Move the .check_processor_compatibility() callback from kvm_x86_init_ops
to kvm_x86_ops to allow a future patch to do compatibility checks during
CPU hotplug.
Do kvm_ops_update() before compat checks so that static_call() can be
used during compat checks.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20221130230934.1014142-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do basic VMX/SVM support checks directly in vendor code instead of
implementing them via kvm_x86_ops hooks. Beyond the superficial benefit
of providing common messages, which isn't even clearly a net positive
since vendor code can provide more precise/detailed messages, there's
zero advantage to bouncing through common x86 code.
Consolidating the checks will also simplify performing the checks
across all CPUs (in a future patch).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the guts of kvm_arch_init() to a new helper, kvm_x86_vendor_init(),
so that VMX can do _all_ arch and vendor initialization before calling
kvm_init(). Calling kvm_init() must be the _very_ last step during init,
as kvm_init() exposes /dev/kvm to userspace, i.e. allows creating VMs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Normally, genuine Hyper-V doesn't expose architectural invariant TSC
(CPUID.80000007H:EDX[8]) to its guests by default. A special PV MSR
(HV_X64_MSR_TSC_INVARIANT_CONTROL, 0x40000118) and corresponding CPUID
feature bit (CPUID.0x40000003.EAX[15]) were introduced. When bit 0 of the
PV MSR is set, invariant TSC bit starts to show up in CPUID. When the
feature is exposed to Hyper-V guests, reenlightenment becomes unneeded.
Add the feature to KVM. Keep CPUID output intact when the feature
wasn't exposed to L1 and implement the required logic for hiding
invariant TSC when the feature was exposed and invariant TSC control
MSR wasn't written to. Copy genuine Hyper-V behavior and forbid to
disable the feature once it was enabled.
For the reference, for linux guests, support for the feature was added
in commit dce7cd6275 ("x86/hyperv: Allow guests to enable InvariantTSC").
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221013095849.705943-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change tdp_mmu to a read-only parameter and drop the per-vm
tdp_mmu_enabled. For 32-bit KVM, make tdp_mmu_enabled a macro that is
always false so that the compiler can continue omitting cals to the TDP
MMU.
The TDP MMU was introduced in 5.10 and has been enabled by default since
5.15. At this point there are no known functionality gaps between the
TDP MMU and the shadow MMU, and the TDP MMU uses less memory and scales
better with the number of vCPUs. In other words, there is no good reason
to disable the TDP MMU on a live system.
Purposely do not drop tdp_mmu=N support (i.e. do not force 64-bit KVM to
always use the TDP MMU) since tdp_mmu=N is still used to get test
coverage of KVM's shadow MMU TDP support, which is used in 32-bit KVM.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Normally, genuine Hyper-V doesn't expose architectural invariant TSC
(CPUID.80000007H:EDX[8]) to its guests by default. A special PV MSR
(HV_X64_MSR_TSC_INVARIANT_CONTROL, 0x40000118) and corresponding CPUID
feature bit (CPUID.0x40000003.EAX[15]) were introduced. When bit 0 of the
PV MSR is set, invariant TSC bit starts to show up in CPUID. When the
feature is exposed to Hyper-V guests, reenlightenment becomes unneeded.
Add the feature to KVM. Keep CPUID output intact when the feature
wasn't exposed to L1 and implement the required logic for hiding
invariant TSC when the feature was exposed and invariant TSC control
MSR wasn't written to. Copy genuine Hyper-V behavior and forbid to
disable the feature once it was enabled.
For the reference, for linux guests, support for the feature was added
in commit dce7cd6275 ("x86/hyperv: Allow guests to enable InvariantTSC").
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221013095849.705943-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change tdp_mmu to a read-only parameter and drop the per-vm
tdp_mmu_enabled. For 32-bit KVM, make tdp_mmu_enabled a macro that is
always false so that the compiler can continue omitting cals to the TDP
MMU.
The TDP MMU was introduced in 5.10 and has been enabled by default since
5.15. At this point there are no known functionality gaps between the
TDP MMU and the shadow MMU, and the TDP MMU uses less memory and scales
better with the number of vCPUs. In other words, there is no good reason
to disable the TDP MMU on a live system.
Purposely do not drop tdp_mmu=N support (i.e. do not force 64-bit KVM to
always use the TDP MMU) since tdp_mmu=N is still used to get test
coverage of KVM's shadow MMU TDP support, which is used in 32-bit KVM.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220921173546.2674386-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86 Xen-for-KVM:
* Allow the Xen runstate information to cross a page boundary
* Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
* add support for 32-bit guests in SCHEDOP_poll
x86 fixes:
* One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
* Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
* Clean up the MSR filter docs.
* Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
* Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
* Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
* Advertise (on AMD) that the SMM_CTL MSR is not supported
* Remove unnecessary exports
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
Documentation:
* Remove deleted ioctls from documentation
* Various fixes
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmOODb0PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDztsQAInRnsgLl57/SpqhZzExNCllN6AT/bdeB3uz
rnw3ScJOV174uNKp8lnPWoTvu2YUGiVtBp6tFHhDI8le7zHX438ZT8KE5mcs8p5i
KfFKnb8SHV2DDpqkcy24c0Xl/6vsg1qkKrdfJb49yl5ZakRITDpynW/7tn6dXsxX
wASeGFdCYeW4g2xMQzsCbtx6LgeQ8uomBmzRfPrOtZHYYxAn6+4Mj4595EC1sWxM
AQnbp8tW3Vw46saEZAQvUEOGOW9q0Nls7G21YqQ52IA+ZVDK1LmAF2b1XY3edjkk
pX8EsXOURfqdasBxfSfF3SgnUazoz9GHpSzp1cTVTktrPp40rrT7Ldtml0ktq69d
1malPj47KVMDsIq0kNJGnMxciXFgAHw+VaCQX+k4zhIatNwviMbSop2fEoxj22jc
4YGgGOxaGrnvmAJhreCIbr4CkZk5CJ8Zvmtfg+QM6npIp8BY8896nvORx/d4i6tT
H4caadd8AAR56ANUyd3+KqF3x0WrkaU0PLHJLy1tKwOXJUUTjcpvIfahBAAeUlSR
qEFrtb+EEMPgAwLfNOICcNkPZR/yyuYvM+FiUQNVy5cNiwFkpztpIctfOFaHySGF
K07O2/a1F6xKL0OKRUg7hGKknF9ecmux4vHhiUMuIk9VOgNTWobHozBDorLKXMzC
aWa6oGVC
=iIPT
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.2' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.2
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
Closer inspection of the Xen code shows that we aren't supposed to be
using the XEN_RUNSTATE_UPDATE flag unconditionally. It should be
explicitly enabled by guests through the HYPERVISOR_vm_assist hypercall.
If we randomly set the top bit of ->state_entry_time for a guest that
hasn't asked for it and doesn't expect it, that could make the runtimes
fail to add up and confuse the guest. Without the flag it's perfectly
safe for a vCPU to read its own vcpu_runstate_info; just not for one
vCPU to read *another's*.
I briefly pondered adding a word for the whole set of VMASST_TYPE_*
flags but the only one we care about for HVM guests is this, so it
seemed a bit pointless.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221127122210.248427-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The guest runstate area can be arbitrarily byte-aligned. In fact, even
when a sane 32-bit guest aligns the overall structure nicely, the 64-bit
fields in the structure end up being unaligned due to the fact that the
32-bit ABI only aligns them to 32 bits.
So setting the ->state_entry_time field to something|XEN_RUNSTATE_UPDATE
is buggy, because if it's unaligned then we can't update the whole field
atomically; the low bytes might be observable before the _UPDATE bit is.
Xen actually updates the *byte* containing that top bit, on its own. KVM
should do the same.
In addition, we cannot assume that the runstate area fits within a single
page. One option might be to make the gfn_to_pfn cache cope with regions
that cross a page — but getting a contiguous virtual kernel mapping of a
discontiguous set of IOMEM pages is a distinctly non-trivial exercise,
and it seems this is the *only* current use case for the GPC which would
benefit from it.
An earlier version of the runstate code did use a gfn_to_hva cache for
this purpose, but it still had the single-page restriction because it
used the uhva directly — because it needs to be able to do so atomically
when the vCPU is being scheduled out, so it used pagefault_disable()
around the accesses and didn't just use kvm_write_guest_cached() which
has a fallback path.
So... use a pair of GPCs for the first and potential second page covering
the runstate area. We can get away with locking both at once because
nothing else takes more than one GPC lock at a time so we can invent
a trivial ordering rule.
The common case where it's all in the same page is kept as a fast path,
but in both cases, the actual guest structure (compat or not) is built
up from the fields in @vx, following preset pointers to the state and
times fields. The only difference is whether those pointers point to
the kernel stack (in the split case) or to guest memory directly via
the GPC. The fast path is also fixed to use a byte access for the
XEN_RUNSTATE_UPDATE bit, then the only real difference is the dual
memcpy.
Finally, Xen also does write the runstate area immediately when it's
configured. Flip the kvm_xen_update_runstate() and …_guest() functions
and call the latter directly when the runstate area is set. This means
that other ioctls which modify the runstate also write it immediately
to the guest when they do so, which is also intended.
Update the xen_shinfo_test to exercise the pathological case where the
XEN_RUNSTATE_UPDATE flag in the top byte of the state_entry_time is
actually in a different page to the rest of the 64-bit word.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to enabling L2 TLB flush, cache VP assist page in
'struct kvm_vcpu_hv'. While on it, rename nested_enlightened_vmentry()
to nested_get_evmptr() and make it return eVMCS GPA directly.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-26-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To handle L2 TLB flush requests, KVM needs to keep track of L2's VM_ID/
VP_IDs which are set by L1 hypervisor. 'Partition assist page' address is
also needed to handle post-flush exit to L1 upon request.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-20-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To make kvm_hv_flush_tlb() ready to handle L2 TLB flush requests, KVM needs
to allow for all 64 sparse vCPU banks regardless of KVM_MAX_VCPUs as L1
may use vCPU overcommit for L2. To avoid growing on-stack allocation, make
'sparse_banks' part of per-vCPU 'struct kvm_vcpu_hv' which is allocated
dynamically.
Note: sparse_set_to_vcpu_mask() can't currently be used to handle L2
requests as KVM does not keep L2 VM_ID -> L2 VCPU_ID -> L1 vCPU mappings,
i.e. its vp_bitmap array is still bounded by the number of L1 vCPUs and so
can remain an on-stack allocation.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-19-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To handle L2 TLB flush requests, KVM needs to use a separate fifo from
regular (L1) Hyper-V TLB flush requests: e.g. when a request to flush
something in L2 is made, the target vCPU can transition from L2 to L1,
receive a request to flush a GVA for L1 and then try to enter L2 back.
The first request needs to be processed at this point. Similarly,
requests to flush GVAs in L1 must wait until L2 exits to L1.
No functional change as KVM doesn't handle L2 TLB flush requests from
L2 yet.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-18-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To allow flushing individual GVAs instead of always flushing the whole
VPID a per-vCPU structure to pass the requests is needed. Use standard
'kfifo' to queue two types of entries: individual GVA (GFN + up to 4095
following GFNs in the lower 12 bits) and 'flush all'.
The size of the fifo is arbitrarily set to '16'.
Note, kvm_hv_flush_tlb() only queues 'flush all' entries for now and
kvm_hv_vcpu_flush_tlb() doesn't actually read the fifo just resets the
queue before returning -EOPNOTSUPP (which triggers full TLB flush) so
the functional change is very small but the infrastructure is prepared
to handle individual GVA flush requests.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-10-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to implementing fine-grained Hyper-V TLB flush and
L2 TLB flush, resurrect dedicated KVM_REQ_HV_TLB_FLUSH request bit. As
KVM_REQ_TLB_FLUSH_GUEST is a stronger operation, clear KVM_REQ_HV_TLB_FLUSH
request in kvm_vcpu_flush_tlb_guest().
The flush itself is temporary handled by kvm_vcpu_flush_tlb_guest().
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To make terminology between Hyper-V-on-KVM and KVM-on-Hyper-V consistent,
rename 'enable_direct_tlbflush' to 'enable_l2_tlb_flush'. The change
eliminates the use of confusing 'direct' and adds the missing underscore.
No functional change.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the preferred BIT() and BIT_ULL() to construct the PFERR masks
rather than open-coding the bit shifting.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221102184654.282799-6-dmatlack@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Not all architectures like ARM64 need to override the function. Move
its declaration to kvm_dirty_ring.h to avoid the following compiling
warning on ARM64 when the feature is enabled.
arch/arm64/kvm/../../../virt/kvm/dirty_ring.c:14:12: \
warning: no previous prototype for 'kvm_cpu_dirty_log_size' \
[-Wmissing-prototypes] \
int __weak kvm_cpu_dirty_log_size(void)
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110104914.31280-3-gshan@redhat.com
Defer reprogramming counters and handling overflow via KVM_REQ_PMU
when incrementing counters. KVM skips emulated WRMSR in the VM-Exit
fastpath, the fastpath runs with IRQs disabled, skipping instructions
can increment and reprogram counters, reprogramming counters can
sleep, and sleeping is disallowed while IRQs are disabled.
[*] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580
[*] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 2981888, name: CPU 15/KVM
[*] preempt_count: 1, expected: 0
[*] RCU nest depth: 0, expected: 0
[*] INFO: lockdep is turned off.
[*] irq event stamp: 0
[*] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[*] hardirqs last disabled at (0): [<ffffffff8121222a>] copy_process+0x146a/0x62d0
[*] softirqs last enabled at (0): [<ffffffff81212269>] copy_process+0x14a9/0x62d0
[*] softirqs last disabled at (0): [<0000000000000000>] 0x0
[*] Preemption disabled at:
[*] [<ffffffffc2063fc1>] vcpu_enter_guest+0x1001/0x3dc0 [kvm]
[*] CPU: 17 PID: 2981888 Comm: CPU 15/KVM Kdump: 5.19.0-rc1-g239111db364c-dirty #2
[*] Call Trace:
[*] <TASK>
[*] dump_stack_lvl+0x6c/0x9b
[*] __might_resched.cold+0x22e/0x297
[*] __mutex_lock+0xc0/0x23b0
[*] perf_event_ctx_lock_nested+0x18f/0x340
[*] perf_event_pause+0x1a/0x110
[*] reprogram_counter+0x2af/0x1490 [kvm]
[*] kvm_pmu_trigger_event+0x429/0x950 [kvm]
[*] kvm_skip_emulated_instruction+0x48/0x90 [kvm]
[*] handle_fastpath_set_msr_irqoff+0x349/0x3b0 [kvm]
[*] vmx_vcpu_run+0x268e/0x3b80 [kvm_intel]
[*] vcpu_enter_guest+0x1d22/0x3dc0 [kvm]
Add a field to kvm_pmc to track the previous counter value in order
to defer overflow detection to kvm_pmu_handle_event() (the counter must
be paused before handling overflow, and that may increment the counter).
Opportunistically shrink sizeof(struct kvm_pmc) a bit.
Suggested-by: Wanpeng Li <wanpengli@tencent.com>
Fixes: 9cd803d496 ("KVM: x86: Update vPMCs when retiring instructions")
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20220831085328.45489-6-likexu@tencent.com
[sean: avoid re-triggering KVM_REQ_PMU on overflow, tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220923001355.3741194-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Batch reprogramming PMU counters by setting KVM_REQ_PMU and thus
deferring reprogramming kvm_pmu_handle_event() to avoid reprogramming
a counter multiple times during a single VM-Exit.
Deferring programming will also allow KVM to fix a bug where immediately
reprogramming a counter can result in sleeping (taking a mutex) while
interrupts are disabled in the VM-Exit fastpath.
Introduce kvm_pmu_request_counter_reprogam() to make it obvious that
KVM is _requesting_ a reprogram and not actually doing the reprogram.
Opportunistically refine related comments to avoid misunderstandings.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20220831085328.45489-5-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220923001355.3741194-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Force vCPUs to reprogram all counters on a PMU filter change to provide
a sane ABI for userspace. Use the existing KVM_REQ_PMU to do the
programming, and take advantage of the fact that the reprogram_pmi bitmap
fits in a u64 to set all bits in a single atomic update. Note, setting
the bitmap and making the request needs to be done _after_ the SRCU
synchronization to ensure that vCPUs will reprogram using the new filter.
KVM's current "lazy" approach is confusing and non-deterministic. It's
confusing because, from a developer perspective, the code is buggy as it
makes zero sense to let userspace modify the filter but then not actually
enforce the new filter. The lazy approach is non-deterministic because
KVM enforces the filter whenever a counter is reprogrammed, not just on
guest WRMSRs, i.e. a guest might gain/lose access to an event at random
times depending on what is going on in the host.
Note, the resulting behavior is still non-determinstic while the filter
is in flux. If userspace wants to guarantee deterministic behavior, all
vCPUs should be paused during the filter update.
Jim Mattson <jmattson@google.com>
Fixes: 66bb8a065f ("KVM: x86: PMU Event Filter")
Cc: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220923001355.3741194-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the number of TDP MMU "shadow" pages instead of tracking the pages
themselves. With the NX huge page list manipulation moved out of the common
linking flow, elminating the list-based tracking means the happy path of
adding a shadow page doesn't need to acquire a spinlock and can instead
inc/dec an atomic.
Keep the tracking as the WARN during TDP MMU teardown on leaked shadow
pages is very, very useful for detecting KVM bugs.
Tracking the number of pages will also make it trivial to expose the
counter to userspace as a stat in the future, which may or may not be
desirable.
Note, the TDP MMU needs to use a separate counter (and stat if that ever
comes to be) from the existing n_used_mmu_pages. The TDP MMU doesn't bother
supporting the shrinker nor does it honor KVM_SET_NR_MMU_PAGES (because the
TDP MMU consumes so few pages relative to shadow paging), and including TDP
MMU pages in that counter would break both the shrinker and shadow MMUs,
e.g. if a VM is using nested TDP.
Cc: Yan Zhao <yan.y.zhao@intel.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Message-Id: <20221019165618.927057-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename most of the variables/functions involved in the NX huge page
mitigation to provide consistency, e.g. lpage vs huge page, and NX huge
vs huge NX, and also to provide clarity, e.g. to make it obvious the flag
applies only to the NX huge page mitigation, not to any condition that
prevents creating a huge page.
Add a comment explaining what the newly named "possible_nx_huge_pages"
tracks.
Leave the nx_lpage_splits stat alone as the name is ABI and thus set in
stone.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20221019165618.927057-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use kvm_smram union instad of raw arrays in the common smm code.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20221025124741.228045-18-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hidden processor flags HF_SMM_MASK and HF_SMM_INSIDE_NMI_MASK
are not needed if CONFIG_KVM_SMM is turned off. Remove the
definitions altogether and the code that uses them.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This ensures that all the relevant code is compiled out, in fact
the process_smi stub can be removed too.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-9-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If CONFIG_KVM_SMM is not defined HF_SMM_MASK will always be zero, and
we can spare userspace the hassle of setting up the SMRAM address space
simply by reporting that only one address space is supported.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-8-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Vendor-specific code that deals with SMI injection and saving/restoring
SMM state is not needed if CONFIG_KVM_SMM is disabled, so remove the
four callbacks smi_allowed, enter_smm, leave_smm and enable_smi_window.
The users in svm/nested.c and x86.c also have to be compiled out; the
amount of #ifdef'ed code is small and it's not worth moving it to
smm.c.
enter_smm is now used only within #ifdef CONFIG_KVM_SMM, and the stub
can therefore be removed.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some users of KVM implement the UEFI variable store through a paravirtual
device that does not require the "SMM lockbox" component of edk2, and
would like to compile out system management mode. In preparation for
that, move the SMM entry code out of x86.c and into a new file.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-3-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create a new header and source with code related to system management
mode emulation. Entry and exit will move there too; for now,
opportunistically rename put_smstate to PUT_SMSTATE while moving
it to smm.h, and adjust the SMM state saving code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There's no caller. Remove it.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220913090537.25195-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The AMD PerfMonV2 specification allows for a maximum of 16 GP counters,
but currently only 6 pairs of MSRs are accepted by KVM.
While AMD64_NUM_COUNTERS_CORE is already equal to 6, increasing without
adjusting msrs_to_save_all[] could result in out-of-bounds accesses.
Therefore introduce a macro (named KVM_AMD_PMC_MAX_GENERIC) to
refer to the number of counters supported by KVM.
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Intel Architectural IA32_PMCx MSRs addresses range allows for a
maximum of 8 GP counters, and KVM cannot address any more. Introduce a
local macro (named KVM_INTEL_PMC_MAX_GENERIC) and use it consistently to
refer to the number of counters supported by KVM, thus avoiding possible
out-of-bound accesses.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No 'kvmp_mmu_pages', it should be 'kvm_mmu_page'. And
struct kvm_mmu_pages and struct kvm_mmu_page are different structures,
here should be kvm_mmu_page.
kvm_mmu_pages is defined in arch/x86/kvm/mmu/mmu.c.
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Message-Id: <CAPm50aL=0smbohhjAcK=ciUwcQJ=uAQP1xNQi52YsE7U8NFpEw@mail.gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Interrupts, NMIs etc. sent while in guest mode are already handled
properly by the *_interrupt_allowed callbacks, but other events can
cause a vCPU to be runnable that are specific to guest mode.
In the case of VMX there are two, the preemption timer and the
monitor trap. The VMX preemption timer is already special cased via
the hv_timer_pending callback, but the purpose of the callback can be
easily extended to MTF or in fact any other event that can occur only
in guest mode.
Rename the callback and add an MTF check; kvm_arch_vcpu_runnable()
now can return true if an MTF is pending, without relying on
kvm_vcpu_running()'s call to kvm_check_nested_events(). Until that call
is removed, however, the patch introduces no functional change.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220921003201.1441511-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Morph pending exceptions to pending VM-Exits (due to interception) when
the exception is queued instead of waiting until nested events are
checked at VM-Entry. This fixes a longstanding bug where KVM fails to
handle an exception that occurs during delivery of a previous exception,
KVM (L0) and L1 both want to intercept the exception (e.g. #PF for shadow
paging), and KVM determines that the exception is in the guest's domain,
i.e. queues the new exception for L2. Deferring the interception check
causes KVM to esclate various combinations of injected+pending exceptions
to double fault (#DF) without consulting L1's interception desires, and
ends up injecting a spurious #DF into L2.
KVM has fudged around the issue for #PF by special casing emulated #PF
injection for shadow paging, but the underlying issue is not unique to
shadow paging in L0, e.g. if KVM is intercepting #PF because the guest
has a smaller maxphyaddr and L1 (but not L0) is using shadow paging.
Other exceptions are affected as well, e.g. if KVM is intercepting #GP
for one of SVM's workaround or for the VMware backdoor emulation stuff.
The other cases have gone unnoticed because the #DF is spurious if and
only if L1 resolves the exception, e.g. KVM's goofs go unnoticed if L1
would have injected #DF anyways.
The hack-a-fix has also led to ugly code, e.g. bailing from the emulator
if #PF injection forced a nested VM-Exit and the emulator finds itself
back in L1. Allowing for direct-to-VM-Exit queueing also neatly solves
the async #PF in L2 mess; no need to set a magic flag and token, simply
queue a #PF nested VM-Exit.
Deal with event migration by flagging that a pending exception was queued
by userspace and check for interception at the next KVM_RUN, e.g. so that
KVM does the right thing regardless of the order in which userspace
restores nested state vs. event state.
When "getting" events from userspace, simply drop any pending excpetion
that is destined to be intercepted if there is also an injected exception
to be migrated. Ideally, KVM would migrate both events, but that would
require new ABI, and practically speaking losing the event is unlikely to
be noticed, let alone fatal. The injected exception is captured, RIP
still points at the original faulting instruction, etc... So either the
injection on the target will trigger the same intercepted exception, or
the source of the intercepted exception was transient and/or
non-deterministic, thus dropping it is ok-ish.
Fixes: a04aead144 ("KVM: nSVM: fix running nested guests when npt=0")
Fixes: feaf0c7dc4 ("KVM: nVMX: Do not generate #DF if #PF happens during exception delivery into L2")
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-22-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the definition of "struct kvm_queued_exception" out of kvm_vcpu_arch
in anticipation of adding a second instance in kvm_vcpu_arch to handle
exceptions that occur when vectoring an injected exception and are
morphed to VM-Exit instead of leading to #DF.
Opportunistically take advantage of the churn to rename "nr" to "vector".
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-15-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the kvm_x86_ops hook for exception injection to better reflect
reality, and to align with pretty much every other related function name
in KVM.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-14-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM has to check guest visible HYPERV_CPUID_NESTED_FEATURES.EBX CPUID
leaf to know which Enlightened VMCS definition to use (original or 2022
update). Cache the leaf along with other Hyper-V CPUID feature leaves
to make the check quick.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220830133737.1539624-12-vkuznets@redhat.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reinstate the per-vCPU guest_supported_xcr0 by partially reverting
commit 988896bb6182; the implicit assessment that guest_supported_xcr0 is
always the same as guest_fpu.fpstate->user_xfeatures was incorrect.
kvm_vcpu_after_set_cpuid() isn't the only place that sets user_xfeatures,
as user_xfeatures is set to fpu_user_cfg.default_features when guest_fpu
is allocated via fpu_alloc_guest_fpstate() => __fpstate_reset().
guest_supported_xcr0 on the other hand is zero-allocated. If userspace
never invokes KVM_SET_CPUID2, supported XCR0 will be '0', whereas the
allowed user XFEATURES will be non-zero.
Practically speaking, the edge case likely doesn't matter as no sane
userspace will live migrate a VM without ever doing KVM_SET_CPUID2. The
primary motivation is to prepare for KVM intentionally and explicitly
setting bits in user_xfeatures that are not set in guest_supported_xcr0.
Because KVM_{G,S}ET_XSAVE can be used to svae/restore FP+SSE state even
if the host doesn't support XSAVE, KVM needs to set the FP+SSE bits in
user_xfeatures even if they're not allowed in XCR0, e.g. because XCR0
isn't exposed to the guest. At that point, the simplest fix is to track
the two things separately (allowed save/restore vs. allowed XCR0).
Fixes: 988896bb61 ("x86/kvm/fpu: Remove kvm_vcpu_arch.guest_supported_xcr0")
Cc: stable@vger.kernel.org
Cc: Leonardo Bras <leobras@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220824033057.3576315-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_INTERNAL_MEM_SLOTS better reflects the fact those slots are KVM
internally used (invisible to userspace) and avoids confusion to future
private slots that can have different meaning.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-2-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark kvm_mmu_x86_module_init() with __init, the entire reason it exists
is to initialize variables when kvm.ko is loaded, i.e. it must never be
called after module initialization.
Fixes: 1d0e848060 ("KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded")
Cc: stable@vger.kernel.org
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Restrict get_mt_mask() to a u8 and reintroduce using a RET0 static_call
for the SVM implementation. EPT stores the memtype information in the
lower 8 bits (bits 6:3 to be precise), and even returns a shifted u8
without an explicit cast to a larger type; there's no need to return a
full u64.
Note, RET0 doesn't play nice with a u64 return on 32-bit kernels, see
commit bf07be36cd ("KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for
get_mt_mask").
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220714153707.3239119-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a "UD" clause to KVM_X86_QUIRK_MWAIT_NEVER_FAULTS to make it clear
that the quirk only controls the #UD behavior of MONITOR/MWAIT. KVM
doesn't currently enforce fault checks when MONITOR/MWAIT are supported,
but that could change in the future. SVM also has a virtualization hole
in that it checks all faults before intercepts, and so "never faults" is
already a lie when running on SVM.
Fixes: bfbcc81bb8 ("KVM: x86: Add a quirk for KVM's "MONITOR/MWAIT are NOPs!" behavior")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220711225753.1073989-4-seanjc@google.com
The result of gva_to_gpa() is physical address not virtual address,
it is odd that UNMAPPED_GVA macro is used as the result for physical
address. Replace UNMAPPED_GVA with INVALID_GPA and drop UNMAPPED_GVA
macro.
No functional change intended.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6104978956449467d3c68f1ad7f2c2f6d771d0ee.1656667239.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently, AVIC is inhibited when booting a VM w/ x2APIC support.
because AVIC cannot virtualize x2APIC MSR register accesses.
However, the AVIC doorbell can be used to accelerate interrupt
injection into a running vCPU, while all guest accesses to x2APIC MSRs
will be intercepted and emulated by KVM.
With hybrid-AVIC support, the APICV_INHIBIT_REASON_X2APIC is
no longer enforced.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-14-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds the emulation of IA32_MCi_CTL2 registers to KVM. A
separate mci_ctl2_banks array is used to keep the existing mce_banks
register layout intact.
In Machine Check Architecture, in addition to MCG_CMCI_P, bit 30 of
the per-bank register IA32_MCi_CTL2 controls whether Corrected Machine
Check error reporting is enabled.
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-7-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for Eager Page Splitting pages that are mapped by nested
MMUs. Walk through the rmap first splitting all 1GiB pages to 2MiB
pages, and then splitting all 2MiB pages to 4KiB pages.
Note, Eager Page Splitting is limited to nested MMUs as a policy rather
than due to any technical reason (the sp->role.guest_mode check could
just be deleted and Eager Page Splitting would work correctly for all
shadow MMU pages). There is really no reason to support Eager Page
Splitting for tdp_mmu=N, since such support will eventually be phased
out, and there is no current use case supporting Eager Page Splitting on
hosts where TDP is either disabled or unavailable in hardware.
Furthermore, future improvements to nested MMU scalability may diverge
the code from the legacy shadow paging implementation. These
improvements will be simpler to make if Eager Page Splitting does not
have to worry about legacy shadow paging.
Splitting huge pages mapped by nested MMUs requires dealing with some
extra complexity beyond that of the TDP MMU:
(1) The shadow MMU has a limit on the number of shadow pages that are
allowed to be allocated. So, as a policy, Eager Page Splitting
refuses to split if there are KVM_MIN_FREE_MMU_PAGES or fewer
pages available.
(2) Splitting a huge page may end up re-using an existing lower level
shadow page tables. This is unlike the TDP MMU which always allocates
new shadow page tables when splitting.
(3) When installing the lower level SPTEs, they must be added to the
rmap which may require allocating additional pte_list_desc structs.
Case (2) is especially interesting since it may require a TLB flush,
unlike the TDP MMU which can fully split huge pages without any TLB
flushes. Specifically, an existing lower level page table may point to
even lower level page tables that are not fully populated, effectively
unmapping a portion of the huge page, which requires a flush. As of
this commit, a flush is always done always after dropping the huge page
and before installing the lower level page table.
This TLB flush could instead be delayed until the MMU lock is about to be
dropped, which would batch flushes for multiple splits. However these
flushes should be rare in practice (a huge page must be aliased in
multiple SPTEs and have been split for NX Huge Pages in only some of
them). Flushing immediately is simpler to plumb and also reduces the
chances of tripping over a CPU bug (e.g. see iTLB multihit).
[ This commit is based off of the original implementation of Eager Page
Splitting from Peter in Google's kernel from 2016. ]
Suggested-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-23-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Splitting huge pages requires allocating/finding shadow pages to replace
the huge page. Shadow pages are keyed, in part, off the guest access
permissions they are shadowing. For fully direct MMUs, there is no
shadowing so the access bits in the shadow page role are always ACC_ALL.
But during shadow paging, the guest can enforce whatever access
permissions it wants.
In particular, eager page splitting needs to know the permissions to use
for the subpages, but KVM cannot retrieve them from the guest page
tables because eager page splitting does not have a vCPU. Fortunately,
the guest access permissions are easy to cache whenever page faults or
FNAME(sync_page) update the shadow page tables; this is an extension of
the existing cache of the shadowed GFNs in the gfns array of the shadow
page. The access bits only take up 3 bits, which leaves 61 bits left
over for gfns, which is more than enough.
Now that the gfns array caches more information than just GFNs, rename
it to shadowed_translation.
While here, preemptively fix up the WARN_ON() that detects gfn
mismatches in direct SPs. The WARN_ON() was paired with a
pr_err_ratelimited(), which means that users could sometimes see the
WARN without the accompanying error message. Fix this by outputting the
error message as part of the WARN splat, and opportunistically make
them WARN_ONCE() because if these ever fire, they are all but guaranteed
to fire a lot and will bring down the kernel.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases, the NX hugepage mitigation for iTLB multihit is not
needed for all guests on a host. Allow disabling the mitigation on a
per-VM basis to avoid the performance hit of NX hugepages on trusted
workloads.
In order to disable NX hugepages on a VM, ensure that the userspace
actor has permission to reboot the system. Since disabling NX hugepages
would allow a guest to crash the system, it is similar to reboot
permissions.
Ideally, KVM would require userspace to prove it has access to KVM's
nx_huge_pages module param, e.g. so that userspace can opt out without
needing full reboot permissions. But getting access to the module param
file info is difficult because it is buried in layers of sysfs and module
glue. Requiring CAP_SYS_BOOT is sufficient for all known use cases.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a quirk for KVM's behavior of emulating intercepted MONITOR/MWAIT
instructions a NOPs regardless of whether or not they are supported in
guest CPUID. KVM's current behavior was likely motiviated by a certain
fruity operating system that expects MONITOR/MWAIT to be supported
unconditionally and blindly executes MONITOR/MWAIT without first checking
CPUID. And because KVM does NOT advertise MONITOR/MWAIT to userspace,
that's effectively the default setup for any VMM that regurgitates
KVM_GET_SUPPORTED_CPUID to KVM_SET_CPUID2.
Note, this quirk interacts with KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT. The
behavior is actually desirable, as userspace VMMs that want to
unconditionally hide MONITOR/MWAIT from the guest can leave the
MISC_ENABLE quirk enabled.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220608224516.3788274-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the per-vCPU apicv_active flag into KVM's local APIC instance.
APICv is fully dependent on an in-kernel local APIC, but that's not at
all clear when reading the current code due to the flag being stored in
the generic kvm_vcpu_arch struct.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the unused @vcpu parameter from hwapic_isr_update(). AMD/AVIC is
unlikely to implement the helper, and VMX/APICv doesn't need the vCPU as
it operates on the current VMCS. The result is somewhat odd, but allows
for a decent amount of (future) cleanup in the APIC code.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to show tests
x86:
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Rewrite gfn-pfn cache refresh
* Refuse starting the module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit
Neither of these settings should be changed by the guest and it is
a burden to support it in the acceleration code, so just inhibit
this code instead.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These days there are too many AVIC/APICv inhibit
reasons, and it doesn't hurt to have some documentation
for them.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are cases that malicious virtual machines can cause CPU stuck (due
to event windows don't open up), e.g., infinite loop in microcode when
nested #AC (CVE-2015-5307). No event window means no event (NMI, SMI and
IRQ) can be delivered. It leads the CPU to be unavailable to host or
other VMs.
VMM can enable notify VM exit that a VM exit generated if no event
window occurs in VM non-root mode for a specified amount of time (notify
window).
Feature enabling:
- The new vmcs field SECONDARY_EXEC_NOTIFY_VM_EXITING is introduced to
enable this feature. VMM can set NOTIFY_WINDOW vmcs field to adjust
the expected notify window.
- Add a new KVM capability KVM_CAP_X86_NOTIFY_VMEXIT so that user space
can query and enable this feature in per-VM scope. The argument is a
64bit value: bits 63:32 are used for notify window, and bits 31:0 are
for flags. Current supported flags:
- KVM_X86_NOTIFY_VMEXIT_ENABLED: enable the feature with the notify
window provided.
- KVM_X86_NOTIFY_VMEXIT_USER: exit to userspace once the exits happen.
- It's safe to even set notify window to zero since an internal hardware
threshold is added to vmcs.notify_window.
VM exit handling:
- Introduce a vcpu state notify_window_exits to records the count of
notify VM exits and expose it through the debugfs.
- Notify VM exit can happen incident to delivery of a vector event.
Allow it in KVM.
- Exit to userspace unconditionally for handling when VM_CONTEXT_INVALID
bit is set.
Nested handling
- Nested notify VM exits are not supported yet. Keep the same notify
window control in vmcs02 as vmcs01, so that L1 can't escape the
restriction of notify VM exits through launching L2 VM.
Notify VM exit is defined in latest Intel Architecture Instruction Set
Extensions Programming Reference, chapter 9.2.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Co-developed-by: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-5-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add kvm_caps to hold a variety of capabilites and defaults that aren't
handled by kvm_cpu_caps because they aren't CPUID bits in order to reduce
the amount of boilerplate code required to add a new feature. The vast
majority (all?) of the caps interact with vendor code and are written
only during initialization, i.e. should be tagged __read_mostly, declared
extern in x86.h, and exported.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220524135624.22988-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For the triple fault sythesized by KVM, e.g. the RSM path or
nested_vmx_abort(), if KVM exits to userspace before the request is
serviced, userspace could migrate the VM and lose the triple fault.
Extend KVM_{G,S}ET_VCPU_EVENTS to support pending triple fault with a
new event KVM_VCPUEVENT_VALID_FAULT_FAULT so that userspace can save and
restore the triple fault event. This extension is guarded by a new KVM
capability KVM_CAP_TRIPLE_FAULT_EVENT.
Note that in the set_vcpu_events path, userspace is able to set/clear
the triple fault request through triple_fault.pending field.
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-2-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The guest PEBS will be disabled when some users try to perf KVM and
its user-space through the same PEBS facility OR when the host perf
doesn't schedule the guest PEBS counter in a one-to-one mapping manner
(neither of these are typical scenarios).
The PEBS records in the guest DS buffer are still accurate and the
above two restrictions will be checked before each vm-entry only if
guest PEBS is deemed to be enabled.
Suggested-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-15-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the adaptive
PEBS is supported. The PEBS_DATA_CFG MSR and adaptive record enable
bits (IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.
FCx_Adaptive_Record) are also supported.
Adaptive PEBS provides software the capability to configure the PEBS
records to capture only the data of interest, keeping the record size
compact. An overflow of PMCx results in generation of an adaptive PEBS
record with state information based on the selections specified in
MSR_PEBS_DATA_CFG.By default, the record only contain the Basic group.
When guest adaptive PEBS is enabled, the IA32_PEBS_ENABLE MSR will
be added to the perf_guest_switch_msr() and switched during the VMX
transitions just like CORE_PERF_GLOBAL_CTRL MSR.
According to Intel SDM, software is recommended to PEBS Baseline
when the following is true. IA32_PERF_CAPABILITIES.PEBS_BASELINE[14]
&& IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When CPUID.01H:EDX.DS[21] is set, the IA32_DS_AREA MSR exists and points
to the linear address of the first byte of the DS buffer management area,
which is used to manage the PEBS records.
When guest PEBS is enabled, the MSR_IA32_DS_AREA MSR will be added to the
perf_guest_switch_msr() and switched during the VMX transitions just like
CORE_PERF_GLOBAL_CTRL MSR. The WRMSR to IA32_DS_AREA MSR brings a #GP(0)
if the source register contains a non-canonical address.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-11-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the
IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed
and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE
that enable generation of PEBS records. The general-purpose counter bits
start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at
bit IA32_PEBS_ENABLE[32].
When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be
added to the perf_guest_switch_msr() and atomically switched during
the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR.
Based on whether the platform supports x86_pmu.pebs_ept, it has also
refactored the way to add more msrs to arr[] in intel_guest_get_msrs()
for extensibility.
Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The mask value of fixed counter control register should be dynamic
adjusted with the number of fixed counters. This patch introduces a
variable that includes the reserved bits of fixed counter control
registers. This is a generic code refactoring.
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With IPI virtualization enabled, the processor emulates writes to
APIC registers that would send IPIs. The processor sets the bit
corresponding to the vector in target vCPU's PIR and may send a
notification (IPI) specified by NDST and NV fields in target vCPU's
Posted-Interrupt Descriptor (PID). It is similar to what IOMMU
engine does when dealing with posted interrupt from devices.
A PID-pointer table is used by the processor to locate the PID of a
vCPU with the vCPU's APIC ID. The table size depends on maximum APIC
ID assigned for current VM session from userspace. Allocating memory
for PID-pointer table is deferred to vCPU creation, because irqchip
mode and VM-scope maximum APIC ID is settled at that point. KVM can
skip PID-pointer table allocation if !irqchip_in_kernel().
Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its
notification vector to wakeup vector. This can ensure that when an IPI
for blocked vCPUs arrives, VMM can get control and wake up blocked
vCPUs. And if a VCPU is preempted, its posted interrupt notification
is suppressed.
Note that IPI virtualization can only virualize physical-addressing,
flat mode, unicast IPIs. Sending other IPIs would still cause a
trap-like APIC-write VM-exit and need to be handled by VMM.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154510.11938-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce new max_vcpu_ids in KVM for x86 architecture. Userspace
can assign maximum possible vcpu id for current VM session using
KVM_CAP_MAX_VCPU_ID of KVM_ENABLE_CAP ioctl().
This is done for x86 only because the sole use case is to guide
memory allocation for PID-pointer table, a structure needed to
enable VMX IPI.
By default, max_vcpu_ids set as KVM_MAX_VCPU_IDS.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154444.11888-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the IRQ injection tracepoint, differentiate between Hard IRQs and Soft
"IRQs", i.e. interrupts that are reinjected after incomplete delivery of
a software interrupt from an INTn instruction. Tag reinjected interrupts
as such, even though the information is usually redundant since soft
interrupts are only ever reinjected by KVM. Though rare in practice, a
hard IRQ can be reinjected.
Signed-off-by: Sean Christopherson <seanjc@google.com>
[MSS: change "kvm_inj_virq" event "reinjected" field type to bool]
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <9664d49b3bd21e227caa501cff77b0569bebffe2.1651440202.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
aTwPZAQ7
=mh7W
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
from 4 to 6. - Paolo]
Expand and clean up the page fault stats. The current stats are at best
incomplete, and at worst misleading. Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.
Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When shadowing 5-level NPT for 4-level NPT L1 guest, the root_sp is
allocated with role.level = 5 and the guest pagetable's root gfn.
And root_sp->spt[0] is also allocated with the same gfn and the same
role except role.level = 4. Luckily that they are different shadow
pages, but only root_sp->spt[0] is the real translation of the guest
pagetable.
Here comes a problem:
If the guest switches from gCR4_LA57=0 to gCR4_LA57=1 (or vice verse)
and uses the same gfn as the root page for nested NPT before and after
switching gCR4_LA57. The host (hCR4_LA57=1) might use the same root_sp
for the guest even the guest switches gCR4_LA57. The guest will see
unexpected page mapped and L2 may exploit the bug and hurt L1. It is
lucky that the problem can't hurt L0.
And three special cases need to be handled:
The root_sp should be like role.direct=1 sometimes: its contents are
not backed by gptes, root_sp->gfns is meaningless. (For a normal high
level sp in shadow paging, sp->gfns is often unused and kept zero, but
it could be relevant and meaningful if sp->gfns is used because they
are backed by concrete gptes.)
For such root_sp in the case, root_sp is just a portal to contribute
root_sp->spt[0], and root_sp->gfns should not be used and
root_sp->spt[0] should not be dropped if gpte[0] of the guest root
pagetable is changed.
Such root_sp should not be accounted too.
So add role.passthrough to distinguish the shadow pages in the hash
when gCR4_LA57 is toggled and fix above special cases by using it in
kvm_mmu_page_{get|set}_gfn() and sp_has_gptes().
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
direct_map is always equal to the direct field of the root page's role:
- for shadow paging, direct_map is true if CR0.PG=0 and root_role.direct is
copied from cpu_role.base.direct
- for TDP, it is always true and root_role.direct is also always true
- for shadow TDP, it is always false and root_role.direct is also always
false
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove another duplicate field of struct kvm_mmu. This time it's
the root level for page table walking; the separate field is
always initialized as cpu_role.base.level, so its users can look
up the CPU mode directly instead.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
root_role.level is always the same value as shadow_level:
- it's kvm_mmu_get_tdp_level(vcpu) when going through init_kvm_tdp_mmu
- it's the level argument when going through kvm_init_shadow_ept_mmu
- it's assigned directly from new_role.base.level when going
through shadow_mmu_init_context
Remove the duplication and get the level directly from the role.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before the separation of the CPU and the MMU role, CR0.PG was not
available in the base MMU role, because two-dimensional paging always
used direct=1 in the MMU role. However, now that the raw role is
snapshotted in mmu->cpu_role, the value of CR0.PG always matches both
!cpu_role.base.direct and cpu_role.base.level > 0. There is no need to
store it again in union kvm_mmu_extended_role; instead, write an is_cr0_pg
accessor by hand that takes care of the conversion. Use cpu_role.base.level
since the future of the direct field is unclear.
Likewise, CR4.PAE is now always present in the CPU role as
!cpu_role.base.has_4_byte_gpte. The inversion makes certain tests on
the MMU role easier, and is easily hidden by the is_cr4_pae accessor
when operating on the CPU role.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is quite confusing that the "full" union is called kvm_mmu_role
but is used for the "cpu_role" field of struct kvm_mmu. Rename it
to kvm_cpu_role.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mmu_role represents the role of the root of the page tables.
It does not need any extended bits, as those govern only KVM's
page table walking; the is_* functions used for page table
walking always use the CPU role.
ext.valid is not present anymore in the MMU role, but an
all-zero MMU role is impossible because the level field is
never zero in the MMU role. So just zap the whole mmu_role
in order to force invalidation after CPUID is updated.
While making this change, which requires touching almost every
occurrence of "mmu_role", rename it to "root_role".
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ept_ad field is used during page walk to determine if the guest PTEs
have accessed and dirty bits. In the MMU role, the ad_disabled
bit represents whether the *shadow* PTEs have the bits, so it
would be incorrect to replace PT_HAVE_ACCESSED_DIRTY with just
!mmu->mmu_role.base.ad_disabled.
However, the similar field in the CPU mode, ad_disabled, is initialized
correctly: to the opposite value of ept_ad for shadow EPT, and zero
for non-EPT guest paging modes (which always have A/D bits). It is
therefore possible to compute PT_HAVE_ACCESSED_DIRTY from the CPU mode,
like other page-format fields; it just has to be inverted to account
for the different polarity.
In fact, now that the CPU mode is distinct from the MMU roles, it would
even be possible to remove PT_HAVE_ACCESSED_DIRTY macro altogether, and
use !mmu->cpu_role.base.ad_disabled instead. I am not doing this because
the macro has a small effect in terms of dead code elimination:
text data bss dec hex
103544 16665 112 120321 1d601 # as of this patch
103746 16665 112 120523 1d6cb # without PT_HAVE_ACCESSED_DIRTY
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Snapshot the state of the processor registers that govern page walk into
a new field of struct kvm_mmu. This is a more natural representation
than having it *mostly* in mmu_role but not exclusively; the delta
right now is represented in other fields, such as root_level.
The nested MMU now has only the CPU role; and in fact the new function
kvm_calc_cpu_role is analogous to the previous kvm_calc_nested_mmu_role,
except that it has role.base.direct equal to !CR0.PG. For a walk-only
MMU, "direct" has no meaning, but we set it to !CR0.PG so that
role.ext.cr0_pg can go away in a future patch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the per-vendor hack-a-fix for KVM's #PF => #PF => #DF workaround
with an explicit, common workaround in kvm_inject_emulated_page_fault().
Aside from being a hack, the current approach is brittle and incomplete,
e.g. nSVM's KVM_SET_NESTED_STATE fails to set ->inject_page_fault(),
and nVMX fails to apply the workaround when VMX is intercepting #PF due
to allow_smaller_maxphyaddr=1.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush the CPU caches when memory is reclaimed from an SEV guest (where
reclaim also includes it being unmapped from KVM's memslots). Due to lack
of coherency for SEV encrypted memory, failure to flush results in silent
data corruption if userspace is malicious/broken and doesn't ensure SEV
guest memory is properly pinned and unpinned.
Cache coherency is not enforced across the VM boundary in SEV (AMD APM
vol.2 Section 15.34.7). Confidential cachelines, generated by confidential
VM guests have to be explicitly flushed on the host side. If a memory page
containing dirty confidential cachelines was released by VM and reallocated
to another user, the cachelines may corrupt the new user at a later time.
KVM takes a shortcut by assuming all confidential memory remain pinned
until the end of VM lifetime. Therefore, KVM does not flush cache at
mmu_notifier invalidation events. Because of this incorrect assumption and
the lack of cache flushing, malicous userspace can crash the host kernel:
creating a malicious VM and continuously allocates/releases unpinned
confidential memory pages when the VM is running.
Add cache flush operations to mmu_notifier operations to ensure that any
physical memory leaving the guest VM get flushed. In particular, hook
mmu_notifier_invalidate_range_start and mmu_notifier_release events and
flush cache accordingly. The hook after releasing the mmu lock to avoid
contention with other vCPUs.
Cc: stable@vger.kernel.org
Suggested-by: Sean Christpherson <seanjc@google.com>
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The pmu_ops should be moved to kvm_x86_init_ops and tagged as __initdata.
That'll save those precious few bytes, and more importantly make
the original ops unreachable, i.e. make it harder to sneak in post-init
modification bugs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_ops_static_call_update() is defined in kvm_host.h. That's
completely unnecessary, it should have exactly one caller,
kvm_arch_hardware_setup(). Move the helper to x86.c and have it do the
actual memcpy() of the ops in addition to the static call updates. This
will also allow for cleanly giving kvm_pmu_ops static_call treatment.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: Move memcpy() into the helper and rename accordingly]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adjust the field pkru_mask to the back of direct_map to make up 8-byte
alignment.This reduces the size of kvm_mmu by 8 bytes.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220228030749.88353-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Merge branch for features that did not make it into 5.18:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following WARN is triggered from kvm_vm_ioctl_set_clock():
WARNING: CPU: 10 PID: 579353 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:3161 mark_page_dirty_in_slot+0x6c/0x80 [kvm]
...
CPU: 10 PID: 579353 Comm: qemu-system-x86 Tainted: G W O 5.16.0.stable #20
Hardware name: LENOVO 20UF001CUS/20UF001CUS, BIOS R1CET65W(1.34 ) 06/17/2021
RIP: 0010:mark_page_dirty_in_slot+0x6c/0x80 [kvm]
...
Call Trace:
<TASK>
? kvm_write_guest+0x114/0x120 [kvm]
kvm_hv_invalidate_tsc_page+0x9e/0xf0 [kvm]
kvm_arch_vm_ioctl+0xa26/0xc50 [kvm]
? schedule+0x4e/0xc0
? __cond_resched+0x1a/0x50
? futex_wait+0x166/0x250
? __send_signal+0x1f1/0x3d0
kvm_vm_ioctl+0x747/0xda0 [kvm]
...
The WARN was introduced by commit 03c0304a86bc ("KVM: Warn if
mark_page_dirty() is called without an active vCPU") but the change seems
to be correct (unlike Hyper-V TSC page update mechanism). In fact, there's
no real need to actually write to guest memory to invalidate TSC page, this
can be done by the first vCPU which goes through kvm_guest_time_update().
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220407201013.963226-1-vkuznets@redhat.com>
Since current AVIC implementation cannot support encrypted memory,
inhibit AVIC for SEV-enabled guest.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220408133710.54275-1-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Resolve nx_huge_pages to true/false when kvm.ko is loaded, leaving it as
-1 is technically undefined behavior when its value is read out by
param_get_bool(), as boolean values are supposed to be '0' or '1'.
Alternatively, KVM could define a custom getter for the param, but the
auto value doesn't depend on the vendor module in any way, and printing
"auto" would be unnecessarily unfriendly to the user.
In addition to fixing the undefined behavior, resolving the auto value
also fixes the scenario where the auto value resolves to N and no vendor
module is loaded. Previously, -1 would result in Y being printed even
though KVM would ultimately disable the mitigation.
Rename the existing MMU module init/exit helpers to clarify that they're
invoked with respect to the vendor module, and add comments to document
why KVM has two separate "module init" flows.
=========================================================================
UBSAN: invalid-load in kernel/params.c:320:33
load of value 255 is not a valid value for type '_Bool'
CPU: 6 PID: 892 Comm: tail Not tainted 5.17.0-rc3+ #799
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
ubsan_epilogue+0x5/0x40
__ubsan_handle_load_invalid_value.cold+0x43/0x48
param_get_bool.cold+0xf/0x14
param_attr_show+0x55/0x80
module_attr_show+0x1c/0x30
sysfs_kf_seq_show+0x93/0xc0
seq_read_iter+0x11c/0x450
new_sync_read+0x11b/0x1a0
vfs_read+0xf0/0x190
ksys_read+0x5f/0xe0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
=========================================================================
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220331221359.3912754-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Documentation improvements
* Prevent module exit until all VMs are freed
* PMU Virtualization fixes
* Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
* Other miscellaneous bugfixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJIGV8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO5FQgAhls4+Nu+NqId/yvvyNxr3vXq0dHI
hLlHtvzgGzZisZ7y2bNeyIpJVBDT5LCbrptPD/5eTvchVswDh0+kCVC0Uni5ugGT
tLT/Pv9Oq9e0X7aGdHRyuHIivIFDC20zIZO2DV48Lrj/+r6DafB2Fghq2XQLlBxN
p8KislvuqAAos543BPC1+Lk3dhOLuZ8qcFD8wGRlcCwjNwYaitrQ16rO04cLfUur
OwIks1I6TdI2JpLBhm6oWYVG/YnRsoo4bQE8cjdQ6yNSbwWtRpV33q7X6onw8x8K
BEeESoTnMqfaxIF/6mPl6bnDblVHFp6Xhld/vJcgeWQTdajFtuFE/K4sCA==
=xnQ6
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
- Documentation improvements
- Prevent module exit until all VMs are freed
- PMU Virtualization fixes
- Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
- Other miscellaneous bugfixes
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
KVM: x86: fix sending PV IPI
KVM: x86/mmu: do compare-and-exchange of gPTE via the user address
KVM: x86: Remove redundant vm_entry_controls_clearbit() call
KVM: x86: cleanup enter_rmode()
KVM: x86: SVM: fix tsc scaling when the host doesn't support it
kvm: x86: SVM: remove unused defines
KVM: x86: SVM: move tsc ratio definitions to svm.h
KVM: x86: SVM: fix avic spec based definitions again
KVM: MIPS: remove reference to trap&emulate virtualization
KVM: x86: document limitations of MSR filtering
KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr
KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
KVM: x86/pmu: Fix and isolate TSX-specific performance event logic
KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
KVM: x86/svm: Clear reserved bits written to PerfEvtSeln MSRs
KVM: x86: Trace all APICv inhibit changes and capture overall status
KVM: x86: Add wrappers for setting/clearing APICv inhibits
KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
KVM: X86: Handle implicit supervisor access with SMAP
KVM: X86: Rename variable smap to not_smap in permission_fault()
...
Add optional callback .vcpu_get_apicv_inhibit_reasons returning
extra inhibit reasons that prevent APICv from working on this vCPU.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322174050.241850-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This sets the default TSC frequency for subsequently created vCPUs.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20220225145304.36166-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for SCHEDOP_poll hypercall.
This implementation is optimized for polling for a single channel, which
is what Linux does. Polling for multiple channels is not especially
efficient (and has not been tested).
PV spinlocks slow path uses this hypercall, and explicitly crash if it's
not supported.
[ dwmw2: Rework to use kvm_vcpu_halt(), not supported for 32-bit guests ]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-17-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Windows uses a per-vCPU vector, and it's delivered via the local APIC
basically like an MSI (with associated EOI) unlike the traditional
guest-wide vector which is just magically asserted by Xen (and in the
KVM case by kvm_xen_has_interrupt() / kvm_cpu_get_extint()).
Now that the kernel is able to raise event channel events for itself,
being able to do so for Windows guests is also going to be useful.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-15-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Turns out this is a fast path for PV guests because they use it to
trigger the event channel upcall. So letting it bounce all the way up
to userspace is not great.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-14-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the guest has offloaded the timer virq, handle the following
hypercalls for programming the timer:
VCPUOP_set_singleshot_timer
VCPUOP_stop_singleshot_timer
set_timer_op(timestamp_ns)
The event channel corresponding to the timer virq is then used to inject
events once timer deadlines are met. For now we back the PV timer with
hrtimer.
[ dwmw2: Add save/restore, 32-bit compat mode, immediate delivery,
don't check timer in kvm_vcpu_has_event() ]
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-13-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to intercept hypercalls such as VCPUOP_set_singleshot_timer, we
need to be aware of the Xen CPU numbering.
This looks a lot like the Hyper-V handling of vpidx, for obvious reasons.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-12-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Userspace registers a sending @port to either deliver to an @eventfd
or directly back to a local event channel port.
After binding events the guest or host may wish to bind those
events to a particular vcpu. This is usually done for unbound
and and interdomain events. Update requests are handled via the
KVM_XEN_EVTCHN_UPDATE flag.
Unregistered ports are handled by the emulator.
Co-developed-by: Ankur Arora <ankur.a.arora@oracle.com>
Co-developed-By: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-10-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This switches the final pvclock to kvm_setup_pvclock_pfncache() and now
the old kvm_setup_pvclock_page() can be removed.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-7-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, the fast path of kvm_xen_set_evtchn_fast() doesn't set the
index bits in the target vCPU's evtchn_pending_sel, because it only has
a userspace virtual address with which to do so. It just sets them in
the kernel, and kvm_xen_has_interrupt() then completes the delivery to
the actual vcpu_info structure when the vCPU runs.
Using a gfn_to_pfn_cache allows kvm_xen_set_evtchn_fast() to do the full
delivery in the common case.
Clean up the fallback case too, by moving the deferred delivery out into
a separate kvm_xen_inject_pending_events() function which isn't ever
called in atomic contexts as __kvm_xen_has_interrupt() is.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new kvm_setup_guest_pvclock() which parallels the existing
kvm_setup_pvclock_page(). The latter will be removed once we convert
all users to the gfn_to_pfn_cache version.
Using the new cache, we can potentially let kvm_set_guest_paused() set
the PVCLOCK_GUEST_STOPPED bit directly rather than having to delegate
to the vCPU via KVM_REQ_CLOCK_UPDATE. But not yet.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM handles the VMCALL/VMMCALL instructions very strangely. Even though
both of these instructions really should #UD when executed on the wrong
vendor's hardware (i.e. VMCALL on SVM, VMMCALL on VMX), KVM replaces the
guest's instruction with the appropriate instruction for the vendor.
Nonetheless, older guest kernels without commit c1118b3602 ("x86: kvm:
use alternatives for VMCALL vs. VMMCALL if kernel text is read-only")
do not patch in the appropriate instruction using alternatives, likely
motivating KVM's intervention.
Add a quirk allowing userspace to opt out of hypercall patching. If the
quirk is disabled, KVM synthesizes a #UD in the guest.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220316005538.2282772-2-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add set/clear wrappers for toggling APICv inhibits to make the call sites
more readable, and opportunistically rename the inner helpers to align
with the new wrappers and to make them more readable as well. Invert the
flag from "activate" to "set"; activate is painfully ambiguous as it's
not obvious if the inhibit is being activated, or if APICv is being
activated, in which case the inhibit is being deactivated.
For the functions that take @set, swap the order of the inhibit reason
and @set so that the call sites are visually similar to those that bounce
through the wrapper.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use an enum for the APICv inhibit reasons, there is no meaning behind
their values and they most definitely are not "unsigned longs". Rename
the various params to "reason" for consistency and clarity (inhibit may
be confused as a command, i.e. inhibit APICv, instead of the reason that
is getting toggled/checked).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are two kinds of implicit supervisor access
implicit supervisor access when CPL = 3
implicit supervisor access when CPL < 3
Current permission_fault() handles only the first kind for SMAP.
But if the access is implicit when SMAP is on, data may not be read
nor write from any user-mode address regardless the current CPL.
So the second kind should be also supported.
The first kind can be detect via CPL and access mode: if it is
supervisor access and CPL = 3, it must be implicit supervisor access.
But it is not possible to detect the second kind without extra
information, so this patch adds an artificial PFERR_EXPLICIT_ACCESS
into @access. This extra information also works for the first kind, so
the logic is changed to use this information for both cases.
The value of PFERR_EXPLICIT_ACCESS is deliberately chosen to be bit 48
which is in the most significant 16 bits of u64 and less likely to be
forced to change due to future hardware uses it.
This patch removes the call to ->get_cpl() for access mode is determined
by @access. Not only does it reduce a function call, but also remove
confusions when the permission is checked for nested TDP. The nested
TDP shouldn't have SMAP checking nor even the L2's CPL have any bearing
on it. The original code works just because it is always user walk for
NPT and SMAP fault is not set for EPT in update_permission_bitmask.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-5-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change the type of access u32 to u64 for FNAME(walk_addr) and
->gva_to_gpa().
The kinds of accesses are usually combinations of UWX, and VMX/SVM's
nested paging adds a new factor of access: is it an access for a guest
page table or for a final guest physical address.
And SMAP relies a factor for supervisor access: explicit or implicit.
So @access in FNAME(walk_addr) and ->gva_to_gpa() is better to include
all these information to do the walk.
Although @access(u32) has enough bits to encode all the kinds, this
patch extends it to u64:
o Extra bits will be in the higher 32 bits, so that we can
easily obtain the traditional access mode (UWX) by converting
it to u32.
o Reuse the value for the access kind defined by SVM's nested
paging (PFERR_GUEST_FINAL_MASK and PFERR_GUEST_PAGE_MASK) as
@error_code in kvm_handle_page_fault().
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220311070346.45023-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The third nybble of AMD's event select overlaps with Intel's IN_TX and
IN_TXCP bits. Therefore, we can't use AMD64_RAW_EVENT_MASK on Intel
platforms that support TSX.
Declare a raw_event_mask in the kvm_pmu structure, initialize it in
the vendor-specific pmu_refresh() functions, and use that mask for
PERF_TYPE_RAW configurations in reprogram_gp_counter().
Fixes: 710c476514 ("KVM: x86/pmu: Use AMD64_RAW_EVENT_MASK for PERF_TYPE_RAW")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220308012452.3468611-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If kvm->arch.tdp_mmu_zap_wq cannot be created, the failure has
to be propagated up to kvm_mmu_init_vm and kvm_arch_init_vm.
kvm_arch_init_vm also has to undo all the initialization, so
group all the MMU initialization code at the beginning and
handle cleaning up of kvm_page_track_init.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical sections
that last too long for very large guests backed by 4 KiB SPTEs.
- Zap invalid and defunct roots asynchronously via concurrency-managed
work queue.
- Allowing yielding when zapping TDP MMU roots in response to the root's
last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the paging
structure now holds RCU as a proxy for all vCPUs running in the guest,
i.e. to prolongs the grace period on their behalf. It then kicks the
the vCPUs out of guest mode before doing rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that
need memcg accounting
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmI4fdwUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMq8gf/WoeVHtw2QlL5Mmz6McvRRmPAYPLV
wLUIFNrRqRvd8Tw4kivzZoh/xTpwmnojv0YdK5SjKAiMjgv094YI1LrNp1JSPvmL
pitocMkA10RSJNWHeEMg9cMSKH0rKiqeYl6S1e2XsdB+UZZ2BINOCVtvglmjTAvJ
dFBdKdBkqjAUZbdXAGIvz4JEEER3N/LkFDKGaUGX+0QIQOzGBPIyLTxynxIDG6mt
RViCCFyXdy5NkVp5hZFm96vQ2qAlWL9B9+iKruQN++82+oqWbeTdSqPhdwF7GyFz
BfOv3gobQ2c4ef/aMLO5LswZ9joI1t/4kQbbAn6dNybpOAz/NXfDnbNefg==
=keox
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical
sections that last too long for very large guests backed by 4
KiB SPTEs.
- Zap invalid and defunct roots asynchronously via
concurrency-managed work queue.
- Allowing yielding when zapping TDP MMU roots in response to the
root's last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the
paging structure now holds RCU as a proxy for all vCPUs running
in the guest, i.e. to prolongs the grace period on their behalf.
It then kicks the the vCPUs out of guest mode before doing
rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that need
memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
KVM: use kvcalloc for array allocations
KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
kvm: x86: Require const tsc for RT
KVM: x86: synthesize CPUID leaf 0x80000021h if useful
KVM: x86: add support for CPUID leaf 0x80000021
KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for get_mt_mask
Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
kvm: x86/mmu: Flush TLB before zap_gfn_range releases RCU
KVM: arm64: fix typos in comments
KVM: arm64: Generalise VM features into a set of flags
KVM: s390: selftests: Add error memop tests
KVM: s390: selftests: Add more copy memop tests
KVM: s390: selftests: Add named stages for memop test
KVM: s390: selftests: Add macro as abstraction for MEM_OP
KVM: s390: selftests: Split memop tests
KVM: s390x: fix SCK locking
RISC-V: KVM: Implement SBI HSM suspend call
RISC-V: KVM: Add common kvm_riscv_vcpu_wfi() function
RISC-V: Add SBI HSM suspend related defines
RISC-V: KVM: Implement SBI v0.3 SRST extension
...
- Fix address filtering for Intel/PT,ARM/CoreSight
- Enable Intel/PEBS format 5
- Allow more fixed-function counters for x86
- Intel/PT: Enable not recording Taken-Not-Taken packets
- Add a few branch-types
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI4WdIRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jdTA/7BADTYzFCbdwPzHt2mR8osv7k+pDvYxs9
wxNjyi1X7N8cPkhqgIg9CfdhdyDOqo7+J4fG17f2qbwjNK7b2Fb1/U6ZoZaf+f8F
W0e2LX5KZTXUhkA+TEjrXvYD9FmJaCPM/l2RQg8U7okBs2kb0H6QT2Yn21wd1roC
WwI5KFiWSVS1IzpVLaXjDh+FJfJHd75ReMqJeus+QoVQ9NHeuI+t4DglSB1IBi54
d/zeVXE/Y4dFTQOrU06S2HxcOEptvXZsPmVLvKab/veeGGyWiGPxQpvu6bXm6u3x
0sV+dn67zut2m2pQlUZUucgGTSYIZTpOe+rNukTB9hJ4XeN4/1ohOOCrOuYM+63P
lGFbN1v+LD7Wc6C2eEhw8G5GEL0qbwzFNQ06O3EOFi7C7GKn7WS/ET6XuuMOERFk
uxEPb4pFtbBlJ0SriCprFJSd5NL3PORZlLIhv4hGH5hilLR1TFeKDuwZaM4noQxU
dL3rKGLi9H+P46Eni9H28+0gDISbv1xL+WivHOFQNmhBqAZO52ZcF3J+dgBaR1B5
pBxVTycFpZMjxSZnqTE0gMsFaLIpVGc+75Chns1rajR0mEtRtJUQUbYz4tK4zb0E
dZR1p+VF6+DYmSRhiqeaTi9uz9oE8kMa8o/EcbFIg/9BgEnUwJXU20bjnar30xQ7
9OIn7r9hjHI=
=XPuo
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 perf event updates from Ingo Molnar:
- Fix address filtering for Intel/PT,ARM/CoreSight
- Enable Intel/PEBS format 5
- Allow more fixed-function counters for x86
- Intel/PT: Enable not recording Taken-Not-Taken packets
- Add a few branch-types
* tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix the build on !CONFIG_PHYS_ADDR_T_64BIT
perf: Add irq and exception return branch types
perf/x86/intel/uncore: Make uncore_discovery clean for 64 bit addresses
perf/x86/intel/pt: Add a capability and config bit for disabling TNTs
perf/x86/intel/pt: Add a capability and config bit for event tracing
perf/x86/intel: Increase max number of the fixed counters
KVM: x86: use the KVM side max supported fixed counter
perf/x86/intel: Enable PEBS format 5
perf/core: Allow kernel address filter when not filtering the kernel
perf/x86/intel/pt: Fix address filter config for 32-bit kernel
perf/core: Fix address filter parser for multiple filters
x86: Share definition of __is_canonical_address()
perf/x86/intel/pt: Relax address filter validation
KVM_CAP_DISABLE_QUIRKS is irrevocably broken. The capability does not
advertise the set of quirks which may be disabled to userspace, so it is
impossible to predict the behavior of KVM. Worse yet,
KVM_CAP_DISABLE_QUIRKS will tolerate any value for cap->args[0], meaning
it fails to reject attempts to set invalid quirk bits.
The only valid workaround for the quirky quirks API is to add a new CAP.
Actually advertise the set of quirks that can be disabled to userspace
so it can predict KVM's behavior. Reject values for cap->args[0] that
contain invalid bits.
Finally, add documentation for the new capability and describe the
existing quirks.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220301060351.442881-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the system worker threads to zap the roots invalidated
by the TDP MMU's "fast zap" mechanism, implemented by
kvm_tdp_mmu_invalidate_all_roots().
At this point, apart from allowing some parallelism in the zapping of
roots, the workqueue is a glorified linked list: work items are added and
flushed entirely within a single kvm->slots_lock critical section. However,
the workqueue fixes a latent issue where kvm_mmu_zap_all_invalidated_roots()
assumes that it owns a reference to all invalid roots; therefore, no
one can set the invalid bit outside kvm_mmu_zap_all_fast(). Putting the
invalidated roots on a linked list... erm, on a workqueue ensures that
tdp_mmu_zap_root_work() only puts back those extra references that
kvm_mmu_zap_all_invalidated_roots() had gifted to it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap only obsolete roots when responding to zapping a single root shadow
page. Because KVM keeps root_count elevated when stuffing a previous
root into its PGD cache, shadowing a 64-bit guest means that zapping any
root causes all vCPUs to reload all roots, even if their current root is
not affected by the zap.
For many kernels, zapping a single root is a frequent operation, e.g. in
Linux it happens whenever an mm is dropped, e.g. process exits, etc...
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220225182248.3812651-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These functions only operate on a given MMU, of which there is more
than one in a vCPU (we care about two, because the third does not have
any roots and is only used to walk guest page tables). They do need a
struct kvm in order to lock the mmu_lock, but they do not needed anything
else in the struct kvm_vcpu. So, pass the vcpu->kvm directly to them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.
The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis. For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.
To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cast kvm_x86_ops.func to 'void *' when updating KVM static calls that are
conditionally patched to __static_call_return0(). clang complains about
using mismatching pointers in the ternary operator, which breaks the
build when compiling with CONFIG_KVM_WERROR=y.
>> arch/x86/include/asm/kvm-x86-ops.h:82:1: warning: pointer type mismatch
('bool (*)(struct kvm_vcpu *)' and 'void *') [-Wpointer-type-mismatch]
Fixes: 5be2226f41 ("KVM: x86: allow defining return-0 static calls")
Reported-by: Like Xu <like.xu.linux@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Dunn <daviddunn@google.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Message-Id: <20220223162355.3174907-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove mmu_audit.c and all its collateral, the auditing code has suffered
severe bitrot, ironically partly due to shadow paging being more stable
and thus not benefiting as much from auditing, but mostly due to TDP
supplanting shadow paging for non-nested guests and shadowing of nested
TDP not heavily stressing the logic that is being audited.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A few vendor callbacks are only used by VMX, but they return an integer
or bool value. Introduce KVM_X86_OP_OPTIONAL_RET0 for them: if a func is
NULL in struct kvm_x86_ops, it will be changed to __static_call_return0
when updating static calls.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the newly corrected KVM_X86_OP annotations to warn about possible
NULL pointer dereferences as soon as the vendor module is loaded.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The original use of KVM_X86_OP_NULL, which was to mark calls
that do not follow a specific naming convention, is not in use
anymore. Instead, let's mark calls that are optional because
they are always invoked within conditionals or with static_call_cond.
Those that are _not_, i.e. those that are defined with KVM_X86_OP,
must be defined by both vendor modules or some kind of NULL pointer
dereference is bound to happen at runtime.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The two ioctls used to implement userspace-accelerated TPR,
KVM_TPR_ACCESS_REPORTING and KVM_SET_VAPIC_ADDR, are available
even if hardware-accelerated TPR can be used. So there is
no reason not to report KVM_CAP_VAPIC.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_arch currently contains the guest supported features in both
guest_supported_xcr0 and guest_fpu.fpstate->user_xfeatures field.
Currently both fields are set to the same value in
kvm_vcpu_after_set_cpuid() and are not changed anywhere else after that.
Since it's not good to keep duplicated data, remove guest_supported_xcr0.
To keep the code more readable, introduce kvm_guest_supported_xcr()
and kvm_guest_supported_xfd() to replace the previous usages of
guest_supported_xcr0.
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Message-Id: <20220217053028.96432-3-leobras@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.
Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.
Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.
Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:
1. Splitting on the vCPU thread interrupts vCPUs execution and is
disruptive to customers whereas splitting on VM ioctl threads can
run in parallel with vCPU execution.
2. Splitting all huge pages at once is more efficient because it does
not require performing VM-exit handling or walking the page table for
every 4KiB page in the memslot, and greatly reduces the amount of
contention on the mmu_lock.
For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.
Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.
Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use slightly more verbose names for the so called "memory encrypt",
a.k.a. "mem enc", kvm_x86_ops hooks to bridge the gap between the current
super short kvm_x86_ops names and SVM's more verbose, but non-conforming
names. This is a step toward using kvm-x86-ops.h with KVM_X86_CVM_OP()
to fill svm_x86_ops.
Opportunistically rename mem_enc_op() to mem_enc_ioctl() to better
reflect its true nature, as it really is a full fledged ioctl() of its
own. Ideally, the hook would be named confidential_vm_ioctl() or so, as
the ioctl() is a gateway to more than just memory encryption, and because
its underlying purpose to support Confidential VMs, which can be provided
without memory encryption, e.g. if the TCB of the guest includes the host
kernel but not host userspace, or by isolation in hardware without
encrypting memory. But, diverging from KVM_MEMORY_ENCRYPT_OP even
further is undeseriable, and short of creating alises for all related
ioctl()s, which introduces a different flavor of divergence, KVM is stuck
with the nomenclature.
Defer renaming SVM's functions to a future commit as there are additional
changes needed to make SVM fully conforming and to match reality (looking
at you, svm_vm_copy_asid_from()).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_get_cs_db_l_bits() to SVM and rename it appropriately so that
its svm_x86_ops entry can be filled via kvm-x86-ops, and to eliminate a
superfluous export from KVM x86.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename a variety of kvm_x86_op function pointers so that preferred name
for vendor implementations follows the pattern <vendor>_<function>, e.g.
rename .run() to .vcpu_run() to match {svm,vmx}_vcpu_run(). This will
allow vendor implementations to be wired up via the KVM_X86_OP macro.
In many cases, VMX and SVM "disagree" on the preferred name, though in
reality it's VMX and x86 that disagree as SVM blindly prepended _svm to
the kvm_x86_ops name. Justification for using the VMX nomenclature:
- set_{irq,nmi} => inject_{irq,nmi} because the helper is injecting an
event that has already been "set" in e.g. the vIRR. SVM's relevant
VMCB field is even named event_inj, and KVM's stat is irq_injections.
- prepare_guest_switch => prepare_switch_to_guest because the former is
ambiguous, e.g. it could mean switching between multiple guests,
switching from the guest to host, etc...
- update_pi_irte => pi_update_irte to allow for matching match the rest
of VMX's posted interrupt naming scheme, which is vmx_pi_<blah>().
- start_assignment => pi_start_assignment to again follow VMX's posted
interrupt naming scheme, and to provide context for what bit of code
might care about an otherwise undescribed "assignment".
The "tlb_flush" => "flush_tlb" creates an inconsistency with respect to
Hyper-V's "tlb_remote_flush" hooks, but Hyper-V really is the one that's
wrong. x86, VMX, and SVM all use flush_tlb, and even common KVM is on a
variant of the bandwagon with "kvm_flush_remote_tlbs", e.g. a more
appropriate name for the Hyper-V hooks would be flush_remote_tlbs. Leave
that change for another time as the Hyper-V hooks always start as NULL,
i.e. the name doesn't matter for using kvm-x86-ops.h, and changing all
names requires an astounding amount of churn.
VMX and SVM function names are intentionally left as is to minimize the
diff. Both VMX and SVM will need to rename even more functions in order
to fully utilize KVM_X86_OPS, i.e. an additional patch for each is
inevitable.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The "struct kvm_vcpu *vcpu" parameter of kvm_scale_tsc() is not used,
so remove it. No functional change intended.
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-18-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- A couple of fixes when handling an exception while a SError has been
delivered
- Workaround for Cortex-A510's single-step[ erratum
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmH9LlcPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDLTcP/3Ry8CzvPubZquMyNdRUFvEg2EcfTa6vtIGW
Fw7ap2hwPUaXUgJKDihMFIWj3Wf/wPmXw4t2Sr8R/yq8v9kWe+IG1isnT0yQhY3W
kLXEqc8Mu4Rf8+jvlFHsp5mLENHIswpWAv/EY49ChgZkNmtkKpnPm1qnD89d8bNv
tUwooDWidQ/7nXdM3z6zygSROJS24+OGTYTWzOQ1KgV3FGaXbqYiCleoPOpRR/Tc
DQQWF/tVl8bZCqgkGKZCv3aXT0ZUPrQggARJGai78vP0l2sE/Kyaydgq5I7npZja
2L2U4kDNoPYIVa8A1jvV3Ef3AqNFs6B7+jXWfYIgAcXjCYzDK3cZcxavf/Inq9F1
3udVGJGSzH1KkGaihW3BVhsqGORRHKCdksJzWRgqf6vGyJhJw0u0D2u1rTWcT+jw
Nm4KxShp0CX59HSLnVF5sR0Mct3jNNZ7UCCgH7q10wuBqYRfJT32hCo2ZrT7g9oD
IQ+pa2dVYa3SaKZ4O6T/lSlbLOuuxtvmcEIfxYpPD6m10S5RrxOdsW3MCtiYM5HQ
24oo2mk6NIu/va0XxhcW+NBMcYtLQD9JUGbkUkpcRy2mgilTi9b4YPp+muYM7plQ
/S1gj2kGY8vjMg0H+wysjMJyl2huEwSRsZ/UfxCAgW+MYhHLDxhxAnDWc8EcwGgE
tUzomowB
=Mbx/
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.17, take #2
- A couple of fixes when handling an exception while a SError has been
delivered
- Workaround for Cortex-A510's single-step[ erratum
KVM vPMU doesn't support to emulate all the fixed counters that the
host PMU driver has supported, e.g. the fixed counter 3 used by
Topdown metrics hasn't been supported by KVM so far.
Rename MAX_FIXED_COUNTERS to KVM_PMC_MAX_FIXED to have a more
straightforward naming convention as INTEL_PMC_MAX_FIXED used by the
host PMU driver, and fix vPMU to use the KVM side KVM_PMC_MAX_FIXED
for the virtual fixed counter emulation, instead of the host side
INTEL_PMC_MAX_FIXED.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1643750603-100733-2-git-send-email-kan.liang@linux.intel.com
Handle non-APICv interrupt delivery in vendor code, even though it means
VMX and SVM will temporarily have duplicate code. SVM's AVIC has a race
condition that requires KVM to fall back to legacy interrupt injection
_after_ the interrupt has been logged in the vIRR, i.e. to fix the race,
SVM will need to open code the full flow anyways[*]. Refactor the code
so that the SVM bug without introducing other issues, e.g. SVM would
return "success" and thus invoke trace_kvm_apicv_accept_irq() even when
delivery through the AVIC failed, and to opportunistically prepare for
using KVM_X86_OP to fill each vendor's kvm_x86_ops struct, which will
rely on the vendor function matching the kvm_x86_op pointer name.
No functional change intended.
[*] https://lore.kernel.org/all/20211213104634.199141-4-mlevitsk@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Redo incorrect fix for SEV/SMAP erratum
* Windows 11 Hyper-V workaround
Other x86 changes:
* Various x86 cleanups
* Re-enable access_tracking_perf_test
* Fix for #GP handling on SVM
* Fix for CPUID leaf 0Dh in KVM_GET_SUPPORTED_CPUID
* Fix for ICEBP in interrupt shadow
* Avoid false-positive RCU splat
* Enable Enlightened MSR-Bitmap support for real
ARM:
* Correctly update the shadow register on exception injection when
running in nVHE mode
* Correctly use the mm_ops indirection when performing cache invalidation
from the page-table walker
* Restrict the vgic-v3 workaround for SEIS to the two known broken
implementations
Generic code changes:
* Dead code cleanup
There will be another pull request for ARM fixes next week, but
those patches need a bit more soak time.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHz5eIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNv4wgAopj0Zlutrrtw3KT4/XnmSdMPgN0j
jQNzysSLTO5wGQCEogycjYXkGUDFu1Gdi+K91QAyjeKja20pIhPLeS2CBDRJyOc5
73K7sxqz51JnQiVFzkTuA+qzn+lXaJ9LUXtdg8BnQMSKyt2AJOqE8uT10kcYOD5q
mW4V3QUA0QpVKN0cYHv/G/zvBwQGGSLZetFbuAzwH2EDTpIi1aio5ZN1r0AoH18L
2x5kYPpqmnoBvo2cB4b7SNmxv3ZPQ5K+wta0uwZ4pO+UuYiRd84RPr5lErywJC3w
nci0eC0DoXrC6h+35UItqM8RqAGv6LADbDnr1RGojmfogSD0OtbX8y3hjw==
=iKnI
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Two larger x86 series:
- Redo incorrect fix for SEV/SMAP erratum
- Windows 11 Hyper-V workaround
Other x86 changes:
- Various x86 cleanups
- Re-enable access_tracking_perf_test
- Fix for #GP handling on SVM
- Fix for CPUID leaf 0Dh in KVM_GET_SUPPORTED_CPUID
- Fix for ICEBP in interrupt shadow
- Avoid false-positive RCU splat
- Enable Enlightened MSR-Bitmap support for real
ARM:
- Correctly update the shadow register on exception injection when
running in nVHE mode
- Correctly use the mm_ops indirection when performing cache
invalidation from the page-table walker
- Restrict the vgic-v3 workaround for SEIS to the two known broken
implementations
Generic code changes:
- Dead code cleanup"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (43 commits)
KVM: eventfd: Fix false positive RCU usage warning
KVM: nVMX: Allow VMREAD when Enlightened VMCS is in use
KVM: nVMX: Implement evmcs_field_offset() suitable for handle_vmread()
KVM: nVMX: Rename vmcs_to_field_offset{,_table}
KVM: nVMX: eVMCS: Filter out VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
KVM: nVMX: Also filter MSR_IA32_VMX_TRUE_PINBASED_CTLS when eVMCS
selftests: kvm: check dynamic bits against KVM_X86_XCOMP_GUEST_SUPP
KVM: x86: add system attribute to retrieve full set of supported xsave states
KVM: x86: Add a helper to retrieve userspace address from kvm_device_attr
selftests: kvm: move vm_xsave_req_perm call to amx_test
KVM: x86: Sync the states size with the XCR0/IA32_XSS at, any time
KVM: x86: Update vCPU's runtime CPUID on write to MSR_IA32_XSS
KVM: x86: Keep MSR_IA32_XSS unchanged for INIT
KVM: x86: Free kvm_cpuid_entry2 array on post-KVM_RUN KVM_SET_CPUID{,2}
KVM: nVMX: WARN on any attempt to allocate shadow VMCS for vmcs02
KVM: selftests: Don't skip L2's VMCALL in SMM test for SVM guest
KVM: x86: Check .flags in kvm_cpuid_check_equal() too
KVM: x86: Forcibly leave nested virt when SMM state is toggled
KVM: SVM: drop unnecessary code in svm_hv_vmcb_dirty_nested_enlightenments()
KVM: SVM: hyper-v: Enable Enlightened MSR-Bitmap support for real
...
Forcibly leave nested virtualization operation if userspace toggles SMM
state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace
forces the vCPU out of SMM while it's post-VMXON and then injects an SMI,
vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both
vmxon=false and smm.vmxon=false, but all other nVMX state allocated.
Don't attempt to gracefully handle the transition as (a) most transitions
are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't
sufficient information to handle all transitions, e.g. SVM wants access
to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede
KVM_SET_NESTED_STATE during state restore as the latter disallows putting
the vCPU into L2 if SMM is active, and disallows tagging the vCPU as
being post-VMXON in SMM if SMM is not active.
Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX
due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond
just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU
in an architecturally impossible state.
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Modules linked in:
CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00
Call Trace:
<TASK>
kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123
kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline]
kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460
kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline]
kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline]
kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250
kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273
__fput+0x286/0x9f0 fs/file_table.c:311
task_work_run+0xdd/0x1a0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0xb29/0x2a30 kernel/exit.c:806
do_group_exit+0xd2/0x2f0 kernel/exit.c:935
get_signal+0x4b0/0x28c0 kernel/signal.c:2862
arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Cc: stable@vger.kernel.org
Reported-by: syzbot+8112db3ab20e70d50c31@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220125220358.2091737-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass the emulation type to kvm_x86_ops.can_emulate_insutrction() so that
a future commit can harden KVM's SEV support to WARN on emulation
scenarios that should never happen.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make kvm_vcpu_reload_apic_access_page() static
as it is no longer invoked directly by vmx
and it is also no longer exported.
No functional change intended.
Signed-off-by: Quanfa Fu <quanfafu@gmail.com>
Message-Id: <20211219091446.174584-1-quanfafu@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- selftest compilation fix for non-x86
- KVM: avoid warning on s390 in mark_page_dirty
x86:
- fix page write-protection bug and improve comments
- use binary search to lookup the PMU event filter, add test
- enable_pmu module parameter support for Intel CPUs
- switch blocked_vcpu_on_cpu_lock to raw spinlock
- cleanups of blocked vCPU logic
- partially allow KVM_SET_CPUID{,2} after KVM_RUN (5.16 regression)
- various small fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHpmT0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOstggAi1VSpT43oGslQjXNDZacHEARoYQs
b0XpoW7HXicGSGRMWspCmiAPdJyYTsioEACttAmXUMs7brAgHb9n/vzdlcLh1ymL
rQw2YFQlfqqB1Ki1iRhNkWlH9xOECsu28WLng6ylrx51GuT/pzWRt+V3EGUFTxIT
ldW9HgZg2oFJIaLjg2hQVR/8EbBf0QdsAD3KV3tyvhBlXPkyeLOMcGe9onfjZ/NE
JQeW7FtKtP4SsIFt1KrJpDPjtiwFt3bRM0gfgGw7//clvtKIqt1LYXZiq4C3b7f5
tfYiC8lO2vnOoYcfeYEmvybbSsoS/CgSliZB32qkwoVvRMIl82YmxtDD+Q==
=/Mak
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini:
"Generic:
- selftest compilation fix for non-x86
- KVM: avoid warning on s390 in mark_page_dirty
x86:
- fix page write-protection bug and improve comments
- use binary search to lookup the PMU event filter, add test
- enable_pmu module parameter support for Intel CPUs
- switch blocked_vcpu_on_cpu_lock to raw spinlock
- cleanups of blocked vCPU logic
- partially allow KVM_SET_CPUID{,2} after KVM_RUN (5.16 regression)
- various small fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (46 commits)
docs: kvm: fix WARNINGs from api.rst
selftests: kvm/x86: Fix the warning in lib/x86_64/processor.c
selftests: kvm/x86: Fix the warning in pmu_event_filter_test.c
kvm: selftests: Do not indent with spaces
kvm: selftests: sync uapi/linux/kvm.h with Linux header
selftests: kvm: add amx_test to .gitignore
KVM: SVM: Nullify vcpu_(un)blocking() hooks if AVIC is disabled
KVM: SVM: Move svm_hardware_setup() and its helpers below svm_x86_ops
KVM: SVM: Drop AVIC's intermediate avic_set_running() helper
KVM: VMX: Don't do full kick when handling posted interrupt wakeup
KVM: VMX: Fold fallback path into triggering posted IRQ helper
KVM: VMX: Pass desired vector instead of bool for triggering posted IRQ
KVM: VMX: Don't do full kick when triggering posted interrupt "fails"
KVM: SVM: Skip AVIC and IRTE updates when loading blocking vCPU
KVM: SVM: Use kvm_vcpu_is_blocking() in AVIC load to handle preemption
KVM: SVM: Remove unnecessary APICv/AVIC update in vCPU unblocking path
KVM: SVM: Don't bother checking for "running" AVIC when kicking for IPIs
KVM: SVM: Signal AVIC doorbell iff vCPU is in guest mode
KVM: x86: Remove defunct pre_block/post_block kvm_x86_ops hooks
KVM: x86: Unexport LAPIC's switch_to_{hv,sw}_timer() helpers
...
Drop kvm_x86_ops' pre/post_block() now that all implementations are nops.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reject KVM_RUN if emulation is required (because VMX is running without
unrestricted guest) and an exception is pending, as KVM doesn't support
emulating exceptions except when emulating real mode via vm86. The vCPU
is hosed either way, but letting KVM_RUN proceed triggers a WARN due to
the impossible condition. Alternatively, the WARN could be removed, but
then userspace and/or KVM bugs would result in the vCPU silently running
in a bad state, which isn't very friendly to users.
Originally, the bug was hit by syzkaller with a nested guest as that
doesn't require kvm_intel.unrestricted_guest=0. That particular flavor
is likely fixed by commit cd0e615c49 ("KVM: nVMX: Synthesize
TRIPLE_FAULT for L2 if emulation is required"), but it's trivial to
trigger the WARN with a non-nested guest, and userspace can likely force
bad state via ioctls() for a nested guest as well.
Checking for the impossible condition needs to be deferred until KVM_RUN
because KVM can't force specific ordering between ioctls. E.g. clearing
exception.pending in KVM_SET_SREGS doesn't prevent userspace from setting
it in KVM_SET_VCPU_EVENTS, and disallowing KVM_SET_VCPU_EVENTS with
emulation_required would prevent userspace from queuing an exception and
then stuffing sregs. Note, if KVM were to try and detect/prevent the
condition prior to KVM_RUN, handle_invalid_guest_state() and/or
handle_emulation_failure() would need to be modified to clear the pending
exception prior to exiting to userspace.
------------[ cut here ]------------
WARNING: CPU: 6 PID: 137812 at arch/x86/kvm/vmx/vmx.c:1623 vmx_queue_exception+0x14f/0x160 [kvm_intel]
CPU: 6 PID: 137812 Comm: vmx_invalid_nes Not tainted 5.15.2-7cc36c3e14ae-pop #279
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:vmx_queue_exception+0x14f/0x160 [kvm_intel]
Code: <0f> 0b e9 fd fe ff ff 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00
RSP: 0018:ffffa45c83577d38 EFLAGS: 00010202
RAX: 0000000000000003 RBX: 0000000080000006 RCX: 0000000000000006
RDX: 0000000000000000 RSI: 0000000000010002 RDI: ffff9916af734000
RBP: ffff9916af734000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000006
R13: 0000000000000000 R14: ffff9916af734038 R15: 0000000000000000
FS: 00007f1e1a47c740(0000) GS:ffff99188fb80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1e1a6a8008 CR3: 000000026f83b005 CR4: 00000000001726e0
Call Trace:
kvm_arch_vcpu_ioctl_run+0x13a2/0x1f20 [kvm]
kvm_vcpu_ioctl+0x279/0x690 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Reported-by: syzbot+82112403ace4cbd780d8@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211228232437.1875318-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHhxvsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPZkAf+Nz92UL/5nNGcdHtE4m7AToMmitE9
bYkesf9BMQvAe5wjkABLuoHGi6ay4jabo4fiGzbdkiK7lO5YgfsWiMB3/MT5fl4E
jRPzaVQabp3YZLM8UYCBmfUVuRj524S967SfSRe0AvYjDEH8y7klPf4+7sCsFT0/
Px9Vf2KGuOlf0eM78yKg4rGaF0jS22eLgXm6FfNMY8/e29ZAo/jyUmqBY+Z2xxZG
aWhceDtSheW1jwLHLj3nOlQJvHTn8LVGXBE/R8Gda3ZjrBV2rKaDi4Fh+HD+dz86
2zVXwzQ7uck2CMW73GMoXMTWoKSHMyvlBOs1BdvBm4UsnGcXR+q8IFCeuQ==
=s73m
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into KVM's
'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to a
simpler state and less shared data between EL1 and EL2 in the nVHE
case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be unmapped
from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once the vcpu
xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen
emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency
checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
x86/fpu: Fix inline prefix warnings
selftest: kvm: Add amx selftest
selftest: kvm: Move struct kvm_x86_state to header
selftest: kvm: Reorder vcpu_load_state steps for AMX
kvm: x86: Disable interception for IA32_XFD on demand
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
kvm: selftests: Add support for KVM_CAP_XSAVE2
kvm: x86: Add support for getting/setting expanded xstate buffer
x86/fpu: Add uabi_size to guest_fpu
kvm: x86: Add CPUID support for Intel AMX
kvm: x86: Add XCR0 support for Intel AMX
kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
kvm: x86: Emulate IA32_XFD_ERR for guest
kvm: x86: Intercept #NM for saving IA32_XFD_ERR
x86/fpu: Prepare xfd_err in struct fpu_guest
kvm: x86: Add emulation for IA32_XFD
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
x86/fpu: Add guest support to xfd_enable_feature()
...
Always intercepting IA32_XFD causes non-negligible overhead when this
register is updated frequently in the guest.
Disable r/w emulation after intercepting the first WRMSR(IA32_XFD)
with a non-zero value.
Disable WRMSR emulation implies that IA32_XFD becomes out-of-sync
with the software states in fpstate and the per-cpu xfd cache. This
leads to two additional changes accordingly:
- Call fpu_sync_guest_vmexit_xfd_state() after vm-exit to bring
software states back in-sync with the MSR, before handle_exit_irqoff()
is called.
- Always trap #NM once write interception is disabled for IA32_XFD.
The #NM exception is rare if the guest doesn't use dynamic
features. Otherwise, there is at most one exception per guest
task given a dynamic feature.
p.s. We have confirmed that SDM is being revised to say that
when setting IA32_XFD[18] the AMX register state is not guaranteed
to be preserved. This clarification avoids adding mess for a creative
guest which sets IA32_XFD[18]=1 before saving active AMX state to
its own storage.
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-22-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
"Cleanup of the perf/kvm interaction."
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvbkACgkQEsHwGGHe
VUrX7w/9FwKUm0WlGcQIAOSdWk85N2qAVH3brYcQHNpTCVe68TOqTCrxCDrGgyUq
2XnCOim99MUlnsVU6QRZqF4yJ8S1tGrc0COJ/qR4SGntucu0oYuDe2aMVq+mWUD7
/IThA0oMRfhki9WwAyUuyCrXzk4blZdlrXyYIRMJGl9xeGNy3cvUtU8f68Kiy22E
OcmQ/o9Etsr38dueAMU1KYEmgSTvG47rS8nfyRUu3QpJHbyLmRXH32PQrm3tduxS
Bw3gMAH5vqq1UDZJ8ZvsPsO0vFX7dtnKEwEKz4qdtRWk9gi8oLGHIwIXC+VtNqpf
mCmX33Jw8uFz9h3JhE84J0j/CgsWHoU6MOs0MOch4Tb69/BfCjQnw1enImhejG8q
YEIDjJf/vgRNaw9PYshiTHT+EJTe9inT3S4eK/ynLRDUEslAqyWZZm7bUE/XrEDi
yRyGIxry/hNZVvRkXT9QBw32fpgnIH2NAMPLEjJSGCRxT89Tfqz0aRDfacCuHTTh
P8pAeiDuy/6RkDlQckOZJWOFFh2IHsykX2l3IJcHqVRqt4ob9b+SZB5qoH/Mv9qb
MSAqdFUupYZFC+6XuPAeX5/Mo+wSkP+pYYSbWNxjUa0yNiYecOjE7/8T2SB2y6Mx
lk2L0ypsZUYSmpHSfvOdPmf6ucj19/5B4+VCX6PQfcNJTnvvhTE=
=tU5G
-----END PGP SIGNATURE-----
Merge tag 'perf_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Borislav Petkov:
"Cleanup of the perf/kvm interaction."
* tag 'perf_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Drop guest callback (un)register stubs
KVM: arm64: Drop perf.c and fold its tiny bits of code into arm.c
KVM: arm64: Hide kvm_arm_pmu_available behind CONFIG_HW_PERF_EVENTS=y
KVM: arm64: Convert to the generic perf callbacks
KVM: x86: Move Intel Processor Trace interrupt handler to vmx.c
KVM: Move x86's perf guest info callbacks to generic KVM
KVM: x86: More precisely identify NMI from guest when handling PMI
KVM: x86: Drop current_vcpu for kvm_running_vcpu + kvm_arch_vcpu variable
perf/core: Use static_call to optimize perf_guest_info_callbacks
perf: Force architectures to opt-in to guest callbacks
perf: Add wrappers for invoking guest callbacks
perf/core: Rework guest callbacks to prepare for static_call support
perf: Drop dead and useless guest "support" from arm, csky, nds32 and riscv
perf: Stop pretending that perf can handle multiple guest callbacks
KVM: x86: Register Processor Trace interrupt hook iff PT enabled in guest
KVM: x86: Register perf callbacks after calling vendor's hardware_setup()
perf: Protect perf_guest_cbs with RCU
Normally guests will set up CR3 themselves, but some guests, such as
kselftests, and potentially CONFIG_PVH guests, rely on being booted
with paging enabled and CR3 initialized to a pre-allocated page table.
Currently CR3 updates via KVM_SET_SREGS* are not loaded into the guest
VMCB until just prior to entering the guest. For SEV-ES/SEV-SNP, this
is too late, since it will have switched over to using the VMSA page
prior to that point, with the VMSA CR3 copied from the VMCB initial
CR3 value: 0.
Address this by sync'ing the CR3 value into the VMCB save area
immediately when KVM_SET_SREGS* is issued so it will find it's way into
the initial VMSA.
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20211216171358.61140-10-michael.roth@amd.com>
[Remove vmx_post_set_cr3; add a remark about kvm_set_cr3 not calling the
new hook. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds basic support for delivering 2 level event channels to a guest.
Initially, it only supports delivery via the IRQ routing table, triggered
by an eventfd. In order to do so, it has a kvm_xen_set_evtchn_fast()
function which will use the pre-mapped shared_info page if it already
exists and is still valid, while the slow path through the irqfd_inject
workqueue will remap the shared_info page if necessary.
It sets the bits in the shared_info page but not the vcpu_info; that is
deferred to __kvm_xen_has_interrupt() which raises the vector to the
appropriate vCPU.
Add a 'verbose' mode to xen_shinfo_test while adding test cases for this.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the newly reinstated gfn_to_pfn_cache to maintain a kernel mapping
of the Xen shared_info page so that it can be accessed in atomic context.
Note that we do not participate in dirty tracking for the shared info
page and we do not explicitly mark it dirty every single tim we deliver
an event channel interrupts. We wouldn't want to do that even if we *did*
have a valid vCPU context with which to do so.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211210163625.2886-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Depending on whether intr should be triggered or not, KVM registers
two different event overflow callbacks in the perf_event context.
The code skeleton of these two functions is very similar, so
the pmc->intr can be stored into pmc from pmc_reprogram_counter()
which provides smaller instructions footprint against the
u-architecture branch predictor.
The __kvm_perf_overflow() can be called in non-nmi contexts
and a flag is needed to distinguish the caller context and thus
avoid a check on kvm_is_in_guest(), otherwise we might get
warnings from suspicious RCU or check_preemption_disabled().
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-5-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU"). In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kvm_run struct's if_flag is a part of the userspace/kernel API. The
SEV-ES patches failed to set this flag because it's no longer needed by
QEMU (according to the comment in the source code). However, other
hypervisors may make use of this flag. Therefore, set the flag for
guests with encrypted registers (i.e., with guest_state_protected set).
Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Signed-off-by: Marc Orr <marcorr@google.com>
Message-Id: <20211209155257.128747-1-marcorr@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Prior to commit 0baedd7927 ("KVM: x86: make Hyper-V PV TLB flush use
tlb_flush_guest()"), kvm_hv_flush_tlb() was using 'KVM_REQ_TLB_FLUSH |
KVM_REQUEST_NO_WAKEUP' when making a request to flush TLBs on other vCPUs
and KVM_REQ_TLB_FLUSH is/was defined as:
(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
so KVM_REQUEST_WAIT was lost. Hyper-V TLFS, however, requires that
"This call guarantees that by the time control returns back to the
caller, the observable effects of all flushes on the specified virtual
processors have occurred." and without KVM_REQUEST_WAIT there's a small
chance that the vCPU making the TLB flush will resume running before
all IPIs get delivered to other vCPUs and a stale mapping can get read
there.
Fix the issue by adding KVM_REQUEST_WAIT flag to KVM_REQ_TLB_FLUSH_GUEST:
kvm_hv_flush_tlb() is the sole caller which uses it for
kvm_make_all_cpus_request()/kvm_make_vcpus_request_mask() where
KVM_REQUEST_WAIT makes a difference.
Cc: stable@kernel.org
Fixes: 0baedd7927 ("KVM: x86: make Hyper-V PV TLB flush use tlb_flush_guest()")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211209102937.584397-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The next patch would use kvm_emulate_instruction() with
EMULTYPE_SKIP in complete_userspace_io callback to fix a
problem in msr access emulation. However, EMULTYPE_SKIP
only updates RIP, more things like updating interruptibility
state and injecting single-step #DBs would be done in the
callback. Since the emulator also does those things after
x86_emulate_insn(), add a new emulation type to pair with
EMULTYPE_SKIP to do those things for completion of user exits
within the emulator.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Hou Wenlong <houwenlong93@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <8f8c8e268b65f31d55c2881a4b30670946ecfa0d.1635842679.git.houwenlong93@linux.alibaba.com>
It uses vcpu->arch.walk_mmu always; nested EPT does not have PDPTRs,
and nested NPT treats them like all other non-leaf page table levels
instead of caching them.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-11-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This bit is very close to mean "role.quadrant is not in use", except that
it is false also when the MMU is mapping guest physical addresses
directly. In that case, role.quadrant is indeed not in use, but there
are no guest PTEs at all.
Changing the name and direction of the bit removes the special case,
since a guest with paging disabled, or not considering guest paging
structures as is the case for two-dimensional paging, does not have
to deal with 4-byte guest PTEs.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reduce an indirect function call (retpoline) and some intialization
code.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-4-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The mmu->gva_to_gpa() has no "struct kvm_mmu *mmu", so an extra
FNAME(gva_to_gpa_nested) is needed.
Add the parameter can simplify the code. And it makes it explicit that
the walk is upon vcpu->arch.walk_mmu for gva and vcpu->arch.mmu for L2
gpa in translate_nested_gpa() via the new parameter.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The body of __kvm_mmu_free_some_pages() has been removed.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211118110814.2568-13-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_arch_vcpu_block_finish() now that all arch implementations are
nops.
No functional change intended.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename a variety of HLT-related helpers to free up the function name
"kvm_vcpu_halt" for future use in generic KVM code, e.g. to differentiate
between "block" and "halt".
No functional change intended.
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009021236.4122790-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no point in recalculating from scratch the total number of pages
in all memslots each time a memslot is created or deleted. Use KVM's
cached nr_memslot_pages to compute the default max number of MMU pages.
Note that even with nr_memslot_pages capped at ULONG_MAX we can't safely
multiply it by KVM_PERMILLE_MMU_PAGES (20) since this operation can
possibly overflow an unsigned long variable.
Write this "* 20 / 1000" operation as "/ 50" instead to avoid such
overflow.
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
[sean: use common KVM field and rework changelog accordingly]
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <d14c5a24535269606675437d5602b7dac4ad8c0e.1638817640.git.maciej.szmigiero@oracle.com>
Fix the number of bits in the role, and simplify the explanation of
why several bits or combinations of bits are redundant.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_apicv_active() returns false if a virtual machine has no in-kernel
local APIC, however kvm_apicv_activated might still be true if there are
no reasons to disable APICv; in fact it is quite likely that there is none
because APICv is inhibited by specific configurations of the local APIC
and those configurations cannot be programmed. This triggers a WARN:
WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
To avoid this, introduce another cause for APICv inhibition, namely the
absence of an in-kernel local APIC. This cause is enabled by default,
and is dropped by either KVM_CREATE_IRQCHIP or the enabling of
KVM_CAP_IRQCHIP_SPLIT.
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Fixes: ee49a89329 ("KVM: x86: Move SVM's APICv sanity check to common x86", 2021-10-22)
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Ignat Korchagin <ignat@cloudflare.com>
Message-Id: <20211130123746.293379-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fixes for Xen emulation
* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache
* Fixes for migration of 32-bit nested guests on 64-bit hypervisor
* Compilation fixes
* More SEV cleanups
Incorporate EFER.LMA into kvm_mmu_extended_role, as it used to compute the
guest root level and is not reflected in kvm_mmu_page_role.level when TDP
is in use. When simply running the guest, it is impossible for EFER.LMA
and kvm_mmu.root_level to get out of sync, as the guest cannot transition
from PAE paging to 64-bit paging without toggling CR0.PG, i.e. without
first bouncing through a different MMU context. And stuffing guest state
via KVM_SET_SREGS{,2} also ensures a full MMU context reset.
However, if KVM_SET_SREGS{,2} is followed by KVM_SET_NESTED_STATE, e.g. to
set guest state when migrating the VM while L2 is active, the vCPU state
will reflect L2, not L1. If L1 is using TDP for L2, then root_mmu will
have been configured using L2's state, despite not being used for L2. If
L2.EFER.LMA != L1.EFER.LMA, and L2 is using PAE paging, then root_mmu will
be configured for guest PAE paging, but will match the mmu_role for 64-bit
paging and cause KVM to not reconfigure root_mmu on the next nested VM-Exit.
Alternatively, the root_mmu's role could be invalidated after a successful
KVM_SET_NESTED_STATE that yields vcpu->arch.mmu != vcpu->arch.root_mmu,
i.e. that switches the active mmu to guest_mmu, but doing so is unnecessarily
tricky, and not even needed if L1 and L2 do have the same role (e.g., they
are both 64-bit guests and run with the same CR4).
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211115131837.195527-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that all state needed for VMX's PT interrupt handler is exposed to
vmx.c (specifically the currently running vCPU), move the handler into
vmx.c where it belongs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211111020738.2512932-14-seanjc@google.com
Move x86's perf guest callbacks into common KVM, as they are semantically
identical to arm64's callbacks (the only other such KVM callbacks).
arm64 will convert to the common versions in a future patch.
Implement the necessary arm64 arch hooks now to avoid having to provide
stubs or a temporary #define (from x86) to avoid arm64 compilation errors
when CONFIG_GUEST_PERF_EVENTS=y.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211111020738.2512932-13-seanjc@google.com
Use the generic kvm_running_vcpu plus a new 'handling_intr_from_guest'
variable in kvm_arch_vcpu instead of the semi-redundant current_vcpu.
kvm_before/after_interrupt() must be called while the vCPU is loaded,
(which protects against preemption), thus kvm_running_vcpu is guaranteed
to be non-NULL when handling_intr_from_guest is non-zero.
Switching to kvm_get_running_vcpu() will allows moving KVM's perf
callbacks to generic code, and the new flag will be used in a future
patch to more precisely identify the "NMI from guest" case.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20211111020738.2512932-11-seanjc@google.com
To prepare for using static_calls to optimize perf's guest callbacks,
replace ->is_in_guest and ->is_user_mode with a new multiplexed hook
->state, tweak ->handle_intel_pt_intr to play nice with being called when
there is no active guest, and drop "guest" from ->get_guest_ip.
Return '0' from ->state and ->handle_intel_pt_intr to indicate "not in
guest" so that DEFINE_STATIC_CALL_RET0 can be used to define the static
calls, i.e. no callback == !guest.
[sean: extracted from static_call patch, fixed get_ip() bug, wrote changelog]
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Zhu Lingshan <lingshan.zhu@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20211111020738.2512932-7-seanjc@google.com
Override the Processor Trace (PT) interrupt handler for guest mode if and
only if PT is configured for host+guest mode, i.e. is being used
independently by both host and guest. If PT is configured for system
mode, the host fully controls PT and must handle all events.
Fixes: 8479e04e7d ("KVM: x86: Inject PMI for KVM guest")
Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reported-by: Artem Kashkanov <artem.kashkanov@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211111020738.2512932-4-seanjc@google.com
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status
* Fix selftests on APICv machines
* Fix sparse warnings
* Fix detection of KVM features in CPUID
* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN
* Fixes and cleanups for MSR bitmap handling
* Cleanups for INVPCID
* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
Add support for AMD SEV and SEV-ES intra-host migration support. Intra
host migration provides a low-cost mechanism for userspace VMM upgrades.
In the common case for intra host migration, we can rely on the normal
ioctls for passing data from one VMM to the next. SEV, SEV-ES, and other
confidential compute environments make most of this information opaque, and
render KVM ioctls such as "KVM_GET_REGS" irrelevant. As a result, we need
the ability to pass this opaque metadata from one VMM to the next. The
easiest way to do this is to leave this data in the kernel, and transfer
ownership of the metadata from one KVM VM (or vCPU) to the next. In-kernel
hand off makes it possible to move any data that would be
unsafe/impossible for the kernel to hand directly to userspace, and
cannot be reproduced using data that can be handed to userspace.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_CAP_NR_VCPUS is used to get the "recommended" maximum number of
VCPUs and arm64/mips/riscv report num_online_cpus(). Powerpc reports
either num_online_cpus() or num_present_cpus(), s390 has multiple
constants depending on hardware features. On x86, KVM reports an
arbitrary value of '710' which is supposed to be the maximum tested
value but it's possible to test all KVM_MAX_VCPUS even when there are
less physical CPUs available.
Drop the arbitrary '710' value and return num_online_cpus() on x86 as
well. The recommendation will match other architectures and will mean
'no CPU overcommit'.
For reference, QEMU only queries KVM_CAP_NR_VCPUS to print a warning
when the requested vCPU number exceeds it. The static limit of '710'
is quite weird as smaller systems with just a few physical CPUs should
certainly "recommend" less.
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211111134733.86601-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently when kvm_update_cpuid_runtime() runs, it assumes that the
KVM_CPUID_FEATURES leaf is located at 0x40000001. This is not true,
however, if Hyper-V support is enabled. In this case the KVM leaves will
be offset.
This patch introdues as new 'kvm_cpuid_base' field into struct
kvm_vcpu_arch to track the location of the KVM leaves and function
kvm_update_kvm_cpuid_base() (called from kvm_set_cpuid()) to locate the
leaves using the 'KVMKVMKVM\0\0\0' signature (which is now given a
definition in kvm_para.h). Adjustment of KVM_CPUID_FEATURES will hence now
target the correct leaf.
NOTE: A new for_each_possible_hypervisor_cpuid_base() macro is intoduced
into processor.h to avoid having duplicate code for the iteration
over possible hypervisor base leaves.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20211105095101.5384-3-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GUESTDBG_BLOCKIRQ relies on interrupts being injected using
standard kvm's inject_pending_event, and not via APICv/AVIC.
Since this is a debug feature, just inhibit APICv/AVIC while
KVM_GUESTDBG_BLOCKIRQ is in use on at least one vCPU.
Fixes: 61e5f69ef0 ("KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211108090245.166408-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is
not missed") we switched to using a gfn_to_pfn_cache for accessing the
guest steal time structure in order to allow for an atomic xchg of the
preempted field. This has a couple of problems.
Firstly, kvm_map_gfn() doesn't work at all for IOMEM pages when the
atomic flag is set, which it is in kvm_steal_time_set_preempted(). So a
guest vCPU using an IOMEM page for its steal time would never have its
preempted field set.
Secondly, the gfn_to_pfn_cache is not invalidated in all cases where it
should have been. There are two stages to the GFN->PFN conversion;
first the GFN is converted to a userspace HVA, and then that HVA is
looked up in the process page tables to find the underlying host PFN.
Correct invalidation of the latter would require being hooked up to the
MMU notifiers, but that doesn't happen---so it just keeps mapping and
unmapping the *wrong* PFN after the userspace page tables change.
In the !IOMEM case at least the stale page *is* pinned all the time it's
cached, so it won't be freed and reused by anyone else while still
receiving the steal time updates. The map/unmap dance only takes care
of the KVM administrivia such as marking the page dirty.
Until the gfn_to_pfn cache handles the remapping automatically by
integrating with the MMU notifiers, we might as well not get a
kernel mapping of it, and use the perfectly serviceable userspace HVA
that we already have. We just need to implement the atomic xchg on
the userspace address with appropriate exception handling, which is
fairly trivial.
Cc: stable@vger.kernel.org
Fixes: b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <3645b9b889dac6438394194bb5586a46b68d581f.camel@infradead.org>
[I didn't entirely agree with David's assessment of the
usefulness of the gfn_to_pfn cache, and integrated the outcome
of the discussion in the above commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For SEV to work with intra host migration, contents of the SEV info struct
such as the ASID (used to index the encryption key in the AMD SP) and
the list of memory regions need to be transferred to the target VM.
This change adds a commands for a target VMM to get a source SEV VM's sev
info.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-3-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
* Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
* Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
* More memcg accounting of the memory allocated on behalf of a guest
* Timer and vgic selftests
* Workarounds for the Apple M1 broken vgic implementation
* KConfig cleanups
* New kvmarm.mode=none option, for those who really dislike us
RISC-V:
* New KVM port.
x86:
* New API to control TSC offset from userspace
* TSC scaling for nested hypervisors on SVM
* Switch masterclock protection from raw_spin_lock to seqcount
* Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
* Convey the exit reason to userspace on emulation failure
* Configure time between NX page recovery iterations
* Expose Predictive Store Forwarding Disable CPUID leaf
* Allocate page tracking data structures lazily (if the i915
KVM-GT functionality is not compiled in)
* Cleanups, fixes and optimizations for the shadow MMU code
s390:
* SIGP Fixes
* initial preparations for lazy destroy of secure VMs
* storage key improvements/fixes
* Log the guest CPNC
Starting from this release, KVM-PPC patches will come from
Michael Ellerman's PPC tree.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
=UxKM
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- More progress on the protected VM front, now with the full fixed
feature set as well as the limitation of some hypercalls after
initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
RISC-V:
- New KVM port.
x86:
- New API to control TSC offset from userspace
- TSC scaling for nested hypervisors on SVM
- Switch masterclock protection from raw_spin_lock to seqcount
- Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
- Convey the exit reason to userspace on emulation failure
- Configure time between NX page recovery iterations
- Expose Predictive Store Forwarding Disable CPUID leaf
- Allocate page tracking data structures lazily (if the i915 KVM-GT
functionality is not compiled in)
- Cleanups, fixes and optimizations for the shadow MMU code
s390:
- SIGP Fixes
- initial preparations for lazy destroy of secure VMs
- storage key improvements/fixes
- Log the guest CPNC
Starting from this release, KVM-PPC patches will come from Michael
Ellerman's PPC tree"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
RISC-V: KVM: fix boolreturn.cocci warnings
RISC-V: KVM: remove unneeded semicolon
RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
RISC-V: KVM: Factor-out FP virtualization into separate sources
KVM: s390: add debug statement for diag 318 CPNC data
KVM: s390: pv: properly handle page flags for protected guests
KVM: s390: Fix handle_sske page fault handling
KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
KVM: x86: Clarify the kvm_run.emulation_failure structure layout
KVM: s390: Add a routine for setting userspace CPU state
KVM: s390: Simplify SIGP Set Arch handling
KVM: s390: pv: avoid stalls when making pages secure
KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
KVM: s390: pv: avoid double free of sida page
KVM: s390: pv: add macros for UVC CC values
s390/mm: optimize reset_guest_reference_bit()
s390/mm: optimize set_guest_storage_key()
s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
...
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from explicit
error codes to a boolean fail/success as that's all what the calling
code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX support:
- Distangle the public header maze and remove especially the misnomed
kitchen sink internal.h which is despite it's name included all over
the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime by
flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code into
the FPU core which removes the number of exports and avoids adding
even more export when AMX has to be supported in KVM. This also
removes duplicated code which was of course unnecessary different and
incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new fpstate
container and just switching the buffer pointer from the user space
buffer to the KVM guest buffer when entering vcpu_run() and flipping
it back when leaving the function. This cuts the memory requirements
of a vCPU for FPU buffers in half and avoids pointless memory copy
operations.
This also solves the so far unresolved problem of adding AMX support
because the current FPU buffer handling of KVM inflicted a circular
dependency between adding AMX support to the core and to KVM. With
the new scheme of switching fpstate AMX support can be added to the
core code without affecting KVM.
- Replace various variables with proper data structures so the extra
information required for adding dynamically enabled FPU features (AMX)
can be added in one place
- Add AMX (Advanved Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
which allows to trap the (first) use of an AMX related instruction,
which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra 8K
or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and cleared
on exec(). The permission policy of the kernel is restricted to
sigaltstack size validation, but the syscall obviously allows
further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
takes granted permissions and the potentially resulting larger
signal frame into account. This mechanism can also be used to
enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support was
added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the use
of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have been
disabled in XCR0. If permission has been granted, then a new fpstate
which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler sends
SIGSEGV to the task. That's not elegant, but unavoidable as the
other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused by
unexpected memory allocation failures is not a fundamentally new
concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is disarmed
for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with the
same life time rules as the FPU register state itself. The mechanism
is keyed off with a static key which is default disabled so !AMX
equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
is limited by comparing the tasks XFD value with a per CPU shadow
variable to avoid redundant MSR writes. In case of switching from a
AMX using task to a non AMX using task or vice versa, the extra MSR
write is obviously inevitable.
All other places which need to be aware of the variable feature sets
and resulting variable sizes are not affected at all because they
retrieve the information (feature set, sizes) unconditonally from
the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support is in
the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which has
not been caught in review and testing right away was restricted to AMX
enabled systems, which is completely irrelevant for anyone outside Intel
and their early access program. There might be dragons lurking as usual,
but so far the fine grained refactoring has held up and eventual yet
undetected fallout is bisectable and should be easily addressable before
the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity to
follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for inclusion
into 5.16-rc1.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
/3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
hcKvDmehQLrUvg==
=x3WL
-----END PGP SIGNATURE-----
Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from
explicit error codes to a boolean fail/success as that's all what the
calling code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX
support:
- Distangle the public header maze and remove especially the
misnomed kitchen sink internal.h which is despite it's name
included all over the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime
by flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code
into the FPU core which removes the number of exports and avoids
adding even more export when AMX has to be supported in KVM.
This also removes duplicated code which was of course
unnecessary different and incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new
fpstate container and just switching the buffer pointer from the
user space buffer to the KVM guest buffer when entering
vcpu_run() and flipping it back when leaving the function. This
cuts the memory requirements of a vCPU for FPU buffers in half
and avoids pointless memory copy operations.
This also solves the so far unresolved problem of adding AMX
support because the current FPU buffer handling of KVM inflicted
a circular dependency between adding AMX support to the core and
to KVM. With the new scheme of switching fpstate AMX support can
be added to the core code without affecting KVM.
- Replace various variables with proper data structures so the
extra information required for adding dynamically enabled FPU
features (AMX) can be added in one place
- Add AMX (Advanced Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR
(MSR_XFD) which allows to trap the (first) use of an AMX related
instruction, which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra
8K or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and
cleared on exec(). The permission policy of the kernel is
restricted to sigaltstack size validation, but the syscall
obviously allows further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2)
which takes granted permissions and the potentially resulting
larger signal frame into account. This mechanism can also be used
to enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support
was added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the
use of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have
been disabled in XCR0. If permission has been granted, then a new
fpstate which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler
sends SIGSEGV to the task. That's not elegant, but unavoidable as
the other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused
by unexpected memory allocation failures is not a fundamentally
new concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is
disarmed for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with
the same life time rules as the FPU register state itself. The
mechanism is keyed off with a static key which is default
disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
CPUs the overhead is limited by comparing the tasks XFD value
with a per CPU shadow variable to avoid redundant MSR writes. In
case of switching from a AMX using task to a non AMX using task
or vice versa, the extra MSR write is obviously inevitable.
All other places which need to be aware of the variable feature
sets and resulting variable sizes are not affected at all because
they retrieve the information (feature set, sizes) unconditonally
from the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support
is in the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which
has not been caught in review and testing right away was restricted
to AMX enabled systems, which is completely irrelevant for anyone
outside Intel and their early access program. There might be dragons
lurking as usual, but so far the fine grained refactoring has held up
and eventual yet undetected fallout is bisectable and should be
easily addressable before the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity
to follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for
inclusion into 5.16-rc1
* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
Documentation/x86: Add documentation for using dynamic XSTATE features
x86/fpu: Include vmalloc.h for vzalloc()
selftests/x86/amx: Add context switch test
selftests/x86/amx: Add test cases for AMX state management
x86/fpu/amx: Enable the AMX feature in 64-bit mode
x86/fpu: Add XFD handling for dynamic states
x86/fpu: Calculate the default sizes independently
x86/fpu/amx: Define AMX state components and have it used for boot-time checks
x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
x86/fpu/xstate: Add fpstate_realloc()/free()
x86/fpu/xstate: Add XFD #NM handler
x86/fpu: Update XFD state where required
x86/fpu: Add sanity checks for XFD
x86/fpu: Add XFD state to fpstate
x86/msr-index: Add MSRs for XFD
x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
x86/fpu: Reset permission and fpstate on exec()
x86/fpu: Prepare fpu_clone() for dynamically enabled features
x86/fpu/signal: Prepare for variable sigframe length
x86/signal: Use fpu::__state_user_size for sigalt stack validation
...
* Fixes for Xen emulator bugs showing up as debug kernel WARNs
* Fix another issue with SEV/ES string I/O VMGEXITs
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmF6uGIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNRagf/Srvk9lNcRh4cEzsczErKMyr3xOqA
jgsTSqgl1ExJI9sBLMpVYBOFGILMaMSrhLPIltKPy0Bj/E+hw8WOQwPa44QjWlSD
MAUxO1Nryt9Luc2L8uSd1c//g4fr4V1BhOaumk1lM14Q8EDfQBcDIMI2ZKueMU1+
2Q+n8/AsG63jQIINwKNidof0dzRtbfcE30Wq/8QHttIPo5wt6l0YClOlOikqNY8N
5+WSQFmuutHIXftq5Jb/Ldn/+HVukWZyZOEVwLnBpM9uBvIubNgcEakqvxsaVtAn
FHdvnA+Bk99/Xuhl+wRLQo8ofzQIQ13RQv3HPArJAJv34oAJZx2rNObVlA==
=6ofB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
- Fixes for s390 interrupt delivery
- Fixes for Xen emulator bugs showing up as debug kernel WARNs
- Fix another issue with SEV/ES string I/O VMGEXITs
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Take srcu lock in post_kvm_run_save()
KVM: SEV-ES: fix another issue with string I/O VMGEXITs
KVM: x86/xen: Fix kvm_xen_has_interrupt() sleeping in kvm_vcpu_block()
KVM: x86: switch pvclock_gtod_sync_lock to a raw spinlock
KVM: s390: preserve deliverable_mask in __airqs_kick_single_vcpu
KVM: s390: clear kicked_mask before sleeping again
Should instruction emulation fail, include the VM exit reason, etc. in
the emulation_failure data passed to userspace, in order that the VMM
can report it as a debugging aid when describing the failure.
Suggested-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-4-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extend the get_exit_info static call to provide the reason for the VM
exit. Modify relevant trace points to use this rather than extracting
the reason in the caller.
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For the upcoming AMX support it's necessary to do a proper integration with
KVM. Currently KVM allocates two FPU structs which are used for saving the user
state of the vCPU thread and restoring the guest state when entering
vcpu_run() and doing the reverse operation before leaving vcpu_run().
With the new fpstate mechanism this can be reduced to one extra buffer by
swapping the fpstate pointer in current:🧵:fpu. This makes the
upcoming support for AMX and XFD simpler because then fpstate information
(features, sizes, xfd) are always consistent and it does not require any
nasty workarounds.
Convert the KVM FPU code over to this new scheme.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211022185313.019454292@linutronix.de
Use a rw_semaphore instead of a mutex to coordinate APICv updates so that
vCPUs responding to requests can take the lock for read and run in
parallel. Using a mutex forces serialization of vCPUs even though
kvm_vcpu_update_apicv() only touches data local to that vCPU or is
protected by a different lock, e.g. SVM's ir_list_lock.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022004927.1448382-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PIO scratch buffer is larger than a single page, and therefore
it is not possible to copy it in a single step to vcpu->arch/pio_data.
Bound each call to emulator_pio_in/out to a single page; keep
track of how many I/O operations are left in vcpu->arch.sev_pio_count,
so that the operation can be restarted in the complete_userspace_io
callback.
For OUT, this means that the previous kvm_sev_es_outs implementation
becomes an iterator of the loop, and we can consume the sev_pio_data
buffer before leaving to userspace.
For IN, instead, consuming the buffer and decreasing sev_pio_count
is always done in the complete_userspace_io callback, because that
is when the memcpy is done into sev_pio_data.
Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Reported-by: Felix Wilhelm <fwilhelm@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We will be using this field for OUTS emulation as well, in case the
data that is pushed via OUTS spans more than one page. In that case,
there will be a need to save the data pointer across exits to userspace.
So, change the name to something that refers to any kind of PIO.
Also spell out what it is used for, namely SEV-ES.
No functional change intended.
Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paul pointed out the error messages when KVM fails to load are unhelpful
in understanding exactly what went wrong if userspace probes the "wrong"
module.
Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel
and kvm_amd, and use the name for relevant error message when KVM fails
to load so that the user knows which module failed to load.
Opportunistically tweak the "disabled by bios" error message to clarify
that _support_ was disabled, not that the module itself was magically
disabled by BIOS.
Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211018183929.897461-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SDM section 18.2.3 mentioned that:
"IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of
any general-purpose or fixed-function counters via a single WRMSR."
It is R/W mentioned by SDM, we read this msr on bare-metal during perf testing,
the value is always 0 for ICX/SKX boxes on hands. Let's fill get_msr
MSR_CORE_PERF_GLOBAL_OVF_CTRL w/ 0 as hardware behavior and drop
global_ovf_ctrl variable.
Tested-by: Like Xu <likexu@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1634631160-67276-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unify the flags for rmaps and page tracking data, using a
single flag in struct kvm_arch and a single loop to go
over all the address spaces and memslots. This avoids
code duplication between alloc_all_memslots_rmaps and
kvm_page_track_enable_mmu_write_tracking.
Signed-off-by: David Stevens <stevensd@chromium.org>
[This patch is the delta between David's v2 and v3, with conflicts
fixed and my own commit message. - Paolo]
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To date, VMM-directed TSC synchronization and migration has been a bit
messy. KVM has some baked-in heuristics around TSC writes to infer if
the VMM is attempting to synchronize. This is problematic, as it depends
on host userspace writing to the guest's TSC within 1 second of the last
write.
A much cleaner approach to configuring the guest's views of the TSC is to
simply migrate the TSC offset for every vCPU. Offsets are idempotent,
and thus not subject to change depending on when the VMM actually
reads/writes values from/to KVM. The VMM can then read the TSC once with
KVM_GET_CLOCK to capture a (realtime, host_tsc) pair at the instant when
the guest is paused.
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210916181538.968978-8-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Protect the reference point for kvmclock with a seqcount, so that
kvmclock updates for all vCPUs can proceed in parallel. Xen runstate
updates will also run in parallel and not bounce the kvmclock cacheline.
Of the variables that were protected by pvclock_gtod_sync_lock,
nr_vcpus_matched_tsc is different because it is updated outside
pvclock_update_vm_gtod_copy and read inside it. Therefore, we
need to keep it protected by a spinlock. In fact it must now
be a raw spinlock, because pvclock_update_vm_gtod_copy, being the
write-side of a seqcount, is non-preemptible. Since we already
have tsc_write_lock which is a raw spinlock, we can just use
tsc_write_lock as the lock that protects the write-side of the
seqcount.
Co-developed-by: Oliver Upton <oupton@google.com>
Message-Id: <20210916181538.968978-6-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handling the migration of TSCs correctly is difficult, in part because
Linux does not provide userspace with the ability to retrieve a (TSC,
realtime) clock pair for a single instant in time. In lieu of a more
convenient facility, KVM can report similar information in the kvm_clock
structure.
Provide userspace with a host TSC & realtime pair iff the realtime clock
is based on the TSC. If userspace provides KVM_SET_CLOCK with a valid
realtime value, advance the KVM clock by the amount of elapsed time. Do
not step the KVM clock backwards, though, as it is a monotonic
oscillator.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210916181538.968978-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid allocating the gfn_track arrays if nothing needs them. If there
are no external to KVM users of the API (i.e. no GVT-g), then page
tracking is only needed for shadow page tables. This means that when tdp
is enabled and there are no external users, then the gfn_track arrays
can be lazily allocated when the shadow MMU is actually used. This avoid
allocations equal to .05% of guest memory when nested virtualization is
not used, if the kernel is compiled without GVT-g.
Signed-off-by: David Stevens <stevensd@chromium.org>
Message-Id: <20210922045859.2011227-3-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
By switching from kfree() to kvfree() in kvm_arch_free_vm() Arm64 can
use the common variant. This can be accomplished by adding another
macro __KVM_HAVE_ARCH_VM_FREE, which will be used only by x86 for now.
Further simplification can be achieved by adding __kvm_arch_free_vm()
doing the common part.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Message-Id: <20210903130808.30142-5-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass struct kvm_page_fault to mmu->page_fault() instead of
extracting the arguments from the struct. FNAME(page_fault) can use
the precomputed bools from the error code.
Suggested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Updates to the kvmclock parameters needs to do a complicated dance of
KVM_REQ_MCLOCK_INPROGRESS and KVM_REQ_CLOCK_UPDATE in addition to taking
pvclock_gtod_sync_lock. Place that in two functions that can be called
on all of master clock update, KVM_SET_CLOCK, and Hyper-V reenlightenment.
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Open code the call to mmu->translate_gpa() when loading nested PDPTRs and
kill off the existing helper, kvm_read_guest_page_mmu(), to discourage
incorrect use. Reading guest memory straight from an L2 GPA is extremely
rare (as evidenced by the lack of users), as very few constructs in x86
specify physical addresses, even fewer are virtualized by KVM, and even
fewer yet require emulation of L2 by L0 KVM.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210831164224.1119728-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_MAX_VCPU_ID is not specifying the highest allowed vcpu-id, but the
number of allowed vcpu-ids. This has already led to confusion, so
rename KVM_MAX_VCPU_ID to KVM_MAX_VCPU_IDS to make its semantics more
clear
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210913135745.13944-3-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_make_vcpus_request_mask() already disables preemption so just like
kvm_make_all_cpus_request_except() it can be switched to using
pre-allocated per-cpu cpumasks. This allows for improvements for both
users of the function: in Hyper-V emulation code 'tlb_flush' can now be
dropped from 'struct kvm_vcpu_hv' and kvm_make_scan_ioapic_request_mask()
gets rid of dynamic allocation.
cpumask_available() checks in kvm_make_vcpu_request() and
kvm_kick_many_cpus() can now be dropped as they checks for an impossible
condition: kvm_init() makes sure per-cpu masks are allocated.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210903075141.403071-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Support for 710 VCPUs was tested by Red Hat since RHEL-8.4,
so increase KVM_SOFT_MAX_VCPUS to 710.
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210903211600.2002377-4-ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Increase KVM_MAX_VCPUS to 1024, so we can test larger VMs.
I'm not changing KVM_SOFT_MAX_VCPUS yet because I'm afraid it
might involve complicated questions around the meaning of
"supported" and "recommended" in the upstream tree.
KVM_SOFT_MAX_VCPUS will be changed in a separate patch.
For reference, visible effects of this change are:
- KVM_CAP_MAX_VCPUS will now return 1024 (of course)
- Default value for CPUID[HYPERV_CPUID_IMPLEMENT_LIMITS (00x40000005)].EAX
will now be 1024
- KVM_MAX_VCPU_ID will change from 1151 to 4096
- Size of struct kvm will increase from 19328 to 22272 bytes
(in x86_64)
- Size of struct kvm_ioapic will increase from 1780 to 5084 bytes
(in x86_64)
- Bitmap stack variables that will grow:
- At kvm_hv_flush_tlb() kvm_hv_send_ipi(),
vp_bitmap[] and vcpu_bitmap[] will now be 128 bytes long
- vcpu_bitmap at bioapic_write_indirect() will be 128 bytes long
once patch "KVM: x86: Fix stack-out-of-bounds memory access
from ioapic_write_indirect()" is applied
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210903211600.2002377-3-ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of requiring KVM_MAX_VCPU_ID to be manually increased
every time we increase KVM_MAX_VCPUS, set it to 4*KVM_MAX_VCPUS.
This should be enough for CPU topologies where Cores-per-Package
and Packages-per-Socket are not powers of 2.
In practice, this increases KVM_MAX_VCPU_ID from 1023 to 1152.
The only side effect of this change is making some fields in
struct kvm_ioapic larger, increasing the struct size from 1628 to
1780 bytes (in x86_64).
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20210903211600.2002377-2-ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the 5-level page table CPU flag is set in the host, but the guest
has CR4.LA57=0 (including the case of a 32-bit guest), the top level of
the shadow NPT page tables will be fixed, consisting of one pointer to
a lower-level table and 511 non-present entries. Extend the existing
code that creates the fixed PML4 or PDP table, to provide a fixed PML5
table if needed.
This is not needed on EPT because the number of layers in the tables
is specified in the EPTP instead of depending on the host CR4.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-3-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GUESTDBG_BLOCKIRQ will allow KVM to block all interrupts
while running.
This change is mostly intended for more robust single stepping
of the guest and it has the following benefits when enabled:
* Resuming from a breakpoint is much more reliable.
When resuming execution from a breakpoint, with interrupts enabled,
more often than not, KVM would inject an interrupt and make the CPU
jump immediately to the interrupt handler and eventually return to
the breakpoint, to trigger it again.
From the user point of view it looks like the CPU never executed a
single instruction and in some cases that can even prevent forward
progress, for example, when the breakpoint is placed by an automated
script (e.g lx-symbols), which does something in response to the
breakpoint and then continues the guest automatically.
If the script execution takes enough time for another interrupt to
arrive, the guest will be stuck on the same breakpoint RIP forever.
* Normal single stepping is much more predictable, since it won't
land the debugger into an interrupt handler.
* RFLAGS.TF has less chance to be leaked to the guest:
We set that flag behind the guest's back to do single stepping
but if single step lands us into an interrupt/exception handler
it will be leaked to the guest in the form of being pushed
to the stack.
This doesn't completely eliminate this problem as exceptions
can still happen, but at least this reduces the chances
of this happening.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210811122927.900604-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Existing KVM code tracks the number of large pages regardless of their
sizes. Therefore, when large page of 1GB (or larger) is adopted, the
information becomes less useful because lpages counts a mix of 1G and 2M
pages.
So remove the lpages since it is easy for user space to aggregate the info.
Instead, provide a comprehensive page stats of all sizes from 4K to 512G.
Suggested-by: Ben Gardon <bgardon@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Jing Zhang <jingzhangos@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20210803044607.599629-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APICV_INHIBIT_REASON_HYPERV is currently unconditionally forced upon
SynIC activation as SynIC's AutoEOI is incompatible with APICv/AVIC. It is,
however, possible to track whether the feature was actually used by the
guest and only inhibit APICv/AVIC when needed.
TLFS suggests a dedicated 'HV_DEPRECATING_AEOI_RECOMMENDED' flag to let
Windows know that AutoEOI feature should be avoided. While it's up to
KVM userspace to set the flag, KVM can help a bit by exposing global
APICv/AVIC enablement.
Maxim:
- always set HV_DEPRECATING_AEOI_RECOMMENDED in kvm_get_hv_cpuid,
since this feature can be used regardless of AVIC
Paolo:
- use arch.apicv_update_lock to protect the hv->synic_auto_eoi_used
instead of atomic ops
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-12-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently on SVM, the kvm_request_apicv_update toggles the APICv
memslot without doing any synchronization.
If there is a mismatch between that memslot state and the AVIC state,
on one of the vCPUs, an APIC mmio access can be lost:
For example:
VCPU0: enable the APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
VCPU1: access an APIC mmio register.
Since AVIC is still disabled on VCPU1, the access will not be intercepted
by it, and neither will it cause MMIO fault, but rather it will just be
read/written from/to the dummy page mapped into the
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT.
Fix that by adding a lock guarding the AVIC state changes, and carefully
order the operations of kvm_request_apicv_update to avoid this race:
1. Take the lock
2. Send KVM_REQ_APICV_UPDATE
3. Update the apic inhibit reason
4. Release the lock
This ensures that at (2) all vCPUs are kicked out of the guest mode,
but don't yet see the new avic state.
Then only after (4) all other vCPUs can update their AVIC state and resume.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-10-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Thanks to the former patches, it is now possible to keep the APICv
memslot always enabled, and it will be invisible to the guest
when it is inhibited
This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce kvm_mmu_slot_lpages() to calculcate lpage_info and rmap array size.
The other __kvm_mmu_slot_lpages() can take an extra parameter of npages rather
than fetching from the memslot pointer. Start to use the latter one in
kvm_alloc_memslot_metadata().
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the declaration of kvm_spurious_fault() to KVM's "private" x86.h,
it should never be called by anything other than low level KVM code.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: rebased to a series without __ex()/__kvm_handle_fault_on_reboot()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the __kvm_handle_fault_on_reboot() and __ex() macros now that all
VMX and SVM instructions use asm goto to handle the fault (or in the
case of VMREAD, completely custom logic). Drop kvm_spurious_fault()'s
asmlinkage annotation as __kvm_handle_fault_on_reboot() was the only
flow that invoked it from assembly code.
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit ae561edeb4 ("KVM: x86: DR0-DR3 are not clear on reset") added code to
ensure eff_db are updated when they're modified through non-standard paths.
But there is no reason to also update hardware DRs unless hardware breakpoints
are active or DR exiting is disabled, and in those cases updating hardware is
handled by KVM_DEBUGREG_WONT_EXIT and KVM_DEBUGREG_BP_ENABLED.
KVM_DEBUGREG_RELOAD just causes unnecesarry load of hardware DRs and is better
to be removed.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210809174307.145263-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add yet another spinlock for the TDP MMU and take it when marking indirect
shadow pages unsync. When using the TDP MMU and L1 is running L2(s) with
nested TDP, KVM may encounter shadow pages for the TDP entries managed by
L1 (controlling L2) when handling a TDP MMU page fault. The unsync logic
is not thread safe, e.g. the kvm_mmu_page fields are not atomic, and
misbehaves when a shadow page is marked unsync via a TDP MMU page fault,
which runs with mmu_lock held for read, not write.
Lack of a critical section manifests most visibly as an underflow of
unsync_children in clear_unsync_child_bit() due to unsync_children being
corrupted when multiple CPUs write it without a critical section and
without atomic operations. But underflow is the best case scenario. The
worst case scenario is that unsync_children prematurely hits '0' and
leads to guest memory corruption due to KVM neglecting to properly sync
shadow pages.
Use an entirely new spinlock even though piggybacking tdp_mmu_pages_lock
would functionally be ok. Usurping the lock could degrade performance when
building upper level page tables on different vCPUs, especially since the
unsync flow could hold the lock for a comparatively long time depending on
the number of indirect shadow pages and the depth of the paging tree.
For simplicity, take the lock for all MMUs, even though KVM could fairly
easily know that mmu_lock is held for write. If mmu_lock is held for
write, there cannot be contention for the inner spinlock, and marking
shadow pages unsync across multiple vCPUs will be slow enough that
bouncing the kvm_arch cacheline should be in the noise.
Note, even though L2 could theoretically be given access to its own EPT
entries, a nested MMU must hold mmu_lock for write and thus cannot race
against a TDP MMU page fault. I.e. the additional spinlock only _needs_ to
be taken by the TDP MMU, as opposed to being taken by any MMU for a VM
that is running with the TDP MMU enabled. Holding mmu_lock for read also
prevents the indirect shadow page from being freed. But as above, keep
it simple and always take the lock.
Alternative #1, the TDP MMU could simply pass "false" for can_unsync and
effectively disable unsync behavior for nested TDP. Write protecting leaf
shadow pages is unlikely to noticeably impact traditional L1 VMMs, as such
VMMs typically don't modify TDP entries, but the same may not hold true for
non-standard use cases and/or VMMs that are migrating physical pages (from
L1's perspective).
Alternative #2, the unsync logic could be made thread safe. In theory,
simply converting all relevant kvm_mmu_page fields to atomics and using
atomic bitops for the bitmap would suffice. However, (a) an in-depth audit
would be required, (b) the code churn would be substantial, and (c) legacy
shadow paging would incur additional atomic operations in performance
sensitive paths for no benefit (to legacy shadow paging).
Fixes: a2855afc7e ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181815.3378104-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
gfn_to_hva_cache is not thread-safe, so it is usually used only within
a vCPU (whose code is protected by vcpu->mutex). The Xen interface
implementation has such a cache in kvm->arch, but it is not really
used except to store the location of the shared info page. Replace
shinfo_set and shinfo_cache with just the value that is passed via
KVM_XEN_ATTR_TYPE_SHARED_INFO; the only complication is that the
initialization value is not zero anymore and therefore kvm_xen_init_vm
needs to be introduced.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Based on our observations, after any vm-exit associated with vPMU, there
are at least two or more perf interfaces to be called for guest counter
emulation, such as perf_event_{pause, read_value, period}(), and each one
will {lock, unlock} the same perf_event_ctx. The frequency of calls becomes
more severe when guest use counters in a multiplexed manner.
Holding a lock once and completing the KVM request operations in the perf
context would introduce a set of impractical new interfaces. So we can
further optimize the vPMU implementation by avoiding repeated calls to
these interfaces in the KVM context for at least one pattern:
After we call perf_event_pause() once, the event will be disabled and its
internal count will be reset to 0. So there is no need to pause it again
or read its value. Once the event is paused, event period will not be
updated until the next time it's resumed or reprogrammed. And there is
also no need to call perf_event_period twice for a non-running counter,
considering the perf_event for a running counter is never paused.
Based on this implementation, for the following common usage of
sampling 4 events using perf on a 4u8g guest:
echo 0 > /proc/sys/kernel/watchdog
echo 25 > /proc/sys/kernel/perf_cpu_time_max_percent
echo 10000 > /proc/sys/kernel/perf_event_max_sample_rate
echo 0 > /proc/sys/kernel/perf_cpu_time_max_percent
for i in `seq 1 1 10`
do
taskset -c 0 perf record \
-e cpu-cycles -e instructions -e branch-instructions -e cache-misses \
/root/br_instr a
done
the average latency of the guest NMI handler is reduced from
37646.7 ns to 32929.3 ns (~1.14x speed up) on the Intel ICX server.
Also, in addition to collecting more samples, no loss of sampling
accuracy was observed compared to before the optimization.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210728120705.6855-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
As alluded to in commit f36f3f2846 ("KVM: add "new" argument to
kvm_arch_commit_memory_region"), a bunch of other places where struct
kvm_memory_slot is used, needs to be refactored to preserve the
"const"ness of struct kvm_memory_slot across-the-board.
Signed-off-by: Hamza Mahfooz <someguy@effective-light.com>
Message-Id: <20210713023338.57108-1-someguy@effective-light.com>
[Do not touch body of slot_rmap_walk_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the EDX initialization at vCPU RESET, which is now identical between
VMX and SVM, into common code.
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new statistic max_mmu_rmap_size, which stores the maximum size of rmap
for the vm.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210625153214.43106-2-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This better reflects the purpose of this variable on AMD, since
on AMD the AVIC's memory slot can be enabled and disabled dynamically.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210623113002.111448-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a fallback mechanism to the in-kernel instruction emulator that
allows userspace the opportunity to process an instruction the emulator
was unable to. When the in-kernel instruction emulator fails to process
an instruction it will either inject a #UD into the guest or exit to
userspace with exit reason KVM_INTERNAL_ERROR. This is because it does
not know how to proceed in an appropriate manner. This feature lets
userspace get involved to see if it can figure out a better path
forward.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210510144834.658457-2-aaronlewis@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the pre-computed last_nonleaf_level, which is arguably wrong and at
best confusing. Per the comment:
Can have large pages at levels 2..last_nonleaf_level-1.
the intent of the variable would appear to be to track what levels can
_legally_ have large pages, but that intent doesn't align with reality.
The computed value will be wrong for 5-level paging, or if 1gb pages are
not supported.
The flawed code is not a problem in practice, because except for 32-bit
PSE paging, bit 7 is reserved if large pages aren't supported at the
level. Take advantage of this invariant and simply omit the level magic
math for 64-bit page tables (including PAE).
For 32-bit paging (non-PAE), the adjustments are needed purely because
bit 7 is ignored if PSE=0. Retain that logic as is, but make
is_last_gpte() unique per PTTYPE so that the PSE check is avoided for
PAE and EPT paging. In the spirit of avoiding branches, bump the "last
nonleaf level" for 32-bit PSE paging by adding the PSE bit itself.
Note, bit 7 is ignored or has other meaning in CR3/EPTP, but despite
FNAME(walk_addr_generic) briefly grabbing CR3/EPTP in "pte", they are
not PTEs and will blow up all the other gpte helpers.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-51-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand the comments for the MMU roles. The interactions with gfn_track
PGD reuse in particular are hairy.
Regarding PGD reuse, add comments in the nested virtualization flows to
call out why kvm_init_mmu() is unconditionally called even when nested
TDP is used.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-50-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_mmu.nx as there no consumers left.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename "nxe" to "efer_nx" so that future macro magic can use the pattern
<reg>_<bit> for all CR0, CR4, and EFER bits that included in the role.
Using "efer_nx" also makes it clear that the role bit reflects EFER.NX,
not the NX bit in the corresponding PTE.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop MAXPHYADDR from mmu_role now that all MMUs have their role
invalidated after a CPUID update. Invalidating the role forces all MMUs
to re-evaluate the guest's MAXPHYADDR, and the guest's MAXPHYADDR can
only be changed only through a CPUID update.
This reverts commit de3ccd26fa.
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Warn userspace that KVM_SET_CPUID{,2} after KVM_RUN "may" cause guest
instability. Initialize last_vmentry_cpu to -1 and use it to detect if
the vCPU has been run at least once when its CPUID model is changed.
KVM does not correctly handle changes to paging related settings in the
guest's vCPU model after KVM_RUN, e.g. MAXPHYADDR, GBPAGES, etc... KVM
could theoretically zap all shadow pages, but actually making that happen
is a mess due to lock inversion (vcpu->mutex is held). And even then,
updating paging settings on the fly would only work if all vCPUs are
stopped, updated in concert with identical settings, then restarted.
To support running vCPUs with different vCPU models (that affect paging),
KVM would need to track all relevant information in kvm_mmu_page_role.
Note, that's the _page_ role, not the full mmu_role. Updating mmu_role
isn't sufficient as a vCPU can reuse a shadow page translation that was
created by a vCPU with different settings and thus completely skip the
reserved bit checks (that are tied to CPUID).
Tracking CPUID state in kvm_mmu_page_role is _extremely_ undesirable as
it would require doubling gfn_track from a u16 to a u32, i.e. would
increase KVM's memory footprint by 2 bytes for every 4kb of guest memory.
E.g. MAXPHYADDR (6 bits), GBPAGES, AMD vs. INTEL = 1 bit, and SEV C-BIT
would all need to be tracked.
In practice, there is no remotely sane use case for changing any paging
related CPUID entries on the fly, so just sweep it under the rug (after
yelling at userspace).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invalidate all MMUs' roles after a CPUID update to force reinitizliation
of the MMU context/helpers. Despite the efforts of commit de3ccd26fa
("KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"),
there are still a handful of CPUID-based properties that affect MMU
behavior but are not incorporated into mmu_role. E.g. 1gb hugepage
support, AMD vs. Intel handling of bit 8, and SEV's C-Bit location all
factor into the guest's reserved PTE bits.
The obvious alternative would be to add all such properties to mmu_role,
but doing so provides no benefit over simply forcing a reinitialization
on every CPUID update, as setting guest CPUID is a rare operation.
Note, reinitializing all MMUs after a CPUID update does not fix all of
KVM's woes. Specifically, kvm_mmu_page_role doesn't track the CPUID
properties, which means that a vCPU can reuse shadow pages that should
not exist for the new vCPU model, e.g. that map GPAs that are now illegal
(due to MAXPHYADDR changes) or that set bits that are now reserved
(PAGE_SIZE for 1gb pages), etc...
Tracking the relevant CPUID properties in kvm_mmu_page_role would address
the majority of problems, but fully tracking that much state in the
shadow page role comes with an unpalatable cost as it would require a
non-trivial increase in KVM's memory footprint. The GBPAGES case is even
worse, as neither Intel nor AMD provides a way to disable 1gb hugepage
support in the hardware page walker, i.e. it's a virtualization hole that
can't be closed when using TDP.
In other words, resetting the MMU after a CPUID update is largely a
superficial fix. But, it will allow reverting the tracking of MAXPHYADDR
in the mmu_role, and that case in particular needs to mostly work because
KVM's shadow_root_level depends on guest MAXPHYADDR when 5-level paging
is supported. For cases where KVM botches guest behavior, the damage is
limited to that guest. But for the shadow_root_level, a misconfigured
MMU can cause KVM to incorrectly access memory, e.g. due to walking off
the end of its shadow page tables.
Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Restore CR4.LA57 to the mmu_role to fix an amusing edge case with nested
virtualization. When KVM (L0) is using TDP, CR4.LA57 is not reflected in
mmu_role.base.level because that tracks the shadow root level, i.e. TDP
level. Normally, this is not an issue because LA57 can't be toggled
while long mode is active, i.e. the guest has to first disable paging,
then toggle LA57, then re-enable paging, thus ensuring an MMU
reinitialization.
But if L1 is crafty, it can load a new CR4 on VM-Exit and toggle LA57
without having to bounce through an unpaged section. L1 can also load a
new CR3 on exit, i.e. it doesn't even need to play crazy paging games, a
single entry PML5 is sufficient. Such shenanigans are only problematic
if L0 and L1 use TDP, otherwise L1 and L2 share an MMU that gets
reinitialized on nested VM-Enter/VM-Exit due to mmu_role.base.guest_mode.
Note, in the L2 case with nested TDP, even though L1 can switch between
L2s with different LA57 settings, thus bypassing the paging requirement,
in that case KVM's nested_mmu will track LA57 in base.level.
This reverts commit 8053f924ca.
Fixes: 8053f924ca ("KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Generic KVM stats are those collected in architecture independent code
or those supported by all architectures; put all generic statistics in
a separate structure. This ensures that they are defined the same way
in the statistics API which is being added, removing duplication among
different architectures in the declaration of the descriptors.
No functional change intended.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210618222709.1858088-2-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This hypercall is used by the SEV guest to notify a change in the page
encryption status to the hypervisor. The hypercall should be invoked
only when the encryption attribute is changed from encrypted -> decrypted
and vice versa. By default all guest pages are considered encrypted.
The hypercall exits to userspace to manage the guest shared regions and
integrate with the userspace VMM's migration code.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <90778988e1ee01926ff9cac447aacb745f954c8c.1623174621.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating INVVPID for L1, free only L2+ roots, using the guest_mode
tag in the MMU role to identify L2+ roots. From L1's perspective, its
own TLB entries use VPID=0, and INVVPID is not requied to invalidate such
entries. Per Intel's SDM, INVVPID _may_ invalidate entries with VPID=0,
but it is not required to do so.
Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop skip_mmu_sync and skip_tlb_flush from __kvm_mmu_new_pgd() now that
all call sites unconditionally skip both the sync and flush.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Trigger a full TLB flush on behalf of the guest on nested VM-Enter and
VM-Exit when VPID is disabled for L2. kvm_mmu_new_pgd() syncs only the
current PGD, which can theoretically leave stale, unsync'd entries in a
previous guest PGD, which could be consumed if L2 is allowed to load CR3
with PCID_NOFLUSH=1.
Rename KVM_REQ_HV_TLB_FLUSH to KVM_REQ_TLB_FLUSH_GUEST so that it can
be utilized for its obvious purpose of emulating a guest TLB flush.
Note, there is no change the actual TLB flush executed by KVM, even
though the fast PGD switch uses KVM_REQ_TLB_FLUSH_CURRENT. When VPID is
disabled for L2, vpid02 is guaranteed to be '0', and thus
nested_get_vpid02() will return the VPID that is shared by L1 and L2.
Generate the request outside of kvm_mmu_new_pgd(), as getting the common
helper to correctly identify which requested is needed is quite painful.
E.g. using KVM_REQ_TLB_FLUSH_GUEST when nested EPT is in play is wrong as
a TLB flush from the L1 kernel's perspective does not invalidate EPT
mappings. And, by using KVM_REQ_TLB_FLUSH_GUEST, nVMX can do future
simplification by moving the logic into nested_vmx_transition_tlb_flush().
Fixes: 41fab65e7c ("KVM: nVMX: Skip MMU sync on nested VMX transition when possible")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
if new KVM_*_SREGS2 ioctls are used, the PDPTRs are
a part of the migration state and are correctly
restored by those ioctls.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210607090203.133058-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kill off pdptrs_changed() and instead go through the full kvm_set_cr3()
for PAE guest, even if the new CR3 is the same as the current CR3. For
VMX, and SVM with NPT enabled, the PDPTRs are unconditionally marked as
unavailable after VM-Exit, i.e. the optimization is dead code except for
SVM without NPT.
In the unlikely scenario that anyone cares about SVM without NPT _and_ a
PAE guest, they've got bigger problems if their guest is loading the same
CR3 so frequently that the performance of kvm_set_cr3() is notable,
especially since KVM's fast PGD switching means reloading the same CR3
does not require a full rebuild. Given that PAE and PCID are mutually
exclusive, i.e. a sync and flush are guaranteed in any case, the actual
benefits of the pdptrs_changed() optimization are marginal at best.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210607090203.133058-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Limiting exposed Hyper-V features requires a fast way to check if the
particular feature is exposed in guest visible CPUIDs or not. To aboid
looping through all CPUID entries on every hypercall/MSR access cache
the required leaves on CPUID update.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Modeled after KVM_CAP_ENFORCE_PV_FEATURE_CPUID, the new capability allows
for limiting Hyper-V features to those exposed to the guest in Hyper-V
CPUIDs (0x40000003, 0x40000004, ...).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently the remote TLB flush logic is specific to VMX.
Move it to a common place so that SVM can use it as well.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <4f4e4ca19778437dae502f44363a38e99e3ef5d1.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the following per-VCPU statistic to KVM debugfs to show if a given
VCPU is in guest mode:
guest_mode
Also add this as a per-VM statistic to KVM debugfs to show the total number
of VCPUs that are in guest mode in a given VM.
Signed-off-by: Krish Sadhukhan <Krish.Sadhukhan@oracle.com>
Message-Id: <20210609180340.104248-3-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that .post_leave_smm() is gone, drop "pre_" from the remaining
helpers. The helpers aren't invoked purely before SMI/RSM processing,
e.g. both helpers are invoked after state is snapshotted (from regs or
SMRAM), and the RSM helper is invoked after some amount of register state
has been stuffed.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that APICv/AVIC enablement is kept in common 'enable_apicv' variable,
there's no need to call kvm_apicv_init() from vendor specific code.
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210609150911.1471882-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unify VMX and SVM code by moving APICv/AVIC enablement tracking to common
'enable_apicv' variable. Note: unlike APICv, AVIC is disabled by default.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210609150911.1471882-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently vmx_vcpu_load_vmcs() writes the TSC_MULTIPLIER field of the
VMCS every time the VMCS is loaded. Instead of doing this, set this
field from common code on initialization and whenever the scaling ratio
changes.
Additionally remove vmx->current_tsc_ratio. This field is redundant as
vcpu->arch.tsc_scaling_ratio already tracks the current TSC scaling
ratio. The vmx->current_tsc_ratio field is only used for avoiding
unnecessary writes but it is no longer needed after removing the code
from the VMCS load path.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Message-Id: <20210607105438.16541-1-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The write_l1_tsc_offset() callback has a misleading name. It does not
set L1's TSC offset, it rather updates the current TSC offset which
might be different if a nested guest is executing. Additionally, both
the vmx and svm implementations use the same logic for calculating the
current TSC before writing it to hardware.
Rename the function and move the common logic to the caller. The vmx/svm
specific code now merely sets the given offset to the corresponding
hardware structure.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-9-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When L2 is entered we need to "merge" the TSC multiplier and TSC offset
values of 01 and 12 together.
The merging is done using the following equations:
offset_02 = ((offset_01 * mult_12) >> shift_bits) + offset_12
mult_02 = (mult_01 * mult_12) >> shift_bits
Where shift_bits is kvm_tsc_scaling_ratio_frac_bits.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-8-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to implement as much of the nested TSC scaling logic as
possible in common code, we need these vendor callbacks for retrieving
the TSC offset and the TSC multiplier that L1 has set for L2.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-7-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Sometimes kvm_scale_tsc() needs to use the current scaling ratio and
other times (like when reading the TSC from user space) it needs to use
L1's scaling ratio. Have the caller specify this by passing the ratio as
a parameter.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-5-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store L1's scaling ratio in the kvm_vcpu_arch struct like we already do
for L1's TSC offset. This allows for easy save/restore when we enter and
then exit the nested guest.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-3-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the TDP MMU is in use, wait to allocate the rmaps until the shadow
MMU is actually used. (i.e. a nested VM is launched.) This saves memory
equal to 0.2% of guest memory in cases where the TDP MMU is used and
there are no nested guests involved.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a field to control whether new memslots should have rmaps allocated
for them. As of this change, it's not safe to skip allocating rmaps, so
the field is always set to allocate rmaps. Future changes will make it
safe to operate without rmaps, using the TDP MMU. Then further changes
will allow the rmaps to be allocated lazily when needed for nested
oprtation.
No functional change expected.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a start_assignment hook to kvm_x86_ops, which is called when
kvm_arch_start_assignment is done.
The hook is required to update the wakeup vector of a sleeping vCPU
when a device is assigned to the guest.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20210525134321.254128742@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow loading KVM SVM if 5-level paging is supported. In theory, NPT
for L1 should simply work, but there unknowns with respect to how the
guest's MAXPHYADDR will be handled by hardware.
Nested NPT is more problematic, as running an L1 VMM that is using
2-level page tables requires stacking single-entry PDP and PML4 tables in
KVM's NPT for L2, as there are no equivalent entries in L1's NPT to
shadow. Barring hardware magic, for 5-level paging, KVM would need stack
another layer to handle PML5.
Opportunistically rename the lm_root pointer, which is used for the
aforementioned stacking when shadowing 2-level L1 NPT, to pml4_root to
call out that it's specifically for PML4.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210505204221.1934471-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bus lock debug exception introduces a new bit DR6_BUS_LOCK (bit 11 of
DR6) to indicate that bus lock #DB exception is generated. The set/clear
of DR6_BUS_LOCK is similar to the DR6_RTM. The processor clears
DR6_BUS_LOCK when the exception is generated. For all other #DB, the
processor sets this bit to 1. Software #DB handler should set this bit
before returning to the interrupted task.
In VMM, to avoid breaking the CPUs without bus lock #DB exception
support, activate the DR6_BUS_LOCK conditionally in DR6_FIXED_1 bits.
When intercepting the #DB exception caused by bus locks, bit 11 of the
exit qualification is set to identify it. The VMM should emulate the
exception by clearing the bit 11 of the guest DR6.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20210202090433.13441-3-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Squish the Intel and AMD emulation of MSR_TSC_AUX together and tie it to
the guest CPU model instead of the host CPU behavior. While not strictly
necessary to avoid guest breakage, emulating cross-vendor "architecture"
will provide consistent behavior for the guest, e.g. WRMSR fault behavior
won't change if the vCPU is migrated to a host with divergent behavior.
Note, the "new" kvm_is_supported_user_return_msr() checks do not add new
functionality on either SVM or VMX. On SVM, the equivalent was
"tsc_aux_uret_slot < 0", and on VMX the check was buried in the
vmx_find_uret_msr() call at the find_uret_msr label.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that SVM and VMX both probe MSRs before "defining" user return slots
for them, consolidate the code for probe+define into common x86 and
eliminate the odd behavior of having the vendor code define the slot for
a given MSR.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split out and export the number of configured user return MSRs so that
VMX can iterate over the set of MSRs without having to do its own tracking.
Keep the list itself internal to x86 so that vendor code still has to go
through the "official" APIs to add/modify entries.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop VMX's global list of user return MSRs now that VMX doesn't resort said
list to isolate "active" MSRs, i.e. now that VMX's list and x86's list have
the same MSRs in the same order.
In addition to eliminating the redundant list, this will also allow moving
more of the list management into common x86.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable preemption when probing a user return MSR via RDSMR/WRMSR. If
the MSR holds a different value per logical CPU, the WRMSR could corrupt
the host's value if KVM is preempted between the RDMSR and WRMSR, and
then rescheduled on a different CPU.
Opportunistically land the helper in common x86, SVM will use the helper
in a future commit.
Fixes: 4be5341026 ("KVM: VMX: Initialize vmx->guest_msrs[] right after allocation")
Cc: stable@vger.kernel.org
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-6-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Define and use an invalid GPA (all ones) for init value of last
and current nested vmcb physical addresses.
* Reset the current vmcb12 gpa to the invalid value when leaving
the nested mode, similar to what is done on nested vmexit.
* Reset the last seen vmcb12 address when disabling the nested SVM,
as it relies on vmcb02 fields which are freed at that point.
Fixes: 4995a3685f ("KVM: SVM: Use a separate vmcb for the nested L2 guest")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210503125446.1353307-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation,
zap under read lock, enable/disably dirty page logging under
read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing
the architecture-specific code
- Some selftests improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
+2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
=AXUi
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
Add a capability for userspace to mirror SEV encryption context from
one vm to another. On our side, this is intended to support a
Migration Helper vCPU, but it can also be used generically to support
other in-guest workloads scheduled by the host. The intention is for
the primary guest and the mirror to have nearly identical memslots.
The primary benefits of this are that:
1) The VMs do not share KVM contexts (think APIC/MSRs/etc), so they
can't accidentally clobber each other.
2) The VMs can have different memory-views, which is necessary for post-copy
migration (the migration vCPUs on the target need to read and write to
pages, when the primary guest would VMEXIT).
This does not change the threat model for AMD SEV. Any memory involved
is still owned by the primary guest and its initial state is still
attested to through the normal SEV_LAUNCH_* flows. If userspace wanted
to circumvent SEV, they could achieve the same effect by simply attaching
a vCPU to the primary VM.
This patch deliberately leaves userspace in charge of the memslots for the
mirror, as it already has the power to mess with them in the primary guest.
This patch does not support SEV-ES (much less SNP), as it does not
handle handing off attested VMSAs to the mirror.
For additional context, we need a Migration Helper because SEV PSP
migration is far too slow for our live migration on its own. Using
an in-guest migrator lets us speed this up significantly.
Signed-off-by: Nathan Tempelman <natet@google.com>
Message-Id: <20210408223214.2582277-1-natet@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an ECREATE handler that will be used to intercept ECREATE for the
purpose of enforcing and enclave's MISCSELECT, ATTRIBUTES and XFRM, i.e.
to allow userspace to restrict SGX features via CPUID. ECREATE will be
intercepted when any of the aforementioned masks diverges from hardware
in order to enforce the desired CPUID model, i.e. inject #GP if the
guest attempts to set a bit that hasn't been enumerated as allowed-1 in
CPUID.
Note, access to the PROVISIONKEY is not yet supported.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <c3a97684f1b71b4f4626a1fc3879472a95651725.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Page faults that are signaled by the SGX Enclave Page Cache Map (EPCM),
as opposed to the traditional IA32/EPT page tables, set an SGX bit in
the error code to indicate that the #PF was induced by SGX. KVM will
need to emulate this behavior as part of its trap-and-execute scheme for
virtualizing SGX Launch Control, e.g. to inject SGX-induced #PFs if
EINIT faults in the host, and to support live migration.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <e170c5175cb9f35f53218a7512c9e3db972b97a2.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_mmu_slot_largepage_remove_write_access() is decared but not used,
just remove it.
Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210406063504.17552-1-zhukeqian1@huawei.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To analyze some performance issues with lock contention and scheduling,
it is nice to know when directed yield are successful or failing.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1617941911-5338-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Protect the contents of the TDP MMU roots list with RCU in preparation
for a future patch which will allow the iterator macro to be used under
the MMU lock in read mode.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Yank out the hva-based MMU notifier APIs now that all architectures that
use the notifiers have moved to the gfn-based APIs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the hva->gfn lookup for MMU notifiers into common code. Every arch
does a similar lookup, and some arch code is all but identical across
multiple architectures.
In addition to consolidating code, this will allow introducing
optimizations that will benefit all architectures without incurring
multiple walks of the memslots, e.g. by taking mmu_lock if and only if a
relevant range exists in the memslots.
The use of __always_inline to avoid indirect call retpolines, as done by
x86, may also benefit other architectures.
Consolidating the lookups also fixes a wart in x86, where the legacy MMU
and TDP MMU each do their own memslot walks.
Lastly, future enhancements to the memslot implementation, e.g. to add an
interval tree to track host address, will need to touch far less arch
specific code.
MIPS, PPC, and arm64 will be converted one at a time in future patches.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store the supported bits into KVM_GUESTDBG_VALID_MASK
macro, similar to how arm does this.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401135451.1004564-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the prototypes for the MMU notifier callbacks out of arch code and
into common code. There is no benefit to having each arch replicate the
prototypes since any deviation from the invocation in common code will
explode.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix a plethora of issues with MSR filtering by installing the resulting
filter as an atomic bundle instead of updating the live filter one range
at a time. The KVM_X86_SET_MSR_FILTER ioctl() isn't truly atomic, as
the hardware MSR bitmaps won't be updated until the next VM-Enter, but
the relevant software struct is atomically updated, which is what KVM
really needs.
Similar to the approach used for modifying memslots, make arch.msr_filter
a SRCU-protected pointer, do all the work configuring the new filter
outside of kvm->lock, and then acquire kvm->lock only when the new filter
has been vetted and created. That way vCPU readers either see the old
filter or the new filter in their entirety, not some half-baked state.
Yuan Yao pointed out a use-after-free in ksm_msr_allowed() due to a
TOCTOU bug, but that's just the tip of the iceberg...
- Nothing is __rcu annotated, making it nigh impossible to audit the
code for correctness.
- kvm_add_msr_filter() has an unpaired smp_wmb(). Violation of kernel
coding style aside, the lack of a smb_rmb() anywhere casts all code
into doubt.
- kvm_clear_msr_filter() has a double free TOCTOU bug, as it grabs
count before taking the lock.
- kvm_clear_msr_filter() also has memory leak due to the same TOCTOU bug.
The entire approach of updating the live filter is also flawed. While
installing a new filter is inherently racy if vCPUs are running, fixing
the above issues also makes it trivial to ensure certain behavior is
deterministic, e.g. KVM can provide deterministic behavior for MSRs with
identical settings in the old and new filters. An atomic update of the
filter also prevents KVM from getting into a half-baked state, e.g. if
installing a filter fails, the existing approach would leave the filter
in a half-baked state, having already committed whatever bits of the
filter were already processed.
[*] https://lkml.kernel.org/r/20210312083157.25403-1-yaoyuan0329os@gmail.com
Fixes: 1a155254ff ("KVM: x86: Introduce MSR filtering")
Cc: stable@vger.kernel.org
Cc: Alexander Graf <graf@amazon.com>
Reported-by: Yuan Yao <yaoyuan0329os@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210316184436.2544875-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix ~144 single-word typos in arch/x86/ code comments.
Doing this in a single commit should reduce the churn.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
Create an infrastructure for tracking Hyper-V TSC page status, i.e. if it
was updated from guest/host side or if we've failed to set it up (because
e.g. guest wrote some garbage to HV_X64_MSR_REFERENCE_TSC) and there's no
need to retry.
Also, in a hypothetical situation when we are in 'always catchup' mode for
TSC we can now avoid contending 'hv->hv_lock' on every guest enter by
setting the state to HV_TSC_PAGE_BROKEN after compute_tsc_page_parameters()
returns false.
Check for HV_TSC_PAGE_SET state instead of '!hv->tsc_ref.tsc_sequence' in
get_time_ref_counter() to properly handle the situation when we failed to
write the updated TSC page values to the guest.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210316143736.964151-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Retrieve the active PCID only when writing a guest CR3 value, i.e. don't
get the PCID when using EPT or NPT. The PCID is especially problematic
for EPT as the bits have different meaning, and so the PCID and must be
manually stripped, which is annoying and unnecessary. And on VMX,
getting the active PCID also involves reading the guest's CR3 and
CR4.PCIDE, i.e. may add pointless VMREADs.
Opportunistically rename the pgd/pgd_level params to root_hpa and
root_level to better reflect their new roles. Keep the function names,
as "load the guest PGD" is still accurate/correct.
Last, and probably least, pass root_hpa as a hpa_t/u64 instead of an
unsigned long. The EPTP holds a 64-bit value, even in 32-bit mode, so
in theory EPT could support HIGHMEM for 32-bit KVM. Never mind that
doing so would require changing the MMU page allocators and reworking
the MMU to use kmap().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305183123.3978098-2-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let the MMU deal with the SPTE masks to avoid splitting the logic and
knowledge across the MMU and VMX.
The SPTE masks that are used for EPT are very, very tightly coupled to
the MMU implementation. The use of available bits, the existence of A/D
types, the fact that shadow_x_mask even exists, and so on and so forth
are all baked into the MMU implementation. Cross referencing the params
to the masks is also a nightmare, as pretty much every param is a u64.
A future patch will make the location of the MMU_WRITABLE and
HOST_WRITABLE bits MMU specific, to free up bit 11 for a MMU_PRESENT bit.
Doing that change with the current kvm_mmu_set_mask_ptes() would be an
absolute mess.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the entirety of the accelerated RDPMC emulation to x86.c, and assign
the common handler directly to the exit handler array for VMX. SVM has
bizarre nrips behavior that prevents it from directly invoking the common
handler. The nrips goofiness will be addressed in a future patch.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the trivial exit handlers, e.g. for instructions that KVM
"emulates" as nops, to common x86 code. Assign the common handlers
directly to the exit handler arrays and drop the vendor trampolines.
Opportunistically use pr_warn_once() where appropriate.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the entirety of XSETBV emulation to x86.c, and assign the
function directly to both VMX's and SVM's exit handlers, i.e. drop the
unnecessary trampolines.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synthesize a nested VM-Exit if L2 triggers an emulated triple fault
instead of exiting to userspace, which likely will kill L1. Any flow
that does KVM_REQ_TRIPLE_FAULT is suspect, but the most common scenario
for L2 killing L1 is if L0 (KVM) intercepts a contributory exception that
is _not_intercepted by L1. E.g. if KVM is intercepting #GPs for the
VMware backdoor, a #GP that occurs in L2 while vectoring an injected #DF
will cause KVM to emulate triple fault.
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210302174515.2812275-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unexport the MMU load and unload helpers now that they are no longer
used (incorrectly) in vendor code.
Opportunistically move the kvm_mmu_sync_roots() declaration into mmu.h,
it should not be exposed to vendor code.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210305011101.3597423-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new per-cpu stat 'nested_run' is introduced in order to track if L1 VM
is running or used to run L2 VM.
An example of the usage of 'nested_run' is to help the host administrator
to easily track if any L1 VM is used to run L2 VM. Suppose there is issue
that may happen with nested virtualization, the administrator will be able
to easily narrow down and confirm if the issue is due to nested
virtualization via 'nested_run'. For example, whether the fix like
commit 88dddc11a8 ("KVM: nVMX: do not use dangling shadow VMCS after
guest reset") is required.
Cc: Joe Jin <joe.jin@oracle.com>
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Message-Id: <20210305225747.7682-1-dongli.zhang@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is how Xen guests do steal time accounting. The hypervisor records
the amount of time spent in each of running/runnable/blocked/offline
states.
In the Xen accounting, a vCPU is still in state RUNSTATE_running while
in Xen for a hypercall or I/O trap, etc. Only if Xen explicitly schedules
does the state become RUNSTATE_blocked. In KVM this means that even when
the vCPU exits the kvm_run loop, the state remains RUNSTATE_running.
The VMM can explicitly set the vCPU to RUNSTATE_blocked by using the
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT attribute, and can also use
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST to retrospectively add a given
amount of time to the blocked state and subtract it from the running
state.
The state_entry_time corresponds to get_kvmclock_ns() at the time the
vCPU entered the current state, and the total times of all four states
should always add up to state_entry_time.
Co-developed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210301125309.874953-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The 'mmu_page_hash' is used as hash table while 'active_mmu_pages' is a
list. Remove the misplaced comment as it's mostly stating the obvious
anyways.
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210226061945.1222-1-dongli.zhang@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove several exports from the MMU that are no longer necessary.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stop setting dirty bits for MMU pages when dirty logging is disabled for
a memslot, as PML is now completely disabled when there are no memslots
with dirty logging enabled.
This means that spurious PML entries will be created for memslots with
dirty logging disabled if at least one other memslot has dirty logging
enabled. However, spurious PML entries are already possible since
dirty bits are set only when a dirty logging is turned off, i.e. memslots
that are never dirty logged will have dirty bits cleared.
In the end, it's faster overall to eat a few spurious PML entries in the
window where dirty logging is being disabled across all memslots.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, if enable_pml=1 PML remains enabled for the entire lifetime
of the VM irrespective of whether dirty logging is enable or disabled.
When dirty logging is disabled, all the pages of the VM are manually
marked dirty, so that PML is effectively non-operational. Setting
the dirty bits is an expensive operation which can cause severe MMU
lock contention in a performance sensitive path when dirty logging is
disabled after a failed or canceled live migration.
Manually setting dirty bits also fails to prevent PML activity if some
code path clears dirty bits, which can incur unnecessary VM-Exits.
In order to avoid this extra overhead, dynamically enable/disable PML
when dirty logging gets turned on/off for the first/last memslot.
Signed-off-by: Makarand Sonare <makarandsonare@google.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the facade of KVM's PML logic being vendor specific and move the
bits that aren't truly VMX specific into common x86 code. The MMU logic
for dealing with PML is tightly coupled to the feature and to VMX's
implementation, bouncing through kvm_x86_ops obfuscates the code without
providing any meaningful separation of concerns or encapsulation.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store the vendor-specific dirty log size in a variable, there's no need
to wrap it in a function since the value is constant after
hardware_setup() runs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V emulation is enabled in KVM unconditionally. This is bad at least
from security standpoint as it is an extra attack surface. Ideally, there
should be a per-VM capability explicitly enabled by VMM but currently it
is not the case and we can't mandate one without breaking backwards
compatibility. We can, however, check guest visible CPUIDs and only enable
Hyper-V emulation when "Hv#1" interface was exposed in
HYPERV_CPUID_INTERFACE.
Note, VMMs are free to act in any sequence they like, e.g. they can try
to set MSRs first and CPUIDs later so we still need to allow the host
to read/write Hyper-V specific MSRs unconditionally.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-14-vkuznets@redhat.com>
[Add selftest vcpu_set_hv_cpuid API to avoid breaking xen_vmcall_test. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V context is only needed for guests which use Hyper-V emulation in
KVM (e.g. Windows/Hyper-V guests). 'struct kvm_vcpu_hv' is, however, quite
big, it accounts for more than 1/4 of the total 'struct kvm_vcpu_arch'
which is also quite big already. This all looks like a waste.
Allocate 'struct kvm_vcpu_hv' dynamically. This patch does not bring any
(intentional) functional change as we still allocate the context
unconditionally but it paves the way to doing that only when needed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-13-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current KVM_USER_MEM_SLOTS limits are arch specific (512 on Power, 509 on x86,
32 on s390, 16 on MIPS) but they don't really need to be. Memory slots are
allocated dynamically in KVM when added so the only real limitation is
'id_to_index' array which is 'short'. We don't have any other
KVM_MEM_SLOTS_NUM/KVM_USER_MEM_SLOTS-sized statically defined structures.
Low KVM_USER_MEM_SLOTS can be a limiting factor for some configurations.
In particular, when QEMU tries to start a Windows guest with Hyper-V SynIC
enabled and e.g. 256 vCPUs the limit is hit as SynIC requires two pages per
vCPU and the guest is free to pick any GFN for each of them, this fragments
memslots as QEMU wants to have a separate memslot for each of these pages
(which are supposed to act as 'overlay' pages).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210127175731.2020089-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>