXT3i1sYwHDx23s+KwY71CdT8gx8
nbEWsaADPRynNbTAI5Z5TFq0Cohs9AUNuotRHYCc0Et5NBlzoN8yAKNW39twUDEt
a/Knq1Vnybrp18pE/rDphm+p/K261OuEXfFFVTASSlvgMnVM0UAZZZka7A0DmN+g
mvZ2A9hByFk6sELm3QeNrOdex8djeichyY7+EQ13K25wMd/YsX0=
=QXDh
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.6_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loading updates from Borislav Petkov:
"The first, cleanup part of the microcode loader reorg tglx has been
working on. The other part wasn't fully ready in time so it will
follow on later.
This part makes the loader core code as it is practically enabled on
pretty much every baremetal machine so there's no need to have the
Kconfig items.
In addition, there are cleanups which prepare for future feature
enablement"
* tag 'x86_microcode_for_v6.6_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Remove remaining references to CONFIG_MICROCODE_AMD
x86/microcode/intel: Remove pointless mutex
x86/microcode/intel: Remove debug code
x86/microcode: Move core specific defines to local header
x86/microcode/intel: Rename get_datasize() since its used externally
x86/microcode: Make reload_early_microcode() static
x86/microcode: Include vendor headers into microcode.h
x86/microcode/intel: Move microcode functions out of cpu/intel.c
x86/microcode: Hide the config knob
x86/mm: Remove unused microcode.h include
x86/microcode: Remove microcode_mutex
x86/microcode/AMD: Rip out static buffers
consumption MCEs are not delivered synchronously but still within the
same context, which can lead to erroneously increased error severity
and unneeded kernel panics
- Do not log errors caught by polling shared MCA banks as they
materialize as duplicated error records otherwise
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTsNcoACgkQEsHwGGHe
VUq4MBAApcFUWxsA8co+v235W05mqAvsb8pt4RLFCYBQ6INCKFPMwP3ShEjSgnvZ
owQdPC2j7qzUiMFeDmBn1GXoENgv/Azc1A/0AKa5tKctHrS1Z/ZvDBncydY1HzTu
o4JYRN+KQWoaf0Nz8iYgBNjblPxw057Lg4fmOyCu1F6mmWypdBjC43fGoDTdTIZd
4uhxVzS09ns1GhBpDoJbj6SXSpbOtvnMguGVrXvuhw+NBfaYpJ6Fb5gH2TrT8rWE
jd5uSOSxYVPIjt5XjLfhu2eQheecJiYIxTWbNlVRUZHgmvVgtRon5WwMVSrFxJL2
vLawaKvnHjgsOIewW0d9hEe6PVgvcUEMwQNmI86vDzCi+RGM8pbRZYqCInYyDtBd
e6W1ZsfqVBWO9LKr7T9LEMM7HlGSe8aPkaeTfmCv18+hgvEkkjXY19dcLYe+ExmW
2JvsxF08wqXPAIBDy7cN4DHWdRTd3g91Qd10Ex6bUMovifP9Jt3KXWAuX7qWPjY2
YvLASs/04z5sGNk3XB+f2EOPMJRHjHneNppQLuSBIzhOFXOHDA70aObNGfXw8oGK
fGhPTEXFJWhTH7fL7FZCwGEEARXkuOWBpIX1HNYst2zFwKNTNqzaxkxAMYwdv6j5
K30hNMrCQj912t82NWOoerPt0uRLdXDKKTJV0VJNfcP8oaA3nec=
=RMCN
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.6_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RAS updates from Borislav Petkov:
- Add a quirk for AMD Zen machines where Instruction Fetch unit poison
consumption MCEs are not delivered synchronously but still within the
same context, which can lead to erroneously increased error severity
and unneeded kernel panics
- Do not log errors caught by polling shared MCA banks as they
materialize as duplicated error records otherwise
* tag 'ras_core_for_v6.6_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE: Always save CS register on AMD Zen IF Poison errors
x86/mce: Prevent duplicate error records
- Support partial SMT enablement.
So far the sysfs SMT control only allows to toggle between SMT on and
off. That's sufficient for x86 which usually has at max two threads
except for the Xeon PHI platform which has four threads per core.
Though PowerPC has up to 16 threads per core and so far it's only
possible to control the number of enabled threads per core via a
command line option. There is some way to control this at runtime, but
that lacks enforcement and the usability is awkward.
This update expands the sysfs interface and the core infrastructure to
accept numerical values so PowerPC can build SMT runtime control for
partial SMT enablement on top.
The core support has also been provided to the PowerPC maintainers who
added the PowerPC related changes on top.
- Minor cleanups and documentation updates.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmTsj4wTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaszEADKMd/6m7/Bq7RU2OJ+IXw8yfMEF9nS
6HPrFu71a4cDufb/G8UckQOvkwdTFWD7bZ0snJe2sBDFTOtzK/inYkgPZTxlm7si
JcJmFnHKUM7OTwNZb7Tv1bd9Csz4JhggAYUw6P8CqsCmhQ+p6ECemx3bHDlYiywm
5eW2yzI9EM4dbsHPwUOvjI0WazGvAf0esSDAS8JTnhBXbd8FAckbMV+xuRPcCUK+
dBqbqr+3Nf4/wcXTro/gZIc7sEATAHH6m7zHlLVBSyVPnBxre8NLz6KciW4SezyJ
GWFnDV03mmG2KxQ2ugwI8n6M3zDJQtfEJFwW/x4t2M5RK+ka2a6G6GtCLHYOXLWR
akIuBXtTAC57BgpqzBihGej9eiC1BJ1QMa9ZK+6WDXSZtMTFOLlbwdY2/qyfxpfw
LfepWb+UMtFy5YyW84S1O5/AqpOtKD2kPTqfDjvDxWIAigispU+qwAKxcMzMjtwz
aAlf2Z/iX0R9DkRzGD2gaFG5AUsRich8RtVO7u+WDwYSsi8ywrvryiPlZrDDBkSQ
sRzdoHeXNGVY/FgkbZmEyBj4udrypymkR6ivqn6C2OrysgznSiv5NC983uS6TfJX
cVqdUv6CNYYNiNu0x0Qf0MluYT2s5c1Fa4bjCBJL+KwORwjM3+TCN9RA1KtFrW2T
G3Ta1KqI6wRonA==
=JQRJ
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug updates from Thomas Gleixner:
"Updates for the CPU hotplug core:
- Support partial SMT enablement.
So far the sysfs SMT control only allows to toggle between SMT on
and off. That's sufficient for x86 which usually has at max two
threads except for the Xeon PHI platform which has four threads per
core
Though PowerPC has up to 16 threads per core and so far it's only
possible to control the number of enabled threads per core via a
command line option. There is some way to control this at runtime,
but that lacks enforcement and the usability is awkward
This update expands the sysfs interface and the core infrastructure
to accept numerical values so PowerPC can build SMT runtime control
for partial SMT enablement on top
The core support has also been provided to the PowerPC maintainers
who added the PowerPC related changes on top
- Minor cleanups and documentation updates"
* tag 'smp-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation: core-api/cpuhotplug: Fix state names
cpu/hotplug: Remove unused function declaration cpu_set_state_online()
cpu/SMT: Fix cpu_smt_possible() comment
cpu/SMT: Allow enabling partial SMT states via sysfs
cpu/SMT: Create topology_smt_thread_allowed()
cpu/SMT: Remove topology_smt_supported()
cpu/SMT: Store the current/max number of threads
cpu/SMT: Move smt/control simple exit cases earlier
cpu/SMT: Move SMT prototypes into cpu_smt.h
cpu/hotplug: Remove dependancy against cpu_primary_thread_mask
Commit e6bcfdd75d ("x86/microcode: Hide the config knob") removed the
MICROCODE_AMD config, but left some references in defconfigs and comments,
that have no effect on any kernel build around.
Clean up those remaining config references. No functional change.
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230825141226.13566-1-lukas.bulwahn@gmail.com
In ms_hyperv_init_platform(), do not distinguish between a SNP VM with
the paravisor and a SNP VM without the paravisor.
Replace hv_isolation_type_en_snp() with
!ms_hyperv.paravisor_present && hv_isolation_type_snp().
The hv_isolation_type_en_snp() in drivers/hv/hv.c and
drivers/hv/hv_common.c can be changed to hv_isolation_type_snp() since
we know !ms_hyperv.paravisor_present is true there.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230824080712.30327-10-decui@microsoft.com
When the paravisor is present, a SNP VM must use GHCB to access some
special MSRs, including HV_X64_MSR_GUEST_OS_ID and some SynIC MSRs.
Similarly, when the paravisor is present, a TDX VM must use TDX GHCI
to access the same MSRs.
Implement hv_tdx_msr_write() and hv_tdx_msr_read(), and use the helper
functions hv_ivm_msr_read() and hv_ivm_msr_write() to access the MSRs
in a unified way for SNP/TDX VMs with the paravisor.
Do not export hv_tdx_msr_write() and hv_tdx_msr_read(), because we never
really used hv_ghcb_msr_write() and hv_ghcb_msr_read() in any module.
Update arch/x86/include/asm/mshyperv.h so that the kernel can still build
if CONFIG_AMD_MEM_ENCRYPT or CONFIG_INTEL_TDX_GUEST is not set, or
neither is set.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Tianyu Lan <tiala@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230824080712.30327-9-decui@microsoft.com
The new variable hyperv_paravisor_present is set only when the VM
is a SNP/TDX VM with the paravisor running: see ms_hyperv_init_platform().
We introduce hyperv_paravisor_present because we can not use
ms_hyperv.paravisor_present in arch/x86/include/asm/mshyperv.h:
struct ms_hyperv_info is defined in include/asm-generic/mshyperv.h, which
is included at the end of arch/x86/include/asm/mshyperv.h, but at the
beginning of arch/x86/include/asm/mshyperv.h, we would already need to use
struct ms_hyperv_info in hv_do_hypercall().
We use hyperv_paravisor_present only in include/asm-generic/mshyperv.h,
and use ms_hyperv.paravisor_present elsewhere. In the future, we'll
introduce a hypercall function structure for different VM types, and
at boot time, the right function pointers would be written into the
structure so that runtime testing of TDX vs. SNP vs. normal will be
avoided and hyperv_paravisor_present will no longer be needed.
Call hv_vtom_init() when it's a VBS VM or when ms_hyperv.paravisor_present
is true, i.e. the VM is a SNP VM or TDX VM with the paravisor.
Enhance hv_vtom_init() for a TDX VM with the paravisor.
In hv_common_cpu_init(), don't decrypt the hyperv_pcpu_input_arg
for a TDX VM with the paravisor, just like we don't decrypt the page
for a SNP VM with the paravisor.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Tianyu Lan <tiala@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230824080712.30327-7-decui@microsoft.com
When a fully enlightened TDX guest runs on Hyper-V, the UEFI firmware sets
the HW_REDUCED flag and consequently ttyS0 interrupts can't work. Fix the
issue by overriding x86_init.acpi.reduced_hw_early_init().
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230824080712.30327-5-decui@microsoft.com
Add Hyper-V specific code so that a fully enlightened TDX guest (i.e.
without the paravisor) can run on Hyper-V:
Don't use hv_vp_assist_page. Use GHCI instead.
Don't try to use the unsupported HV_REGISTER_CRASH_CTL.
Don't trust (use) Hyper-V's TLB-flushing hypercalls.
Don't use lazy EOI.
Share the SynIC Event/Message pages with the hypervisor.
Don't use the Hyper-V TSC page for now, because non-trivial work is
required to share the page with the hypervisor.
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230824080712.30327-4-decui@microsoft.com
No logic change to SNP/VBS guests.
hv_isolation_type_tdx() will be used to instruct a TDX guest on Hyper-V to
do some TDX-specific operations, e.g. for a fully enlightened TDX guest
(i.e. without the paravisor), hv_do_hypercall() should use
__tdx_hypercall() and such a guest on Hyper-V should handle the Hyper-V
Event/Message/Monitor pages specially.
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230824080712.30327-2-decui@microsoft.com
When CONFIG_HYPERV is not set, arch/x86/hyperv/ivm.c is not built (see
arch/x86/Kbuild), so 'isolation_type_en_snp' in the ivm.c is not defined,
and this failure happens:
ld: arch/x86/kernel/cpu/mshyperv.o: in function `ms_hyperv_init_platform':
arch/x86/kernel/cpu/mshyperv.c:417: undefined reference to `isolation_type_en_snp'
Fix the failure by testing hv_get_isolation_type() and
ms_hyperv.paravisor_present for a fully enlightened SNP VM: when
CONFIG_HYPERV is not set, hv_get_isolation_type() is defined as a
static inline function that always returns HV_ISOLATION_TYPE_NONE
(see include/asm-generic/mshyperv.h), so the compiler won't generate any
code for the ms_hyperv.paravisor_present and static_branch_enable().
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Closes: https://lore.kernel.org/lkml/b4979997-23b9-0c43-574e-e4a3506500ff@amd.com/
Fixes: d6e2d65244 ("x86/hyperv: Add sev-snp enlightened guest static key")
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230823032008.18186-1-decui@microsoft.com
Add Hyperv-specific handling for faults caused by VMMCALL
instructions.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-9-ltykernel@gmail.com
In the AMD SEV-SNP guest, AP needs to be started up via sev es
save area and Hyper-V requires to call HVCALL_START_VP hypercall
to pass the gpa of sev es save area with AP's vp index and VTL(Virtual
trust level) parameters. Override wakeup_secondary_cpu_64 callback
with hv_snp_boot_ap.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-8-ltykernel@gmail.com
The Instruction Fetch (IF) units on current AMD Zen-based systems do not
guarantee a synchronous #MC is delivered for poison consumption errors.
Therefore, MCG_STATUS[EIPV|RIPV] will not be set. However, the
microarchitecture does guarantee that the exception is delivered within
the same context. In other words, the exact rIP is not known, but the
context is known to not have changed.
There is no architecturally-defined method to determine this behavior.
The Code Segment (CS) register is always valid on such IF unit poison
errors regardless of the value of MCG_STATUS[EIPV|RIPV].
Add a quirk to save the CS register for poison consumption from the IF
unit banks.
This is needed to properly determine the context of the error.
Otherwise, the severity grading function will assume the context is
IN_KERNEL due to the m->cs value being 0 (the initialized value). This
leads to unnecessary kernel panics on data poison errors due to the
kernel believing the poison consumption occurred in kernel context.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230814200853.29258-1-yazen.ghannam@amd.com
Specify how is SRSO mitigated when SMT is disabled. Also, correct the
SMT check for that.
Fixes: e9fbc47b81 ("x86/srso: Disable the mitigation on unaffected configurations")
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20230814200813.p5czl47zssuej7nv@treble
The following warning is reported when frame pointers and kernel IBT are
enabled:
vmlinux.o: warning: objtool: ibt_selftest+0x11: sibling call from callable instruction with modified stack frame
The problem is that objtool interprets the indirect branch in
ibt_selftest() as a sibling call, and GCC inserts a (partial) frame
pointer prologue before it:
0000 000000000003f550 <ibt_selftest>:
0000 3f550: f3 0f 1e fa endbr64
0004 3f554: e8 00 00 00 00 call 3f559 <ibt_selftest+0x9> 3f555: R_X86_64_PLT32 __fentry__-0x4
0009 3f559: 55 push %rbp
000a 3f55a: 48 8d 05 02 00 00 00 lea 0x2(%rip),%rax # 3f563 <ibt_selftest_ip>
0011 3f561: ff e0 jmp *%rax
Note the inline asm is missing ASM_CALL_CONSTRAINT, so the 'push %rbp'
happens before the indirect branch and the 'mov %rsp, %rbp' happens
afterwards.
Simplify the generated code and make it easier to understand for both
tools and humans by moving the selftest to proper asm.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/99a7e16b97bda97bf0a04aa141d6241cd8a839a2.1680912949.git.jpoimboe@kernel.org
Similar to how it doesn't make sense to have UNTRAIN_RET have two
untrain calls, it also doesn't make sense for VMEXIT to have an extra
IBPB call.
This cures VMEXIT doing potentially unret+IBPB or double IBPB.
Also, the (SEV) VMEXIT case seems to have been overlooked.
Redefine the meaning of the synthetic IBPB flags to:
- ENTRY_IBPB -- issue IBPB on entry (was: entry + VMEXIT)
- IBPB_ON_VMEXIT -- issue IBPB on VMEXIT
And have 'retbleed=ibpb' set *BOTH* feature flags to ensure it retains
the previous behaviour and issues IBPB on entry+VMEXIT.
The new 'srso=ibpb_vmexit' option only sets IBPB_ON_VMEXIT.
Create UNTRAIN_RET_VM specifically for the VMEXIT case, and have that
check IBPB_ON_VMEXIT.
All this avoids having the VMEXIT case having to check both ENTRY_IBPB
and IBPB_ON_VMEXIT and simplifies the alternatives.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.109557833@infradead.org
Since there can only be one active return_thunk, there only needs be
one (matching) untrain_ret. It fundamentally doesn't make sense to
allow multiple untrain_ret at the same time.
Fold all the 3 different untrain methods into a single (temporary)
helper stub.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
Rename the original retbleed return thunk and untrain_ret to
retbleed_return_thunk() and retbleed_untrain_ret().
No functional changes.
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.909378169@infradead.org
Use the existing configurable return thunk. There is absolute no
justification for having created this __x86_return_thunk alternative.
To clarify, the whole thing looks like:
Zen3/4 does:
srso_alias_untrain_ret:
nop2
lfence
jmp srso_alias_return_thunk
int3
srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so
add $8, %rsp
ret
int3
srso_alias_return_thunk:
call srso_alias_safe_ret
ud2
While Zen1/2 does:
srso_untrain_ret:
movabs $foo, %rax
lfence
call srso_safe_ret (jmp srso_return_thunk ?)
int3
srso_safe_ret: // embedded in movabs instruction
add $8,%rsp
ret
int3
srso_return_thunk:
call srso_safe_ret
ud2
While retbleed does:
zen_untrain_ret:
test $0xcc, %bl
lfence
jmp zen_return_thunk
int3
zen_return_thunk: // embedded in the test instruction
ret
int3
Where Zen1/2 flush the BTB entry using the instruction decoder trick
(test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence
(srso_safe_ret()) which forces the function return instruction to
speculate into a trap (UD2). This RET will then mispredict and
execution will continue at the return site read from the top of the
stack.
Pick one of three options at boot (evey function can only ever return
once).
[ bp: Fixup commit message uarch details and add them in a comment in
the code too. Add a comment about the srso_select_mitigation()
dependency on retbleed_select_mitigation(). Add moar ifdeffery for
32-bit builds. Add a dummy srso_untrain_ret_alias() definition for
32-bit alternatives needing the symbol. ]
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
There is infrastructure to rewrite return thunks to point to any
random thunk one desires, unwrap that from CALL_THUNKS, which up to
now was the sole user of that.
[ bp: Make the thunks visible on 32-bit and add ifdeffery for the
32-bit builds. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.775293785@infradead.org
Skip the srso cmd line parsing which is not needed on Zen1/2 with SMT
disabled and with the proper microcode applied (latter should be the
case anyway) as those are not affected.
Fixes: 5a15d83488 ("x86/srso: Tie SBPB bit setting to microcode patch detection")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230813104517.3346-1-bp@alien8.de
Initially, it was thought that doing an innocuous division in the #DE
handler would take care to prevent any leaking of old data from the
divider but by the time the fault is raised, the speculation has already
advanced too far and such data could already have been used by younger
operations.
Therefore, do the innocuous division on every exit to userspace so that
userspace doesn't see any potentially old data from integer divisions in
kernel space.
Do the same before VMRUN too, to protect host data from leaking into the
guest too.
Fixes: 77245f1c3c ("x86/CPU/AMD: Do not leak quotient data after a division by 0")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230811213824.10025-1-bp@alien8.de
There is no reason to expose all of this globally. Move everything which is
not required outside of the microcode specific code to local header files
and into the respective source files.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.952876381@linutronix.de
Rename get_datasize() to intel_microcode_get_datasize() and make it an inline.
[ tglx: Make the argument typed and fix up the IFS code ]
Suggested-by: Boris Petkov <bp@alien8.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.894165745@linutronix.de
fe055896c0 ("x86/microcode: Merge the early microcode loader") left this
needlessly public. Git archaeology provided by Borislav.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.834943153@linutronix.de
Currently vendor specific headers are included explicitly when used in
common code. Instead, include the vendor specific headers in
microcode.h, and include that in all usages.
No functional change.
Suggested-by: Boris Petkov <bp@alien8.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.776541545@linutronix.de
There is really no point to have that in the CPUID evaluation code. Move it
into the Intel-specific microcode handling along with the data
structures, defines and helpers required by it. The exports need to stay
for IFS.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.719202319@linutronix.de
In reality CONFIG_MICROCODE is enabled in any reasonable configuration when
Intel or AMD support is enabled. Accommodate to reality.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.660453052@linutronix.de
leads to an EFI config table ending up unmapped
- Use the correct segment selector in the 32-bit version of getcpu() in
the vDSO
- Make sure vDSO and VVAR regions are placed in the 47-bit VA range even
on 5-level paging systems
- Add models 0x90-0x91 to the range of AMD Zenbleed-affected CPUs
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTXVWMACgkQEsHwGGHe
VUrrpg//f0BFZV4dbANuYAX47A/hhrm8n5KwV9Mjq8JDeG/TumUN/vAK9+n8outO
pLpPOoXRSCSPybXBSmI1ryVwLaDq6BJy0fYyq4kHOvBFXYKodfTNdO8Oec+le3V/
DBGnY6TQ5x1PgWuAUE9WoeGQuTN1d3Dxm0V/pG2LU/qW3mr+GlBXsSKUVjwp9/OW
JPNw1XQDFVuxT+heRLxQONPkdTxkwwKxZBDRwnSSj7chbJ/jSbnX9a5xinwBvMZY
Q6nelt/AMwAgfO2oz38y1tnR0bfd8fM08SUUgoajWWghKemZK5uNAgZZJd4tPNq6
lBonNc6jF9UGohzgQbNOAjfmDomtyxe4JYGl2SnyWcfwFzGANpcSKSbM9H91LMaI
Sh7hKykZQNGmDctbLsxvlPFgIoxWFLK1DfNeM2yQRzlayqDF8CRlDIcWXHEtYOXf
AOZFMJtOJBZjLbSeWIBW278atNG3ONWEb75kqiKRYxsX9QzvwAZYCYZH+NGe6sLO
kkCm7g3NcAItf1qrPNGZd/k9fA/+3RXEWNdjYsmegMvU8vQBPY0w4NVwGtU9LCkq
jspQxnNlVy1ayqr/TQXRhzn5+d7CQ1PLNwVsGh4S+diCEFu2aEdOhrBhS1uaujLv
5iLpmyyh0yO9aHebK/u4cciAvwVB7WuzQqWYIGzdsolrc+lbY54=
=zPFr
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v6.5_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Do not parse the confidential computing blob on non-AMD hardware as
it leads to an EFI config table ending up unmapped
- Use the correct segment selector in the 32-bit version of getcpu() in
the vDSO
- Make sure vDSO and VVAR regions are placed in the 47-bit VA range
even on 5-level paging systems
- Add models 0x90-0x91 to the range of AMD Zenbleed-affected CPUs
* tag 'x86_urgent_for_v6.5_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Enable Zenbleed fix for AMD Custom APU 0405
x86/mm: Fix VDSO and VVAR placement on 5-level paging machines
x86/linkage: Fix typo of BUILD_VDSO in asm/linkage.h
x86/vdso: Choose the right GDT_ENTRY_CPUNODE for 32-bit getcpu() on 64-bit kernel
x86/sev: Do not try to parse for the CC blob on non-AMD hardware
Commit
522b1d6921 ("x86/cpu/amd: Add a Zenbleed fix")
provided a fix for the Zen2 VZEROUPPER data corruption bug affecting
a range of CPU models, but the AMD Custom APU 0405 found on SteamDeck
was not listed, although it is clearly affected by the vulnerability.
Add this CPU variant to the Zenbleed erratum list, in order to
unconditionally enable the fallback fix until a proper microcode update
is available.
Fixes: 522b1d6921 ("x86/cpu/amd: Add a Zenbleed fix")
Signed-off-by: Cristian Ciocaltea <cristian.ciocaltea@collabora.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230811203705.1699914-1-cristian.ciocaltea@collabora.com
Alderlake N is an E-core only product using Gracemont
micro-architecture. It fits the pre-existing naming scheme perfectly
fine, adhere to it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20230807150405.686834933@infradead.org
Move them to one place so the static call conversion gets simpler.
No functional change.
[ dhansen: merge against recent x86/apic changes ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Yet another wrapper of a wrapper gone along with the outdated comment
that this compiles to a single instruction.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
No point in having a wrapper around read_apic_id().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
It's not longer used outside the source file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Under certain circumstances, an integer division by 0 which faults, can
leave stale quotient data from a previous division operation on Zen1
microarchitectures.
Do a dummy division 0/1 before returning from the #DE exception handler
in order to avoid any leaks of potentially sensitive data.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
microcode_mutex is only used by reload_store(). It has a comment saying
"to synchronize with each other". Other user of this mutex have been
removed in the commits
181b6f40e9 ("x86/microcode: Rip out the OLD_INTERFACE").
b6f86689d5 ("x86/microcode: Rip out the subsys interface gunk")
The sysfs interface does not need additional synchronisation vs itself
because it is provided as kernfs_ops::mutex which is acquired in
kernfs_fop_write_iter().
Remove the superfluous microcode_mutex.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230804075853.JF_n6GXC@linutronix.de
* Add Base GDS mitigation
* Support GDS_NO under KVM
* Fix a documentation typo
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTJh5YACgkQaDWVMHDJ
krAzAw/8DzjhAYEa7a1AodCBMNg8uNOPnLNoRPPNhaN5Iw6W3zXYDBDKT9PyjAIx
RoIM0aHx/oY9nCpK441o25oCWAAyzk6E5/+q9hMa7B4aHUGKqiDUC6L9dC8UiiSN
yvoBv4g7F81QnmyazwYI64S6vnbr4Cqe7K/mvVqQ/vbJiugD25zY8mflRV9YAuMk
Oe7Ff/mCA+I/kqyKhJE3cf3qNhZ61FsFI886fOSvIE7g4THKqo5eGPpIQxR4mXiU
Ri2JWffTaeHr2m0sAfFeLH4VTZxfAgBkNQUEWeG6f2kDGTEKibXFRsU4+zxjn3gl
xug+9jfnKN1ceKyNlVeJJZKAfr2TiyUtrlSE5d+subIRKKBaAGgnCQDasaFAluzd
aZkOYz30PCebhN+KTrR84FySHCaxnev04jqdtVGAQEDbTvyNagFUdZFGhWijJShV
l2l4A0gFSYJmPfPVuuAwOJnnZtA1sRH9oz/Sny3+z9BKloZh+Nc/+Cu9zC8SLjaU
BF3Qv2gU9HKTJ+MSy2JrGS52cONfpO5ngFHoOMilZ1KBHrfSb1eiy32PDT+vK60Y
PFEmI8SWl7bmrO1snVUCfGaHBsHJSu5KMqwBGmM4xSRzJpyvRe493xC7+nFvqNLY
vFOFc4jGeusOXgiLPpfGduppkTGcM7sy75UMLwTSLcQbDK99mus=
=ZAPY
-----END PGP SIGNATURE-----
Merge tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/gds fixes from Dave Hansen:
"Mitigate Gather Data Sampling issue:
- Add Base GDS mitigation
- Support GDS_NO under KVM
- Fix a documentation typo"
* tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Fix backwards on/off logic about YMM support
KVM: Add GDS_NO support to KVM
x86/speculation: Add Kconfig option for GDS
x86/speculation: Add force option to GDS mitigation
x86/speculation: Add Gather Data Sampling mitigation
vulnerability on AMD processors. In short, this is yet another issue
where userspace poisons a microarchitectural structure which can then be
used to leak privileged information through a side channel.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTQs1gACgkQEsHwGGHe
VUo1UA/8C34PwJveZDcerdkaxSF+WKx7AjOI/L2ws1qn9YVFA3ItFMgVuFTrlY6c
1eYKYB3FS9fVN3KzGOXGyhho6seHqfY0+8cyYupR+PVLn9rSy7GqHaIMr37FdQ2z
yb9xu26v+gsvuPEApazS6MxijYS98u71rHhmg97qsHCnUiMJ01+TaGucntukNJv8
FfwjZJvgeUiBPQ/6IeA/O0413tPPJ9weawPyW+sV1w7NlXjaUVkNXwiq/Xxbt9uI
sWwMBjFHpSnhBRaDK8W5Blee/ZfsS6qhJ4jyEKUlGtsElMnZLPHbnrbpxxqA9gyE
K+3ZhoHf/W1hhvcZcALNoUHLx0CvVekn0o41urAhPfUutLIiwLQWVbApmuW80fgC
DhPedEFu7Wp6Okj5+Bqi/XOsOOWN2WRDSzdAq10o1C+e+fzmkr6y4E6gskfz1zXU
ssD9S4+uAJ5bccS5lck4zLffsaA03nAYTlvl1KRP4pOz5G9ln6eyO20ar1WwfGAV
o5ZsTJVGQMyVA49QFkksj+kOI3chkmDswPYyGn2y8OfqYXU4Ip4eN+VkjorIAo10
zIec3Z0bCGZ9UUMylUmdtH3KAm8q0wVNoFrUkMEmO8j6nn7ew2BhwLMn4uu+nOnw
lX2AG6PNhRLVDVaNgDsWMwejaDsitQPoWRuCIAZ0kQhbeYuwfpM=
=73JY
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/srso fixes from Borislav Petkov:
"Add a mitigation for the speculative RAS (Return Address Stack)
overflow vulnerability on AMD processors.
In short, this is yet another issue where userspace poisons a
microarchitectural structure which can then be used to leak privileged
information through a side channel"
* tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/srso: Tie SBPB bit setting to microcode patch detection
x86/srso: Add a forgotten NOENDBR annotation
x86/srso: Fix return thunks in generated code
x86/srso: Add IBPB on VMEXIT
x86/srso: Add IBPB
x86/srso: Add SRSO_NO support
x86/srso: Add IBPB_BRTYPE support
x86/srso: Add a Speculative RAS Overflow mitigation
x86/bugs: Increase the x86 bugs vector size to two u32s
The SBPB bit in MSR_IA32_PRED_CMD is supported only after a microcode
patch has been applied so set X86_FEATURE_SBPB only then. Otherwise,
guests would attempt to set that bit and #GP on the MSR write.
While at it, make SMT detection more robust as some guests - depending
on how and what CPUID leafs their report - lead to cpu_smt_control
getting set to CPU_SMT_NOT_SUPPORTED but SRSO_NO should be set for any
guest incarnation where one simply cannot do SMT, for whatever reason.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reported-by: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Now that the driver core allows for struct class to be in read-only
memory, move the pseudo_lock_class structure to be declared at build
time placing it into read-only memory, instead of having to be
dynamically allocated at boot time.
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ivan Orlov <ivan.orlov0322@gmail.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230620144431.583290-6-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Setting CR4.CET is a prerequisite for utilizing any CET features, most of
which also require setting MSRs.
Kernel IBT already enables the CET CR4 bit when it detects IBT HW support
and is configured with kernel IBT. However, future patches that enable
userspace shadow stack support will need the bit set as well. So change
the logic to enable it in either case.
Clear MSR_IA32_U_CET in cet_disable() so that it can't live to see
userspace in a new kexec-ed kernel that has CR4.CET set from kernel IBT.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-39-rick.p.edgecombe%40intel.com
Applications and loaders can have logic to decide whether to enable
shadow stack. They usually don't report whether shadow stack has been
enabled or not, so there is no way to verify whether an application
actually is protected by shadow stack.
Add two lines in /proc/$PID/status to report enabled and locked features.
Since, this involves referring to arch specific defines in asm/prctl.h,
implement an arch breakout to emit the feature lines.
[Switched to CET, added to commit log]
Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-37-rick.p.edgecombe%40intel.com
injection protection (STIBP) for user processes. Enable STIBP on such
systems.
- Do not delete (but put the ref instead) of AMD MCE error thresholding
sysfs kobjects when destroying them in order not to delete the kernfs
pointer prematurely
- Restore annotation in ret_from_fork_asm() in order to fix kthread
stack unwinding from being marked as unreliable and thus breaking
livepatching
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTGLFUACgkQEsHwGGHe
VUpgDRAAm3uatlqiY2M1Gu9BMMmchTkjr2Fq06TmDQ53SGc6FqLKicltBCZsxbrm
kOrAtmw0jYPTTzqiDy8llyAt+1BC200nAKWTABKhKBrgUiD2crIIC8Rr6YycZ4tm
ueepk4CCxzh+ffcvGau2OuH05SHwQLeTNPr5Rgk4BlVPToaMdXAJChZA/JXsj4gR
3EiWV5/UnC6znzmQKN5PG+BmDrrOlsyDCJXYBVH+vQFa0Udit/rx0YZQ5ZOcD8Tn
D7Ix10pGQV/ESOsD+UFq/u1LPZvJSD2GDsMpWitrw65wnC2TF/XTxBc+pK0mbyKL
3XmH2NPlp1igv3EZ3hltXUcw6Rv8u3hX7VE5S+eQ0FRXJGjxSwoLC9ndw28oPful
FlMjrmI9SE5ojssZ6evLN0/dPXHEz8HvRgw5UTy5I+RqpelMWtML5iDIipaMwoUT
yB9JNIsufY1CM1IHiZBVLZkqIl8X8RtllbJR/RWGfYEHuiXworumgMDp9MsEFY2C
MHr9+/j9E1vU71CvjIYAaJCfWU1Ce+lYCUZ+1SxyDDe3watJKlduuAXbalmyYe0w
ExE5Wt+3ghOzwgj4OtofUivXLWMXr4IgpKliO5TrZ3lGyS3LWQv1dJstCZUnknLZ
A5D/qUSvIXkUdrJbkXrYLQJxtd0ambHc+6ymAIjtMBM8/HF0pR4=
=49ii
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v6.5_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- AMD's automatic IBRS doesn't enable cross-thread branch target
injection protection (STIBP) for user processes. Enable STIBP on such
systems.
- Do not delete (but put the ref instead) of AMD MCE error thresholding
sysfs kobjects when destroying them in order not to delete the kernfs
pointer prematurely
- Restore annotation in ret_from_fork_asm() in order to fix kthread
stack unwinding from being marked as unreliable and thus breaking
livepatching
* tag 'x86_urgent_for_v6.5_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Enable STIBP on AMD if Automatic IBRS is enabled
x86/MCE/AMD: Decrement threshold_bank refcount when removing threshold blocks
x86: Fix kthread unwind
Some architectures allow partial SMT states at boot time, ie. when not all
SMT threads are brought online.
To support that the SMT code needs to know the maximum number of SMT
threads, and also the currently configured number.
The architecture code knows the max number of threads, so have the
architecture code pass that value to cpu_smt_set_num_threads(). Note that
although topology_max_smt_threads() exists, it is not configured early
enough to be used here. As architecture, like PowerPC, allows the threads
number to be set through the kernel command line, also pass that value.
[ ldufour: Slightly reword the commit message ]
[ ldufour: Rename cpu_smt_check_topology and add a num_threads argument ]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-5-ldufour@linux.ibm.com
Add the option to flush IBPB only on VMEXIT in order to protect from
malicious guests but one otherwise trusts the software that runs on the
hypervisor.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Add the option to mitigate using IBPB on a kernel entry. Pull in the
Retbleed alternative so that the IBPB call from there can be used. Also,
if Retbleed mitigation is done using IBPB, the same mitigation can and
must be used here.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Add support for the synthetic CPUID flag which "if this bit is 1,
it indicates that MSR 49h (PRED_CMD) bit 0 (IBPB) flushes all branch
type predictions from the CPU branch predictor."
This flag is there so that this capability in guests can be detected
easily (otherwise one would have to track microcode revisions which is
impossible for guests).
It is also needed only for Zen3 and -4. The other two (Zen1 and -2)
always flush branch type predictions by default.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Add a mitigation for the speculative return address stack overflow
vulnerability found on AMD processors.
The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence. To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.
To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference. In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.
In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Load straight from the containers (initrd or builtin, for example).
There's no need to cache the patch per node.
This even simplifies the code a bit with the opportunity for more
cleanups later.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: John Allen <john.allen@amd.com>
Link: https://lore.kernel.org/r/20230720202813.3269888-1-john.allen@amd.com
Unlike Intel's Enhanced IBRS feature, AMD's Automatic IBRS does not
provide protection to processes running at CPL3/user mode, see section
"Extended Feature Enable Register (EFER)" in the APM v2 at
https://bugzilla.kernel.org/attachment.cgi?id=304652
Explicitly enable STIBP to protect against cross-thread CPL3
branch target injections on systems with Automatic IBRS enabled.
Also update the relevant documentation.
Fixes: e7862eda30 ("x86/cpu: Support AMD Automatic IBRS")
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230720194727.67022-1-kim.phillips@amd.com
AMD systems from Family 10h to 16h share MCA bank 4 across multiple CPUs.
Therefore, the threshold_bank structure for bank 4, and its threshold_block
structures, will be initialized once at boot time. And the kobject for the
shared bank will be added to each of the CPUs that share it. Furthermore,
the threshold_blocks for the shared bank will be added again to the bank's
kobject. These additions will increase the refcount for the bank's kobject.
For example, a shared bank with two blocks and shared across two CPUs will
be set up like this:
CPU0 init
bank create and add; bank refcount = 1; threshold_create_bank()
block 0 init and add; bank refcount = 2; allocate_threshold_blocks()
block 1 init and add; bank refcount = 3; allocate_threshold_blocks()
CPU1 init
bank add; bank refcount = 3; threshold_create_bank()
block 0 add; bank refcount = 4; __threshold_add_blocks()
block 1 add; bank refcount = 5; __threshold_add_blocks()
Currently in threshold_remove_bank(), if the bank is shared then
__threshold_remove_blocks() is called. Here the shared bank's kobject and
the bank's blocks' kobjects are deleted. This is done on the first call
even while the structures are still shared. Subsequent calls from other
CPUs that share the structures will attempt to delete the kobjects.
During kobject_del(), kobject->sd is removed. If the kobject is not part of
a kset with default_groups, then subsequent kobject_del() calls seem safe
even with kobject->sd == NULL.
Originally, the AMD MCA thresholding structures did not use default_groups.
And so the above behavior was not apparent.
However, a recent change implemented default_groups for the thresholding
structures. Therefore, kobject_del() will go down the sysfs_remove_groups()
code path. In this case, the first kobject_del() may succeed and remove
kobject->sd. But subsequent kobject_del() calls will give a WARNing in
kernfs_remove_by_name_ns() since kobject->sd == NULL.
Use kobject_put() on the shared bank's kobject when "removing" blocks. This
decrements the bank's refcount while keeping kobjects enabled until the
bank is no longer shared. At that point, kobject_put() will be called on
the blocks which drives their refcount to 0 and deletes them and also
decrementing the bank's refcount. And finally kobject_put() will be called
on the bank driving its refcount to 0 and deleting it.
The same example above:
CPU1 shutdown
bank is shared; bank refcount = 5; threshold_remove_bank()
block 0 put parent bank; bank refcount = 4; __threshold_remove_blocks()
block 1 put parent bank; bank refcount = 3; __threshold_remove_blocks()
CPU0 shutdown
bank is no longer shared; bank refcount = 3; threshold_remove_bank()
block 0 put block; bank refcount = 2; deallocate_threshold_blocks()
block 1 put block; bank refcount = 1; deallocate_threshold_blocks()
put bank; bank refcount = 0; threshold_remove_bank()
Fixes: 7f99cb5e60 ("x86/CPU/AMD: Use default_groups in kobj_type")
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/alpine.LRH.2.02.2205301145540.25840@file01.intranet.prod.int.rdu2.redhat.com
Gather Data Sampling (GDS) is a transient execution attack using
gather instructions from the AVX2 and AVX512 extensions. This attack
allows malicious code to infer data that was previously stored in
vector registers. Systems that are not vulnerable to GDS will set the
GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM
guests that may think they are on vulnerable systems that are, in
fact, not affected. Guests that are running on affected hosts where
the mitigation is enabled are protected as if they were running
on an unaffected system.
On all hosts that are not affected or that are mitigated, set the
GDS_NO bit.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Gather Data Sampling (GDS) is mitigated in microcode. However, on
systems that haven't received the updated microcode, disabling AVX
can act as a mitigation. Add a Kconfig option that uses the microcode
mitigation if available and disables AVX otherwise. Setting this
option has no effect on systems not affected by GDS. This is the
equivalent of setting gather_data_sampling=force.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
The Gather Data Sampling (GDS) vulnerability allows malicious software
to infer stale data previously stored in vector registers. This may
include sensitive data such as cryptographic keys. GDS is mitigated in
microcode, and systems with up-to-date microcode are protected by
default. However, any affected system that is running with older
microcode will still be vulnerable to GDS attacks.
Since the gather instructions used by the attacker are part of the
AVX2 and AVX512 extensions, disabling these extensions prevents gather
instructions from being executed, thereby mitigating the system from
GDS. Disabling AVX2 is sufficient, but we don't have the granularity
to do this. The XCR0[2] disables AVX, with no option to just disable
AVX2.
Add a kernel parameter gather_data_sampling=force that will enable the
microcode mitigation if available, otherwise it will disable AVX on
affected systems.
This option will be ignored if cmdline mitigations=off.
This is a *big* hammer. It is known to break buggy userspace that
uses incomplete, buggy AVX enumeration. Unfortunately, such userspace
does exist in the wild:
https://www.mail-archive.com/bug-coreutils@gnu.org/msg33046.html
[ dhansen: add some more ominous warnings about disabling AVX ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
A legitimate use case of the MCA infrastructure is to have the firmware
log all uncorrectable errors and also, have the OS see all correctable
errors.
The uncorrectable, UCNA errors are usually configured to be reported
through an SMI. CMCI, which is the correctable error reporting
interrupt, uses SMI too and having both enabled, leads to unnecessary
overhead.
So what ends up happening is, people disable CMCI in the wild and leave
on only the UCNA SMI.
When CMCI is disabled, the MCA infrastructure resorts to polling the MCA
banks. If a MCA MSR is shared between the logical threads, one error
ends up getting logged multiple times as the polling runs on every
logical thread.
Therefore, introduce locking on the Intel side of the polling routine to
prevent such duplicate error records from appearing.
Based on a patch by Aristeu Rozanski <aris@ruivo.org>.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Acked-by: Aristeu Rozanski <aris@ruivo.org>
Link: https://lore.kernel.org/r/20230515143225.GC4090740@cathedrallabs.org
Gather Data Sampling (GDS) is a hardware vulnerability which allows
unprivileged speculative access to data which was previously stored in
vector registers.
Intel processors that support AVX2 and AVX512 have gather instructions
that fetch non-contiguous data elements from memory. On vulnerable
hardware, when a gather instruction is transiently executed and
encounters a fault, stale data from architectural or internal vector
registers may get transiently stored to the destination vector
register allowing an attacker to infer the stale data using typical
side channel techniques like cache timing attacks.
This mitigation is different from many earlier ones for two reasons.
First, it is enabled by default and a bit must be set to *DISABLE* it.
This is the opposite of normal mitigation polarity. This means GDS can
be mitigated simply by updating microcode and leaving the new control
bit alone.
Second, GDS has a "lock" bit. This lock bit is there because the
mitigation affects the hardware security features KeyLocker and SGX.
It needs to be enabled and *STAY* enabled for these features to be
mitigated against GDS.
The mitigation is enabled in the microcode by default. Disable it by
setting gather_data_sampling=off or by disabling all mitigations with
mitigations=off. The mitigation status can be checked by reading:
/sys/devices/system/cpu/vulnerabilities/gather_data_sampling
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Add a fix for the Zen2 VZEROUPPER data corruption bug where under
certain circumstances executing VZEROUPPER can cause register
corruption or leak data.
The optimal fix is through microcode but in the case the proper
microcode revision has not been applied, enable a fallback fix using
a chicken bit.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The Control-Flow Enforcement Technology contains two related features,
one of which is Shadow Stacks. Future patches will utilize this feature
for shadow stack support in KVM, so add a CPU feature flags for Shadow
Stacks (CPUID.(EAX=7,ECX=0):ECX[bit 7]).
To protect shadow stack state from malicious modification, the registers
are only accessible in supervisor mode. This implementation
context-switches the registers with XSAVES. Make X86_FEATURE_SHSTK depend
on XSAVES.
The shadow stack feature, enumerated by the CPUID bit described above,
encompasses both supervisor and userspace support for shadow stack. In
near future patches, only userspace shadow stack will be enabled. In
expectation of future supervisor shadow stack support, create a software
CPU capability to enumerate kernel utilization of userspace shadow stack
support. This user shadow stack bit should depend on the HW "shstk"
capability and that logic will be implemented in future patches.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-9-rick.p.edgecombe%40intel.com
- Yosry has also eliminated cgroup's atomic rstat flushing.
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability.
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning.
- Lorenzo Stoakes has done some maintanance work on the get_user_pages()
interface.
- Liam Howlett continues with cleanups and maintenance work to the maple
tree code. Peng Zhang also does some work on maple tree.
- Johannes Weiner has done some cleanup work on the compaction code.
- David Hildenbrand has contributed additional selftests for
get_user_pages().
- Thomas Gleixner has contributed some maintenance and optimization work
for the vmalloc code.
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code.
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting.
- Christoph Hellwig has some cleanups for the filemap/directio code.
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the provided
APIs rather than open-coding accesses.
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings.
- John Hubbard has a series of fixes to the MM selftesting code.
- ZhangPeng continues the folio conversion campaign.
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock.
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from
128 to 8.
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management.
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code.
- Vishal Moola also has done some folio conversion work.
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJejewAKCRDdBJ7gKXxA
joggAPwKMfT9lvDBEUnJagY7dbDPky1cSYZdJKxxM2cApGa42gEA6Cl8HRAWqSOh
J0qXCzqaaN8+BuEyLGDVPaXur9KirwY=
=B7yQ
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
- Yosry Ahmed brought back some cgroup v1 stats in OOM logs
- Yosry has also eliminated cgroup's atomic rstat flushing
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning
- Lorenzo Stoakes has done some maintanance work on the
get_user_pages() interface
- Liam Howlett continues with cleanups and maintenance work to the
maple tree code. Peng Zhang also does some work on maple tree
- Johannes Weiner has done some cleanup work on the compaction code
- David Hildenbrand has contributed additional selftests for
get_user_pages()
- Thomas Gleixner has contributed some maintenance and optimization
work for the vmalloc code
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting
- Christoph Hellwig has some cleanups for the filemap/directio code
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the
provided APIs rather than open-coding accesses
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings
- John Hubbard has a series of fixes to the MM selftesting code
- ZhangPeng continues the folio conversion campaign
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment
from 128 to 8
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code
- Vishal Moola also has done some folio conversion work
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch
* tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits)
mm/hugetlb: remove hugetlb_set_page_subpool()
mm: nommu: correct the range of mmap_sem_read_lock in task_mem()
hugetlb: revert use of page_cache_next_miss()
Revert "page cache: fix page_cache_next/prev_miss off by one"
mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
mm: memcg: rename and document global_reclaim()
mm: kill [add|del]_page_to_lru_list()
mm: compaction: convert to use a folio in isolate_migratepages_block()
mm: zswap: fix double invalidate with exclusive loads
mm: remove unnecessary pagevec includes
mm: remove references to pagevec
mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
mm: remove struct pagevec
net: convert sunrpc from pagevec to folio_batch
i915: convert i915_gpu_error to use a folio_batch
pagevec: rename fbatch_count()
mm: remove check_move_unevictable_pages()
drm: convert drm_gem_put_pages() to use a folio_batch
i915: convert shmem_sg_free_table() to use a folio_batch
scatterlist: add sg_set_folio()
...
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double().
The cmpxchg128() family of functions is basically & functionally
the same as cmpxchg_double(), but with a saner interface: instead
of a 6-parameter horror that forced u128 - u64/u64-halves layout
details on the interface and exposed users to complexity,
fragility & bugs, use a natural 3-parameter interface with u128 types.
- Restructure the generated atomic headers, and add
kerneldoc comments for all of the generic atomic{,64,_long}_t
operations. Generated definitions are much cleaner now,
and come with documentation.
- Implement lock_set_cmp_fn() on lockdep, for defining an ordering
when taking multiple locks of the same type. This gets rid of
one use of lockdep_set_novalidate_class() in the bcache code.
- Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended
variable shadowing generating garbage code on Clang on certain
ARM builds.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSav3wRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gDyxAAjCHQjpolrre7fRpyiTDwqzIKT27H04vQ
zrQVlVc42WBnn9pe8LthGy43/RvYvqlZvLoLONA4fMkuYriM6nSMsoZjeUmE+6Rs
QAElQC74P5YvEBOa67VNY3/M7sj22ftDe7ODtVV8OrnPjMk1sQNRvaK025Cs3yig
8MAI//hHGNmyVAp1dPYZMJNqxGCvluReLZ4SaUJFCMrg7YgUXgCBj/5Gi07TlKxn
sT8BFCssoEW/B9FXkh59B1t6FBCZoSy4XSZfsZe0uVAUJ4XDEOO+zBgaWFCedNQT
wP323ryBgMrkzUKA8j2/o5d3QnMA1GcBfHNNlvAl/fOfrxWXzDZnOEY26YcaLMa0
YIuRF/JNbPZlt6DCUVBUEvMPpfNYi18dFN0rat1a6xL2L4w+tm55y3mFtSsg76Ka
r7L2nWlRrAGXnuA+VEPqkqbSWRUSWOv5hT2Mcyb5BqqZRsxBETn6G8GVAzIO6j6v
giyfUdA8Z9wmMZ7NtB6usxe3p1lXtnZ/shCE7ZHXm6xstyZrSXaHgOSgAnB9DcuJ
7KpGIhhSODQSwC/h/J0KEpb9Pr/5jCWmXAQ2DWnZK6ndt1jUfFi8pfK58wm0AuAM
o9t8Mx3o8wZjbMdt6up9OIM1HyFiMx2BSaZK+8f/bWemHQ0xwez5g4k5O5AwVOaC
x9Nt+Tp0Ze4=
=DsYj
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double()
The cmpxchg128() family of functions is basically & functionally the
same as cmpxchg_double(), but with a saner interface.
Instead of a 6-parameter horror that forced u128 - u64/u64-halves
layout details on the interface and exposed users to complexity,
fragility & bugs, use a natural 3-parameter interface with u128
types.
- Restructure the generated atomic headers, and add kerneldoc comments
for all of the generic atomic{,64,_long}_t operations.
The generated definitions are much cleaner now, and come with
documentation.
- Implement lock_set_cmp_fn() on lockdep, for defining an ordering when
taking multiple locks of the same type.
This gets rid of one use of lockdep_set_novalidate_class() in the
bcache code.
- Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended variable
shadowing generating garbage code on Clang on certain ARM builds.
* tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
locking/atomic: scripts: fix ${atomic}_dec_if_positive() kerneldoc
percpu: Fix self-assignment of __old in raw_cpu_generic_try_cmpxchg()
locking/atomic: treewide: delete arch_atomic_*() kerneldoc
locking/atomic: docs: Add atomic operations to the driver basic API documentation
locking/atomic: scripts: generate kerneldoc comments
docs: scripts: kernel-doc: accept bitwise negation like ~@var
locking/atomic: scripts: simplify raw_atomic*() definitions
locking/atomic: scripts: simplify raw_atomic_long*() definitions
locking/atomic: scripts: split pfx/name/sfx/order
locking/atomic: scripts: restructure fallback ifdeffery
locking/atomic: scripts: build raw_atomic_long*() directly
locking/atomic: treewide: use raw_atomic*_<op>()
locking/atomic: scripts: add trivial raw_atomic*_<op>()
locking/atomic: scripts: factor out order template generation
locking/atomic: scripts: remove leftover "${mult}"
locking/atomic: scripts: remove bogus order parameter
locking/atomic: xtensa: add preprocessor symbols
locking/atomic: x86: add preprocessor symbols
locking/atomic: sparc: add preprocessor symbols
locking/atomic: sh: add preprocessor symbols
...
used in
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmSa9coACgkQEsHwGGHe
VUoKuA/6ApbRnAYvnwv6/o6Jnw9Jafzv1RpN6zIH9sjBX/4ghap5OI03tOO2maag
qQRnYZrjx5jCIctc/i4XS/is51b0Gnv6Bu6uesvuC8xynYnS0jIO4ONqvous/3Jj
7BsduLzFptvmwQV4jf17hv3OD4CqzMDKyKFDIX7zBeq6xdc66AqB+ba+oBmvNVDI
wHCkESdPnzSsjqsSQvfhxTasbBVV/exBpQst6oPT1WBiDscxgV/ArMsF7ZgzQjuF
+WHmyc6KfEgY41iPxBJ6FkUOGBM0fpJl2QmkgS3+WAHxFF3QDK/oKrwo+OPtih8P
Lec3y/JUncvfaKHcmqNEkI4GCfaZEOqQaP4/MUluJasetbzeLrDr+NEbtBPEXSTi
cUfKMdwoaALoGE0YJL8wIr9TxfgmU9kONstQIm9Crl3XJ4e/zHMyRtSoMMv4vOCx
E6amvwaBMsEbs/BRPjP/5f5aYfVI2e81b6QFOlXIjhjogN5AYlBms9sY+CfCw7Fm
LBP1h6OH6FZrAKfDHNSpLNLFllplmN5sVImrFotSdtCJe37WGbMXNEULJJklp7dZ
rEJCdxC0B66YOiYhbSIxQOUcEI9db56qXRfDHq6udXEovenGSV2Ke8SUTyq/QIDP
YWdUKuyxGtW6eKVMo4ineOQTrZ5e5kNpeSt2NOinSiCOl4RAUbs=
=haGW
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SGX update from Borislav Petkov:
- A fix to avoid using a list iterator variable after the loop it is
used in
* tag 'x86_sgx_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Avoid using iterator after loop in sgx_mmu_notifier_release()
mechanism in order to look up the memory type of a region easily. Also
address memory range lookup issues like returning an invalid memory
type. Furthermore, this handles the decoupling of PAT from MTRR more
naturally. All work by Juergen Gross
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmSazOIACgkQEsHwGGHe
VUqltQ/8D1oA4LrgnbFO25J/27U/MwKo7ZI3hN6/OkH2FfdBgqeOlOV4TnndDL88
l/UrzOfWJQxpVLTO3SLMtDla0VrT24B4HZ4hvzDEdJZ8f1DLZ+gLN7sKOMjoIcO9
fvBZ5+/gFtVxSquwZmWvM0qKiCkKxmznJfpOx1/lt9UtKyKmpPSMVdrpqOeufL7k
xxWqGRh2s104ZKwfMOj4dgvCVK9ZUlsPqqiARzkqc0bCg7SeIyPea/S2eljhTl15
BTOA/wW/lcVQ9yWmDD8inzxrZI4EHEohEaNMfof3AqFyYCOU4RzvE9tpAFEK3GXp
NilxYkZ+JbEljq2QiEt0Ll8XEVKedi7YC1oN3ciiy9RS6+rWSPIvuMFV9tgPRjr1
AbWYmDoiLz+5ePI+0fckStRRntWKiao+hOaXb5RbEcg+85hkDHZZC7b0tCAUvnh7
OwuQfbzAqipn2G1hg+LThHDSjI4qHfHJlpeuPcsAxWef1diJbe15StdVWm+ttRE0
MTXSn3J9qT9MoY5y6m4KSybp0c1nSFlCK/ZkNvzwWHmkAG6M7wuFmBn3pVzEaCew
fneGZcX9Ija4MY8Ygajp8GI1aQ4mBNif+uVE7UUY17hH9qAf8vI8Joqs+4L35u8h
SZl/IqJO9ziEmVLdy9ajgm1xW04AFE1RYRfa6aH6K6tRaIoh8bE=
=Dmx5
-----END PGP SIGNATURE-----
Merge tag 'x86_mtrr_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mtrr updates from Borislav Petkov:
"A serious scrubbing of the MTRR code including adding a new map
mechanism in order to look up the memory type of a region easily.
Also address memory range lookup issues like returning an invalid
memory type. Furthermore, this handles the decoupling of PAT from MTRR
more naturally.
All work by Juergen Gross"
* tag 'x86_mtrr_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/xen: Set default memory type for PV guests to WB
x86/mtrr: Unify debugging printing
x86/mtrr: Remove unused code
x86/mm: Only check uniform after calling mtrr_type_lookup()
x86/mtrr: Don't let mtrr_type_lookup() return MTRR_TYPE_INVALID
x86/mtrr: Use new cache_map in mtrr_type_lookup()
x86/mtrr: Add mtrr=debug command line option
x86/mtrr: Construct a memory map with cache modes
x86/mtrr: Add get_effective_type() service function
x86/mtrr: Allocate mtrr_value array dynamically
x86/mtrr: Move 32-bit code from mtrr.c to legacy.c
x86/mtrr: Have only one set_mtrr() variant
x86/mtrr: Replace vendor tests in MTRR code
x86/xen: Set MTRR state when running as Xen PV initial domain
x86/hyperv: Set MTRR state when running as SEV-SNP Hyper-V guest
x86/mtrr: Support setting MTRR state for software defined MTRRs
x86/mtrr: Replace size_or_mask and size_and_mask with a much easier concept
x86/mtrr: Remove physical address size calculation
the early loading procedure
- Cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmSap2cACgkQEsHwGGHe
VUobhA/7B78dVDsm4yoOwx3TiPP1Md/i9vazbR6fyZ0EJQBMqPeujtmuKAd6L0hQ
u+LU3j5FN4MBmdy3elqpTKW0NXTQkPdu/Syc9gwIEMtrsBj/9XbgjiHz70FgkPog
nTkWyIqxiHC0krlXLQfD3yIeDWqSKMZbpIE33ckSdJs6xCvh78uc8cbXGjpG1+dl
QWPjxXNWUVtz5eUqI52tQK2DN5jxzUZVb5/G4kB8icQUFLj2ji+5JB/4zJkgq59r
nNNZ7E9kDAifPH5qS+NRBgoCrZw51l9EBClRQb2xKXaejloMVT+rK9rQrOStEgct
gIEXRdLJeCDzW8OGrDM+FzPZqHx+IEpHduBDoOqyDLxgTpPSxbaeT3zJiAeh/+ox
BDDh2+OrHrMRTSkEGUoILVz5Hr/UwYM7FQkscuweex9mJWKBnXC4jJggXA93w+Ej
USJloYEyMl0sOkMKpzrNsfACl2rpH29Yefg1CJ6aJiX6lkbqSNntyHo8XIrB8jFG
0a3r79kRhIG6AflZ5PK2DGr/KKVBi70K61+9h1vEeSNWjr31eOfyCS82T9ukcs4b
Gmmj5lKHcJMjoD6IGjV7CZA/F6SPXwZjdoz4Py5GzDDf4uVfvr0P92h2KUhULAP6
GlfkSX9D5pLYF0Q0TEllKAzBBFf/0GTYmXq5Pz7BAxr8+srxBu8=
=2i55
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loader updates from Borislav Petkov:
- Load late on both SMT threads on AMD, just like it is being done in
the early loading procedure
- Cleanups
* tag 'x86_microcode_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/AMD: Load late on both threads too
x86/microcode/amd: Remove unneeded pointer arithmetic
x86/microcode/AMD: Get rid of __find_equiv_id()
and assert __x86_return_thunk's alignment so that future changes to
the symbol macros do not accidentally break them.
- Remove CONFIG_X86_FEATURE_NAMES Kconfig option as its existence is
pointless
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmSZ1wgACgkQEsHwGGHe
VUrXlRAAhIonFM1suIHo6w085jY5YA1XnsziJr/bT3e16FdHrF1i3RBEX4ml0m3O
ADwa9dMsC9UJIa+/TKRNFfQvfRcLE/rsUKlS1Rluf/IRIxuSt/Oa4bFQHGXFRwnV
eSlnWTNiaWrRs/vJEYAnMOe98oRyElHWa9kZ7K5FC+Ksfn/WO1U1RQ2NWg2A2wkN
8MHJiS41w2piOrLU/nfUoI7+esHgHNlib222LoptDGHuaY8V2kBugFooxAEnTwS3
PCzWUqCTgahs393vbx6JimoIqgJDa7bVdUMB0kOUHxtpbBiNdYYVy6e7UKnV1yjB
qP3v9jQW4+xIyRmlFiErJXEZx7DjAIP5nulGRrUMzRfWEGF8mdRZ+ugGqFMHCeC8
vXI+Ixp2vvsfhG3N/algsJUdkjlpt3hBpElRZCfR08M253KAbAmUNMOr4sx4RPi5
ymC+pLIHd1K0G9jiZaFnOMaY71gAzWizwxwjFKLQMo44q+lpNJvsVO00cr+9RBYj
LQL2APkONVEzHPMYR/LrXCslYaW//DrfLdRQjNbzUTonxFadkTO2Eu8J90B/5SFZ
CqC1NYKMQPVFeg4XuGWCgZEH+jokCGhl8vvmXClAMcOEOZt0/s4H89EKFkmziyon
L1ZrA/U72gWV8EwD7GLtuFJmnV4Ayl/hlek2j0qNKaj6UUgTFg8=
=LcUq
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- Compute the purposeful misalignment of zen_untrain_ret automatically
and assert __x86_return_thunk's alignment so that future changes to
the symbol macros do not accidentally break them.
- Remove CONFIG_X86_FEATURE_NAMES Kconfig option as its existence is
pointless
* tag 'x86_cpu_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retbleed: Add __x86_return_thunk alignment checks
x86/cpu: Remove X86_FEATURE_NAMES
x86/Kconfig: Make X86_FEATURE_NAMES non-configurable in prompt
of application containers with dynamically changing task lists
- When reading the tasks file, show the tasks' pid which are only in
the current namespace as opposed to showing the pids from the init
namespace too
- Other fixes and improvements
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmSZzAwACgkQEsHwGGHe
VUqp6g//dJ3OMAj8q0g9TO5M9caPGtY67tP488dvIhcemvRwwsSFr/qiXHB35l0c
sCbmXVvF0lhaGbEIE94VZyKN7GXpvSKof29lJ2zaB/cgc4qbkm0wzkDA6e3j11xT
OXB8R/cU4FXm1nQ0irT9Bf8w4KrpWr8f3SVbLQkGsc9+vYaSMZHbFIvZ1RmDaFBU
T7WtpmRgfr97updmd4QkkBsHfIUNK/4HamGVBUKsdYX/seYuffRLKHzuiBqr7kDr
WKqdR3iVOqbLFQbH2QIXuAL9+29Z2lfMVUD04e0I62TU6KCckrdObBQ67WgXGAgG
GzCsbsNf1So7nIQmaMZSbR3OeuifXOzQPlFPtIh52SSVyafl1I66nw1tkTsMAqkd
waqaB2dSLFHTND8hE7pUHdz84RFaGoE9/O6JiSxt0qkXQIycJY6hBthLxw76XQe7
HnUqyL/0t7H5FT7TEwbQ26cNGFghA87x4fCc2AolIrZFK/chtPnvyFz3oTvSyLW2
J1YhdJ+mcid70cvGmhe9w9OjFI1e4O22l1uc9jJyTPwWPk6/IxKeT9mx+bJusT7d
mHvglK60L/x9NQHeV7FZIM9NXKhePLGi84aaE+Ly8ZOhoWcRmJTuEN/CGq+Qyuks
KmDhvGIfd4GKRxOwMuKHQEn8WfyRvX5YDvhU24V2Zzb8I3nyFQQ=
=nu66
-----END PGP SIGNATURE-----
Merge tag 'x86_cache_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 resource control updates from Borislav Petkov:
- Implement a rename operation in resctrlfs to facilitate handling of
application containers with dynamically changing task lists
- When reading the tasks file, show the tasks' pid which are only in
the current namespace as opposed to showing the pids from the init
namespace too
- Other fixes and improvements
* tag 'x86_cache_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Documentation for MON group move feature
x86/resctrl: Implement rename op for mon groups
x86/resctrl: Factor rdtgroup lock for multi-file ops
x86/resctrl: Only show tasks' pid in current pid namespace
Those GPUs and CPUs are connected together through the coherent fabric
and the GPU memory controllers report errors through x86's MCA so EDAC
needs to support them. The amd64_edac driver supports now HBM (High
Bandwidth Memory) and thus such heterogeneous memory controller
systems
- Other small cleanups and improvements
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmSZiUwACgkQEsHwGGHe
VUphSQ/+JLXTAQ06CNos98MR8iCGdThVujhWt1pBIgjhQFJuf4JlEEtKs9htjbud
9HZvgnGbHahRoO8pMCB0jwtz0ATrPbaOvz4BofVp3SIRiR5jMI0tfmyl8iSrnA3Q
m5pbMh6uiIAlH8aPqQXret2iwp7JXOjnBWksgbmUWkI7d2qseKu98ikXyC4QoCaD
AGRJJ6OCA3P85rdT9qabOuXh6yoELOPKw3j243s22sTLiqn+EuoTE+QX5ZjrQ8Ts
DyXN/pYI/vGVP7sECkWf7PsEf1BkL6m5KeXDB4Ij2YJesQnBlBZQdAcxdGdY8z3M
f/qpLdrYvpcLHQy42Jm5VnnISOvMvAl8YWqCEyUmBjXcLwSPNIKHN9LQuznhnQHr
vssRVqQUg1J+/UWAoIzHdrAQ6zvgv1xlX2dG2YOw3t1WMDnMhztW3eoQv04etD3d
fqQH3MrkGHI4qeq1Mice1Gz+NWQG/PXVhgBzbTBDDCiRJkg1Dhxce1OMRUiM4tUW
0JABoU+KS0RZAKXAwine6v5duYmwK36Vl1SSCCWjqFMeR7XMwWWHA9d7t8+wdT1l
KBIEiRTcRnXaZXyLUPSPRbEF5ALS25RgWVPCA3ibuSUnJjGU7Z7/rbwlQryAefVB
nqjATed0zat4fbL9bvnDuOKQEzkuySvUWpU+Eozxbct6oRu5ms0=
=Vcif
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Add initial support for RAS hardware found on AMD server GPUs (MI200).
Those GPUs and CPUs are connected together through the coherent
fabric and the GPU memory controllers report errors through x86's MCA
so EDAC needs to support them. The amd64_edac driver supports now HBM
(High Bandwidth Memory) and thus such heterogeneous memory controller
systems
- Other small cleanups and improvements
* tag 'ras_core_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/amd64: Cache and use GPU node map
EDAC/amd64: Add support for AMD heterogeneous Family 19h Model 30h-3Fh
EDAC/amd64: Document heterogeneous system enumeration
x86/MCE/AMD, EDAC/mce_amd: Decode UMC_V2 ECC errors
x86/amd_nb: Re-sort and re-indent PCI defines
x86/amd_nb: Add MI200 PCI IDs
ras/debugfs: Fix error checking for debugfs_create_dir()
x86/MCE: Check a hw error's address to determine proper recovery action
- Parallel CPU bringup
The reason why people are interested in parallel bringup is to shorten
the (kexec) reboot time of cloud servers to reduce the downtime of the
VM tenants.
The current fully serialized bringup does the following per AP:
1) Prepare callbacks (allocate, intialize, create threads)
2) Kick the AP alive (e.g. INIT/SIPI on x86)
3) Wait for the AP to report alive state
4) Let the AP continue through the atomic bringup
5) Let the AP run the threaded bringup to full online state
There are two significant delays:
#3 The time for an AP to report alive state in start_secondary() on
x86 has been measured in the range between 350us and 3.5ms
depending on vendor and CPU type, BIOS microcode size etc.
#4 The atomic bringup does the microcode update. This has been
measured to take up to ~8ms on the primary threads depending on
the microcode patch size to apply.
On a two socket SKL server with 56 cores (112 threads) the boot CPU
spends on current mainline about 800ms busy waiting for the APs to come
up and apply microcode. That's more than 80% of the actual onlining
procedure.
This can be reduced significantly by splitting the bringup mechanism
into two parts:
1) Run the prepare callbacks and kick the AP alive for each AP which
needs to be brought up.
The APs wake up, do their firmware initialization and run the low
level kernel startup code including microcode loading in parallel
up to the first synchronization point. (#1 and #2 above)
2) Run the rest of the bringup code strictly serialized per CPU
(#3 - #5 above) as it's done today.
Parallelizing that stage of the CPU bringup might be possible in
theory, but it's questionable whether required surgery would be
justified for a pretty small gain.
If the system is large enough the first AP is already waiting at the
first synchronization point when the boot CPU finished the wake-up of
the last AP. That reduces the AP bringup time on that SKL from ~800ms
to ~80ms, i.e. by a factor ~10x.
The actual gain varies wildly depending on the system, CPU, microcode
patch size and other factors. There are some opportunities to reduce
the overhead further, but that needs some deep surgery in the x86 CPU
bringup code.
For now this is only enabled on x86, but the core functionality
obviously works for all SMP capable architectures.
- Enhancements for SMP function call tracing so it is possible to locate
the scheduling and the actual execution points. That allows to measure
IPI delivery time precisely.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZb/YTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoRoOD/9vAiGI3IhGyZcX/RjXxauSHf8Pmqll
05jUubFi5Vi3tKI1ubMOsnMmJTw2yy5xDyS/iGj7AcbRLq9uQd3iMtsXXHNBzo/X
FNxnuWTXYUj0vcOYJ+j4puBumFzzpRCprqccMInH0kUnSWzbnaQCeelicZORAf+w
zUYrswK4HpBXHDOnvPw6Z7MYQe+zyDQSwjSftstLyROzu+lCEw/9KUaysY2epShJ
wHClxS2XqMnpY4rJ/CmJAlRhD0Plb89zXyo6k9YZYVDWoAcmBZy6vaTO4qoR171L
37ApqrgsksMkjFycCMnmrFIlkeb7bkrYDQ5y+xqC3JPTlYDKOYmITV5fZ83HD77o
K7FAhl/CgkPq2Ec+d82GFLVBKR1rijbwHf7a0nhfUy0yMeaJCxGp4uQ45uQ09asi
a/VG2T38EgxVdseC92HRhcdd3pipwCb5wqjCH/XdhdlQrk9NfeIeP+TxF4QhADhg
dApp3ifhHSnuEul7+HNUkC6U+Zc8UeDPdu5lvxSTp2ooQ0JwaGgC5PJq3nI9RUi2
Vv826NHOknEjFInOQcwvp6SJPfcuSTF75Yx6xKz8EZ3HHxpvlolxZLq+3ohSfOKn
2efOuZO5bEu4S/G2tRDYcy+CBvNVSrtZmCVqSOS039c8quBWQV7cj0334cjzf+5T
TRiSzvssbYYmaw==
=Y8if
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP updates from Thomas Gleixner:
"A large update for SMP management:
- Parallel CPU bringup
The reason why people are interested in parallel bringup is to
shorten the (kexec) reboot time of cloud servers to reduce the
downtime of the VM tenants.
The current fully serialized bringup does the following per AP:
1) Prepare callbacks (allocate, intialize, create threads)
2) Kick the AP alive (e.g. INIT/SIPI on x86)
3) Wait for the AP to report alive state
4) Let the AP continue through the atomic bringup
5) Let the AP run the threaded bringup to full online state
There are two significant delays:
#3 The time for an AP to report alive state in start_secondary()
on x86 has been measured in the range between 350us and 3.5ms
depending on vendor and CPU type, BIOS microcode size etc.
#4 The atomic bringup does the microcode update. This has been
measured to take up to ~8ms on the primary threads depending
on the microcode patch size to apply.
On a two socket SKL server with 56 cores (112 threads) the boot CPU
spends on current mainline about 800ms busy waiting for the APs to
come up and apply microcode. That's more than 80% of the actual
onlining procedure.
This can be reduced significantly by splitting the bringup
mechanism into two parts:
1) Run the prepare callbacks and kick the AP alive for each AP
which needs to be brought up.
The APs wake up, do their firmware initialization and run the
low level kernel startup code including microcode loading in
parallel up to the first synchronization point. (#1 and #2
above)
2) Run the rest of the bringup code strictly serialized per CPU
(#3 - #5 above) as it's done today.
Parallelizing that stage of the CPU bringup might be possible
in theory, but it's questionable whether required surgery
would be justified for a pretty small gain.
If the system is large enough the first AP is already waiting at
the first synchronization point when the boot CPU finished the
wake-up of the last AP. That reduces the AP bringup time on that
SKL from ~800ms to ~80ms, i.e. by a factor ~10x.
The actual gain varies wildly depending on the system, CPU,
microcode patch size and other factors. There are some
opportunities to reduce the overhead further, but that needs some
deep surgery in the x86 CPU bringup code.
For now this is only enabled on x86, but the core functionality
obviously works for all SMP capable architectures.
- Enhancements for SMP function call tracing so it is possible to
locate the scheduling and the actual execution points. That allows
to measure IPI delivery time precisely"
* tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
trace,smp: Add tracepoints for scheduling remotelly called functions
trace,smp: Add tracepoints around remotelly called functions
MAINTAINERS: Add CPU HOTPLUG entry
x86/smpboot: Fix the parallel bringup decision
x86/realmode: Make stack lock work in trampoline_compat()
x86/smp: Initialize cpu_primary_thread_mask late
cpu/hotplug: Fix off by one in cpuhp_bringup_mask()
x86/apic: Fix use of X{,2}APIC_ENABLE in asm with older binutils
x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it
x86/smpboot: Support parallel startup of secondary CPUs
x86/smpboot: Implement a bit spinlock to protect the realmode stack
x86/apic: Save the APIC virtual base address
cpu/hotplug: Allow "parallel" bringup up to CPUHP_BP_KICK_AP_STATE
x86/apic: Provide cpu_primary_thread mask
x86/smpboot: Enable split CPU startup
cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism
cpu/hotplug: Reset task stack state in _cpu_up()
cpu/hotplug: Remove unused state functions
riscv: Switch to hotplug core state synchronization
parisc: Switch to hotplug core state synchronization
...
- Initialize FPU late.
Right now FPU is initialized very early during boot. There is no real
requirement to do so. The only requirement is to have it done before
alternatives are patched.
That's done in check_bugs() which does way more than what the function
name suggests.
So first rename check_bugs() to arch_cpu_finalize_init() which makes it
clear what this is about.
Move the invocation of arch_cpu_finalize_init() earlier in
start_kernel() as it has to be done before fork_init() which needs to
know the FPU register buffer size.
With those prerequisites the FPU initialization can be moved into
arch_cpu_finalize_init(), which removes it from the early and fragile
part of the x86 bringup.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZdNYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaNBEACWtVd1uhqQldIFgSvZYujsrWXlmkU+
pok6gDzKQNwZADiXW/tn5fP8SBLWT0pgLM9d+oZ5mEaLaOW7HcZLEHcVrn74e3TT
53xN8e1zCzyjCJ/x22vrKH4sn/bU+bQyzSNVu9Disqn9Fl+ts37FqAHDv/ExbneD
DaYXXCLgQsyGbPLD8B7yGOpJTGBUTJxNQS1ZFElBaRsAaw0mYZOEoPvuTFK4o7Uz
GUB2vGefmeNfX+EgLYKG9QoS0F3SMS9X2IYswy1H76ZnV/eXmTsA1S3u3X9yX7kC
XBnPtCC+iX+7o3xFkTpa0oQUdzEyGOItExZZgce6jEQu4Fl7NoIJxhlMg9/Y+vcF
ntipEKSWFLAi1GkZzeKRwSSsoWqRaFxOKLy8qhn9kud09k+UtMBkNrF1CSp9laAz
QParu3B1oHPEzx/jS0bSOCMN+AQZH8rX7LxRp4kpBOeBSZNCnfaBUzfIvmccPls+
EJTO/0JUpRm5LsPSDiJhypPRoOOIP26IloR6OoZTcI3p76NrnYblRvisvuFAgDU6
bk7Belf+GDx0kBZugqQgok7nDaHIBR7vEmca1NV8507UrffVyxLAiI4CiWPcFdOq
ovhO8K+gP4xvzZx4cXZBwYwusjvl/oxKy8yQiGgoftDiWU4sdUCSrwX3x27+hUYL
2P1OLDOXSGwESQ==
=yxMj
-----END PGP SIGNATURE-----
Merge tag 'x86-boot-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 boot updates from Thomas Gleixner:
"Initialize FPU late.
Right now FPU is initialized very early during boot. There is no real
requirement to do so. The only requirement is to have it done before
alternatives are patched.
That's done in check_bugs() which does way more than what the function
name suggests.
So first rename check_bugs() to arch_cpu_finalize_init() which makes
it clear what this is about.
Move the invocation of arch_cpu_finalize_init() earlier in
start_kernel() as it has to be done before fork_init() which needs to
know the FPU register buffer size.
With those prerequisites the FPU initialization can be moved into
arch_cpu_finalize_init(), which removes it from the early and fragile
part of the x86 bringup"
* tag 'x86-boot-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mem_encrypt: Unbreak the AMD_MEM_ENCRYPT=n build
x86/fpu: Move FPU initialization into arch_cpu_finalize_init()
x86/fpu: Mark init functions __init
x86/fpu: Remove cpuinfo argument from init functions
x86/init: Initialize signal frame size late
init, x86: Move mem_encrypt_init() into arch_cpu_finalize_init()
init: Invoke arch_cpu_finalize_init() earlier
init: Remove check_bugs() leftovers
um/cpu: Switch to arch_cpu_finalize_init()
sparc/cpu: Switch to arch_cpu_finalize_init()
sh/cpu: Switch to arch_cpu_finalize_init()
mips/cpu: Switch to arch_cpu_finalize_init()
m68k/cpu: Switch to arch_cpu_finalize_init()
loongarch/cpu: Switch to arch_cpu_finalize_init()
ia64/cpu: Switch to arch_cpu_finalize_init()
ARM: cpu: Switch to arch_cpu_finalize_init()
x86/cpu: Switch to arch_cpu_finalize_init()
init: Provide arch_cpu_finalize_init()
Initializing the FPU during the early boot process is a pointless
exercise. Early boot is convoluted and fragile enough.
Nothing requires that the FPU is set up early. It has to be initialized
before fork_init() because the task_struct size depends on the FPU register
buffer size.
Move the initialization to arch_cpu_finalize_init() which is the perfect
place to do so.
No functional change.
This allows to remove quite some of the custom early command line parsing,
but that's subject to the next installment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.902376621@linutronix.de
No point in doing this during really early boot. Move it to an early
initcall so that it is set up before possible user mode helpers are started
during device initialization.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.727330699@linutronix.de
Invoke the X86ism mem_encrypt_init() from X86 arch_cpu_finalize_init() and
remove the weak fallback from the core code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.670360645@linutronix.de
check_bugs() is a dumping ground for finalizing the CPU bringup. Only parts of
it has to do with actual CPU bugs.
Split it apart into arch_cpu_finalize_init() and cpu_select_mitigations().
Fixup the bogus 32bit comments while at it.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230613224545.019583869@linutronix.de
If &encl_mm->encl->mm_list does not contain the searched 'encl_mm',
'tmp' will not point to a valid sgx_encl_mm struct.
Linus proposed to avoid any use of the list iterator variable after the
loop, in the attempt to move the list iterator variable declaration into
the macro to avoid any potential misuse after the loop. Using it in
a pointer comparison after the loop is undefined behavior and should be
omitted if possible, see Link tag.
Instead, just use a 'found' boolean to indicate if an element was found.
[ bp: Massage, fix typos. ]
Signed-off-by: Jakob Koschel <jkl820.git@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/CAHk-=wgRr_D8CB-D9Kg-c=EHreAsk5SqXPwr9Y7k9sA6cWXJ6w@mail.gmail.com/
Link: https://lore.kernel.org/r/20230206-sgx-use-after-iter-v2-1-736ca621adc3@gmail.com
Patch series "remove the vmas parameter from GUP APIs", v6.
(pin_/get)_user_pages[_remote]() each provide an optional output parameter
for an array of VMA objects associated with each page in the input range.
These provide the means for VMAs to be returned, as long as mm->mmap_lock
is never released during the GUP operation (i.e. the internal flag
FOLL_UNLOCKABLE is not specified).
In addition, these VMAs can only be accessed with the mmap_lock held and
become invalidated the moment it is released.
The vast majority of invocations do not use this functionality and of
those that do, all but one case retrieve a single VMA to perform checks
upon.
It is not egregious in the single VMA cases to simply replace the
operation with a vma_lookup(). In these cases we duplicate the (fast)
lookup on a slow path already under the mmap_lock, abstracted to a new
get_user_page_vma_remote() inline helper function which also performs
error checking and reference count maintenance.
The special case is io_uring, where io_pin_pages() specifically needs to
assert that the VMAs underlying the range do not result in broken
long-term GUP file-backed mappings.
As GUP now internally asserts that FOLL_LONGTERM mappings are not
file-backed in a broken fashion (i.e. requiring dirty tracking) - as
implemented in "mm/gup: disallow FOLL_LONGTERM GUP-nonfast writing to
file-backed mappings" - this logic is no longer required and so we can
simply remove it altogether from io_uring.
Eliminating the vmas parameter eliminates an entire class of danging
pointer errors that might have occured should the lock have been
incorrectly released.
In addition, the API is simplified and now clearly expresses what it is
intended for - applying the specified GUP flags and (if pinning) returning
pinned pages.
This change additionally opens the door to further potential improvements
in GUP and the possible marrying of disparate code paths.
I have run this series against gup_test with no issues.
Thanks to Matthew Wilcox for suggesting this refactoring!
This patch (of 6):
No invocation of get_user_pages() use the vmas parameter, so remove it.
The GUP API is confusing and caveated. Recent changes have done much to
improve that, however there is more we can do. Exporting vmas is a prime
target as the caller has to be extremely careful to preclude their use
after the mmap_lock has expired or otherwise be left with dangling
pointers.
Removing the vmas parameter focuses the GUP functions upon their primary
purpose - pinning (and outputting) pages as well as performing the actions
implied by the input flags.
This is part of a patch series aiming to remove the vmas parameter
altogether.
Link: https://lkml.kernel.org/r/cover.1684350871.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/589e0c64794668ffc799651e8d85e703262b1e9d.1684350871.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Christian König <christian.koenig@amd.com> (for radeon parts)
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Sean Christopherson <seanjc@google.com> (KVM)
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To change the resources allocated to a large group of tasks, such as an
application container, a container manager must write all of the tasks'
IDs into the tasks file interface of the new control group. This is
challenging when the container's task list is always changing.
In addition, if the container manager is using monitoring groups to
separately track the bandwidth of containers assigned to the same
control group, when moving a container, it must first move the
container's tasks to the default monitoring group of the new control
group before it can move these tasks into the container's replacement
monitoring group under the destination control group. This is
undesirable because it makes bandwidth usage during the move
unattributable to the correct tasks and resets monitoring event counters
and cache usage information for the group.
Implement the rename operation only for resctrlfs monitor groups to
enable users to move a monitoring group from one control group to
another. This effects a change in resources allocated to all the tasks
in the monitoring group while otherwise leaving the monitoring data
intact.
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/20230419125015.693566-3-peternewman@google.com
rdtgroup_kn_lock_live() can only release a kernfs reference for a single
file before waiting on the rdtgroup_mutex, limiting its usefulness for
operations on multiple files, such as rename.
Factor the work needed to respectively break and unbreak active
protection on an individual file into rdtgroup_kn_{get,put}().
No functional change.
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/20230419125015.693566-2-peternewman@google.com
The MI200 (Aldebaran) series of devices introduced a new SMCA bank type
for Unified Memory Controllers. The MCE subsystem already has support
for this new type. The MCE decoder module will decode the common MCA
error information for the new bank type, but it will not pass the
information to the AMD64 EDAC module for detailed memory error decoding.
Have the MCE decoder module recognize the new bank type as an SMCA UMC
memory error and pass the MCA information to AMD64 EDAC.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Co-developed-by: Muralidhara M K <muralidhara.mk@amd.com>
Signed-off-by: Muralidhara M K <muralidhara.mk@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230515113537.1052146-3-muralimk@amd.com
Now that we have raw_atomic*_<op>() definitions, there's no need to use
arch_atomic*_<op>() definitions outside of the low-level atomic
definitions.
Move treewide users of arch_atomic*_<op>() over to the equivalent
raw_atomic*_<op>().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230605070124.3741859-19-mark.rutland@arm.com
Put all the debugging output behind "mtrr=debug" and get rid of
"mtrr_cleanup_debug" which wasn't even documented anywhere.
No functional changes.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20230531174857.GDZHeIib57h5lT5Vh1@fat_crate.local
mtrr_centaur_report_mcr() isn't used by anyone, so it can be removed.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-17-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
mtrr_type_lookup() should always return a valid memory type. In case
there is no information available, it should return the default UC.
This will remove the last case where mtrr_type_lookup() can return
MTRR_TYPE_INVALID, so adjust the comment in include/uapi/asm/mtrr.h.
Note that removing the MTRR_TYPE_INVALID #define from that header
could break user code, so it has to stay.
At the same time the mtrr_type_lookup() stub for the !CONFIG_MTRR
case should set uniform to 1, as if the memory range would be
covered by no MTRR at all.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-15-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Instead of crawling through the MTRR register state, use the new
cache_map for looking up the cache type(s) of a memory region.
This allows now to set the uniform parameter according to the
uniformity of the cache mode of the region, instead of setting it
only if the complete region is mapped by a single MTRR. This now
includes even the region covered by the fixed MTRR registers.
Make sure uniform is always set.
[ bp: Massage. ]
[ jgross: Explain mtrr_type_lookup() logic. ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-14-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Add a new command line option "mtrr=debug" for getting debug output
after building the new cache mode map. The output will include MTRR
register values and the resulting map.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-13-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
After MTRR initialization construct a memory map with cache modes from
MTRR values. This will speed up lookups via mtrr_lookup_type()
especially in case of overlapping MTRRs.
This will be needed when switching the semantics of the "uniform"
parameter of mtrr_lookup_type() from "only covered by one MTRR" to
"memory range has a uniform cache mode", which is the data the callers
really want to know. Today this information is not easily available,
in case MTRRs are not well sorted regarding base address.
The map will be built in __initdata. When memory management is up, the
map will be moved to dynamically allocated memory, in order to avoid
the need of an overly large array. The size of this array is calculated
using the number of variable MTRR registers and the needed size for
fixed entries.
Only add the map creation and expansion for now. The lookup will be
added later.
When writing new MTRR entries in the running system rebuild the map
inside the call from mtrr_rendezvous_handler() in order to avoid nasty
race conditions with concurrent lookups.
[ bp: Move out rebuild_map() call and rename it. ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-12-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Add a service function for obtaining the effective cache mode of
overlapping MTRR registers.
Make use of that function in check_type_overlap().
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-11-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The mtrr_value[] array is a static variable which is used only in a few
configurations. Consuming 6kB is ridiculous for this case, especially as
the array doesn't need to be that large and it can easily be allocated
dynamically.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-10-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
There is some code in mtrr.c which is relevant for old 32-bit CPUs
only. Move it to a new source legacy.c.
While modifying mtrr_init_finalize() fix spelling of its name.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-9-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Today there are two variants of set_mtrr(): one calling stop_machine()
and one calling stop_machine_cpuslocked().
The first one (set_mtrr()) has only one caller, and this caller is
running only when resuming from suspend when the interrupts are still
off and only one CPU is active. Additionally this code is used only on
rather old 32-bit CPUs not supporting SMP.
For these reasons the first variant can be replaced by a simple call of
mtrr_if->set().
Rename the second variant set_mtrr_cpuslocked() to set_mtrr() now that
there is only one variant left, in order to have a shorter function
name.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-8-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Modern CPUs all share the same MTRR interface implemented via
generic_mtrr_ops.
At several places in MTRR code this generic interface is deduced via
is_cpu(INTEL) tests, which is only working due to X86_VENDOR_INTEL
being 0 (the is_cpu() macro is testing mtrr_if->vendor, which isn't
explicitly set in generic_mtrr_ops).
Test the generic CPU feature X86_FEATURE_MTRR instead.
The only other place where the .vendor member of struct mtrr_ops is
being used is in set_num_var_ranges(), where depending on the vendor
the number of MTRR registers is determined. This can easily be changed
by replacing .vendor with the static number of MTRR registers.
It should be noted that the test "is_cpu(HYGON)" wasn't ever returning
true, as there is no struct mtrr_ops with that vendor information.
[ bp: Use mtrr_enabled() before doing mtrr_if-> accesses, esp. in
mtrr_trim_uncached_memory() which gets called independently from
whether mtrr_if is set or not. ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230502120931.20719-7-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
When running virtualized, MTRR access can be reduced (e.g. in Xen PV
guests or when running as a SEV-SNP guest under Hyper-V). Typically, the
hypervisor will not advertize the MTRR feature in CPUID data, resulting
in no MTRR memory type information being available for the kernel.
This has turned out to result in problems (Link tags below):
- Hyper-V SEV-SNP guests using uncached mappings where they shouldn't
- Xen PV dom0 mapping memory as WB which should be UC- instead
Solve those problems by allowing an MTRR static state override,
overwriting the empty state used today. In case such a state has been
set, don't call get_mtrr_state() in mtrr_bp_init().
The set state will only be used by mtrr_type_lookup(), as in all other
cases mtrr_enabled() is being checked, which will return false. Accept
the overwrite call only for selected cases when running as a guest.
Disable X86_FEATURE_MTRR in order to avoid any MTRR modifications by
just refusing them.
[ bp: Massage. ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/all/4fe9541e-4d4c-2b2a-f8c8-2d34a7284930@nerdbynature.de/
Link: https://lore.kernel.org/lkml/BYAPR21MB16883ABC186566BD4D2A1451D7FE9@BYAPR21MB1688.namprd21.prod.outlook.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Replace size_or_mask and size_and_mask with the much easier concept of
high reserved bits.
While at it, instead of using constants in the MTRR code, use some new
[ bp:
- Drop mtrr_set_mask()
- Unbreak long lines
- Move struct mtrr_state_type out of the uapi header as it doesn't
belong there. It also fixes a HDRTEST breakage "unknown type name ‘bool’"
as Reported-by: kernel test robot <lkp@intel.com>
- Massage.
]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230502120931.20719-3-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
When writing a task id to the "tasks" file in an rdtgroup,
rdtgroup_tasks_write() treats the pid as a number in the current pid
namespace. But when reading the "tasks" file, rdtgroup_tasks_show() shows
the list of global pids from the init namespace, which is confusing and
incorrect.
To be more robust, let the "tasks" file only show pids in the current pid
namespace.
Fixes: e02737d5b8 ("x86/intel_rdt: Add tasks files")
Signed-off-by: Shawn Wang <shawnwang@linux.alibaba.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Tested-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/all/20230116071246.97717-1-shawnwang@linux.alibaba.com/
Traditionally, all CPUs in a system have identical numbers of SMT
siblings. That changes with hybrid processors where some logical CPUs
have a sibling and others have none.
Today, the CPU boot code sets the global variable smp_num_siblings when
every CPU thread is brought up. The last thread to boot will overwrite
it with the number of siblings of *that* thread. That last thread to
boot will "win". If the thread is a Pcore, smp_num_siblings == 2. If it
is an Ecore, smp_num_siblings == 1.
smp_num_siblings describes if the *system* supports SMT. It should
specify the maximum number of SMT threads among all cores.
Ensure that smp_num_siblings represents the system-wide maximum number
of siblings by always increasing its value. Never allow it to decrease.
On MeteorLake-P platform, this fixes a problem that the Ecore CPUs are
not updated in any cpu sibling map because the system is treated as an
UP system when probing Ecore CPUs.
Below shows part of the CPU topology information before and after the
fix, for both Pcore and Ecore CPU (cpu0 is Pcore, cpu 12 is Ecore).
...
-/sys/devices/system/cpu/cpu0/topology/package_cpus:000fff
-/sys/devices/system/cpu/cpu0/topology/package_cpus_list:0-11
+/sys/devices/system/cpu/cpu0/topology/package_cpus:3fffff
+/sys/devices/system/cpu/cpu0/topology/package_cpus_list:0-21
...
-/sys/devices/system/cpu/cpu12/topology/package_cpus:001000
-/sys/devices/system/cpu/cpu12/topology/package_cpus_list:12
+/sys/devices/system/cpu/cpu12/topology/package_cpus:3fffff
+/sys/devices/system/cpu/cpu12/topology/package_cpus_list:0-21
Notice that the "before" 'package_cpus_list' has only one CPU. This
means that userspace tools like lscpu will see a little laptop like
an 11-socket system:
-Core(s) per socket: 1
-Socket(s): 11
+Core(s) per socket: 16
+Socket(s): 1
This is also expected to make the scheduler do rather wonky things
too.
[ dhansen: remove CPUID detail from changelog, add end user effects ]
CC: stable@kernel.org
Fixes: bbb65d2d36 ("x86: use cpuid vector 0xb when available for detecting cpu topology")
Fixes: 95f3d39ccf ("x86/cpu/topology: Provide detect_extended_topology_early()")
Suggested-by: Len Brown <len.brown@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20230323015640.27906-1-rui.zhang%40intel.com
Make sure that machine check errors with a usable address are properly
marked as poison.
This is needed for errors that occur on memory which have
MCG_STATUS[RIPV] clear - i.e., the interrupted process cannot be
restarted reliably. One example is data poison consumption through the
instruction fetch units on AMD Zen-based systems.
The MF_MUST_KILL flag is passed to memory_failure() when
MCG_STATUS[RIPV] is not set. So the associated process will still be
killed. What this does, practically, is get rid of one more check to
kill_current_task with the eventual goal to remove it completely.
Also, make the handling identical to what is done on the notifier path
(uc_decode_notifier() does that address usability check too).
The scenario described above occurs when hardware can precisely identify
the address of poisoned memory, but execution cannot reliably continue
for the interrupted hardware thread.
[ bp: Massage commit message. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20230322005131.174499-1-tony.luck@intel.com
While discussing to change the visibility of X86_FEATURE_NAMES (see Link)
in order to remove CONFIG_EMBEDDED, Boris suggested to simply make the
X86_FEATURE_NAMES functionality unconditional.
As the need for really tiny kernel images has gone away and kernel images
with !X86_FEATURE_NAMES are hardly tested, remove this config and the whole
ifdeffery in the source code.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20230509084007.24373-1-lukas.bulwahn@gmail.com/
Link: https://lore.kernel.org/r/20230510065713.10996-3-lukas.bulwahn@gmail.com
Implement the validation function which tells the core code whether
parallel bringup is possible.
The only condition for now is that the kernel does not run in an encrypted
guest as these will trap the RDMSR via #VC, which cannot be handled at that
point in early startup.
There was an earlier variant for AMD-SEV which used the GHBC protocol for
retrieving the APIC ID via CPUID, but there is no guarantee that the
initial APIC ID in CPUID is the same as the real APIC ID. There is no
enforcement from the secure firmware and the hypervisor can assign APIC IDs
as it sees fit as long as the ACPI/MADT table is consistent with that
assignment.
Unfortunately there is no RDMSR GHCB protocol at the moment, so enabling
AMD-SEV guests for parallel startup needs some more thought.
Intel-TDX provides a secure RDMSR hypercall, but supporting that is outside
the scope of this change.
Fixup announce_cpu() as e.g. on Hyper-V CPU1 is the secondary sibling of
CPU0, which makes the @cpu == 1 logic in announce_cpu() fall apart.
[ mikelley: Reported the announce_cpu() fallout
Originally-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.467571745@linutronix.de
The usage is in smpboot.c and not in the CPU initialization code.
The XEN_PV usage of cpu_callout_mask is obsolete as cpu_init() not longer
waits and cacheinfo has its own CPU mask now, so cpu_callout_mask can be
made static too.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.091511483@linutronix.de
cpu_callout_mask is used for the stop machine based MTRR/PAT init.
In preparation of moving the BP/AP synchronization to the core hotplug
code, use a private CPU mask for cacheinfo and manage it in the
starting/dying hotplug state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.035041005@linutronix.de
The synchronization of the AP with the control CPU is a SMP boot problem
and has nothing to do with cpu_init().
Open code cpu_init_secondary() in start_secondary() and move
wait_for_master_cpu() into the SMP boot code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.981999763@linutronix.de
The physical address width calculation in mtrr_bp_init() can easily be
replaced with using the already available value x86_phys_bits from
struct cpuinfo_x86.
The same information source can be used in mtrr/cleanup.c, removing the
need to pass that value on to mtrr_cleanup().
In print_mtrr_state() use x86_phys_bits instead of recalculating it
from size_or_mask.
Move setting of size_or_mask and size_and_mask into a dedicated new
function in mtrr/generic.c, enabling to make those 2 variables static,
as they are used in generic.c only now.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20230502120931.20719-2-jgross@suse.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmRHJSgTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXjSOCAClsmFmyP320yAB74vQer5cSzxbIpFW
3qt/P3D8zABn0UxjjmD8+LTHuyB+72KANU6qQ9No6zdYs8yaA1vGX8j8UglWWHuj
fmaAD4DuZl+V+fmqDgHukgaPlhakmW0m5tJkR+TW3kCgnyrtvSWpXPoxUAe6CLvj
Kb/SPl6ylHRWlIAEZ51gy0Ipqxjvs5vR/h9CWpTmRMuZvxdWUro2Cm82wJgzXPqq
3eLbAzB29kLFEIIUpba9a/rif1yrWgVFlfpuENFZ+HUYuR78wrPB9evhwuPvhXd2
+f+Wk0IXORAJo8h7aaMMIr6bd4Lyn98GPgmS5YSe92HRIqjBvtYs3Dq8
=F6+n
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20230424' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- PCI passthrough for Hyper-V confidential VMs (Michael Kelley)
- Hyper-V VTL mode support (Saurabh Sengar)
- Move panic report initialization code earlier (Long Li)
- Various improvements and bug fixes (Dexuan Cui and Michael Kelley)
* tag 'hyperv-next-signed-20230424' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (22 commits)
PCI: hv: Replace retarget_msi_interrupt_params with hyperv_pcpu_input_arg
Drivers: hv: move panic report code from vmbus to hv early init code
x86/hyperv: VTL support for Hyper-V
Drivers: hv: Kconfig: Add HYPERV_VTL_MODE
x86/hyperv: Make hv_get_nmi_reason public
x86/hyperv: Add VTL specific structs and hypercalls
x86/init: Make get/set_rtc_noop() public
x86/hyperv: Exclude lazy TLB mode CPUs from enlightened TLB flushes
x86/hyperv: Add callback filter to cpumask_to_vpset()
Drivers: hv: vmbus: Remove the per-CPU post_msg_page
clocksource: hyper-v: make sure Invariant-TSC is used if it is available
PCI: hv: Enable PCI pass-thru devices in Confidential VMs
Drivers: hv: Don't remap addresses that are above shared_gpa_boundary
hv_netvsc: Remove second mapping of send and recv buffers
Drivers: hv: vmbus: Remove second way of mapping ring buffers
Drivers: hv: vmbus: Remove second mapping of VMBus monitor pages
swiotlb: Remove bounce buffer remapping for Hyper-V
Driver: VMBus: Add Devicetree support
dt-bindings: bus: Add Hyper-V VMBus
Drivers: hv: vmbus: Convert acpi_device to more generic platform_device
...
The summary of the changes for this pull requests is:
* Song Liu's new struct module_memory replacement
* Nick Alcock's MODULE_LICENSE() removal for non-modules
* My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded
prior to allocating the final module memory with vmalloc and the
respective debug code it introduces to help clarify the issue. Although
the functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to have
been picked up. Folks on larger CPU systems with modules will want to
just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details
on this pull request.
The functional change change in this pull request is the very first
patch from Song Liu which replaces the struct module_layout with a new
struct module memory. The old data structure tried to put together all
types of supported module memory types in one data structure, the new
one abstracts the differences in memory types in a module to allow each
one to provide their own set of details. This paves the way in the
future so we can deal with them in a cleaner way. If you look at changes
they also provide a nice cleanup of how we handle these different memory
areas in a module. This change has been in linux-next since before the
merge window opened for v6.3 so to provide more than a full kernel cycle
of testing. It's a good thing as quite a bit of fixes have been found
for it.
Jason Baron then made dynamic debug a first class citizen module user by
using module notifier callbacks to allocate / remove module specific
dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area
is active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454 ("kbuild: create modules.builtin without Makefile.modbuiltin
or tristate.conf"). Nick has been working on this *for years* and
AFAICT I was the only one to suggest two alternatives to this approach
for tooling. The complexity in one of my suggested approaches lies in
that we'd need a possible-obj-m and a could-be-module which would check
if the object being built is part of any kconfig build which could ever
lead to it being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0]. A more obvious yet theoretical approach I've
suggested would be to have a tristate in kconfig imply the same new
-DPOSSIBLE_MODULE as well but that means getting kconfig symbol names
mapping to modules always, and I don't think that's the case today. I am
not aware of Nick or anyone exploring either of these options. Quite
recently Josh Poimboeuf has pointed out that live patching, kprobes and
BPF would benefit from resolving some part of the disambiguation as
well but for other reasons. The function granularity KASLR (fgkaslr)
patches were mentioned but Joe Lawrence has clarified this effort has
been dropped with no clear solution in sight [1].
In the meantime removing module license tags from code which could never
be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up,
and so you'll see quite a bit of Nick's patches in other pull
requests for this merge window. I just picked up the stragglers after
rc3. LWN has good coverage on the motivation behind this work [2] and
the typical cross-tree issues he ran into along the way. The only
concrete blocker issue he ran into was that we should not remove the
MODULE_LICENSE() tags from files which have no SPDX tags yet, even if
they can never be modules. Nick ended up giving up on his efforts due
to having to do this vetting and backlash he ran into from folks who
really did *not understand* the core of the issue nor were providing
any alternative / guidance. I've gone through his changes and dropped
the patches which dropped the module license tags where an SPDX
license tag was missing, it only consisted of 11 drivers. To see
if a pull request deals with a file which lacks SPDX tags you
can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above,
but that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but
it demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees,
and I just picked up the slack after rc3 for the last kernel was out.
Those changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on
a systems with over 400 CPUs when KASAN was enabled due to running
out of virtual memory space. Although the functional change only
consists of 3 lines in the patch "module: avoid allocation if module is
already present and ready", proving that this was the best we can
do on the modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been
in linux-next since around rc3 of the last kernel, the actual final
fix for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported
with larger number of CPUs. Userspace is not yet fixed as it is taking
a bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge them,
but I'm currently inclined to just see if userspace can fix this
instead.
[0] https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/
[1] https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com
[2] https://lwn.net/Articles/927569/
[3] https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRG4m0SHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinQ2oP/0xlvKwJg6Ey8fHZF0qv8VOskE80zoLF
hMazU3xfqLA+1TQvouW1YBxt3jwS3t1Ehs+NrV+nY9Yzcm0MzRX/n3fASJVe7nRr
oqWWQU+voYl5Pw1xsfdp6C8IXpBQorpYby3Vp0MAMoZyl2W2YrNo36NV488wM9KC
jD4HF5Z6xpnPSZTRR7AgW9mo7FdAtxPeKJ76Bch7lH8U6omT7n36WqTw+5B1eAYU
YTOvrjRs294oqmWE+LeebyiOOXhH/yEYx4JNQgCwPdxwnRiGJWKsk5va0hRApqF/
WW8dIqdEnjsa84lCuxnmWgbcPK8cgmlO0rT0DyneACCldNlldCW1LJ0HOwLk9pea
p3JFAsBL7TKue4Tos6I7/4rx1ufyBGGIigqw9/VX5g0Iif+3BhWnqKRfz+p9wiMa
Fl7cU6u7yC68CHu1HBSisK16cYMCPeOnTSd89upHj8JU/t74O6k/ARvjrQ9qmNUt
c5U+OY+WpNJ1nXQydhY/yIDhFdYg8SSpNuIO90r4L8/8jRQYXNG80FDd1UtvVDuy
eq0r2yZ8C0XHSlOT9QHaua/tWV/aaKtyC/c0hDRrigfUrq8UOlGujMXbUnrmrWJI
tLJLAc7ePWAAoZXGSHrt0U27l029GzLwRdKqJ6kkDANVnTeOdV+mmBg9zGh3/Mp6
agiwdHUMVN7X
=56WK
-----END PGP SIGNATURE-----
Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The summary of the changes for this pull requests is:
- Song Liu's new struct module_memory replacement
- Nick Alcock's MODULE_LICENSE() removal for non-modules
- My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded prior
to allocating the final module memory with vmalloc and the respective
debug code it introduces to help clarify the issue. Although the
functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to
have been picked up. Folks on larger CPU systems with modules will
want to just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details:
The functional change change in this pull request is the very first
patch from Song Liu which replaces the 'struct module_layout' with a
new 'struct module_memory'. The old data structure tried to put
together all types of supported module memory types in one data
structure, the new one abstracts the differences in memory types in a
module to allow each one to provide their own set of details. This
paves the way in the future so we can deal with them in a cleaner way.
If you look at changes they also provide a nice cleanup of how we
handle these different memory areas in a module. This change has been
in linux-next since before the merge window opened for v6.3 so to
provide more than a full kernel cycle of testing. It's a good thing as
quite a bit of fixes have been found for it.
Jason Baron then made dynamic debug a first class citizen module user
by using module notifier callbacks to allocate / remove module
specific dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area is
active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf").
Nick has been working on this *for years* and AFAICT I was the only
one to suggest two alternatives to this approach for tooling. The
complexity in one of my suggested approaches lies in that we'd need a
possible-obj-m and a could-be-module which would check if the object
being built is part of any kconfig build which could ever lead to it
being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0].
A more obvious yet theoretical approach I've suggested would be to
have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
well but that means getting kconfig symbol names mapping to modules
always, and I don't think that's the case today. I am not aware of
Nick or anyone exploring either of these options. Quite recently Josh
Poimboeuf has pointed out that live patching, kprobes and BPF would
benefit from resolving some part of the disambiguation as well but for
other reasons. The function granularity KASLR (fgkaslr) patches were
mentioned but Joe Lawrence has clarified this effort has been dropped
with no clear solution in sight [1].
In the meantime removing module license tags from code which could
never be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up, and
so you'll see quite a bit of Nick's patches in other pull requests for
this merge window. I just picked up the stragglers after rc3. LWN has
good coverage on the motivation behind this work [2] and the typical
cross-tree issues he ran into along the way. The only concrete blocker
issue he ran into was that we should not remove the MODULE_LICENSE()
tags from files which have no SPDX tags yet, even if they can never be
modules. Nick ended up giving up on his efforts due to having to do
this vetting and backlash he ran into from folks who really did *not
understand* the core of the issue nor were providing any alternative /
guidance. I've gone through his changes and dropped the patches which
dropped the module license tags where an SPDX license tag was missing,
it only consisted of 11 drivers. To see if a pull request deals with a
file which lacks SPDX tags you can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above, but
that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but it
demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees, and I
just picked up the slack after rc3 for the last kernel was out. Those
changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on a
systems with over 400 CPUs when KASAN was enabled due to running out
of virtual memory space. Although the functional change only consists
of 3 lines in the patch "module: avoid allocation if module is already
present and ready", proving that this was the best we can do on the
modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been in
linux-next since around rc3 of the last kernel, the actual final fix
for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported with
larger number of CPUs. Userspace is not yet fixed as it is taking a
bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge
them, but I'm currently inclined to just see if userspace can fix this
instead"
Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]
* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
module: add debugging auto-load duplicate module support
module: stats: fix invalid_mod_bytes typo
module: remove use of uninitialized variable len
module: fix building stats for 32-bit targets
module: stats: include uapi/linux/module.h
module: avoid allocation if module is already present and ready
module: add debug stats to help identify memory pressure
module: extract patient module check into helper
modules/kmod: replace implementation with a semaphore
Change DEFINE_SEMAPHORE() to take a number argument
module: fix kmemleak annotations for non init ELF sections
module: Ignore L0 and rename is_arm_mapping_symbol()
module: Move is_arm_mapping_symbol() to module_symbol.h
module: Sync code of is_arm_mapping_symbol()
scripts/gdb: use mem instead of core_layout to get the module address
interconnect: remove module-related code
interconnect: remove MODULE_LICENSE in non-modules
zswap: remove MODULE_LICENSE in non-modules
zpool: remove MODULE_LICENSE in non-modules
x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
...
Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening in
the driver core in the quest to be able to move "struct bus" and "struct
class" into read-only memory, a task now complete with these changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules for
all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most of
them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5
LEGadNS38k5fs+73UaxV
=7K4B
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening
in the driver core in the quest to be able to move "struct bus" and
"struct class" into read-only memory, a task now complete with these
changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules
for all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most
of them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
device property: make device_property functions take const device *
driver core: update comments in device_rename()
driver core: Don't require dynamic_debug for initcall_debug probe timing
firmware_loader: rework crypto dependencies
firmware_loader: Strip off \n from customized path
zram: fix up permission for the hot_add sysfs file
cacheinfo: Add use_arch[|_cache]_info field/function
arch_topology: Remove early cacheinfo error message if -ENOENT
cacheinfo: Check cache properties are present in DT
cacheinfo: Check sib_leaf in cache_leaves_are_shared()
cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
cacheinfo: Add arm64 early level initializer implementation
cacheinfo: Add arch specific early level initializer
tty: make tty_class a static const structure
driver core: class: remove struct class_interface * from callbacks
driver core: class: mark the struct class in struct class_interface constant
driver core: class: make class_register() take a const *
driver core: class: mark class_release() as taking a const *
driver core: remove incorrect comment for device_create*
MIPS: vpe-cmp: remove module owner pointer from struct class usage.
...
SEV-SNP vTOM guest on Hyper-V. A vTOM guest basically splits the
address space in two parts: encrypted and unencrypted. The use case
being running unmodified guests on the Hyper-V confidential computing
hypervisor
- Double-buffer messages between the guest and the hardware PSP device
so that no partial buffers are copied back'n'forth and thus potential
message integrity and leak attacks are possible
- Name the return value the sev-guest driver returns when the hw PSP
device hasn't been called, explicitly
- Cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmRGl8gACgkQEsHwGGHe
VUoEDhAAiw4+2nZR7XUJ7pewlXG7AJJZsVIpzzcF6Gyymn0LFCyMnP7O3snmFqzz
aik0q2LzWrmDQ3Nmmzul0wtdsuW7Nik6BP9oF3WnB911+gGbpXyNWZ8EhOPNzkUR
9D8Sp6f0xmqNE3YuzEpanufiDswgUxi++DRdmIRAs1TTh4bfUFWZcib1pdwoqSmR
oS3UfVwVZ4Ee2Qm1f3n3XQ0FUpsjWeARPExUkLEvd8XeonTP+6aGAdggg9MnPcsl
3zpSmOpuZ6VQbDrHxo3BH9HFuIUOd6S9PO++b9F6WxNPGEMk7fHa7ahOA6HjhgVz
5Da3BN16OS9j64cZsYHMPsBcd+ja1YmvvZGypsY0d6X4d3M1zTPW+XeLbyb+VFBy
SvA7z+JuxtLKVpju65sNiJWw8ZDTSu+eEYNDeeGLvAj3bxtclJjcPdMEPdzxmC5K
eAhmRmiFuVM4nXMAR6cspVTsxvlTHFtd5gdm6RlRnvd7aV77Zl1CLzTy8IHTVpvI
t7XTbtjEjYc0pI6cXXptHEOnBLjXUMPcqgGFgJYEauH6EvrxoWszUZD0tS3Hw80A
K+Rwnc70ubq/PsgZcF4Ayer1j49z1NPfk5D4EA7/ChN6iNhQA8OqHT1UBrHAgqls
2UAwzE2sQZnjDvGZghlOtFIQUIhwue7m93DaRi19EOdKYxVjV6U=
=ZAw9
-----END PGP SIGNATURE-----
Merge tag 'x86_sev_for_v6.4_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV updates from Borislav Petkov:
- Add the necessary glue so that the kernel can run as a confidential
SEV-SNP vTOM guest on Hyper-V. A vTOM guest basically splits the
address space in two parts: encrypted and unencrypted. The use case
being running unmodified guests on the Hyper-V confidential computing
hypervisor
- Double-buffer messages between the guest and the hardware PSP device
so that no partial buffers are copied back'n'forth and thus potential
message integrity and leak attacks are possible
- Name the return value the sev-guest driver returns when the hw PSP
device hasn't been called, explicitly
- Cleanups
* tag 'x86_sev_for_v6.4_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Change vTOM handling to use standard coco mechanisms
init: Call mem_encrypt_init() after Hyper-V hypercall init is done
x86/mm: Handle decryption/re-encryption of bss_decrypted consistently
Drivers: hv: Explicitly request decrypted in vmap_pfn() calls
x86/hyperv: Reorder code to facilitate future work
x86/ioremap: Add hypervisor callback for private MMIO mapping in coco VM
x86/sev: Change snp_guest_issue_request()'s fw_err argument
virt/coco/sev-guest: Double-buffer messages
crypto: ccp: Get rid of __sev_platform_init_locked()'s local function pointer
crypto: ccp - Name -1 return value as SEV_RET_NO_FW_CALL
- Finally use a CPUID bit for split lock detection instead of
enumerating every model
- Make sure automatic IBRS is set on AMD, even though the AP bringup
code does that now by replicating the MSR which contains the switch
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmRGiUkACgkQEsHwGGHe
VUrjgw/7BnRvmgdSJg//TwlCnbnYCHbUzPbCfnMK8W6C5OvoRR+VYxeu3DoI/dsx
xW2lMR/Svf30orB3EQTnpOBNa3PPbDlQvqInM+bQ/TYb5F6yIAnRkQhD9OaIQkeM
CwX68pPcEPXCY+Ds2RmV6K2UvzIG5vVeYg6O36FVYUvON1tHFadEAT//lAMVspOs
HBbhEOpu6/zHoKr53cduT2P9i7SAjCIjPRSMpuIfCd3RNcjwqWEXCyXxNad6LrTc
Nd+xNjUpcRecl2bR41bIrpTfGGaU2XOJI2GiFfH/mBP8WNSP4Npp3LQVI35bDwLP
VYr2IRGySxTerLSV2v8UwBSYw/hVltq5TkHyqjNaQB5JKbhxnH67GLV2LeOxawGz
OogxcPF7RrVmr/c3ji4FE/QQlTbHczIRaSjNOYupHNNcQP5NrxVHWCNZRKX8ljh1
Ah1G3s5vEVigzgqnMX8ey4xBpMtL4bilT2mMwh5hY2XMY3QjgrXLg+73VkvBkM6Y
MjreNrUoGSC7Qw39rXtUfgRBMCB16CfFSsxPS4Isu6JwlNpJzOOifVdTdE4flOrd
HR0ac776WKO9KJrPvnxYNf5mHRWkUWPS7t04BvkHuzOzxQQHz51A0xwh7td0kZA9
vozSbxKE91sH0XD73x/H/EA/TGpWwYq7DQIYJOxCu1juq1ku7lM=
=QquZ
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.4_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu model updates from Borislav Petkov:
- Add Emerald Rapids to the list of Intel models supporting PPIN
- Finally use a CPUID bit for split lock detection instead of
enumerating every model
- Make sure automatic IBRS is set on AMD, even though the AP bringup
code does that now by replicating the MSR which contains the switch
* tag 'x86_cpu_for_v6.4_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Add Xeon Emerald Rapids to list of CPUs that support PPIN
x86/split_lock: Enumerate architectural split lock disable bit
x86/CPU/AMD: Make sure EFER[AIBRSE] is set
an objtool fix and use proper size for a bitmap
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmRGhG8ACgkQEsHwGGHe
VUr9+xAAs5D7hCYfKVsdNiiWh+pBRnrnOjfCcRb0cvIIyE4DKvLbGJoTjsRN7WuT
1ExnnjGL9CJHyqnJQj8/M0AdNgh28fOpJInzE3k7cDckZHQQp4cYDLQ2x9uAWvVl
lNmOKTmVXq97hZw6maSTm4iFWDTzbdLveIETjlVWvjWVomkm9KI6/3HZN2qjzxJP
IeCZ20lpZAg94/rMf6FqhuY1gaSa2yeXqz+wO19A5LBNhRHm60bFS2h48GiACxsV
JD5jDPVsTozAGxyNxKe1DerzH4NQCBax9bzjW7TvAGqNLPamLPg5npGdrAg9SdD8
yQ6F9TiUSU1jJfh3NqA7TxOcCtSr36xUrDJaOiMnVr68qi6kBnFsQ+Hxx3NwvCsU
6304wESm+j1rJ1DwtKOrguIVZ+nI+s6I/ubki4wjxa7zZZqZ7/daNM/3j9Wl7Vng
pd/augpcPR5+FNmU2Zq47ZK3kgqxjpEFpByjOChYclHGWZ4Jk717K7kf7CD424WM
VU590ffXLQCN/pcPkDo4Rxj5LVkaXqocWfOfr5uB0XIPjP+wjsjtJF+Mi/phO23O
dWFzI00GJZqKMehV07eCKaGoxVko9P/FxG8WdxLfw4BfmaOQGBB0O4m5tRvyPdjB
Ezm0ZUbuLl3zmHmfM1ZCPRkZ532I/IAF88VcIygmYRUr78w6mfw=
=e2hz
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.4_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Just cleanups and fixes this time around: make threshold_ktype const,
an objtool fix and use proper size for a bitmap
* tag 'ras_core_for_v6.4_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE/AMD: Use an u64 for bank_map
x86/mce: Always inline old MCA stubs
x86/MCE/AMD: Make kobj_type structure constant
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZEYCQAAKCRBZ7Krx/gZQ
64FdAQDZ2hTDyZEWPt486dWYPYpiKyaGFXSXDGo7wgP0fiwxXQEA/mROKb6JqYw6
27mZ9A7qluT8r3AfTTQ0D+Yse/dr4AM=
=GA9W
-----END PGP SIGNATURE-----
Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fget updates from Al Viro:
"fget() to fdget() conversions"
* tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fuse_dev_ioctl(): switch to fdget()
cgroup_get_from_fd(): switch to fdget_raw()
bpf: switch to fdget_raw()
build_mount_idmapped(): switch to fdget()
kill the last remaining user of proc_ns_fget()
SVM-SEV: convert the rest of fget() uses to fdget() in there
convert sgx_set_attribute() to fdget()/fdput()
convert setns(2) to fdget()/fdput()
still a fair amount going on, including:
- Reorganizing the architecture-specific documentation under
Documentation/arch. This makes the structure match the source directory
and helps to clean up the mess that is the top-level Documentation
directory a bit. This work creates the new directory and moves x86 and
most of the less-active architectures there. The current plan is to move
the rest of the architectures in 6.5, with the patches going through the
appropriate subsystem trees.
- Some more Spanish translations and maintenance of the Italian
translation.
- A new "Kernel contribution maturity model" document from Ted.
- A new tutorial on quickly building a trimmed kernel from Thorsten.
Plus the usual set of updates and fixes.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmRGze0PHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Y/VsH/RyWqinorRVFZmHqRJMRhR0j7hE2pAgK5prE
dGXYVtHHNQ+25thNaqhZTOLYFbSX6ii2NG7sLRXmyOTGIZrhUCFFXCHkuq4ZUypR
gJpMUiKQVT4dhln3gIZ0k09NSr60gz8UTcq895N9UFpUdY1SCDhbCcLc4uXTRajq
NrdgFaHWRkPb+gBRbXOExYm75DmCC6Ny5AyGo2rXfItV//ETjWIJVQpJhlxKrpMZ
3LgpdYSLhEFFnFGnXJ+EAPJ7gXDi2Tg5DuPbkvJyFOTouF3j4h8lSS9l+refMljN
xNRessv+boge/JAQidS6u8F2m2ESSqSxisv/0irgtKIMJwXaoX4=
=1//8
-----END PGP SIGNATURE-----
Merge tag 'docs-6.4' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"Commit volume in documentation is relatively low this time, but there
is still a fair amount going on, including:
- Reorganize the architecture-specific documentation under
Documentation/arch
This makes the structure match the source directory and helps to
clean up the mess that is the top-level Documentation directory a
bit. This work creates the new directory and moves x86 and most of
the less-active architectures there.
The current plan is to move the rest of the architectures in 6.5,
with the patches going through the appropriate subsystem trees.
- Some more Spanish translations and maintenance of the Italian
translation
- A new "Kernel contribution maturity model" document from Ted
- A new tutorial on quickly building a trimmed kernel from Thorsten
Plus the usual set of updates and fixes"
* tag 'docs-6.4' of git://git.lwn.net/linux: (47 commits)
media: Adjust column width for pdfdocs
media: Fix building pdfdocs
docs: clk: add documentation to log which clocks have been disabled
docs: trace: Fix typo in ftrace.rst
Documentation/process: always CC responsible lists
docs: kmemleak: adjust to config renaming
ELF: document some de-facto PT_* ABI quirks
Documentation: arm: remove stih415/stih416 related entries
docs: turn off "smart quotes" in the HTML build
Documentation: firmware: Clarify firmware path usage
docs/mm: Physical Memory: Fix grammar
Documentation: Add document for false sharing
dma-api-howto: typo fix
docs: move m68k architecture documentation under Documentation/arch/
docs: move parisc documentation under Documentation/arch/
docs: move ia64 architecture docs under Documentation/arch/
docs: Move arc architecture docs under Documentation/arch/
docs: move nios2 documentation under Documentation/arch/
docs: move openrisc documentation under Documentation/arch/
docs: move superh documentation under Documentation/arch/
...
So Intel introduced the FSRS ("Fast Short REP STOS") CPU capability bit,
because they seem to have done the (much simpler) REP STOS optimizations
separately and later than the REP MOVS one.
In contrast, when AMD introduced support for FSRM ("Fast Short REP
MOVS"), in the Zen 3 core, it appears to have improved the REP STOS case
at the same time, and since the FSRS bit was added by Intel later, it
doesn't show up on those AMD Zen 3 cores.
And now that we made use of FSRS for the "rep stos" conditional, that
made those AMD machines unnecessarily slower. The Intel situation where
"rep movs" is fast, but "rep stos" isn't, is just odd. The 'stos' case
is a lot simpler with no aliasing, no mutual alignment issues, no
complicated cases.
So this just sets FSRS automatically when FSRM is available on AMD
machines, to get back all the nice REP STOS goodness in Zen 3.
Reported-and-tested-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fundamentally semaphores are a counted primitive, but
DEFINE_SEMAPHORE() does not expose this and explicitly creates a
binary semaphore.
Change DEFINE_SEMAPHORE() to take a number argument and use that in the
few places that open-coded it using __SEMAPHORE_INITIALIZER().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[mcgrof: add some tribal knowledge about why some folks prefer
binary sempahores over mutexes]
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Virtual Trust Levels (VTL) helps enable Hyper-V Virtual Secure Mode (VSM)
feature. VSM is a set of hypervisor capabilities and enlightenments
offered to host and guest partitions which enable the creation and
management of new security boundaries within operating system software.
VSM achieves and maintains isolation through VTLs.
Add early initialization for Virtual Trust Levels (VTL). This includes
initializing the x86 platform for VTL and enabling boot support for
secondary CPUs to start in targeted VTL context. For now, only enable
the code for targeted VTL level as 2.
When starting an AP at a VTL other than VTL0, the AP must start directly
in 64-bit mode, bypassing the usual 16-bit -> 32-bit -> 64-bit mode
transition sequence that occurs after waking up an AP with SIPI whose
vector points to the 16-bit AP startup trampoline code.
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Stanislav Kinsburskii <stanislav.kinsburskii@gmail.com>
Link: https://lore.kernel.org/r/1681192532-15460-6-git-send-email-ssengar@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
With changes to how Hyper-V guest VMs flip memory between private
(encrypted) and shared (decrypted), creating a second kernel virtual
mapping for shared memory is no longer necessary. Everything needed
for the transition to shared is handled by set_memory_decrypted().
As such, remove swiotlb_unencrypted_base and the associated
code.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/1679838727-87310-8-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Merge the following 6 patches from tip/x86/sev, which are taken from
Michael Kelley's series [0]. The rest of Michael's series depend on
them.
x86/hyperv: Change vTOM handling to use standard coco mechanisms
init: Call mem_encrypt_init() after Hyper-V hypercall init is done
x86/mm: Handle decryption/re-encryption of bss_decrypted consistently
Drivers: hv: Explicitly request decrypted in vmap_pfn() calls
x86/hyperv: Reorder code to facilitate future work
x86/ioremap: Add hypervisor callback for private MMIO mapping in coco VM
0: https://lore.kernel.org/linux-hyperv/1679838727-87310-1-git-send-email-mikelley@microsoft.com/
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmQqIpUTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXjtwCACaG8LkrLOa4EWwdVLOutxc/VSHhPzS
FaCyzxaSNtFciSl/kOPsl2pmwy+c9QAri3wO9uyJ41R1oUfjy/+pX8TxYc1imOrh
6vIMUntYW7t9ISoUbi7hDU1Nj3CX4KOXruOliLP3WM9mtGvaNL5INEDh9PV6bxIz
xlP8JEoKTk0ecChOWZDWyDIE95MwgqRin8uEI0JUyE2mdegIrDC7SFvqT7XjV23O
0gntPdoZCgBzWohaiRMKJHHNUbAC+1O2+1tzY0bONwHdpmRj5/V28e02iARF3bAE
4TvTt3qrZU02epzMhkZPnTztyvp1vPzmpHaBHQD4pdNZP/D1b8ejm4mz
=o+VM
-----END PGP SIGNATURE-----
Merge tag 'hyperv-fixes-signed-20230402' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv fixes from Wei Liu:
- Fix a bug in channel allocation for VMbus (Mohammed Gamal)
- Do not allow root partition functionality in CVM (Michael Kelley)
* tag 'hyperv-fixes-signed-20230402' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
x86/hyperv: Block root partition functionality in a Confidential VM
Drivers: vmbus: Check for channel allocation before looking up relids
We need the fixes in here for testing, as well as the driver core
changes for documentation updates to build on.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Move the x86 documentation under Documentation/arch/ as a way of cleaning
up the top-level directory and making the structure of our docs more
closely match the structure of the source directories it describes.
All in-kernel references to the old paths have been updated.
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-arch@vger.kernel.org
Cc: x86@kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20230315211523.108836-1-corbet@lwn.net/
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Hyper-V guests on AMD SEV-SNP hardware have the option of using the
"virtual Top Of Memory" (vTOM) feature specified by the SEV-SNP
architecture. With vTOM, shared vs. private memory accesses are
controlled by splitting the guest physical address space into two
halves.
vTOM is the dividing line where the uppermost bit of the physical
address space is set; e.g., with 47 bits of guest physical address
space, vTOM is 0x400000000000 (bit 46 is set). Guest physical memory is
accessible at two parallel physical addresses -- one below vTOM and one
above vTOM. Accesses below vTOM are private (encrypted) while accesses
above vTOM are shared (decrypted). In this sense, vTOM is like the
GPA.SHARED bit in Intel TDX.
Support for Hyper-V guests using vTOM was added to the Linux kernel in
two patch sets[1][2]. This support treats the vTOM bit as part of
the physical address. For accessing shared (decrypted) memory, these
patch sets create a second kernel virtual mapping that maps to physical
addresses above vTOM.
A better approach is to treat the vTOM bit as a protection flag, not
as part of the physical address. This new approach is like the approach
for the GPA.SHARED bit in Intel TDX. Rather than creating a second kernel
virtual mapping, the existing mapping is updated using recently added
coco mechanisms.
When memory is changed between private and shared using
set_memory_decrypted() and set_memory_encrypted(), the PTEs for the
existing kernel mapping are changed to add or remove the vTOM bit in the
guest physical address, just as with TDX. The hypercalls to change the
memory status on the host side are made using the existing callback
mechanism. Everything just works, with a minor tweak to map the IO-APIC
to use private accesses.
To accomplish the switch in approach, the following must be done:
* Update Hyper-V initialization to set the cc_mask based on vTOM
and do other coco initialization.
* Update physical_mask so the vTOM bit is no longer treated as part
of the physical address
* Remove CC_VENDOR_HYPERV and merge the associated vTOM functionality
under CC_VENDOR_AMD. Update cc_mkenc() and cc_mkdec() to set/clear
the vTOM bit as a protection flag.
* Code already exists to make hypercalls to inform Hyper-V about pages
changing between shared and private. Update this code to run as a
callback from __set_memory_enc_pgtable().
* Remove the Hyper-V special case from __set_memory_enc_dec()
* Remove the Hyper-V specific call to swiotlb_update_mem_attributes()
since mem_encrypt_init() will now do it.
* Add a Hyper-V specific implementation of the is_private_mmio()
callback that returns true for the IO-APIC and vTPM MMIO addresses
[1] https://lore.kernel.org/all/20211025122116.264793-1-ltykernel@gmail.com/
[2] https://lore.kernel.org/all/20211213071407.314309-1-ltykernel@gmail.com/
[ bp: Touchups. ]
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/1679838727-87310-7-git-send-email-mikelley@microsoft.com
Thee maximum number of MCA banks is 64 (MAX_NR_BANKS), see
a0bc32b3ca ("x86/mce: Increase maximum number of banks to 64").
However, the bank_map which contains a bitfield of which banks to
initialize is of type unsigned int and that overflows when those bit
numbers are >= 32, leading to UBSAN complaining correctly:
UBSAN: shift-out-of-bounds in arch/x86/kernel/cpu/mce/amd.c:1365:38
shift exponent 32 is too large for 32-bit type 'int'
Change the bank_map to a u64 and use the proper BIT_ULL() macro when
modifying bits in there.
[ bp: Rewrite commit message. ]
Fixes: a0bc32b3ca ("x86/mce: Increase maximum number of banks to 64")
Signed-off-by: Muralidhara M K <muralimk@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230127151601.1068324-1-muralimk@amd.com
changes over sysfs have been done instead of waiting until something
else triggers the workqueue later - another error or the polling
interval cycle is reached
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmQXB9kACgkQEsHwGGHe
VUqqjA//YbcRx2PFcZT5nnuQlb6bptsluCUrHOcJVT/1fe0ayrlvahuw/QtSXRH4
Vwukc3+1cehp3CcSbHKAKOArTL7NV2tbk+EZQk+Ae+7QdRz/9TuEenL6ipCC1cr4
Z3Bo3KZmHlBcoJaQDcQWWIL8TiYAPXdqXWksh8q+0pxDI2wuFguFBJI84j+AUZH+
I4EDXLfzQn8RQZgiggEIez0aOIig74eaPfhHsNlqJJYG4x/EVgmRn9qJpYBGAeq6
xQR6NvHUTjCCZAASI1QJ/IT5rXD17iey3J/gIw3QZEhotBCCDdk5vh8S8zqDStRF
x3Za7qeC5m4HMfB/09v8HGeTitlaT0BYmM2CFOsru7I/qI+dJccDTwLmF8UY5Nj2
G6454A7ZEQ13lhfAoDIeVFfoSkqyXNz+McTtOQ8/xDJ5hnuNJ4WtT7sWemWZlV5S
l14xVFbojtGNmQygUGeL7cxl6h12Y9zFNwh1A5HzwH4EvywQJW7/35pxXEZIO3tl
EioXKe1eSLcKoD9VAv8icmstpwJl1Gm5Xge1oyw8cyTW6d3hM8ZOEqdTAJvRkfG7
LwPl3qC6Hrqhjc26WZ9pxmvR1hSYLWIidy6MlNeO9mf6wZR/ub+SmuHzy6n7TZl4
pTsVver93ZgS1J8CJ0ohCK1jHs+2aLvh/6qiJvIw9lbgAZ2HKPo=
=Q6Dq
-----END PGP SIGNATURE-----
Merge tag 'ras_urgent_for_v6.3_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS fix from Borislav Petkov:
- Flush out logged errors immediately after MCA banks configuration
changes over sysfs have been done instead of waiting until something
else triggers the workqueue later - another error or the polling
interval cycle is reached
* tag 'ras_urgent_for_v6.3_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Make sure logged MCEs are processed after sysfs update
Direct access to the struct bus_type dev_root pointer is going away soon
so replace that with a call to bus_get_dev_root() instead, which is what
it is there for.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20230313182918.1312597-10-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Direct access to the struct bus_type dev_root pointer is going away soon
so replace that with a call to bus_get_dev_root() instead, which is what
it is there for.
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20230313182918.1312597-9-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The module pointer in class_create() never actually did anything, and it
shouldn't have been requred to be set as a parameter even if it did
something. So just remove it and fix up all callers of the function in
the kernel tree at the same time.
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20230313181843.1207845-4-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Hyper-V should never specify a VM that is a Confidential VM and also
running in the root partition. Nonetheless, explicitly block such a
combination to guard against a compromised Hyper-V maliciously trying to
exploit root partition functionality in a Confidential VM to expose
Confidential VM secrets. No known bug is being fixed, but the attack
surface for Confidential VMs on Hyper-V is reduced.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1678894453-95392-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
The December 2022 edition of the Intel Instruction Set Extensions manual
defined that the split lock disable bit in the IA32_CORE_CAPABILITIES MSR
is (and retrospectively always has been) architectural.
Remove all the model specific checks except for Ice Lake variants which are
still needed because these CPU models do not enumerate presence of the
IA32_CORE_CAPABILITIES MSR.
Originally-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/lkml/20220701131958.687066-1-fenghua.yu@intel.com/t/#mada243bee0915532a6adef6a9e32d244d1a9aef4
The AutoIBRS bit gets set only on the BSP as part of determining which
mitigation to enable on AMD. Setting on the APs relies on the
circumstance that the APs get booted through the trampoline and EFER
- the MSR which contains that bit - gets replicated on every AP from the
BSP.
However, this can change in the future and considering the security
implications of this bit not being set on every CPU, make sure it is set
by verifying EFER later in the boot process and on every AP.
Reported-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20230224185257.o3mcmloei5zqu7wa@treble
__mon_event_count() does the per-RMID, per-domain work for
user-initiated event count reads and the initialization of new monitor
groups.
In the initialization case, after resctrl_arch_reset_rmid() calls
__rmid_read() to record an initial count for a new monitor group, it
immediately calls resctrl_arch_rmid_read(). This re-read of the hardware
counter is unnecessary and the following computations are ignored by the
caller during initialization.
Following return from resctrl_arch_reset_rmid(), just clear the
mbm_state and return. This involves moving the mbm_state lookup into the
rr->first case, as it's not needed for regular event count reads: the
QOS_L3_OCCUP_EVENT_ID case was redundant with the accumulating logic at
the end of the function.
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/all/20221220164132.443083-2-peternewman%40google.com
As a temporary storage, staged_config[] in rdt_domain should be cleared
before and after it is used. The stale value in staged_config[] could
cause an MSR access error.
Here is a reproducer on a system with 16 usable CLOSIDs for a 15-way L3
Cache (MBA should be disabled if the number of CLOSIDs for MB is less than
16.) :
mount -t resctrl resctrl -o cdp /sys/fs/resctrl
mkdir /sys/fs/resctrl/p{1..7}
umount /sys/fs/resctrl/
mount -t resctrl resctrl /sys/fs/resctrl
mkdir /sys/fs/resctrl/p{1..8}
An error occurs when creating resource group named p8:
unchecked MSR access error: WRMSR to 0xca0 (tried to write 0x00000000000007ff) at rIP: 0xffffffff82249142 (cat_wrmsr+0x32/0x60)
Call Trace:
<IRQ>
__flush_smp_call_function_queue+0x11d/0x170
__sysvec_call_function+0x24/0xd0
sysvec_call_function+0x89/0xc0
</IRQ>
<TASK>
asm_sysvec_call_function+0x16/0x20
When creating a new resource control group, hardware will be configured
by the following process:
rdtgroup_mkdir()
rdtgroup_mkdir_ctrl_mon()
rdtgroup_init_alloc()
resctrl_arch_update_domains()
resctrl_arch_update_domains() iterates and updates all resctrl_conf_type
whose have_new_ctrl is true. Since staged_config[] holds the same values as
when CDP was enabled, it will continue to update the CDP_CODE and CDP_DATA
configurations. When group p8 is created, get_config_index() called in
resctrl_arch_update_domains() will return 16 and 17 as the CLOSIDs for
CDP_CODE and CDP_DATA, which will be translated to an invalid register -
0xca0 in this scenario.
Fix it by clearing staged_config[] before and after it is used.
[reinette: re-order commit tags]
Fixes: 75408e4350 ("x86/resctrl: Allow different CODE/DATA configurations to be staged")
Suggested-by: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: Shawn Wang <shawnwang@linux.alibaba.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Reinette Chatre <reinette.chatre@intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/2fad13f49fbe89687fc40e9a5a61f23a28d1507a.1673988935.git.reinette.chatre%40intel.com
A recent change introduced a flag to queue up errors found during
boot-time polling. These errors will be processed during late init once
the MCE subsystem is fully set up.
A number of sysfs updates call mce_restart() which goes through a subset
of the CPU init flow. This includes polling MCA banks and logging any
errors found. Since the same function is used as boot-time polling,
errors will be queued. However, the system is now past late init, so the
errors will remain queued until another error is found and the workqueue
is triggered.
Call mce_schedule_work() at the end of mce_restart() so that queued
errors are processed.
Fixes: 3bff147b18 ("x86/mce: Defer processing of early errors")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230301221420.2203184-1-yazen.ghannam@amd.com
impact to anything as those machines will fallback to XSAVEC which is
equivalent there.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmQNtvAACgkQEsHwGGHe
VUpGiRAAjlYpvaQK24s8MiQr3LBC0pKsgKstf1Jx5C+HspmS5JAdF83646kMOUKm
MUGPfQwK1nN5kO0/fOlo4O6vhSIF2Ft/Xfrd/APZm6qJhR3pli9675NeF8fH2D5t
Ypgtl6psRudkB3RUmE1cmHWbr9dMnHZZLnL6iA/qHYXCY3kaw96ncM6HjdnrjXRd
OV2+N4dyhTet3MdUdw7dSr1uz75O5PQH/1FwR1V2zroF1sjImaIwQ7JN51hIITxw
DzfTbfuJzdAqwfztBFG/yZ5K+DEoU5BemHHIuhq+X9/7GeLMd059DdnZuXSX8mcH
jjzOa/E5r/PjYze0XRWT3RbI5fbSc1qhNbmj3kLNP3KE/F3S74n6FR58oLNqosVk
zw1TYP8oocdjG1VxJdm5qndIzwHMSj3qkd+BSNZZ1fwINVLXtSDubtThkN/i+81+
nqnMA8HFrcwy1bhwq4jd5dmP7tjlODATfeL4ZV6/6J1RX8Vwu+bjdy8PM+vJYJ0d
pnFLT20cf6Or0MQHUssO+uh6oC3aQ6AxPWJcuUfbdSLYzjr2EObgCHXGZOhCjvhC
CsALcmwnLh5XzwglzWoXyyv+tsJar63XYcPSEIt+gIfXpLf7ZbzcOSDLDkri6B3Z
fCABGASFnoXr7ZYnGxH4L5WKWOk1W+pgpxyC4mnzD9oHtXIzUPU=
=u6kj
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v6.3_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Borislav Petkov:
"A single erratum fix for AMD machines:
- Disable XSAVES on AMD Zen1 and Zen2 machines due to an erratum. No
impact to anything as those machines will fallback to XSAVEC which
is equivalent there"
* tag 'x86_urgent_for_v6.3_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Disable XSAVES on AMD family 0x17
The implementation of 'current' on x86 is very intentionally special: it
is a very common thing to look up, and it uses 'this_cpu_read_stable()'
to get the current thread pointer efficiently from per-cpu storage.
And the keyword in there is 'stable': the current thread pointer never
changes as far as a single thread is concerned. Even if when a thread
is preempted, or moved to another CPU, or even across an explicit call
'schedule()' that thread will still have the same value for 'current'.
It is, after all, the kernel base pointer to thread-local storage.
That's why it's stable to begin with, but it's also why it's important
enough that we have that special 'this_cpu_read_stable()' access for it.
So this is all done very intentionally to allow the compiler to treat
'current' as a value that never visibly changes, so that the compiler
can do CSE and combine multiple different 'current' accesses into one.
However, there is obviously one very special situation when the
currently running thread does actually change: inside the scheduler
itself.
So the scheduler code paths are special, and do not have a 'current'
thread at all. Instead there are _two_ threads: the previous and the
next thread - typically called 'prev' and 'next' (or prev_p/next_p)
internally.
So this is all actually quite straightforward and simple, and not all
that complicated.
Except for when you then have special code that is run in scheduler
context, that code then has to be aware that 'current' isn't really a
valid thing. Did you mean 'prev'? Did you mean 'next'?
In fact, even if then look at the code, and you use 'current' after the
new value has been assigned to the percpu variable, we have explicitly
told the compiler that 'current' is magical and always stable. So the
compiler is quite free to use an older (or newer) value of 'current',
and the actual assignment to the percpu storage is not relevant even if
it might look that way.
Which is exactly what happened in the resctl code, that blithely used
'current' in '__resctrl_sched_in()' when it really wanted the new
process state (as implied by the name: we're scheduling 'into' that new
resctl state). And clang would end up just using the old thread pointer
value at least in some configurations.
This could have happened with gcc too, and purely depends on random
compiler details. Clang just seems to have been more aggressive about
moving the read of the per-cpu current_task pointer around.
The fix is trivial: just make the resctl code adhere to the scheduler
rules of using the prev/next thread pointer explicitly, instead of using
'current' in a situation where it just wasn't valid.
That same code is then also used outside of the scheduler context (when
a thread resctl state is explicitly changed), and then we will just pass
in 'current' as that pointer, of course. There is no ambiguity in that
case.
The fix may be trivial, but noticing and figuring out what went wrong
was not. The credit for that goes to Stephane Eranian.
Reported-by: Stephane Eranian <eranian@google.com>
Link: https://lore.kernel.org/lkml/20230303231133.1486085-1-eranian@google.com/
Link: https://lore.kernel.org/lkml/alpine.LFD.2.01.0908011214330.3304@localhost.localdomain/
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Stephane Eranian <eranian@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
AMD Erratum 1386 is summarised as:
XSAVES Instruction May Fail to Save XMM Registers to the Provided
State Save Area
This piece of accidental chronomancy causes the %xmm registers to
occasionally reset back to an older value.
Ignore the XSAVES feature on all AMD Zen1/2 hardware. The XSAVEC
instruction (which works fine) is equivalent on affected parts.
[ bp: Typos, move it into the F17h-specific function. ]
Reported-by: Tavis Ormandy <taviso@gmail.com>
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230307174643.1240184-1-andrew.cooper3@citrix.com
The stubs for the ancient MCA support (CONFIG_X86_ANCIENT_MCE) are
normally optimized away on 64-bit builds. However, an allmodconfig one
causes the compiler to add sanitizer calls gunk into them and they exist
as constprop calls. Which objtool then complains about:
vmlinux.o: warning: objtool: do_machine_check+0xad8: call to \
pentium_machine_check.constprop.0() leaves .noinstr.text section
due to them missing noinstr. One could tag them "noinstr" but what
should really happen is, they should be forcefully inlined so that all
that gunk gets optimized away and the warning doesn't even have a chance
to fire.
Do so.
No functional changes.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230222191054.4701-1-bp@alien8.de
Since
ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definition to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230217-kobj_type-mce-amd-v1-1-40ef94816444@weissschuh.net
- Return -EIO instead of success when the certificate buffer for SEV
guests is not large enough.
- Allow STIPB to be enabled with legacy IBSR. Legacy IBRS is cleared on
return to userspace for performance reasons, but the leaves user space
vulnerable to cross-thread attacks which STIBP prevents. Update the
documentation accordingly.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmQEVnETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoegJEACbn+CQKFxB4kXJ1xBamYsqQfxY1mM1
yFziEVH3VCXSshfvKePH7fnoAUHTzhy+SjN6c1ERvl82WVXm/BoF2B81KpN9Yd18
R6wTpIS227Pn+Ll1yfVQJMHrb0mnSczo5vCGyOzMOxkqIbNCkHRMoeSBspfNLLGM
3D2+IQqBaqBgNzPQ3JHrwRqQAy/3ZJT4IrHSFe0LwgYQ/EeAGydY8UN0wB1y5YN0
SoFhPd7B7UWxUD7PrfriBc3B2HN44QkMpe/fQJ4y0GVF+1Uqp6Ti7ouCEVg60A3g
8kiS+98FBIzHySk+xfX/vlhiQD/J2c6/+p28gw+iGf6YmUsQbeu64tV5TAUGGBN+
kErLvJmJnC/dwWiEMXzv/e6sNKoZi0Yz/JVq6atuoT/521cjDEDapZRxBSmaW33M
Zn6YF8FIsUTHGdt9Equ+HPjZZTyk34W8f0d0N+lws0QNWtk5d0KU5XP2PDp+Mj6O
dGVaGv88qmMIr0o/s9CgvpefSM8L7fC0WQwRpRr905gu8k6YxuEWQofuh365ZcKT
sEDeRqZYi+ue4+gW1GRje6M5ODftTWoLPlX2f+iZui1gwwpuczvj0sRR10kKfKRD
qxpHcxyIzS2MW4aT1JnVgeWStt0x5wWeq1qzO1bwBJCAlS63vln/mUnBq7+uV0ca
KiEah5vP4dcenA==
=1RwH
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2023-03-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 updates from Thomas Gleixner:
"A small set of updates for x86:
- Return -EIO instead of success when the certificate buffer for SEV
guests is not large enough
- Allow STIPB to be enabled with legacy IBSR. Legacy IBRS is cleared
on return to userspace for performance reasons, but the leaves user
space vulnerable to cross-thread attacks which STIBP prevents.
Update the documentation accordingly"
* tag 'x86-urgent-2023-03-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
virt/sev-guest: Return -EIO if certificate buffer is not large enough
Documentation/hw-vuln: Document the interaction between IBRS and STIBP
x86/speculation: Allow enabling STIBP with legacy IBRS
When plain IBRS is enabled (not enhanced IBRS), the logic in
spectre_v2_user_select_mitigation() determines that STIBP is not needed.
The IBRS bit implicitly protects against cross-thread branch target
injection. However, with legacy IBRS, the IBRS bit is cleared on
returning to userspace for performance reasons which leaves userspace
threads vulnerable to cross-thread branch target injection against which
STIBP protects.
Exclude IBRS from the spectre_v2_in_ibrs_mode() check to allow for
enabling STIBP (through seccomp/prctl() by default or always-on, if
selected by spectre_v2_user kernel cmdline parameter).
[ bp: Massage. ]
Fixes: 7c693f54c8 ("x86/speculation: Add spectre_v2=ibrs option to support Kernel IBRS")
Reported-by: José Oliveira <joseloliveira11@gmail.com>
Reported-by: Rodrigo Branco <rodrigo@kernelhacking.com>
Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230220120127.1975241-1-kpsingh@kernel.org
Link: https://lore.kernel.org/r/20230221184908.2349578-1-kpsingh@kernel.org
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Two patches sorting out confusion between virtual and physical
addresses, which currently are the same on s390.
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world,
some of them affecting architecurally legal but unlikely to
happen in practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at this
point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just
let the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how
to do initialization.
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
the correct hypercall instruction instead of relying on KVM to patch
in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
/WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
=goe1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()") which
does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter". These filters provide users
with finer-grained control over DAMOS's actions. SeongJae has also done
some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series "mm:
support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap
PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with his
series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings. The previous BPF-based approach had
shortcomings. See "mm: In-kernel support for memory-deny-write-execute
(MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a per-node
basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage during
compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in ths
series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's series
"mm, arch: add generic implementation of pfn_valid() for FLATMEM" and
"fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest of
the kernel in the series "Simplify the external interface for GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the series
"mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA
jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K
DmxHkn0LAitGgJRS/W9w81yrgig9tAQ=
=MlGs
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X
bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()")
which does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter".
These filters provide users with finer-grained control over DAMOS's
actions. SeongJae has also done some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series
"mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
swap PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with
his series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings.
The previous BPF-based approach had shortcomings. See "mm: In-kernel
support for memory-deny-write-execute (MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a
per-node basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage
during compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in
ths series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier
functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's
series "mm, arch: add generic implementation of pfn_valid() for
FLATMEM" and "fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest
of the kernel in the series "Simplify the external interface for
GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the
series "mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
include/linux/migrate.h: remove unneeded externs
mm/memory_hotplug: cleanup return value handing in do_migrate_range()
mm/uffd: fix comment in handling pte markers
mm: change to return bool for isolate_movable_page()
mm: hugetlb: change to return bool for isolate_hugetlb()
mm: change to return bool for isolate_lru_page()
mm: change to return bool for folio_isolate_lru()
objtool: add UACCESS exceptions for __tsan_volatile_read/write
kmsan: disable ftrace in kmsan core code
kasan: mark addr_has_metadata __always_inline
mm: memcontrol: rename memcg_kmem_enabled()
sh: initialize max_mapnr
m68k/nommu: add missing definition of ARCH_PFN_OFFSET
mm: percpu: fix incorrect size in pcpu_obj_full_size()
maple_tree: reduce stack usage with gcc-9 and earlier
mm: page_alloc: call panic() when memoryless node allocation fails
mm: multi-gen LRU: avoid futile retries
migrate_pages: move THP/hugetlb migration support check to simplify code
migrate_pages: batch flushing TLB
migrate_pages: share more code between _unmap and _move
...
- Performance tweaks for efifb earlycon by Andy
- Preparatory refactoring and cleanup work in the efivar layer by Johan,
which is needed to accommodate the Snapdragon arm64 laptops that
expose their EFI variable store via a TEE secure world API.
- Enhancements to the EFI memory map handling so that Xen dom0 can
safely access EFI configuration tables (Demi Marie)
- Wire up the newly introduced IBT/BTI flag in the EFI memory attributes
table, so that firmware that is generated with ENDBR/BTI landing pads
will be mapped with enforcement enabled.
- Clean up how we check and print the EFI revision exposed by the
firmware.
- Incorporate EFI memory attributes protocol definition contributed by
Evgeniy and wire it up in the EFI zboot code. This ensures that these
images can execute under new and stricter rules regarding the default
memory permissions for EFI page allocations. (More work is in progress
here)
- CPER header cleanup by Dan Williams
- Use a raw spinlock to protect the EFI runtime services stack on arm64
to ensure the correct semantics under -rt. (Pierre)
- EFI framebuffer quirk for Lenovo Ideapad by Darrell.
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmPzuwsACgkQw08iOZLZ
jyS7dwwAm95DlDxFIQi4FmTm2mqJws9PyDrkfaAK1CoyqCgeOLQT2FkVolgr8jne
pwpwCTXtYP8y0BZvdQEIjpAq/BHKaD3GJSPfl7lo+pnUu68PpsFWaV6EdT33KKfj
QeF0MnUvrqUeTFI77D+S0ZW2zxdo9eCcahF3TPA52/bEiiDHWBF8Qm9VHeQGklik
zoXA15ft3mgITybgjEA0ncGrVZiBMZrYoMvbdkeoedfw02GN/eaQn8d2iHBtTDEh
3XNlo7ONX0v50cjt0yvwFEA0AKo0o7R1cj+ziKH/bc4KjzIiCbINhy7blroSq+5K
YMlnPHuj8Nhv3I+MBdmn/nxRCQeQsE4RfRru04hfNfdcqjAuqwcBvRXvVnjWKZHl
CmUYs+p/oqxrQ4BjiHfw0JKbXRsgbFI6o3FeeLH9kzI9IDUPpqu3Ma814FVok9Ai
zbOCrJf5tEtg5tIavcUESEMBuHjEafqzh8c7j7AAqbaNjlihsqosDy9aYoarEi5M
f/tLec86
=+pOz
-----END PGP SIGNATURE-----
Merge tag 'efi-next-for-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"A healthy mix of EFI contributions this time:
- Performance tweaks for efifb earlycon (Andy)
- Preparatory refactoring and cleanup work in the efivar layer, which
is needed to accommodate the Snapdragon arm64 laptops that expose
their EFI variable store via a TEE secure world API (Johan)
- Enhancements to the EFI memory map handling so that Xen dom0 can
safely access EFI configuration tables (Demi Marie)
- Wire up the newly introduced IBT/BTI flag in the EFI memory
attributes table, so that firmware that is generated with ENDBR/BTI
landing pads will be mapped with enforcement enabled
- Clean up how we check and print the EFI revision exposed by the
firmware
- Incorporate EFI memory attributes protocol definition and wire it
up in the EFI zboot code (Evgeniy)
This ensures that these images can execute under new and stricter
rules regarding the default memory permissions for EFI page
allocations (More work is in progress here)
- CPER header cleanup (Dan Williams)
- Use a raw spinlock to protect the EFI runtime services stack on
arm64 to ensure the correct semantics under -rt (Pierre)
- EFI framebuffer quirk for Lenovo Ideapad (Darrell)"
* tag 'efi-next-for-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits)
firmware/efi sysfb_efi: Add quirk for Lenovo IdeaPad Duet 3
arm64: efi: Make efi_rt_lock a raw_spinlock
efi: Add mixed-mode thunk recipe for GetMemoryAttributes
efi: x86: Wire up IBT annotation in memory attributes table
efi: arm64: Wire up BTI annotation in memory attributes table
efi: Discover BTI support in runtime services regions
efi/cper, cxl: Remove cxl_err.h
efi: Use standard format for printing the EFI revision
efi: Drop minimum EFI version check at boot
efi: zboot: Use EFI protocol to remap code/data with the right attributes
efi/libstub: Add memory attribute protocol definitions
efi: efivars: prevent double registration
efi: verify that variable services are supported
efivarfs: always register filesystem
efi: efivars: add efivars printk prefix
efi: Warn if trying to reserve memory under Xen
efi: Actually enable the ESRT under Xen
efi: Apply allowlist to EFI configuration tables when running under Xen
efi: xen: Implement memory descriptor lookup based on hypercall
efi: memmap: Disregard bogus entries instead of returning them
...
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmPzgDgTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXrc7CACfG4SSd8KkWU/y8Q66Irxdau0a3ETD
KL4UNRKGIyKujufgFsme79O6xVSSsCNSay449wk20hqn8lnwbSRi9pUwmLn29hfd
CMFleWIqgwGFfC1do5DRF1vrt1siuG/jVE07mWsEwuY2iHx/es+H7LiQKidhkndZ
DhXRqoi7VYiJv5fRSumpkUJrMZiI96o9Mk09HUksdMwCn3+7RQEqHnlTH5KOozKF
iMroDB72iNw5Na/USZwWL2EDRptENam3lFkPBeDPqNw0SbG4g65JGPR9DSa0Lkbq
AGCJQkdU33mcYQG5MY7R4K1evufpOl/apqLW7h92j45Znr9ok6Vr2c1R
=J1VT
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20230220' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- allow Linux to run as the nested root partition for Microsoft
Hypervisor (Jinank Jain and Nuno Das Neves)
- clean up the return type of callback functions (Dawei Li)
* tag 'hyperv-next-signed-20230220' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
x86/hyperv: Fix hv_get/set_register for nested bringup
Drivers: hv: Make remove callback of hyperv driver void returned
Drivers: hv: Enable vmbus driver for nested root partition
x86/hyperv: Add an interface to do nested hypercalls
Drivers: hv: Setup synic registers in case of nested root partition
x86/hyperv: Add support for detecting nested hypervisor
where possible, when supporting a debug registers swap feature for
SEV-ES guests
- Add support for AMD's version of eIBRS called Automatic IBRS which is
a set-and-forget control of indirect branch restriction speculation
resources on privilege change
- Add support for a new x86 instruction - LKGS - Load kernel GS which is
part of the FRED infrastructure
- Reset SPEC_CTRL upon init to accomodate use cases like kexec which
rediscover
- Other smaller fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmP1RDIACgkQEsHwGGHe
VUohBw//ZB9ZRqsrKdm6D9YaP2x4Zb+kqKqo6rjYeWaYqyPyCwDujPwh+pb3Oq1t
aj62muDv1t/wEJc8mKNkfXkjEEtBVAOcpb5YIpKreoEvNKyevol83Ih0u5iJcTRE
E5qf8HDS8b/JZrcazJJLl6WQmQNH5RiKSu5bbCpRhoeOcyo5pRYR5MztK9vNmAQk
GMdwHsUSU+jN8uiE4HnpaOb/luhgFindRwZVTpdjJegQWLABS8cl3CKeTv4+PW45
isvv37XnQP248wsptIEVRHeG6g3g/HtvwRx7DikUw06QwUyUK7H9hJssOoSP8TL9
u4psRwfWnJ1OxU6klL+s0Ii+pjQ97wXmK/oqK7QkdUwhWqR/mQAW2e9kWHAngyDn
A6mKbzSM6HFAeSXQpB9cMb6uvYRD44SngDFe3WXtEK8jiiQ70ikUm4E28I5KJOPg
s+RyioHk0NFRHYSOOBqNG1NKz6ED7L3GbgbbzxkgMh21AAyI3X351t+PtGoLV5ew
eqOsM7lbg9Scg1LvPk1JcoALS8USWqgar397rz9qGUs+OkPWBtEBCmTdMz/Eb+2t
g/WHdLS5/ajSs5gNhT99W3DeqZMPDEkgBRSeyBBmY3CUD3gBL2wXEktRXv504zBR
RC4oyUPX3c9E2ib6GATLE3kBLbcz9hTWbMxF+X3lLJvTVd/Qc2o=
=v/ZC
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Cache the AMD debug registers in per-CPU variables to avoid MSR
writes where possible, when supporting a debug registers swap feature
for SEV-ES guests
- Add support for AMD's version of eIBRS called Automatic IBRS which is
a set-and-forget control of indirect branch restriction speculation
resources on privilege change
- Add support for a new x86 instruction - LKGS - Load kernel GS which
is part of the FRED infrastructure
- Reset SPEC_CTRL upon init to accomodate use cases like kexec which
rediscover
- Other smaller fixes and cleanups
* tag 'x86_cpu_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/amd: Cache debug register values in percpu variables
KVM: x86: Propagate the AMD Automatic IBRS feature to the guest
x86/cpu: Support AMD Automatic IBRS
x86/cpu, kvm: Add the SMM_CTL MSR not present feature
x86/cpu, kvm: Add the Null Selector Clears Base feature
x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf
x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature
KVM: x86: Move open-coded CPUID leaf 0x80000021 EAX bit propagation code
x86/cpu, kvm: Add support for CPUID_80000021_EAX
x86/gsseg: Add the new <asm/gsseg.h> header to <asm/asm-prototypes.h>
x86/gsseg: Use the LKGS instruction if available for load_gs_index()
x86/gsseg: Move load_gs_index() to its own new header file
x86/gsseg: Make asm_load_gs_index() take an u16
x86/opcode: Add the LKGS instruction to x86-opcode-map
x86/cpufeature: Add the CPU feature bit for LKGS
x86/bugs: Reset speculation control settings on init
x86/cpu: Remove redundant extern x86_read_arch_cap_msr()
- Correct the common copy and pasted mishandling of kstrtobool() in the
strict_sas_size() setup function.
- Make recalibrate_cpu_khz() an GPL only export.
- Check TSC feature before doing anything else which avoids pointless
code execution if TSC is not available.
- Remove or fixup stale and misleading comments.
- Remove unused or pointelessly duplicated variables.
- Spelling and typo fixes.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmPzWVkTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodbEEAC7XjF7BkZ9nhmAMWgwThKbHhNb3QLk
oO0pcbbff2o7bhcP55Mb6R52G1a/kEvpFg/iF6+4/GcsbxHtLhILtG0PGOgmg28p
UcdXt8EvkMv+bICr3gYtnwqB50stc/1s8JhHVItaDIXbRjNOrkBHQzgcPx0qfC8w
INPhlqShSehGtzmaoP4AWMfVtBlqKXlCADpQGd8hcTojlNRAJwzBF9mZbWGdgopW
qa3yoa+s6kL3M2lXvwREuz/1JnmtKx7cav9ldWlSno2dgDbw1ioDZg9tJhARJo//
toF9Y9h12ASDBaqVoyVJgKmDQddsdxkBTrMCKQX8yRH21pEX9eeHM/re9lNtUbhl
4/0juvAKFyviatWAHHCPYGyuPGrSsrsj5sea2fNURnkc6TZ4pHHArDytpAOhYqh2
8CPpT2Qn/C6CqUsc9Z2fbDZBAOTKR/IF93NzE+HcjRjDyjm30ImeKEbwMHfEa7lX
V3/wvXH9+WIzvVC3EqbvVqkArG1YQTqQHBZIl9+Za2iEeLz8DGEWCH0b7w8/m2Cg
0mzUOzjJviy6ShO0B8fZK8LuCoDbPAmL4etfjp1t3q+EsuG5pYOrYtrnZ76XWYD7
TWxlBHhrYuqUBERpN7SCJgixqXgWVUe2/hZwstQqbmvH/jOe9TGgxrIu2MmvB1kK
5+ul2d2uwbd4cA==
=zlRy
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull miscellaneous x86 cleanups from Thomas Gleixner:
- Correct the common copy and pasted mishandling of kstrtobool() in the
strict_sas_size() setup function
- Make recalibrate_cpu_khz() an GPL only export
- Check TSC feature before doing anything else which avoids pointless
code execution if TSC is not available
- Remove or fixup stale and misleading comments
- Remove unused or pointelessly duplicated variables
- Spelling and typo fixes
* tag 'x86-cleanups-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hotplug: Remove incorrect comment about mwait_play_dead()
x86/tsc: Do feature check as the very first thing
x86/tsc: Make recalibrate_cpu_khz() export GPL only
x86/cacheinfo: Remove unused trace variable
x86/Kconfig: Fix spellos & punctuation
x86/signal: Fix the value returned by strict_sas_size()
x86/cpu: Remove misleading comment
x86/setup: Move duplicate boot_cpu_data definition out of the ifdeffery
x86/boot/e820: Fix typo in e820.c comment
- Some smaller fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPzusMACgkQEsHwGGHe
VUojfQ/7BOqXI0XsHTIwilF12w2bLQl1PeI4bSk6VY+iAN2YmQkq2qvNUgwt62e5
5Z95cDuCZ8sx6L3mDIoOgWBN9zdLbxNhezLFDykb+6as67PMaww9l9R6n3JoC2qm
ELso5JZnWvIZ7Cu7RRm9IzbSj93JAlN3Aypexe61NywMyge9CAvCiOEhvW+lkYSD
lhZqgbm5WAB14F1CeqFyC8kVvUez1GH9Dunbe7ozk7LqRfTRlf5YPH88iE4UKzdg
JXmbcHB2K4aQzfIW66OFPnl/4Cl+XxS/i5CR2NtWlB4/ANZBPoUr7QAS239OpC6u
3uwv/qPmMe7p/lYMaGXSUpzD/MOCHP1HPN8/CWgdyK+Mdmctpqr0FYh1qXXm1Nuu
v0SE3btHVIB5UfvImoOlV/RfCx3+TqxzqUU2erc0iD5VxlRfrqJEwJdJHOgRGxFU
vflRxMQOshhyI7+Q7et0S0QlgK4HvGEHmBUwBsUbfyptIxbqpOLK8INC6N8qwGKZ
gTuBxLNZ5yRE/NeOVe0cL2ooelfOlg7GKUI+gZbfzzQw8M5WZW9qEDS9y2wIuGey
wBFJNzjKXSkrTxc6Hd136N7DX7PlMjiJhXP42s+7rXJguPvgk1oVyEuaX540+xX4
HphXRC2QW0o0hCeFgP11Ai4oq/vRW1RFvdDimJjveJAv19bQNv0=
=Wg/8
-----END PGP SIGNATURE-----
Merge tag 'x86_vdso_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 vdso updates from Borislav Petkov:
- Add getcpu support for the 32-bit version of the vDSO
- Some smaller fixes
* tag 'x86_vdso_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Fix -Wmissing-prototypes warnings
x86/vdso: Fake 32bit VDSO build on 64bit compile for vgetcpu
selftests: Emit a warning if getcpu() is missing on 32bit
x86/vdso: Provide getcpu for x86-32.
x86/cpu: Provide the full setup for getcpu() on x86-32
x86/vdso: Move VDSO image init to vdso2c generated code
the way
- Improve revision reporting
- Properly check CPUID capabilities after late microcode upgrade to
avoid false positives
- A garden variety of other small fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPzs/sACgkQEsHwGGHe
VUonGw//RgIVCZIkuytiZesFsAXD3sn4Mmji7WoRZvu3XooA0idOo+7ujBeNcJGw
aFGjf0K5b7eAfiREqTXPlFSymPid7aN+7cPJD7iURJ5UEoDXca1vVh9Jeq7lhvRL
M5CErroStya17vFqU5pz50EcUwGcao/N3wY+0rERk8Rkqu864PgI+KahS2V2D2PU
XolD4CH/+JZMAJPaTG5dSkSf3gJevW/owZ+F2oqKKYNlFsQ6aYd/JZYwIQ2X7W9T
HdVYzeASZs0tfBEPOsZUSobmIlqUU/MziefDyUuTYbO1DPJ525787RLpRyubhG9k
b/7DWUNymR56B8AUq/RV6YE/Dw2YpcrP3Eu0pSbD5xUfEy8eFCcIr+cUL5M9+I4W
iCZtYYGypNbDQf5NRkubtQu8xIwEbjOZNv444kMMBimZGzt/WDEGMHqgRbKpJ2MQ
F2HoBnNVC5O2BddS0ErTpQDWK8B/c0+S4L1ZTkbh/y9CNhzITZ10sLAEGQawvBEk
PBYeCQ98m72ijLcecz0vvVO81UHGicqyY86OqeqRx0FbGO9cZJg+8BqyTLxsRTSW
OgxtB/moURdanWAAOdxZ91yUw40CYWn7qXhYxilZDtGgkFT6sUdA126uMxLJ8u2v
WiOHmj/ymszHhkJiahcSMaD8gRFnLQ59jNatHNa/5Jyw0mi330g=
=z8rd
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loader updates from Borislav Petkov:
- Fix mixed steppings support on AMD which got broken somewhere along
the way
- Improve revision reporting
- Properly check CPUID capabilities after late microcode upgrade to
avoid false positives
- A garden variety of other small fixes
* tag 'x86_microcode_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/core: Return an error only when necessary
x86/microcode/AMD: Fix mixed steppings support
x86/microcode/AMD: Add a @cpu parameter to the reloading functions
x86/microcode/amd: Remove load_microcode_amd()'s bsp parameter
x86/microcode: Allow only "1" as a late reload trigger value
x86/microcode/intel: Print old and new revision during early boot
x86/microcode/intel: Pass the microcode revision to print_ucode_info() directly
x86/microcode: Adjust late loading result reporting message
x86/microcode: Check CPU capabilities after late microcode update correctly
x86/microcode: Add a parameter to microcode_check() to store CPU capabilities
x86/microcode: Use the DEVICE_ATTR_RO() macro
x86/microcode/AMD: Handle multiple glued containers properly
x86/microcode/AMD: Rename a couple of functions
allocation. Its goal is to control resource allocation in external slow
memory which is connected to the machine like for example through CXL devices,
accelerators etc
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPzmf4ACgkQEsHwGGHe
VUppKg//Tq+lHaMYO8aTvk4jgqbR9RVXJwPbtEOp2C0kSLs5QxBms/o21IXnxJ07
tdbIGOrfJGlbzSWP8ywysRRQwpKlwltWUVAjMOFqEfzEURLL042qtHZ8nxGKSGrc
IZFJLNTMyx1Zyjc7e9A/hANCOoQFoPHT8zHf1CNNo1LtzgHzNZG6kggLHh5tRKSz
Xi7wFbYBtmttsyIA/iAQjYAU0O9MnmdnktUb7XdPSFtTIZ3Nyw90We4gwYueEPzD
S/rQHKr8V7ROZMHXQ/BWpVWdcxGoHD8acUSVq8j20KW3W9/H8KL9TRVakvnf0aRW
g0efxKXdTjTRO49GgD7FUL8x1JdAOXeZwQYDzKPqW/GRESRdpOvsaMwcLDCEpIXK
PmEOVReklokJF0btFqaVYkY6wGE2KLKmp97g/RffuHdIeIomwI9lTpy9kyQsKakc
yJ+VsE85BlBEVkHNt49qFClO1L98G3IgZTTt6//EGv0EJl8pELfsddsbjG5uXun+
xFhr2i7gllQcV4B4HSFFdYRBLvZYnTfKlNR7Hs9pRJT7V28Jv2GURiCHBm4sRv9O
k3FX7sxytH2syBBwU1NNrMRMo+KgjVZurJwiHpTRbb39K6uCgLk/wbXfWh2SovW1
BRItz2T6LFu4bo6WIhakx31pNmH94P8vC0acO8LHECVji7qvXFM=
=8hmj
-----END PGP SIGNATURE-----
Merge tag 'x86_cache_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 resource control updates from Borislav Petkov:
- Add support for a new AMD feature called slow memory bandwidth
allocation. Its goal is to control resource allocation in external
slow memory which is connected to the machine like for example
through CXL devices, accelerators etc
* tag 'x86_cache_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix a silly -Wunused-but-set-variable warning
Documentation/x86: Update resctrl.rst for new features
x86/resctrl: Add interface to write mbm_local_bytes_config
x86/resctrl: Add interface to write mbm_total_bytes_config
x86/resctrl: Add interface to read mbm_local_bytes_config
x86/resctrl: Add interface to read mbm_total_bytes_config
x86/resctrl: Support monitor configuration
x86/resctrl: Add __init attribute to rdt_get_mon_l3_config()
x86/resctrl: Detect and configure Slow Memory Bandwidth Allocation
x86/resctrl: Include new features in command line options
x86/cpufeatures: Add Bandwidth Monitoring Event Configuration feature flag
x86/resctrl: Add a new resource type RDT_RESOURCE_SMBA
x86/cpufeatures: Add Slow Memory Bandwidth Allocation feature flag
x86/resctrl: Replace smp_call_function_many() with on_each_cpu_mask()
on newer AMD CPUs
- Mask out bits which don't belong to the address of the error being
reported
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPzUAEACgkQEsHwGGHe
VUr22RAAh7fi3s8sDP4B2WBe1LPKZystZamxlLObBG2eLT7g0YmSKV12+bHCGf/B
nGqz9iy+e/T1Khxv0gdEyuENwzuitXgiEOYgB4u70HimWy5422ZCzn1EiOMFtyST
g0ehOR+tU84YwMVR40ui3spI1DHgeVPqVBLHBARZ1OAaA58N8eVREC6MqJAeAzIU
+VYiBbn69quECTuU1P7yaT8NDnbm5G6pA1dhKLc7vLl9QWzoW1yWLLcp+oGFN6B8
rcGDKEDK1OYtdHScRCfhFrznkeYP6SVnSt4wlAgX+HVGPoMpvq8nJygxCWdE0yjd
aQGhdcVJkQlSqm1iJUv0MK9nkolqXVVSVTurpHunAq7ctul6Qm/X+fsfwBgSIXXn
Gdj3in374MLWCz/xGqeBS8IiiPxGxJA9s350jyk02LK6Np6sXeuc4PpR66+6FAKQ
Ypen+uWJ6oBof04bW7DBK0R14atA8EpOOLUrrGIsSkNSEIjLaCipMZOpRCbOw76N
bXcdnKKsaEDjKtHClvx/vZXklfzWk0OgF8qtY0nGF+khvDAi3pQaIIlCehf0Qemh
6j00TqIYBCXa0kuKktdPzVJSM7A7TZ5ftboa1IPhE+GYrFFee/VJ3yfgqz102FWI
RJsY8JXt+EP3VMSOQYqQ5KzcLBJ2uDiRYtgUo4P1CITNpRfZEMc=
=e9v9
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Add support for reporting more bits of the physical address on error,
on newer AMD CPUs
- Mask out bits which don't belong to the address of the error being
reported
* tag 'ras_core_for_v6.3_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Mask out non-address bits from machine check bank
x86/mce: Add support for Extended Physical Address MCA changes
x86/mce: Define a function to extract ErrorAddr from MCA_ADDR
- Simplify add_rtc_cmos()
- Use strscpy() in the mcelog code
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmPzdU8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gS6w/8DFsYUIK4CGEtG0MYH+DUVsz/zyo4pejM
yukMpKxXMJKi7pZ6k+0he9LOawa2WeK/hzzJh0zP3EzJtF1RR831XSsGRNPu3OTQ
Q6mAuFdlLC1EAgJs6muqhIF5/bxfti6pFpZBN8Dwi/9VPpUQwayOgaJXysiRA2aN
r/czEgp5fGgExC4QLE6HIPIzhsyjUlngH2F4xNeO13cS6S0T3Ns1xcSJs9jJfwMW
2Vx0FCSo/cj8Hdr10NGEJNrqCzN9yvUuZuQ4utp6yf03zWyP1L4c2MB0E+aw6d1c
ygpYWm400vlEFHfT8x9UVnybR5wABG4GP8JNtSBHASk7rNPKl5cKfOIPHzdsCnFO
bHh1Xc4gduFVB8nUilUlcvoseum8GaYOqhi6ov2hwq+n47uam9H5QlCWn7OyLBbW
88Ajg+wqNxG/R3mhyPslXDMr/dccQ9mcZSxbPDX14LpG8bWAjvM3yP43N8w6myVs
1Br8Lsbf8lm5jiJ5hv2GBGQa9eDA0qLBFnkvBTe9zx7AV/K/KnTUXlK2DdeZVfO8
eqgyTrXANyyJqTC/s2GAOLFwySRZFx9EHw6Kg8cmjoG9o8VCpXljQ8qj71ZOtFlo
xBDlmg4Y6czRZC2kQEFC1kA30nLw+2UAnOEwr11JgGod9K+DqFtLKnVVEsrtxmGH
E7ccV3QRc/Q=
=Nuzs
-----END PGP SIGNATURE-----
Merge tag 'x86-platform-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform update from Ingo Molnar:
- Simplify add_rtc_cmos()
- Use strscpy() in the mcelog code
* tag 'x86-platform-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/dev-mcelog: use strscpy() to instead of strncpy()
x86/rtc: Simplify PNP ids check
- Improve the scalability of the CFS bandwidth unthrottling logic
with large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with
the generic scheduler code. Add __cpuidle methods as noinstr to
objtool's noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS,
to query previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period,
to improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- ... Misc other cleanups, fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmPzbJwRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iIvA//ZcEaB8Z6ChLRQjM+bsaudKJu3pdLQbPK
iYbP8Da+LsAfxbEfYuGV3m+jIp0LlBOtsI/EezxQrXV+V7FvNyAX9Y00eEu/zlj8
7Jn3LMy/DBYTwH7LwVdcU0MyIVI8ZPc6WNnkx0LOtGZn8n+qfHPSDzcP3CW+a5AV
UvllPYpYyEmsX0Eby7CF4Ue8mSmbViw/xR3rNr8ZSve0c25XzKabw8O9kE3jiHxP
d/zERJoAYeDyYUEuZqhfn5dTlB4an4IjNEkAfRE5SQ09RA8Gkxsa5Ar8gob9e9M1
eQsdd4/bdhnrkM8L5qDZczqmgCTZ2bukQrxkBXhRDhLgoFxwAn77b+2ZjmIW3Lae
AyGqRcDSg1q2oxaYm5ZiuO/t26aDOZu9vPHyHRDGt95EGbZlrp+GgeePyfCigJYz
UmPdZAAcHdSymnnnlcvdG37WVvaVkpgWZzd8LbtBi23QR+Zc4WQ2IlgnUS5WKNNf
VOBcAcP6E1IslDotZDQCc2dPFFQoQQEssVooyUc5oMytm7BsvxXLOeHG+Ncu/8uc
H+U8Qn8jnqTxJbC5hkWQIJlhVKCq2FJrHxxySYTKROfUNcDgCmxboFeAcXTCIU1K
T0S+sdoTS/CvtLklRkG0j6B8N4N98mOd9cFwUV3tX+/gMLMep3hCQs5L76JagvC5
skkQXoONNaM=
=l1nN
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve the scalability of the CFS bandwidth unthrottling logic with
large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with the
generic scheduler code. Add __cpuidle methods as noinstr to objtool's
noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query
previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period, to
improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- Misc other cleanups, fixes
* tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
sched/rt: pick_next_rt_entity(): check list_entry
sched/deadline: Add more reschedule cases to prio_changed_dl()
sched/fair: sanitize vruntime of entity being placed
sched/fair: Remove capacity inversion detection
sched/fair: unlink misfit task from cpu overutilized
objtool: mem*() are not uaccess safe
cpuidle: Fix poll_idle() noinstr annotation
sched/clock: Make local_clock() noinstr
sched/clock/x86: Mark sched_clock() noinstr
x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read()
x86/atomics: Always inline arch_atomic64*()
cpuidle: tracing, preempt: Squash _rcuidle tracing
cpuidle: tracing: Warn about !rcu_is_watching()
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
cpuidle: drivers: firmware: psci: Dont instrument suspend code
KVM: selftests: Fix build of rseq test
exit: Detect and fix irq disabled state in oops
cpuidle, arm64: Fix the ARM64 cpuidle logic
cpuidle: mvebu: Fix duplicate flags assignment
sched/fair: Limit sched slice duration
...
hv_get_nested_reg only translates SINT0, resulting in the wrong sint
being registered by nested vmbus.
Fix the issue with new utility function hv_is_sint_reg.
While at it, improve clarity of hv_set_non_nested_register and hv_is_synic_reg.
Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Reviewed-by: Jinank Jain <jinankjain@linux.microsoft.com>
Link: https://lore.kernel.org/r/1675980172-6851-1-git-send-email-nunodasneves@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Certain AMD processors are vulnerable to a cross-thread return address
predictions bug. When running in SMT mode and one of the sibling threads
transitions out of C0 state, the other sibling thread could use return
target predictions from the sibling thread that transitioned out of C0.
The Spectre v2 mitigations cover the Linux kernel, as it fills the RSB
when context switching to the idle thread. However, KVM allows a VMM to
prevent exiting guest mode when transitioning out of C0. A guest could
act maliciously in this situation, so create a new x86 BUG that can be
used to detect if the processor is vulnerable.
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <91cec885656ca1fcd4f0185ce403a53dd9edecb7.1675956146.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace direct modifications to vma->vm_flags with calls to modifier
functions to be able to track flag changes and to keep vma locking
correctness.
[akpm@linux-foundation.org: fix drivers/misc/open-dice.c, per Hyeonggon Yoo]
Link: https://lkml.kernel.org/r/20230126193752.297968-5-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Oskolkov <posk@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
UEFI v2.10 extends the EFI memory attributes table with a flag that
indicates whether or not all RuntimeServicesCode regions were
constructed with ENDBR landing pads, permitting the OS to map these
regions with IBT restrictions enabled.
So let's take this into account on x86 as well.
Suggested-by: Peter Zijlstra <peterz@infradead.org> # ibt_save() changes
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
setup_getcpu() configures two things:
- it writes the current CPU & node information into MSR_TSC_AUX
- it writes the same information as a GDT entry.
By using the "full" setup_getcpu() on i386 it is possible to read the CPU
information in userland via RDTSCP() or via LSL from the GDT.
Provide an GDT_ENTRY_CPUNODE for x86-32 and make the setup function
unconditionally available.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Roland Mainz <roland.mainz@nrubsig.org>
Link: https://lore.kernel.org/r/20221125094216.3663444-2-bigeasy@linutronix.de
Return an error from the late loading function which is run on each CPU
only when an error has actually been encountered during the update.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230130161709.11615-5-bp@alien8.de
The AMD side of the loader has always claimed to support mixed
steppings. But somewhere along the way, it broke that by assuming that
the cached patch blob is a single one instead of it being one per
*node*.
So turn it into a per-node one so that each node can stash the blob
relevant for it.
[ NB: Fixes tag is not really the exactly correct one but it is good
enough. ]
Fixes: fe055896c0 ("x86/microcode: Merge the early microcode loader")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org> # 2355370cd9 ("x86/microcode/amd: Remove load_microcode_amd()'s bsp parameter")
Cc: <stable@kernel.org> # a5ad92134b ("x86/microcode/AMD: Add a @cpu parameter to the reloading functions")
Link: https://lore.kernel.org/r/20230130161709.11615-4-bp@alien8.de
Reading DR[0-3]_ADDR_MASK MSRs takes about 250 cycles which is going to
be noticeable with the AMD KVM SEV-ES DebugSwap feature enabled. KVM is
going to store host's DR[0-3] and DR[0-3]_ADDR_MASK before switching to
a guest; the hardware is going to swap these on VMRUN and VMEXIT.
Store MSR values passed to set_dr_addr_mask() in percpu variables
(when changed) and return them via new amd_get_dr_addr_mask().
The gain here is about 10x.
As set_dr_addr_mask() uses the array too, change the @dr type to
unsigned to avoid checking for <0. And give it the amd_ prefix to match
the new helper as the whole DR_ADDR_MASK feature is AMD-specific anyway.
While at it, replace deprecated boot_cpu_has() with cpu_feature_enabled()
in set_dr_addr_mask().
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230120031047.628097-2-aik@amd.com
Microcode gets reloaded late only if "1" is written to the reload file.
However, the code silently treats any other unsigned integer as a
successful write even though no actions are performed to load microcode.
Make the loader more strict to accept only "1" as a trigger value and
return an error otherwise.
[ bp: Massage commit message. ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230130213955.6046-3-ashok.raj@intel.com
In order to use sched_clock() from noinstr code, mark it and all it's
implenentations noinstr.
The whole pvclock thing (used by KVM/Xen) is a bit of a pain,
since it calls out to watchdogs, create a
pvclock_clocksource_read_nowd() variant doesn't do that and can be
noinstr.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230126151323.702003578@infradead.org
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmPW7E8eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGf7MIAI0JnHN9WvtEukSZ
E6j6+cEGWxsvD6q0g3GPolaKOCw7hlv0pWcFJFcUAt0jebspMdxV2oUGJ8RYW7Lg
nCcHvEVswGKLAQtQSWw52qotW6fUfMPsNYYB5l31sm1sKH4Cgss0W7l2HxO/1LvG
TSeNHX53vNAZ8pVnFYEWCSXC9bzrmU/VALF2EV00cdICmfvjlgkELGXoLKJJWzUp
s63fBHYGGURSgwIWOKStoO6HNo0j/F/wcSMx8leY8qDUtVKHj4v24EvSgxUSDBER
ch3LiSQ6qf4sw/z7pqruKFthKOrlNmcc0phjiES0xwwGiNhLv0z3rAhc4OM2cgYh
SDc/Y/c=
=zpaD
-----END PGP SIGNATURE-----
Merge tag 'v6.2-rc6' into sched/core, to pick up fixes
Pick up fixes before merging another batch of cpuidle updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
clang correctly complains
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1456:6: warning: variable \
'h' set but not used [-Wunused-but-set-variable]
u32 h;
^
but it can't know whether this use is innocuous or really a problem.
There's a reason why those warning switches are behind a W=1 and not
enabled by default - yes, one needs to do:
make W=1 CC=clang HOSTCC=clang arch/x86/kernel/cpu/resctrl/
with clang 14 in order to trigger it.
I would normally not take a silly fix like that but this one is simple
and doesn't make the code uglier so...
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/202301242015.kbzkVteJ-lkp@intel.com
The AMD Zen4 core supports a new feature called Automatic IBRS.
It is a "set-and-forget" feature that means that, like Intel's Enhanced IBRS,
h/w manages its IBRS mitigation resources automatically across CPL transitions.
The feature is advertised by CPUID_Fn80000021_EAX bit 8 and is enabled by
setting MSR C000_0080 (EFER) bit 21.
Enable Automatic IBRS by default if the CPU feature is present. It typically
provides greater performance over the incumbent generic retpolines mitigation.
Reuse the SPECTRE_V2_EIBRS spectre_v2_mitigation enum. AMD Automatic IBRS and
Intel Enhanced IBRS have similar enablement. Add NO_EIBRS_PBRSB to
cpu_vuln_whitelist, since AMD Automatic IBRS isn't affected by PBRSB-eIBRS.
The kernel command line option spectre_v2=eibrs is used to select AMD Automatic
IBRS, if available.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-8-kim.phillips@amd.com
The Null Selector Clears Base feature was being open-coded for KVM.
Add it to its newly added native CPUID leaf 0x80000021 EAX proper.
Also drop the bit description comments now it's more self-describing.
[ bp: Convert test in check_null_seg_clears_base() too. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-6-kim.phillips@amd.com
The LFENCE always serializing feature bit was defined as scattered
LFENCE_RDTSC and its native leaf bit position open-coded for KVM. Add
it to its newly added CPUID leaf 0x80000021 EAX proper. With
LFENCE_RDTSC in its proper place, the kernel's set_cpu_cap() will
effectively synthesize the feature for KVM going forward.
Also, DE_CFG[1] doesn't need to be set on such CPUs anymore.
[ bp: Massage and merge diff from Sean. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-5-kim.phillips@amd.com
Add support for CPUID leaf 80000021, EAX. The majority of the features will be
used in the kernel and thus a separate leaf is appropriate.
Include KVM's reverse_cpuid entry because features are used by VM guests, too.
[ bp: Massage commit message. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-2-kim.phillips@amd.com
ARM:
* Fix the PMCR_EL0 reset value after the PMU rework
* Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
* Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
* Put the Apple M2 on the naughty list for not being able to
correctly implement the vgic SEIS feature, just like the M1
before it
* Reviewer updates: Alex is stepping down, replaced by Zenghui
x86:
* Fix various rare locking issues in Xen emulation and teach lockdep
to detect them
* Documentation improvements
* Do not return host topology information from KVM_GET_SUPPORTED_CPUID
The event configuration for mbm_local_bytes can be changed by the
user by writing to the configuration file
/sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config.
The event configuration settings are domain specific and will affect all
the CPUs in the domain.
Following are the types of events supported:
==== ===========================================================
Bits Description
==== ===========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ===========================================================
For example, to change the mbm_local_bytes_config to count all the non-temporal
writes on domain 0, the bits 2 and 3 needs to be set which is 1100b (in hex
0xc).
Run the command:
$echo 0=0xc > /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config
To change the mbm_local_bytes to count only reads to local NUMA domain 1,
the bit 0 needs to be set which 1b (in hex 0x1). Run the command:
$echo 1=0x1 > /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-13-babu.moger@amd.com
The event configuration for mbm_total_bytes can be changed by the user by
writing to the file /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config.
The event configuration settings are domain specific and affect all the
CPUs in the domain.
Following are the types of events supported:
==== ===========================================================
Bits Description
==== ===========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ===========================================================
For example:
To change the mbm_total_bytes to count only reads on domain 0, the bits
0, 1, 4 and 5 needs to be set, which is 110011b (in hex 0x33).
Run the command:
$echo 0=0x33 > /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config
To change the mbm_total_bytes to count all the slow memory reads on domain 1,
the bits 4 and 5 needs to be set which is 110000b (in hex 0x30).
Run the command:
$echo 1=0x30 > /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-12-babu.moger@amd.com
The event configuration can be viewed by the user by reading the configuration
file /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config. The event
configuration settings are domain specific and will affect all the CPUs in the
domain.
Following are the types of events supported:
==== ===========================================================
Bits Description
==== ===========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ===========================================================
By default, the mbm_local_bytes_config is set to 0x15 to count all the local
event types.
For example:
$cat /sys/fs/resctrl/info/L3_MON/mbm_local_bytes_config
0=0x15;1=0x15;2=0x15;3=0x15
In this case, the event mbm_local_bytes is configured with 0x15 on
domains 0 to 3.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-11-babu.moger@amd.com
The event configuration can be viewed by the user by reading the
configuration file /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config. The
event configuration settings are domain specific and will affect all the CPUs in
the domain.
Following are the types of events supported:
==== ===========================================================
Bits Description
==== ===========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ===========================================================
By default, the mbm_total_bytes_config is set to 0x7f to count all the
event types.
For example:
$cat /sys/fs/resctrl/info/L3_MON/mbm_total_bytes_config
0=0x7f;1=0x7f;2=0x7f;3=0x7f
In this case, the event mbm_total_bytes is configured with 0x7f on
domains 0 to 3.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-10-babu.moger@amd.com
Add a new field in struct mon_evt to support Bandwidth Monitoring Event
Configuration (BMEC) and also update the "mon_features" display.
The resctrl file "mon_features" will display the supported events
and files that can be used to configure those events if monitor
configuration is supported.
Before the change:
$ cat /sys/fs/resctrl/info/L3_MON/mon_features
llc_occupancy
mbm_total_bytes
mbm_local_bytes
After the change when BMEC is supported:
$ cat /sys/fs/resctrl/info/L3_MON/mon_features
llc_occupancy
mbm_total_bytes
mbm_total_bytes_config
mbm_local_bytes
mbm_local_bytes_config
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-9-babu.moger@amd.com
In an upcoming change, rdt_get_mon_l3_config() needs to call rdt_cpu_has() to
query the monitor related features. It cannot be called right now because
rdt_cpu_has() has the __init attribute but rdt_get_mon_l3_config() doesn't.
Add the __init attribute to rdt_get_mon_l3_config() that is only called by
get_rdt_mon_resources() that already has the __init attribute. Also make
rdt_cpu_has() available to by rdt_get_mon_l3_config() via the internal header
file.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-8-babu.moger@amd.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
The QoS slow memory configuration details are available via
CPUID_Fn80000020_EDX_x02. Detect the available details and
initialize the rest to defaults.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-7-babu.moger@amd.com
Newer AMD processors support the new feature Bandwidth Monitoring Event
Configuration (BMEC).
The feature support is identified via CPUID Fn8000_0020_EBX_x0[3]: EVT_CFG -
Bandwidth Monitoring Event Configuration (BMEC)
The bandwidth monitoring events mbm_total_bytes and mbm_local_bytes are set to
count all the total and local reads/writes, respectively. With the introduction
of slow memory, the two counters are not enough to count all the different types
of memory events. Therefore, BMEC provides the option to configure
mbm_total_bytes and mbm_local_bytes to count the specific type of events.
Each BMEC event has a configuration MSR which contains one field for each
bandwidth type that can be used to configure the bandwidth event to track any
combination of supported bandwidth types. The event will count requests from
every bandwidth type bit that is set in the corresponding configuration
register.
Following are the types of events supported:
==== ========================================================
Bits Description
==== ========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ========================================================
By default, the mbm_total_bytes configuration is set to 0x7F to count
all the event types and the mbm_local_bytes configuration is set to 0x15 to
count all the local memory events.
Feature description is available in the specification, "AMD64 Technology
Platform Quality of Service Extensions, Revision: 1.03 Publication" at
https://bugzilla.kernel.org/attachment.cgi?id=301365
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-5-babu.moger@amd.com
Add a new resource type RDT_RESOURCE_SMBA to handle the QoS enforcement
policies on the external slow memory.
Mostly initialization of the essentials. Setting fflags to RFTYPE_RES_MB
configures the SMBA resource to have the same resctrl files as the
existing MBA resource. The SMBA resource has identical properties to
the existing MBA resource. These properties will be enumerated in an
upcoming change and exposed via resctrl because of this flag.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-4-babu.moger@amd.com
Add the new AMD feature X86_FEATURE_SMBA. With it, the QOS enforcement policies
can be applied to external slow memory connected to the host. QOS enforcement is
accomplished by assigning a Class Of Service (COS) to a processor and specifying
allocations or limits for that COS for each resource to be allocated.
This feature is identified by the CPUID function 0x8000_0020_EBX_x0[2]:
L3SBE - L3 external slow memory bandwidth enforcement.
CXL.memory is the only supported "slow" memory device. With SMBA, the hardware
enables bandwidth allocation on the slow memory devices. If there are multiple
slow memory devices in the system, then the throttling logic groups all the slow
sources together and applies the limit on them as a whole.
The presence of the SMBA feature (with CXL.memory) is independent of whether
slow memory device is actually present in the system. If there is no slow memory
in the system, then setting a SMBA limit will have no impact on the performance
of the system.
Presence of CXL memory can be identified by the numactl command:
$numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
node 0 size: 63678 MB node 0 free: 59542 MB
node 1 cpus:
node 1 size: 16122 MB
node 1 free: 15627 MB
node distances:
node 0 1
0: 10 50
1: 50 10
CPU list for CXL memory will be empty. The cpu-cxl node distance is greater than
cpu-to-cpu distances. Node 1 has the CXL memory in this case. CXL memory can
also be identified using ACPI SRAT table and memory maps.
Feature description is available in the specification, "AMD64 Technology
Platform Quality of Service Extensions, Revision: 1.03 Publication # 56375
Revision: 1.03 Issue Date: February 2022" at
https://bugzilla.kernel.org/attachment.cgi?id=301365
See also https://www.amd.com/en/support/tech-docs/amd64-technology-platform-quality-service-extensions
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-3-babu.moger@amd.com
on_each_cpu_mask() runs the function on each CPU specified by cpumask,
which may include the local processor.
Replace smp_call_function_many() with on_each_cpu_mask() to simplify
the code.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-2-babu.moger@amd.com
get disabled due to a value error
- Fix a NULL pointer access on UP configs
- Use the proper locking when updating CPU capacity
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmPNKRsACgkQEsHwGGHe
VUr8NA/9GTqGUpOq0iRQkEOE1oAdT4ZxJ9dQpaWjwWSNv40HT7XJBzjtvzAyiOBF
LTUVClBct5i1/j0tVcNq1zXEj3im2e24Ki6A1TWukejgGAMT/7siSkuChEDAMg2M
b79nKCMpuIZMzkJND3qTkW/aMPpAyU82G8BeLCjw7vgPBsbVkjgbxGFKYdHgpLZa
kdX/GhOufu40jcGeUxA4zWTpXfuXT3OG7JYLrlHeJ/HEdzy9kLCkWH4jHHllzPQw
c4JwG7UnNkDKD6zkG0Guzi1zQy39egh/kaj7FQmVap9sneq+x69T4ta0BfXdBXnQ
Vsqc/nnOybUzr9Gjg5W6KRZWk0k6hK9n3+cye88BfRvzMY0KAgxeCiZEn7cuKqZp
15Agzz77vcwt32QsxjSp+hKQxJtePcBCurDhkfuAZyPELNIBeCW6inrXArprfTIg
IfEF068GKsvDGu3I/z49VXFZ9YBoerQREHbN/xL1VNeB8VoAxAE227OMUvhMcIu1
jxVvkESwc9BIybTcJbUjgg2i9t+Fv3gtZBQ6GFfDboHneia4U5a9aTyN6QGjX+5P
SIXPhePbFCNrhW7JbSGqKBd96MczbFNQinRhgX1lBU0241cAnchY4nH9fUvv7Zrt
b/QDg58tb2bJkm1Z08L256ZETELOU9nLJVxUbtBNSSO9dfkvoBs=
=aNSK
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v6.2_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
- Make sure the scheduler doesn't use stale frequency scaling values
when latter get disabled due to a value error
- Fix a NULL pointer access on UP configs
- Use the proper locking when updating CPU capacity
* tag 'sched_urgent_for_v6.2_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/aperfmperf: Erase stale arch_freq_scale values when disabling frequency invariance readings
sched/core: Fix NULL pointer access fault in sched_setaffinity() with non-SMP configs
sched/fair: Fixes for capacity inversion detection
sched/uclamp: Fix a uninitialized variable warnings
Make early loading message match late loading message and print both old
and new revisions.
This is helpful to know what the BIOS loaded revision is before an early
update.
Cache the early BIOS revision before the microcode update and have
print_ucode_info() print both the old and new revision in the same
format as microcode_reload_late().
[ bp: Massage, remove useless comment. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230120161923.118882-6-ashok.raj@intel.com
print_ucode_info() takes a struct ucode_cpu_info pointer as parameter.
Its sole purpose is to print the microcode revision.
The only available ucode_cpu_info always describes the currently loaded
microcode revision. After a microcode update is successful, this is the
new revision, or on failure it is the original revision.
In preparation for future changes, replace the struct ucode_cpu_info
pointer parameter with a plain integer which contains the revision
number and adjust the call sites accordingly.
No functional change.
[ bp:
- Fix + cleanup commit message.
- Revert arbitrary, unrelated change.
]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230120161923.118882-5-ashok.raj@intel.com
During late microcode loading, the "Reload completed" message is issued
unconditionally, regardless of success or failure.
Adjust the message to report the result of the update.
[ bp: Massage. ]
Fixes: 9bd681251b ("x86/microcode: Announce reload operation's completion")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/lkml/874judpqqd.ffs@tglx/
The kernel caches each CPU's feature bits at boot in an x86_capability[]
structure. However, the capabilities in the BSP's copy can be turned off
as a result of certain command line parameters or configuration
restrictions, for example the SGX bit. This can cause a mismatch when
comparing the values before and after the microcode update.
Another example is X86_FEATURE_SRBDS_CTRL which gets added only after
microcode update:
--- cpuid.before 2023-01-21 14:54:15.652000747 +0100
+++ cpuid.after 2023-01-21 14:54:26.632001024 +0100
@@ -10,7 +10,7 @@ CPU:
0x00000004 0x04: eax=0x00000000 ebx=0x00000000 ecx=0x00000000 edx=0x00000000
0x00000005 0x00: eax=0x00000040 ebx=0x00000040 ecx=0x00000003 edx=0x11142120
0x00000006 0x00: eax=0x000027f7 ebx=0x00000002 ecx=0x00000001 edx=0x00000000
- 0x00000007 0x00: eax=0x00000000 ebx=0x029c6fbf ecx=0x40000000 edx=0xbc002400
+ 0x00000007 0x00: eax=0x00000000 ebx=0x029c6fbf ecx=0x40000000 edx=0xbc002e00
^^^
and which proves for a gazillionth time that late loading is a bad bad
idea.
microcode_check() is called after an update to report any previously
cached CPUID bits which might have changed due to the update.
Therefore, store the cached CPU caps before the update and compare them
with the CPU caps after the microcode update has succeeded.
Thus, the comparison is done between the CPUID *hardware* bits before
and after the upgrade instead of using the cached, possibly runtime
modified values in BSP's boot_cpu_data copy.
As a result, false warnings about CPUID bits changes are avoided.
[ bp:
- Massage.
- Add SRBDS_CTRL example.
- Add kernel-doc.
- Incorporate forgotten review feedback from dhansen.
]
Fixes: 1008c52c09 ("x86/CPU: Add a microcode loader callback")
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230109153555.4986-3-ashok.raj@intel.com
Add a parameter to store CPU capabilities before performing a microcode
update so that CPU capabilities can be compared before and after update.
[ bp: Massage. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230109153555.4986-2-ashok.raj@intel.com
Use DEVICE_ATTR_RO() helper instead of open-coded DEVICE_ATTR(),
which makes the code a bit shorter and easier to read.
No change in functionality.
Signed-off-by: Guangju Wang[baidu] <wgj900@163.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230118023554.1898-1-wgj900@163.com
Child partitions are free to allocate SynIC message and event page but in
case of root partition it must use the pages allocated by Microsoft
Hypervisor (MSHV). Base address for these pages can be found using
synthetic MSRs exposed by MSHV. There is a slight difference in those MSRs
for nested vs non-nested root partition.
Signed-off-by: Jinank Jain <jinankjain@linux.microsoft.com>
Reviewed-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/cb951fb1ad6814996fc54f4a255c5841a20a151f.1672639707.git.jinankjain@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Once disable_freq_invariance_work is called the scale_freq_tick function
will not compute or update the arch_freq_scale values.
However the scheduler will still read these values and use them.
The result is that the scheduler might perform unfair decisions based on stale
values.
This patch adds the step of setting the arch_freq_scale values for all
cpus to the default (max) value SCHED_CAPACITY_SCALE, Once all cpus
have the same arch_freq_scale value the scaling is meaningless.
Signed-off-by: Yair Podemsky <ypodemsk@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230110160206.75912-1-ypodemsk@redhat.com
The comment of the "#endif" after setup_disable_pku() is wrong.
As the related #ifdef is only a few lines above, just remove the
comment.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230113130126.1966-1-jgross@suse.com
The LKGS instruction atomically loads a segment descriptor into the
%gs descriptor registers, *except* that %gs.base is unchanged, and the
base is instead loaded into MSR_IA32_KERNEL_GS_BASE, which is exactly
what we want this function to do.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230112072032.35626-6-xin3.li@intel.com
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Detect if Linux is running as a nested hypervisor in the root
partition for Microsoft Hypervisor, using flags provided by MSHV.
Expose a new variable hv_nested that is used later for decisions
specific to the nested use case.
Signed-off-by: Jinank Jain <jinankjain@linux.microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/8e3e7112806e81d2292a66a56fe547162754ecea.1672639707.git.jinankjain@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Currently, x86_spec_ctrl_base is read at boot time and speculative bits
are set if Kconfig items are enabled. For example, IBRS is enabled if
CONFIG_CPU_IBRS_ENTRY is configured, etc. These MSR bits are not cleared
if the mitigations are disabled.
This is a problem when kexec-ing a kernel that has the mitigation
disabled from a kernel that has the mitigation enabled. In this case,
the MSR bits are not cleared during the new kernel boot. As a result,
this might have some performance degradation that is hard to pinpoint.
This problem does not happen if the machine is (hard) rebooted because
the bit will be cleared by default.
[ bp: Massage. ]
Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221128153148.1129350-1-leitao@debian.org
When creating a new monitoring group, the RMID allocated for it may have
been used by a group which was previously removed. In this case, the
hardware counters will have non-zero values which should be deducted
from what is reported in the new group's counts.
resctrl_arch_reset_rmid() initializes the prev_msr value for counters to
0, causing the initial count to be charged to the new group. Resurrect
__rmid_read() and use it to initialize prev_msr correctly.
Unlike before, __rmid_read() checks for error bits in the MSR read so
that callers don't need to.
Fixes: 1d81d15db3 ("x86/resctrl: Move mbm_overflow_count() into resctrl_arch_rmid_read()")
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221220164132.443083-1-peternewman@google.com
When the user moves a running task to a new rdtgroup using the task's
file interface or by deleting its rdtgroup, the resulting change in
CLOSID/RMID must be immediately propagated to the PQR_ASSOC MSR on the
task(s) CPUs.
x86 allows reordering loads with prior stores, so if the task starts
running between a task_curr() check that the CPU hoisted before the
stores in the CLOSID/RMID update then it can start running with the old
CLOSID/RMID until it is switched again because __rdtgroup_move_task()
failed to determine that it needs to be interrupted to obtain the new
CLOSID/RMID.
Refer to the diagram below:
CPU 0 CPU 1
----- -----
__rdtgroup_move_task():
curr <- t1->cpu->rq->curr
__schedule():
rq->curr <- t1
resctrl_sched_in():
t1->{closid,rmid} -> {1,1}
t1->{closid,rmid} <- {2,2}
if (curr == t1) // false
IPI(t1->cpu)
A similar race impacts rdt_move_group_tasks(), which updates tasks in a
deleted rdtgroup.
In both cases, use smp_mb() to order the task_struct::{closid,rmid}
stores before the loads in task_curr(). In particular, in the
rdt_move_group_tasks() case, simply execute an smp_mb() on every
iteration with a matching task.
It is possible to use a single smp_mb() in rdt_move_group_tasks(), but
this would require two passes and a means of remembering which
task_structs were updated in the first loop. However, benchmarking
results below showed too little performance impact in the simple
approach to justify implementing the two-pass approach.
Times below were collected using `perf stat` to measure the time to
remove a group containing a 1600-task, parallel workload.
CPU: Intel(R) Xeon(R) Platinum P-8136 CPU @ 2.00GHz (112 threads)
# mkdir /sys/fs/resctrl/test
# echo $$ > /sys/fs/resctrl/test/tasks
# perf bench sched messaging -g 40 -l 100000
task-clock time ranges collected using:
# perf stat rmdir /sys/fs/resctrl/test
Baseline: 1.54 - 1.60 ms
smp_mb() every matching task: 1.57 - 1.67 ms
[ bp: Massage commit message. ]
Fixes: ae28d1aae4 ("x86/resctrl: Use an IPI instead of task_work_add() to update PQR_ASSOC MSR")
Fixes: 0efc89be94 ("x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount")
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20221220161123.432120-1-peternewman@google.com
The prototype for the x86_read_arch_cap_msr() function has moved to
arch/x86/include/asm/cpu.h - kill the redundant definition in arch/x86/kernel/cpu.h
and include the header.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Link: https://lore.kernel.org/r/20221128172451.792595-1-ashok.raj@intel.com
Systems that support various memory encryption schemes (MKTME, TDX, SEV)
use high order physical address bits to indicate which key should be
used for a specific memory location.
When a memory error is reported, some systems may report those key
bits in the IA32_MCi_ADDR machine check MSR.
The Intel SDM has a footnote for the contents of the address register
that says: "Useful bits in this field depend on the address methodology
in use when the register state is saved."
AMD Processor Programming Reference has a more explicit description
of the MCA_ADDR register:
"For physical addresses, the most significant bit is given by
Core::X86::Cpuid::LongModeInfo[PhysAddrSize]."
Add a new #define MCI_ADDR_PHYSADDR for the mask of valid physical
address bits within the machine check bank address register. Use this
mask for recoverable machine check handling and in the EDAC driver to
ignore any key bits that may be present.
[ Tony: Based on independent fixes proposed by Fan Du and Isaku Yamahata ]
Reported-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reported-by: Fan Du <fan.du@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20230109152936.397862-1-tony.luck@intel.com
The implementation of strscpy() is more robust and safer.
That's now the recommended way to copy NUL terminated strings.
Signed-off-by: Xu Panda <xu.panda@zte.com.cn>
Signed-off-by: Yang Yang <yang.yang29@zte.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/202212031419324523731@zte.com.cn
We missed the window between the TIF flag update and the next reschedule.
Signed-off-by: Rodrigo Branco <bsdaemon@google.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
x86:
* Change tdp_mmu to a read-only parameter
* Separate TDP and shadow MMU page fault paths
* Enable Hyper-V invariant TSC control
selftests:
* Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid open coding BIT(0) of HV_X64_MSR_TSC_INVARIANT_CONTROL by adding
a dedicated define. While there's only one user at this moment, the
upcoming KVM implementation of Hyper-V Invariant TSC feature will need
to use it as well.
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221013095849.705943-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Newer AMD CPUs support more physical address bits.
That is, the MCA_ADDR registers on Scalable MCA systems contain the
ErrorAddr in bits [56:0] instead of [55:0]. Hence, the existing LSB field
from bits [61:56] in MCA_ADDR must be moved around to accommodate the
larger ErrorAddr size.
MCA_CONFIG[McaLsbInStatusSupported] indicates this change. If set, the
LSB field will be found in MCA_STATUS rather than MCA_ADDR.
Each logical CPU has unique MCA bank in hardware and is not shared with
other logical CPUs. Additionally, on SMCA systems, each feature bit may
be different for each bank within same logical CPU.
Check for MCA_CONFIG[McaLsbInStatusSupported] for each MCA bank and for
each CPU.
Additionally, all MCA banks do not support maximum ErrorAddr bits in
MCA_ADDR. Some banks might support fewer bits but the remaining bits are
marked as reserved.
[ Yazen: Rebased and fixed up formatting.
bp: Massage comments. ]
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221206173607.1185907-5-yazen.ghannam@amd.com
Move MCA_ADDR[ErrorAddr] extraction into a separate helper function. This
will be further refactored to support extended ErrorAddr bits in MCA_ADDR
in newer AMD CPUs.
[ bp: Massage. ]
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/all/20220225193342.215780-3-Smita.KoralahalliChannabasappa@amd.com/
It can happen that - especially during testing - the microcode
blobs of all families are all glued together in the initrd. The
current code doesn't check whether the current container matched
a microcode patch and continues to the next one, which leads to
save_microcode_in_initrd_amd() to look at the next and thus wrong one:
microcode: parse_container: ucode: 0xffff88807e9d9082
microcode: verify_patch: buf: 0xffff88807e9d90ce, buf_size: 26428
microcode: verify_patch: proc_id: 0x8082, patch_fam: 0x17, this family: 0x17
microcode: verify_patch: buf: 0xffff88807e9d9d56, buf_size: 23220
microcode: verify_patch: proc_id: 0x8012, patch_fam: 0x17, this family: 0x17
microcode: parse_container: MATCH: eq_id: 0x8012, patch proc_rev_id: 0x8012
<-- matching patch found
microcode: verify_patch: buf: 0xffff88807e9da9de, buf_size: 20012
microcode: verify_patch: proc_id: 0x8310, patch_fam: 0x17, this family: 0x17
microcode: verify_patch: buf: 0xffff88807e9db666, buf_size: 16804
microcode: Invalid type field (0x414d44) in container file section header.
microcode: Patch section fail
<-- checking chokes on the microcode magic value of the next container.
microcode: parse_container: saving container 0xffff88807e9d9082
microcode: save_microcode_in_initrd_amd: scanned containers, data: 0xffff88807e9d9082, size: 9700a
and now if there's a next (and last container) it'll use that in
save_microcode_in_initrd_amd() and not find a proper patch, ofc.
Fix that by moving the out: label up, before the desc->mc check which
jots down the pointer of the matching patch and is used to signal to the
caller that it has found a matching patch in the current container.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221219210656.5140-2-bp@alien8.de
- Rename apply_microcode_early_amd() to early_apply_microcode():
simplify the name so that it is clear what it does and when does it do
it.
- Rename __load_ucode_amd() to find_blobs_in_containers(): the new name
actually explains what it does.
Document some.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221219210656.5140-1-bp@alien8.de
Here is the set of driver core and kernfs changes for 6.2-rc1.
The "big" change in here is the addition of a new macro,
container_of_const() that will preserve the "const-ness" of a pointer
passed into it.
The "problem" of the current container_of() macro is that if you pass in
a "const *", out of it can comes a non-const pointer unless you
specifically ask for it. For many usages, we want to preserve the
"const" attribute by using the same call. For a specific example, this
series changes the kobj_to_dev() macro to use it, allowing it to be used
no matter what the const value is. This prevents every subsystem from
having to declare 2 different individual macros (i.e.
kobj_const_to_dev() and kobj_to_dev()) and having the compiler enforce
the const value at build time, which having 2 macros would not do
either.
The driver for all of this have been discussions with the Rust kernel
developers as to how to properly mark driver core, and kobject, objects
as being "non-mutable". The changes to the kobject and driver core in
this pull request are the result of that, as there are lots of paths
where kobjects and device pointers are not modified at all, so marking
them as "const" allows the compiler to enforce this.
So, a nice side affect of the Rust development effort has been already
to clean up the driver core code to be more obvious about object rules.
All of this has been bike-shedded in quite a lot of detail on lkml with
different names and implementations resulting in the tiny version we
have in here, much better than my original proposal. Lots of subsystem
maintainers have acked the changes as well.
Other than this change, included in here are smaller stuff like:
- kernfs fixes and updates to handle lock contention better
- vmlinux.lds.h fixes and updates
- sysfs and debugfs documentation updates
- device property updates
All of these have been in the linux-next tree for quite a while with no
problems, OTHER than some merge issues with other trees that should be
obvious when you hit them (block tree deletes a driver that this tree
modifies, iommufd tree modifies code that this tree also touches). If
there are merge problems with these trees, please let me know.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCY5wz3A8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yks0ACeKYUlVgCsER8eYW+x18szFa2QTXgAn2h/VhZe
1Fp53boFaQkGBjl8mGF8
=v+FB
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the set of driver core and kernfs changes for 6.2-rc1.
The "big" change in here is the addition of a new macro,
container_of_const() that will preserve the "const-ness" of a pointer
passed into it.
The "problem" of the current container_of() macro is that if you pass
in a "const *", out of it can comes a non-const pointer unless you
specifically ask for it. For many usages, we want to preserve the
"const" attribute by using the same call. For a specific example, this
series changes the kobj_to_dev() macro to use it, allowing it to be
used no matter what the const value is. This prevents every subsystem
from having to declare 2 different individual macros (i.e.
kobj_const_to_dev() and kobj_to_dev()) and having the compiler enforce
the const value at build time, which having 2 macros would not do
either.
The driver for all of this have been discussions with the Rust kernel
developers as to how to properly mark driver core, and kobject,
objects as being "non-mutable". The changes to the kobject and driver
core in this pull request are the result of that, as there are lots of
paths where kobjects and device pointers are not modified at all, so
marking them as "const" allows the compiler to enforce this.
So, a nice side affect of the Rust development effort has been already
to clean up the driver core code to be more obvious about object
rules.
All of this has been bike-shedded in quite a lot of detail on lkml
with different names and implementations resulting in the tiny version
we have in here, much better than my original proposal. Lots of
subsystem maintainers have acked the changes as well.
Other than this change, included in here are smaller stuff like:
- kernfs fixes and updates to handle lock contention better
- vmlinux.lds.h fixes and updates
- sysfs and debugfs documentation updates
- device property updates
All of these have been in the linux-next tree for quite a while with
no problems"
* tag 'driver-core-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (58 commits)
device property: Fix documentation for fwnode_get_next_parent()
firmware_loader: fix up to_fw_sysfs() to preserve const
usb.h: take advantage of container_of_const()
device.h: move kobj_to_dev() to use container_of_const()
container_of: add container_of_const() that preserves const-ness of the pointer
driver core: fix up missed drivers/s390/char/hmcdrv_dev.c class.devnode() conversion.
driver core: fix up missed scsi/cxlflash class.devnode() conversion.
driver core: fix up some missing class.devnode() conversions.
driver core: make struct class.devnode() take a const *
driver core: make struct class.dev_uevent() take a const *
cacheinfo: Remove of_node_put() for fw_token
device property: Add a blank line in Kconfig of tests
device property: Rename goto label to be more precise
device property: Move PROPERTY_ENTRY_BOOL() a bit down
device property: Get rid of __PROPERTY_ENTRY_ARRAY_EL*SIZE*()
kernfs: fix all kernel-doc warnings and multiple typos
driver core: pass a const * into of_device_uevent()
kobject: kset_uevent_ops: make name() callback take a const *
kobject: kset_uevent_ops: make filter() callback take a const *
kobject: make kobject_namespace take a const *
...
been long in the making. It is a lighterweight software-only fix for
Skylake-based cores where enabling IBRS is a big hammer and causes a
significant performance impact.
What it basically does is, it aligns all kernel functions to 16 bytes
boundary and adds a 16-byte padding before the function, objtool
collects all functions' locations and when the mitigation gets applied,
it patches a call accounting thunk which is used to track the call depth
of the stack at any time.
When that call depth reaches a magical, microarchitecture-specific value
for the Return Stack Buffer, the code stuffs that RSB and avoids its
underflow which could otherwise lead to the Intel variant of Retbleed.
This software-only solution brings a lot of the lost performance back,
as benchmarks suggest:
https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
That page above also contains a lot more detailed explanation of the
whole mechanism
- Implement a new control flow integrity scheme called FineIBT which is
based on the software kCFI implementation and uses hardware IBT support
where present to annotate and track indirect branches using a hash to
validate them
- Other misc fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe
VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb
VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN
gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A
iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y
Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A
ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh
ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd
73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP
i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n
Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/
zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs=
=cRy1
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Borislav Petkov:
- Add the call depth tracking mitigation for Retbleed which has been
long in the making. It is a lighterweight software-only fix for
Skylake-based cores where enabling IBRS is a big hammer and causes a
significant performance impact.
What it basically does is, it aligns all kernel functions to 16 bytes
boundary and adds a 16-byte padding before the function, objtool
collects all functions' locations and when the mitigation gets
applied, it patches a call accounting thunk which is used to track
the call depth of the stack at any time.
When that call depth reaches a magical, microarchitecture-specific
value for the Return Stack Buffer, the code stuffs that RSB and
avoids its underflow which could otherwise lead to the Intel variant
of Retbleed.
This software-only solution brings a lot of the lost performance
back, as benchmarks suggest:
https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
That page above also contains a lot more detailed explanation of the
whole mechanism
- Implement a new control flow integrity scheme called FineIBT which is
based on the software kCFI implementation and uses hardware IBT
support where present to annotate and track indirect branches using a
hash to validate them
- Other misc fixes and cleanups
* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
x86/paravirt: Use common macro for creating simple asm paravirt functions
x86/paravirt: Remove clobber bitmask from .parainstructions
x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
x86/Kconfig: Enable kernel IBT by default
x86,pm: Force out-of-line memcpy()
objtool: Fix weak hole vs prefix symbol
objtool: Optimize elf_dirty_reloc_sym()
x86/cfi: Add boot time hash randomization
x86/cfi: Boot time selection of CFI scheme
x86/ibt: Implement FineIBT
objtool: Add --cfi to generate the .cfi_sites section
x86: Add prefix symbols for function padding
objtool: Add option to generate prefix symbols
objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
objtool: Slice up elf_create_section_symbol()
kallsyms: Revert "Take callthunks into account"
x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
x86/retpoline: Fix crash printing warning
x86/paravirt: Fix a !PARAVIRT build warning
...
- More userfaultfs work from Peter Xu.
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying.
- Some filemap cleanups from Vishal Moola.
- David Hildenbrand added the ability to selftest anon memory COW handling.
- Some cpuset simplifications from Liu Shixin.
- Addition of vmalloc tracing support by Uladzislau Rezki.
- Some pagecache folioifications and simplifications from Matthew Wilcox.
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it.
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword. This series shold have been in the
non-MM tree, my bad.
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages.
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages.
- Peter Xu utilized the PTE marker code for handling swapin errors.
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient.
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand.
- zram support for multiple compression streams from Sergey Senozhatsky.
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway.
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations.
- Vishal Moola removed the try_to_release_page() wrapper.
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache.
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking.
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend.
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range().
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen.
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect.
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages().
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting.
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines.
- Many singleton patches, as usual.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5j6ZwAKCRDdBJ7gKXxA
jkDYAP9qNeVqp9iuHjZNTqzMXkfmJPsw2kmy2P+VdzYVuQRcJgEAgoV9d7oMq4ml
CodAgiA51qwzId3GRytIo/tfWZSezgA=
=d19R
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
driver in order to be able to run multiple different test patterns.
Rework things and remove the BROKEN dependency so that the driver can be
enabled (Jithu Joseph)
- Remove the subsys interface usage in the microcode loader because it
is not really needed
- A couple of smaller fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOYjh8ACgkQEsHwGGHe
VUpu8xAAhY7ywLcAoG9p3AaGiXpryFwnXFBah13o1rkgkJGRaG/eVjPJ4KUUjOQs
Wo3WUHeeHwmFWq+F/OSRefNsptOLBQ3u/cSza9TDDjPoS3glO5cIFc34JqIItMTg
L1GMB4LfmD1+9lYpM6Td11/Dluqf7EjeEdF4qDmCRZ5i4YNsaAlM4HtgATavNkYc
6Bvsi1r7tv7tCNDAEYqEfsQLoc79Yca4W5s86HNIyrxtyk9RLrK75WvRkcpTSnK9
SEpgpYwZy4iRTtZmePC7BqqbHfV6NoeuRqIMR73FrNK9pQuauGFMPkIx08Sgl3BW
/YGpefleGBHhy6Dqa6rEPsYS9xHfhqYAde09zzECJWW4VSI0PuFKyfm67ep2O7q6
zbV2DjxEZ+8kWeO9cDJPedEd8pXC8Ua7H+KNl00npdfNlkBaVR9ZRjX7ZVoiFMi8
6SRmCr1MLngldSMkUr6cYiLpoXmRzM+7gnKhVzhO6yNa0eihYBAIZ5lei0n9Q01W
Soxvec2KKeSZraNLoQH0MSndEJY4sqx6lPjlXgFT6gGHzgfQZTg+9INdaPK9gbI7
tg5j1e0/1UyvWrxYxOdzThtRY1X7Y1QtdpQDcatkVOgR1uZi1CTDx1dxTrHP5jbZ
7MSKn/8/T61beG6ujjif+pC8kOwNISLNDBBZGNzeLRyx8t9/6jQ=
=Z2Nu
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode and IFS updates from Borislav Petkov:
"The IFS (In-Field Scan) stuff goes through tip because the IFS driver
uses the same structures and similar functionality as the microcode
loader and it made sense to route it all through this branch so that
there are no conflicts.
- Add support for multiple testing sequences to the Intel In-Field
Scan driver in order to be able to run multiple different test
patterns. Rework things and remove the BROKEN dependency so that
the driver can be enabled (Jithu Joseph)
- Remove the subsys interface usage in the microcode loader because
it is not really needed
- A couple of smaller fixes and cleanups"
* tag 'x86_microcode_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/microcode/intel: Do not retry microcode reloading on the APs
x86/microcode/intel: Do not print microcode revision and processor flags
platform/x86/intel/ifs: Add missing kernel-doc entry
Revert "platform/x86/intel/ifs: Mark as BROKEN"
Documentation/ABI: Update IFS ABI doc
platform/x86/intel/ifs: Add current_batch sysfs entry
platform/x86/intel/ifs: Remove reload sysfs entry
platform/x86/intel/ifs: Add metadata validation
platform/x86/intel/ifs: Use generic microcode headers and functions
platform/x86/intel/ifs: Add metadata support
x86/microcode/intel: Use a reserved field for metasize
x86/microcode/intel: Add hdr_type to intel_microcode_sanity_check()
x86/microcode/intel: Reuse microcode_sanity_check()
x86/microcode/intel: Use appropriate type in microcode_sanity_check()
x86/microcode/intel: Reuse find_matching_signature()
platform/x86/intel/ifs: Remove memory allocation from load path
platform/x86/intel/ifs: Remove image loading during init
platform/x86/intel/ifs: Return a more appropriate error code
platform/x86/intel/ifs: Remove unused selection
x86/microcode: Drop struct ucode_cpu_info.valid
...
guests which do not get MTRRs exposed but only PAT. (TDX guests do not
support the cache disabling dance when setting up MTRRs so they fall
under the same category.) This is a cleanup work to remove all the ugly
workarounds for such guests and init things separately (Juergen Gross)
- Add two new Intel CPUs to the list of CPUs with "normal" Energy
Performance Bias, leading to power savings
- Do not do bus master arbitration in C3 (ARB_DISABLE) on modern Centaur
CPUs
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOYhIMACgkQEsHwGGHe
VUpxug//ZKw3hYFroKhsULJi/e0j2nGARiSlJrJcFHl2vgh9yGvDsnYUyM/rgjgt
cM3uCLbEG7nA6uhB3nupzaXZ8lBM1nU9kiEl/kjQ5oYf9nmJ48fLttvWGfxYN4s3
kj5fYVhlOZpntQXIWrwxnPqghUysumMnZmBJeKYiYNNfkj62l3xU2Ni4Gnjnp02I
9MmUhl7pj1aEyOQfM8rovy+wtYCg5WTOmXVlyVN+b9MwfYeK+stojvCZHxtJs9BD
fezpJjjG+78xKUC7vVZXCh1p1N5Qvj014XJkVl9Hg0n7qizKFZRtqi8I769G2ptd
exP8c2nDXKCqYzE8vK6ukWgDANQPs3d6Z7EqUKuXOCBF81PnMPSUMyNtQFGNM6Wp
S5YSvFfCgUjp50IunOpvkDABgpM+PB8qeWUq72UFQJSOymzRJg/KXtE2X+qaMwtC
0i6VLXfMddGcmqNKDppfGtCjq2W5VrNIIJedtAQQGyl+pl3XzZeNomhJpm/0mVfJ
8UrlXZeXl/EUQ7qk40gC/Ash27pU9ZDx4CMNMy1jDIQqgufBjEoRIDSFqQlghmZq
An5/BqMLhOMxUYNA7bRUnyeyxCBypetMdQt5ikBmVXebvBDmArXcuSNAdiy1uBFX
KD8P3Y1AnsHIklxkLNyZRUy7fb4mgMFenUbgc0vmbYHbFl0C0pQ=
=Zmgh
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- Split MTRR and PAT init code to accomodate at least Xen PV and TDX
guests which do not get MTRRs exposed but only PAT. (TDX guests do
not support the cache disabling dance when setting up MTRRs so they
fall under the same category)
This is a cleanup work to remove all the ugly workarounds for such
guests and init things separately (Juergen Gross)
- Add two new Intel CPUs to the list of CPUs with "normal" Energy
Performance Bias, leading to power savings
- Do not do bus master arbitration in C3 (ARB_DISABLE) on modern
Centaur CPUs
* tag 'x86_cpu_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
x86/mtrr: Make message for disabled MTRRs more descriptive
x86/pat: Handle TDX guest PAT initialization
x86/cpuid: Carve out all CPUID functionality
x86/cpu: Switch to cpu_feature_enabled() for X86_FEATURE_XENPV
x86/cpu: Remove X86_FEATURE_XENPV usage in setup_cpu_entry_area()
x86/cpu: Drop 32-bit Xen PV guest code in update_task_stack()
x86/cpu: Remove unneeded 64-bit dependency in arch_enter_from_user_mode()
x86/cpufeatures: Add X86_FEATURE_XENPV to disabled-features.h
x86/acpi/cstate: Optimize ARB_DISABLE on Centaur CPUs
x86/mtrr: Simplify mtrr_ops initialization
x86/cacheinfo: Switch cache_ap_init() to hotplug callback
x86: Decouple PAT and MTRR handling
x86/mtrr: Add a stop_machine() handler calling only cache_cpu_init()
x86/mtrr: Let cache_aps_delayed_init replace mtrr_aps_delayed_init
x86/mtrr: Get rid of __mtrr_enabled bool
x86/mtrr: Simplify mtrr_bp_init()
x86/mtrr: Remove set_all callback from struct mtrr_ops
x86/mtrr: Disentangle MTRR init from PAT init
x86/mtrr: Move cache control code to cacheinfo.c
x86/mtrr: Split MTRR-specific handling from cache dis/enabling
...
direction misannotations and (hopefully) preventing
more of the same for the future.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHQEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCY5ZzQAAKCRBZ7Krx/gZQ
65RZAP4nTkvOn0NZLVFkuGOx8pgJelXAvrteyAuecVL8V6CR4AD40qCVY51PJp8N
MzwiRTeqnGDxTTF7mgd//IB6hoatAA==
=bcvF
-----END PGP SIGNATURE-----
Merge tag 'pull-iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull iov_iter updates from Al Viro:
"iov_iter work; most of that is about getting rid of direction
misannotations and (hopefully) preventing more of the same for the
future"
* tag 'pull-iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
use less confusing names for iov_iter direction initializers
iov_iter: saner checks for attempt to copy to/from iterator
[xen] fix "direction" argument of iov_iter_kvec()
[vhost] fix 'direction' argument of iov_iter_{init,bvec}()
[target] fix iov_iter_bvec() "direction" argument
[s390] memcpy_real(): WRITE is "data source", not destination...
[s390] zcore: WRITE is "data source", not destination...
[infiniband] READ is "data destination", not source...
[fsi] WRITE is "data source", not destination...
[s390] copy_oldmem_kernel() - WRITE is "data source", not destination
csum_and_copy_to_iter(): handle ITER_DISCARD
get rid of unlikely() on page_copy_sane() calls
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmOU+U8ACgkQSfxwEqXe
A67NnQ//Y5DltmvibyPd7r1TFT2gUYv+Rx3sUV9ZE1NYptd/SWhhcL8c5FZ70Fuw
bSKCa1uiWjOxosjXT1kGrWq3de7q7oUpAPSOGxgxzoaNURIt58N/ajItCX/4Au8I
RlGAScHy5e5t41/26a498kB6qJ441fBEqCYKQpPLINMBAhe8TQ+NVp0rlpUwNHFX
WrUGg4oKWxdBIW3HkDirQjJWDkkAiklRTifQh/Al4b6QDbOnRUGGCeckNOhixsvS
waHWTld+Td8jRrA4b82tUb2uVZ2/b8dEvj/A8CuTv4yC0lywoyMgBWmJAGOC+UmT
ZVNdGW02Jc2T+Iap8ZdsEmeLHNqbli4+IcbY5xNlov+tHJ2oz41H9TZoYKbudlr6
/ReAUPSn7i50PhbQlEruj3eg+M2gjOeh8OF8UKwwRK8PghvyWQ1ScW0l3kUhPIhI
PdIG6j4+D2mJc1FIj2rTVB+Bg933x6S+qx4zDxGlNp62AARUFYf6EgyD6aXFQVuX
RxcKb6cjRuFkzFiKc8zkqg5edZH+IJcPNuIBmABqTGBOxbZWURXzIQvK/iULqZa4
CdGAFIs6FuOh8pFHLI3R4YoHBopbHup/xKDEeAO9KZGyeVIuOSERDxxo5f/ITzcq
APvT77DFOEuyvanr8RMqqh0yUjzcddXqw9+ieufsAyDwjD9DTuE=
=QRhK
-----END PGP SIGNATURE-----
Merge tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
- Replace prandom_u32_max() and various open-coded variants of it,
there is now a new family of functions that uses fast rejection
sampling to choose properly uniformly random numbers within an
interval:
get_random_u32_below(ceil) - [0, ceil)
get_random_u32_above(floor) - (floor, U32_MAX]
get_random_u32_inclusive(floor, ceil) - [floor, ceil]
Coccinelle was used to convert all current users of
prandom_u32_max(), as well as many open-coded patterns, resulting in
improvements throughout the tree.
I'll have a "late" 6.1-rc1 pull for you that removes the now unused
prandom_u32_max() function, just in case any other trees add a new
use case of it that needs to converted. According to linux-next,
there may be two trivial cases of prandom_u32_max() reintroductions
that are fixable with a 's/.../.../'. So I'll have for you a final
conversion patch doing that alongside the removal patch during the
second week.
This is a treewide change that touches many files throughout.
- More consistent use of get_random_canary().
- Updates to comments, documentation, tests, headers, and
simplification in configuration.
- The arch_get_random*_early() abstraction was only used by arm64 and
wasn't entirely useful, so this has been replaced by code that works
in all relevant contexts.
- The kernel will use and manage random seeds in non-volatile EFI
variables, refreshing a variable with a fresh seed when the RNG is
initialized. The RNG GUID namespace is then hidden from efivarfs to
prevent accidental leakage.
These changes are split into random.c infrastructure code used in the
EFI subsystem, in this pull request, and related support inside of
EFISTUB, in Ard's EFI tree. These are co-dependent for full
functionality, but the order of merging doesn't matter.
- Part of the infrastructure added for the EFI support is also used for
an improvement to the way vsprintf initializes its siphash key,
replacing an sleep loop wart.
- The hardware RNG framework now always calls its correct random.c
input function, add_hwgenerator_randomness(), rather than sometimes
going through helpers better suited for other cases.
- The add_latent_entropy() function has long been called from the fork
handler, but is a no-op when the latent entropy gcc plugin isn't
used, which is fine for the purposes of latent entropy.
But it was missing out on the cycle counter that was also being mixed
in beside the latent entropy variable. So now, if the latent entropy
gcc plugin isn't enabled, add_latent_entropy() will expand to a call
to add_device_randomness(NULL, 0), which adds a cycle counter,
without the absent latent entropy variable.
- The RNG is now reseeded from a delayed worker, rather than on demand
when used. Always running from a worker allows it to make use of the
CPU RNG on platforms like S390x, whose instructions are too slow to
do so from interrupts. It also has the effect of adding in new inputs
more frequently with more regularity, amounting to a long term
transcript of random values. Plus, it helps a bit with the upcoming
vDSO implementation (which isn't yet ready for 6.2).
- The jitter entropy algorithm now tries to execute on many different
CPUs, round-robining, in hopes of hitting even more memory latencies
and other unpredictable effects. It also will mix in a cycle counter
when the entropy timer fires, in addition to being mixed in from the
main loop, to account more explicitly for fluctuations in that timer
firing. And the state it touches is now kept within the same cache
line, so that it's assured that the different execution contexts will
cause latencies.
* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
random: include <linux/once.h> in the right header
random: align entropy_timer_state to cache line
random: mix in cycle counter when jitter timer fires
random: spread out jitter callback to different CPUs
random: remove extraneous period and add a missing one in comments
efi: random: refresh non-volatile random seed when RNG is initialized
vsprintf: initialize siphash key using notifier
random: add back async readiness notifier
random: reseed in delayed work rather than on-demand
random: always mix cycle counter in add_latent_entropy()
hw_random: use add_hwgenerator_randomness() for early entropy
random: modernize documentation comment on get_random_bytes()
random: adjust comment to account for removed function
random: remove early archrandom abstraction
random: use random.trust_{bootloader,cpu} command line option only
stackprotector: actually use get_random_canary()
stackprotector: move get_random_canary() into stackprotector.h
treewide: use get_random_u32_inclusive() when possible
treewide: use get_random_u32_{above,below}() instead of manual loop
treewide: use get_random_u32_below() instead of deprecated function
...
- Add another MCE severity error case to the Intel error severity
table to promote UC and AR errors to panic severity and remove the
corresponding code condition doing that.
- Make sure the thresholding and deferred error interrupts on AMD SMCA
systems clear the all registers reporting an error so that there are no
multiple errors logged for the same event
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOXiPcACgkQEsHwGGHe
VUomHQ/9Gj6Go0ILvIEpn3VCC8bRc0nf/SFJ+4BnFBc+GdiN6ePhDwn1of3bPk/d
zNuPFGEa1rV7r97MDsggGetvNVVrA6zumoPmLrHPrZSvhRyCW620J43RH+3T4bzz
XfCMU6oRJg+F4dFUPnnAnp/6DTwLSe0ofpc2eARlmjdOxTo4MRfxWfwe5XALGGN1
q+8ycB3Gb8cvhjlB61PL7hhjuy6yH29v63vjUMqsyfDmVhXRxY3xymg+4SxalCBf
0Zz8/RRJFHSOwzUPsQUm9kVMN8phhJ/fN0B1wsLDWlt0K5Vx5D19l+wbH4aaTTcF
8bWMMmS43raFuARkcROAEbDrWM2kEo5Qe9eWhZ7HB9wLG9SicJfZIH5Th4ul40V8
4RARSj1ve4vfxzNmmhFf+RL8kdYWLpxlwVJUhdHkiqKTqN8SIQMb/dsNg/7KjFsV
N3PSZ0lOEQ5Q2l5fSZoL+auqXgJBD5BUy+Gjk0awZavzZCdI35/LK8xVzrgCgsRk
AlAcfvngpyZB7A0aeiwalIszcyjk1cnK8+RwIRtvM0CAYhKP+SVTvq4wHtRiO5HD
TfuVgaHSgOyoOD0NdUGM6PXgrBXqnyIYI2me8Gwtg7gzenizBsv/uh8cvWa3DQnG
5NItCYEG7Paa7p3VQDvFqxKldIC1Bjwi2pYYIDOgRiwWGbYzSCU=
=sKP5
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RAS updates from Borislav Petkov:
- Fix confusing output from /sys/kernel/debug/ras/daemon_active
- Add another MCE severity error case to the Intel error severity table
to promote UC and AR errors to panic severity and remove the
corresponding code condition doing that.
- Make sure the thresholding and deferred error interrupts on AMD SMCA
systems clear the all registers reporting an error so that there are
no multiple errors logged for the same event
* tag 'ras_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
RAS: Fix return value from show_trace()
x86/mce: Use severity table to handle uncorrected errors in kernel
x86/MCE/AMD: Clear DFR errors found in THR handler
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOXYlcACgkQaDWVMHDJ
krB+IQ//fLNzHnNmTaFq3TlmF9HiJ926uCu2C3MMma0g8NlFXGLTbeI/UaaER12/
m/N4d+/WPSO1PnsMR36f10Byr8PN2fpbJHGMsHtZ4Y4MTnGycM6JxjDYeFuaSPB5
Cw2IRsO6c7X/dWEVW7hLbHhlG4MpsiX9APt2/PBGpGJm88wL1RDosMKst6430UQK
24JZtFbdyaPnUlo48ql85VkGtdgFHXRnebhM0sX95bVWdSLvNWUSpQAyETp+U9rn
CH75pnoKcJspKun5FmdN2n3gix8Rumz8OZuv9e4XAfBl94H4OZ+SeRN4YbKUvzJP
PtSCz7PT8VQNsJVCA58TQ+QdmhtKsT4ia0ylDvMhHiozzjUNeeS54qJQSUyPLOqK
dBl4hl6BmGMMH2fAZGeoxVmVZMIdLaE0PBECjBEuPAG15IqlxQwTdSeyo0k+S0wV
wYUtCqmxOItW3TA8y044zDjCcIN6wiFymBJtjKbAMxz54ONfnUqgAUluXLeE3xim
8UqL/uM869Ptu6sDO6sfROd1K8EA3KXrsmOGZV7s9hp+qGQcxsvUDhePT9EosS/G
JcmYspV211FO2fTAAOiCe5SJRkoPw/lRWufjNNNWWd3mawJhDeYujZ2fQAxEThC+
Mf8FyFsbxOdbJ1UatgWs/iLOnVwMJf/E1hraq7mdRuZHbNQm7H4=
=yyO+
-----END PGP SIGNATURE-----
Merge tag 'x86_splitlock_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 splitlock updates from Dave Hansen:
"Add a sysctl to control the split lock misery mode.
This enables users to reduce the penalty inflicted on split lock
users. There are some proprietary, binary-only games which became
entirely unplayable with the old penalty.
Anyone opting into the new mode is, of course, more exposed to the DoS
nasitness inherent with split locks, but they can play their games
again"
* tag 'x86_splitlock_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/split_lock: Add sysctl to control the misery mode
* Remove unnecessary arch_has_empty_bitmaps structure memory
* Move rescrtl MSR defines into msr-index.h, like normal MSRs
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOXYhsACgkQaDWVMHDJ
krA75w//XmOC929XGMOY7WQL6IZlH62xsJbtb3BhmM24Ho7RHSNQGPD+ukArCb0u
V/w50Q4crQrLsIxqWjXkyDQ7w66PvvsAIhYFBEV4kssRli9y173CzJQt/lQfUXL9
T7vG5WY1n4f+vtvmZfwcFaGOPkZ5edp8v1y8Grk3r93ci2VDSk+yvEiq80c+JQoX
ZnEYPxGPUpwAVuaysY8wkGCEc4Yln6gtTKzpVPXE18WAs82OeiCWBfldI/+95j3o
/5r5asYQpD8bVhtLHi1mepkBAGbeVNWhSJVlOE9HdU9WnzCkNKn1ZXRuXSBlvTeq
FPjg6vsBXuz8zQV4Dd3Jk3hWv3H/4sTWsgiyUFdHtz/VlE9M8NjGcE4caOgSuBqR
2ovI/HwdvdYyiZwvNN0fXrnzEn1MliSXDgAscNuxzovJXqdTP2BpUj0SVlZdVs0U
0xba5sZ5A6fh2SwKX7JQYYsEh4gudiixR+D2l5u7EUOiNyfw0DZgWi/ElpvX4ncy
QvDIIqlm29A/VkJQAdSHJc0ew+w39M7f3VNfQviLXxudGFuhrg+kXlI1UYGcX/cH
4LEjmE1KCymmq7v+7+zBrHwsVCxr5mi/CZnx+/4Y/2O+xOKJ1U7GQDXWzu/SC+aF
tEwqDCldYKjqrfdkmuGXSt2YipkNOC2EBLY32mW7rtTDDIXPSro=
=n2UE
-----END PGP SIGNATURE-----
Merge tag 'x86_cache_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cache resource control updates from Dave Hansen:
"These declare the resource control (rectrl) MSRs a bit more normally
and clean up an unnecessary structure member:
- Remove unnecessary arch_has_empty_bitmaps structure memory
- Move rescrtl MSR defines into msr-index.h, like normal MSRs"
* tag 'x86_cache_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Move MSR defines into msr-index.h
x86/resctrl: Remove arch_has_empty_bitmaps
for bare-metal enclaves and KVM guests to mitigate single-step
attacks
* Increase batching to speed up enclave release
* Replace kmap/kunmap_atomic() calls
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOXYkEACgkQaDWVMHDJ
krB5Og//Vn0oy0pGhda+LtHJgpa9/qPlzvoZCBxi/6SfLneadE5/g/q2KHbiCgVf
sQ6SEZ0MiVc2SrQcA6CntMO+stJIHG4LqYutygfKDoxXHGzxotzvzTmRV7Qxfhj5
LrPfl4cLWVO/jGDs0XQpOVFykKgdMcg1OjlnQYfriFiIiBkcClC7F0zYrOWAQWW0
z+4h3mlWzyAcBdxrZ9qPVqBMbM3qVKQWeE4D9K2Edfgx1lhQBmvtRdYXTplk08tV
DrfEkG5L189lrwlmbkKT5+pXSTmJqJzBoYyAGOH8n4Wb9aKLdagJErVg0ocXx8uV
ngPFU5vmaZza7EZcQheu8iRfM+zQCrcVjBImrRLyQPgCeMBX7o75axYvu4/bvPkP
3+1/JUL6/m738Fqom4wUKdeoJFw/HLGRyQ36yhZAEzH7wPv7/9Q1zpdxcypE6a+Q
B7UGQNVXV9g5Ivhe44gZIKx/3VL7AthtyCQvhwGQzzm4jX2SwnQKNXy0iKlJr2iI
LyREdYlJsRR1/wMdjnj2QqtnWPRZ5/rzl7bvWqiXa4xyvcgArrBowjMdZBttaItJ
cVK5Aj2bvR3Yc/e9GtPoLvwU5IwtoXgUe1B4DsJtoFoUq7gUGZZcEd5uAYRAk7PX
lyP2LQNxX5i150cxjlSYLLLTNmwvZQ+5PFq+V5+McKbAge8OD8g=
=bIXL
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 sgx updates from Dave Hansen:
"The biggest deal in this series is support for a new hardware feature
that allows enclaves to detect and mitigate single-stepping attacks.
There's also a minor performance tweak and a little piece of the
kmap_atomic() -> kmap_local() transition.
Summary:
- Introduce a new SGX feature (Asynchrounous Exit Notification) for
bare-metal enclaves and KVM guests to mitigate single-step attacks
- Increase batching to speed up enclave release
- Replace kmap/kunmap_atomic() calls"
* tag 'x86_sgx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Replace kmap/kunmap_atomic() calls
KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest
x86/sgx: Allow enclaves to use Asynchrounous Exit Notification
x86/sgx: Reduce delay and interference of enclave release
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmORzR4THHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXkqCCACFwHz04iepLE7R8ZZ6BVUhD6uzfzDo
s1j7ozOUGUe3vI6q0DElHWVQZgzIzLypVsfWkZToe6jeOU6R48b0tZSFyJCUNwGM
ogmS7N8fBdHfY9SBFoUPoziBifXpf3kq4hhX/w+1Lge9CN5Ywc4KjuJb91EAInbs
lm47O4KQY8w8A7BbPBHYBueUVWLvgwPRPOS032zqxN1787m2tCxpqkfnImK39kh6
IsBBIZfYsok0H5wldhZXnsARpEOeFF6BoFBXpFPlmnbv2VcK2AfZgTYdA3ESyEgd
NyOFDfh6BO07gTR1xCH6gvOpkHwx6xKAkjE36RymdhXS6fhRCRsfahVB
=m78g
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20221208' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- Drop unregister syscore from hyperv_cleanup to avoid hang (Gaurav
Kohli)
- Clean up panic path for Hyper-V framebuffer (Guilherme G. Piccoli)
- Allow IRQ remapping to work without x2apic (Nuno Das Neves)
- Fix comments (Olaf Hering)
- Expand hv_vp_assist_page definition (Saurabh Sengar)
- Improvement to page reporting (Shradha Gupta)
- Make sure TSC clocksource works when Linux runs as the root partition
(Stanislav Kinsburskiy)
* tag 'hyperv-next-signed-20221208' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
x86/hyperv: Remove unregister syscore call from Hyper-V cleanup
iommu/hyper-v: Allow hyperv irq remapping without x2apic
clocksource: hyper-v: Add TSC page support for root partition
clocksource: hyper-v: Use TSC PFN getter to map vvar page
clocksource: hyper-v: Introduce TSC PFN getter
clocksource: hyper-v: Introduce a pointer to TSC page
x86/hyperv: Expand definition of struct hv_vp_assist_page
PCI: hv: update comment in x86 specific hv_arch_irq_unmask
hv: fix comment typo in vmbus_channel/low_latency
drivers: hv, hyperv_fb: Untangle and refactor Hyper-V panic notifiers
video: hyperv_fb: Avoid taking busy spinlock on panic path
hv_balloon: Add support for configurable order free page reporting
mm/page_reporting: Add checks for page_reporting_order param
The retries in load_ucode_intel_ap() were in place to support systems
with mixed steppings. Mixed steppings are no longer supported and there is
only one microcode image at a time. Any retries will simply reattempt to
apply the same image over and over without making progress.
[ bp: Zap the circumstantial reasoning from the commit message. ]
Fixes: 06b8534cb7 ("x86/microcode: Rework microcode loading")
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221129210832.107850-3-ashok.raj@intel.com
Instead of just saying "Disabled" when MTRRs are disabled for any
reason, tell what is disabled and why.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221205080433.16643-3-jgross@suse.com
collect_cpu_info() is used to collect the current microcode revision and
processor flags on every CPU.
It had a weird mechanism to try to mimick a "once" functionality in the
sense that, that information should be issued only when it is differing
from the previous CPU.
However (1):
the new calling sequence started doing that in parallel:
microcode_init()
|-> schedule_on_each_cpu(setup_online_cpu)
|-> collect_cpu_info()
resulting in multiple redundant prints:
microcode: sig=0x50654, pf=0x80, revision=0x2006e05
microcode: sig=0x50654, pf=0x80, revision=0x2006e05
microcode: sig=0x50654, pf=0x80, revision=0x2006e05
However (2):
dumping this here is not that important because the kernel does not
support mixed silicon steppings microcode. Finally!
Besides, there is already a pr_info() in microcode_reload_late() that
shows both the old and new revisions.
What is more, the CPU signature (sig=0x50654) and Processor Flags
(pf=0x80) above aren't that useful to the end user, they are available
via /proc/cpuinfo and they don't change anyway.
Remove the redundant pr_info().
[ bp: Heavily massage. ]
Fixes: b6f86689d5 ("x86/microcode: Rip out the subsys interface gunk")
Reported-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221103175901.164783-2-ashok.raj@intel.com
The "force" argument to write_spec_ctrl_current() is currently ambiguous
as it does not guarantee the MSR write. This is due to the optimization
that writes to the MSR happen only when the new value differs from the
cached value.
This is fine in most cases, but breaks for S3 resume when the cached MSR
value gets out of sync with the hardware MSR value due to S3 resetting
it.
When x86_spec_ctrl_current is same as x86_spec_ctrl_base, the MSR write
is skipped. Which results in SPEC_CTRL mitigations not getting restored.
Move the MSR write from write_spec_ctrl_current() to a new function that
unconditionally writes to the MSR. Update the callers accordingly and
rename functions.
[ bp: Rework a bit. ]
Fixes: caa0ff24d5 ("x86/bugs: Keep a per-CPU IA32_SPEC_CTRL value")
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/806d39b0bfec2fe8f50dc5446dff20f5bb24a959.1669821572.git.pawan.kumar.gupta@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmap_local_page() is the preferred way to create temporary mappings when it
is feasible, because the mappings are thread-local and CPU-local.
kmap_local_page() uses per-task maps rather than per-CPU maps. This in
effect removes the need to disable preemption on the local CPU while the
mapping is active, and thus vastly reduces overall system latency. It is
also valid to take pagefaults within the mapped region.
The use of kmap_atomic() in the SGX code was not an explicit design choice
to disable page faults or preemption, and there is no compelling design
reason to using kmap_atomic() vs. kmap_local_page().
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/linux-sgx/Y0biN3%2FJsZMa0yUr@kernel.org/
Link: https://lore.kernel.org/r/20221115161627.4169428-1-kristen@linux.intel.com
If x2apic is not available, hyperv-iommu skips remapping
irqs. This breaks root partition which always needs irqs
remapped.
Fix this by allowing irq remapping regardless of x2apic,
and change hyperv_enable_irq_remapping() to return
IRQ_REMAP_XAPIC_MODE in case x2apic is missing.
Tested with root and non-root hyperv partitions.
Signed-off-by: Nuno Das Neves <nunodasneves@linux.microsoft.com>
Reviewed-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1668715899-8971-1-git-send-email-nunodasneves@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
msr-index.h should contain all MSRs for easier grepping for MSR numbers
when dealing with unchecked MSR access warnings, for example.
Move the resctrl ones. Prefix IA32_PQR_ASSOC with "MSR_" while at it.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221106212923.20699-1-bp@alien8.de
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.
Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The devnode() in struct class should not be modifying the device that is
passed into it, so mark it as a const * and propagate the function
signature changes out into all relevant subsystems that use this
callback.
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Justin Sanders <justin@coraid.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Benjamin Gaignard <benjamin.gaignard@collabora.com>
Cc: Liam Mark <lmark@codeaurora.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Brian Starkey <Brian.Starkey@arm.com>
Cc: John Stultz <jstultz@google.com>
Cc: "Christian König" <christian.koenig@amd.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: David Airlie <airlied@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Sean Young <sean@mess.org>
Cc: Frank Haverkamp <haver@linux.ibm.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Cornelia Huck <cohuck@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Cc: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Cc: Xie Yongji <xieyongji@bytedance.com>
Cc: Gautam Dawar <gautam.dawar@xilinx.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: Eli Cohen <elic@nvidia.com>
Cc: Parav Pandit <parav@nvidia.com>
Cc: Maxime Coquelin <maxime.coquelin@redhat.com>
Cc: alsa-devel@alsa-project.org
Cc: dri-devel@lists.freedesktop.org
Cc: kvm@vger.kernel.org
Cc: linaro-mm-sig@lists.linaro.org
Cc: linux-block@vger.kernel.org
Cc: linux-input@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-media@vger.kernel.org
Cc: linux-rdma@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Cc: linux-usb@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Link: https://lore.kernel.org/r/20221123122523.1332370-2-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Convert the remaining cases of static_cpu_has(X86_FEATURE_XENPV) and
boot_cpu_has(X86_FEATURE_XENPV) to use cpu_feature_enabled(), allowing
more efficient code in case the kernel is configured without
CONFIG_XEN_PV.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20221104072701.20283-6-jgross@suse.com
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmN6wAgeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG0EYH/3/RO90NbrFItraN
Lzr+d3VdbGjTu8xd1M+PRTmwh3zxLpB+Jwqr0T0A2gzL9B/D+AUPUJdrCVbv9DqS
FLJAVqoeV20dNBAHSffOOLPsgCZ+Eu+LzlNN7Iqde0e8cyZICFMNktitui84Xm/i
1NgFVgz9OZ6+aieYvUj3FrFq0p8GTIaC/oybDZrxYKcO8ZzKVMJ11swRw10wwq0g
qOOECvV3w7wlQ8upQZkzFxItKFc7EexZI6R4elXeGSJJ9Hlc092dv/zsKB9dwV+k
WcwkJrZRoezYXzgGBFxUcQtzi+ethjrPjuJuM1rYLUSIcfIW/0lkaSLgRoBu8D+I
1GfXkXs=
=gt6P
-----END PGP SIGNATURE-----
Merge tag 'v6.1-rc6' into x86/core, to resolve conflicts
Resolve conflicts between these commits in arch/x86/kernel/asm-offsets.c:
# upstream:
debc5a1ec0 ("KVM: x86: use a separate asm-offsets.c file")
# retbleed work in x86/core:
5d8213864a ("x86/retbleed: Add SKL return thunk")
... and these commits in include/linux/bpf.h:
# upstram:
18acb7fac2 ("bpf: Revert ("Fix dispatcher patchable function entry to 5 bytes nop")")
# x86/core commits:
931ab63664 ("x86/ibt: Implement FineIBT")
bea75b3389 ("x86/Kconfig: Introduce function padding")
The latter two modify BPF_DISPATCHER_ATTRIBUTES(), which was removed upstream.
Conflicts:
arch/x86/kernel/asm-offsets.c
include/linux/bpf.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Support for the TSX control MSR is enumerated in MSR_IA32_ARCH_CAPABILITIES.
This is different from how other CPU features are enumerated i.e. via
CPUID. Currently, a call to tsx_ctrl_is_supported() is required for
enumerating the feature. In the absence of a feature bit for TSX control,
any code that relies on checking feature bits directly will not work.
In preparation for adding a feature bit check in MSR save/restore
during suspend/resume, set a new feature bit X86_FEATURE_TSX_CTRL when
MSR_IA32_TSX_CTRL is present. Also make tsx_ctrl_is_supported() use the
new feature bit to avoid any overhead of reading the MSR.
[ bp: Remove tsx_ctrl_is_supported(), add room for two more feature
bits in word 11 which are coming up in the next merge window. ]
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/de619764e1d98afbb7a5fa58424f1278ede37b45.1668539735.git.pawan.kumar.gupta@linux.intel.com
fpregs lock disables preemption on RT but fpu_inherit_perms() does
spin_lock_irq(), which, on RT, uses rtmutexes and they need to be
preemptible.
- Check the page offset and the length of the data supplied by userspace
for overflow when specifying a set of pages to add to an SGX enclave
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmN6GjgACgkQEsHwGGHe
VUpzog/+OIX3ZAZ0EJqg9GgvhacPjww1oPr+DRcpXCFYjk1jTJ3seJc2we+uun0j
zYHbgO6BYyP3LdlrSjt8MgosMZGz1s14r9TXc46T8IhvUu0imbUkO9vLcxwL6pJl
LJgPIYvBu6IUoVIQVlVr7PrVvUj8nUPc3w/8qmjR91bJAWTeeFvFflvn713jlWBP
hLKiUvhdjA08Sp9gjF2drGl+NkSXPPLPHQetKa4BhVYqwDK5hRGBOt51CuDHdUOQ
QYaP5JRy435ZsoFGgYq0lOxCXIYDe8rWRBCnDWdi7kjXEYhnKJLj6Fi1SxjD+cZC
wDX+LQGFiShJFonGzxbeORBU04Owbz+nLsSeHCQsl/70kAv/W/44BLj+BPl0dit1
XBTUUCr9Wi9VdDTBVJT+EQbD3F5dBn1TO00Z0qzhv3D3gVruUNmv7SDHMoRUyYcy
9LueWCzF9YV1Se6V9gUox9vwTuc09J63IS2zkMm2ahCbfmWTSsx9P5BWLFK3E3Em
lPsdZWNJQ7F6f0B3AfRjTDXvaMyzBRYfuZHEaBMq5avDWDFBCyOhc3PqjpKt5wHS
URP6M/kOtz1zg8fy/XmMRCfCDBoAm+NfvF4zG9md1GYta7aP74Z824M+FMoXNv7f
YcR4mCzpeeiG0hXyywcL+QDpmjlsYCPhe24Gnh/Bb+1g7Huyyc8=
=VQD4
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v6.1_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Do not hold fpregs lock when inheriting FPU permissions because the
fpregs lock disables preemption on RT but fpu_inherit_perms() does
spin_lock_irq(), which, on RT, uses rtmutexes and they need to be
preemptible.
- Check the page offset and the length of the data supplied by
userspace for overflow when specifying a set of pages to add to an
SGX enclave
* tag 'x86_urgent_for_v6.1_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Drop fpregs lock before inheriting FPU permissions
x86/sgx: Add overflow check in sgx_validate_offset_length()
IFS test images and microcode blobs use the same header format.
Microcode blobs use header type of 1, whereas IFS test images
will use header type of 2.
In preparation for IFS reusing intel_microcode_sanity_check(),
add header type as a parameter for sanity check.
[ bp: Touchups. ]
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20221117035935.4136738-9-jithu.joseph@intel.com