Intel Sapphire Rapids supports a discovery mechanism, that allows an
uncore driver to discover the different components ("boxes") of the
chip.
All the generic information of the uncore boxes should be retrieved from
the discovery tables. This has been enabled with the commit edae1f06c2
("perf/x86/intel/uncore: Parse uncore discovery tables"). Add
use_discovery to indicate the case. The uncore driver doesn't need to
hard code the generic information for each uncore box.
But we still need to enable various functionality that cannot be
directly discovered.
To support these functionalities, the Sapphire Rapids server framework
is introduced here. Each specific uncore unit will be added into the
framework in the following patches.
Add use_discovery to indicate that the discovery mechanism is required
for the platform. Currently, Intel Sapphire Rapids is one of the
platforms.
The box ID from the discovery table is the accurate index. Use it if
applicable.
All the undiscovered platform-specific features will be hard code in the
spr_uncores[]. Add uncore_type_customized_copy(), instead of the memcpy,
to only overwrite these features.
The specific uncore unit hasn't been added here. From user's
perspective, there is nothing changed for now.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lore.kernel.org/r/1625087320-194204-2-git-send-email-kan.liang@linux.intel.com
The error handling path of iio mapping looks fragile. We already fixed
one issue caused by it, commit f797f05d91 ("perf/x86/intel/uncore:
Fix for iio mapping on Skylake Server"). Clean up the error handling
path and make the code robust.
Reported-by: gushengxian <gushengxian@yulong.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/40e66cf9-398b-20d7-ce4d-433be6e08921@linux.intel.com
Introduce icx_cstates for ICELAKE_X and ICELAKE_D, and also update the
comments.
On ICELAKE_X and ICELAKE_D, Core C1, Core C6, Package C2 and Package C6
Residency MSRs are supported.
This patch has been tested on real hardware.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Link: https://lkml.kernel.org/r/20210625133247.2813-1-rui.zhang@intel.com
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZaxMRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hPgw//f9SnGzFoP1uR5TBqM8j/QHulMewew/iD
dM5lh2emdmqHWYPBeRxUHgag38K2Golr3Y+NxLA3R+RMx+OZQe8Mz/wYvPQcBvsV
k1HHImU3GRMn4GM7GwxH3vPIottDUx3mNS2J6pzlw3kwRUVqrxUdj/0/pSY/4eJ7
ZT4uq4yLV83Jd3qioU7o7e/u6MrdNIIcAXRpVDdE9Mm1+kWXSVN7/h3Vsiz4tj5E
iS+UXEtSc1a2mnmekv63pYkJHHNUb6guD8jgI/wrm1KIFGjDRifM+3TV6R/kB96/
TfD2LhCcTShfSp8KI191pgV7/NQbB/PmLdSYmff3rTBiii4cqXuCygJCHInZ09z0
4fTSSqM6aHg7kfTQyOCp+DUQ+9vNVXWo8mxt9c6B8xA0GyCI3zhjQ4UIiSUWRpjs
Be5ZyF0kNNuPxYrKFnGnBf8+51DURpCz3sDdYRuK4KNkj1+4ZvJo/KzGTMUUIE4B
IDQG6wDP5Kb388eRDtKrG5X7IXg+L5F/kezin60j0QF5MwDgxirT217teN8H1lNn
YgWMjRK8Tw0flUJsbCxa51/nl93UtByB+fIRIc88MSeLxcI6/ORW+TxBBEqkYm5Z
6BLFtmHSuAqAXUuyZXSGLcW7XLJvIaDoHgvbDn6l4g7FMWHqPOIq6nJQY3L8ben2
e+fQrGh4noI=
=20Vc
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
* tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix task context PMU for Hetero
perf/x86/intel: Fix instructions:ppp support in Sapphire Rapids
perf/x86/intel: Add more events requires FRONTEND MSR on Sapphire Rapids
perf/x86/intel: Fix fixed counter check warning for some Alder Lake
perf/x86/intel: Fix PEBS-via-PT reload base value for Extended PEBS
perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
kprobes: Do not increment probe miss count in the fault handler
x86,kprobes: WARN if kprobes tries to handle a fault
kprobes: Remove kprobe::fault_handler
uprobes: Update uprobe_write_opcode() kernel-doc comment
perf/hw_breakpoint: Fix DocBook warnings in perf hw_breakpoint
perf/core: Fix DocBook warnings
perf/core: Make local function perf_pmu_snapshot_aux() static
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on ICX
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on SNR
perf/x86/intel/uncore: Generalize I/O stacks to PMON mapping procedure
perf/x86/intel/uncore: Drop unnecessary NULL checks after container_of()
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models and
do not enable kernel workarounds for those CPUs when TSX transactions
always abort, as a result of that microcode update.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmDZhzEACgkQEsHwGGHe
VUo5ow//eRwlb1OL/D3jzLT4nTYX8+XdufaJF1HBr1Cf3mdNkiEgyu2bvsXNTpN/
ZP7CFCHibgYeHJ7qTTkhoK1DCe4YHjj450oCgg7pv40Mv9E29Rpszie8y8e/ngkc
g9OiAeEd4A32v8bRMAOOX0UZN4afismXBW0k4iwOAguNFiZ/usrrVYTZpJe3wG65
/YM9FdDZ+Mt7BavJdVyGh03PpzoSMrKyEQ673CHhERQyy5oEublrDSmtt5hQJv1W
4tgNOWpw57Gi7Vs7UYd7VvBQKwQZKeQeHJWu1TXUB6pw0lKYvULH6m0dasvc6cGb
WtCBvbQU9MRP0LvdvYOdgmSgn400z7mEwlUWmAFJLIUlDsuRpZmVQ4C1/OUnOSdx
amb7I3bp1z6Rqjs9ADW5h87qDA+q5OmbIZeIDvuRypQOB3yEktAEdUvWb65b1Fgm
9CpzebxyaOUM9YRxDzDd2joZYKnfI3stF6UCrVXaZwYei+Jmzn5gc8ZOoOX9g6gO
eX/sLW2RWRx6XxilaWZijOHJTjokVUpEnD12aGtKO6ou5QbFTwldc2Metpua42cL
5p8wRxEYeKT/EE/GKy/qIEp624QaInSEmfyq8RFKU4em7GSaSUmoQF5151LfnoRY
ARHkEdz+T8s5RI5xSvUZLRMNYjig9tZas3blYfbJHnU7V2+bspQ=
=wW+k
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- New AMD models support
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models
and do not enable kernel workarounds for those CPUs when TSX
transactions always abort, as a result of that microcode update.
* tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsx: Clear CPUID bits when TSX always force aborts
x86/events/intel: Do not deploy TSX force abort workaround when TSX is deprecated
x86/msr: Define new bits in TSX_FORCE_ABORT MSR
perf/x86/rapl: Use CPUID bit on AMD and Hygon parts
x86/cstate: Allow ACPI C1 FFH MWAIT use on Hygon systems
x86/amd_nb: Add AMD family 19h model 50h PCI ids
x86/cpu: Fix core name for Sapphire Rapids
XRSTORS requires a valid xstate buffer to work correctly. XSAVES does not
guarantee to write a fully valid buffer according to the SDM:
"XSAVES does not write to any parts of the XSAVE header other than the
XSTATE_BV and XCOMP_BV fields."
XRSTORS triggers a #GP:
"If bytes 63:16 of the XSAVE header are not all zero."
It's dubious at best how this can work at all when the buffer is not zeroed
before use.
Allocate the buffers with __GFP_ZERO to prevent XRSTORS failure.
Fixes: ce711ea3ca ("perf/x86/intel/lbr: Support XSAVES/XRSTORS for LBR context switch")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/87wnr0wo2z.ffs@nanos.tec.linutronix.de
The copy functions for the independent features are horribly named and the
supervisor and independent part is just overengineered.
The point is that the supplied mask has either to be a subset of the
independent features or a subset of the task->fpu.xstate managed features.
Rewrite it so it checks for invalid overlaps of these areas in the caller
supplied feature mask. Rename it so it follows the new naming convention
for these operations. Mop up the function documentation.
This allows to use that function for other purposes as well.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210623121455.004880675@linutronix.de
The salient feature of "dynamic" XSTATEs is that they are not part of the
main task XSTATE buffer. The fact that they are dynamically allocated is
irrelevant and will become quite confusing when user math XSTATEs start
being dynamically allocated. Rename them to "independent" because they
are independent of the main XSTATE code.
This is just a search-and-replace with some whitespace updates to keep
things aligned.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/1eecb0e4f3e07828ebe5d737ec77dc3b708fad2d.1623388344.git.luto@kernel.org
Link: https://lkml.kernel.org/r/20210623121454.911450390@linutronix.de
Perf errors out when sampling instructions:ppp.
$ perf record -e instructions:ppp -- true
Error:
The sys_perf_event_open() syscall returned with 22 (Invalid argument)
for event (instructions:ppp).
The instruction PDIR is only available on the fixed counter 0. The event
constraint has been updated to fixed0_constraint in
icl_get_event_constraints(). The Sapphire Rapids codes unconditionally
error out for the event which is not available on the GP counter 0.
Make the instructions:ppp an exception.
Fixes: 61b985e3e7 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids")
Reported-by: Yasin, Ahmad <ahmad.yasin@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1624029174-122219-4-git-send-email-kan.liang@linux.intel.com
On Sapphire Rapids, there are two more events 0x40ad and 0x04c2 which
rely on the FRONTEND MSR. If the FRONTEND MSR is not set correctly, the
count value is not correct.
Update intel_spr_extra_regs[] to support them.
Fixes: 61b985e3e7 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1624029174-122219-3-git-send-email-kan.liang@linux.intel.com
For some Alder Lake machine, the below fixed counter check warning may be
triggered.
[ 2.010766] hw perf events fixed 5 > max(4), clipping!
Current perf unconditionally increases the number of the GP counters and
the fixed counters for a big core PMU on an Alder Lake system, because
the number enumerated in the CPUID only reflects the common counters.
The big core may has more counters. However, Alder Lake may have an
alternative configuration. With that configuration,
the X86_FEATURE_HYBRID_CPU is not set. The number of the GP counters and
fixed counters enumerated in the CPUID is accurate. Perf mistakenly
increases the number of counters. The warning is triggered.
Directly use the enumerated value on the system with the alternative
configuration.
Fixes: f83d2f91d2 ("perf/x86/intel: Add Alder Lake Hybrid support")
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1624029174-122219-2-git-send-email-kan.liang@linux.intel.com
If we use the "PEBS-via-PT" feature on a platform that supports
extended PBES, like this:
perf record -c 10000 \
-e '{intel_pt/branch=0/,branch-instructions/aux-output/p}' uname
we will encounter the following call trace:
[ 250.906542] unchecked MSR access error: WRMSR to 0x14e1 (tried to write
0x0000000000000000) at rIP: 0xffffffff88073624 (native_write_msr+0x4/0x20)
[ 250.920779] Call Trace:
[ 250.923508] intel_pmu_pebs_enable+0x12c/0x190
[ 250.928359] intel_pmu_enable_event+0x346/0x390
[ 250.933300] x86_pmu_start+0x64/0x80
[ 250.937231] x86_pmu_enable+0x16a/0x2f0
[ 250.941434] perf_event_exec+0x144/0x4c0
[ 250.945731] begin_new_exec+0x650/0xbf0
[ 250.949933] load_elf_binary+0x13e/0x1700
[ 250.954321] ? lock_acquire+0xc2/0x390
[ 250.958430] ? bprm_execve+0x34f/0x8a0
[ 250.962544] ? lock_is_held_type+0xa7/0x120
[ 250.967118] ? find_held_lock+0x32/0x90
[ 250.971321] ? sched_clock_cpu+0xc/0xb0
[ 250.975527] bprm_execve+0x33d/0x8a0
[ 250.979452] do_execveat_common.isra.0+0x161/0x1d0
[ 250.984673] __x64_sys_execve+0x33/0x40
[ 250.988877] do_syscall_64+0x3d/0x80
[ 250.992806] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 250.998302] RIP: 0033:0x7fbc971d82fb
[ 251.002235] Code: Unable to access opcode bytes at RIP 0x7fbc971d82d1.
[ 251.009303] RSP: 002b:00007fffb8aed808 EFLAGS: 00000202 ORIG_RAX: 000000000000003b
[ 251.017478] RAX: ffffffffffffffda RBX: 00007fffb8af2f00 RCX: 00007fbc971d82fb
[ 251.025187] RDX: 00005574792aac50 RSI: 00007fffb8af2f00 RDI: 00007fffb8aed810
[ 251.032901] RBP: 00007fffb8aed970 R08: 0000000000000020 R09: 00007fbc9725c8b0
[ 251.040613] R10: 6d6c61632f6d6f63 R11: 0000000000000202 R12: 00005574792aac50
[ 251.048327] R13: 00007fffb8af35f0 R14: 00005574792aafdf R15: 00005574792aafe7
This is because the target reload msr address is calculated
based on the wrong base msr and the target reload msr value
is accessed from ds->pebs_event_reset[] with the wrong offset.
According to Intel SDM Table 2-14, for extended PBES feature,
the reload msr for MSR_IA32_FIXED_CTRx should be based on
MSR_RELOAD_FIXED_CTRx.
For fixed counters, let's fix it by overriding the reload msr
address and its value, thus avoiding out-of-bounds access.
Fixes: 42880f726c66("perf/x86/intel: Support PEBS output to PT")
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210621034710.31107-1-likexu@tencent.com
The counter value of a perf task may leak to another RDPMC task.
For example, a perf stat task as below is running on CPU 0.
perf stat -e 'branches,cycles' -- taskset -c 0 ./workload
In the meantime, an RDPMC task, which is also running on CPU 0, may read
the GP counters periodically. (The RDPMC task creates a fixed event,
but read four GP counters.)
$./rdpmc_read_all_counters
index 0x0 value 0x8001e5970f99
index 0x1 value 0x8005d750edb6
index 0x2 value 0x0
index 0x3 value 0x0
index 0x0 value 0x8002358e48a5
index 0x1 value 0x8006bd1e3bc9
index 0x2 value 0x0
index 0x3 value 0x0
It is a potential security issue. Once the attacker knows what the other
thread is counting. The PerfMon counter can be used as a side-channel to
attack cryptosystems.
The counter value of the perf stat task leaks to the RDPMC task because
perf never clears the counter when it's stopped.
Three methods were considered to address the issue.
- Unconditionally reset the counter in x86_pmu_del(). It can bring extra
overhead even when there is no RDPMC task running.
- Only reset the un-assigned dirty counters when the RDPMC task is
scheduled in via sched_task(). It fails for the below case.
Thread A Thread B
clone(CLONE_THREAD) --->
set_affine(0)
set_affine(1)
while (!event-enabled)
;
event = perf_event_open()
mmap(event)
ioctl(event, IOC_ENABLE); --->
RDPMC
Counters are still leaked to the thread B.
- Only reset the un-assigned dirty counters before updating the CR4.PCE
bit. The method is implemented here.
The dirty counter is a counter, on which the assigned event has been
deleted, but the counter is not reset. To track the dirty counters,
add a 'dirty' variable in the struct cpu_hw_events.
The security issue can only be found with an RDPMC task. To enable the
RDMPC, the CR4.PCE bit has to be updated. Add a
perf_clear_dirty_counters() right before updating the CR4.PCE bit to
clear the existing dirty counters. Only the current un-assigned dirty
counters are reset, because the RDPMC assigned dirty counters will be
updated soon.
After applying the patch,
$ ./rdpmc_read_all_counters
index 0x0 value 0x0
index 0x1 value 0x0
index 0x2 value 0x0
index 0x3 value 0x0
index 0x0 value 0x0
index 0x1 value 0x0
index 0x2 value 0x0
index 0x3 value 0x0
Performance
The performance of a context switch only be impacted when there are two
or more perf users and one of the users must be an RDPMC user. In other
cases, there is no performance impact.
The worst-case occurs when there are two users: the RDPMC user only
uses one counter; while the other user uses all available counters.
When the RDPMC task is scheduled in, all the counters, other than the
RDPMC assigned one, have to be reset.
Test results for the worst-case, using a modified lat_ctx as measured
on an Ice Lake platform, which has 8 GP and 3 FP counters (ignoring
SLOTS).
lat_ctx -s 128K -N 1000 processes 2
Without the patch:
The context switch time is 4.97 us
With the patch:
The context switch time is 5.16 us
There is ~4% performance drop for the context switching time in the
worst-case.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1623693582-187370-1-git-send-email-kan.liang@linux.intel.com
Earlier workaround added by
400816f60c ("perf/x86/intel: Implement support for TSX Force Abort")
for perf counter interactions [1] are not required on some client
systems which received a microcode update that deprecates TSX.
Bypass the perf workaround when such microcode is enumerated.
[1] [ bp: Look for document ID 604224, "Performance Monitoring Impact
of Intel Transactional Synchronization Extension Memory". Since
there's no way for us to have stable links to documents... ]
[ bp: Massage comment. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Link: https://lkml.kernel.org/r/e4d410f786946280ced02dd07c74e0a74f1d10cb.1623704845.git-series.pawan.kumar.gupta@linux.intel.com
AMD and Hygon CPUs have a CPUID bit for RAPL. Drop the fam17h suffix as
it is stale already.
Make use of this instead of a model check to work more nicely in virtual
environments where RAPL typically isn't available.
[ bp: drop the ../cpu/powerflags.c hunk which is superfluous as the
"rapl" bit name appears already in flags. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210514135920.16093-1-andrew.cooper3@citrix.com
Perf tool errors out with the latest event list for the Ice Lake server.
event syntax error: 'unc_m2m_imc_reads.to_pmm'
\___ value too big for format, maximum is 255
The same as the Snow Ridge server, the M2M uncore unit in the Ice Lake
server has the unit mask extension field as well.
Fixes: 2b3b76b5ec ("perf/x86/intel/uncore: Add Ice Lake server uncore support")
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1622552943-119174-1-git-send-email-kan.liang@linux.intel.com
A kernel WARNING may be triggered when setting maxcpus=1.
The uncore counters are Die-scope. When probing a PCI device, only the
BUS information can be retrieved. The uncore driver has to maintain a
mapping table used to calculate the logical Die ID from a given BUS#.
Before the patch ba9506be4e, the mapping table stores the mapping
information from the BUS# -> a Physical Socket ID. To calculate the
logical die ID, perf does,
- In snbep_pci2phy_map_init(), retrieve the BUS# -> a Physical Socket ID
from the UBOX PCI configure space.
- Calculate the mapping information (a BUS# -> a Physical Socket ID) for
the other PCI BUS.
- In the uncore_pci_probe(), get the physical Socket ID from a given BUS
and the mapping table.
- Calculate the logical Die ID
Since only the logical Die ID is required, with the patch ba9506be4e,
the mapping table stores the mapping information from the BUS# -> a
logical Die ID. Now perf does,
- In snbep_pci2phy_map_init(), retrieve the BUS# -> a Physical Socket ID
from the UBOX PCI configure space.
- Calculate the logical Die ID
- Calculate the mapping information (a BUS# -> a logical Die ID) for the
other PCI BUS.
- In the uncore_pci_probe(), get the logical die ID from a given BUS and
the mapping table.
When calculating the logical Die ID, -1 may be returned, especially when
maxcpus=1. Here, -1 means the logical Die ID is not found. But when
calculating the mapping information for the other PCI BUS, -1 indicates
that it's the other PCI BUS that requires the calculation of the
mapping. The driver will mistakenly do the calculation.
Uses the -ENODEV to indicate the case which the logical Die ID is not
found. The driver will not mess up the mapping table anymore.
Fixes: ba9506be4e ("perf/x86/intel/uncore: Store the logical die id instead of the physical die id.")
Reported-by: John Donnelly <john.p.donnelly@oracle.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Tested-by: John Donnelly <john.p.donnelly@oracle.com>
Link: https://lkml.kernel.org/r/1622037527-156028-1-git-send-email-kan.liang@linux.intel.com
I/O stacks to PMON mapping on Skylake server relies on topology information
from CPU_BUS_NO MSR but this approach is not applicable for SNR and ICX.
Mapping on these platforms can be gotten by reading SAD_CONTROL_CFG CSR
from Mesh2IIO device with 0x09a2 DID.
SAD_CONTROL_CFG CSR contains stack IDs in its own notation which are
statically mapped on IDs in PMON notation.
The map for Snowridge:
Stack Name | CBDMA/DMI | PCIe Gen 3 | DLB | NIS | QAT
SAD_CONTROL_CFG ID | 0 | 1 | 2 | 3 | 4
PMON ID | 1 | 4 | 3 | 2 | 0
This patch enables I/O stacks to IIO PMON mapping on Snowridge.
Mapping is exposed through attributes /sys/devices/uncore_iio_<pmu_idx>/dieX,
where dieX is file which holds "Segment:Root Bus" for PCIe root port which
can be monitored by that IIO PMON block. Example for Snowridge:
==> /sys/devices/uncore_iio_0/die0 <==
0000:f3
==> /sys/devices/uncore_iio_1/die0 <==
0000:00
==> /sys/devices/uncore_iio_2/die0 <==
0000:eb
==> /sys/devices/uncore_iio_3/die0 <==
0000:e3
==> /sys/devices/uncore_iio_4/die0 <==
0000:14
Mapping for Icelake server will be enabled in the follow-up patch.
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210426131614.16205-3-alexander.antonov@linux.intel.com
Currently I/O stacks to IIO PMON mapping is available on Skylake servers
only and need to make code more general to easily enable further platforms.
So, introduce get_topology() callback in struct intel_uncore_type which
allows to move common code to separate function and make mapping procedure
more general.
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210426131614.16205-2-alexander.antonov@linux.intel.com
If the kernel is compiled with the CONFIG_LOCKDEP option, the conditional
might_sleep_if() deep in kmem_cache_alloc() will generate the following
trace, and potentially cause a deadlock when another LBR event is added:
[] BUG: sleeping function called from invalid context at include/linux/sched/mm.h:196
[] Call Trace:
[] kmem_cache_alloc+0x36/0x250
[] intel_pmu_lbr_add+0x152/0x170
[] x86_pmu_add+0x83/0xd0
Make it symmetric with the release_lbr_buffers() call and mirror the
existing DS buffers.
Fixes: c085fb8774 ("perf/x86/intel/lbr: Support XSAVES for arch LBR read")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
[peterz: simplified]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210430052247.3079672-2-like.xu@linux.intel.com
The Architecture LBR does not have MSR_LBR_TOS (0x000001c9).
In a guest that should support Architecture LBR, check_msr()
will be a non-related check for the architecture MSR 0x0
(IA32_P5_MC_ADDR) that is also not supported by KVM.
The failure will cause x86_pmu.lbr_nr = 0, thereby preventing
the initialization of the guest Arch LBR. Fix it by avoiding
this extraneous check in intel_pmu_init() for Arch LBR.
Fixes: 47125db27e ("perf/x86/intel/lbr: Support Architectural LBR")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
[peterz: simpler still]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210430052247.3079672-1-like.xu@linux.intel.com
The parameter passed to the pmu_enable() and pmu_disable() functions can not be
NULL because it is dereferenced by the caller.
That means the result of container_of() on that parameter can also never be NULL.
The existing NULL checks are therefore unnecessary and misleading. Remove them.
This change was made automatically with the following Coccinelle script.
@@
type t;
identifier v;
statement s;
@@
<+...
(
t v = container_of(...);
|
v = container_of(...);
)
...
when != v
- if (\( !v \| v == NULL \) ) s
...+>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210510224849.2349861-1-linux@roeck-us.net
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCXprEACgkQEsHwGGHe
VUpUlA//YEmVtHSXbvF6OjNv3gUcslI86OGJneUV3ltZfpXZjufu4I4EJopIdjB2
0ORiiSFmbCABSf2BB0vp6VN4BXNOGtv0MEo7F5aTStFHP2/At2JPTekS8VI7Z75C
xwgqVI2lzTvcEDIRdmH3Elwa3u/Ob2sLOwhxK7937gcLAO7L5DW9+gBtP+Nzhoad
bZvym/oK7vv4d4CSPV8RC+A71cJwk0xF1dl31muoz9ijD6LXWIcox49B0AYSA5Uv
7wIIo9J2WIuZaEGDfjyblvBqEaSiZSbzVBTd42Rw5GK0dWwaM7kquHLmFScFPRK6
FQPnkOfdl+W9HWlLsVtupmSYRHAgaXc90qU9XdKlXBsDCCxqfCIhzTx+CkkWfY8z
LFiEmnOrP+qNVHatCmwtuP7FWeNo5W8DkJp7TSrtg6z7DqE/WtRtBZWnJIdzUBwB
eqm1e3gi2mv8Cd05VHLOWW7SoIuelleI0uBZGgb5cTWbWrhyNjL58ODAUtOOfVad
uyS31NHIMhk50JTL9pNDmNXzxXKx9/m2sjFulZcyZ2MneJ2cI0kEsJNzxVsbZoyS
IIWcQuHQpUe9NEAPU0uksq2qCTyqOZ8zqb+8e0L4p94RifNxPvmdmvsx+cgR6pyB
8UDffvhDniaFnyiV9AYv8U37VpoNacrywRAeQlqdGjlUNH1CULk=
=ksMy
-----END PGP SIGNATURE-----
Merge tag 'perf_urgent_for_v5.13_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 perf fix from Borislav Petkov:
"Handle power-gating of AMD IOMMU perf counters properly when they are
used"
* tag 'perf_urgent_for_v5.13_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/events/amd/iommu: Fix invalid Perf result due to IOMMU PMC power-gating
On certain AMD platforms, when the IOMMU performance counter source
(csource) field is zero, power-gating for the counter is enabled, which
prevents write access and returns zero for read access.
This can cause invalid perf result especially when event multiplexing
is needed (i.e. more number of events than available counters) since
the current logic keeps track of the previously read counter value,
and subsequently re-program the counter to continue counting the event.
With power-gating enabled, we cannot gurantee successful re-programming
of the counter.
Workaround this issue by :
1. Modifying the ordering of setting/reading counters and enabing/
disabling csources to only access the counter when the csource
is set to non-zero.
2. Since AMD IOMMU PMU does not support interrupt mode, the logic
can be simplified to always start counting with value zero,
and accumulate the counter value when stopping without the need
to keep track and reprogram the counter with the previously read
counter value.
This has been tested on systems with and without power-gating.
Fixes: 994d6608ef ("iommu/amd: Remove performance counter pre-initialization test")
Suggested-by: Alexander Monakov <amonakov@ispras.ru>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210504065236.4415-1-suravee.suthikulpanit@amd.com
Including:
- Big cleanup of almost unsused parts of the IOMMU API by
Christoph Hellwig. This mostly affects the Freescale PAMU
driver.
- New IOMMU driver for Unisoc SOCs
- ARM SMMU Updates from Will:
- SMMUv3: Drop vestigial PREFETCH_ADDR support
- SMMUv3: Elide TLB sync logic for empty gather
- SMMUv3: Fix "Service Failure Mode" handling
- SMMUv2: New Qualcomm compatible string
- Removal of the AMD IOMMU performance counter writeable check
on AMD. It caused long boot delays on some machines and is
only needed to work around an errata on some older (possibly
pre-production) chips. If someone is still hit by this
hardware issue anyway the performance counters will just
return 0.
- Support for targeted invalidations in the AMD IOMMU driver.
Before that the driver only invalidated a single 4k page or the
whole IO/TLB for an address space. This has been extended now
and is mostly useful for emulated AMD IOMMUs.
- Several fixes for the Shared Virtual Memory support in the
Intel VT-d driver
- Mediatek drivers can now be built as modules
- Re-introduction of the forcedac boot option which got lost
when converting the Intel VT-d driver to the common dma-iommu
implementation.
- Extension of the IOMMU device registration interface and
support iommu_ops to be const again when drivers are built as
modules.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmCMEIoACgkQK/BELZcB
GuOu9xAAvg6aR0uHlxvRq6cgNnHN9Ltp5+t3qFYtRRrauY0iOPMO62k0QQli5shX
CGeczD0e59KAZqI0zNJnQn8hMY5dg7XVkFCC5BrSzuCDCtwJZ0N5Tq3pfUlaV1rw
BJf41t79Fd+jp7kn53tu+vRAfYZ3+sLOx/6U3c15pqKRZSkyFWbQllOtD3J5LnLu
1PyPlfiNpMwCajiS7aQbN+fuJ/lKIFeA2MDPOsCBzhbfxiJUqJxZOKAZO3rOjFfK
feTibqQ+3Zz6MPXt9st1cvPpy8jCosv81OY6Knqvxf/oB5q+fEdi2uNrKISonb/t
Fw331oOIwg2A+HOpwC9MN1AumOIqiHSWWENAMk9SlP+TMIWKQ8kZreyI6IEB23dV
+QvP3DVA+CfLwtNY/Zh0IqKh28D+IHlKbpWNU1m+9AUe468mV/MTjfwxr9Yfffhm
LZ6C0DgFdmtqv8jPuDGUOgo3RNeN8bLnUSEHG9gHibA+RKujl5BWDjKkwILqMQTt
Ysdsu8TiNtFIULomizqCpgqEbQfW8TLFvASXCM1VMQ/PDURxvchZPxFDJonYXy+K
z2HGaG3eUE07YrAdRKH69aMVIbmS+sjEhvmi4xZ1Lh7wWcIE2AZVvO8qNb+Ckcp3
4tLPPDksm/iQngnFf6gdgH3qv4rgbzE4+74GXqeANiQCjY9dSJI=
=qF2C
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- Big cleanup of almost unsused parts of the IOMMU API by Christoph
Hellwig. This mostly affects the Freescale PAMU driver.
- New IOMMU driver for Unisoc SOCs
- ARM SMMU Updates from Will:
- Drop vestigial PREFETCH_ADDR support (SMMUv3)
- Elide TLB sync logic for empty gather (SMMUv3)
- Fix "Service Failure Mode" handling (SMMUv3)
- New Qualcomm compatible string (SMMUv2)
- Removal of the AMD IOMMU performance counter writeable check on AMD.
It caused long boot delays on some machines and is only needed to
work around an errata on some older (possibly pre-production) chips.
If someone is still hit by this hardware issue anyway the performance
counters will just return 0.
- Support for targeted invalidations in the AMD IOMMU driver. Before
that the driver only invalidated a single 4k page or the whole IO/TLB
for an address space. This has been extended now and is mostly useful
for emulated AMD IOMMUs.
- Several fixes for the Shared Virtual Memory support in the Intel VT-d
driver
- Mediatek drivers can now be built as modules
- Re-introduction of the forcedac boot option which got lost when
converting the Intel VT-d driver to the common dma-iommu
implementation.
- Extension of the IOMMU device registration interface and support
iommu_ops to be const again when drivers are built as modules.
* tag 'iommu-updates-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (84 commits)
iommu: Streamline registration interface
iommu: Statically set module owner
iommu/mediatek-v1: Add error handle for mtk_iommu_probe
iommu/mediatek-v1: Avoid build fail when build as module
iommu/mediatek: Always enable the clk on resume
iommu/fsl-pamu: Fix uninitialized variable warning
iommu/vt-d: Force to flush iotlb before creating superpage
iommu/amd: Put newline after closing bracket in warning
iommu/vt-d: Fix an error handling path in 'intel_prepare_irq_remapping()'
iommu/vt-d: Fix build error of pasid_enable_wpe() with !X86
iommu/amd: Remove performance counter pre-initialization test
Revert "iommu/amd: Fix performance counter initialization"
iommu/amd: Remove duplicate check of devid
iommu/exynos: Remove unneeded local variable initialization
iommu/amd: Page-specific invalidations for more than one page
iommu/arm-smmu-v3: Remove the unused fields for PREFETCH_CONFIG command
iommu/vt-d: Avoid unnecessary cache flush in pasid entry teardown
iommu/vt-d: Invalidate PASID cache when root/context entry changed
iommu/vt-d: Remove WO permissions on second-level paging entries
iommu/vt-d: Report the right page fault address
...
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability enumeration method
introduced on the latest Intel platforms. This table is in a well-defined PCI
namespace location and is read via MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter blocks, but
fancier counters still need to be enumerated explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of 'hybrid' CPUs
and PMUs. Alder Lake is a mix of Golden Cove ('big') and Gracemont ('small' - Atom derived)
cores.
The CPU-side feature set is entirely symmetrical - but on the PMU side there's
core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX profiling, by
fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The immediate motivation
is to support low-overhead sampling-based race detection for user-space code. The
feature consists of the following main changes:
- Add thread-only event inheritance via perf_event_attr::inherit_thread, which limits
inheritance of events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap, extend siginfo with an u64
::si_perf, and add the breakpoint information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the new field can be used
to introduce support for other types of metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJGpERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j9zBAAuVbG2snV6SBSdXLhQcM66N3NckOXvSY5
QjjhQcuwJQEK/NJB3266K5d8qSmdyRBsWf3GCsrmyBT67P1V28K44Pu7oCV0UDtf
mpVRjEP0oR7hNsANSSgo8Fa4ZD7H5waX7dK7925Tvw8By3mMoZoddiD/84WJHhxO
NDF+GRFaRj+/dpbhV8cdCoXTjYdkC36vYuZs3b9lu0tS9D/AJgsNy7TinLvO02Cs
5peP+2y29dgvCXiGBiuJtEA6JyGnX3nUJCvfOZZ/DWDc3fdduARlRrc5Aiq4n/wY
UdSkw1VTZBlZ1wMSdmHQVeC5RIH3uWUtRoNqy0Yc90lBm55AQ0EENwIfWDUDC5zy
USdBqWTNWKMBxlEilUIyqKPQK8LW/31TRzqy8BWKPNcZt5yP5YS1SjAJRDDjSwL/
I+OBw1vjLJamYh8oNiD5b+VLqNQba81jFASfv+HVWcULumnY6ImECCpkg289Fkpi
BVR065boifJDlyENXFbvTxyMBXQsZfA+EhtxG7ju2Ni+TokBbogyCb3L2injPt9g
7jjtTOqmfad4gX1WSc+215iYZMkgECcUd9E+BfOseEjBohqlo7yNKIfYnT8mE/Xq
nb7eHjyvLiE8tRtZ+7SjsujOMHv9LhWFAbSaxU/kEVzpkp0zyd6mnnslDKaaHLhz
goUMOL/D0lg=
=NhQ7
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf event updates from Ingo Molnar:
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability
enumeration method introduced on the latest Intel platforms. This
table is in a well-defined PCI namespace location and is read via
MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter
blocks, but fancier counters still need to be enumerated
explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of
'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big')
and Gracemont ('small' - Atom derived) cores.
The CPU-side feature set is entirely symmetrical - but on the PMU
side there's core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX
profiling, by fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The
immediate motivation is to support low-overhead sampling-based race
detection for user-space code. The feature consists of the following
main changes:
- Add thread-only event inheritance via
perf_event_attr::inherit_thread, which limits inheritance of
events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via
perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap,
extend siginfo with an u64 ::si_perf, and add the breakpoint
information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the
new field can be used to introduce support for other types of
metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
* tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
signal, perf: Add missing TRAP_PERF case in siginfo_layout()
signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures
perf/x86: Allow for 8<num_fixed_counters<16
perf/x86/rapl: Add support for Intel Alder Lake
perf/x86/cstate: Add Alder Lake CPU support
perf/x86/msr: Add Alder Lake CPU support
perf/x86/intel/uncore: Add Alder Lake support
perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
perf/x86/intel: Add Alder Lake Hybrid support
perf/x86: Support filter_match callback
perf/x86/intel: Add attr_update for Hybrid PMUs
perf/x86: Add structures for the attributes of Hybrid PMUs
perf/x86: Register hybrid PMUs
perf/x86: Factor out x86_pmu_show_pmu_cap
perf/x86: Remove temporary pmu assignment in event_init
perf/x86/intel: Factor out intel_pmu_check_extra_regs
perf/x86/intel: Factor out intel_pmu_check_event_constraints
perf/x86/intel: Factor out intel_pmu_check_num_counters
perf/x86: Hybrid PMU support for extra_regs
perf/x86: Hybrid PMU support for event constraints
...
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline how
one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery around
selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack
ops. Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCHyJQACgkQEsHwGGHe
VUpjiRAAwPZdwwp08ypZuMHR4EhLNru6gYhbAoALGgtYnQjLtn5onQhIeieK+R4L
cmZpxHT9OFp5dXHk4kwygaQBsD4pPOiIpm60kye1dN3cSbOORRdkwEoQMpKMZ+5Y
kvVsmn7lrwRbp600KdE4G6L5+N6gEgr0r6fMFWWGK3mgVAyCzPexVHgydcp131ch
iYMo6/pPDcNkcV/hboVKgx7GISdQ7L356L1MAIW/Sxtw6uD/X4qGYW+kV2OQg9+t
nQDaAo7a8Jqlop5W5TQUdMLKQZ1xK8SFOSX/nTS15DZIOBQOGgXR7Xjywn1chBH/
PHLwM5s4XF6NT5VlIA8tXNZjWIZTiBdldr1kJAmdDYacrtZVs2LWSOC0ilXsd08Z
EWtvcpHfHEqcuYJlcdALuXY8xDWqf6Q2F7BeadEBAxwnnBg+pAEoLXI/1UwWcmsj
wpaZTCorhJpYo2pxXckVdHz2z0LldDCNOXOjjaWU8tyaOBKEK6MgAaYU7e0yyENv
mVc9n5+WuvXuivC6EdZ94Pcr/KQsd09ezpJYcVfMDGv58YZrb6XIEELAJIBTu2/B
Ua8QApgRgetx+1FKb8X6eGjPl0p40qjD381TADb4rgETPb1AgKaQflmrSTIik+7p
O+Eo/4x/GdIi9jFk3K+j4mIznRbUX0cheTJgXoiI4zXML9Jv94w=
=bm4S
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 updates from Borislav Petkov:
- Turn the stack canary into a normal __percpu variable on 32-bit which
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline
how one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery
around selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack ops.
Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
* tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
x86, sched: Treat Intel SNC topology as default, COD as exception
x86/cpu: Comment Skylake server stepping too
x86/cpu: Resort and comment Intel models
objtool/x86: Rewrite retpoline thunk calls
objtool: Skip magical retpoline .altinstr_replacement
objtool: Cache instruction relocs
objtool: Keep track of retpoline call sites
objtool: Add elf_create_undef_symbol()
objtool: Extract elf_symbol_add()
objtool: Extract elf_strtab_concat()
objtool: Create reloc sections implicitly
objtool: Add elf_create_reloc() helper
objtool: Rework the elf_rebuild_reloc_section() logic
objtool: Fix static_call list generation
objtool: Handle per arch retpoline naming
objtool: Correctly handle retpoline thunk calls
x86/retpoline: Simplify retpolines
x86/alternatives: Optimize optimize_nops()
x86: Add insn_decode_kernel()
x86/kprobes: Move 'inline' to the beginning of the kprobe_is_ss() declaration
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
+HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
/uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
=bO1i
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 cleanups from Borislav Petkov:
"Trivial cleanups and fixes all over the place"
* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Remove me from IDE/ATAPI section
x86/pat: Do not compile stubbed functions when X86_PAT is off
x86/asm: Ensure asm/proto.h can be included stand-alone
x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
x86/msr: Make locally used functions static
x86/cacheinfo: Remove unneeded dead-store initialization
x86/process/64: Move cpu_current_top_of_stack out of TSS
tools/turbostat: Unmark non-kernel-doc comment
x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
x86/fpu/math-emu: Fix function cast warning
x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
x86: Fix various typos in comments, take #2
x86: Remove unusual Unicode characters from comments
x86/kaslr: Return boolean values from a function returning bool
x86: Fix various typos in comments
x86/setup: Remove unused RESERVE_BRK_ARRAY()
stacktrace: Move documentation for arch_stack_walk_reliable() to header
x86: Remove duplicate TSC DEADLINE MSR definitions
The 64 bit value read from MSR_ARCH_PERFMON_FIXED_CTR_CTRL is being
bit-wise masked with the value (0x03 << i*4). However, the shifted value
is evaluated using 32 bit arithmetic, so will UB when i > 8. Fix this
by making 0x03 a ULL so that the shift is performed using 64 bit
arithmetic.
This makes the arithmetic internally consistent and preparers for the
day when hardware provides 8<num_fixed_counters<16.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210420142907.382417-1-colin.king@canonical.com
The only stepping of Broadwell Xeon parts is stepping 1. Fix the
relevant isolation_ucodes[] entry, which previously enumerated
stepping 2.
Although the original commit was characterized as an optimization, it
is also a workaround for a correctness issue.
If a PMI arrives between kvm's call to perf_guest_get_msrs() and the
subsequent VM-entry, a stale value for the IA32_PEBS_ENABLE MSR may be
restored at the next VM-exit. This is because, unbeknownst to kvm, PMI
throttling may clear bits in the IA32_PEBS_ENABLE MSR. CPUs with "PEBS
isolation" don't suffer from this issue, because perf_guest_get_msrs()
doesn't report the IA32_PEBS_ENABLE value.
Fixes: 9b545c04ab ("perf/x86/kvm: Avoid unnecessary work in guest filtering")
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Peter Shier <pshier@google.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210422001834.1748319-1-jmattson@google.com
There may be a kernel panic on the Haswell server and the Broadwell
server, if the snbep_pci2phy_map_init() return error.
The uncore_extra_pci_dev[HSWEP_PCI_PCU_3] is used in the cpu_init() to
detect the existence of the SBOX, which is a MSR type of PMON unit.
The uncore_extra_pci_dev is allocated in the uncore_pci_init(). If the
snbep_pci2phy_map_init() returns error, perf doesn't initialize the
PCI type of the PMON units, so the uncore_extra_pci_dev will not be
allocated. But perf may continue initializing the MSR type of PMON
units. A null dereference kernel panic will be triggered.
The sockets in a Haswell server or a Broadwell server are identical.
Only need to detect the existence of the SBOX once.
Current perf probes all available PCU devices and stores them into the
uncore_extra_pci_dev. It's unnecessary.
Use the pci_get_device() to replace the uncore_extra_pci_dev. Only
detect the existence of the SBOX on the first available PCU device once.
Factor out hswep_has_limit_sbox(), since the Haswell server and the
Broadwell server uses the same way to detect the existence of the SBOX.
Add some macros to replace the magic number.
Fixes: 5306c31c57 ("perf/x86/uncore/hsw-ep: Handle systems with only two SBOXes")
Reported-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lkml.kernel.org/r/1618521764-100923-1-git-send-email-kan.liang@linux.intel.com
Compared with the Rocket Lake, the CORE C1 Residency Counter is added
for Alder Lake, but the CORE C3 Residency Counter is removed. Other
counters are the same.
Create a new adl_cstates for Alder Lake. Update the comments
accordingly.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-25-git-send-email-kan.liang@linux.intel.com
PPERF and SMI_COUNT MSRs are also supported on Alder Lake.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-24-git-send-email-kan.liang@linux.intel.com
The uncore subsystem for Alder Lake is similar to the previous Tiger
Lake.
The difference includes:
- New MSR addresses for global control, fixed counters, CBOX and ARB.
Add a new adl_uncore_msr_ops for uncore operations.
- Add a new threshold field for CBOX.
- New PCIIDs for IMC devices.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-23-git-send-email-kan.liang@linux.intel.com
Current Hardware events and Hardware cache events have special perf
types, PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE. The two types don't
pass the PMU type in the user interface. For a hybrid system, the perf
subsystem doesn't know which PMU the events belong to. The first capable
PMU will always be assigned to the events. The events never get a chance
to run on the other capable PMUs.
Extend the two types to become PMU aware types. The PMU type ID is
stored at attr.config[63:32].
Add a new PMU capability, PERF_PMU_CAP_EXTENDED_HW_TYPE, to indicate a
PMU which supports the extended PERF_TYPE_HARDWARE and
PERF_TYPE_HW_CACHE.
The PMU type is only required when searching a specific PMU. The PMU
specific codes will only be interested in the 'real' config value, which
is stored in the low 32 bit of the event->attr.config. Update the
event->attr.config in the generic code, so the PMU specific codes don't
need to calculate it separately.
If a user specifies a PMU type, but the PMU doesn't support the extended
type, error out.
If an event cannot be initialized in a PMU specified by a user, error
out immediately. Perf should not try to open it on other PMUs.
The new PMU capability is only set for the X86 hybrid PMUs for now.
Other architectures, e.g., ARM, may need it as well. The support on ARM
may be implemented later separately.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-22-git-send-email-kan.liang@linux.intel.com
Alder Lake Hybrid system has two different types of core, Golden Cove
core and Gracemont core. The Golden Cove core is registered to
"cpu_core" PMU. The Gracemont core is registered to "cpu_atom" PMU.
The difference between the two PMUs include:
- Number of GP and fixed counters
- Events
- The "cpu_core" PMU supports Topdown metrics.
The "cpu_atom" PMU supports PEBS-via-PT.
The "cpu_core" PMU is similar to the Sapphire Rapids PMU, but without
PMEM.
The "cpu_atom" PMU is similar to Tremont, but with different events,
event_constraints, extra_regs and number of counters.
The mem-loads AUX event workaround only applies to the Golden Cove core.
Users may disable all CPUs of the same CPU type on the command line or
in the BIOS. For this case, perf still register a PMU for the CPU type
but the CPU mask is 0.
Current caps/pmu_name is usually the microarch codename. Assign the
"alderlake_hybrid" to the caps/pmu_name of both PMUs to indicate the
hybrid Alder Lake microarchitecture.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-21-git-send-email-kan.liang@linux.intel.com
Implement filter_match callback for X86, which check whether an event is
schedulable on the current CPU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-20-git-send-email-kan.liang@linux.intel.com
The attribute_group for Hybrid PMUs should be different from the
previous
cpu PMU. For example, cpumask is required for a Hybrid PMU. The PMU type
should be included in the event and format attribute.
Add hybrid_attr_update for the Hybrid PMU.
Check the PMU type in is_visible() function. Only display the event or
format for the matched Hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-19-git-send-email-kan.liang@linux.intel.com
Hybrid PMUs have different events and formats. In theory, Hybrid PMU
specific attributes should be maintained in the dedicated struct
x86_hybrid_pmu, but it wastes space because the events and formats are
similar among Hybrid PMUs.
To reduce duplication, all hybrid PMUs will share a group of attributes
in the following patch. To distinguish an attribute from different
Hybrid PMUs, a PMU aware attribute structure is introduced. A PMU type
is required for the attribute structure. The type is internal usage. It
is not visible in the sysfs API.
Hybrid PMUs may support the same event name, but with different event
encoding, e.g., the mem-loads event on an Atom PMU has different event
encoding from a Core PMU. It brings issue if two attributes are
created for them. Current sysfs_update_group finds an attribute by
searching the attr name (aka event name). If two attributes have the
same event name, the first attribute will be replaced.
To address the issue, only one attribute is created for the event. The
event_str is extended and stores event encodings from all Hybrid PMUs.
Each event encoding is divided by ";". The order of the event encodings
must follow the order of the hybrid PMU index. The event_str is internal
usage as well. When a user wants to show the attribute of a Hybrid PMU,
only the corresponding part of the string is displayed.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-18-git-send-email-kan.liang@linux.intel.com
Different hybrid PMUs have different PMU capabilities and events. Perf
should registers a dedicated PMU for each of them.
To check the X86 event, perf has to go through all possible hybrid pmus.
All the hybrid PMUs are registered at boot time. Before the
registration, add intel_pmu_check_hybrid_pmus() to check and update the
counters information, the event constraints, the extra registers and the
unique capabilities for each hybrid PMUs.
Postpone the display of the PMU information and HW check to
CPU_STARTING, because the boot CPU is the only online CPU in the
init_hw_perf_events(). Perf doesn't know the availability of the other
PMUs. Perf should display the PMU information only if the counters of
the PMU are available.
One type of CPUs may be all offline. For this case, users can still
observe the PMU in /sys/devices, but its CPU mask is 0.
All hybrid PMUs have capability PERF_PMU_CAP_HETEROGENEOUS_CPUS.
The PMU name for hybrid PMUs will be "cpu_XXX", which will be assigned
later in a separated patch.
The PMU type id for the core PMU is still PERF_TYPE_RAW. For the other
hybrid PMUs, the PMU type id is not hard code.
The event->cpu must be compatitable with the supported CPUs of the PMU.
Add a check in the x86_pmu_event_init().
The events in a group must be from the same type of hybrid PMU.
The fake cpuc used in the validation must be from the supported CPU of
the event->pmu.
Perf may not retrieve a valid core type from get_this_hybrid_cpu_type().
For example, ADL may have an alternative configuration. With that
configuration, Perf cannot retrieve the core type from the CPUID leaf
0x1a. Add a platform specific get_hybrid_cpu_type(). If the generic way
fails, invoke the platform specific get_hybrid_cpu_type().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-17-git-send-email-kan.liang@linux.intel.com
The PMU capabilities are different among hybrid PMUs. Perf should dump
the PMU capabilities information for each hybrid PMU.
Factor out x86_pmu_show_pmu_cap() which shows the PMU capabilities
information. The function will be reused later when registering a
dedicated hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-16-git-send-email-kan.liang@linux.intel.com
The temporary pmu assignment in event_init is unnecessary.
The assignment was introduced by commit 8113070d66 ("perf_events:
Add fast-path to the rescheduling code"). At that time, event->pmu is
not assigned yet when initializing an event. The assignment is required.
However, from commit 7e5b2a01d2 ("perf: provide PMU when initing
events"), the event->pmu is provided before event_init is invoked.
The temporary pmu assignment in event_init should be removed.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-15-git-send-email-kan.liang@linux.intel.com
Each Hybrid PMU has to check and update its own extra registers before
registration.
The intel_pmu_check_extra_regs will be reused later to check the extra
registers of each hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-14-git-send-email-kan.liang@linux.intel.com
Each Hybrid PMU has to check and update its own event constraints before
registration.
The intel_pmu_check_event_constraints will be reused later to check
the event constraints of each hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-13-git-send-email-kan.liang@linux.intel.com
Each Hybrid PMU has to check its own number of counters and mask fixed
counters before registration.
The intel_pmu_check_num_counters will be reused later to check the
number of the counters for each hybrid PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-12-git-send-email-kan.liang@linux.intel.com
Different hybrid PMU may have different extra registers, e.g. Core PMU
may have offcore registers, frontend register and ldlat register. Atom
core may only have offcore registers and ldlat register. Each hybrid PMU
should use its own extra_regs.
An Intel Hybrid system should always have extra registers.
Unconditionally allocate shared_regs for Intel Hybrid system.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-11-git-send-email-kan.liang@linux.intel.com
The events are different among hybrid PMUs. Each hybrid PMU should use
its own event constraints.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-10-git-send-email-kan.liang@linux.intel.com
The hardware cache events are different among hybrid PMUs. Each hybrid
PMU should have its own hw cache event table.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-9-git-send-email-kan.liang@linux.intel.com
The unconstrained value depends on the number of GP and fixed counters.
Each hybrid PMU should use its own unconstrained.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-8-git-send-email-kan.liang@linux.intel.com
The number of GP and fixed counters are different among hybrid PMUs.
Each hybrid PMU should use its own counter related information.
When handling a certain hybrid PMU, apply the number of counters from
the corresponding hybrid PMU.
When reserving the counters in the initialization of a new event,
reserve all possible counters.
The number of counter recored in the global x86_pmu is for the
architecture counters which are available for all hybrid PMUs. KVM
doesn't support the hybrid PMU yet. Return the number of the
architecture counters for now.
For the functions only available for the old platforms, e.g.,
intel_pmu_drain_pebs_nhm(), nothing is changed.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-7-git-send-email-kan.liang@linux.intel.com
The intel_ctrl is the counter mask of a PMU. The PMU counter information
may be different among hybrid PMUs, each hybrid PMU should use its own
intel_ctrl to check and access the counters.
When handling a certain hybrid PMU, apply the intel_ctrl from the
corresponding hybrid PMU.
When checking the HW existence, apply the PMU and number of counters
from the corresponding hybrid PMU as well. Perf will check the HW
existence for each Hybrid PMU before registration. Expose the
check_hw_exists() for a later patch.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-6-git-send-email-kan.liang@linux.intel.com
Some platforms, e.g. Alder Lake, have hybrid architecture. Although most
PMU capabilities are the same, there are still some unique PMU
capabilities for different hybrid PMUs. Perf should register a dedicated
pmu for each hybrid PMU.
Add a new struct x86_hybrid_pmu, which saves the dedicated pmu and
capabilities for each hybrid PMU.
The architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicates the
architecture features which are available on all hybrid PMUs. The
architecture features are stored in the global x86_pmu.intel_cap.
For Alder Lake, the model-specific features are perf metrics and
PEBS-via-PT. The corresponding bits of the global x86_pmu.intel_cap
should be 0 for these two features. Perf should not use the global
intel_cap to check the features on a hybrid system.
Add a dedicated intel_cap in the x86_hybrid_pmu to store the
model-specific capabilities. Use the dedicated intel_cap to replace
the global intel_cap for thse two features. The dedicated intel_cap
will be set in the following "Add Alder Lake Hybrid support" patch.
Add is_hybrid() to distinguish a hybrid system. ADL may have an
alternative configuration. With that configuration, the
X86_FEATURE_HYBRID_CPU is not set. Perf cannot rely on the feature bit.
Add a new static_key_false, perf_is_hybrid, to indicate a hybrid system.
It will be assigned in the following "Add Alder Lake Hybrid support"
patch as well.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-5-git-send-email-kan.liang@linux.intel.com
Some platforms, e.g. Alder Lake, have hybrid architecture. In the same
package, there may be more than one type of CPU. The PMU capabilities
are different among different types of CPU. Perf will register a
dedicated PMU for each type of CPU.
Add a 'pmu' variable in the struct cpu_hw_events to track the dedicated
PMU of the current CPU.
Current x86_get_pmu() use the global 'pmu', which will be broken on a
hybrid platform. Modify it to apply the 'pmu' of the specific CPU.
Initialize the per-CPU 'pmu' variable with the global 'pmu'. There is
nothing changed for the non-hybrid platforms.
The is_x86_event() will be updated in the later patch ("perf/x86:
Register hybrid PMUs") for hybrid platforms. For the non-hybrid
platforms, nothing is changed here.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-4-git-send-email-kan.liang@linux.intel.com
dev_attr_show() calls the __uncore_*_show() functions via an indirect
call but their type does not currently match the type of the show()
member in 'struct device_attribute', resulting in a Control Flow
Integrity violation.
$ cat /sys/devices/amd_l3/format/umask
config:8-15
$ dmesg | grep "CFI failure"
[ 1258.174653] CFI failure (target: __uncore_umask_show...):
Update the type in the DEFINE_UNCORE_FORMAT_ATTR macro to match
'struct device_attribute' so that there is no more CFI violation.
Fixes: 06f2c24584 ("perf/amd/uncore: Prepare to scale for more attributes that vary per family")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210415001112.3024673-2-nathan@kernel.org
dev_attr_show() calls _iommu_event_show() via an indirect call but
_iommu_event_show()'s type does not currently match the type of the
show() member in 'struct device_attribute', resulting in a Control Flow
Integrity violation.
$ cat /sys/devices/amd_iommu_1/events/mem_dte_hit
csource=0x0a
$ dmesg | grep "CFI failure"
[ 3526.735140] CFI failure (target: _iommu_event_show...):
Change _iommu_event_show() and 'struct amd_iommu_event_desc' to
'struct device_attribute' so that there is no more CFI violation.
Fixes: 7be6296fdd ("perf/x86/amd: AMD IOMMU Performance Counter PERF uncore PMU implementation")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210415001112.3024673-1-nathan@kernel.org
The 'running' variable is only used in the P4 PMU. Current perf sets the
variable in the critical function x86_pmu_start(), which wastes cycles
for everybody not running on P4.
Move cpuc->running into the P4 specific p4_pmu_enable_event().
Add a static per-CPU 'p4_running' variable to replace the 'running'
variable in the struct cpu_hw_events. Saves space for the generic
structure.
The p4_pmu_enable_all() also invokes the p4_pmu_enable_event(), but it
should not set cpuc->running. Factor out __p4_pmu_enable_event() for
p4_pmu_enable_all().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618410990-21383-1-git-send-email-kan.liang@linux.intel.com
A few functions that were intentended for the perf events support are
currently declared in arch/x86/events/amd/iommu.h, which mens they are
not in scope for the actual function definition. Also amdkfd has started
using a few of them using externs in a .c file. End that misery by
moving the prototypes to the proper header.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20210402143312.372386-5-hch@lst.de
Signed-off-by: Joerg Roedel <jroedel@suse.de>
-----BEGIN PGP SIGNATURE-----
iQFRBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmBhB7AeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGCPUH+KKkSoOlN2YNu1oc
iy2nznwZoSQTk5ZLz7PypO/WWmmtgzudkObG7yqIURdrncsAkHR17Wu2P7rdBr1j
Ma+VhF9MQ+xx+r86upH7c3gYfhyfdUMvzuLy0rwLQ1Yrzrb7xFcVkj3BHk54TAQA
w05sRPuVJ3/c/HPYV2iXkkdnnMbXSTCebeDDwjFb9D3qagr4vcd/PjDHmGbfNF8R
o6gLpbK5Ly6ww1nth9gGGUjzrW95yVItvcroP6vQWljxhuy+NE1lXRm8LsGhxqtW
foFFptJup5nhSNJXWtQt/U3huVD6mZ3W3y9cOThPjXZRy2wva3I1IpBKoEFReUpG
/Tq8EA==
=tPUY
-----END PGP SIGNATURE-----
Merge tag 'v5.12-rc5' into WIP.x86/core, to pick up recent NOP related changes
In particular we want to have this upstream commit:
b908297047: ("bpf: Use NOP_ATOMIC5 instead of emit_nops(&prog, 5) for BPF_TRAMP_F_CALL_ORIG")
... before merging in x86/cpu changes and the removal of the NOP optimizations, and
applying PeterZ's !retpoline objtool series.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IIO stacks to PMON mapping on Skylake servers is exposed through introduced
early attributes /sys/devices/uncore_iio_<pmu_idx>/dieX, where dieX is a
file which holds "Segment:Root Bus" for PCIe root port which can
be monitored by that IIO PMON block. These sysfs attributes are disabled
for multiple segment topologies except VMD domains which start at 0x10000.
This patch removes the limitation and enables IIO stacks to PMON mapping
for multi-segment Skylake servers by introducing segment-aware
intel_uncore_topology structure and attributing the topology configuration
to the segment in skx_iio_get_topology() function.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Tested-by: Kyle Meyer <kyle.meyer@hpe.com>
Link: https://lkml.kernel.org/r/20210323150507.2013-1-alexander.antonov@linux.intel.com
The discovery table provides the generic uncore block information
for the MMIO type of uncore blocks, which is good enough to provide
basic uncore support.
The box control field is composed of the BAR address and box control
offset. When initializing the uncore blocks, perf should ioremap the
address from the box control field.
Implement the generic support for the MMIO type of uncore block.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1616003977-90612-6-git-send-email-kan.liang@linux.intel.com
The discovery table provides the generic uncore block information
for the PCI type of uncore blocks, which is good enough to provide
basic uncore support.
The PCI BUS and DEVFN information can be retrieved from the box control
field. Introduce the uncore_pci_pmus_register() to register all the
PCICFG type of uncore blocks. The old PCI probe/remove way is dropped.
The PCI BUS and DEVFN information are different among dies. Add box_ctls
to store the box control field of each die.
Add a new BUS notifier for the PCI type of uncore block to support the
hotplug. If the device is "hot remove", the corresponding registered PMU
has to be unregistered. Perf cannot locate the PMU by searching a const
pci_device_id table, because the discovery tables don't provide such
information. Introduce uncore_pci_find_dev_pmu_from_types() to search
the whole uncore_pci_uncores for the PMU.
Implement generic support for the PCI type of uncore block.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1616003977-90612-5-git-send-email-kan.liang@linux.intel.com
Perf will use a similar method to the PCI sub driver to register
the PMUs for the PCI type of uncore blocks. The method requires a BUS
notifier to support hotplug. The current BUS notifier cannot be reused,
because it searches a const id_table for the corresponding registered
PMU. The PCI type of uncore blocks in the discovery tables doesn't
provide an id_table.
Factor out uncore_bus_notify() and add the pointer of an id_table as a
parameter. The uncore_bus_notify() will be reused in the following
patch.
The current BUS notifier is only used by the PCI sub driver. Its name is
too generic. Rename it to uncore_pci_sub_notifier, which is specific for
the PCI sub driver.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1616003977-90612-4-git-send-email-kan.liang@linux.intel.com
The discovery table provides the generic uncore block information for
the MSR type of uncore blocks, e.g., the counter width, the number of
counters, the location of control/counter registers, which is good
enough to provide basic uncore support. It can be used as a fallback
solution when the kernel doesn't support a platform.
The name of the uncore box cannot be retrieved from the discovery table.
uncore_type_&typeID_&boxID will be used as its name. Save the type ID
and the box ID information in the struct intel_uncore_type.
Factor out uncore_get_pmu_name() to handle different naming methods.
Implement generic support for the MSR type of uncore block.
Some advanced features, such as filters and constraints, cannot be
retrieved from discovery tables. Features that rely on that
information are not be supported here.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1616003977-90612-3-git-send-email-kan.liang@linux.intel.com
A self-describing mechanism for the uncore PerfMon hardware has been
introduced with the latest Intel platforms. By reading through an MMIO
page worth of information, perf can 'discover' all the standard uncore
PerfMon registers in a machine.
The discovery mechanism relies on BIOS's support. With a proper BIOS,
a PCI device with the unique capability ID 0x23 can be found on each
die. Perf can retrieve the information of all available uncore PerfMons
from the device via MMIO. The information is composed of one global
discovery table and several unit discovery tables.
- The global discovery table includes global uncore information of the
die, e.g., the address of the global control register, the offset of
the global status register, the number of uncore units, the offset of
unit discovery tables, etc.
- The unit discovery table includes generic uncore unit information,
e.g., the access type, the counter width, the address of counters,
the address of the counter control, the unit ID, the unit type, etc.
The unit is also called "box" in the code.
Perf can provide basic uncore support based on this information
with the following patches.
To locate the PCI device with the discovery tables, check the generic
PCI ID first. If it doesn't match, go through the entire PCI device tree
and locate the device with the unique capability ID.
The uncore information is similar among dies. To save parsing time and
space, only completely parse and store the discovery tables on the first
die and the first box of each die. The parsed information is stored in
an
RB tree structure, intel_uncore_discovery_type. The size of the stored
discovery tables varies among platforms. It's around 4KB for a Sapphire
Rapids server.
If a BIOS doesn't support the 'discovery' mechanism, the uncore driver
will exit with -ENODEV. There is nothing changed.
Add a module parameter to disable the discovery feature. If a BIOS gets
the discovery tables wrong, users can have an option to disable the
feature. For the current patchset, the uncore driver will exit with
-ENODEV. In the future, it may fall back to the hardcode uncore driver
on a known platform.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1616003977-90612-2-git-send-email-kan.liang@linux.intel.com
Fix another ~42 single-word typos in arch/x86/ code comments,
missed a few in the first pass, in particular in .S files.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
We've accumulated a few unusual Unicode characters in arch/x86/
over the years, substitute them with their proper ASCII equivalents.
A few of them were a whitespace equivalent: ' ' - the use was harmless.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Fix ~144 single-word typos in arch/x86/ code comments.
Doing this in a single commit should reduce the churn.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
On a Haswell machine, the perf_fuzzer managed to trigger this message:
[117248.075892] unchecked MSR access error: WRMSR to 0x3f1 (tried to
write 0x0400000000000000) at rIP: 0xffffffff8106e4f4
(native_write_msr+0x4/0x20)
[117248.089957] Call Trace:
[117248.092685] intel_pmu_pebs_enable_all+0x31/0x40
[117248.097737] intel_pmu_enable_all+0xa/0x10
[117248.102210] __perf_event_task_sched_in+0x2df/0x2f0
[117248.107511] finish_task_switch.isra.0+0x15f/0x280
[117248.112765] schedule_tail+0xc/0x40
[117248.116562] ret_from_fork+0x8/0x30
A fake event called VLBR_EVENT may use the bit 58 of the PEBS_ENABLE, if
the precise_ip is set. The bit 58 is reserved by the HW. Accessing the
bit causes the unchecked MSR access error.
The fake event doesn't support PEBS. The case should be rejected.
Fixes: 097e4311cd ("perf/x86: Add constraint to create guest LBR event without hw counter")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1615555298-140216-2-git-send-email-kan.liang@linux.intel.com
A repeatable crash can be triggered by the perf_fuzzer on some Haswell
system.
https://lore.kernel.org/lkml/7170d3b-c17f-1ded-52aa-cc6d9ae999f4@maine.edu/
For some old CPUs (HSW and earlier), the PEBS status in a PEBS record
may be mistakenly set to 0. To minimize the impact of the defect, the
commit was introduced to try to avoid dropping the PEBS record for some
cases. It adds a check in the intel_pmu_drain_pebs_nhm(), and updates
the local pebs_status accordingly. However, it doesn't correct the PEBS
status in the PEBS record, which may trigger the crash, especially for
the large PEBS.
It's possible that all the PEBS records in a large PEBS have the PEBS
status 0. If so, the first get_next_pebs_record_by_bit() in the
__intel_pmu_pebs_event() returns NULL. The at = NULL. Since it's a large
PEBS, the 'count' parameter must > 1. The second
get_next_pebs_record_by_bit() will crash.
Besides the local pebs_status, correct the PEBS status in the PEBS
record as well.
Fixes: 01330d7288 ("perf/x86: Allow zero PEBS status with only single active event")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1615555298-140216-1-git-send-email-kan.liang@linux.intel.com
intel_pmu_pebs_fixup_ip() needs only the insn length so use the
appropriate helper instead of a full decode. A full decode differs only
in running insn_complete() on the decoded insn but that is not needed
here.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210304174237.31945-8-bp@alien8.de
Initialize x86_pmu.guest_get_msrs to return 0/NULL to handle the "nop"
case. Patching in perf_guest_get_msrs_nop() during setup does not work
if there is no PMU, as setup bails before updating the static calls,
leaving x86_pmu.guest_get_msrs NULL and thus a complete nop. Ultimately,
this causes VMX abort on VM-Exit due to KVM putting random garbage from
the stack into the MSR load list.
Add a comment in KVM to note that nr_msrs is valid if and only if the
return value is non-NULL.
Fixes: abd562df94 ("x86/perf: Use static_call for x86_pmu.guest_get_msrs")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: syzbot+cce9ef2dd25246f815ee@syzkaller.appspotmail.com
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210309171019.1125243-1-seanjc@google.com
To supply a PID/TID for large PEBS, it requires flushing the PEBS buffer
in a context switch.
For normal LBRs, a context switch can flip the address space and LBR
entries are not tagged with an identifier, we need to wipe the LBR, even
for per-cpu events.
For LBR callstack, save/restore the stack is required during a context
switch.
Set PERF_ATTACH_SCHED_CB for the event with large PEBS & LBR.
Fixes: 9c964efa43 ("perf/x86/intel: Drain the PEBS buffer during context switches")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201130193842.10569-2-kan.liang@linux.intel.com
There are several things special for the RAPL Psys energy counter, on
Intel Sapphire Rapids platform.
1. it contains one Psys master package, and only CPUs on the master
package can read valid value of the Psys energy counter, reading the
MSR on CPUs in the slave package returns 0.
2. The master package does not have to be Physical package 0. And when
all the CPUs on the Psys master package are offlined, we lose the Psys
energy counter, at runtime.
3. The Psys energy counter can be disabled by BIOS, while all the other
energy counters are not affected.
It is not easy to handle all of these in the current RAPL PMU design
because
a) perf_msr_probe() validates the MSR on some random CPU, which may either
be in the Psys master package or in the Psys slave package.
b) all the RAPL events share the same PMU, and there is not API to remove
the psys-energy event cleanly, without affecting the other events in
the same PMU.
This patch addresses the problems in a simple way.
First, by setting .no_check bit for RAPL Psys MSR, the psys-energy event
is always added, so we don't have to check the Psys ENERGY_STATUS MSR on
master package.
Then, by removing rapl_not_visible(), the psys-energy event is always
available in sysfs. This does not affect the previous code because, for
the RAPL MSRs with .no_check cleared, the .is_visible() callback is always
overriden in the perf_msr_probe() function.
Note, although RAPL PMU is die-based, and the Psys energy counter MSR on
Intel SPR is package scope, this is not a problem because there is only
one die in each package on SPR.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210204161816.12649-3-rui.zhang@intel.com
In the RAPL ENERGY_COUNTER MSR, only the lower 32bits represent the energy
counter.
On previous platforms, the higher 32bits are reverved and always return
Zero. But on Intel SapphireRapids platform, the higher 32bits are reused
for other purpose and return non-zero value.
Thus check the lower 32bits only for these ENERGY_COUTNER MSRs, to make
sure the RAPL PMU events are not added erroneously when higher 32bits
contain non-zero value.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210204161816.12649-2-rui.zhang@intel.com
In some cases, when probing a perf MSR, we're probing certain bits of the
MSR instead of the whole register, thus only these bits should be checked.
For example, for RAPL ENERGY_STATUS MSR, only the lower 32 bits represents
the energy counter, and the higher 32bits are reserved.
Introduce a new mask field in struct perf_msr to allow probing certain
bits of a MSR.
This change is transparent to the current perf_msr_probe() users.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210204161816.12649-1-rui.zhang@intel.com
Cascade Lake Xeon parts have the same model number as Skylake Xeon
parts, so they are tagged with the intel_pebs_isolation
quirk. However, as with Skylake Xeon H0 stepping parts, the PEBS
isolation issue is fixed in all microcode versions.
Add the Cascade Lake Xeon steppings (5, 6, and 7) to the
isolation_ucodes[] table so that these parts benefit from Andi's
optimization in commit 9b545c04ab ("perf/x86/kvm: Avoid unnecessary
work in guest filtering").
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20210205191324.2889006-1-jmattson@google.com
With Architectural Performance Monitoring Version 5, CPUID 10.ECX cpu
leaf indicates the fixed counter enumeration. This extends the previous
count to a bitmap which allows disabling even lower fixed counters.
It could be used by a Hypervisor.
The existing intel_ctrl variable is used to remember the bitmask of the
counters. All code that reads all counters is fixed to check this extra
bitmask.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-6-git-send-email-kan.liang@linux.intel.com
Add perf core PMU support for the Intel Sapphire Rapids server, which is
the successor of the Intel Ice Lake server. The enabling code is based
on Ice Lake, but there are several new features introduced.
The event encoding is changed and simplified, e.g., the event codes
which are below 0x90 are restricted to counters 0-3. The event codes
which above 0x90 are likely to have no restrictions. The event
constraints, extra_regs(), and hardware cache events table are changed
accordingly.
A new Precise Distribution (PDist) facility is introduced, which
further minimizes the skid when a precise event is programmed on the GP
counter 0. Enable the Precise Distribution (PDist) facility with :ppp
event. For this facility to work, the period must be initialized with a
value larger than 127. Add spr_limit_period() to apply the limit for
:ppp event.
Two new data source fields, data block & address block, are added in the
PEBS Memory Info Record for the load latency event. To enable the
feature,
- An auxiliary event has to be enabled together with the load latency
event on Sapphire Rapids. A new flag PMU_FL_MEM_LOADS_AUX is
introduced to indicate the case. A new event, mem-loads-aux, is
exposed to sysfs for the user tool.
Add a check in hw_config(). If the auxiliary event is not detected,
return an unique error -ENODATA.
- The union perf_mem_data_src is extended to support the new fields.
- Ice Lake and earlier models do not support block information, but the
fields may be set by HW on some machines. Add pebs_no_block to
explicitly indicate the previous platforms which don't support the new
block fields. Accessing the new block fields are ignored on those
platforms.
A new store Latency facility is introduced, which leverages the PEBS
facility where it can provide additional information about sampled
stores. The additional information includes the data address, memory
auxiliary info (e.g. Data Source, STLB miss) and the latency of the
store access. To enable the facility, the new event (0x02cd) has to be
programed on the GP counter 0. A new flag PERF_X86_EVENT_PEBS_STLAT is
introduced to indicate the event. The store_latency_data() is introduced
to parse the memory auxiliary info.
The layout of access latency field of PEBS Memory Info Record has been
changed. Two latency, instruction latency (bit 15:0) and cache access
latency (bit 47:32) are recorded.
- The cache access latency is similar to previous memory access latency.
For loads, the latency starts by the actual cache access until the
data is returned by the memory subsystem.
For stores, the latency starts when the demand write accesses the L1
data cache and lasts until the cacheline write is completed in the
memory subsystem.
The cache access latency is stored in low 32bits of the sample type
PERF_SAMPLE_WEIGHT_STRUCT.
- The instruction latency starts by the dispatch of the load operation
for execution and lasts until completion of the instruction it belongs
to.
Add a new flag PMU_FL_INSTR_LATENCY to indicate the instruction
latency support. The instruction latency is stored in the bit 47:32
of the sample type PERF_SAMPLE_WEIGHT_STRUCT.
Extends the PERF_METRICS MSR to feature TMA method level 2 metrics. The
lower half of the register is the TMA level 1 metrics (legacy). The
upper half is also divided into four 8-bit fields for the new level 2
metrics. Expose all eight Topdown metrics events to user space.
The full description for the SPR features can be found at Intel
Architecture Instruction Set Extensions and Future Features
Programming Reference, 319433-041.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-5-git-send-email-kan.liang@linux.intel.com
Intel Sapphire Rapids server will introduce 8 metrics events. Intel
Ice Lake only supports 4 metrics events. A perf tool user may mistakenly
use the unsupported events via RAW format on Ice Lake. The user can
still get a value from the unsupported Topdown metrics event once the
following Sapphire Rapids enabling patch is applied.
To enable the 8 metrics events on Intel Sapphire Rapids, the
INTEL_TD_METRIC_MAX has to be updated, which impacts the
is_metric_event(). The is_metric_event() is a generic function.
On Ice Lake, the newly added SPR metrics events will be mistakenly
accepted as metric events on creation. At runtime, the unsupported
Topdown metrics events will be updated.
Add a variable num_topdown_events in x86_pmu to indicate the available
number of the Topdown metrics event on the platform. Apply the number
into is_metric_event(). Only the supported Topdown metrics events
should be created as metrics events.
Apply the num_topdown_events in icl_update_topdown_event() as well. The
function can be reused by the following patch.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-4-git-send-email-kan.liang@linux.intel.com
Similar to Ice Lake, Intel Sapphire Rapids server also supports the
topdown performance metrics feature. The difference is that Intel
Sapphire Rapids server extends the PERF_METRICS MSR to feature TMA
method level two metrics, which will introduce 8 metrics events. Current
icl_update_topdown_event() only check 4 level one metrics events.
Factor out intel_update_topdown_event() to facilitate the code sharing
between Ice Lake and Sapphire Rapids.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-3-git-send-email-kan.liang@linux.intel.com
Current PERF_SAMPLE_WEIGHT sample type is very useful to expresses the
cost of an action represented by the sample. This allows the profiler
to scale the samples to be more informative to the programmer. It could
also help to locate a hotspot, e.g., when profiling by memory latencies,
the expensive load appear higher up in the histograms. But current
PERF_SAMPLE_WEIGHT sample type is solely determined by one factor. This
could be a problem, if users want two or more factors to contribute to
the weight. For example, Golden Cove core PMU can provide both the
instruction latency and the cache Latency information as factors for the
memory profiling.
For current X86 platforms, although meminfo::latency is defined as a
u64, only the lower 32 bits include the valid data in practice (No
memory access could last than 4G cycles). The higher 32 bits can be used
to store new factors.
Add a new sample type, PERF_SAMPLE_WEIGHT_STRUCT, to indicate the new
sample weight structure. It shares the same space as the
PERF_SAMPLE_WEIGHT sample type.
Users can apply either the PERF_SAMPLE_WEIGHT sample type or the
PERF_SAMPLE_WEIGHT_STRUCT sample type to retrieve the sample weight, but
they cannot apply both sample types simultaneously.
Currently, only X86 and PowerPC use the PERF_SAMPLE_WEIGHT sample type.
- For PowerPC, there is nothing changed for the PERF_SAMPLE_WEIGHT
sample type. There is no effect for the new PERF_SAMPLE_WEIGHT_STRUCT
sample type. PowerPC can re-struct the weight field similarly later.
- For X86, the same value will be dumped for the PERF_SAMPLE_WEIGHT
sample type or the PERF_SAMPLE_WEIGHT_STRUCT sample type for now.
The following patches will apply the new factors for the
PERF_SAMPLE_WEIGHT_STRUCT sample type.
The field in the union perf_sample_weight should be shared among
different architectures. A generic name is required, but it's hard to
abstract a name that applies to all architectures. For example, on X86,
the fields are to store all kinds of latency. While on PowerPC, it
stores MMCRA[TECX/TECM], which should not be latency. So a general name
prefix 'var$NUM' is used here.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-2-git-send-email-kan.liang@linux.intel.com
Perfmon-v4 counter freezing is fundamentally broken; remove this default
disabled code to make sure nobody uses it.
The feature is called Freeze-on-PMI in the SDM, and if it would do that,
there wouldn't actually be a problem, *however* it does something subtly
different. It globally disables the whole PMU when it raises the PMI,
not when the PMI hits.
This means there's a window between the PMI getting raised and the PMI
actually getting served where we loose events and this violates the
perf counter independence. That is, a counting event should not result
in a different event count when there is a sampling event co-scheduled.
This is known to break existing software (RR).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Clean up that CONFIG_RETPOLINE crud and replace the
indirect call x86_pmu.guest_get_msrs with static_call().
Reported-by: kernel test robot <lkp@intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210125121458.181635-1-like.xu@linux.intel.com
The registers used to determine which die a pci bus belongs to don't
contain enough information to uniquely specify more than 8 dies, so
when more than 8 dies are present, use NUMA information instead.
Continue to use the previous method for 8 or fewer because it
works there, and covers cases of NUMA being disabled.
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210108153549.108989-3-steve.wahl@hpe.com
The phys_id isn't really used other than to map to a logical die id.
Calculate the logical die id earlier, and store that instead of the
phys_id.
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210108153549.108989-2-steve.wahl@hpe.com
Core:
- Better handling of page table leaves on archictectures which have
architectures have non-pagetable aligned huge/large pages. For such
architectures a leaf can actually be part of a larger entry.
- Prevent a deadlock vs. exec_update_mutex
Architectures:
- The related updates for page size calculation of leaf entries
- The usual churn to support new CPUs
- Small fixes and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XvgATHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUrdEACatdr93wv75vnm5tCZM4EsFvB2PzVJ
ck4K4+hHiMVV4802qf+kW5plF+rckAU4TAai/L7wkTntKHvjD/0/o1epoIStb+dS
SCpVkQMCLT/8xT242iHPOfgsQpVpJnIiBwVRjn8HXu82nXdgMJhKnBjTe634UfxW
o2OCFiyJzpRi5l86gVp67ueqgvl34NPI2JaSLc0g80QfZ8akzdePPpED35CzYjZh
41k+7ssvt6qch3vMUySHAhkX4gQl0nc80YAaF/XZbCfvdyY7D03PtfBjfvphTSK0
l54z9aWh0ciK9P1aPfvkHDXBJUR2VtUAx2GiURK+XU3jNk3KMrz9CcBl1D/exIAg
07IsiYVoB38YAUOZoR9K8p+p+5EuwYRRUMAgfQfBALCuaLQV477Cne82b2KmNCus
1izUQvcDDf0s74OyYTHWFXRGla95COJvNLzkrZ1oU3mX4HgdKdOAUbf/2XTLWeKO
3HOIS+jsg5cp82tRe4X5r51h73pONYlo9lLo/CjQXz25vMcXKtE/MZGq2gkRff4p
N4k88eQ5LOsRqUaU46GcHozXRCfcpW7SPI9AaN5I/fKGIZvHP7uMdMb+g5DV8yHI
dNZ8u5uLPHwdg80C3fJ3Pnp7VsVNHliPXMwv0vib7BCp7aUVZWeFnOntw3PdYFRk
XKEbfl36IuAadg==
=rZ99
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Thomas Gleixner:
"Core:
- Better handling of page table leaves on archictectures which have
architectures have non-pagetable aligned huge/large pages. For such
architectures a leaf can actually be part of a larger entry.
- Prevent a deadlock vs exec_update_mutex
Architectures:
- The related updates for page size calculation of leaf entries
- The usual churn to support new CPUs
- Small fixes and improvements all over the place"
* tag 'perf-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
perf/x86/intel: Add Tremont Topdown support
uprobes/x86: Fix fall-through warnings for Clang
perf/x86: Fix fall-through warnings for Clang
kprobes/x86: Fix fall-through warnings for Clang
perf/x86/intel/lbr: Fix the return type of get_lbr_cycles()
perf/x86/intel: Fix rtm_abort_event encoding on Ice Lake
x86/kprobes: Restore BTF if the single-stepping is cancelled
perf: Break deadlock involving exec_update_mutex
sparc64/mm: Implement pXX_leaf_size() support
powerpc/8xx: Implement pXX_leaf_size() support
arm64/mm: Implement pXX_leaf_size() support
perf/core: Fix arch_perf_get_page_size()
mm: Introduce pXX_leaf_size()
mm/gup: Provide gup_get_pte() more generic
perf/x86/intel: Add event constraint for CYCLE_ACTIVITY.STALLS_MEM_ANY
perf/x86/intel/uncore: Add Rocket Lake support
perf/x86/msr: Add Rocket Lake CPU support
perf/x86/cstate: Add Rocket Lake CPU support
perf/x86/intel: Add Rocket Lake CPU support
perf,mm: Handle non-page-table-aligned hugetlbfs
...
(Gabriel Krisman Bertazi)
- All kinds of minor cleanups all over the tree.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl/XgtoACgkQEsHwGGHe
VUqGuA/9GqN2zNQdhgRvAQ+FLZiOYK9MfXcoayfMq8T61VRPDBWaQRfVYKmfmEjS
0l5OnYgZQ9n6vzqFy6pmgc/ix8Jr553dZp5NCamcOqjCTcuO/LwRRh+ZBeFSBTPi
r2qFYKKRYvM7nbyUMm4WqvAakxJ18xsjNbIslr9Aqe8WtHBKKX3MOu8SOpFtGyXz
aEc4rhsS45iZa5gTXhvOn73tr3yHGWU1rzyyAAAmDGTgAxRwsTna8v16C4+v+Bua
Zg18Wiutj8ZjtFpzKJtGWGZoSBap3Jw2Ys64g42MBQUE56KY/99tQVo/SvbYvvlf
PHWLH0f3rPNJ6J2qeKwhtNzPlEAH/6e416A1/6TVwsK+8pdfGmkfaQh2iDHLhJ5i
CSwF61H44ZaE3pc1tHHbC5ALvydPlup7D4MKgztfq0mZ3OoV2Vg7dtyyr+Ybz72b
G+Kl/tmyacQTXo0FiYbZKETo3/VfTdBXGyVax1rHkx3pt8zvhFg3kxb1TT/l/CoM
eSTx53PtTdVtbGOq1CjnUm0FKlbh4+kLoNuo9DYKeXUQBs8PWOCZmL3wXmm4cqlZ
mDZVWvll7CjToY8izzcE/AG279cWkgcL5Tcg7W7CR66+egfDdpuqOZ4tv4TyzoWq
0J7WeNj+TAo98b7RA0Ux8LOlszRxS2ykuI6uB2MgwCaRMbbaQao=
=lLiH
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Borislav Petkov:
"Another branch with a nicely negative diffstat, just the way I
like 'em:
- Remove all uses of TIF_IA32 and TIF_X32 and reclaim the two bits in
the end (Gabriel Krisman Bertazi)
- All kinds of minor cleanups all over the tree"
* tag 'x86_cleanups_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/ia32_signal: Propagate __user annotation properly
x86/alternative: Update text_poke_bp() kernel-doc comment
x86/PCI: Make a kernel-doc comment a normal one
x86/asm: Drop unused RDPID macro
x86/boot/compressed/64: Use TEST %reg,%reg instead of CMP $0,%reg
x86/head64: Remove duplicate include
x86/mm: Declare 'start' variable where it is used
x86/head/64: Remove unused GET_CR2_INTO() macro
x86/boot: Remove unused finalize_identity_maps()
x86/uaccess: Document copy_from_user_nmi()
x86/dumpstack: Make show_trace_log_lvl() static
x86/mtrr: Fix a kernel-doc markup
x86/setup: Remove unused MCA variables
x86, libnvdimm/test: Remove COPY_MC_TEST
x86: Reclaim TIF_IA32 and TIF_X32
x86/mm: Convert mmu context ia32_compat into a proper flags field
x86/elf: Use e_machine to check for x32/ia32 in setup_additional_pages()
elf: Expose ELF header on arch_setup_additional_pages()
x86/elf: Use e_machine to select start_thread for x32
elf: Expose ELF header in compat_start_thread()
...
code to use it (Yazen Ghannam)
- Remove a dead and unused TSEG region remapping workaround on AMD (Arvind Sankar)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl/XVlYACgkQEsHwGGHe
VUpxTA/9F0KsgSyTh66uX+aX5qkQ3WTBVgxbXGFrn5qPvwcALXabU8qObDWTSdwS
1YbiWDjKNBJX+dggWe/fcQgUZxu5DFkM4IKEW1V7MLJEcdfylcqCyc1YNpEI4ySn
ebw2Sy4/5iXGAvhz802/WoUU/o3A2uZwe0RFyodHGxof5027HkZhRHeYB27Htw+l
z0IsmiYOoPl/4mNuVgr/qieIFSw1SUE9kwjU8RvM6xVWmXWXpM68JHa9s+/51pFt
6BaOz485OyzWUCtSx3/++GEkU2d53bWYOuQ1zTLEiuaBfYC5n5T/kAcT4WJNK6Tf
tX7yrzmWm9ecykIxfkgMrhG57G38y2GMJcEg+dFQHeXC062fdHDg+oY6Ql2EkAm5
t5RIQ/cyOmQCLns31rHI/kwQ3RMKc/lfnL/z8lrlfWsC5o755yFJKttbfLJugbTo
3BO1fbs4xgQcgi0KoqXOUETrQtsOLtr9FJwvcArB94XXqcIPClE8Ir7n8T7FCuLr
9litSXIdn46EHwD6hD5QIk7y+Rxwk/jxZFys3eh90jcWDDZTaG2lz3if33RbZ1go
XBrS5X3HsMODGZlaMeUjrbFIz3e0Zyoo+RO/TX48w8nzivC6xSNxSNFgIZ1XTF5E
SLMGa6lEQ9mLiqRfgFjynNwSYOSlGv3euMkZaVPS3hnNmn+vZbI=
=RsCs
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
"Only AMD-specific changes this time:
- Save the AMD physical die ID into cpuinfo_x86.cpu_die_id and
convert all code to use it (Yazen Ghannam)
- Remove a dead and unused TSEG region remapping workaround on AMD
(Arvind Sankar)"
* tag 'x86_cpu_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Remove dead code for TSEG region remapping
x86/topology: Set cpu_die_id only if DIE_TYPE found
EDAC/mce_amd: Use struct cpuinfo_x86.cpu_die_id for AMD NodeId
x86/CPU/AMD: Remove amd_get_nb_id()
x86/CPU/AMD: Save AMD NodeId as cpu_die_id
Tremont has four L1 Topdown events, TOPDOWN_FE_BOUND.ALL,
TOPDOWN_BAD_SPECULATION.ALL, TOPDOWN_BE_BOUND.ALL and
TOPDOWN_RETIRING.ALL. They are available on GP counters.
Export them to sysfs and facilitate the perf stat tool.
$perf stat --topdown -- sleep 1
Performance counter stats for 'sleep 1':
retiring bad speculation frontend bound
backend bound
24.9% 16.8% 31.7%
26.6%
1.001224610 seconds time elapsed
0.001150000 seconds user
0.000000000 seconds sys
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1607457952-3519-1-git-send-email-kan.liang@linux.intel.com
In preparation to enable -Wimplicit-fallthrough for Clang, fix a warning
by explicitly adding a fallthrough pseudo-keyword as a replacement for
a /* fall through */ comment, instead of letting the code fall through
to the next case.
Notice that Clang doesn't recognize /* fall through */ comments as
implicit fall-through markings.
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://github.com/KSPP/linux/issues/115
The cycle count of a timed LBR is always 1 in perf record -D.
The cycle count is stored in the first 16 bits of the IA32_LBR_x_INFO
register, but the get_lbr_cycles() return Boolean type.
Use u16 to replace the Boolean type.
Fixes: 47125db27e ("perf/x86/intel/lbr: Support Architectural LBR")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201125213720.15692-2-kan.liang@linux.intel.com
According to the event list from icelake_core_v1.09.json, the encoding
of the RTM_RETIRED.ABORTED event on Ice Lake should be,
"EventCode": "0xc9",
"UMask": "0x04",
"EventName": "RTM_RETIRED.ABORTED",
Correct the wrong encoding.
Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201125213720.15692-1-kan.liang@linux.intel.com
The kernel cannot disambiguate when 2+ PEBS counters overflow at the
same time. This is what the comment for this code suggests. However,
I see the comparison is done with the unfiltered p->status which is a
copy of IA32_PERF_GLOBAL_STATUS at the time of the sample. This
register contains more than the PEBS counter overflow bits. It also
includes many other bits which could also be set.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201126110922.317681-2-namhyung@kernel.org
The commit 3966c3feca ("x86/perf/amd: Remove need to check "running"
bit in NMI handler") introduced this. It seems x86_pmu_stop can be
called recursively (like when it losts some samples) like below:
x86_pmu_stop
intel_pmu_disable_event (x86_pmu_disable)
intel_pmu_pebs_disable
intel_pmu_drain_pebs_nhm (x86_pmu_drain_pebs_buffer)
x86_pmu_stop
While commit 35d1ce6bec ("perf/x86/intel/ds: Fix x86_pmu_stop
warning for large PEBS") fixed it for the normal cases, there's
another path to call x86_pmu_stop() recursively when a PEBS error was
detected (like two or more counters overflowed at the same time).
Like in the Kan's previous fix, we can skip the interrupt accounting
for large PEBS, so check the iregs which is set for PMI only.
Fixes: 3966c3feca ("x86/perf/amd: Remove need to check "running" bit in NMI handler")
Reported-by: John Sperbeck <jsperbeck@google.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201126110922.317681-1-namhyung@kernel.org
The Last Level Cache ID is returned by amd_get_nb_id(). In practice,
this value is the same as the AMD NodeId for callers of this function.
The NodeId is saved in struct cpuinfo_x86.cpu_die_id.
Replace calls to amd_get_nb_id() with the logical CPU's cpu_die_id and
remove the function.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201109210659.754018-3-Yazen.Ghannam@amd.com
This change switches rapl to use PMU_FORMAT_ATTR, and fixes two other
macros to use device_attribute instead of kobj_attribute to avoid
callback type mismatches that trip indirect call checking with Clang's
Control-Flow Integrity (CFI).
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20201113183126.1239404-1-samitolvanen@google.com
gcc -Wextra points out a duplicate initialization of one array
member:
arch/x86/events/intel/uncore_snb.c:478:37: warning: initialized field overwritten [-Woverride-init]
478 | [SNB_PCI_UNCORE_IMC_DATA_READS] = { SNB_UNCORE_PCI_IMC_DATA_WRITES_BASE,
The only sensible explanation is that a duplicate 'READS' was used
instead of the correct 'WRITES', so change it back.
Fixes: 24633d901e ("perf/x86/intel/uncore: Add BW counters for GT, IA and IO breakdown")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201026215203.3893972-1-arnd@kernel.org
Starting with Arch Perfmon v5, the anythread filter on generic counters may be
deprecated. The current kernel was exporting the any filter without checking.
On Icelake, it means you could do cpu/event=0x3c,any/ even though the filter
does not exist. This patch corrects the problem by relying on the CPUID 0xa leaf
function to determine if anythread is supported or not as described in the
Intel SDM Vol3b 18.2.5.1 AnyThread Deprecation section.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201028194247.3160610-1-eranian@google.com
Having pt_regs on-stack is unfortunate, it's 168 bytes. Since it isn't
actually used, make it a static variable. This both gets if off the
stack and ensures it gets 0 initialized, just in case someone does
look at it.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151955.324273677@infradead.org
intel_pmu_drain_pebs_*() is typically called from handle_pmi_common(),
both have an on-stack struct perf_sample_data, which is *big*. Rewire
things so that drain_pebs() can use the one handle_pmi_common() has.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151955.054099690@infradead.org
__perf_output_begin() has an on-stack struct perf_sample_data in the
unlikely case it needs to generate a LOST record. However, every call
to perf_output_begin() must already have a perf_sample_data on-stack.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151954.985416146@infradead.org
The event CYCLE_ACTIVITY.STALLS_MEM_ANY (0x14a3) should be available on
all 8 GP counters on ICL, but it's only scheduled on the first four
counters due to the current ICL constraint table.
Add a line for the CYCLE_ACTIVITY.STALLS_MEM_ANY event in the ICL
constraint table.
Correct the comments for the CYCLE_ACTIVITY.CYCLES_MEM_ANY event.
Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20201019164529.32154-1-kan.liang@linux.intel.com
For Rocket Lake, the MSR uncore, e.g., CBOX, ARB and CLOCKBOX, are the
same as Tiger Lake. Share the perf code with it.
For Rocket Lake and Tiger Lake, the 8th CBOX is not mapped into a
different MSR space anymore. Add rkl_uncore_msr_init_box() to replace
skl_uncore_msr_init_box().
The IMC uncore is the similar to Ice Lake. Add new PCIIDs of IMC for
Rocket Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-4-kan.liang@linux.intel.com
From the perspective of Intel cstate residency counters, Rocket Lake is
the same as Ice Lake and Tiger Lake. Share the code with them. Update
the comments for Rocket Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-2-kan.liang@linux.intel.com
From the perspective of Intel PMU, Rocket Lake is the same as Ice Lake
and Tiger Lake. Share the perf code with them.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201019153528.13850-1-kan.liang@linux.intel.com
When studying code layout, it is useful to capture the page size of the
sampled code address.
Add a new sample type for code page size.
The new sample type requires collecting the ip. The code page size can
be calculated from the NMI-safe perf_get_page_size().
For large PEBS, it's very unlikely that the mapping is gone for the
earlier PEBS records. Enable the feature for the large PEBS. The worst
case is that page-size '0' is returned.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-5-kan.liang@linux.intel.com
The new sample type, PERF_SAMPLE_DATA_PAGE_SIZE, requires the virtual
address. Update the data->addr if the sample type is set.
The large PEBS is disabled with the sample type, because perf doesn't
support munmap tracking yet. The PEBS buffer for large PEBS cannot be
flushed for each munmap. Wrong page size may be calculated. The large
PEBS can be enabled later separately when munmap tracking is supported.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-3-kan.liang@linux.intel.com
In preparation to remove TIF_IA32, stop using it in perf events code.
Tested by running perf on 32-bit, 64-bit and x32 applications.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201004032536.1229030-2-krisman@collabora.com
x86 Intel updates:
- Add Jasper Lake support
- Add support for TopDown metrics on Ice Lake
- Fix Ice Lake & Tiger Lake uncore support, add Snow Ridge support
- Add a PCI sub driver to support uncore PMUs where the PCI resources
have been claimed already - extending the range of supported systems.
x86 AMD updates:
- Restore 'perf stat -a' behaviour to program the uncore PMU
to count all CPU threads.
- Fix setting the proper count when sampling Large Increment
per Cycle events / 'paired' events.
- Fix IBS Fetch sampling on F17h and some other IBS fine tuning,
greatly reducing the number of interrupts when large sample
periods are specified.
- Extends Family 17h RAPL support to also work on compatible
F19h machines.
Core code updates:
- Fix race in perf_mmap_close()
- Add PERF_EV_CAP_SIBLING, to denote that sibling events should be
closed if the leader is removed.
- Smaller fixes and updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+Ef40RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1h7NQ//ZdQ26Yg79ZaxBX1QSINJ9AgXDi6rXs75
qU9qNwr/6EF+633RZoPQGAE0Iy5v6h7iLFokcJzM9+kK/rE3ax44tSnPlcMa0+6N
SHXKCa5iL+hH7o2Spo2MZwCYseH79rloX3TSH7ajnN3X8PvwgWshF0lUE3WEWtCs
eHSojdCk43IuL9TpusuNOBM2FvgnheFYWiMbFHd0MTBUMxul30sLVCG8IIWCPA+q
TwG4RJS3X42VbL3SuAGFmOv4OmqNsfkvHvjpDs4NF07tRB9zjXzGrxmGhgSw0NAN
2KK25qbmrpKATIb4Eqsgk/yikX/SCrDEXrjhg3r8FnyPvRfctq1crZjjf672PI2E
bDda76dH6Lq9jv5fsyJjas5OsYdMKBCnA+tGQxXPGbmTXeEcYMRbDnwhYnevI/Q/
8pP+xstF0pmBA3tvpDPrQnYH72Qt7CLJSdcTB15NqZftU2tJxaAyJGx4gJy33jxQ
wu6BIEGHQ7onQYiIyTwsBHyz6xNsF/CRHwAPcGdYrRRbXB5K5nxHiXNb4awciTMx
2HF31/S4OqURNpfcpxOQo+1fb/cLqj3loGqE4jCTwkbS3lrHcAcfxyv9QNn77l1f
hdQ0jworbUNVLUYEUQz1bkZ06GD3LSSas2ZlY1NNdHo62mjyXMQmgirNcZmrFgWl
tl2gNFAU9x4=
=2fuY
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull performance events updates from Ingo Molnar:
"x86 Intel updates:
- Add Jasper Lake support
- Add support for TopDown metrics on Ice Lake
- Fix Ice Lake & Tiger Lake uncore support, add Snow Ridge support
- Add a PCI sub driver to support uncore PMUs where the PCI resources
have been claimed already - extending the range of supported
systems.
x86 AMD updates:
- Restore 'perf stat -a' behaviour to program the uncore PMU to count
all CPU threads.
- Fix setting the proper count when sampling Large Increment per
Cycle events / 'paired' events.
- Fix IBS Fetch sampling on F17h and some other IBS fine tuning,
greatly reducing the number of interrupts when large sample periods
are specified.
- Extends Family 17h RAPL support to also work on compatible F19h
machines.
Core code updates:
- Fix race in perf_mmap_close()
- Add PERF_EV_CAP_SIBLING, to denote that sibling events should be
closed if the leader is removed.
- Smaller fixes and updates"
* tag 'perf-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
perf/core: Fix race in the perf_mmap_close() function
perf/x86: Fix n_metric for cancelled txn
perf/x86: Fix n_pair for cancelled txn
x86/events/amd/iommu: Fix sizeof mismatch
perf/x86/intel: Check perf metrics feature for each CPU
perf/x86/intel: Fix Ice Lake event constraint table
perf/x86/intel/uncore: Fix the scale of the IMC free-running events
perf/x86/intel/uncore: Fix for iio mapping on Skylake Server
perf/x86/msr: Add Jasper Lake support
perf/x86/intel: Add Jasper Lake support
perf/x86/intel/uncore: Reduce the number of CBOX counters
perf/x86/intel/uncore: Update Ice Lake uncore units
perf/x86/intel/uncore: Split the Ice Lake and Tiger Lake MSR uncore support
perf/x86/intel/uncore: Support PCIe3 unit on Snow Ridge
perf/x86/intel/uncore: Generic support for the PCI sub driver
perf/x86/intel/uncore: Factor out uncore_pci_pmu_unregister()
perf/x86/intel/uncore: Factor out uncore_pci_pmu_register()
perf/x86/intel/uncore: Factor out uncore_pci_find_dev_pmu()
perf/x86/intel/uncore: Factor out uncore_pci_get_dev_die_info()
perf/amd/uncore: Inform the user how many counters each uncore PMU has
...
When a group that has TopDown members is failed to be scheduled, any
later TopDown groups will not return valid values.
Here is an example.
A background perf that occupies all the GP counters and the fixed
counter 1.
$perf stat -e "{cycles,cycles,cycles,cycles,cycles,cycles,cycles,
cycles,cycles}:D" -a
A user monitors a TopDown group. It works well, because the fixed
counter 3 and the PERF_METRICS are available.
$perf stat -x, --topdown -- ./workload
retiring,bad speculation,frontend bound,backend bound,
18.0,16.1,40.4,25.5,
Then the user tries to monitor a group that has TopDown members.
Because of the cycles event, the group is failed to be scheduled.
$perf stat -x, -e '{slots,topdown-retiring,topdown-be-bound,
topdown-fe-bound,topdown-bad-spec,cycles}'
-- ./workload
<not counted>,,slots,0,0.00,,
<not counted>,,topdown-retiring,0,0.00,,
<not counted>,,topdown-be-bound,0,0.00,,
<not counted>,,topdown-fe-bound,0,0.00,,
<not counted>,,topdown-bad-spec,0,0.00,,
<not counted>,,cycles,0,0.00,,
The user tries to monitor a TopDown group again. It doesn't work anymore.
$perf stat -x, --topdown -- ./workload
,,,,,
In a txn, cancel_txn() is to truncate the event_list for a canceled
group and update the number of events added in this transaction.
However, the number of TopDown events added in this transaction is not
updated. The kernel will probably fail to add new Topdown events.
Fixes: 7b2c05a15d ("perf/x86/intel: Generic support for hardware TopDown metrics")
Reported-by: Andi Kleen <ak@linux.intel.com>
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20201005082611.GH2628@hirez.programming.kicks-ass.net
Kan reported that n_metric gets corrupted for cancelled transactions;
a similar issue exists for n_pair for AMD's Large Increment thing.
The problem was confirmed and confirmed fixed by Kim using:
sudo perf stat -e "{cycles,cycles,cycles,cycles}:D" -a sleep 10 &
# should succeed:
sudo perf stat -e "{fp_ret_sse_avx_ops.all}:D" -a workload
# should fail:
sudo perf stat -e "{fp_ret_sse_avx_ops.all,fp_ret_sse_avx_ops.all,cycles}:D" -a workload
# previously failed, now succeeds with this patch:
sudo perf stat -e "{fp_ret_sse_avx_ops.all}:D" -a workload
Fixes: 5738891229 ("perf/x86/amd: Add support for Large Increment per Cycle Events")
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kim Phillips <kim.phillips@amd.com>
Link: https://lkml.kernel.org/r/20201005082516.GG2628@hirez.programming.kicks-ass.net
An incorrect sizeof is being used, struct attribute ** is not correct,
it should be struct attribute *. Note that since ** is the same size as
* this is not causing any issues. Improve this fix by using sizeof(*attrs)
as this allows us to not even reference the type of the pointer.
Addresses-Coverity: ("Sizeof not portable (SIZEOF_MISMATCH)")
Fixes: 5168654630 ("x86/events/amd/iommu: Fix sysfs perf attribute groups")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001113900.58889-1-colin.king@canonical.com
It might be possible that different CPUs have different CPU metrics on a
platform. In this case, writing the GLOBAL_CTRL_EN_PERF_METRICS bit to
the GLOBAL_CTRL register of a CPU, which doesn't support the TopDown
perf metrics feature, causes MSR access error.
Current TopDown perf metrics feature is enumerated using the boot CPU's
PERF_CAPABILITIES MSR. The MSR only indicates the boot CPU supports this
feature.
Check the PERF_CAPABILITIES MSR for each CPU. If any CPU doesn't support
the perf metrics feature, disable the feature globally.
Fixes: 59a854e2f3 ("perf/x86/intel: Support TopDown metrics on Ice Lake")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001211711.25708-1-kan.liang@linux.intel.com
An error occues when sampling non-PEBS INST_RETIRED.PREC_DIST(0x01c0)
event.
perf record -e cpu/event=0xc0,umask=0x01/ -- sleep 1
Error:
The sys_perf_event_open() syscall returned with 22 (Invalid argument)
for event (cpu/event=0xc0,umask=0x01/).
/bin/dmesg | grep -i perf may provide additional information.
The idxmsk64 of the event is set to 0. The event never be successfully
scheduled.
The event should be limit to the fixed counter 0.
Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Reported-by: Yi, Ammy <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200928134726.13090-1-kan.liang@linux.intel.com
The "MiB" result of the IMC free-running bandwidth events,
uncore_imc_free_running/read/ and uncore_imc_free_running/write/ are 16
times too small.
The "MiB" value equals the raw IMC free-running bandwidth counter value
times a "scale" which is inaccurate.
The IMC free-running bandwidth events should be incremented per 64B
cache line, not DWs (4 bytes). The "scale" should be 6.103515625e-5.
Fix the "scale" for both Snow Ridge and Ice Lake.
Fixes: 2b3b76b5ec ("perf/x86/intel/uncore: Add Ice Lake server uncore support")
Fixes: ee49532b38 ("perf/x86/intel/uncore: Add IMC uncore support for Snow Ridge")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200928133240.12977-1-kan.liang@linux.intel.com
Introduced early attributes /sys/devices/uncore_iio_<pmu_idx>/die* are
initialized by skx_iio_set_mapping(), however, for example, for multiple
segment platforms skx_iio_get_topology() returns -EPERM before a list of
attributes in skx_iio_mapping_group will have been initialized.
As a result the list is being NULL. Thus the warning
"sysfs: (bin_)attrs not set by subsystem for group: uncore_iio_*/" appears
and uncore_iio pmus are not available in sysfs. Clear IIO attr_update
to properly handle the cases when topology information cannot be
retrieved.
Fixes: bb42b3d397 ("perf/x86/intel/uncore: Expose an Uncore unit to IIO PMON mapping")
Reported-by: Kyle Meyer <kyle.meyer@hpe.com>
Suggested-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexei Budankov <alexey.budankov@linux.intel.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20200928102133.61041-1-alexander.antonov@linux.intel.com
The Jasper Lake processor is also a Tremont microarchitecture. From the
perspective of perf MSR, there is nothing changed compared with
Elkhart Lake.
Share the code path with Elkhart Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1601296242-32763-2-git-send-email-kan.liang@linux.intel.com
The Jasper Lake processor is also a Tremont microarchitecture. From the
perspective of Intel PMU, there is nothing changed compared with
Elkhart Lake.
Share the perf code with Elkhart Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1601296242-32763-1-git-send-email-kan.liang@linux.intel.com
An oops is triggered by the fuzzy test.
[ 327.853081] unchecked MSR access error: RDMSR from 0x70c at rIP:
0xffffffffc082c820 (uncore_msr_read_counter+0x10/0x50 [intel_uncore])
[ 327.853083] Call Trace:
[ 327.853085] <IRQ>
[ 327.853089] uncore_pmu_event_start+0x85/0x170 [intel_uncore]
[ 327.853093] uncore_pmu_event_add+0x1a4/0x410 [intel_uncore]
[ 327.853097] ? event_sched_in.isra.118+0xca/0x240
There are 2 GP counters for each CBOX, but the current code claims 4
counters. Accessing the invalid registers triggers the oops.
Fixes: 6e394376ee ("perf/x86/intel/uncore: Add Intel Icelake uncore support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200925134905.8839-3-kan.liang@linux.intel.com
There are some updates for the Icelake model specific uncore performance
monitors. (The update can be found at 10th generation intel core
processors families specification update Revision 004, ICL068)
1) Counter 0 of ARB uncore unit is not available for software use
2) The global 'enable bit' (bit 29) and 'freeze bit' (bit 31) of
MSR_UNC_PERF_GLOBAL_CTRL cannot be used to control counter behavior.
Needs to use local enable in event select MSR.
Accessing the modified bit/registers will be ignored by HW. Users may
observe inaccurate results with the current code.
The changes of the MSR_UNC_PERF_GLOBAL_CTRL imply that groups cannot be
read atomically anymore. Although the error of the result for a group
becomes a bit bigger, it still far lower than not using a group. The
group support is still kept. Only Remove the *_box() related
implementation.
Since the counter 0 of ARB uncore unit is not available, update the MSR
address for the ARB uncore unit.
There is no change for IMC uncore unit, which only include free-running
counters.
Fixes: 6e394376ee ("perf/x86/intel/uncore: Add Intel Icelake uncore support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200925134905.8839-2-kan.liang@linux.intel.com
Previously, the MSR uncore for the Ice Lake and Tiger Lake are
identical. The code path is shared. However, with recent update, the
global MSR_UNC_PERF_GLOBAL_CTRL register and ARB uncore unit are changed
for the Ice Lake. Split the Ice Lake and Tiger Lake MSR uncore support.
The changes only impact the MSR ops() and the ARB uncore unit. Other
codes can still be shared between the Ice Lake and the Tiger Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200925134905.8839-1-kan.liang@linux.intel.com
The Snow Ridge integrated PCIe3 uncore unit can be used to collect
performance data, e.g. utilization, between PCIe devices, plugged into
the PCIe port, and the components (in M2IOSF) responsible for
translating and managing requests to/from the device. The performance
data is very useful for analyzing the performance of PCIe devices.
The device with the PCIe3 uncore PMON units is owned by the portdrv_pci
driver. Create a PCI sub driver for the PCIe3 uncore PMON units.
Here are some difference between PCIe3 uncore unit and other uncore
pci units.
- There may be several Root Ports on a system. But the uncore counters
only exist in the Root Port A. A user can configure the channel mask
to collect the data from other Root Ports.
- The event format of the PCIe3 uncore unit is the same as IIO unit of
SKX.
- The Control Register of PCIe3 uncore unit is 64 bits.
- The offset of each counters is 8, which is the same as M2M unit of
SNR.
- New MSR addresses for unit control, counter and counter config.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-7-git-send-email-kan.liang@linux.intel.com
Some uncore counters may be located in the configuration space of a PCI
device, which already has a bonded driver. Currently, the uncore driver
cannot register a PCI uncore PMU for these counters, because, to
register a PCI uncore PMU, the uncore driver must be bond to the device.
However, one device can only have one bonded driver.
Add an uncore PCI sub driver to support such kind of devices.
The sub driver doesn't own the device. In initialization, the sub
driver searches the device via pci_get_device(), and register the
corresponding PMU for the device. In the meantime, the sub driver
registers a PCI bus notifier, which is used to notify the sub driver
once the device is removed. The sub driver can unregister the PMU
accordingly.
The sub driver only searches the devices defined in its id table. The
id table varies on different platforms, which will be implemented in the
following platform-specific patch.
Suggested-by: Bjorn Helgaas <helgaas@kernel.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-6-git-send-email-kan.liang@linux.intel.com
The PMU unregistration in the uncore PCI sub driver is similar as the
normal PMU unregistration for a PCI device. The codes to unregister a
PCI PMU can be shared.
Factor out uncore_pci_pmu_unregister(), which will be used later.
Use uncore_pci_get_dev_die_info() to replace the codes which retrieve
the socket and die informaion.
The pci_set_drvdata() is not included in uncore_pci_pmu_unregister() as
well, because the uncore PCI sub driver will not touch the private
driver data pointer of the device.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-5-git-send-email-kan.liang@linux.intel.com
The PMU registration in the uncore PCI sub driver is similar as the
normal PMU registration for a PCI device. The codes to register a PCI
PMU can be shared.
Factor out uncore_pci_pmu_register(), which will be used later.
The pci_set_drvdata() is not included in uncore_pci_pmu_register(). The
uncore PCI sub driver doesn't own the PCI device. It will not touch the
private driver data pointer for the device.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-4-git-send-email-kan.liang@linux.intel.com
When an uncore PCI sub driver gets a remove notification, the
corresponding PMU has to be retrieved and unregistered. The codes, which
find the corresponding PMU by comparing the pci_device_id table, can be
shared.
Factor out uncore_pci_find_dev_pmu(), which will be used later.
There is no functional change.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-3-git-send-email-kan.liang@linux.intel.com
The socket and die information is required to register/unregister a PMU
in the uncore PCI sub driver. The codes, which get the socket and die
information from a BUS number, can be shared.
Factor out uncore_pci_get_dev_die_info(), which will be used later.
There is no functional change.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1600094060-82746-2-git-send-email-kan.liang@linux.intel.com
Previously, the uncore driver would say "NB counters detected" on F17h
machines, which don't have NorthBridge (NB) counters. They have Data
Fabric (DF) counters. Just use the pmu.name to inform users which pmu
to use and its associated counter count.
F17h dmesg BEFORE:
amd_uncore: AMD NB counters detected
amd_uncore: AMD LLC counters detected
F17h dmesg AFTER:
amd_uncore: 4 amd_df counters detected
amd_uncore: 6 amd_l3 counters detected
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921144330.6331-5-kim.phillips@amd.com
On Family 19h, the driver checks for a populated 2-bit threadmask in
order to establish that the user wants to measure individual slices,
individual cores (only one can be measured at a time), and lets
the user also directly specify enallcores and/or enallslices if
desired.
Example F19h invocation to measure L3 accesses (event 4, umask 0xff)
by the first thread (id 0 -> mask 0x1) of the first core (id 0) on the
first slice (id 0):
perf stat -a -e instructions,amd_l3/umask=0xff,event=0x4,coreid=0,threadmask=1,sliceid=0,enallcores=0,enallslices=0/ <workload>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921144330.6331-4-kim.phillips@amd.com
Continue to fully populate either one of threadmask or slicemask if the
user doesn't.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921144330.6331-3-kim.phillips@amd.com
Replace AMD_FORMAT_ATTR with the more apropos DEFINE_UNCORE_FORMAT_ATTR
stolen from arch/x86/events/intel/uncore.h. This way we can clearly
see the bit-variants of each of the attributes that want to have
the same name across families.
Also unroll AMD_ATTRIBUTE because we are going to separately add
new attributes that differ between DF and L3.
Also clean up the if-Family 17h-else logic in amd_uncore_init.
This is basically a rewrite of commit da6adaea2b
("perf/x86/amd/uncore: Update sysfs attributes for Family17h processors").
No functional changes.
Tested F17h+ /sys/bus/event_source/devices/amd_{l3,df}/format/*
content remains unchanged:
/sys/bus/event_source/devices/amd_l3/format/event:config:0-7
/sys/bus/event_source/devices/amd_l3/format/umask:config:8-15
/sys/bus/event_source/devices/amd_df/format/event:config:0-7,32-35,59-60
/sys/bus/event_source/devices/amd_df/format/umask:config:8-15
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200921144330.6331-2-kim.phillips@amd.com
Stephane Eranian found a bug in that IBS' current Fetch counter was not
being reset when the driver would write the new value to clear it along
with the enable bit set, and found that adding an MSR write that would
first disable IBS Fetch would make IBS Fetch reset its current count.
Indeed, the PPR for AMD Family 17h Model 31h B0 55803 Rev 0.54 - Sep 12,
2019 states "The periodic fetch counter is set to IbsFetchCnt [...] when
IbsFetchEn is changed from 0 to 1."
Explicitly set IbsFetchEn to 0 and then to 1 when re-enabling IBS Fetch,
so the driver properly resets the internal counter to 0 and IBS
Fetch starts counting again.
A family 15h machine tested does not have this problem, and the extra
wrmsr is also not needed on Family 19h, so only do the extra wrmsr on
families 16h through 18h.
Reported-by: Stephane Eranian <stephane.eranian@google.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
[peterz: optimized]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Family 19h RAPL support did not change from Family 17h; extend
the existing Fam17h support to work on Family 19h too.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200908214740.18097-8-kim.phillips@amd.com
IBS hardware with the OpCntExt feature gets a 7-bit wider internal
counter. Both the maximum and current count bitfields in the
IBS_OP_CTL register are extended to support reading and writing it.
No changes are necessary to the driver for handling the extra
contiguous current count bits (IbsOpCurCnt), as the driver already
passes through 32 bits of that field. However, the driver has to do
some extra bit manipulation when converting from a period to the
non-contiguous (although conveniently aligned) extra bits in the
IbsOpMaxCnt bitfield.
This decreases IBS Op interrupt overhead when the period is over
1,048,560 (0xffff0), which would previously activate the driver's
software counter. That threshold is now 134,217,712 (0x7fffff0).
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200908214740.18097-7-kim.phillips@amd.com
Neither IbsBrTarget nor OPDATA4 are populated in IBS Fetch mode.
Don't accumulate them into raw sample user data in that case.
Also, in Fetch mode, add saving the IBS Fetch Control Extended MSR.
Technically, there is an ABI change here with respect to the IBS raw
sample data format, but I don't see any perf driver version information
being included in perf.data file headers, but, existing users can detect
whether the size of the sample record has reduced by 8 bytes to
determine whether the IBS driver has this fix.
Fixes: 904cb3677f ("perf/x86/amd/ibs: Update IBS MSRs and feature definitions")
Reported-by: Stephane Eranian <stephane.eranian@google.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200908214740.18097-6-kim.phillips@amd.com
get_ibs_op_count() adds hardware's current count (IbsOpCurCnt) bits
to its count regardless of hardware's valid status.
According to the PPR for AMD Family 17h Model 31h B0 55803 Rev 0.54,
if the counter rolls over, valid status is set, and the lower 7 bits
of IbsOpCurCnt are randomized by hardware.
Don't include those bits in the driver's event count.
Fixes: 8b1e13638d ("perf/x86-ibs: Fix usage of IBS op current count")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Commit 5738891229 ("perf/x86/amd: Add support for Large Increment
per Cycle Events") mistakenly zeroes the upper 16 bits of the count
in set_period(). That's fine for counting with perf stat, but not
sampling with perf record when only Large Increment events are being
sampled. To enable sampling, we sign extend the upper 16 bits of the
merged counter pair as described in the Family 17h PPRs:
"Software wanting to preload a value to a merged counter pair writes the
high-order 16-bit value to the low-order 16 bits of the odd counter and
then writes the low-order 48-bit value to the even counter. Reading the
even counter of the merged counter pair returns the full 64-bit value."
Fixes: 5738891229 ("perf/x86/amd: Add support for Large Increment per Cycle Events")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Commit 2f217d58a8 ("perf/x86/amd/uncore: Set the thread mask for
F17h L3 PMCs") inadvertently changed the uncore driver's behaviour
wrt perf tool invocations with or without a CPU list, specified with
-C / --cpu=.
Change the behaviour of the driver to assume the former all-cpu (-a)
case, which is the more commonly desired default. This fixes
'-a -A' invocations without explicit cpu lists (-C) to not count
L3 events only on behalf of the first thread of the first core
in the L3 domain.
BEFORE:
Activity performed by the first thread of the last core (CPU#43) in
CPU#40's L3 domain is not reported by CPU#40:
sudo perf stat -a -A -e l3_request_g1.caching_l3_cache_accesses taskset -c 43 perf bench mem memcpy -s 32mb -l 100 -f default
...
CPU36 21,835 l3_request_g1.caching_l3_cache_accesses
CPU40 87,066 l3_request_g1.caching_l3_cache_accesses
CPU44 17,360 l3_request_g1.caching_l3_cache_accesses
...
AFTER:
The L3 domain activity is now reported by CPU#40:
sudo perf stat -a -A -e l3_request_g1.caching_l3_cache_accesses taskset -c 43 perf bench mem memcpy -s 32mb -l 100 -f default
...
CPU36 354,891 l3_request_g1.caching_l3_cache_accesses
CPU40 1,780,870 l3_request_g1.caching_l3_cache_accesses
CPU44 315,062 l3_request_g1.caching_l3_cache_accesses
...
Fixes: 2f217d58a8 ("perf/x86/amd/uncore: Set the thread mask for F17h L3 PMCs")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200908214740.18097-2-kim.phillips@amd.com
A warning as below may be triggered when sampling with large PEBS.
[ 410.411250] perf: interrupt took too long (72145 > 71975), lowering
kernel.perf_event_max_sample_rate to 2000
[ 410.724923] ------------[ cut here ]------------
[ 410.729822] WARNING: CPU: 0 PID: 16397 at arch/x86/events/core.c:1422
x86_pmu_stop+0x95/0xa0
[ 410.933811] x86_pmu_del+0x50/0x150
[ 410.937304] event_sched_out.isra.0+0xbc/0x210
[ 410.941751] group_sched_out.part.0+0x53/0xd0
[ 410.946111] ctx_sched_out+0x193/0x270
[ 410.949862] __perf_event_task_sched_out+0x32c/0x890
[ 410.954827] ? set_next_entity+0x98/0x2d0
[ 410.958841] __schedule+0x592/0x9c0
[ 410.962332] schedule+0x5f/0xd0
[ 410.965477] exit_to_usermode_loop+0x73/0x120
[ 410.969837] prepare_exit_to_usermode+0xcd/0xf0
[ 410.974369] ret_from_intr+0x2a/0x3a
[ 410.977946] RIP: 0033:0x40123c
[ 411.079661] ---[ end trace bc83adaea7bb664a ]---
In the non-overflow context, e.g., context switch, with large PEBS, perf
may stop an event twice. An example is below.
//max_samples_per_tick is adjusted to 2
//NMI is triggered
intel_pmu_handle_irq()
handle_pmi_common()
drain_pebs()
__intel_pmu_pebs_event()
perf_event_overflow()
__perf_event_account_interrupt()
hwc->interrupts = 1
return 0
//A context switch happens right after the NMI.
//In the same tick, the perf_throttled_seq is not changed.
perf_event_task_sched_out()
perf_pmu_sched_task()
intel_pmu_drain_pebs_buffer()
__intel_pmu_pebs_event()
perf_event_overflow()
__perf_event_account_interrupt()
++hwc->interrupts >= max_samples_per_tick
return 1
x86_pmu_stop(); # First stop
perf_event_context_sched_out()
task_ctx_sched_out()
ctx_sched_out()
event_sched_out()
x86_pmu_del()
x86_pmu_stop(); # Second stop and trigger the warning
Perf should only invoke the perf_event_overflow() in the overflow
context.
Current drain_pebs() is called from:
- handle_pmi_common() -- overflow context
- intel_pmu_pebs_sched_task() -- non-overflow context
- intel_pmu_pebs_disable() -- non-overflow context
- intel_pmu_auto_reload_read() -- possible overflow context
With PERF_SAMPLE_READ + PERF_FORMAT_GROUP, the function may be
invoked in the NMI handler. But, before calling the function, the
PEBS buffer has already been drained. The __intel_pmu_pebs_event()
will not be called in the possible overflow context.
To fix the issue, an indicator is required to distinguish between the
overflow context aka handle_pmi_common() and other cases.
The dummy regs pointer can be used as the indicator.
In the non-overflow context, perf should treat the last record the same
as other PEBS records, and doesn't invoke the generic overflow handler.
Fixes: 21509084f9 ("perf/x86/intel: Handle multiple records in the PEBS buffer")
Reported-by: Like Xu <like.xu@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Like Xu <like.xu@linux.intel.com>
Link: https://lkml.kernel.org/r/20200902210649.2743-1-kan.liang@linux.intel.com
Replace many of the indirect calls with static_call().
The average PMI time, as measured by perf_sample_event_took()*:
PRE: 3283.03 [ns]
POST: 3145.12 [ns]
Which is a ~138 [ns] win per PMI, or a ~4.2% decrease.
[*] on an IVB-EP, using: 'perf record -a -e cycles -- make O=defconfig-build/ -j80'
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20200818135805.338001015@infradead.org
Starts from Ice Lake, the TopDown metrics are directly available as
fixed counters and do not require generic counters. Also, the TopDown
metrics can be collected per thread. Extend the RDPMC usage to support
per-thread TopDown metrics.
The RDPMC index of the PERF_METRICS will be output if RDPMC users ask
for the RDPMC index of the metrics events.
To support per thread RDPMC TopDown, the metrics and slots counters have
to be saved/restored during the context switching.
The last_period and period_left are not used in the counting mode. Use
the fields for saved_metric and saved_slots.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-12-kan.liang@linux.intel.com
Ice Lake supports the hardware TopDown metrics feature, which can free
up the scarce GP counters.
Update the event constraints for the metrics events. The metric counters
do not exist, which are mapped to a dummy offset. The sharing between
multiple users of the same metric without multiplexing is not allowed.
Implement set_topdown_event_period for Ice Lake. The values in
PERF_METRICS MSR are derived from the fixed counter 3. Both registers
should start from zero.
Implement update_topdown_event for Ice Lake. The metric is reported by
multiplying the metric (fraction) with slots. To maintain accurate
measurements, both registers are cleared for each update. The fixed
counter 3 should always be cleared before the PERF_METRICS.
Implement td_attr for the new metrics events and the new slots fixed
counter. Make them visible to the perf user tools.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-11-kan.liang@linux.intel.com
The RDPMC base offset of fixed counters is hard-code. Use a meaningful
name to replace the magic number to improve the readability of the code.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-10-kan.liang@linux.intel.com
Intro
=====
The TopDown Microarchitecture Analysis (TMA) Method is a structured
analysis methodology to identify critical performance bottlenecks in
out-of-order processors. Current perf has supported the method.
The method works well, but there is one problem. To collect the TopDown
events, several GP counters have to be used. If a user wants to collect
other events at the same time, the multiplexing probably be triggered,
which impacts the accuracy.
To free up the scarce GP counters, the hardware TopDown metrics feature
is introduced from Ice Lake. The hardware implements an additional
"metrics" register and a new Fixed Counter 3 that measures pipeline
"slots". The TopDown events can be calculated from them instead.
Events
======
The level 1 TopDown has four metrics. There is no event-code assigned to
the TopDown metrics. Four metric events are exported as separate perf
events, which map to the internal "metrics" counter register. Those
events do not exist in hardware, but can be allocated by the scheduler.
For the event mapping, a special 0x00 event code is used, which is
reserved for fake events. The metric events start from umask 0x10.
When setting up the metric events, they point to the Fixed Counter 3.
They have to be specially handled.
- Add the update_topdown_event() callback to read the additional metrics
MSR and generate the metrics.
- Add the set_topdown_event_period() callback to initialize metrics MSR
and the fixed counter 3.
- Add a variable n_metric_event to track the number of the accepted
metrics events. The sharing between multiple users of the same metric
without multiplexing is not allowed.
- Only enable/disable the fixed counter 3 when there are no other active
TopDown events, which avoid the unnecessary writing of the fixed
control register.
- Disable the PMU when reading the metrics event. The metrics MSR and
the fixed counter 3 are read separately. The values may be modified by
an NMI.
All four metric events don't support sampling. Since they will be
handled specially for event update, a flag PERF_X86_EVENT_TOPDOWN is
introduced to indicate this case.
The slots event can support both sampling and counting.
For counting, the flag is also applied.
For sampling, it will be handled normally as other normal events.
Groups
======
The slots event is required in a Topdown group.
To avoid reading the METRICS register multiple times, the metrics and
slots value can only be updated by slots event in a group.
All active slots and metrics events will be updated one time.
Therefore, the slots event must be before any metric events in a Topdown
group.
NMI
======
The METRICS related register may be overflow. The bit 48 of the STATUS
register will be set. If so, PERF_METRICS and Fixed counter 3 are
required to be reset. The patch also update all active slots and
metrics events in the NMI handler.
The update_topdown_event() has to read two registers separately. The
values may be modified by an NMI. PMU has to be disabled before calling
the function.
RDPMC
======
RDPMC is temporarily disabled. A later patch will enable it.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-9-kan.liang@linux.intel.com
Currently, the if-else is used in the intel_pmu_disable/enable_event to
check the type of an event. It works well, but with more and more types
added later, e.g., perf metrics, compared to the switch statement, the
if-else may impair the readability of the code.
There is no harm to use the switch statement to replace the if-else
here. Also, some optimizing compilers may compile a switch statement
into a jump-table which is more efficient than if-else for a large
number of cases. The performance gain may not be observed for now,
because the number of cases is only 5, but the benefits may be observed
with more and more types added in the future.
Use switch to replace the if-else in the intel_pmu_disable/enable_event.
If the idx is invalid, print a warning.
For the case INTEL_PMC_IDX_FIXED_BTS in intel_pmu_disable_event, don't
need to check the event->attr.precise_ip. Use return for the case.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-7-kan.liang@linux.intel.com
Bit 15 of the PERF_CAPABILITIES MSR indicates that the perf METRICS
feature is supported. The perf METRICS is not a PEBS feature.
Rename pebs_metrics_available perf_metrics.
The bit is not used in the current code. It will be used in a later
patch.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-6-kan.liang@linux.intel.com
Magic numbers are used in the current NMI handler for the global status
bit. Use a meaningful name to replace the magic numbers to improve the
readability of the code.
Remove a Tab for all GLOBAL_STATUS_* and INTEL_PMC_IDX_FIXED_BTS macros
to reduce the length of the line.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-3-kan.liang@linux.intel.com
The RDPMC index is always re-calculated for the RDPMC userspace support,
which is unnecessary.
The RDPMC index value is stored in the variable event_base_rdpmc for
the kernel usage, which can be used for RDPMC userspace support as well.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-2-kan.liang@linux.intel.com
Linux only has support to read total DDR reads and writes. Here we
add support to enable bandwidth breakdown-GT, IA and IO. Breakdown
of BW is important to debug and optimize memory access. This can also
be used for telemetry and improving the system software.The offsets for
GT, IA and IO are added and these free running counters can be accessed
via MMIO space.
The BW breakdown can be measured using the following cmd:
perf stat -e uncore_imc/gt_requests/,uncore_imc/ia_requests/,uncore_imc/io_requests/
30.57 MiB uncore_imc/gt_requests/
1346.13 MiB uncore_imc/ia_requests/
190.97 MiB uncore_imc/io_requests/
5.984572733 seconds time elapsed
BW/s = <gt,ia,io>_requests/time elapsed
Signed-off-by: Vaibhav Shankar <vaibhav.shankar@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200814022234.23605-1-vaibhav.shankar@intel.com
Intel SPR platform uses fixed 16 bit energy unit for DRAM RAPL domain,
and fixed 0 bit energy unit for Psys RAPL domain.
After this, on SPR platform the energy counters appear in perf list.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Len Brown <len.brown@intel.com>
Link: https://lore.kernel.org/r/20200811153149.12242-4-rui.zhang@intel.com
There will be more platforms with different fixed energy units.
Enhance the code to support different RAPL unit quirks for different
platforms.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Link: https://lore.kernel.org/r/20200811153149.12242-3-rui.zhang@intel.com
This fixes a problem introduced by commit:
5fb5273a90 ("perf/x86/rapl: Use new MSR detection interface")
that perf event sysfs attributes for psys RAPL domain are missing.
Fixes: 5fb5273a90 ("perf/x86/rapl: Use new MSR detection interface")
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20200811153149.12242-2-rui.zhang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oRTgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1huHQ//T2hZk5zlpOtojxvdAzsPgtV4tHawseK8
+ZZEbrH5qo5/ZMF18qyEJCm9p1yg8uIu71InULRCSgjU3v82GVCcuLXuE36U904G
gHUqkYPnqxCqx+Li125aye9tKWahXe1DxX+uWbV0Ju7fiCO0rwYIzpWn1bnR6ilp
fmLGSbgPlTVJwZ9mBvyi3VUlH5tDYidFN74TREUOwx2g5uhg+8uEo44Eb/bx8ESF
dGt1Z/fnfDHkUZtmhzJk5Uz8nbw7rPHU/EZ4iZAxEzxTutY5PhsvbIfLO4t4HhGn
utZCk/pIdiLLQ1GaTvFxqi3iolDqpOuXpnDlfEAJD8UlMCnwyh1Certq5LaRbtHS
8SW3/CeJgzqzrrsYhkxVu2PMFWriSMxgKTLiN0KnzJN0Hu7A5lHbBY/6G7zpsF/A
2KJ4e8lZiPCcNF7LteSRroUe4hNOYxZ2FlYTXm3AgycSL189UMfWlHFb5c+b4m1a
cNJpz+jAom8foXN4KhRkl5PFKXVXDGTVln3NRJCh1Mqd1Ef4hsTo9H6FgHX/EfHg
slJDwwPac80v0dzlMTSsMkyseaKRAqIObWOiknPt1wv/qja7ibVZ5mUbZ+/mfJX/
YWybcPi1omgUSNt7TNx6jtma67rUjmJW0x9g7UJ/ttEkf6yG2lemrdusydBYuIni
0Z2+hWzI9MM=
=X7o0
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups all around the place"
* tag 'x86-cleanups-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ioperm: Initialize pointer bitmap with NULL rather than 0
x86: uv: uv_hub.h: Delete duplicated word
x86: cmpxchg_32.h: Delete duplicated word
x86: bootparam.h: Delete duplicated word
x86/mm: Remove the unused mk_kernel_pgd() #define
x86/tsc: Remove unused "US_SCALE" and "NS_SCALE" leftover macros
x86/ioapic: Remove unused "IOAPIC_AUTO" define
x86/mm: Drop unused MAX_PHYSADDR_BITS
x86/msr: Move the F15h MSRs where they belong
x86/idt: Make idt_descr static
initrd: Remove erroneous comment
x86/mm/32: Fix -Wmissing prototypes warnings for init.c
cpu/speculation: Add prototype for cpu_show_srbds()
x86/mm: Fix -Wmissing-prototypes warnings for arch/x86/mm/init.c
x86/asm: Unify __ASSEMBLY__ blocks
x86/cpufeatures: Mark two free bits in word 3
x86/msr: Lift AMD family 0x15 power-specific MSRs
Hygon Family 18h(Dhyana) support RAPL in bit 14 of CPUID 0x80000007 EDX,
and has MSRs RAPL_PWR_UNIT/CORE_ENERGY_STAT/PKG_ENERGY_STAT. So add Hygon
Dhyana Family 18h support for RAPL.
The output is available via the energy-pkg pseudo event:
$ perf stat -a -I 1000 --per-socket -e power/energy-pkg/
[ mingo: Tidied up the initializers. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200720082205.1307-1-puwen@hygon.cn
Reading LBR registers in a perf NMI handler for a non-PEBS event
causes a high overhead because the number of LBR registers is huge.
To reduce the overhead, the XSAVES instruction should be used to replace
the LBR registers' reading method.
The XSAVES buffer used for LBR read has to be per-CPU because the NMI
handler invoked the lbr_read(). The existing task_ctx_data buffer
cannot be used which is per-task and only be allocated for the LBR call
stack mode. A new lbr_xsave pointer is introduced in the cpu_hw_events
as an XSAVES buffer for LBR read.
The XSAVES buffer should be allocated only when LBR is used by a
non-PEBS event on the CPU because the total size of the lbr_xsave is
not small (~1.4KB).
The XSAVES buffer is allocated when a non-PEBS event is added, but it
is lazily released in x86_release_hardware() when perf releases the
entire PMU hardware resource, because perf may frequently schedule the
event, e.g. high context switch. The lazy release method reduces the
overhead of frequently allocate/free the buffer.
If the lbr_xsave fails to be allocated, roll back to normal Arch LBR
lbr_read().
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-24-git-send-email-kan.liang@linux.intel.com
In the LBR call stack mode, LBR information is used to reconstruct a
call stack. To get the complete call stack, perf has to save/restore
all LBR registers during a context switch. Due to a large number of the
LBR registers, this process causes a high CPU overhead. To reduce the
CPU overhead during a context switch, use the XSAVES/XRSTORS
instructions.
Every XSAVE area must follow a canonical format: the legacy region, an
XSAVE header and the extended region. Although the LBR information is
only kept in the extended region, a space for the legacy region and
XSAVE header is still required. Add a new dedicated structure for LBR
XSAVES support.
Before enabling XSAVES support, the size of the LBR state has to be
sanity checked, because:
- the size of the software structure is calculated from the max number
of the LBR depth, which is enumerated by the CPUID leaf for Arch LBR.
The size of the LBR state is enumerated by the CPUID leaf for XSAVE
support of Arch LBR. If the values from the two CPUID leaves are not
consistent, it may trigger a buffer overflow. For example, a hypervisor
may unconsciously set inconsistent values for the two emulated CPUID.
- unlike other state components, the size of an LBR state depends on the
max number of LBRs, which may vary from generation to generation.
Expose the function xfeature_size() for the sanity check.
The LBR XSAVES support will be disabled if the size of the LBR state
enumerated by CPUID doesn't match with the size of the software
structure.
The XSAVE instruction requires 64-byte alignment for state buffers. A
new macro is added to reflect the alignment requirement. A 64-byte
aligned kmem_cache is created for architecture LBR.
Currently, the structure for each state component is maintained in
fpu/types.h. The structure for the new LBR state component should be
maintained in the same place. Move structure lbr_entry to fpu/types.h as
well for broader sharing.
Add dedicated lbr_save/lbr_restore functions for LBR XSAVES support,
which invokes the corresponding xstate helpers to XSAVES/XRSTORS LBR
information at the context switch when the call stack mode is enabled.
Since the XSAVES/XRSTORS instructions will be eventually invoked, the
dedicated functions is named with '_xsaves'/'_xrstors' postfix.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-23-git-send-email-kan.liang@linux.intel.com
A new kmem_cache method is introduced to allocate the PMU specific data
task_ctx_data, which requires the PMU specific code to create a
kmem_cache.
Currently, the task_ctx_data is only used by the Intel LBR call stack
feature, which is introduced since Haswell. The kmem_cache should be
only created for Haswell and later platforms. There is no alignment
requirement for the existing platforms.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-18-git-send-email-kan.liang@linux.intel.com
Last Branch Records (LBR) enables recording of software path history by
logging taken branches and other control flows within architectural
registers now. Intel CPUs have had model-specific LBR for quite some
time, but this evolves them into an architectural feature now.
The main improvements of Architectural LBR implemented includes:
- Linux kernel can support the LBR features without knowing the model
number of the current CPU.
- Architectural LBR capabilities can be enumerated by CPUID. The
lbr_ctl_map is based on the CPUID Enumeration.
- The possible LBR depth can be retrieved from CPUID enumeration. The
max value is written to the new MSR_ARCH_LBR_DEPTH as the number of
LBR entries.
- A new IA32_LBR_CTL MSR is introduced to enable and configure LBRs,
which replaces the IA32_DEBUGCTL[bit 0] and the LBR_SELECT MSR.
- Each LBR record or entry is still comprised of three MSRs,
IA32_LBR_x_FROM_IP, IA32_LBR_x_TO_IP and IA32_LBR_x_TO_IP.
But they become the architectural MSRs.
- Architectural LBR is stack-like now. Entry 0 is always the youngest
branch, entry 1 the next youngest... The TOS MSR has been removed.
The way to enable/disable Architectural LBR is similar to the previous
model-specific LBR. __intel_pmu_lbr_enable/disable() can be reused, but
some modifications are required, which include:
- MSR_ARCH_LBR_CTL is used to enable and configure the Architectural
LBR.
- When checking the value of the IA32_DEBUGCTL MSR, ignoring the
DEBUGCTLMSR_LBR (bit 0) for Architectural LBR, which has no meaning
and always return 0.
- The FREEZE_LBRS_ON_PMI has to be explicitly set/clear, because
MSR_IA32_DEBUGCTLMSR is not touched in __intel_pmu_lbr_disable() for
Architectural LBR.
- Only MSR_ARCH_LBR_CTL is cleared in __intel_pmu_lbr_disable() for
Architectural LBR.
Some Architectural LBR dedicated functions are implemented to
reset/read/save/restore LBR.
- For reset, writing to the ARCH_LBR_DEPTH MSR clears all Arch LBR
entries, which is a lot faster and can improve the context switch
latency.
- For read, the branch type information can be retrieved from
the MSR_ARCH_LBR_INFO_*. But it's not fully compatible due to
OTHER_BRANCH type. The software decoding is still required for the
OTHER_BRANCH case.
LBR records are stored in the age order as well. Reuse
intel_pmu_store_lbr(). Check the CPUID enumeration before accessing
the corresponding bits in LBR_INFO.
- For save/restore, applying the fast reset (writing ARCH_LBR_DEPTH).
Reading 'lbr_from' of entry 0 instead of the TOS MSR to check if the
LBR registers are reset in the deep C-state. If 'the deep C-state
reset' bit is not set in CPUID enumeration, ignoring the check.
XSAVE support for Architectural LBR will be implemented later.
The number of LBR entries cannot be hardcoded anymore, which should be
retrieved from CPUID enumeration. A new structure
x86_perf_task_context_arch_lbr is introduced for Architectural LBR.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-15-git-send-email-kan.liang@linux.intel.com
The way to store the LBR information from a PEBS LBR record can be
reused in Architecture LBR, because
- The LBR information is stored like a stack. Entry 0 is always the
youngest branch.
- The layout of the LBR INFO MSR is similar.
The LBR information may be retrieved from either the LBR registers
(non-PEBS event) or a buffer (PEBS event). Extend rdlbr_*() to support
both methods.
Explicitly check the invalid entry (0s), which can avoid unnecessary MSR
access if using a non-PEBS event. For a PEBS event, the check should
slightly improve the performance as well. The invalid entries are cut.
The intel_pmu_lbr_filter() doesn't need to check and filter them out.
Cannot share the function with current model-specific LBR read, because
the direction of the LBR growth is opposite.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-14-git-send-email-kan.liang@linux.intel.com
The previous model-specific LBR and Architecture LBR (legacy way) use a
similar method to save/restore the LBR information, which directly
accesses the LBR registers. The codes which read/write a set of LBR
registers can be shared between them.
Factor out two functions which are used to read/write a set of LBR
registers.
Add lbr_info into structure x86_pmu, and use it to replace the hardcoded
LBR INFO MSR, because the LBR INFO MSR address of the previous
model-specific LBR is different from Architecture LBR. The MSR address
should be assigned at boot time. For now, only Sky Lake and later
platforms have the LBR INFO MSR.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-13-git-send-email-kan.liang@linux.intel.com
The {rd,wr}lbr_{to,from} wrappers are invoked in hot paths, e.g. context
switch and NMI handler. They should be always inline to achieve better
performance. However, the CONFIG_OPTIMIZE_INLINING allows the compiler
to uninline functions marked 'inline'.
Mark the {rd,wr}lbr_{to,from} wrappers as __always_inline to force
inline the wrappers.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-12-git-send-email-kan.liang@linux.intel.com
Current LBR information in the structure x86_perf_task_context is stored
in a different format from the PEBS LBR record and Architecture LBR,
which prevents the sharing of the common codes.
Use the format of the PEBS LBR record as a unified format. Use a generic
name lbr_entry to replace pebs_lbr_entry.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-11-git-send-email-kan.liang@linux.intel.com
An IA32_LBR_CTL is introduced for Architecture LBR to enable and config
LBR registers to replace the previous LBR_SELECT.
All the related members in struct cpu_hw_events and struct x86_pmu
have to be renamed.
Some new macros are added to reflect the layout of LBR_CTL.
The mapping from PERF_SAMPLE_BRANCH_* to the corresponding bits in
LBR_CTL MSR is saved in lbr_ctl_map now, which is not a const value.
The value relies on the CPUID enumeration.
For the previous model-specific LBR, most of the bits in LBR_SELECT
operate in the suppressed mode. For the bits in LBR_CTL, the polarity is
inverted.
For the previous model-specific LBR format 5 (LBR_FORMAT_INFO), if the
NO_CYCLES and NO_FLAGS type are set, the flag LBR_NO_INFO will be set to
avoid the unnecessary LBR_INFO MSR read. Although Architecture LBR also
has a dedicated LBR_INFO MSR, perf doesn't need to check and set the
flag LBR_NO_INFO. For Architecture LBR, XSAVES instruction will be used
as the default way to read the LBR MSRs all together. The overhead which
the flag tries to avoid doesn't exist anymore. Dropping the flag can
save the extra check for the flag in the lbr_read() later, and make the
code cleaner.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-10-git-send-email-kan.liang@linux.intel.com
The LBR capabilities of Architecture LBR are retrieved from the CPUID
enumeration once at boot time. The capabilities have to be saved for
future usage.
Several new fields are added into structure x86_pmu to indicate the
capabilities. The fields will be used in the following patches.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-9-git-send-email-kan.liang@linux.intel.com
The type of task_ctx is hardcoded as struct x86_perf_task_context,
which doesn't apply for Architecture LBR. For example, Architecture LBR
doesn't have the TOS MSR. The number of LBR entries is variable. A new
struct will be introduced for Architecture LBR. Perf has to determine
the type of task_ctx at run time.
The type of task_ctx pointer is changed to 'void *', which will be
determined at run time.
The generic LBR optimization can be shared between Architecture LBR and
model-specific LBR. Both need to access the structure for the generic
LBR optimization. A helper task_context_opt() is introduced to retrieve
the pointer of the structure at run time.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-7-git-send-email-kan.liang@linux.intel.com
To reduce the overhead of a context switch with LBR enabled, some
generic optimizations were introduced, e.g. avoiding restore LBR if no
one else touched them. The generic optimizations can also be used by
Architecture LBR later. Currently, the fields for the generic
optimizations are part of structure x86_perf_task_context, which will be
deprecated by Architecture LBR. A new structure should be introduced
for the common fields of generic optimization, which can be shared
between Architecture LBR and model-specific LBR.
Both 'valid_lbrs' and 'tos' are also used by the generic optimizations,
but they are not moved into the new structure, because Architecture LBR
is stack-like. The 'valid_lbrs' which records the index of the valid LBR
is not required anymore. The TOS MSR will be removed.
LBR registers may be cleared in the deep Cstate. If so, the generic
optimizations should not be applied. Perf has to unconditionally
restore the LBR registers. A generic function is required to detect the
reset due to the deep Cstate. lbr_is_reset_in_cstate() is introduced.
Currently, for the model-specific LBR, the TOS MSR is used to detect the
reset. There will be another method introduced for Architecture LBR
later.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-6-git-send-email-kan.liang@linux.intel.com
The MSRs of Architectural LBR are different from previous model-specific
LBR. Perf has to implement different functions to save and restore them.
The function pointers for LBR save and restore are introduced. Perf
should initialize the corresponding functions at boot time.
The generic optimizations, e.g. avoiding restore LBR if no one else
touched them, still apply for Architectural LBRs. The related codes are
not moved to model-specific functions.
Current model-specific LBR functions are set as default.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-5-git-send-email-kan.liang@linux.intel.com
The method to read Architectural LBRs is different from previous
model-specific LBR. Perf has to implement a different function.
A function pointer for LBR read is introduced. Perf should initialize
the corresponding function at boot time, and avoid checking lbr_format
at run time.
The current 64-bit LBR read function is set as default.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-4-git-send-email-kan.liang@linux.intel.com
The method to reset Architectural LBRs is different from previous
model-specific LBR. Perf has to implement a different function.
A function pointer is introduced for LBR reset. The enum of
LBR_FORMAT_* is also moved to perf_event.h. Perf should initialize the
corresponding functions at boot time, and avoid checking lbr_format at
run time.
The current 64-bit LBR reset function is set as default.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-3-git-send-email-kan.liang@linux.intel.com
When a guest wants to use the LBR registers, its hypervisor creates a guest
LBR event and let host perf schedules it. The LBR records msrs are
accessible to the guest when its guest LBR event is scheduled on
by the perf subsystem.
Before scheduling this event out, we should avoid host changes on
IA32_DEBUGCTLMSR or LBR_SELECT. Otherwise, some unexpected branch
operations may interfere with guest behavior, pollute LBR records, and even
cause host branches leakage. In addition, the read operation
on host is also avoidable.
To ensure that guest LBR records are not lost during the context switch,
the guest LBR event would enable the callstack mode which could
save/restore guest unread LBR records with the help of
intel_pmu_lbr_sched_task() naturally.
However, the guest LBR_SELECT may changes for its own use and the host
LBR event doesn't save/restore it. To ensure that we doesn't lost the guest
LBR_SELECT value when the guest LBR event is running, the vlbr_constraint
is bound up with a new constraint flag PERF_X86_EVENT_LBR_SELECT.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200514083054.62538-6-like.xu@linux.intel.com
The hypervisor may request the perf subsystem to schedule a time window
to directly access the LBR records msrs for its own use. Normally, it would
create a guest LBR event with callstack mode enabled, which is scheduled
along with other ordinary LBR events on the host but in an exclusive way.
To avoid wasting a counter for the guest LBR event, the perf tracks its
hw->idx via INTEL_PMC_IDX_FIXED_VLBR and assigns it with a fake VLBR
counter with the help of new vlbr_constraint. As with the BTS event,
there is actually no hardware counter assigned for the guest LBR event.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200514083054.62538-5-like.xu@linux.intel.com
The LBR records msrs are model specific. The perf subsystem has already
obtained the base addresses of LBR records based on the cpu model.
Therefore, an interface is added to allow callers outside the perf
subsystem to obtain these LBR information. It's useful for hypervisors
to emulate the LBR feature for guests with less code.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200613080958.132489-4-like.xu@linux.intel.com
For intel_pmu_en/disable_event(), reorder the branches checks for hw->idx
and make them sorted by probability: gp,fixed,bts,others.
Clean up the x86_assign_hw_event() by converting multiple if-else
statements to a switch statement.
To skip x86_perf_event_update() and x86_perf_event_set_period(),
it's generic to replace "idx == INTEL_PMC_IDX_FIXED_BTS" check with
'!hwc->event_base' because that should be 0 for all non-gp/fixed cases.
Wrap related bit operations into intel_set/clear_masks() and make the main
path more cleaner and readable.
No functional changes.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Original-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200613080958.132489-3-like.xu@linux.intel.com
The MSR variable type can be 'unsigned int', which uses less memory than
the longer 'unsigned long'. Fix 'struct x86_pmu' for that. The lbr_nr won't
be a negative number, so make it 'unsigned int' as well.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200613080958.132489-2-like.xu@linux.intel.com
... into the global msr-index.h header because they're used in multiple
compilation units. Sort the MSR list a bit. Update the msr-index.h copy
in tools.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lkml.kernel.org/r/20200608164847.14232-1-bp@alien8.de
Current version supports a server line starting Intel® Xeon® Processor
Scalable Family and introduces mapping for IIO Uncore units only.
Other units can be added on demand.
IIO stack to PMON mapping is exposed through:
/sys/devices/uncore_iio_<pmu_idx>/dieX
where dieX is file which holds "Segment:Root Bus" for PCIe root port,
which can be monitored by that IIO PMON block.
Details are explained in Documentation/ABI/testing/sysfs-devices-mapping
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/20200601083543.30011-4-alexander.antonov@linux.intel.com
The accessor to return number of dies on the platform.
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/20200601083543.30011-3-alexander.antonov@linux.intel.com
Each Uncore unit type, by its nature, can be mapped to its own context -
which platform component each PMON block of that type is supposed to
monitor.
Intel® Xeon® Scalable processor family (code name Skylake-SP) makes
significant changes in the integrated I/O (IIO) architecture. The new
solution introduces IIO stacks which are responsible for managing traffic
between the PCIe domain and the Mesh domain. Each IIO stack has its own
PMON block and can handle either DMI port, x16 PCIe root port, MCP-Link
or various built-in accelerators. IIO PMON blocks allow concurrent
monitoring of I/O flows up to 4 x4 bifurcation within each IIO stack.
Software is supposed to program required perf counters within each IIO
stack and gather performance data. The tricky thing here is that IIO PMON
reports data per IIO stack but users have no idea what IIO stacks are -
they only know devices which are connected to the platform.
Understanding IIO stack concept to find which IIO stack that particular
IO device is connected to, or to identify an IIO PMON block to program
for monitoring specific IIO stack assumes a lot of implicit knowledge
about given Intel server platform architecture.
Usage example:
ls /sys/devices/uncore_<type>_<pmu_idx>/die*
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/20200601083543.30011-2-alexander.antonov@linux.intel.com
An oops will be triggered, if perf tries to access an invalid address
which exceeds the mapped area.
Check the address before the actual access to MMIO sapce of an uncore
unit.
Suggested-by: David Laight <David.Laight@ACULAB.COM>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1590679169-61823-3-git-send-email-kan.liang@linux.intel.com
Perf cannot validate an address before the actual access to MMIO space
of some uncore units, e.g. IMC on TGL. Accessing an invalid address,
which exceeds mapped area, can trigger oops.
Perf never records the size of mapped area. Generic functions, e.g.
uncore_mmio_read_counter(), cannot get the correct size for address
validation.
Add mmio_map_size in intel_uncore_type to record the size of mapped
area. Print warning message if ioremap fails.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1590679169-61823-2-git-send-email-kan.liang@linux.intel.com
When counting IMC uncore events on some TGL machines, an oops will be
triggered.
[ 393.101262] BUG: unable to handle page fault for address:
ffffb45200e15858
[ 393.101269] #PF: supervisor read access in kernel mode
[ 393.101271] #PF: error_code(0x0000) - not-present page
Current perf uncore driver still use the IMC MAP SIZE inherited from
SNB, which is 0x6000.
However, the offset of IMC uncore counters is larger than 0x6000,
e.g. 0xd8a0.
Enlarge the IMC MAP SIZE for TGL to 0xe000.
Fixes: fdb6482244 ("perf/x86: Add Intel Tiger Lake uncore support")
Reported-by: Ammy Yi <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Ammy Yi <ammy.yi@intel.com>
Tested-by: Chao Qin <chao.qin@intel.com>
Link: https://lkml.kernel.org/r/1590679169-61823-1-git-send-email-kan.liang@linux.intel.com
The uncore subsystem on Comet Lake is similar to Sky Lake.
The only difference is the new PCI IDs for IMC.
Share the perf code with Sky Lake.
Add new PCI IDs in the table.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1589915905-55870-1-git-send-email-kan.liang@linux.intel.com
Since commit 84af7a6194 ("checkpatch: kconfig: prefer 'help' over
'---help---'"), the number of '---help---' has been gradually
decreasing, but there are still more than 2400 instances.
This commit finishes the conversion. While I touched the lines,
I also fixed the indentation.
There are a variety of indentation styles found.
a) 4 spaces + '---help---'
b) 7 spaces + '---help---'
c) 8 spaces + '---help---'
d) 1 space + 1 tab + '---help---'
e) 1 tab + '---help---' (correct indentation)
f) 1 tab + 1 space + '---help---'
g) 1 tab + 2 spaces + '---help---'
In order to convert all of them to 1 tab + 'help', I ran the
following commend:
$ find . -name 'Kconfig*' | xargs sed -i 's/^[[:space:]]*---help---/\thelp/'
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Add new APIs to assert that mmap_sem is held.
Using this instead of rwsem_is_locked and lockdep_assert_held[_write]
makes the assertions more tolerant of future changes to the lock type.
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-10-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Unexport various PAT primitives
- Unexport per-CPU tlbstate
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7Z+3cRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jgyxAAjPoXEzi9rqGHY6Eus37DNbzHtdQj4fqN
68h8T2tSnOMzETe3L/c4puxI50YFpMA0sFbzm8BfjCtucs0K7Tj4Sv8Aoap2b99A
/bP+ySgHh2BMoI/tu9TiD8et+vttAGGwkXQhIOgeakZcYzpAY7oUNwc+CogkytbQ
DaC8s9FL7RjCXCL91fvZ33C0ksg5J9ynFbRozEHOacHPrE3CbrqUwu+75PmS7nJC
13vatOxjdqNPQhVMg7waN1nHv7K06kph1wxWxYHoD0QwAPy1ecE84wLvg9gv5AqK
BfUBmB34qRW21qbB5tQrMlGDS9tuV0vUB1fxUV7/iOKXQUH6viEG/7J7jm+YwXji
U9S54UPj/TOp8fvYdS18sp6vI1gS3HKjd3LO3pPHWsyZVMJBoGuMConZRs3C31Cp
WuwBU1gY+mFB5l4prt8WU8ocPvEnZkP00cCYNyzPk21tblfUwFbrmu3wcZxOkx3s
ZhRO4KrhxtL7l/wDLuNtWShBL2c6Rz2tts58tr/fj/M+UscJK2MPKxPLCAb20QYZ
qSkMa36+r8LkuMCyjpegEEmo4sw9yC6aLXFKfYu2ABki5o9AR4tavk+lwO+dad6T
k0DJjGXLsG9sReR6hrfaNTk5h7ImiRFDVntnWAhgKhARRoloJJS4/RkzW+ylPbac
mTuNNJDChUQ=
=RXKK
-----END PGP SIGNATURE-----
Merge tag 'x86-mm-2020-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
"Misc changes:
- Unexport various PAT primitives
- Unexport per-CPU tlbstate and uninline TLB helpers"
* tag 'x86-mm-2020-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/tlb/uv: Add a forward declaration for struct flush_tlb_info
x86/cpu: Export native_write_cr4() only when CONFIG_LKTDM=m
x86/tlb: Restrict access to tlbstate
xen/privcmd: Remove unneeded asm/tlb.h include
x86/tlb: Move PCID helpers where they are used
x86/tlb: Uninline nmi_uaccess_okay()
x86/tlb: Move cr4_set_bits_and_update_boot() to the usage site
x86/tlb: Move paravirt_tlb_remove_table() to the usage site
x86/tlb: Move __flush_tlb_all() out of line
x86/tlb: Move flush_tlb_others() out of line
x86/tlb: Move __flush_tlb_one_kernel() out of line
x86/tlb: Move __flush_tlb_one_user() out of line
x86/tlb: Move __flush_tlb_global() out of line
x86/tlb: Move __flush_tlb() out of line
x86/alternatives: Move temporary_mm helpers into C
x86/cr4: Sanitize CR4.PCE update
x86/cpu: Uninline CR4 accessors
x86/tlb: Uninline __get_current_cr3_fast()
x86/mm: Use pgprotval_t in protval_4k_2_large() and protval_large_2_4k()
x86/mm: Unexport __cachemode2pte_tbl
...
This patch fixes a bug introduced by:
fd3ae1e158 ("perf/x86/rapl: Move RAPL support to common x86 code")
The Kconfig variable name was wrong. It was missing the CONFIG_ prefix.
Signed-off-by: Stephane Eranian <eraniangoogle.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Kim Phillips <kim.phillips@amd.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200528201614.250182-1-eranian@google.com
This patch enables AMD Fam17h RAPL support for the Package level metric.
The support is as per AMD Fam17h Model31h (Zen2) and model 00-ffh (Zen1) PPR.
The same output is available via the energy-pkg pseudo event:
$ perf stat -a -I 1000 --per-socket -e power/energy-pkg/
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200527224659.206129-6-eranian@google.com
This patch modifies perf_probe_msr() by allowing passing of
struct perf_msr array where some entries are not populated, i.e.,
they have either an msr address of 0 or no attribute_group pointer.
This helps with certain call paths, e.g., RAPL.
In case the grp is NULL, the default sysfs visibility rule
applies which is to make the group visible. Without the patch,
you would get a kernel crash with a NULL group.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200527224659.206129-5-eranian@google.com
This patch modifies the default visibility of the attribute_group
for each RAPL event. By default if the grp.is_visible field is NULL,
sysfs considers that it must display the attribute group.
If the field is not NULL (callback function), then the return value
of the callback determines the visibility (0 = not visible). The RAPL
attribute groups had the field set to NULL, meaning that unless they
failed the probing from perf_msr_probe(), they would be visible. We want
to avoid having to specify attribute groups that are not supported by the HW
in the rapl_msrs[] array, they don't have an MSR address to begin with.
Therefore, we intialize the visible field of all RAPL attribute groups
to a callback that returns 0. If the RAPL msr goes through probing
and succeeds the is_visible field will be set back to NULL (visible).
If the probing fails the field is set to a callback that return 0 (not visible).
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200527224659.206129-4-eranian@google.com
This patch modifies the rapl_model struct to include architecture specific
knowledge in this previously Intel specific structure, and in particular
it adds the MSR for POWER_UNIT and the rapl_msrs array.
No functional changes.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200527224659.206129-3-eranian@google.com
To prepare for support of both Intel and AMD RAPL.
As per the AMD PPR, Fam17h support Package RAPL counters to monitor power usage.
The RAPL counter operates as with Intel RAPL, and as such it is beneficial
to share the code.
No change in functionality.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200527224659.206129-2-eranian@google.com
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200511200911.GA13149@embeddedor
The mask in the extra_regs for Intel Tremont need to be extended to
allow more defined bits.
"Outstanding Requests" (bit 63) is only available on MSR_OFFCORE_RSP0;
Fixes: 6daeb8737f ("perf/x86/intel: Add Tremont core PMU support")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200501125442.7030-1-kan.liang@linux.intel.com
Enable RAPL support for Intel Ice Lake X and Ice Lake D.
For RAPL support, it is identical to Sky Lake X.
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1588857258-38213-1-git-send-email-kan.liang@linux.intel.com
Only a few lines below this removed line is this:
attrs = kzalloc(size, GFP_KERNEL);
and since there is no code path where this could be avoided, the
NULL assignment is a pointless relic of history and can be removed.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200408235216.108980-1-paul.gortmaker@windriver.com
Zhaoxin CPU has provided facilities for monitoring performance
via PMU (Performance Monitor Unit), but the functionality is unused so far.
Therefore, add support for zhaoxin pmu to make performance related
hardware events available.
The PMU is mostly an Intel Architectural PerfMon-v2 with a novel
errata for the ZXC line. It supports the following events:
-----------------------------------------------------------------------------------------------------------------------------------
Event | Event | Umask | Description
| Select | |
-----------------------------------------------------------------------------------------------------------------------------------
cpu-cycles | 82h | 00h | unhalt core clock
instructions | 00h | 00h | number of instructions at retirement.
cache-references | 15h | 05h | number of fillq pushs at the current cycle.
cache-misses | 1ah | 05h | number of l2 miss pushed by fillq.
branch-instructions | 28h | 00h | counts the number of branch instructions retired.
branch-misses | 29h | 00h | mispredicted branch instructions at retirement.
bus-cycles | 83h | 00h | unhalt bus clock
stalled-cycles-frontend | 01h | 01h | Increments each cycle the # of Uops issued by the RAT to RS.
stalled-cycles-backend | 0fh | 04h | RS0/1/2/3/45 empty
L1-dcache-loads | 68h | 05h | number of retire/commit load.
L1-dcache-load-misses | 4bh | 05h | retired load uops whose data source followed an L1 miss.
L1-dcache-stores | 69h | 06h | number of retire/commit Store,no LEA
L1-dcache-store-misses | 62h | 05h | cache lines in M state evicted out of L1D due to Snoop HitM or dirty line replacement.
L1-icache-loads | 00h | 03h | number of l1i cache access for valid normal fetch,including un-cacheable access.
L1-icache-load-misses | 01h | 03h | number of l1i cache miss for valid normal fetch,including un-cacheable miss.
L1-icache-prefetches | 0ah | 03h | number of prefetch.
L1-icache-prefetch-misses | 0bh | 03h | number of prefetch miss.
dTLB-loads | 68h | 05h | number of retire/commit load
dTLB-load-misses | 2ch | 05h | number of load operations miss all level tlbs and cause a tablewalk.
dTLB-stores | 69h | 06h | number of retire/commit Store,no LEA
dTLB-store-misses | 30h | 05h | number of store operations miss all level tlbs and cause a tablewalk.
dTLB-prefetches | 64h | 05h | number of hardware pte prefetch requests dispatched out of the prefetch FIFO.
dTLB-prefetch-misses | 65h | 05h | number of hardware pte prefetch requests miss the l1d data cache.
iTLB-load | 00h | 00h | actually counter instructions.
iTLB-load-misses | 34h | 05h | number of code operations miss all level tlbs and cause a tablewalk.
-----------------------------------------------------------------------------------------------------------------------------------
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: CodyYao-oc <CodyYao-oc@zhaoxin.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1586747669-4827-1-git-send-email-CodyYao-oc@zhaoxin.com
load_mm_cr4_irqsoff() is really a strange name for a function which has
only one purpose: Update the CR4.PCE bit depending on the perf state.
Rename it to update_cr4_pce_mm(), move it into the tlb code and provide a
function which can be invoked by the perf smp function calls.
Another step to remove exposure of cpu_tlbstate.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.049499158@linutronix.de
The uncore subsystem in Ice Lake server is similar to previous server.
There are some differences in config register encoding and pci device
IDs. The uncore PMON units in Ice Lake server include Ubox, Chabox, IIO,
IRP, M2PCIE, PCU, M2M, PCIE3 and IMC.
- For CHA, filter 1 register has been removed. The filter 0 register can
be used by and of CHA events to be filterd by Thread/Core-ID. To do
so, the control register's tid_en bit must be set to 1.
- For IIO, there are some changes on event constraints. The MSR address
and MSR offsets among counters are also changed.
- For IRP, the MSR address and MSR offsets among counters are changed.
- For M2PCIE, the counters are accessed by MSR now. Add new MSR address
and MSR offsets. Change event constraints.
- To determine the number of CHAs, have to read CAPID6(Low) and CAPID7
(High) now.
- For M2M, update the PCICFG address and Device ID.
- For UPI, update the PCICFG address, Device ID and counter address.
- For M3UPI, update the PCICFG address, Device ID, counter address and
event constraints.
- For IMC, update the formular to calculate MMIO BAR address, which is
MMIO_BASE + specific MEM_BAR offset.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1585842411-150452-1-git-send-email-kan.liang@linux.intel.com
Pull x86 cleanups from Ingo Molnar:
"This topic tree contains more commits than usual:
- most of it are uaccess cleanups/reorganization by Al
- there's a bunch of prototype declaration (--Wmissing-prototypes)
cleanups
- misc other cleanups all around the map"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm/set_memory: Fix -Wmissing-prototypes warnings
x86/efi: Add a prototype for efi_arch_mem_reserve()
x86/mm: Mark setup_emu2phys_nid() static
x86/jump_label: Move 'inline' keyword placement
x86/platform/uv: Add a missing prototype for uv_bau_message_interrupt()
kill uaccess_try()
x86: unsafe_put-style macro for sigmask
x86: x32_setup_rt_frame(): consolidate uaccess areas
x86: __setup_rt_frame(): consolidate uaccess areas
x86: __setup_frame(): consolidate uaccess areas
x86: setup_sigcontext(): list user_access_{begin,end}() into callers
x86: get rid of put_user_try in __setup_rt_frame() (both 32bit and 64bit)
x86: ia32_setup_rt_frame(): consolidate uaccess areas
x86: ia32_setup_frame(): consolidate uaccess areas
x86: ia32_setup_sigcontext(): lift user_access_{begin,end}() into the callers
x86/alternatives: Mark text_poke_loc_init() static
x86/cpu: Fix a -Wmissing-prototypes warning for init_ia32_feat_ctl()
x86/mm: Drop pud_mknotpresent()
x86: Replace setup_irq() by request_irq()
x86/configs: Slightly reduce defconfigs
...
The new macro set has a consistent namespace and uses C99 initializers
instead of the grufty C89 ones.
Get rid the of the local macro wrappers for consistency.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20200320131509.029267418@linutronix.de
The IMC uncore unit in Ice Lake server can only be accessed by MMIO,
which is similar as Snow Ridge.
Factor out __snr_uncore_mmio_init_box which can be shared with Ice Lake
server in the following patch.
No functional changes.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1584470314-46657-2-git-send-email-kan.liang@linux.intel.com
The offset between uncore boxes of free-running counters varies, e.g.
IIO free-running counters on Ice Lake server.
Add box_offsets, an array of offsets between adjacent uncore boxes.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1584470314-46657-1-git-send-email-kan.liang@linux.intel.com
Family 19h introduces change in slice, core and thread specification in
its L3 Performance Event Select (ChL3PmcCfg) h/w register. The change is
incompatible with Family 17h's version of the register.
Introduce a new path in l3_thread_slice_mask() to do things differently
for Family 19h vs. Family 17h, otherwise the new hardware doesn't get
programmed correctly.
Instead of a linear core--thread bitmask, Family 19h takes an encoded
core number, and a separate thread mask. There are new bits that are set
for all cores and all slices, of which only the latter is used, since
the driver counts events for all slices on behalf of the specified CPU.
Also update amd_uncore_init() to base its L2/NB vs. L3/Data Fabric mode
decision based on Family 17h or above, not just 17h and 18h: the Family
19h Data Fabric PMC is compatible with the Family 17h DF PMC.
[ bp: Touchups. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200313231024.17601-3-kim.phillips@amd.com
Convert the l3_thread_slice_mask() function to use the more readable
topology_* helper functions, more intuitive variable names like shift
and thread_mask, and BIT_ULL().
No functional changes.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200313231024.17601-2-kim.phillips@amd.com
In order to better accommodate the upcoming Family 19h, given
the 80-char line limit, move the existing code into a new
l3_thread_slice_mask() function.
No functional changes.
[ bp: Touchups. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200313231024.17601-1-kim.phillips@amd.com
Enable the sampling check in kernel/events/core.c::perf_event_open(),
which returns the more appropriate -EOPNOTSUPP.
BEFORE:
$ sudo perf record -a -e instructions,l3_request_g1.caching_l3_cache_accesses true
Error:
The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (l3_request_g1.caching_l3_cache_accesses).
/bin/dmesg | grep -i perf may provide additional information.
With nothing relevant in dmesg.
AFTER:
$ sudo perf record -a -e instructions,l3_request_g1.caching_l3_cache_accesses true
Error:
l3_request_g1.caching_l3_cache_accesses: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'
Fixes: c43ca5091a ("perf/x86/amd: Add support for AMD NB and L2I "uncore" counters")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200311191323.13124-1-kim.phillips@amd.com
For MSR type of uncore units, there is no difference between Ice Lake
and Tiger Lake. Share the same code with Ice Lake.
Tiger Lake has two MCs. Both of them are located at 0:0:0. The BAR
offset is still 0x48. The offset of the two MCs is 0x10000.
Each MC has three counters to count every read/write/total issued by the
Memory Controller to DRAM. The counters can be accessed by MMIO.
They are free-running counters.
The offset of counters are different for TIGERLAKE_L and TIGERLAKE.
Add separated mmio_init() functions.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20200206161527.3529-1-kan.liang@linux.intel.com
For Intel LBR, the LBR Top-of-Stack (TOS) information is the HW index of
raw branch record for the most recent branch.
For non-adaptive PEBS and non-PEBS, the TOS information can be directly
retrieved from TOS MSR read in intel_pmu_lbr_read().
For adaptive PEBS, the LBR information stored in PEBS record doesn't
include the TOS information. For single PEBS, TOS can be directly read
from MSR, because the PMI is triggered immediately after PEBS is
written. TOS MSR is still unchanged.
For large PEBS, TOS MSR has stale value. Set -1ULL to indicate that the
TOS information is not available.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200127165355.27495-3-kan.liang@linux.intel.com
The low level index is the index in the underlying hardware buffer of
the most recently captured taken branch which is always saved in
branch_entries[0]. It is very useful for reconstructing the call stack.
For example, in Intel LBR call stack mode, the depth of reconstructed
LBR call stack limits to the number of LBR registers. With the low level
index information, perf tool may stitch the stacks of two samples. The
reconstructed LBR call stack can break the HW limitation.
Add a new branch sample type to retrieve low level index of raw branch
records. The low level index is between -1 (unknown) and max depth which
can be retrieved in /sys/devices/cpu/caps/branches.
Only when the new branch sample type is set, the low level index
information is dumped into the PERF_SAMPLE_BRANCH_STACK output.
Perf tool should check the attr.branch_sample_type, and apply the
corresponding format for PERF_SAMPLE_BRANCH_STACK samples.
Otherwise, some user case may be broken. For example, users may parse a
perf.data, which include the new branch sample type, with an old version
perf tool (without the check). Users probably get incorrect information
without any warning.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200127165355.27495-2-kan.liang@linux.intel.com
The perf PMI handler, intel_pmu_handle_irq(), currently does
unnecessary MSR accesses for PEBS_ENABLE MSR in
__intel_pmu_enable/disable_all() when PEBS is enabled.
When entering the handler, global ctrl is explicitly disabled. All
counters do not count anymore. It doesn't matter if PEBS is enabled
or not in a PMI handler.
Furthermore, for most cases, the cpuc->pebs_enabled is not changed in
PMI. The PEBS status doesn't change. The PEBS_ENABLE MSR doesn't need to
be changed either when exiting the handler.
PMI throttle may change the PEBS status during PMI handler. The
x86_pmu_stop() ends up in intel_pmu_pebs_disable() which can update
cpuc->pebs_enabled. But the MSR_IA32_PEBS_ENABLE is not updated
at the same time. Because the cpuc->enabled has been forced to 0.
The patch explicitly update the MSR_IA32_PEBS_ENABLE for this case.
Use ftrace to measure the duration of intel_pmu_handle_irq() on BDX.
#perf record -e cycles:P -- ./tchain_edit
The average duration of intel_pmu_handle_irq():
Without the patch 1.144 us
With the patch 1.025 us
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200121181338.3234-1-kan.liang@linux.intel.com
Perf doesn't take the left period into account when auto-reload is
enabled with fixed period sampling mode in context switch.
Here is the MSR trace of the perf command as below.
(The MSR trace is simplified from a ftrace log.)
#perf record -e cycles:p -c 2000000 -- ./triad_loop
//The MSR trace of task schedule out
//perf disable all counters, disable PEBS, disable GP counter 0,
//read GP counter 0, and re-enable all counters.
//The counter 0 stops at 0xfffffff82840
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0
write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 0
write_msr: MSR_P6_EVNTSEL0(186), value 40003003c
rdpmc: 0, value fffffff82840
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff
//The MSR trace of the same task schedule in again
//perf disable all counters, enable and set GP counter 0,
//enable PEBS, and re-enable all counters.
//0xffffffe17b80 (-2000000) is written to GP counter 0.
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0
write_msr: MSR_IA32_PMC0(4c1), value ffffffe17b80
write_msr: MSR_P6_EVNTSEL0(186), value 40043003c
write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 1
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff
When the same task schedule in again, the counter should starts from
previous left. However, it starts from the fixed period -2000000 again.
A special variant of intel_pmu_save_and_restart() is used for
auto-reload, which doesn't update the hwc->period_left.
When the monitored task schedules in again, perf doesn't know the left
period. The fixed period is used, which is inaccurate.
With auto-reload, the counter always has a negative counter value. So
the left period is -value. Update the period_left in
intel_pmu_save_and_restart_reload().
With the patch:
//The MSR trace of task schedule out
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0
write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 0
write_msr: MSR_P6_EVNTSEL0(186), value 40003003c
rdpmc: 0, value ffffffe25cbc
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff
//The MSR trace of the same task schedule in again
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value 0
write_msr: MSR_IA32_PMC0(4c1), value ffffffe25cbc
write_msr: MSR_P6_EVNTSEL0(186), value 40043003c
write_msr: MSR_IA32_PEBS_ENABLE(3f1), value 1
write_msr: MSR_CORE_PERF_GLOBAL_CTRL(38f), value f000000ff
Fixes: d31fc13fdc ("perf/x86/intel: Fix event update for auto-reload")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200121190125.3389-1-kan.liang@linux.intel.com
Commit 3fe3331bb2 ("perf/x86/amd: Add event map for AMD Family 17h"),
claimed L2 misses were unsupported, due to them not being found in its
referenced documentation, whose link has now moved [1].
That old documentation listed PMCx064 unit mask bit 3 as:
"LsRdBlkC: LS Read Block C S L X Change to X Miss."
and bit 0 as:
"IcFillMiss: IC Fill Miss"
We now have new public documentation [2] with improved descriptions, that
clearly indicate what events those unit mask bits represent:
Bit 3 now clearly states:
"LsRdBlkC: Data Cache Req Miss in L2 (all types)"
and bit 0 is:
"IcFillMiss: Instruction Cache Req Miss in L2."
So we can now add support for L2 misses in perf's genericised events as
PMCx064 with both the above unit masks.
[1] The commit's original documentation reference, "Processor Programming
Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors",
originally available here:
https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
is now available here:
https://developer.amd.com/wordpress/media/2017/11/54945_PPR_Family_17h_Models_00h-0Fh.pdf
[2] "Processor Programming Reference (PPR) for Family 17h Model 31h,
Revision B0 Processors", available here:
https://developer.amd.com/wp-content/resources/55803_0.54-PUB.pdf
Fixes: 3fe3331bb2 ("perf/x86/amd: Add event map for AMD Family 17h")
Reported-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200121171232.28839-1-kim.phillips@amd.com
Tremont is Intel's successor to Goldmont Plus. SMI_COUNT MSR is also
supported.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1580236279-35492-3-git-send-email-kan.liang@linux.intel.com
Tremont is Intel's successor to Goldmont Plus. From the perspective of
Intel cstate residency counters, there is nothing changed compared with
Goldmont Plus and Goldmont.
Share glm_cstates with Goldmont Plus and Goldmont.
Update the comments for Tremont.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1580236279-35492-2-git-send-email-kan.liang@linux.intel.com
Elkhart Lake also uses Tremont CPU. From the perspective of Intel PMU,
there is nothing changed compared with Jacobsville.
Share the perf code with Jacobsville.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1580236279-35492-1-git-send-email-kan.liang@linux.intel.com
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Ftrace is one of the last W^X violators (after this only KLP is
left). These patches move it over to the generic text_poke()
interface and thereby get rid of this oddity. This requires a
surprising amount of surgery, by Peter Zijlstra.
- x86/AMD PMUs: add support for 'Large Increment per Cycle Events' to
count certain types of events that have a special, quirky hw ABI
(by Kim Phillips)
- kprobes fixes by Masami Hiramatsu
Lots of tooling updates as well, the following subcommands were
updated: annotate/report/top, c2c, clang, record, report/top TUI,
sched timehist, tests; plus updates were done to the gtk ui, libperf,
headers and the parser"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
perf/x86/amd: Add support for Large Increment per Cycle Events
perf/x86/amd: Constrain Large Increment per Cycle events
perf/x86/intel/rapl: Add Comet Lake support
tracing: Initialize ret in syscall_enter_define_fields()
perf header: Use last modification time for timestamp
perf c2c: Fix return type for histogram sorting comparision functions
perf beauty sockaddr: Fix augmented syscall format warning
perf/ui/gtk: Fix gtk2 build
perf ui gtk: Add missing zalloc object
perf tools: Use %define api.pure full instead of %pure-parser
libperf: Setup initial evlist::all_cpus value
perf report: Fix no libunwind compiled warning break s390 issue
perf tools: Support --prefix/--prefix-strip
perf report: Clarify in help that --children is default
tools build: Fix test-clang.cpp with Clang 8+
perf clang: Fix build with Clang 9
kprobes: Fix optimize_kprobe()/unoptimize_kprobe() cancellation logic
tools lib: Fix builds when glibc contains strlcpy()
perf report/top: Make 'e' visible in the help and make it toggle showing callchains
perf report/top: Do not offer annotation for symbols without samples
...
Pull header cleanup from Ingo Molnar:
"This is a treewide cleanup, mostly (but not exclusively) with x86
impact, which breaks implicit dependencies on the asm/realtime.h
header and finally removes it from asm/acpi.h"
* 'core-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ACPI/sleep: Move acpi_get_wakeup_address() into sleep.c, remove <asm/realmode.h> from <asm/acpi.h>
ACPI/sleep: Convert acpi_wakeup_address into a function
x86/ACPI/sleep: Remove an unnecessary include of asm/realmode.h
ASoC: Intel: Skylake: Explicitly include linux/io.h for virt_to_phys()
vmw_balloon: Explicitly include linux/io.h for virt_to_phys()
virt: vbox: Explicitly include linux/io.h to pick up various defs
efi/capsule-loader: Explicitly include linux/io.h for page_to_phys()
perf/x86/intel: Explicitly include asm/io.h to use virt_to_phys()
x86/kprobes: Explicitly include vmalloc.h for set_vm_flush_reset_perms()
x86/ftrace: Explicitly include vmalloc.h for set_vm_flush_reset_perms()
x86/boot: Explicitly include realmode.h to handle RM reservations
x86/efi: Explicitly include realmode.h to handle RM trampoline quirk
x86/platform/intel/quark: Explicitly include linux/io.h for virt_to_phys()
x86/setup: Enhance the comments
x86/setup: Clean up the header portion of setup.c
The PCIe Root Port driver for CPU Complex PCIe Root Ports are not
loaded on SNR.
The device ID for SNR PCIe3 unit is used by both uncore driver and the
PCIe Root Port driver. If uncore driver is loaded, the PCIe Root Port
driver never be probed.
Remove the PCIe3 unit for SNR for now. The support for PCIe3 unit will
be added later separately.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200116200210.18937-2-kan.liang@linux.intel.com
An Oops during the boot is found on some SNR machines. It turns out
this is because the snr_uncore_imc_freerunning_events[] array was
missing an end-marker.
Fixes: ee49532b38 ("perf/x86/intel/uncore: Add IMC uncore support for Snow Ridge")
Reported-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Like Xu <like.xu@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200116200210.18937-1-kan.liang@linux.intel.com
The IMC uncore support is missed for E3-1585 v5 CPU.
Intel Xeon E3 V5 Family has Sky Lake CPU.
Add the PCI ID of IMC for Intel Xeon E3 V5 Family.
Reported-by: Rosales-fernandez, Carlos <carlos.rosales-fernandez@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Rosales-fernandez, Carlos <carlos.rosales-fernandez@intel.com>
Link: https://lkml.kernel.org/r/1578687311-158748-1-git-send-email-kan.liang@linux.intel.com
Description of hardware operation
---------------------------------
The core AMD PMU has a 4-bit wide per-cycle increment for each
performance monitor counter. That works for most events, but
now with AMD Family 17h and above processors, some events can
occur more than 15 times in a cycle. Those events are called
"Large Increment per Cycle" events. In order to count these
events, two adjacent h/w PMCs get their count signals merged
to form 8 bits per cycle total. In addition, the PERF_CTR count
registers are merged to be able to count up to 64 bits.
Normally, events like instructions retired, get programmed on a single
counter like so:
PERF_CTL0 (MSR 0xc0010200) 0x000000000053ff0c # event 0x0c, umask 0xff
PERF_CTR0 (MSR 0xc0010201) 0x0000800000000001 # r/w 48-bit count
The next counter at MSRs 0xc0010202-3 remains unused, or can be used
independently to count something else.
When counting Large Increment per Cycle events, such as FLOPs,
however, we now have to reserve the next counter and program the
PERF_CTL (config) register with the Merge event (0xFFF), like so:
PERF_CTL0 (msr 0xc0010200) 0x000000000053ff03 # FLOPs event, umask 0xff
PERF_CTR0 (msr 0xc0010201) 0x0000800000000001 # rd 64-bit cnt, wr lo 48b
PERF_CTL1 (msr 0xc0010202) 0x0000000f004000ff # Merge event, enable bit
PERF_CTR1 (msr 0xc0010203) 0x0000000000000000 # wr hi 16-bits count
The count is widened from the normal 48-bits to 64 bits by having the
second counter carry the higher 16 bits of the count in its lower 16
bits of its counter register.
The odd counter, e.g., PERF_CTL1, is programmed with the enabled Merge
event before the even counter, PERF_CTL0.
The Large Increment feature is available starting with Family 17h.
For more details, search any Family 17h PPR for the "Large Increment
per Cycle Events" section, e.g., section 2.1.15.3 on p. 173 in this
version:
https://www.amd.com/system/files/TechDocs/56176_ppr_Family_17h_Model_71h_B0_pub_Rev_3.06.zip
Description of software operation
---------------------------------
The following steps are taken in order to support reserving and
enabling the extra counter for Large Increment per Cycle events:
1. In the main x86 scheduler, we reduce the number of available
counters by the number of Large Increment per Cycle events being
scheduled, tracked by a new cpuc variable 'n_pair' and a new
amd_put_event_constraints_f17h(). This improves the counter
scheduler success rate.
2. In perf_assign_events(), if a counter is assigned to a Large
Increment event, we increment the current counter variable, so the
counter used for the Merge event is removed from assignment
consideration by upcoming event assignments.
3. In find_counter(), if a counter has been found for the Large
Increment event, we set the next counter as used, to prevent other
events from using it.
4. We perform steps 2 & 3 also in the x86 scheduler fastpath, i.e.,
we add Merge event accounting to the existing used_mask logic.
5. Finally, we add on the programming of Merge event to the
neighbouring PMC counters in the counter enable/disable{_all}
code paths.
Currently, software does not support a single PMU with mixed 48- and
64-bit counting, so Large increment event counts are limited to 48
bits. In set_period, we zero-out the upper 16 bits of the count, so
the hardware doesn't copy them to the even counter's higher bits.
Simple invocation example showing counting 8 FLOPs per 256-bit/%ymm
vaddps instruction executed in a loop 100 million times:
perf stat -e cpu/fp_ret_sse_avx_ops.all/,cpu/instructions/ <workload>
Performance counter stats for '<workload>':
800,000,000 cpu/fp_ret_sse_avx_ops.all/u
300,042,101 cpu/instructions/u
Prior to this patch, the reported SSE/AVX FLOPs retired count would
be wrong.
[peterz: lots of renames and edits to the code]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
AMD Family 17h processors and above gain support for Large Increment
per Cycle events. Unfortunately there is no CPUID or equivalent bit
that indicates whether the feature exists or not, so we continue to
determine eligibility based on a CPU family number comparison.
For Large Increment per Cycle events, we add a f17h-and-compatibles
get_event_constraints_f17h() that returns an even counter bitmask:
Large Increment per Cycle events can only be placed on PMCs 0, 2,
and 4 out of the currently available 0-5. The only currently
public event that requires this feature to report valid counts
is PMCx003 "Retired SSE/AVX Operations".
Note that the CPU family logic in amd_core_pmu_init() is changed
so as to be able to selectively add initialization for features
available in ranges of backward-compatible CPU families. This
Large Increment per Cycle feature is expected to be retained
in future families.
A side-effect of assigning a new get_constraints function for f17h
disables calling the old (prior to f15h) amd_get_event_constraints
implementation left enabled by commit e40ed1542d ("perf/x86: Add perf
support for AMD family-17h processors"), which is no longer
necessary since those North Bridge event codes are obsoleted.
Also fix a spelling mistake whilst in the area (calulating ->
calculating).
Fixes: e40ed1542d ("perf/x86: Add perf support for AMD family-17h processors")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191114183720.19887-2-kim.phillips@amd.com
Commit:
ccbebba4c6 ("perf/x86/intel/pt: Bypass PT vs. LBR exclusivity if the core supports it")
skips the PT/LBR exclusivity check on CPUs where PT and LBRs coexist, but
also inadvertently skips the active_events bump for PT in that case, which
is a bug. If there aren't any hardware events at the same time as PT, the
PMI handler will ignore PT PMIs, as active_events reads zero in that case,
resulting in the "Uhhuh" spurious NMI warning and PT data loss.
Fix this by always increasing active_events for PT events.
Fixes: ccbebba4c6 ("perf/x86/intel/pt: Bypass PT vs. LBR exclusivity if the core supports it")
Reported-by: Vitaly Slobodskoy <vitaly.slobodskoy@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lkml.kernel.org/r/20191210105101.77210-1-alexander.shishkin@linux.intel.com
Commit
8062382c8d ("perf/x86/intel/bts: Add BTS PMU driver")
brought in a warning with the BTS buffer initialization
that is easily tripped with (assuming KPTI is disabled):
instantly throwing:
> ------------[ cut here ]------------
> WARNING: CPU: 2 PID: 326 at arch/x86/events/intel/bts.c:86 bts_buffer_setup_aux+0x117/0x3d0
> Modules linked in:
> CPU: 2 PID: 326 Comm: perf Not tainted 5.4.0-rc8-00291-gceb9e77324fa #904
> RIP: 0010:bts_buffer_setup_aux+0x117/0x3d0
> Call Trace:
> rb_alloc_aux+0x339/0x550
> perf_mmap+0x607/0xc70
> mmap_region+0x76b/0xbd0
...
It appears to assume (for lost raisins) that PagePrivate() is set,
while later it actually tests for PagePrivate() before using
page_private().
Make it consistent and always check PagePrivate() before using
page_private().
Fixes: 8062382c8d ("perf/x86/intel/bts: Add BTS PMU driver")
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lkml.kernel.org/r/20191205142853.28894-2-alexander.shishkin@linux.intel.com
UBSAN reported out-of-bound accesses for x86_pmu.event_map(), it's
arguments should be < x86_pmu.max_events. Make sure all users observe
this constraint.
Reported-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Meelis Roos <mroos@linux.ee>
Through a labyrinthian sequence of includes, usage of virt_to_phys() is
dependent on the include of asm/io.h in asm/realmode.h via asm/acpi.h.
Explicitly include asm/io.h to break the dependency on realmode.h so
that a future patch can remove the realmode.h include from acpi.h
without breaking the build.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Link: https://lkml.kernel.org/r/20191126165417.22423-6-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When you successfully write 0 to /sys/devices/cpu/rdpmc, the RDPMC
instruction should be disabled unconditionally and immediately (after you
close the SYSFS file) by the documentation.
Instead, in the current implementation the PMU must be reloaded which
happens only eventually some time in the future. Only after that the RDPMC
instruction becomes disabled (on ring 3) on the respective core.
This change makes the treatment of the 0 value as blocking and as
unconditional as the current treatment of the 2 value, only the CR4.PCE
bit is naturally set to false instead of true.
Signed-off-by: Anthony Steinhauser <asteinhauser@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: https://lkml.kernel.org/r/20191125054838.137615-1-asteinhauser@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf updates from Ingo Molnar:
"The main kernel side changes in this cycle were:
- Various Intel-PT updates and optimizations (Alexander Shishkin)
- Prohibit kprobes on Xen/KVM emulate prefixes (Masami Hiramatsu)
- Add support for LSM and SELinux checks to control access to the
perf syscall (Joel Fernandes)
- Misc other changes, optimizations, fixes and cleanups - see the
shortlog for details.
There were numerous tooling changes as well - 254 non-merge commits.
Here are the main changes - too many to list in detail:
- Enhancements to core tooling infrastructure, perf.data, libperf,
libtraceevent, event parsing, vendor events, Intel PT, callchains,
BPF support and instruction decoding.
- There were updates to the following tools:
perf annotate
perf diff
perf inject
perf kvm
perf list
perf maps
perf parse
perf probe
perf record
perf report
perf script
perf stat
perf test
perf trace
- And a lot of other changes: please see the shortlog and Git log for
more details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (279 commits)
perf parse: Fix potential memory leak when handling tracepoint errors
perf probe: Fix spelling mistake "addrees" -> "address"
libtraceevent: Fix memory leakage in copy_filter_type
libtraceevent: Fix header installation
perf intel-bts: Does not support AUX area sampling
perf intel-pt: Add support for decoding AUX area samples
perf intel-pt: Add support for recording AUX area samples
perf pmu: When using default config, record which bits of config were changed by the user
perf auxtrace: Add support for queuing AUX area samples
perf session: Add facility to peek at all events
perf auxtrace: Add support for dumping AUX area samples
perf inject: Cut AUX area samples
perf record: Add aux-sample-size config term
perf record: Add support for AUX area sampling
perf auxtrace: Add support for AUX area sample recording
perf auxtrace: Move perf_evsel__find_pmu()
perf record: Add a function to test for kernel support for AUX area sampling
perf tools: Add kernel AUX area sampling definitions
perf/core: Make the mlock accounting simple again
perf report: Jump to symbol source view from total cycles view
...
It's enough to check the value and issue the direct call.
After this commit is applied, here the most common retpolines executed
under a high resolution timer workload in the guest on a VMX host:
[..]
@[
trace_retpoline+1
__trace_retpoline+30
__x86_indirect_thunk_rax+33
do_syscall_64+89
entry_SYSCALL_64_after_hwframe+68
]: 267
@[]: 2256
@[
trace_retpoline+1
__trace_retpoline+30
__x86_indirect_thunk_rax+33
__kvm_wait_lapic_expire+284
vmx_vcpu_run.part.97+1091
vcpu_enter_guest+377
kvm_arch_vcpu_ioctl_run+261
kvm_vcpu_ioctl+559
do_vfs_ioctl+164
ksys_ioctl+96
__x64_sys_ioctl+22
do_syscall_64+89
entry_SYSCALL_64_after_hwframe+68
]: 2390
@[]: 33410
@total: 315707
Note the highest hit above is __delay so probably not worth optimizing
even if it would be more frequent than 2k hits per sec.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With recent optimizations to AUX and PT buffer management code (high order
AUX allocations, opportunistic Single Range Output), it is far more likely
now that the output MSRs won't need reprogramming on every sched-in.
To avoid needless WRMSRs of those registers, cache their values and only
write them when needed.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20191105082701.78442-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Most of PT implementations support Single Range Output mode, which is
an alternative to ToPA that can be used for a single contiguous buffer
and if we don't require an interrupt, that is, in AUX snapshot mode.
Now that perf core will use high order allocations for the AUX buffer,
in many cases the first condition will also be satisfied.
The two most obvious benefits of the Single Range Output mode over the
ToPA are:
* not having to allocate the ToPA table(s),
* not using the ToPA walk hardware.
Make use of this functionality where available and appropriate.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20191105082701.78442-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add AUX sampling support to the PT PMU: implement an NMI-safe callback
that takes a snapshot of the buffer without touching the event states.
This is done for PT events that don't use PMIs, that is, snapshot mode
(RO mapping of the AUX area).
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Cc: mathieu.poirier@linaro.org
Link: https://lkml.kernel.org/r/20191025140835.53665-4-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PT trace is now enabled at the bottom of the event configuration
function that takes care of all configuration bits related to a given
event, including the address filter update. This is only needed where
the event configuration changes, that is, in ->add()/->start().
In the interrupt path we can use a lighter version that keeps the
configuration intact, since it hasn't changed, and only flips the
enable bit.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Cc: mathieu.poirier@linaro.org
Link: https://lkml.kernel.org/r/20191025140835.53665-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'-Wunused-but-set-variable' triggers this warning:
arch/x86/events/amd/core.c: In function amd_pmu_handle_irq:
arch/x86/events/amd/core.c:656:6: warning: variable active set but not used [-Wunused-but-set-variable]
GCC is right, 'active' is not used anymore.
This variable was introduced earlier this year and then removed in:
df4d29732f perf/x86/amd: Change/fix NMI latency mitigation to use a timestamp
[ mingo: Improved the changelog, fixed build warning caused by this fix, improved surrounding code. ]
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zheng Yongjun <zhengyongjun3@huawei.com>
Cc: <acme@kernel.org>
Cc: <alexander.shishkin@linux.intel.com>
Cc: <mark.rutland@arm.com>
Cc: <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191110094453.113001-1-zhengyongjun3@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement intel_pmu_lbr_swap_task_ctx() method updating counters
of the events that requested LBR callstack data on a sample.
The counter can be zero for the case when task context belongs to
a thread that has just come from a block on a futex and the context
contains saved (lbr_stack_state == LBR_VALID) LBR register values.
For the values to be restored at LBR registers on the next thread's
switch-in event it swaps the counter value with the one that is
expected to be non zero at the previous equivalent task perf event
context.
Swap operation type ensures the previous task perf event context
stays consistent with the amount of events that requested LBR
callstack data on a sample.
Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/261ac742-9022-c3f4-5885-1eae7415b091@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Declare swap_task_ctx() methods at the generic and x86 specific
pmu types to bridge calls to platform specific PMU code on optimized
context switch path between equivalent task perf event contexts.
Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/9a0aa84a-f062-9b64-3133-373658550c4b@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The events in the same group don't start or stop simultaneously.
Here is the ftrace when enabling event group for uncore_iio_0:
# perf stat -e "{uncore_iio_0/event=0x1/,uncore_iio_0/event=0xe/}"
<idle>-0 [000] d.h. 8959.064832: read_msr: a41, value
b2b0b030 //Read counter reg of IIO unit0 counter0
<idle>-0 [000] d.h. 8959.064835: write_msr: a48, value
400001 //Write Ctrl reg of IIO unit0 counter0 to enable
counter0. <------ Although counter0 is enabled, Unit Ctrl is still
freezed. Nothing will count. We are still good here.
<idle>-0 [000] d.h. 8959.064836: read_msr: a40, value
30100 //Read Unit Ctrl reg of IIO unit0
<idle>-0 [000] d.h. 8959.064838: write_msr: a40, value
30000 //Write Unit Ctrl reg of IIO unit0 to enable all
counters in the unit by clear Freeze bit <------Unit0 is un-freezed.
Counter0 has been enabled. Now it starts counting. But counter1 has not
been enabled yet. The issue starts here.
<idle>-0 [000] d.h. 8959.064846: read_msr: a42, value 0
//Read counter reg of IIO unit0 counter1
<idle>-0 [000] d.h. 8959.064847: write_msr: a49, value
40000e //Write Ctrl reg of IIO unit0 counter1 to enable
counter1. <------ Now, counter1 just starts to count. Counter0 has
been running for a while.
Current code un-freezes the Unit Ctrl right after the first counter is
enabled. The subsequent group events always loses some counter values.
Implement pmu_enable and pmu_disable support for uncore, which can help
to batch hardware accesses.
No one uses uncore_enable_box and uncore_disable_box. Remove them.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-drivers-review@eclists.intel.com
Cc: linux-perf@eclists.intel.com
Fixes: 087bfbb032 ("perf/x86: Add generic Intel uncore PMU support")
Link: https://lkml.kernel.org/r/1572014593-31591-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This saves us writing the IBS control MSR twice when disabling the
event.
I searched revision guides for all families since 10h, and did not
find occurrence of erratum #420, nor anything remotely similar:
so we isolate the secondary MSR write to family 10h only.
Also unconditionally update the count mask for IBS Op implementations
that have read & writeable current count (CurCnt) fields in addition
to the MaxCnt field. These bits were reserved on prior
implementations, and therefore shouldn't have negative impact.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: c9574fe0bd ("perf/x86-ibs: Implement workaround for IBS erratum #420")
Link: https://lkml.kernel.org/r/20191023150955.30292-2-kim.phillips@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The loop that reads all the IBS MSRs into *buf stopped one MSR short of
reading the IbsOpData register, which contains the RipInvalid status bit.
Fix the offset_max assignment so the MSR gets read, so the RIP invalid
evaluation is based on what the IBS h/w output, instead of what was
left in memory.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: d47e8238cd ("perf/x86-ibs: Take instruction pointer from ibs sample")
Link: https://lkml.kernel.org/r/20191023150955.30292-1-kim.phillips@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jan reported failing ltp test for PT:
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/tracing/pt_test/pt_test.c
It looks like the reason is this new commit added in this v5.4 merge window:
38bb8d77d0 ("perf/x86/intel/pt: Split ToPA metadata and page layout")
which did not keep the TOPA_SHIFT for entry base.
Add it back.
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Petlan <mpetlan@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 38bb8d77d0 ("perf/x86/intel/pt: Split ToPA metadata and page layout")
Link: https://lkml.kernel.org/r/20191019220726.12213-1-jolsa@kernel.org
[ Minor changelog edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In current mainline, the degree of access to perf_event_open(2) system
call depends on the perf_event_paranoid sysctl. This has a number of
limitations:
1. The sysctl is only a single value. Many types of accesses are controlled
based on the single value thus making the control very limited and
coarse grained.
2. The sysctl is global, so if the sysctl is changed, then that means
all processes get access to perf_event_open(2) opening the door to
security issues.
This patch adds LSM and SELinux access checking which will be used in
Android to access perf_event_open(2) for the purposes of attaching BPF
programs to tracepoints, perf profiling and other operations from
userspace. These operations are intended for production systems.
5 new LSM hooks are added:
1. perf_event_open: This controls access during the perf_event_open(2)
syscall itself. The hook is called from all the places that the
perf_event_paranoid sysctl is checked to keep it consistent with the
systctl. The hook gets passed a 'type' argument which controls CPU,
kernel and tracepoint accesses (in this context, CPU, kernel and
tracepoint have the same semantics as the perf_event_paranoid sysctl).
Additionally, I added an 'open' type which is similar to
perf_event_paranoid sysctl == 3 patch carried in Android and several other
distros but was rejected in mainline [1] in 2016.
2. perf_event_alloc: This allocates a new security object for the event
which stores the current SID within the event. It will be useful when
the perf event's FD is passed through IPC to another process which may
try to read the FD. Appropriate security checks will limit access.
3. perf_event_free: Called when the event is closed.
4. perf_event_read: Called from the read(2) and mmap(2) syscalls for the event.
5. perf_event_write: Called from the ioctl(2) syscalls for the event.
[1] https://lwn.net/Articles/696240/
Since Peter had suggest LSM hooks in 2016 [1], I am adding his
Suggested-by tag below.
To use this patch, we set the perf_event_paranoid sysctl to -1 and then
apply selinux checking as appropriate (default deny everything, and then
add policy rules to give access to domains that need it). In the future
we can remove the perf_event_paranoid sysctl altogether.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Co-developed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: James Morris <jmorris@namei.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: rostedt@goodmis.org
Cc: Yonghong Song <yhs@fb.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: jeffv@google.com
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: primiano@google.com
Cc: Song Liu <songliubraving@fb.com>
Cc: rsavitski@google.com
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Matthew Garrett <matthewgarrett@google.com>
Link: https://lkml.kernel.org/r/20191014170308.70668-1-joel@joelfernandes.org
Tiger Lake is the followon to Ice Lake. From the perspective of Intel
cstate residency counters, there is nothing changed compared with
Ice Lake.
Share icl_cstates with Ice Lake.
Update the comments for Tiger Lake.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-10-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tiger Lake is the followon to Ice Lake. PPERF and SMI_COUNT MSRs are
also supported.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-9-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tiger Lake is the followon to Ice Lake. From the perspective of Intel
core PMU, there is little changes compared with Ice Lake, e.g. small
changes in event list. But it doesn't impact on core PMU functionality.
Share the perf code with Ice Lake. The event list patch will be submitted
later separately.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-8-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no Core C3 C-State counter for Ice Lake.
Package C8/C9/C10 C-State counters are added for Ice Lake.
Introduce a new event list, icl_cstates, for Ice Lake.
Update the comments accordingly.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: f08c47d1f8 ("perf/x86/intel/cstate: Add Icelake support")
Link: https://lkml.kernel.org/r/1570549810-25049-7-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PPERF and SMI_COUNT MSRs are also supported by Ice Lake desktop and
server.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-6-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Comet Lake is the new 10th Gen Intel processor. From the perspective of
Intel cstate residency counters, there is nothing changed compared with
Kaby Lake.
Share hswult_cstates with Kaby Lake.
Update the comments for Comet Lake.
Kaby Lake is missed in the comments for some Residency Counters. Update
the comments for Kaby Lake as well.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-5-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Comet Lake is the new 10th Gen Intel processor. PPERF and SMI_COUNT MSRs
are also supported.
The External Design Specification (EDS) is not published yet. It comes
from an authoritative internal source.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-4-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Comet Lake is the new 10th Gen Intel processor. From the perspective
of Intel PMU, there is nothing changed compared with Sky Lake.
Share the perf code with Sky Lake.
The patch has been tested on real hardware.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1570549810-25049-3-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It turns out that the NMI latency workaround from commit:
6d3edaae16 ("x86/perf/amd: Resolve NMI latency issues for active PMCs")
ends up being too conservative and results in the perf NMI handler claiming
NMIs too easily on AMD hardware when the NMI watchdog is active.
This has an impact, for example, on the hpwdt (HPE watchdog timer) module.
This module can produce an NMI that is used to reset the system. It
registers an NMI handler for the NMI_UNKNOWN type and relies on the fact
that nothing has claimed an NMI so that its handler will be invoked when
the watchdog device produces an NMI. After the referenced commit, the
hpwdt module is unable to process its generated NMI if the NMI watchdog is
active, because the current NMI latency mitigation results in the NMI
being claimed by the perf NMI handler.
Update the AMD perf NMI latency mitigation workaround to, instead, use a
window of time. Whenever a PMC is handled in the perf NMI handler, set a
timestamp which will act as a perf NMI window. Any NMIs arriving within
that window will be claimed by perf. Anything outside that window will
not be claimed by perf. The value for the NMI window is set to 100 msecs.
This is a conservative value that easily covers any NMI latency in the
hardware. While this still results in a window in which the hpwdt module
will not receive its NMI, the window is now much, much smaller.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jerry Hoemann <jerry.hoemann@hpe.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6d3edaae16 ("x86/perf/amd: Resolve NMI latency issues for active PMCs")
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 mm updates from Ingo Molnar:
- Make cpumask_of_node() more robust against invalid node IDs
- Simplify and speed up load_mm_cr4()
- Unexport and remove various unused set_memory_*() APIs
- Misc cleanups
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Fix cpumask_of_node() error condition
x86/mm: Remove the unused set_memory_wt() function
x86/mm: Remove set_pages_x() and set_pages_nx()
x86/mm: Remove the unused set_memory_array_*() functions
x86/mm: Unexport set_memory_x() and set_memory_nx()
x86/fixmap: Cleanup outdated comments
x86/kconfig: Remove X86_DIRECT_GBPAGES dependency on !DEBUG_PAGEALLOC
x86/mm: Avoid redundant interrupt disable in load_mm_cr4()
Pull x86 cpu-feature updates from Ingo Molnar:
- Rework the Intel model names symbols/macros, which were decades of
ad-hoc extensions and added random noise. It's now a coherent, easy
to follow nomenclature.
- Add new Intel CPU model IDs:
- "Tiger Lake" desktop and mobile models
- "Elkhart Lake" model ID
- and the "Lightning Mountain" variant of Airmont, plus support code
- Add the new AVX512_VP2INTERSECT instruction to cpufeatures
- Remove Intel MPX user-visible APIs and the self-tests, because the
toolchain (gcc) is not supporting it going forward. This is the
first, lowest-risk phase of MPX removal.
- Remove X86_FEATURE_MFENCE_RDTSC
- Various smaller cleanups and fixes
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
x86/cpu: Update init data for new Airmont CPU model
x86/cpu: Add new Airmont variant to Intel family
x86/cpu: Add Elkhart Lake to Intel family
x86/cpu: Add Tiger Lake to Intel family
x86: Correct misc typos
x86/intel: Add common OPTDIFFs
x86/intel: Aggregate microserver naming
x86/intel: Aggregate big core graphics naming
x86/intel: Aggregate big core mobile naming
x86/intel: Aggregate big core client naming
x86/cpufeature: Explain the macro duplication
x86/ftrace: Remove mcount() declaration
x86/PCI: Remove superfluous returns from void functions
x86/msr-index: Move AMD MSRs where they belong
x86/cpu: Use constant definitions for CPU models
lib: Remove redundant ftrace flag removal
x86/crash: Remove unnecessary comparison
x86/bitops: Use __builtin_constant_p() directly instead of IS_IMMEDIATE()
x86: Remove X86_FEATURE_MFENCE_RDTSC
x86/mpx: Remove MPX APIs
...
When building with C=2, sparse makes note of a number of things:
arch/x86/events/intel/rapl.c:637:30: warning: symbol 'rapl_attr_update' was not declared. Should it be static?
arch/x86/events/intel/cstate.c:449:30: warning: symbol 'core_attr_update' was not declared. Should it be static?
arch/x86/events/intel/cstate.c:457:30: warning: symbol 'pkg_attr_update' was not declared. Should it be static?
arch/x86/events/msr.c:170:30: warning: symbol 'attr_update' was not declared. Should it be static?
arch/x86/events/intel/lbr.c:276:1: warning: symbol 'lbr_from_quirk_key' was not declared. Should it be static?
And they can all indeed be static.
Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/128059.1565286242@turing-police
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
tools/power/x86/turbostat/turbostat.c
Recent turbostat changes conflicted with a pending rename of x86 model names in tip:x86/cpu,
sort it out.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When counting dispatched micro-ops with cnt_ctl=1, in order to prevent
sample bias, IBS hardware preloads the least significant 7 bits of
current count (IbsOpCurCnt) with random values, such that, after the
interrupt is handled and counting resumes, the next sample taken
will be slightly perturbed.
The current count bitfield is in the IBS execution control h/w register,
alongside the maximum count field.
Currently, the IBS driver writes that register with the maximum count,
leaving zeroes to fill the current count field, thereby overwriting
the random bits the hardware preloaded for itself.
Fix the driver to actually retain and carry those random bits from the
read of the IBS control register, through to its write, instead of
overwriting the lower current count bits with zeroes.
Tested with:
perf record -c 100001 -e ibs_op/cnt_ctl=1/pp -a -C 0 taskset -c 0 <workload>
'perf annotate' output before:
15.70 65: addsd %xmm0,%xmm1
17.30 add $0x1,%rax
15.88 cmp %rdx,%rax
je 82
17.32 72: test $0x1,%al
jne 7c
7.52 movapd %xmm1,%xmm0
5.90 jmp 65
8.23 7c: sqrtsd %xmm1,%xmm0
12.15 jmp 65
'perf annotate' output after:
16.63 65: addsd %xmm0,%xmm1
16.82 add $0x1,%rax
16.81 cmp %rdx,%rax
je 82
16.69 72: test $0x1,%al
jne 7c
8.30 movapd %xmm1,%xmm0
8.13 jmp 65
8.24 7c: sqrtsd %xmm1,%xmm0
8.39 jmp 65
Tested on Family 15h and 17h machines.
Machines prior to family 10h Rev. C don't have the RDWROPCNT capability,
and have the IbsOpCurCnt bitfield reserved, so this patch shouldn't
affect their operation.
It is unknown why commit db98c5faf8 ("perf/x86: Implement 64-bit
counter support for IBS") ignored the lower 4 bits of the IbsOpCurCnt
field; the number of preloaded random bits has always been 7, AFAICT.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Arnaldo Carvalho de Melo" <acme@kernel.org>
Cc: <x86@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: "Namhyung Kim" <namhyung@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190826195730.30614-1-kim.phillips@amd.com
If PEBS declares ability to output its data to Intel PT stream, use the
aux_output attribute bit to enable PEBS data output to PT. This requires
a PT event to be present and scheduled in the same context. Unlike the
DS area, the kernel does not extract PEBS records from the PT stream to
generate corresponding records in the perf stream, because that would
require real time in-kernel PT decoding, which is not feasible. The PMI,
however, can still be used.
The output setting is per-CPU, so all PEBS events must be either writing
to PT or to the DS area, therefore, in case of conflict, the conflicting
event will fail to schedule, allowing the rotation logic to alternate
between the PEBS->PT and PEBS->DS events.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: kan.liang@linux.intel.com
Link: https://lkml.kernel.org/r/20190806084606.4021-3-alexander.shishkin@linux.intel.com
Currently big microservers have _XEON_D while small microservers have
_X, Make it uniformly: _D.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(X\|XEON_D\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*ATOM.*\)_X/\1_D/g' \
-e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_XEON_D/\1_D/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190827195122.677152989@infradead.org
Currently big core clients with extra graphics on have:
- _G
- _GT3E
Make it uniformly: _G
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_GT3E"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_GT3E/\1_G/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190827195122.622802314@infradead.org
Currently big core mobile chips have either:
- _L
- _ULT
- _MOBILE
Make it uniformly: _L.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(MOBILE\|ULT\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(MOBILE\|ULT\)/\1_L/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190827195122.568978530@infradead.org
Currently the big core client models either have:
- no OPTDIFF
- _CORE
- _DESKTOP
Make it uniformly: 'no OPTDIFF'.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(CORE\|DESKTOP\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(CORE\|DESKTOP\)/\1/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190827195122.513945586@infradead.org
In order to quickly find a ToPA entry by its page offset in the buffer,
we're using a reverse lookup table. The problem with it is that it's a
large array of mostly similar pointers, especially so now that we're
using high order allocations from the page allocator. Because its size
is limited to whatever is the maximum for kmalloc(), it places a limit
on the number of ToPA entries per buffer, and therefore, on the total
buffer size, which otherwise doesn't have to be there.
Replace the reverse lookup table with a simple runtime lookup. With the
high order AUX allocations in place, the runtime penalty of such a lookup
is much smaller and in cases where all entries in a ToPA table are of
the same size, the complexity is O(1).
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20190821124727.73310-7-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, we're storing physical address of a ToPA table in its
descriptor, which is completely unnecessary. Since the descriptor
and the table itself share the same page, reducing the descriptor
size leaves more space for the table.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20190821124727.73310-6-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PT uses page sized ToPA tables, where the ToPA table resides at the bottom
and its driver-specific metadata taking up a few words at the top of the
page. The split is currently calculated manually and needs to be redone
every time a field is added to or removed from the metadata structure.
Also, the 32-bit version can be made smaller.
By splitting the table and metadata into separate structures, we are making
the compiler figure out the division of the page.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20190821124727.73310-5-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, pt_buffer_reset_offsets() calculates the current ToPA entry by
casting pointers to addresses and performing ungainly subtractions and
divisions instead of a simpler pointer arithmetic, which would be perfectly
applicable in that case. Fix that.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20190821124727.73310-4-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are a few places in the PT driver that need to obtain the size of
a ToPA entry, some of them for the current ToPA entry in the buffer.
Use helpers for those, to make the lines shorter and more readable.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20190821124727.73310-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some of the allocation parameters are passed as function arguments,
while the CPU number for per-cpu allocation is passed via the buffer
object. There's no reason for this.
Pass the CPU as a function argument instead.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20190821124727.73310-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation to enabling -Wimplicit-fallthrough, mark switch
cases where we are expecting to fall through.
This patch fixes the following warnings:
arch/x86/events/intel/core.c: In function ‘intel_pmu_init’:
arch/x86/events/intel/core.c:4959:8: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/events/intel/core.c:5008:8: warning: this statement may fall through [-Wimplicit-fallthrough=]
Warning level 3 was used: -Wimplicit-fallthrough=3
This patch is part of the ongoing efforts to enable -Wimplicit-fallthrough.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190624161913.GA32270@embeddedor
Signed-off-by: Ingo Molnar <mingo@kernel.org>
check_msr is used to fix a bug report in guest where KVM doesn't support
LBR MSR and cause #GP.
The msr check is bypassed on real HW to workaround a false failure,
see commit d0e1a507bd ("perf/x86/intel: Disable check_msr for real HW")
When running a guest with CONFIG_HYPERVISOR_GUEST not set or "nopv"
enabled, current check isn't enough and #GP could trigger.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1564022366-18293-1-git-send-email-zhenzhong.duan@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Intel SDM states that bit 13 of Icelake's MSR_OFFCORE_RSP_x
register is valid, and used for counting hardware generated prefetches
of L3 cache. Update the bitmask to allow bit 13.
Before:
$ perf stat -e cpu/event=0xb7,umask=0x1,config1=0x1bfff/u sleep 3
Performance counter stats for 'sleep 3':
<not supported> cpu/event=0xb7,umask=0x1,config1=0x1bfff/u
After:
$ perf stat -e cpu/event=0xb7,umask=0x1,config1=0x1bfff/u sleep 3
Performance counter stats for 'sleep 3':
9,293 cpu/event=0xb7,umask=0x1,config1=0x1bfff/u
Signed-off-by: Yunying Sun <yunying.sun@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: alexander.shishkin@linux.intel.com
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: jolsa@redhat.com
Cc: namhyung@kernel.org
Link: https://lkml.kernel.org/r/20190724082932.12833-1-yunying.sun@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sampling SLOTS event and ref-cycles event in a group on Icelake gives
EINVAL.
SLOTS event is the event stands for the fixed counter 3, not fixed
counter 2. Wrong mask was set to SLOTS event in
intel_icl_pebs_event_constraints[].
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Link: https://lkml.kernel.org/r/20190723200429.8180-1-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
load_mm_cr4() is always called with interrupts disabled from:
- switch_mm_irqs_off()
- refresh_pce(), which is a on_each_cpu() callback
Thus, disabling interrupts in cr4_set/clear_bits() is redundant.
Implement cr4_set/clear_bits_irqsoff() helpers, rename load_mm_cr4() to
load_mm_cr4_irqsoff() and use the new helpers. The new helpers do not need
a lockdep assert as __cr4_set() has one already.
The renaming in combination with the checks in __cr4_set() ensure that any
changes in the boundary conditions at the call sites will be detected.
[ tglx: Massaged change log ]
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/0fbbcb64-5f26-4ffb-1bb9-4f5f48426893@siemens.com
If a user first sample a PEBS event on a fixed counter, then sample a
non-PEBS event on the same fixed counter on Icelake, it will trigger
spurious NMI. For example:
perf record -e 'cycles:p' -a
perf record -e 'cycles' -a
The error message for spurious NMI:
[June 21 15:38] Uhhuh. NMI received for unknown reason 30 on CPU 2.
[ +0.000000] Do you have a strange power saving mode enabled?
[ +0.000000] Dazed and confused, but trying to continue
The bug was introduced by the following commit:
commit 6f55967ad9 ("perf/x86/intel: Fix race in intel_pmu_disable_event()")
The commit moves the intel_pmu_pebs_disable() after intel_pmu_disable_fixed(),
which returns immediately. The related bit of PEBS_ENABLE MSR will never be
cleared for the fixed counter. Then a non-PEBS event runs on the fixed counter,
but the bit on PEBS_ENABLE is still set, which triggers spurious NMIs.
Check and disable PEBS for fixed counters after intel_pmu_disable_fixed().
Reported-by: Yi, Ammy <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 6f55967ad9 ("perf/x86/intel: Fix race in intel_pmu_disable_event()")
Link: https://lkml.kernel.org/r/20190625142135.22112-1-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
d7cbbe49a9 ("perf/x86/amd/uncore: Set ThreadMask and SliceMask for L3 Cache perf events")
enables L3 PMC events for all threads and slices by writing 1's in
'ChL3PmcCfg' (L3 PMC PERF_CTL) register fields.
Those bitfields overlap with high order event select bits in the Data
Fabric PMC control register, however.
So when a user requests raw Data Fabric events (-e amd_df/event=0xYYY/),
the two highest order bits get inadvertently set, changing the counter
select to events that don't exist, and for which no counts are read.
This patch changes the logic to write the L3 masks only when dealing
with L3 PMC counters.
AMD Family 16h and below Northbridge (NB) counters were not affected.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Gary Hook <Gary.Hook@amd.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Liska <mliska@suse.cz>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: d7cbbe49a9 ("perf/x86/amd/uncore: Set ThreadMask and SliceMask for L3 Cache perf events")
Link: https://lkml.kernel.org/r/20190628215906.4276-1-kim.phillips@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf updates from Ingo Molnar:
"The main changes in this cycle on the kernel side were:
- CPU PMU and uncore driver updates to Intel Snow Ridge, IceLake,
KabyLake, AmberLake and WhiskeyLake CPUs.
- Rework the MSR probing infrastructure to make it more robust, make
it work better on virtualized systems and to better expose it on
sysfs.
- Rework PMU attributes group support based on the feedback from
Greg. The core sysfs patch that adds sysfs_update_groups() was
acked by Greg.
There's a lot of perf tooling changes as well, all around the place:
- vendor updates to Intel, cs-etm (ARM), ARM64, s390,
- various enhancements to Intel PT tooling support:
- Improve CBR (Core to Bus Ratio) packets support.
- Export power and ptwrite events to sqlite and postgresql.
- Add support for decoding PEBS via PT packets.
- Add support for samples to contain IPC ratio, collecting cycles
information from CYC packets, showing the IPC info periodically
- Allow using time ranges
- lots of updates to perf pmu, perf stat, perf trace, eBPF support,
perf record, perf diff, etc. - please see the shortlog and Git log
for details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (252 commits)
tools arch x86: Sync asm/cpufeatures.h with the with the kernel
tools build: Check if gettid() is available before providing helper
perf jvmti: Address gcc string overflow warning for strncpy()
perf python: Remove -fstack-protector-strong if clang doesn't have it
perf annotate TUI browser: Do not use member from variable within its own initialization
perf tests: Fix record+probe_libc_inet_pton.sh for powerpc64
perf evsel: Do not rely on errno values for precise_ip fallback
perf thread: Allow references to thread objects after machine__exit()
perf header: Assign proper ff->ph in perf_event__synthesize_features()
tools arch kvm: Sync kvm headers with the kernel sources
perf script: Allow specifying the files to process guest samples
perf tools metric: Don't include duration_time in group
perf list: Avoid extra : for --raw metrics
perf vendor events intel: Metric fixes for SKX/CLX
perf tools: Fix typos / broken sentences
perf jevents: Add support for Hisi hip08 L3C PMU aliasing
perf jevents: Add support for Hisi hip08 HHA PMU aliasing
perf jevents: Add support for Hisi hip08 DDRC PMU aliasing
perf pmu: Support more complex PMU event aliasing
perf diff: Documentation -c cycles option
...
Pull x86 topology updates from Ingo Molnar:
"Implement multi-die topology support on Intel CPUs and expose the die
topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui.
These changes should have no effect on the kernel's existing
understanding of topologies, i.e. there should be no behavioral impact
on cache, NUMA, scheduler, perf and other topologies and overall
system performance"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support
perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support
hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages
thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages
perf/x86/intel/cstate: Support multi-die/package
perf/x86/intel/rapl: Support multi-die/package
perf/x86/intel/uncore: Support multi-die/package
topology: Create core_cpus and die_cpus sysfs attributes
topology: Create package_cpus sysfs attribute
hwmon/coretemp: Support multi-die/package
powercap/intel_rapl: Update RAPL domain name and debug messages
thermal/x86_pkg_temp_thermal: Support multi-die/package
powercap/intel_rapl: Support multi-die/package
powercap/intel_rapl: Simplify rapl_find_package()
x86/topology: Define topology_logical_die_id()
x86/topology: Define topology_die_id()
cpu/topology: Export die_id
x86/topology: Create topology_max_die_per_package()
x86/topology: Add CPUID.1F multi-die/package support
Pull x86 paravirt updates from Ingo Molnar:
"A handful of paravirt patching code enhancements to make it more
robust against patching failures, and related cleanups and not so
related cleanups - by Thomas Gleixner and myself"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/paravirt: Rename paravirt_patch_site::instrtype to paravirt_patch_site::type
x86/paravirt: Standardize 'insn_buff' variable names
x86/paravirt: Match paravirt patchlet field definition ordering to initialization ordering
x86/paravirt: Replace the paravirt patch asm magic
x86/paravirt: Unify the 32/64 bit paravirt patching code
x86/paravirt: Detect over-sized patching bugs in paravirt_patch_call()
x86/paravirt: Detect over-sized patching bugs in paravirt_patch_insns()
x86/paravirt: Remove bogus extern declarations
Pull locking updates from Ingo Molnar:
"The main changes in this cycle are:
- rwsem scalability improvements, phase #2, by Waiman Long, which are
rather impressive:
"On a 2-socket 40-core 80-thread Skylake system with 40 reader
and writer locking threads, the min/mean/max locking operations
done in a 5-second testing window before the patchset were:
40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810
40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255
After the patchset, they became:
40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741
40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098"
There's a lot of changes to the locking implementation that makes
it similar to qrwlock, including owner handoff for more fair
locking.
Another microbenchmark shows how across the spectrum the
improvements are:
"With a locking microbenchmark running on 5.1 based kernel, the
total locking rates (in kops/s) on a 2-socket Skylake system
with equal numbers of readers and writers (mixed) before and
after this patchset were:
# of Threads Before Patch After Patch
------------ ------------ -----------
2 2,618 4,193
4 1,202 3,726
8 802 3,622
16 729 3,359
32 319 2,826
64 102 2,744"
The changes are extensive and the patch-set has been through
several iterations addressing various locking workloads. There
might be more regressions, but unless they are pathological I
believe we want to use this new implementation as the baseline
going forward.
- jump-label optimizations by Daniel Bristot de Oliveira: the primary
motivation was to remove IPI disturbance of isolated RT-workload
CPUs, which resulted in the implementation of batched jump-label
updates. Beyond the improvement of the real-time characteristics
kernel, in one test this patchset improved static key update
overhead from 57 msecs to just 1.4 msecs - which is a nice speedup
as well.
- atomic64_t cross-arch type cleanups by Mark Rutland: over the last
~10 years of atomic64_t existence the various types used by the
APIs only had to be self-consistent within each architecture -
which means they became wildly inconsistent across architectures.
Mark puts and end to this by reworking all the atomic64
implementations to use 's64' as the base type for atomic64_t, and
to ensure that this type is consistently used for parameters and
return values in the API, avoiding further problems in this area.
- A large set of small improvements to lockdep by Yuyang Du: type
cleanups, output cleanups, function return type and othr cleanups
all around the place.
- A set of percpu ops cleanups and fixes by Peter Zijlstra.
- Misc other changes - please see the Git log for more details"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits)
locking/lockdep: increase size of counters for lockdep statistics
locking/atomics: Use sed(1) instead of non-standard head(1) option
locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING
x86/jump_label: Make tp_vec_nr static
x86/percpu: Optimize raw_cpu_xchg()
x86/percpu, sched/fair: Avoid local_clock()
x86/percpu, x86/irq: Relax {set,get}_irq_regs()
x86/percpu: Relax smp_processor_id()
x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}()
locking/rwsem: Guard against making count negative
locking/rwsem: Adaptive disabling of reader optimistic spinning
locking/rwsem: Enable time-based spinning on reader-owned rwsem
locking/rwsem: Make rwsem->owner an atomic_long_t
locking/rwsem: Enable readers spinning on writer
locking/rwsem: Clarify usage of owner's nonspinaable bit
locking/rwsem: Wake up almost all readers in wait queue
locking/rwsem: More optimal RT task handling of null owner
locking/rwsem: Always release wait_lock before waking up tasks
locking/rwsem: Implement lock handoff to prevent lock starvation
locking/rwsem: Make rwsem_spin_on_owner() return owner state
...
Pull x86 CPU feature updates from Thomas Gleixner:
"Updates for x86 CPU features:
- Support for UMWAIT/UMONITOR, which allows to use MWAIT and MONITOR
instructions in user space to save power e.g. in HPC workloads
which spin wait on synchronization points.
The maximum time a MWAIT can halt in userspace is controlled by the
kernel and can be adjusted by the sysadmin.
- Speed up the MTRR handling code on CPUs which support cache
self-snooping correctly.
On those CPUs the wbinvd() invocations can be omitted which speeds
up the MTRR setup by a factor of 50.
- Support for the new x86 vendor Zhaoxin who develops processors
based on the VIA Centaur technology.
- Prevent 'cat /proc/cpuinfo' from affecting isolated NOHZ_FULL CPUs
by sending IPIs to retrieve the CPU frequency and use the cached
values instead.
- The addition and late revert of the FSGSBASE support. The revert
was required as it turned out that the code still has hard to
diagnose issues. Yet another engineering trainwreck...
- Small fixes, cleanups, improvements and the usual new Intel CPU
family/model addons"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
x86/fsgsbase: Revert FSGSBASE support
selftests/x86/fsgsbase: Fix some test case bugs
x86/entry/64: Fix and clean up paranoid_exit
x86/entry/64: Don't compile ignore_sysret if 32-bit emulation is enabled
selftests/x86: Test SYSCALL and SYSENTER manually with TF set
x86/mtrr: Skip cache flushes on CPUs with cache self-snooping
x86/cpu/intel: Clear cache self-snoop capability in CPUs with known errata
Documentation/ABI: Document umwait control sysfs interfaces
x86/umwait: Add sysfs interface to control umwait maximum time
x86/umwait: Add sysfs interface to control umwait C0.2 state
x86/umwait: Initialize umwait control values
x86/cpufeatures: Enumerate user wait instructions
x86/cpu: Disable frequency requests via aperfmperf IPI for nohz_full CPUs
x86/acpi/cstate: Add Zhaoxin processors support for cache flush policy in C3
ACPI, x86: Add Zhaoxin processors support for NONSTOP TSC
x86/cpu: Create Zhaoxin processors architecture support file
x86/cpu: Split Tremont based Atoms from the rest
Documentation/x86/64: Add documentation for GS/FS addressing mode
x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2
x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit
...
Pull x86 fixes from Ingo Molnar:
"Misc fixes all over the place:
- might_sleep() atomicity fix in the microcode loader
- resctrl boundary condition fix
- APIC arithmethics bug fix for frequencies >= 4.2 GHz
- three 5-level paging crash fixes
- two speculation fixes
- a perf/stacktrace fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/unwind/orc: Fall back to using frame pointers for generated code
perf/x86: Always store regs->ip in perf_callchain_kernel()
x86/speculation: Allow guests to use SSBD even if host does not
x86/mm: Handle physical-virtual alignment mismatch in phys_p4d_init()
x86/boot/64: Add missing fixup_pointer() for next_early_pgt access
x86/boot/64: Fix crash if kernel image crosses page table boundary
x86/apic: Fix integer overflow on 10 bit left shift of cpu_khz
x86/resctrl: Prevent possible overrun during bitmap operations
x86/microcode: Fix the microcode load on CPU hotplug for real
Pull perf fixes from Ingo Molnar:
"Various fixes, most of them related to bugs perf fuzzing found in the
x86 code"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/regs: Use PERF_REG_EXTENDED_MASK
perf/x86: Remove pmu->pebs_no_xmm_regs
perf/x86: Clean up PEBS_XMM_REGS
perf/x86/regs: Check reserved bits
perf/x86: Disable extended registers for non-supported PMUs
perf/ioctl: Add check for the sample_period value
perf/core: Fix perf_sample_regs_user() mm check
The stacktrace_map_raw_tp BPF selftest is failing because the RIP saved by
perf_arch_fetch_caller_regs() isn't getting saved by perf_callchain_kernel().
This was broken by the following commit:
d15d356887 ("perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER")
With that change, when starting with non-HW regs, the unwinder starts
with the current stack frame and unwinds until it passes up the frame
which called perf_arch_fetch_caller_regs(). So regs->ip needs to be
saved deliberately.
Fixes: d15d356887 ("perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER")
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kairui Song <kasong@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/3975a298fa52b506fea32666d8ff6a13467eee6d.1561595111.git.jpoimboe@redhat.com
Getting the apply_quirk bool from new rapl_model_match array.
And because apply_quirk was the last remaining piece of data
in rapl_cpu_match, replacing it with rapl_model_match as device
table.
The switch to new perf_msr_probe detection API is done.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Liang
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190616140358.27799-9-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We no longer need model specific attribute arrays,
because we get all this detected in rapl_events_attrs.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Liang
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190616140358.27799-8-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's no need to have special code for getting
the bit and MSR value for given event. We can
now easily get it from rapl_msrs array.
Also getting rid of RAPL_IDX_*, which is no longer
needed and replacing INTEL_RAPL* with PERF_RAPL*
enums.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Liang
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190616140358.27799-7-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We get rapl_cntr_mask from perf_msr_probe call, as a replacement
for current intel_rapl_init_fun::cntr_mask value for each model.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Liang
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190616140358.27799-6-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using perf_msr_probe function to probe for RAPL MSRs.
Adding new rapl_model_match device table, that
gathers events info for given model, following
the MSR and cstate module design.
It will replace the current rapl_cpu_match device
table and detection code in following patches.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Liang
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190616140358.27799-5-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using perf_msr_probe function to probe for cstate events.
The functionality is the same, with one exception, that
perf_msr_probe checks for rdmsr to return value != 0 for
given MSR register.
Using the new attribute groups and adding the events via
pmu::attr_update.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Liang
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190616140358.27799-4-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using perf_msr_probe function to probe for msr events.
The functionality is the same, with one exception, that
perf_msr_probe checks for rdmsr to return value != 0 for
given MSR register.
Using the new attribute groups and adding the events via
pmu::attr_update.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Liang
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190616140358.27799-3-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Adding perf_msr_probe function to provide interface for
checking up on MSR register and set the related attribute
group visibility.
User defines following struct for each MSR register:
struct perf_msr {
u64 msr;
struct attribute_group *grp;
bool (*test)(int idx, void *data);
bool no_check;
};
Where:
msr - is the MSR address
attrs - is attribute groups array to add if the check passed
test - is test function pointer
no_check - is bool that bypass the check and adds the
attribute without any test
The array of struct perf_msr is passed into:
perf_msr_probe(struct perf_msr *msr, int cnt, bool zero, void *data)
Together with:
cnt - which is the number of struct msr array elements
data - which is user pointer passed to the test function
zero - allow counters that returns zero on rdmsr
The perf_msr_probe will executed test code, read the MSR and
check the value is != 0. If all these tests pass, related
attribute group is kept visible.
Also adding PMU_EVENT_GROUP macro helper to define attribute
group for single attribute. It will be used in following patches.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Liang
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20190616140358.27799-2-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We don't need pmu->pebs_no_xmm_regs anymore, the capabilities
PERF_PMU_CAP_EXTENDED_REGS can be used to check if XMM registers
collection is supported.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/1559081314-9714-4-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Tom Vaden reported false failure of the check_msr() function, because
some servers can do POST tracing and enable LBR tracing during
bootup.
Kan confirmed that check_msr patch was to fix a bug report in
guest, so it's ok to disable it for real HW.
Reported-by: Tom Vaden <tom.vaden@hpe.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tom Vaden <tom.vaden@hpe.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Liang Kan <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190616141313.GD2500@krava
[ Readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's preffered to use group's ->is_visible callback, so
we do not need to use condition attribute assignment.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190524132152.GB26617@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IMC uncore unit can only be accessed via MMIO on Snow Ridge.
The MMIO space of IMC uncore is at the specified offsets from the
MEM0_BAR. Add snr_uncore_get_mc_dev() to locate the PCI device with
MMIO_BASE and MEM0_BAR register.
Add new ops to access the IMC registers via MMIO.
Add 3 new free running counters for clocks, read and write bandwidth.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lkml.kernel.org/r/1556672028-119221-7-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The client IMC block is accessed by MMIO. Current code uses an informal
way to access the block, which is not recommended.
Clean up the code by using __iomem annotation and the accessor
functions (read[lq]()).
Move exit_box() and read_counter() to generic code, which can be shared
with the server code later.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lkml.kernel.org/r/1556672028-119221-6-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A new MMIO type uncore box is introduced on Snow Ridge server. The
counters of MMIO type uncore box can only be accessed by MMIO.
Add a new uncore type, uncore_mmio_uncores, for MMIO type uncore blocks.
Support MMIO type uncore blocks in CPU hot plug. The MMIO space has to
be map/unmap for the first/last CPU. The context also need to be
migrated if the bind CPU changes.
Add mmio_init() to init and register PMUs for MMIO type uncore blocks.
Add a helper to calculate the box_ctl address.
The helpers which calculate ctl/ctr can be shared with PCI type uncore
blocks.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lkml.kernel.org/r/1556672028-119221-5-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For uncore box which can only be accessed by MSR, its reference
box->refcnt is updated in CPU hot plug. The uncore boxes need to be
initalized and exited accordingly for the first/last CPU of a socket.
Starts from Snow Ridge server, a new type of uncore box is introduced,
which can only be accessed by MMIO. The driver needs to map/unmap
MMIO space for the first/last CPU of a socket.
Extract the codes of box ref/unref and init/exit for reuse later.
There is no functional change.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lkml.kernel.org/r/1556672028-119221-4-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The uncore subsystem on Snow Ridge is similar as previous SKX server.
The uncore units on Snow Ridge include Ubox, Chabox, IIO, IRP, M2PCIE,
PCU, M2M, PCIE3 and IMC.
- The config register encoding and pci device IDs are changed.
- For CHA, the umask_ext and filter_tid fields are changed.
- For IIO, the ch_mask and fc_mask fields are changed.
- For M2M, the mask_ext field is changed.
- Add new PCIe3 unit for PCIe3 root port which provides the interface
between PCIe devices, plugged into the PCIe port, and the components
(in M2IOSF).
- IMC can only be accessed via MMIO on Snow Ridge now. Current common
code doesn't support it yet. IMC will be supported in following
patches.
- There are 9 free running counters for IIO CLOCKS and bandwidth In.
- Full uncore event list is not published yet. Event constrain is not
included in this patch. It will be added later separately.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lkml.kernel.org/r/1556672028-119221-3-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Counting with invalid event coding for free-running counter may cause
OOPs, e.g. uncore_iio_free_running_0/event=1/.
Current code only validate the event with free-running event format,
event=0xff,umask=0xXY. Non-free-running event format never be checked
for the PMU with free-running counters.
Add generic hw_config() to check and reject the invalid event coding
for free-running PMU.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Fixes: 0f519f0352 ("perf/x86/intel/uncore: Support IIO free-running counters on SKX")
Link: https://lkml.kernel.org/r/1556672028-119221-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add new model number for Icelake desktop and server to perf.
The data source encoding for Icelake server is the same as Skylake
server.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: qiuxu.zhuo@intel.com
Cc: rui.zhang@intel.com
Cc: tony.luck@intel.com
Link: https://lkml.kernel.org/r/20190603134122.13853-2-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All callers of lockdep_assert_held_exclusive() use it to verify the
correct locking state of either a semaphore (ldisc_sem in tty,
mmap_sem for perf events, i_rwsem of inode for dax) or rwlock by
apparmor. Thus it makes sense to rename _exclusive to _write since
that's the semantics callers care. Additionally there is already
lockdep_assert_held_read(), which this new naming is more consistent with.
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190531100651.3969-1-nborisov@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel Ice Lake uncore support already included IMC PCI ID but ICL-NNPI
CPUID is missing so add it to fix the probe function.
Fixes: e39875d15ad6 ("perf/x86: add Intel Icelake uncore support")
Signed-off-by: Rajneesh Bhardwaj <rajneesh.bhardwaj@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: alexander.shishkin@linux.intel.com
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Linux PM <linux-pm@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190614081701.13828-1-rajneesh.bhardwaj@linux.intel.com
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 263 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.208660670@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Using the new pmu::update_attrs attribute group for default
attributes - freeze_on_smi, allow_tsx_force_abort.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-10-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using the new pmu::update_attrs attribute group for
skylake specific format attributes.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-9-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using the new pmu::update_attrs attribute group for
extra "format" directory.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-8-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using the new pmu::update_attrs attribute group for
"caps" directory.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-7-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We dont need to pre-filter out unsupported base events,
we can just use its group's is_visible function to do this.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-6-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using the new pmu::update_attrs attribute group to
create detected events for x86_pmu.
Moving the topdown/memory/tsx attributes to separate
attribute groups with specific is_visible functions.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-5-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AmberLake and WhiskeyLake have same client uncore events as
KabyLake. Thus add the PCI IDs for AmberLake Y processor lines,
for WhiskeyLake U processor lines and for KabyLake, add H
processor line and workstation.
Platform Device ID
================================
AML Y 2 Core 590Ch
KBL H 4 Core 5910h
KBL 4 Core WorkStation 5918h
WHL U 4 Core 3ED0h
WHL U 4 Core 3E34h
WHL U 2 Core 3E35h
AML Y 4 Core 590Dh
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Charles Prestopine <charles.d.prestopine@intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190511000311.20733-2-gayatri.kammela@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf fixes from Ingo Molnar:
"On the kernel side there's a bunch of ring-buffer ordering fixes for a
reproducible bug, plus a PEBS constraints regression fix.
Plus tooling fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools headers UAPI: Sync kvm.h headers with the kernel sources
perf record: Fix s390 missing module symbol and warning for non-root users
perf machine: Read also the end of the kernel
perf test vmlinux-kallsyms: Ignore aliases to _etext when searching on kallsyms
perf session: Add missing swap ops for namespace events
perf namespace: Protect reading thread's namespace
tools headers UAPI: Sync drm/drm.h with the kernel
tools headers UAPI: Sync drm/i915_drm.h with the kernel
tools headers UAPI: Sync linux/fs.h with the kernel
tools headers UAPI: Sync linux/sched.h with the kernel
tools arch x86: Sync asm/cpufeatures.h with the with the kernel
tools include UAPI: Update copy of files related to new fspick, fsmount, fsconfig, fsopen, move_mount and open_tree syscalls
perf arm64: Fix mksyscalltbl when system kernel headers are ahead of the kernel
perf data: Fix 'strncat may truncate' build failure with recent gcc
perf/ring-buffer: Use regular variables for nesting
perf/ring-buffer: Always use {READ,WRITE}_ONCE() for rb->user_page data
perf/ring_buffer: Add ordering to rb->nest increment
perf/ring_buffer: Fix exposing a temporarily decreased data_head
perf/x86/intel/ds: Fix EVENT vs. UEVENT PEBS constraints
Syntax update only -- no logical or functional change.
In response to the new multi-die/package changes, update variable names to
use "die" terminology, instead of "pkg".
For previous platforms which doesn't have multi-die, "die" is identical as
"pkg".
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/0ddb97e121397d37933233da303556141814fa47.1557769318.git.len.brown@intel.com
Syntax update only -- no logical or functional change.
In response to the new multi-die/package changes, update variable names to
use "die" terminology, instead of "pkg".
For previous platforms which doesn't have multi-die, "die" is identical as
"pkg".
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/f0ea5e501288329135e94f51969ff54a03c50e2e.1557769318.git.len.brown@intel.com
Some cstate counters become die-scoped on Xeon Cascade Lake-AP. Perf cstate
driver needs to support die-scope cstate counters.
Use topology_die_cpumask() to replace topology_core_cpumask(). For
previous platforms which doesn't have multi-die, topology_die_cpumask() is
identical as topology_core_cpumask(). There is no functional change for
previous platforms.
Name the die-scope PMU "cstate_die".
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/acb5e483287280eeb2b6daabe04a600b85e72a78.1557769318.git.len.brown@intel.com
RAPL becomes die-scope on Xeon Cascade Lake-AP. Perf RAPL driver needs to
support die-scope RAPL domain.
Use topology_logical_die_id() to replace topology_logical_package_id().
For previous platforms which doesn't have multi-die,
topology_logical_die_id() is identical as topology_logical_package_id().
Use topology_die_cpumask() to replace topology_core_cpumask(). For
previous platforms which doesn't have multi-die, topology_die_cpumask() is
identical as topology_core_cpumask().
There is no functional change for previous platforms.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/851320c8c87ba7a54e58ee8579c1bf566ce23cbb.1557769318.git.len.brown@intel.com
Uncore becomes die-scope on Xeon Cascade Lake-AP. Uncore driver needs to
support die-scope uncore units.
Use topology_logical_die_id() to replace topology_logical_package_id().
For previous platforms which doesn't have multi-die,
topology_logical_die_id() is identical as topology_logical_package_id().
In pci_probe()/remove(), the group id reads from PCI BUS is logical die id
for multi-die systems.
Use topology_die_cpumask() to replace topology_core_cpumask().
For previous platforms which doesn't have multi-die,
topology_die_cpumask() is identical as topology_core_cpumask().
There is no functional change for previous platforms.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/a25bba4a5b480aa4e9f8190005d7f5f53e29c8da.1557769318.git.len.brown@intel.com
Add SPDX license identifiers to all Make/Kconfig files which:
- Have no license information of any form
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have MODULE_LICENCE("GPL*") inside which was used in the initial
scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch fixes an bug revealed by the following commit:
6b89d4c1ae ("perf/x86/intel: Fix INTEL_FLAGS_EVENT_CONSTRAINT* masking")
That patch modified INTEL_FLAGS_EVENT_CONSTRAINT() to only look at the event code
when matching a constraint. If code+umask were needed, then the
INTEL_FLAGS_UEVENT_CONSTRAINT() macro was needed instead.
This broke with some of the constraints for PEBS events.
Several of them, including the one used for cycles:p, cycles:pp, cycles:ppp
fell in that category and caused the event to be rejected in PEBS mode.
In other words, on some platforms a cmdline such as:
$ perf top -e cycles:pp
would fail with -EINVAL.
This patch fixes this bug by properly using INTEL_FLAGS_UEVENT_CONSTRAINT()
when needed in the PEBS constraint tables.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/20190521005246.423-1-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
memory and performance optimizations.
* x86: support for accessing memory not backed by struct page, fixes and refactoring
* Generic: dirty page tracking improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
=D0+p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for SVE and Pointer Authentication in guests
- PMU improvements
POWER:
- support for direct access to the POWER9 XIVE interrupt controller
- memory and performance optimizations
x86:
- support for accessing memory not backed by struct page
- fixes and refactoring
Generic:
- dirty page tracking improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
kvm: fix compilation on aarch64
Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
kvm: x86: Fix L1TF mitigation for shadow MMU
KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
tests: kvm: Add tests for KVM_SET_NESTED_STATE
KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
tests: kvm: Add tests to .gitignore
KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
KVM: Fix the bitmap range to copy during clear dirty
KVM: arm64: Fix ptrauth ID register masking logic
KVM: x86: use direct accessors for RIP and RSP
KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
KVM: x86: Omit caching logic for always-available GPRs
kvm, x86: Properly check whether a pfn is an MMIO or not
...
Pull perf fixes from Ingo Molnar:
"An x86 PMU constraint fix, an interface fix, and a Sparse fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Allow PEBS multi-entry in watermark mode
perf/x86/intel: Fix INTEL_FLAGS_EVENT_CONSTRAINT* masking
perf/x86/amd/iommu: Make the 'amd_iommu_attr_groups' symbol static
Since commit dccd2304cc ("ARM: 7430/1: sizes.h: move from asm-generic
to <linux/sizes.h>"), <asm/sizes.h> and <asm-generic/sizes.h> are just
wrappers of <linux/sizes.h>.
This commit replaces all <asm/sizes.h> and <asm-generic/sizes.h> to
prepare for the removal.
Link: http://lkml.kernel.org/r/1553267665-27228-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes a restriction/bug introduced by:
583feb08e7 ("perf/x86/intel: Fix handling of wakeup_events for multi-entry PEBS")
The original patch prevented using multi-entry PEBS when wakeup_events != 0.
However given that wakeup_events is part of a union with wakeup_watermark, it
means that in watermark mode, PEBS multi-entry is also disabled which is not the
intent. This patch fixes this by checking is watermark mode is enabled.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jolsa@redhat.com
Cc: kan.liang@intel.com
Cc: vincent.weaver@maine.edu
Fixes: 583feb08e7 ("perf/x86/intel: Fix handling of wakeup_events for multi-entry PEBS")
Link: http://lkml.kernel.org/r/20190514003400.224340-1-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On Intel Westmere, a cmdline as follows:
$ perf record -e cpu/event=0xc4,umask=0x2,name=br_inst_retired.near_call/p ....
was failing. Yet the event+ umask support PEBS.
It turns out this is due to a bug in the the PEBS event constraint table for
westmere. All forms of BR_INST_RETIRED.* support PEBS. Therefore the constraint
mask should ignore the umask. The name of the macro INTEL_FLAGS_EVENT_CONSTRAINT()
hint that this is the case but it was not. That macros was checking both the
event code and event umask. Therefore, it was only matching on 0x00c4.
There are code+umask macros, they all have *UEVENT*.
This bug fixes the issue by checking only the event code in the mask.
Both single and range version are modified.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/20190509214556.123493-1-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf updates from Ingo Molnar:
"The main kernel changes were:
- add support for Intel's "adaptive PEBS v4" - which embedds LBS data
in PEBS records and can thus batch up and reduce the IRQ (NMI) rate
significantly - reducing overhead and making call-graph profiling
less intrusive.
- add Intel CPU core and uncore support updates for Tremont, Icelake,
- extend the x86 PMU constraints scheduler with 'constraint ranges'
to better support Icelake hw constraints,
- make x86 call-chain support work better with CONFIG_FRAME_POINTER=y
- misc other changes
Tooling changes:
- updates to the main tools: 'perf record', 'perf trace', 'perf
stat'
- updated Intel and S/390 vendor events
- libtraceevent updates
- misc other updates and fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER
watchdog: Fix typo in comment
perf/x86/intel: Add Tremont core PMU support
perf/x86/intel/uncore: Add Intel Icelake uncore support
perf/x86/msr: Add Icelake support
perf/x86/intel/rapl: Add Icelake support
perf/x86/intel/cstate: Add Icelake support
perf/x86/intel: Add Icelake support
perf/x86: Support constraint ranges
perf/x86/lbr: Avoid reading the LBRs when adaptive PEBS handles them
perf/x86/intel: Support adaptive PEBS v4
perf/x86/intel/ds: Extract code of event update in short period
perf/x86/intel: Extract memory code PEBS parser for reuse
perf/x86: Support outputting XMM registers
perf/x86/intel: Force resched when TFA sysctl is modified
perf/core: Add perf_pmu_resched() as global function
perf/headers: Fix stale comment for struct perf_addr_filter
perf/core: Make perf_swevent_init_cpu() static
perf/x86: Add sanity checks to x86_schedule_events()
perf/x86: Optimize x86_schedule_events()
...
New race in x86_pmu_stop() was introduced by replacing the
atomic __test_and_clear_bit() of cpuc->active_mask by separate
test_bit() and __clear_bit() calls in the following commit:
3966c3feca ("x86/perf/amd: Remove need to check "running" bit in NMI handler")
The race causes panic for PEBS events with enabled callchains:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
...
RIP: 0010:perf_prepare_sample+0x8c/0x530
Call Trace:
<NMI>
perf_event_output_forward+0x2a/0x80
__perf_event_overflow+0x51/0xe0
handle_pmi_common+0x19e/0x240
intel_pmu_handle_irq+0xad/0x170
perf_event_nmi_handler+0x2e/0x50
nmi_handle+0x69/0x110
default_do_nmi+0x3e/0x100
do_nmi+0x11a/0x180
end_repeat_nmi+0x16/0x1a
RIP: 0010:native_write_msr+0x6/0x20
...
</NMI>
intel_pmu_disable_event+0x98/0xf0
x86_pmu_stop+0x6e/0xb0
x86_pmu_del+0x46/0x140
event_sched_out.isra.97+0x7e/0x160
...
The event is configured to make samples from PEBS drain code,
but when it's disabled, we'll go through NMI path instead,
where data->callchain will not get allocated and we'll crash:
x86_pmu_stop
test_bit(hwc->idx, cpuc->active_mask)
intel_pmu_disable_event(event)
{
...
intel_pmu_pebs_disable(event);
...
EVENT OVERFLOW -> <NMI>
intel_pmu_handle_irq
handle_pmi_common
TEST PASSES -> test_bit(bit, cpuc->active_mask))
perf_event_overflow
perf_prepare_sample
{
...
if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
data->callchain = perf_callchain(event, regs);
CRASH -> size += data->callchain->nr;
}
</NMI>
...
x86_pmu_disable_event(event)
}
__clear_bit(hwc->idx, cpuc->active_mask);
Fixing this by disabling the event itself before setting
off the PEBS bit.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Arcari <darcari@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Lendacky Thomas <Thomas.Lendacky@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 3966c3feca ("x86/perf/amd: Remove need to check "running" bit in NMI handler")
Link: http://lkml.kernel.org/r/20190504151556.31031-1-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that all AUX allocations are high-order by default, the software
double buffering PMU capability doesn't make sense any more, get rid
of it. In case some PMUs choose to opt out, we can re-introduce it.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Link: http://lkml.kernel.org/r/20190503085536.24119-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a new amd_hw_cache_event_ids_f17h assignment structure set
for AMD families 17h and above, since a lot has changed. Specifically:
L1 Data Cache
The data cache access counter remains the same on Family 17h.
For DC misses, PMCx041's definition changes with Family 17h,
so instead we use the L2 cache accesses from L1 data cache
misses counter (PMCx060,umask=0xc8).
For DC hardware prefetch events, Family 17h breaks compatibility
for PMCx067 "Data Prefetcher", so instead, we use PMCx05a "Hardware
Prefetch DC Fills."
L1 Instruction Cache
PMCs 0x80 and 0x81 (32-byte IC fetches and misses) are backward
compatible on Family 17h.
For prefetches, we remove the erroneous PMCx04B assignment which
counts how many software data cache prefetch load instructions were
dispatched.
LL - Last Level Cache
Removing PMCs 7D, 7E, and 7F assignments, as they do not exist
on Family 17h, where the last level cache is L3. L3 counters
can be accessed using the existing AMD Uncore driver.
Data TLB
On Intel machines, data TLB accesses ("dTLB-loads") are assigned
to counters that count load/store instructions retired. This
is inconsistent with instruction TLB accesses, where Intel
implementations report iTLB misses that hit in the STLB.
Ideally, dTLB-loads would count higher level dTLB misses that hit
in lower level TLBs, and dTLB-load-misses would report those
that also missed in those lower-level TLBs, therefore causing
a page table walk. That would be consistent with instruction
TLB operation, remove the redundancy between dTLB-loads and
L1-dcache-loads, and prevent perf from producing artificially
low percentage ratios, i.e. the "0.01%" below:
42,550,869 L1-dcache-loads
41,591,860 dTLB-loads
4,802 dTLB-load-misses # 0.01% of all dTLB cache hits
7,283,682 L1-dcache-stores
7,912,392 dTLB-stores
310 dTLB-store-misses
On AMD Families prior to 17h, the "Data Cache Accesses" counter is
used, which is slightly better than load/store instructions retired,
but still counts in terms of individual load/store operations
instead of TLB operations.
So, for AMD Families 17h and higher, this patch assigns "dTLB-loads"
to a counter for L1 dTLB misses that hit in the L2 dTLB, and
"dTLB-load-misses" to a counter for L1 DTLB misses that caused
L2 DTLB misses and therefore also caused page table walks. This
results in a much more accurate view of data TLB performance:
60,961,781 L1-dcache-loads
4,601 dTLB-loads
963 dTLB-load-misses # 20.93% of all dTLB cache hits
Note that for all AMD families, data loads and stores are combined
in a single accesses counter, so no 'L1-dcache-stores' are reported
separately, and stores are counted with loads in 'L1-dcache-loads'.
Also note that the "% of all dTLB cache hits" string is misleading
because (a) "dTLB cache": although TLBs can be considered caches for
page tables, in this context, it can be misinterpreted as data cache
hits because the figures are similar (at least on Intel), and (b) not
all those loads (technically accesses) technically "hit" at that
hardware level. "% of all dTLB accesses" would be more clear/accurate.
Instruction TLB
On Intel machines, 'iTLB-loads' measure iTLB misses that hit in the
STLB, and 'iTLB-load-misses' measure iTLB misses that also missed in
the STLB and completed a page table walk.
For AMD Family 17h and above, for 'iTLB-loads' we replace the
erroneous instruction cache fetches counter with PMCx084
"L1 ITLB Miss, L2 ITLB Hit".
For 'iTLB-load-misses' we still use PMCx085 "L1 ITLB Miss,
L2 ITLB Miss", but set a 0xff umask because without it the event
does not get counted.
Branch Predictor (BPU)
PMCs 0xc2 and 0xc3 continue to be valid across all AMD Families.
Node Level Events
Family 17h does not have a PMCx0e9 counter, and corresponding counters
have not been made available publicly, so for now, we mark them as
unsupported for Families 17h and above.
Reference:
"Open-Source Register Reference For AMD Family 17h Processors Models 00h-2Fh"
Released 7/17/2018, Publication #56255, Revision 3.03:
https://www.amd.com/system/files/TechDocs/56255_OSRR.pdf
[ mingo: tidied up the line breaks. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Cc: <stable@vger.kernel.org> # v4.9+
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Liška <mliska@suse.cz>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Cc: linux-perf-users@vger.kernel.org
Fixes: e40ed1542d ("perf/x86: Add perf support for AMD family-17h processors")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Inject a PMI for KVM guest when Intel PT working
in Host-Guest mode and Guest ToPA entry memory buffer
was completely filled.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We currently have 6 (!) separate naming variants to name temporary instruction
buffers that are used for code patching:
- insnbuf
- insnbuff
- insn_buff
- insn_buffer
- ibuf
- ibuffer
These are used as local variables, percpu fields and function parameters.
Standardize all the names to a single variant: 'insn_buff'.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently perf callchain doesn't work well with ORC unwinder
when sampling from trace point. We'll get useless in kernel callchain
like this:
perf 6429 [000] 22.498450: kmem:mm_page_alloc: page=0x176a17 pfn=1534487 order=0 migratetype=0 gfp_flags=GFP_KERNEL
ffffffffbe23e32e __alloc_pages_nodemask+0x22e (/lib/modules/5.1.0-rc3+/build/vmlinux)
7efdf7f7d3e8 __poll+0x18 (/usr/lib64/libc-2.28.so)
5651468729c1 [unknown] (/usr/bin/perf)
5651467ee82a main+0x69a (/usr/bin/perf)
7efdf7eaf413 __libc_start_main+0xf3 (/usr/lib64/libc-2.28.so)
5541f689495641d7 [unknown] ([unknown])
The root cause is that, for trace point events, it doesn't provide a
real snapshot of the hardware registers. Instead perf tries to get
required caller's registers and compose a fake register snapshot
which suppose to contain enough information for start a unwinding.
However without CONFIG_FRAME_POINTER, if failed to get caller's BP as the
frame pointer, so current frame pointer is returned instead. We get
a invalid register combination which confuse the unwinder, and end the
stacktrace early.
So in such case just don't try dump BP, and let the unwinder start
directly when the register is not a real snapshot. Use SP
as the skip mark, unwinder will skip all the frames until it meet
the frame of the trace point caller.
Tested with frame pointer unwinder and ORC unwinder, this makes perf
callchain get the full kernel space stacktrace again like this:
perf 6503 [000] 1567.570191: kmem:mm_page_alloc: page=0x16c904 pfn=1493252 order=0 migratetype=0 gfp_flags=GFP_KERNEL
ffffffffb523e2ae __alloc_pages_nodemask+0x22e (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52383bd __get_free_pages+0xd (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52fd28a __pollwait+0x8a (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb521426f perf_poll+0x2f (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52fe3e2 do_sys_poll+0x252 (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb52ff027 __x64_sys_poll+0x37 (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb500418b do_syscall_64+0x5b (/lib/modules/5.1.0-rc3+/build/vmlinux)
ffffffffb5a0008c entry_SYSCALL_64_after_hwframe+0x44 (/lib/modules/5.1.0-rc3+/build/vmlinux)
7f71e92d03e8 __poll+0x18 (/usr/lib64/libc-2.28.so)
55a22960d9c1 [unknown] (/usr/bin/perf)
55a22958982a main+0x69a (/usr/bin/perf)
7f71e9202413 __libc_start_main+0xf3 (/usr/lib64/libc-2.28.so)
5541f689495641d7 [unknown] ([unknown])
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Young <dyoung@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190422162652.15483-1-kasong@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kaby Lake (and Coffee Lake) has PC8/PC9/PC10 residency counters.
This patch updates the list of Kaby/Coffee Lake PMU event counters
from the snb_cstates[] list of events to the hswult_cstates[]
list of events, which keeps all previously supported events and
also adds the PKG_C8, PKG_C9 and PKG_C10 residency counters.
This allows user space tools to profile them through the perf interface.
Signed-off-by: Harry Pan <harry.pan@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: gs0622@gmail.com
Link: http://lkml.kernel.org/r/20190424145033.1924-1-harry.pan@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Family 17h differs from prior families by:
- Does not support an L2 cache miss event
- It has re-enumerated PMC counters for:
- L2 cache references
- front & back end stalled cycles
So we add a new amd_f17h_perfmon_event_map[] so that the generic
perf event names will resolve to the correct h/w events on
family 17h and above processors.
Reference sections 2.1.13.3.3 (stalls) and 2.1.13.3.6 (L2):
https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Cc: <stable@vger.kernel.org> # v4.9+
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Liška <mliska@suse.cz>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: e40ed1542d ("perf/x86: Add perf support for AMD family-17h processors")
[ Improved the formatting a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add perf core PMU support for Intel Tremont CPU.
The init code is based on Goldmont plus.
The generic purpose counter 0 and fixed counter 0 have less skid.
Force :ppp events on generic purpose counter 0.
Force instruction:ppp on generic purpose counter 0 and fixed counter 0.
Updates LLC cache event table and OFFCORE_RESPONSE mask.
Adaptive PEBS, which is already enabled on ICL, is also supported
on Tremont. No extra code required.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/1554922629-126287-3-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add Intel Icelake uncore support:
- The init code is based on Skylake
- Add new PCI id for IMC
- New MSR address for CBOX
- Get CBOX# from CNL_UNC_CBO_CONFIG MSR directly
- Create a new PMU for fixed clocktick counter
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-13-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add Icelake core PMU perf code, including constraint tables and the main
enable code.
Icelake expanded the generic counters to always 8 even with HT on, but a
range of events cannot be scheduled on the extra 4 counters.
Add new constraint ranges to describe this to the scheduler.
The number of constraints that need to be checked is larger now than
with earlier CPUs.
At some point we may need a new data structure to look them up more
efficiently than with linear search. So far it still seems to be
acceptable however.
Icelake added a new fixed counter SLOTS. Full support for it is added
later in the patch series.
The cache events table is identical to Skylake.
Compare to PEBS instruction event on generic counter, fixed counter 0
has less skid. Force instruction:ppp always in fixed counter 0.
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Icelake extended the general counters to 8, even when SMT is enabled.
However only a (large) subset of the events can be used on all 8
counters.
The events that can or cannot be used on all counters are organized
in ranges.
A lot of scheduler constraints are required to handle all this.
To avoid blowing up the tables add event code ranges to the constraint
tables, and a new inline function to match them.
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # developer hat on
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # maintainer hat on
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-8-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With adaptive PEBS the CPU can directly supply the LBR information,
so we don't need to read it again. But the LBRs still need to be
enabled. Add a special count to the cpuc that distinguishes these
two cases, and avoid reading the LBRs unnecessarily when PEBS is
active.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-7-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Adaptive PEBS is a new way to report PEBS sampling information. Instead
of a fixed size record for all PEBS events it allows to configure the
PEBS record to only include the information needed. Events can then opt
in to use such an extended record, or stay with a basic record which
only contains the IP.
The major new feature is to support LBRs in PEBS record.
Besides normal LBR, this allows (much faster) large PEBS, while still
supporting callstacks through callstack LBR. So essentially a lot of
profiling can now be done without frequent interrupts, dropping the
overhead significantly.
The main requirement still is to use a period, and not use frequency
mode, because frequency mode requires reevaluating the frequency on each
overflow.
The floating point state (XMM) is also supported, which allows efficient
profiling of FP function arguments.
Introduce specific drain function to handle variable length records.
Use a new callback to parse the new record format, and also handle the
STATUS field now being at a different offset.
Add code to set up the configuration register. Since there is only a
single register, all events either get the full super set of all events,
or only the basic record.
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-6-kan.liang@linux.intel.com
[ Renamed GPRS => GP. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The drain_pebs() could be called twice in a short period for auto-reload
event in pmu::read(). The intel_pmu_save_and_restart_reload() should be
called to update the event->count.
This case should also be handled on Icelake. Extract the code for
later reuse.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-5-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Extract some code related to memory profiling from the PEBS record
parser into separate functions. It can be reused by the upcoming
adaptive PEBS parser. No functional changes.
Rename intel_hsw_weight to intel_get_tsx_weight, and
intel_hsw_transaction to intel_get_tsx_transaction. Because the input is
not the hsw pebs format anymore.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-4-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Starting from Icelake, XMM registers can be collected in PEBS record.
But current code only output the pt_regs.
Add a new struct x86_perf_regs for both pt_regs and xmm_regs. The
xmm_regs will be used later to keep a pointer to PEBS record which has
XMM information.
XMM registers are 128 bit. To simplify the code, they are handled like
two different registers, which means setting two bits in the register
bitmap. This also allows only sampling the lower 64bit bits in XMM.
The index of XMM registers starts from 32. There are 16 XMM registers.
So all reserved space for regs are used. Remove REG_RESERVED.
Add PERF_REG_X86_XMM_MAX, which stands for the max number of all x86
regs including both GPRs and XMM.
Add REG_NOSUPPORT for 32bit to exclude unsupported registers.
Previous platforms can not collect XMM information in PEBS record.
Adding pebs_no_xmm_regs to indicate the unsupported platforms.
The common code still validates the supported registers. However, it
cannot check model specific registers, e.g. XMM. Add extra check in
x86_pmu_hw_config() to reject invalid config of regs_user and regs_intr.
The regs_user never supports XMM collection.
The regs_intr only supports XMM collection when sampling PEBS event on
icelake and later platforms.
Originally-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-3-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PEBS_REGS used as mask for the supported registers for large PEBS.
However, the mask cannot filter the sample_regs_user/sample_regs_intr
correctly.
(1ULL << PERF_REG_X86_*) should be used to replace PERF_REG_X86_*, which
is only the index.
Rename PEBS_REGS to PEBS_GP_REGS, because the mask is only for general
purpose registers.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Fixes: 2fe1bc1f50 ("perf/x86: Enable free running PEBS for REGS_USER/INTR")
Link: https://lkml.kernel.org/r/20190402194509.2832-2-kan.liang@linux.intel.com
[ Renamed it to PEBS_GP_REGS - as 'GPRS' is used elsewhere ;-) ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Spurious interrupt support was added to perf in the following commit, almost
a decade ago:
63e6be6d98 ("perf, x86: Catch spurious interrupts after disabling counters")
The two previous patches (resolving the race condition when disabling a
PMC and NMI latency mitigation) allow for the removal of this older
spurious interrupt support.
Currently in x86_pmu_stop(), the bit for the PMC in the active_mask bitmap
is cleared before disabling the PMC, which sets up a race condition. This
race condition was mitigated by introducing the running bitmap. That race
condition can be eliminated by first disabling the PMC, waiting for PMC
reset on overflow and then clearing the bit for the PMC in the active_mask
bitmap. The NMI handler will not re-enable a disabled counter.
If x86_pmu_stop() is called from the perf NMI handler, the NMI latency
mitigation support will guard against any unhandled NMI messages.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # 4.14.x-
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On AMD processors, the detection of an overflowed PMC counter in the NMI
handler relies on the current value of the PMC. So, for example, to check
for overflow on a 48-bit counter, bit 47 is checked to see if it is 1 (not
overflowed) or 0 (overflowed).
When the perf NMI handler executes it does not know in advance which PMC
counters have overflowed. As such, the NMI handler will process all active
PMC counters that have overflowed. NMI latency in newer AMD processors can
result in multiple overflowed PMC counters being processed in one NMI and
then a subsequent NMI, that does not appear to be a back-to-back NMI, not
finding any PMC counters that have overflowed. This may appear to be an
unhandled NMI resulting in either a panic or a series of messages,
depending on how the kernel was configured.
To mitigate this issue, add an AMD handle_irq callback function,
amd_pmu_handle_irq(), that will invoke the common x86_pmu_handle_irq()
function and upon return perform some additional processing that will
indicate if the NMI has been handled or would have been handled had an
earlier NMI not handled the overflowed PMC. Using a per-CPU variable, a
minimum value of the number of active PMCs or 2 will be set whenever a
PMC is active. This is used to indicate the possible number of NMIs that
can still occur. The value of 2 is used for when an NMI does not arrive
at the LAPIC in time to be collapsed into an already pending NMI. Each
time the function is called without having handled an overflowed counter,
the per-CPU value is checked. If the value is non-zero, it is decremented
and the NMI indicates that it handled the NMI. If the value is zero, then
the NMI indicates that it did not handle the NMI.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # 4.14.x-
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On AMD processors, the detection of an overflowed counter in the NMI
handler relies on the current value of the counter. So, for example, to
check for overflow on a 48 bit counter, bit 47 is checked to see if it
is 1 (not overflowed) or 0 (overflowed).
There is currently a race condition present when disabling and then
updating the PMC. Increased NMI latency in newer AMD processors makes this
race condition more pronounced. If the counter value has overflowed, it is
possible to update the PMC value before the NMI handler can run. The
updated PMC value is not an overflowed value, so when the perf NMI handler
does run, it will not find an overflowed counter. This may appear as an
unknown NMI resulting in either a panic or a series of messages, depending
on how the kernel is configured.
To eliminate this race condition, the PMC value must be checked after
disabling the counter. Add an AMD function, amd_pmu_disable_all(), that
will wait for the NMI handler to reset any active and overflowed counter
after calling x86_pmu_disable_all().
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # 4.14.x-
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stephane reported that the TFA MSR is not initialized by the kernel,
but the TFA bit could set by firmware or as a leftover from a kexec,
which makes the state inconsistent.
Reported-by: Stephane Eranian <eranian@google.com>
Tested-by: Nelson DSouza <nelson.dsouza@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: tonyj@suse.com
Link: https://lkml.kernel.org/r/20190321123849.GN6521@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When an event is programmed with attr.wakeup_events=N (N>0), it means
the caller is interested in getting a user level notification after
N samples have been recorded in the kernel sampling buffer.
With precise events on Intel processors, the kernel uses PEBS.
The kernel tries minimize sampling overhead by verifying
if the event configuration is compatible with multi-entry PEBS mode.
If so, the kernel is notified only when the buffer has reached its threshold.
Other PEBS operates in single-entry mode, the kenrel is notified for each
PEBS sample.
The problem is that the current implementation look at frequency
mode and event sample_type but ignores the wakeup_events field. Thus,
it may not be possible to receive a notification after each precise event.
This patch fixes this problem by disabling multi-entry PEBS if wakeup_events
is non-zero.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: https://lkml.kernel.org/r/20190306195048.189514-1-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By computing the 'committed' index earlier, we can use it to validate
the cached constraint state.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that cpuc->event_constraint[] is retained, we can avoid calling
get_event_constraints() over and over again.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code unconditionally clears cpuc->event_constraint[i]
before calling get_event_constraints(.idx=i). The only site that cares
is intel_get_event_constraints() where the c1 load will always be
NULL.
However, always calling get_event_constraints() on all events is
wastefull, most times it will return the exact same result. Therefore
retain the logic in intel_get_event_constraints() and change the
generic code to only clear the constraint on put.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoid the POPCNT by noting we can decrement the weight for each
cleared bit.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The flag PERF_X86_EVENT_COMMITTED is used to find uncommitted events
for which to call put_event_constraint() when scheduling fails.
These are the newly added events to the list, and must form, per
definition, the tail of cpuc->event_list[]. By computing the list
index of the last successfull schedule, then iteration can start there
and the flag is redundant.
There are only 3 callers of x86_schedule_events(), notably:
- x86_pmu_add()
- x86_pmu_commit_txn()
- validate_group()
For x86_pmu_add(), cpuc->n_events isn't updated until after
schedule_events() succeeds, therefore cpuc->n_events points to the
desired index.
For x86_pmu_commit_txn(), cpuc->n_events is updated, but we can
trivially compute the desired value with cpuc->n_txn -- the number of
events added in this transaction.
For validate_group(), we can make the rule for x86_pmu_add() work by
simply setting cpuc->n_events to 0 before calling schedule_events().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a special case for validate_events() where we'll call
x86_pmu.get_constraints(.idx=-1). It's purpose, up until recent, seems
to be to avoid taking a previous constraint from
cpuc->event_constraint[] in intel_get_event_constraints().
(I could not find any other get_event_constraints() implementation
using @idx)
However, since that cpuc is freshly allocated, that array will in fact
be initialized with NULL pointers, achieving the very same effect.
Therefore remove this exception.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
validate_group() calls x86_schedule_events(.assign=NULL) and therefore
will not call intel_tfa_commit_scheduling(). So there is no point in
checking cpuc->is_fake, we'll never get there.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Guenter reported a build warning for CONFIG_CPU_SUP_INTEL=n:
> With allmodconfig-CONFIG_CPU_SUP_INTEL, this patch results in:
>
> In file included from arch/x86/events/amd/core.c:8:0:
> arch/x86/events/amd/../perf_event.h:1036:45: warning: ‘struct cpu_hw_event’ declared inside parameter list will not be visible outside of this definition or declaration
> static inline int intel_cpuc_prepare(struct cpu_hw_event *cpuc, int cpu)
While harmless (an unsed pointer is an unused pointer, no matter the type)
it needs fixing.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: d01b1f96a8 ("perf/x86/intel: Make cpuc allocations consistent")
Link: http://lkml.kernel.org/r/20190315081410.GR5996@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Through:
validate_event()
x86_pmu.get_event_constraints(.idx=-1)
tfa_get_event_constraints()
dyn_constraint()
cpuc->constraint_list[-1] is used, which is an obvious out-of-bound access.
In this case, simply skip the TFA constraint code, there is no event
constraint with just PMC3, therefore the code will never result in the
empty set.
Fixes: 400816f60c ("perf/x86/intel: Implement support for TSX Force Abort")
Reported-by: Tony Jones <tonyj@suse.com>
Reported-by: "DSouza, Nelson" <nelson.dsouza@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tony Jones <tonyj@suse.com>
Tested-by: "DSouza, Nelson" <nelson.dsouza@intel.com>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Cc: stable@kernel.org
Link: https://lkml.kernel.org/r/20190314130705.441549378@infradead.org
Pull x86 tsx fixes from Thomas Gleixner:
"This update provides kernel side handling for the TSX erratum of Intel
Skylake (and later) CPUs.
On these CPUs Intel Transactional Synchronization Extensions (TSX)
functions can result in unpredictable system behavior under certain
circumstances.
The issue is mitigated with an microcode update which utilizes
Performance Monitoring Counter (PMC) 3 when TSX functions are in use.
This mitigation is enabled unconditionally by the updated microcode.
As a consequence the usage of TSX functions can cause corrupted
performance monitoring results for events which utilize PMC3. The
corruption is silent on kernels which have no update for this issue.
This update makes the kernel aware of the PMC3 utilization by the
microcode:
The microcode offers a possibility to enforce TSX abort which prevents
the malfunction and frees up PMC3. The enforced TSX abort requires the
TSX using application to have a software fallback path implemented;
abort handlers which solely retry the transaction will fail over and
over.
The enforced TSX abort request is issued by the kernel when:
- enforced TSX abort is enabled (PMU attribute)
- A performance monitoring request needs PMC3
When PMC3 is not longer used by the kernel the TSX force abort request
is cleared.
The enforced TSX abort mechanism is enabled by default and can be
controlled by the administrator via the new PMU attribute
'allow_tsx_force_abort'. This attribute is only visible when updated
microcode is detected on affected systems. Writing '0' disables the
enforced TSX abort mechanism, '1' enables it.
As a result of disabling the enforced TSX abort mechanism, PMC3 is
permanentely unavailable for performance monitoring which can cause
performance monitoring requests to fail or switch to multiplexing
mode"
* branch 'x86-tsx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Implement support for TSX Force Abort
x86: Add TSX Force Abort CPUID/MSR
perf/x86/intel: Generalize dynamic constraint creation
perf/x86/intel: Make cpuc allocations consistent
Pull perf updates from Thomas Gleixner:
"Perf updates and fixes:
Kernel:
- Handle events which have the bpf_event attribute set as side band
events as they carry information about BPF programs.
- Add missing switch-case fall-through comments
Libraries:
- Fix leaks and double frees in error code paths.
- Prevent buffer overflows in libtraceevent
Tools:
- Improvements in handling Intel BT/PTS
- Add BTF ELF markers to perf trace BPF programs to improve output
- Support --time, --cpu, --pid and --tid filters for perf diff
- Calculate the column width in perf annotate as the hardcoded 6
characters for the instruction are not sufficient
- Small fixes all over the place"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
perf/core: Mark expected switch fall-through
perf/x86/intel/uncore: Fix client IMC events return huge result
perf/ring_buffer: Use high order allocations for AUX buffers optimistically
perf data: Force perf_data__open|close zero data->file.path
perf session: Fix double free in perf_data__close
perf evsel: Probe for precise_ip with simple attr
perf tools: Read and store caps/max_precise in perf_pmu
perf hist: Fix memory leak of srcline
perf hist: Add error path into hist_entry__init
perf c2c: Fix c2c report for empty numa node
perf script python: Add Python3 support to intel-pt-events.py
perf script python: Add Python3 support to event_analyzing_sample.py
perf script python: add Python3 support to check-perf-trace.py
perf script python: Add Python3 support to futex-contention.py
perf script python: Remove mixed indentation
perf diff: Support --pid/--tid filter options
perf diff: Support --cpu filter option
perf diff: Support --time filter option
perf thread: Generalize function to copy from thread addr space from intel-bts code
perf annotate: Calculate the max instruction name, align column to that
...
The client IMC bandwidth events currently return very large values:
$ perf stat -e uncore_imc/data_reads/ -e uncore_imc/data_writes/ -I 10000 -a
10.000117222 34,788.76 MiB uncore_imc/data_reads/
10.000117222 8.26 MiB uncore_imc/data_writes/
20.000374584 34,842.89 MiB uncore_imc/data_reads/
20.000374584 10.45 MiB uncore_imc/data_writes/
30.000633299 37,965.29 MiB uncore_imc/data_reads/
30.000633299 323.62 MiB uncore_imc/data_writes/
40.000891548 41,012.88 MiB uncore_imc/data_reads/
40.000891548 6.98 MiB uncore_imc/data_writes/
50.001142480 1,125,899,906,621,494.75 MiB uncore_imc/data_reads/
50.001142480 6.97 MiB uncore_imc/data_writes/
The client IMC events are freerunning counters. They still use the
old event encoding format (0x1 for data_read and 0x2 for data write).
The counter bit width is calculated by common code, which assume that
the standard encoding format is used for the freerunning counters.
Error bit width information is calculated.
The patch intends to convert the old client IMC event encoding to the
standard encoding format.
Current common code uses event->attr.config which directly copy from
user space. We should not implicitly modify it for a converted event.
The event->hw.config is used to replace the event->attr.config in
common code.
For client IMC events, the event->attr.config is used to calculate a
converted event with standard encoding format in the custom
event_init(). The converted event is stored in event->hw.config.
For other events of freerunning counters, they already use the standard
encoding format. The same value as event->attr.config is assigned to
event->hw.config in common event_init().
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Tested-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: stable@kernel.org # v4.18+
Fixes: 9aae1780e7 ("perf/x86/intel/uncore: Clean up client IMC uncore")
Link: https://lkml.kernel.org/r/20190227165729.1861-1-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 cleanups from Ingo Molnar:
"Various cleanups and simplifications, none of them really stands out,
they are all over the place"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/uaccess: Remove unused __addr_ok() macro
x86/smpboot: Remove unused phys_id variable
x86/mm/dump_pagetables: Remove the unused prev_pud variable
x86/fpu: Move init_xstate_size() to __init section
x86/cpu_entry_area: Move percpu_setup_debug_store() to __init section
x86/mtrr: Remove unused variable
x86/boot/compressed/64: Explain paging_prepare()'s return value
x86/resctrl: Remove duplicate MSR_MISC_FEATURE_CONTROL definition
x86/asm/suspend: Drop ENTRY from local data
x86/hw_breakpoints, kprobes: Remove kprobes ifdeffery
x86/boot: Save several bytes in decompressor
x86/trap: Remove useless declaration
x86/mm/tlb: Remove unused cpu variable
x86/events: Mark expected switch-case fall-throughs
x86/asm-prototypes: Remove duplicate include <asm/page.h>
x86/kernel: Mark expected switch-case fall-throughs
x86/insn-eval: Mark expected switch-case fall-through
x86/platform/UV: Replace kmalloc() and memset() with k[cz]alloc() calls
x86/e820: Replace kmalloc() + memcpy() with kmemdup()
Skylake (and later) will receive a microcode update to address a TSX
errata. This microcode will, on execution of a TSX instruction
(speculative or not) use (clobber) PMC3. This update will also provide
a new MSR to change this behaviour along with a CPUID bit to enumerate
the presence of this new MSR.
When the MSR gets set; the microcode will no longer use PMC3 but will
Force Abort every TSX transaction (upon executing COMMIT).
When TSX Force Abort (TFA) is allowed (default); the MSR gets set when
PMC3 gets scheduled and cleared when, after scheduling, PMC3 is
unused.
When TFA is not allowed; clear PMC3 from all constraints such that it
will not get used.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The cpuc data structure allocation is different between fake and real
cpuc's; use the same code to init/free both.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
perf annotate:
Wei Li:
- Fix getting source line failure
perf script:
Andi Kleen:
- Handle missing fields with -F +...
perf data:
Jiri Olsa:
- Prep work to support per-cpu files in a directory.
Intel PT:
Adrian Hunter:
- Improve thread_stack__no_call_return()
- Hide x86 retpolines in thread stacks.
- exported SQL viewer refactorings, new 'top calls' report..
Alexander Shishkin:
- Copy parent's address filter offsets on clone
- Fix address filters for vmas with non-zero offset. Applies to
ARM's CoreSight as well.
python scripts:
Tony Jones:
- Python3 support for several 'perf script' python scripts.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQR2GiIUctdOfX2qHhGyPKLppCJ+JwUCXHRYNwAKCRCyPKLppCJ+
J8XmAQDKY7gb3GhkX+4aE8cGffFYB2YV5mD9Bbu4AM9tuFFBJwD+KAq87FMCy7m7
h7xyWk3UILpz6y235AVdfOmgcNDkpAQ=
=SJCG
-----END PGP SIGNATURE-----
Merge tag 'perf-core-for-mingo-5.1-20190225' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/core
Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:
perf annotate:
Wei Li:
- Fix getting source line failure
perf script:
Andi Kleen:
- Handle missing fields with -F +...
perf data:
Jiri Olsa:
- Prep work to support per-cpu files in a directory.
Intel PT:
Adrian Hunter:
- Improve thread_stack__no_call_return()
- Hide x86 retpolines in thread stacks.
- exported SQL viewer refactorings, new 'top calls' report..
Alexander Shishkin:
- Copy parent's address filter offsets on clone
- Fix address filters for vmas with non-zero offset. Applies to
ARM's CoreSight as well.
python scripts:
Tony Jones:
- Python3 support for several 'perf script' python scripts.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the address range calculation for file-based filters works as
long as the vma that maps the matching part of the object file starts
from offset zero into the file (vm_pgoff==0). Otherwise, the resulting
filter range would be off by vm_pgoff pages. Another related problem is
that in case of a partially matching vma, that is, a vma that matches
part of a filter region, the filter range size wouldn't be adjusted.
Fix the arithmetics around address filter range calculations, taking
into account vma offset, so that the entire calculation is done before
the filter configuration is passed to the PMU drivers instead of having
those drivers do the final bit of arithmetics.
Based on the patch by Adrian Hunter <adrian.hunter.intel.com>.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Fixes: 375637bc52 ("perf/core: Introduce address range filtering")
Link: http://lkml.kernel.org/r/20190215115655.63469-3-alexander.shishkin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Vince (and later on Ravi) reported crashes in the BTS code during
fuzzing with the following backtrace:
general protection fault: 0000 [#1] SMP PTI
...
RIP: 0010:perf_prepare_sample+0x8f/0x510
...
Call Trace:
<IRQ>
? intel_pmu_drain_bts_buffer+0x194/0x230
intel_pmu_drain_bts_buffer+0x160/0x230
? tick_nohz_irq_exit+0x31/0x40
? smp_call_function_single_interrupt+0x48/0xe0
? call_function_single_interrupt+0xf/0x20
? call_function_single_interrupt+0xa/0x20
? x86_schedule_events+0x1a0/0x2f0
? x86_pmu_commit_txn+0xb4/0x100
? find_busiest_group+0x47/0x5d0
? perf_event_set_state.part.42+0x12/0x50
? perf_mux_hrtimer_restart+0x40/0xb0
intel_pmu_disable_event+0xae/0x100
? intel_pmu_disable_event+0xae/0x100
x86_pmu_stop+0x7a/0xb0
x86_pmu_del+0x57/0x120
event_sched_out.isra.101+0x83/0x180
group_sched_out.part.103+0x57/0xe0
ctx_sched_out+0x188/0x240
ctx_resched+0xa8/0xd0
__perf_event_enable+0x193/0x1e0
event_function+0x8e/0xc0
remote_function+0x41/0x50
flush_smp_call_function_queue+0x68/0x100
generic_smp_call_function_single_interrupt+0x13/0x30
smp_call_function_single_interrupt+0x3e/0xe0
call_function_single_interrupt+0xf/0x20
</IRQ>
The reason is that while event init code does several checks
for BTS events and prevents several unwanted config bits for
BTS event (like precise_ip), the PERF_EVENT_IOC_PERIOD allows
to create BTS event without those checks being done.
Following sequence will cause the crash:
If we create an 'almost' BTS event with precise_ip and callchains,
and it into a BTS event it will crash the perf_prepare_sample()
function because precise_ip events are expected to come
in with callchain data initialized, but that's not the
case for intel_pmu_drain_bts_buffer() caller.
Adding a check_period callback to be called before the period
is changed via PERF_EVENT_IOC_PERIOD. It will deny the change
if the event would become BTS. Plus adding also the limit_period
check as well.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190204123532.GA4794@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A microcode patch is also needed for Goldmont while counter freezing
feature is enabled. Otherwise, there will be some issues, e.g. PMI lost.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: bp@alien8.de
Link: https://lkml.kernel.org/r/1549319013-4522-5-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clean up counter freezing quirk to use the new facility to check for
min microcode revisions.
Rename the counter freezing quirk related functions. Because other
platforms, e.g. Goldmont, also needs to call the quirk.
Only check the boot CPU, assuming models and features are consistent
over all CPUs.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: bp@alien8.de
Link: https://lkml.kernel.org/r/1549319013-4522-4-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clean up SNB PEBS quirk to use the new facility to check for min
microcode revisions.
Only check the boot CPU, assuming models and features are consistent
over all CPUs.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: bp@alien8.de
Link: https://lkml.kernel.org/r/1549319013-4522-3-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KVM added a workaround for PEBS events leaking into guests with
commit:
26a4f3c08d ("perf/x86: disable PEBS on a guest entry.")
This uses the VT entry/exit list to add an extra disable of the
PEBS_ENABLE MSR.
Intel also added a fix for this issue to microcode updates on
Haswell/Broadwell/Skylake.
It turns out using the MSR entry/exit list makes VM exits
significantly slower. The list is only needed for disabling
PEBS, because the GLOBAL_CTRL change gets optimized by
KVM into changing the VMCS.
Check for the microcode updates that have the microcode
fix for leaking PEBS, and disable the extra entry/exit list
entry for PEBS_ENABLE. In addition we always clear the
GLOBAL_CTRL for the PEBS counter while running in the guest,
which is enough to make them never fire at the wrong
side of the host/guest transition.
The overhead for VM exits with the filtering active with the patch is
reduced from 8% to 4%.
The microcode patch has already been merged into future platforms.
This patch is one-off thing. The quirks is used here.
For other old platforms which doesn't have microcode patch and quirks,
extra disable of the PEBS_ENABLE MSR is still required.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: bp@alien8.de
Link: https://lkml.kernel.org/r/1549319013-4522-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When pmu::setup_aux() is called the coresight PMU needs to know which
sink to use for the session by looking up the information in the
event's attr::config2 field.
As such simply replace the cpu information by the complete perf_event
structure and change all affected customers.
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Suzuki Poulouse <suzuki.poulose@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Link: http://lkml.kernel.org/r/20190131184714.20388-2-mathieu.poirier@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
intel_pmu_cpu_prepare() allocated memory for ->shared_regs among other
members of struct cpu_hw_events. This memory is released in
intel_pmu_cpu_dying() which is wrong. The counterpart of the
intel_pmu_cpu_prepare() callback is x86_pmu_dead_cpu().
Otherwise if the CPU fails on the UP path between CPUHP_PERF_X86_PREPARE
and CPUHP_AP_PERF_X86_STARTING then it won't release the memory but
allocate new memory on the next attempt to online the CPU (leaking the
old memory).
Also, if the CPU down path fails between CPUHP_AP_PERF_X86_STARTING and
CPUHP_PERF_X86_PREPARE then the CPU will go back online but never
allocate the memory that was released in x86_pmu_dying_cpu().
Make the memory allocation/free symmetrical in regard to the CPU hotplug
notifier by moving the deallocation to intel_pmu_cpu_dead().
This started in commit:
a7e3ed1e47 ("perf: Add support for supplementary event registers").
In principle the bug was introduced in v2.6.39 (!), but it will almost
certainly not backport cleanly across the big CPU hotplug rewrite between v4.7-v4.15...
[ bigeasy: Added patch description. ]
[ mingo: Added backporting guidance. ]
Reported-by: He Zhe <zhe.he@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # With developer hat on
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # With maintainer hat on
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: jolsa@kernel.org
Cc: kan.liang@linux.intel.com
Cc: namhyung@kernel.org
Cc: <stable@vger.kernel.org>
Fixes: a7e3ed1e47 ("perf: Add support for supplementary event registers").
Link: https://lkml.kernel.org/r/20181219165350.6s3jvyxbibpvlhtq@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some PCI uncore PMUs cannot be registered on an 8-socket system (HPE
Superdome Flex).
To understand which Socket the PCI uncore PMUs belongs to, perf retrieves
the local Node ID of the uncore device from CPUNODEID(0xC0) of the PCI
configuration space, and the mapping between Socket ID and Node ID from
GIDNIDMAP(0xD4). The Socket ID can be calculated accordingly.
The local Node ID is only available at bit 2:0, but current code doesn't
mask it. If a BIOS doesn't clear the rest of the bits, an incorrect Node ID
will be fetched.
Filter the Node ID by adding a mask.
Reported-by: Song Liu <songliubraving@fb.com>
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org> # v3.7+
Fixes: 7c94ee2e09 ("perf/x86: Add Intel Nehalem and Sandy Bridge-EP uncore support")
Link: https://lkml.kernel.org/r/1548600794-33162-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation to enable -Wimplicit-fallthrough by default, mark
switch-case statements where fall-through is intentional, explicitly in
order to fix a couple of -Wimplicit-fallthrough warnings.
Warning level 3 was used: -Wimplicit-fallthrough=3.
[ bp: Massasge and trim commit message. ]
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jacek Tomaka <jacek.tomaka@poczta.fm>
Cc: Jia Zhang <qianyue.zj@alibaba-inc.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190125184917.GA7289@embeddedor
For x86 PMUs that do not support context exclusion let's advertise the
PERF_PMU_CAP_NO_EXCLUDE capability. This ensures that perf will
prevent us from handling events where any exclusion flags are set.
Let's also remove the now unnecessary check for exclusion flags.
This change means that amd/iommu and amd/uncore will now also
indicate that they do not support exclude_{hv|idle} and intel/uncore
that it does not support exclude_{guest|host}.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sascha Hauer <s.hauer@pengutronix.de>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: robin.murphy@arm.com
Cc: suzuki.poulose@arm.com
Link: https://lkml.kernel.org/r/1547128414-50693-12-git-send-email-andrew.murray@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For drivers that do not support context exclusion let's advertise the
PERF_PMU_CAP_NOEXCLUDE capability. This ensures that perf will
prevent us from handling events where any exclusion flags are set.
Let's also remove the now unnecessary check for exclusion flags.
PMU drivers that support at least one exclude flag won't have the
PERF_PMU_CAP_NOEXCLUDE capability set - these PMU drivers should still
check and fail on unsupported exclude flags. These missing tests are
not added in this patch.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sascha Hauer <s.hauer@pengutronix.de>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: robin.murphy@arm.com
Cc: suzuki.poulose@arm.com
Link: https://lkml.kernel.org/r/1547128414-50693-11-git-send-email-andrew.murray@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This adds support for "output to Trace Transport subsystem"
capability of Intel PT. It means that PT can output its
trace to an MMIO address range rather than system memory buffer.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
intel_pt_validate_hw_cap() validates whether a given PT capability is
supported by the hardware. It checks the PT capability array which
reflects the capabilities of the hardware on which the code is executed.
For setting up PT for KVM guests this is not correct as the capability
array for the guest can be different from the host array.
Provide a new function to check against a given capability array.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
pt_cap_get() is required by the upcoming PT support in KVM guests.
Export it and move the capabilites enum to a global header.
As a global functions, "pt_*" is already used for ptrace and
other things, so it makes sense to use "intel_pt_*" as a prefix.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Intel Processor Trace (PT) MSR bit defines are in a private
header. The upcoming support for PT virtualization requires these defines
to be accessible from KVM code.
Move them to the global MSR header file.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Go over arch/x86/ and fix common typos in comments,
and a typo in an actual function argument name.
No change in functionality intended.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vince reported a crash in the BTS flush code when touching the callchain
data, which was supposed to be initialized as an 'early' callchain,
but intel_pmu_drain_bts_buffer() does not do that:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
...
Call Trace:
<IRQ>
intel_pmu_drain_bts_buffer+0x151/0x220
? intel_get_event_constraints+0x219/0x360
? perf_assign_events+0xe2/0x2a0
? select_idle_sibling+0x22/0x3a0
? __update_load_avg_se+0x1ec/0x270
? enqueue_task_fair+0x377/0xdd0
? cpumask_next_and+0x19/0x20
? load_balance+0x134/0x950
? check_preempt_curr+0x7a/0x90
? ttwu_do_wakeup+0x19/0x140
x86_pmu_stop+0x3b/0x90
x86_pmu_del+0x57/0x160
event_sched_out.isra.106+0x81/0x170
group_sched_out.part.108+0x51/0xc0
__perf_event_disable+0x7f/0x160
event_function+0x8c/0xd0
remote_function+0x3c/0x50
flush_smp_call_function_queue+0x35/0xe0
smp_call_function_single_interrupt+0x3a/0xd0
call_function_single_interrupt+0xf/0x20
</IRQ>
It was triggered by fuzzer but can be easily reproduced by:
# perf record -e cpu/branch-instructions/pu -g -c 1
Peter suggested not to allow branch tracing for precise events:
> Now arguably, this is really stupid behaviour. Who in his right mind
> wants callchain output on BTS entries. And even if they do, BTS +
> precise_ip is nonsensical.
>
> So in my mind disallowing precise_ip on BTS would be the simplest fix.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6cbc304f2f ("perf/x86/intel: Fix unwind errors from PEBS entries (mk-II)")
Link: http://lkml.kernel.org/r/20181121101612.16272-3-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently we check the branch tracing only by checking for the
PERF_COUNT_HW_BRANCH_INSTRUCTIONS event of PERF_TYPE_HARDWARE
type. But we can define the same event with the PERF_TYPE_RAW
type.
Changing the intel_pmu_has_bts() code to check on event's final
hw config value, so both HW types are covered.
Adding unlikely to intel_pmu_has_bts() condition calls, because
it was used in the original code in intel_bts_constraints.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20181121101612.16272-2-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kyle Huey reported that 'rr', a replay debugger, broke due to the following commit:
af3bdb991a ("perf/x86/intel: Add a separate Arch Perfmon v4 PMI handler")
Rework the 'disable_counter_freezing' __setup() parameter such that we
can explicitly enable/disable it and switch to default disabled.
To this purpose, rename the parameter to "perf_v4_pmi=" which is a much
better description and allows requiring a bool argument.
[ mingo: Improved the changelog some more. ]
Reported-by: Kyle Huey <me@kylehuey.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/20181120170842.GZ2131@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Coffee Lake has 8 core products which has 8 Cboxes. The 8th CBOX is
mapped into different MSR space.
Increase the num_boxes to 8 to handle the new products. It will not
impact the previous platforms, SkyLake, KabyLake and earlier CoffeeLake.
Because the num_boxes will be recalculated in uncore_cpu_init and
doesn't exceed the x86_max_cores.
Introduce a new box flag bit to indicate the 8th CBOX.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20181019170419.378-2-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KabyLake and CoffeeLake CPUs have the same client uncore events as SkyLake.
Add the PCI IDs for the KabyLake Y, U, S processor lines and CoffeeLake U,
H, S processor lines.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20181019170419.378-1-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
"sizeof(x)" is the canonical coding style used in arch/x86 most of the time.
Fix the few places that didn't follow the convention.
(Also do some whitespace cleanups in a few places while at it.)
[ mingo: Rewrote the changelog. ]
Signed-off-by: Jordan Borgner <mail@jordan-borgner.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181028125828.7rgammkgzep2wpam@JordanDesktop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 cpu updates from Ingo Molnar:
"The main changes in this cycle were:
- Add support for the "Dhyana" x86 CPUs by Hygon: these are licensed
based on the AMD Zen architecture, and are built and sold in China,
for domestic datacenter use. The code is pretty close to AMD
support, mostly with a few quirks and enumeration differences. (Pu
Wen)
- Enable CPUID support on Cyrix 6x86/6x86L processors"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools/cpupower: Add Hygon Dhyana support
cpufreq: Add Hygon Dhyana support
ACPI: Add Hygon Dhyana support
x86/xen: Add Hygon Dhyana support to Xen
x86/kvm: Add Hygon Dhyana support to KVM
x86/mce: Add Hygon Dhyana support to the MCA infrastructure
x86/bugs: Add Hygon Dhyana to the respective mitigation machinery
x86/apic: Add Hygon Dhyana support
x86/pci, x86/amd_nb: Add Hygon Dhyana support to PCI and northbridge
x86/amd_nb: Check vendor in AMD-only functions
x86/alternative: Init ideal_nops for Hygon Dhyana
x86/events: Add Hygon Dhyana support to PMU infrastructure
x86/smpboot: Do not use BSP INIT delay and MWAIT to idle on Dhyana
x86/cpu/mtrr: Support TOP_MEM2 and get MTRR number
x86/cpu: Get cache info and setup cache cpumap for Hygon Dhyana
x86/cpu: Create Hygon Dhyana architecture support file
x86/CPU: Change query logic so CPUID is enabled before testing
x86/CPU: Use correct macros for Cyrix calls
Memory events depends on PEBS support and access to LDLAT MSR, but we
display them in /sys/devices/cpu/events even if the CPU does not
provide those, like for KVM guests.
That brings the false assumption that those events should be
available, while they fail event to open.
Separating the mem-* events attributes and merging them with
cpu_events only if there's PEBS support detected.
We could also check if LDLAT MSR is available, but the PEBS check
seems to cover the need now.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Petlan <mpetlan@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20180906135748.GC9577@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A ucode patch is needed for Goldmont Plus while counter freezing feature
is enabled. Otherwise, there will be some issues, e.g. PMI flood with
some events.
Add a quirk to check microcode version. If the system starts with the
wrong ucode, leave the counter-freezing feature permanently disabled.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/1533712328-2834-3-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Going primarily by:
https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors
with additional information gleaned from other related pages; notably:
- Bonnell shrink was called Saltwell
- Moorefield is the Merriefield refresh which makes it Airmont
The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE
for i in `git grep -l FAM6_ATOM` ; do
sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \
-e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \
-e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \
-e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \
-e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \
-e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \
-e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \
-e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \
-e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \
-e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \
-e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: dave.hansen@linux.intel.com
Cc: len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implements counter freezing for Arch Perfmon v4 (Skylake and
newer). This allows to speed up the PMI handler by avoiding
unnecessary MSR writes and make it more accurate.
The Arch Perfmon v4 PMI handler is substantially different than
the older PMI handler.
Differences to the old handler:
- It relies on counter freezing, which eliminates several MSR
writes from the PMI handler and lowers the overhead significantly.
It makes the PMI handler more accurate, as all counters get
frozen atomically as soon as any counter overflows. So there is
much less counting of the PMI handler itself.
With the freezing we don't need to disable or enable counters or
PEBS. Only BTS which does not support auto-freezing still needs to
be explicitly managed.
- The PMU acking is done at the end, not the beginning.
This makes it possible to avoid manual enabling/disabling
of the PMU, instead we just rely on the freezing/acking.
- The APIC is acked before reenabling the PMU, which avoids
problems with LBRs occasionally not getting unfreezed on Skylake.
- Looping is only needed to workaround a corner case which several PMIs
are very close to each other. For common cases, the counters are freezed
during PMI handler. It doesn't need to do re-check.
This patch:
- Adds code to enable v4 counter freezing
- Fork <=v3 and >=v4 PMI handlers into separate functions.
- Add kernel parameter to disable counter freezing. It took some time to
debug counter freezing, so in case there are new problems we added an
option to turn it off. Would not expect this to be used until there
are new bugs.
- Only for big core. The patch for small core will be posted later
separately.
Performance:
When profiling a kernel build on Kabylake with different perf options,
measuring the length of all NMI handlers using the nmi handler
trace point:
V3 is without counter freezing.
V4 is with counter freezing.
The value is the average cost of the PMI handler.
(lower is better)
perf options ` V3(ns) V4(ns) delta
-c 100000 1088 894 -18%
-g -c 100000 1862 1646 -12%
--call-graph lbr -c 100000 3649 3367 -8%
--c.g. dwarf -c 100000 2248 1982 -12%
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Arch Perfmon v4 PMI handler is substantially different than
the older PMI handler. Instead of adding more and more ifs cleanly
fork the new handler into a new function, with the main common
code factored out into a common function.
Fix complaint from checkpatch.pl by removing "false" from "static bool
warned".
No functional change.
Based-on-code-from: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/1533712328-2834-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In Family 17h, some L3 Cache Performance events require the ThreadMask
and SliceMask to be set. For other events, these fields do not affect
the count either way.
Set ThreadMask and SliceMask to 0xFF and 0xF respectively.
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H . Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The counters on M3UPI Link 0 and Link 3 don't count properly, and writing
0 to these counters may causes system crash on some machines.
The PCI BDF addresses of the M3UPI in the current code are incorrect.
The correct addresses should be:
D18:F1 0x204D
D18:F2 0x204E
D18:F5 0x204D
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: cd34cd97b7 ("perf/x86/intel/uncore: Add Skylake server uncore support")
Link: http://lkml.kernel.org/r/1537538826-55489-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
perf_event_read_local() is the safest way to obtain measurements
associated with performance events. In some cases the overhead
introduced by perf_event_read_local() affects the measurements and the
use of rdpmcl() is needed. rdpmcl() requires the index
of the performance counter used so a helper is introduced to determine
the index used by a provided performance event.
The index used by a performance event may change when interrupts are
enabled. A check is added to ensure that the index is only accessed
with interrupts disabled. Even with this check the use of this counter
needs to be done with care to ensure it is queried and used within the
same disabled interrupts section.
This change introduces a new checkpatch warning:
CHECK: extern prototypes should be avoided in .h files
+extern int x86_perf_rdpmc_index(struct perf_event *event);
This warning was discussed and designated as a false positive in
http://lkml.kernel.org/r/20180919091759.GZ24124@hirez.programming.kicks-ass.net
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b277ffa78a51254f5414f7b1bc1923826874566e.1537377064.git.reinette.chatre@intel.com
'pt_cap_group' is written to in pt_pmu_hw_init() and not modified after.
This makes it a suitable candidate for annotating as __ro_after_init.
Signed-off-by: Zubin Mithra <zsm@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20180912164510.23444-1-zsm@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86_pmu_{format,events,attr,caps}_group is written to in
init_hw_perf_events and not modified after. This makes them suitable
candidates for annotating as __ro_after_init.
Signed-off-by: Zubin Mithra <zsm@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: alexander.shishkin@linux.intel.com
Cc: groeck@chromium.org
Link: http://lkml.kernel.org/r/20180810154314.96710-1-zsm@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Problem: perf did not show branch predicted/mispredicted bit in brstack.
Output of perf -F brstack for profile collected
Before:
0x4fdbcd/0x4fdc03/-/-/-/0
0x45f4c1/0x4fdba0/-/-/-/0
0x45f544/0x45f4bb/-/-/-/0
0x45f555/0x45f53c/-/-/-/0
0x7f66901cc24b/0x45f555/-/-/-/0
0x7f66901cc22e/0x7f66901cc23d/-/-/-/0
0x7f66901cc1ff/0x7f66901cc20f/-/-/-/0
0x7f66901cc1e8/0x7f66901cc1fc/-/-/-/0
After:
0x4fdbcd/0x4fdc03/P/-/-/0
0x45f4c1/0x4fdba0/P/-/-/0
0x45f544/0x45f4bb/P/-/-/0
0x45f555/0x45f53c/P/-/-/0
0x7f66901cc24b/0x45f555/P/-/-/0
0x7f66901cc22e/0x7f66901cc23d/P/-/-/0
0x7f66901cc1ff/0x7f66901cc20f/P/-/-/0
0x7f66901cc1e8/0x7f66901cc1fc/P/-/-/0
Cause:
As mentioned in Software Development Manual vol 3, 17.4.8.1,
IA32_PERF_CAPABILITIES[5:0] indicates the format of the address that is
stored in the LBR stack. Knights Landing reports 1 (LBR_FORMAT_LIP) as
its format. Despite that, registers containing FROM address of the branch,
do have MISPREDICT bit but because of the format indicated in
IA32_PERF_CAPABILITIES[5:0], LBR did not read MISPREDICT bit.
Solution:
Teach LBR about above Knights Landing quirk and make it read MISPREDICT bit.
Signed-off-by: Jacek Tomaka <jacek.tomaka@poczta.fm>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180802013830.10600-1-jacekt@dugeo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A NMI can hit in the middle of context switching or in the middle of
switch_mm_irqs_off(). In either case, CR3 might not match current->mm,
which could cause copy_from_user_nmi() and friends to read the wrong
memory.
Fix it by adding a new nmi_uaccess_okay() helper and checking it in
copy_from_user_nmi() and in __copy_from_user_nmi()'s callers.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jann Horn <jannh@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/dd956eba16646fd0b15c3c0741269dfd84452dac.1535557289.git.luto@kernel.org
Masayoshi Mizuma reported that a warning message is shown while a CPU is
hot-removed on Broadwell servers:
WARNING: CPU: 126 PID: 6 at arch/x86/events/intel/uncore.c:988
uncore_pci_remove+0x10b/0x150
Call Trace:
pci_device_remove+0x42/0xd0
device_release_driver_internal+0x148/0x220
pci_stop_bus_device+0x76/0xa0
pci_stop_root_bus+0x44/0x60
acpi_pci_root_remove+0x1f/0x80
acpi_bus_trim+0x57/0x90
acpi_bus_trim+0x2e/0x90
acpi_device_hotplug+0x2bc/0x4b0
acpi_hotplug_work_fn+0x1a/0x30
process_one_work+0x174/0x3a0
worker_thread+0x4c/0x3d0
kthread+0xf8/0x130
This bug was introduced by:
commit 15a3e845b0 ("perf/x86/intel/uncore: Fix SBOX support for Broadwell CPUs")
The index of "QPI Port 2 filter" was hardcode to 2, but this conflicts with the
index of "PCU.3" which is "HSWEP_PCI_PCU_3", which equals to 2 as well.
To fix the conflict, the hardcoded index needs to be cleaned up:
- introduce a new enumerator "BDX_PCI_QPI_PORT2_FILTER" for "QPI Port 2
filter" on Broadwell,
- increase UNCORE_EXTRA_PCI_DEV_MAX by one,
- clean up the hardcoded index.
Debugged-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: msys.mizuma@gmail.com
Cc: stable@vger.kernel.org
Fixes: 15a3e845b0 ("perf/x86/intel/uncore: Fix SBOX support for Broadwell CPUs")
Link: http://lkml.kernel.org/r/1532953688-15008-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Enable the extended PEBS for Goldmont Plus.
There is no specific PEBS constrains for Goldmont Plus. Removing the
pebs_constraints for Goldmont Plus.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/20180309021542.11374-4-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The pebs_drain() need to support fixed counters. The DS Save Area now
include "counter reset value" fields for each fixed counters.
Extend the related variables (e.g. mask, counters, error) to support
fixed counters. There is no extended PEBS in PEBS v2 and earlier PEBS
format. Only need to change the code for PEBS v3 and later PEBS format.
Extend the pebs_event_reset[] logic to support new "counter reset value" fields.
Increase the reserve space for fixed counters.
Based-on-code-from: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/20180309021542.11374-3-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Extended PEBS feature supports PEBS on fixed-function performance
counters as well as all four general purpose counters.
It has to change the order of PEBS and fixed counter enabling to make
sure PEBS is enabled for the fixed counters.
The change of the order doesn't impact the behavior of current code on
other platforms which don't support extended PEBS.
Because there is no dependency among those enable/disable functions.
Don't enable IRQ generation (0x8) for MSR_ARCH_PERFMON_FIXED_CTR_CTRL.
The PEBS ucode will handle the interrupt generation.
Based-on-code-from: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/20180309021542.11374-2-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Extended PEBS feature, introduced in the Goldmont Plus
microarchitecture, supports all events as "Extended PEBS".
Introduce flag PMU_FL_PEBS_ALL to indicate the platforms which support
extended PEBS.
To support all events, it needs to support all constraints for PEBS. To
avoid duplicating all the constraints in the PEBS table, making the PEBS
code search the normal constraints too.
Based-on-code-from: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/20180309021542.11374-1-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vince reported the perf_fuzzer giving various unwinder warnings and
Josh reported:
> Deja vu. Most of these are related to perf PEBS, similar to the
> following issue:
>
> b8000586c9 ("perf/x86/intel: Cure bogus unwind from PEBS entries")
>
> This is basically the ORC version of that. setup_pebs_sample_data() is
> assembling a franken-pt_regs which ORC isn't happy about. RIP is
> inconsistent with some of the other registers (like RSP and RBP).
And where the previous unwinder only needed BP,SP ORC also requires
IP. But we cannot spoof IP because then the sample will get displaced,
entirely negating the point of PEBS.
So cure the whole thing differently by doing the unwind early; this
does however require a means to communicate we did the unwind early.
We (ab)use an unused sample_type bit for this, which we set on events
that fill out the data->callchain before the normal
perf_prepare_sample().
Debugged-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Tested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Markus reported that BTS is sporadically missing the tail of the trace
in the perf_event data buffer: [decode error (1): instruction overflow]
shown in GDB; and bisected it to the conversion of debug_store to PTI.
A little "optimization" crept into alloc_bts_buffer(), which mistakenly
placed bts_interrupt_threshold away from the 24-byte record boundary.
Intel SDM Vol 3B 17.4.9 says "This address must point to an offset from
the BTS buffer base that is a multiple of the BTS record size."
Revert "max" from a byte count to a record count, to calculate the
bts_interrupt_threshold correctly: which turns out to fix problem seen.
Fixes: c1961a4631 ("x86/events/intel/ds: Map debug buffers in cpu_entry_area")
Reported-and-tested-by: Markus T Metzger <markus.t.metzger@intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: stable@vger.kernel.org # v4.14+
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.1807141248290.1614@eggly.anvils
Context switches with perf LBR call stack context are fairly expensive
because they do a lot of MSR writes. Currently we unconditionally do the
expensive operation when LBR call stack is enabled. It's not necessary
for some common cases, e.g task -> other kernel thread -> same task.
The LBR registers are not changed, hence they don't need to be
rewritten/restored.
Introduce per-CPU variables to track the last LBR call stack context.
If the same context is scheduled in, the rewrite/restore is not
required, with the following two exceptions:
- The LBR registers may be modified by a normal LBR event, i.e., adding
a new LBR event or scheduling an existing LBR event. In both cases,
the LBR registers are reset first. The last LBR call stack information
is cleared in intel_pmu_lbr_reset(). Restoring the LBR registers is
required.
- The LBR registers are initialized to zero in C6.
If the LBR registers which TOS points is cleared, C6 must be entered
while swapped out. Restoring the LBR registers is required as well.
These exceptions are not common.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
LBR has a limited stack size. If a task has a deeper call stack than
LBR's stack size, only the overflowed part is reported. A complete call
stack may not be reconstructed by perf tool.
Current code doesn't access all LBR registers. It only read the ones
below the TOS. The LBR registers above the TOS will be discarded
unconditionally.
When a CALL is captured, the TOS is incremented by 1 , modulo max LBR
stack size. The LBR HW only records the call stack information to the
register which the TOS points to. It will not touch other LBR
registers. So the registers above the TOS probably still store the valid
call stack information for an overflowed call stack, which need to be
reported.
To retrieve complete call stack information, we need to start from TOS,
read all LBR registers until an invalid entry is detected.
0s can be used to detect the invalid entry, because:
- When a RET is captured, the HW zeros the LBR register which TOS points
to, then decreases the TOS.
- The LBR registers are reset to 0 when adding a new LBR event or
scheduling an existing LBR event.
- A taken branch at IP 0 is not expected
The context switch code is also modified to save/restore all valid LBR
registers. Furthermore, the LBR registers, which don't have valid call
stack information, need to be reset in restore, because they may be
polluted while swapped out.
Here is a small test program, tchain_deep.
Its call stack is deeper than 32.
noinline void f33(void)
{
int i;
for (i = 0; i < 10000000;) {
if (i%2)
i++;
else
i++;
}
}
noinline void f32(void)
{
f33();
}
noinline void f31(void)
{
f32();
}
... ...
noinline void f1(void)
{
f2();
}
int main()
{
f1();
}
Here is the test result on SKX. The max stack size of SKX is 32.
Without the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
#
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ .................
#
100.00% 99.99% tchain_deep tchain_deep [.] f33
|
--99.99%--f30
f31
f32
f33
With the patch:
$ perf record -e cycles --call-graph lbr -- ./tchain_deep
$ perf report --stdio
# Children Self Command Shared Object Symbol
# ........ ........ ........... ................ ..................
#
99.99% 0.00% tchain_deep tchain_deep [.] f1
|
---f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25
f26
f27
f28
f29
f30
f31
f32
f33
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: https://lore.kernel.org/lkml/1528213126-4312-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Need to do a bit of rearranging to make this work.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull timers and timekeeping updates from Thomas Gleixner:
- Core infrastucture work for Y2038 to address the COMPAT interfaces:
+ Add a new Y2038 safe __kernel_timespec and use it in the core
code
+ Introduce config switches which allow to control the various
compat mechanisms
+ Use the new config switch in the posix timer code to control the
32bit compat syscall implementation.
- Prevent bogus selection of CPU local clocksources which causes an
endless reselection loop
- Remove the extra kthread in the clocksource code which has no value
and just adds another level of indirection
- The usual bunch of trivial updates, cleanups and fixlets all over the
place
- More SPDX conversions
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
clocksource/drivers/mxs_timer: Switch to SPDX identifier
clocksource/drivers/timer-imx-tpm: Switch to SPDX identifier
clocksource/drivers/timer-imx-gpt: Switch to SPDX identifier
clocksource/drivers/timer-imx-gpt: Remove outdated file path
clocksource/drivers/arc_timer: Add comments about locking while read GFRC
clocksource/drivers/mips-gic-timer: Add pr_fmt and reword pr_* messages
clocksource/drivers/sprd: Fix Kconfig dependency
clocksource: Move inline keyword to the beginning of function declarations
timer_list: Remove unused function pointer typedef
timers: Adjust a kernel-doc comment
tick: Prefer a lower rating device only if it's CPU local device
clocksource: Remove kthread
time: Change nanosleep to safe __kernel_* types
time: Change types to new y2038 safe __kernel_* types
time: Fix get_timespec64() for y2038 safe compat interfaces
time: Add new y2038 safe __kernel_timespec
posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME
time: Introduce CONFIG_COMPAT_32BIT_TIME
time: Introduce CONFIG_64BIT_TIME in architectures
compat: Enable compat_get/put_timespec64 always
...
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apm: Fix spelling mistake: "caculate" -> "calculate"
x86/mtrr: Rename main.c to mtrr.c and remove duplicate prefixes
x86: Remove pr_fmt duplicate logging prefixes
x86/early-quirks: Rename duplicate define of dev_err
x86/bpf: Clean up non-standard comments, to make the code more readable
Pull x86 boot updates from Ingo Molnar:
- Centaur CPU updates (David Wang)
- AMD and other CPU topology enumeration improvements and fixes
(Borislav Petkov, Thomas Gleixner, Suravee Suthikulpanit)
- Continued 5-level paging work (Kirill A. Shutemov)
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Mark __pgtable_l5_enabled __initdata
x86/mm: Mark p4d_offset() __always_inline
x86/mm: Introduce the 'no5lvl' kernel parameter
x86/mm: Stop pretending pgtable_l5_enabled is a variable
x86/mm: Unify pgtable_l5_enabled usage in early boot code
x86/boot/compressed/64: Fix trampoline page table address calculation
x86/CPU: Move x86_cpuinfo::x86_max_cores assignment to detect_num_cpu_cores()
x86/Centaur: Report correct CPU/cache topology
x86/CPU: Move cpu_detect_cache_sizes() into init_intel_cacheinfo()
x86/CPU: Make intel_num_cpu_cores() generic
x86/CPU: Move cpu local function declarations to local header
x86/CPU/AMD: Derive CPU topology from CPUID function 0xB when available
x86/CPU: Modify detect_extended_topology() to return result
x86/CPU/AMD: Calculate last level cache ID from number of sharing threads
x86/CPU: Rename intel_cacheinfo.c to cacheinfo.c
perf/events/amd/uncore: Fix amd_uncore_llc ID to use pre-defined cpu_llc_id
x86/CPU/AMD: Have smp_num_siblings and cpu_llc_id always be present
x86/Centaur: Initialize supported CPU features properly
The counters in client IMC uncore are free running counters, not fixed
counters. It should be corrected. The new infrastructure for free
running counter should be applied.
Introducing a new type SNB_PCI_UNCORE_IMC_DATA for client IMC free
running counters.
Keeping the customized event_init() function to be compatible with old
event encoding.
Clean up other customized event_*() functions.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1525371913-10597-8-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some uncores have customized PMU. For customized PMU, it does not need
to customize everything. For example, it only needs to customize init()
function for client IMC uncore. Other functions like
add()/del()/start()/stop()/read() can use generic code.
Expose the uncore_pmu_event_add/del/start/stop() functions.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1525371913-10597-7-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As of Skylake Server, there are a number of free running counters in
each IIO Box that collect counts of per-box IO clocks and per-port
Input/Output x BW/Utilization.
The free running counters cannot be part of the existing IIO BOX,
because, quoting from Peter Zijlstra:
"This will result in some (probably) unexpected scheduling artifacts.
Probably the only way to really cure that is to have the free running
counters in their own PMU and not share with the GP counters of this
box."
So let's add a new PMU for the free running counters, as suggested.
The free-running counter is read-only and always active. Counting will
be suspended only when the IIO Box is powered down.
There are three types of IIO free-running counters on Skylake server, IO
CLOCKS counter, BANDWIDTH counters and UTILIZATION counters.
IO CLOCKS counter is a clock of IIO box.
BANDWIDTH counters are to count inbound(PCIe->CPU)/outbound(CPU->PCIe)
bandwidth.
UTILIZATION counters are to count input/output utilization.
The bit width of the free-running counters is 36-bits.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1525371913-10597-6-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are a number of free running counters introduced for uncore, which
provide highly valuable information to a wide array of customers.
However, the generic uncore code doesn't support them yet.
The free running counters will be specially handled based on their
unique attributes:
- They are read-only. They cannot be enabled/disabled.
- The event and the counter are always 1:1 mapped. It doesn't need to
be assigned nor tracked by event_list.
- They are always active. It doesn't need to check the availability.
- They have different bit width.
Also, using inline helpers to replace the check for fixed counter and
free running counter.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1525371913-10597-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are a number of free running counters introduced for uncore, which
provide highly valuable information to a wide array of customers.
For example, Skylake Server has IIO free running counters to collect
Input/Output x BW/Utilization.
There is NO event available on the general purpose counters, that is
exactly the same as the free running counters. The generic uncore code
needs to be enhanced to support the new counters.
In the uncore document, there is no event-code assigned to free running
counters. Some events need to be defined to indicate the free running
counters. The events are encoded as event-code + umask-code.
The event-code for all free running counters is 0xff, which is the same
as the fixed counters:
- It has not been decided what code will be used for common events on
future platforms. 0xff is the only one which will definitely not be
used as any common event-code.
- Cannot re-use current events on the general purpose counters. Because
there is NO event available, that is exactly the same as the free
running counters.
- Even in the existing codes, the fixed counters for core, that have the
same event-code, may count different things. Hence, it should not
surprise the users if the free running counters that share the same
event-code also count different things.
Umask will be used to distinguish the counters.
The umask-code is used to distinguish a fixed counter and a free running
counter, and different types of free running counters.
For fixed counters, the umask-code is 0x0X, where X indicates the index
of the fixed counter, which starts from 0.
- Compatible with the old event encoding.
- Currently, there is only one fixed counter. There are still 15
reserved spaces for extension.
For free running counters, the umask-code uses the rest of the space.
It would follow the format of 0xXY:
- X stands for the type of free running counters, which starts from 1.
- Y stands for the index of free running counters of same type, which
starts from 0.
- The free running counters do different thing. It can be categorized to
several types, according to the MSR location, bit width and
definition. E.g. there are three types of IIO free running counters on
Skylake server to monitor IO CLOCKS, BANDWIDTH and UTILIZATION on
different ports. It makes it easy to locate the free running counter
of a specific type.
- So far, there are at most 8 counters of each type. There are still 8
reserved spaces for extension.
Introducing a new index to indicate the free running counters. Only one
index is enough for all free running counters. Because the free running
counters are always active, and the event and free running counter are
always 1:1 mapped, it does not need extra index to indicate the assigned
counter.
Introducing a new data structure to store free running counters related
information for each type. It includes the number of counters, bit
width, base address, offset between counters and offset between boxes.
Introducing several inline helpers to check index for fixed counter and
free running counter, validate free running counter event, and retrieve
the free running counter information according to box and event.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1525371913-10597-4-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no index which is bigger than UNCORE_PMC_IDX_FIXED. The only
exception is client IMC uncore, which has been specially handled.
For generic code, it is not correct to use >= to check fixed counter.
The code quality issue will bring problem when a new counter index is
introduced.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1525371913-10597-3-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For Nehalem and Westmere, there is only one fixed counter for W-Box.
There is no index which is bigger than UNCORE_PMC_IDX_FIXED.
It is not correct to use >= to check fixed counter.
The code quality issue will bring problem when new counter index is
introduced.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1525371913-10597-2-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are two free-running counters for client IMC uncore. The
customized event_init() function hard codes their index to
'UNCORE_PMC_IDX_FIXED' and 'UNCORE_PMC_IDX_FIXED + 1'.
To support the index 'UNCORE_PMC_IDX_FIXED + 1', the generic
uncore_perf_event_update is obscurely hacked.
The code quality issue will bring problems when a new counter index is
introduced into the generic code, for example, a new index for
free-running counter.
Introducing a customized event_read() function for client IMC uncore.
The customized function is copied from previous generic
uncore_pmu_event_read().
The index 'UNCORE_PMC_IDX_FIXED + 1' will be isolated for client IMC
uncore only.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: acme@kernel.org
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/1525371913-10597-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As Miklos reported and suggested:
"This pattern repeats two times in trace_uprobe.c and in
kernel/events/core.c as well:
ret = kern_path(filename, LOOKUP_FOLLOW, &path);
if (ret)
goto fail_address_parse;
inode = igrab(d_inode(path.dentry));
path_put(&path);
And it's wrong. You can only hold a reference to the inode if you
have an active ref to the superblock as well (which is normally
through path.mnt) or holding s_umount.
This way unmounting the containing filesystem while the tracepoint is
active will give you the "VFS: Busy inodes after unmount..." message
and a crash when the inode is finally put.
Solution: store path instead of inode."
This patch fixes the issue in kernel/event/core.c.
Reviewed-and-tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reported-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <kernel-team@fb.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 375637bc52 ("perf/core: Introduce address range filtering")
Link: http://lkml.kernel.org/r/20180418062907.3210386-2-songliubraving@fb.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current logic iterates over CPUID Fn8000001d leafs (Cache Properties)
to detect the last level cache, and derive the last-level cache ID.
However, this information is already available in the cpu_llc_id.
Therefore, make use of it instead.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Link: http://lkml.kernel.org/r/1524864877-111962-3-git-send-email-suravee.suthikulpanit@amd.com
The SMM freeze feature was introduced since PerfMon V2. But the current
code unconditionally enables the feature for all platforms. It can
generate #GP exception, if the related FREEZE_WHILE_SMM bit is set for
the machine with PerfMon V1.
To disable the feature for PerfMon V1, perf needs to
- Remove the freeze_on_smi sysfs entry by moving intel_pmu_attrs to
intel_pmu, which is only applied to PerfMon V2 and later.
- Check the PerfMon version before flipping the SMM bit when starting CPU
Fixes: 6089327f54 ("perf/x86: Add sysfs entry to freeze counters on SMI")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ak@linux.intel.com
Cc: eranian@google.com
Cc: acme@redhat.com
Link: https://lkml.kernel.org/r/1524682637-63219-1-git-send-email-kan.liang@linux.intel.com
SBOX on some Broadwell CPUs is broken because it's enabled unconditionally
despite the fact that there are no SBOXes available.
Check the Power Control Unit CAPID4 register to determine the number of
available SBOXes on the particular CPU before trying to enable them. If
there are none, nullify the SBOX descriptor so it isn't tried to be
initialized.
Signed-off-by: Oskar Senft <osk@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mark van Dijk <mark@voidzero.net>
Reviewed-by: Kan Liang <kan.liang@intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: ak@linux.intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Link: https://lkml.kernel.org/r/1521810690-2576-2-git-send-email-kan.liang@linux.intel.com
This reverts commit 3b94a89166 ("perf/x86/intel/uncore: Remove
SBOX support for Broadwell server")
Revert because there exists a proper workaround for Broadwell-EP servers
without SBOX now. Note that BDX-DE does not have a SBOX.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kan Liang <kan.liang@intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: ak@linux.intel.com
Cc: osk@google.com
Cc: mark@voidzero.net
Link: https://lkml.kernel.org/r/1521810690-2576-1-git-send-email-kan.liang@linux.intel.com
This patch removes a redundant store on regs->flags introduced
by commit:
71eb9ee959 ("perf/x86/intel: Fix linear IP of PEBS real_ip on Haswell and later CPUs")
We were clearing the PERF_EFLAGS_EXACT but it was overwritten by
regs->flags = pebs->flags later on.
The PERF_EFLAGS_EXACT is a software flag using bit 3 of regs->flags.
X86 marks this bit as Reserved. To make sure this bit is zero before
we do any IP processing, we clear it explicitly.
Patch also removes the following assignment:
regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM);
Because there is no regs->flags to preserve anymore because
set_linear_ip() is not called until later.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1522909791-32498-1-git-send-email-eranian@google.com
[ Improve capitalization, punctuation and clarity of comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 timer updates from Ingo Molnar:
"Two changes: add the new convert_art_ns_to_tsc() API for upcoming
Intel Goldmont+ drivers, and remove the obsolete rdtscll() API"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsc: Get rid of rdtscll()
x86/tsc: Convert ART in nanoseconds to TSC
This is a cosmetic patch that deals with the address filter structure's
ambiguous fields 'filter' and 'range'. The former stands to mean that the
filter's *action* should be to filter the traces to its address range if
it's set or stop tracing if it's unset. This is confusing and hard on the
eyes, so this patch replaces it with 'action' enum. The 'range' field is
completely redundant (meaning that the filter is an address range as
opposed to a single address trigger), as we can use zero size to mean the
same thing.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20180329120648.11902-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
this patch fix a bug in how the pebs->real_ip is handled in the PEBS
handler. real_ip only exists in Haswell and later processor. It is
actually the eventing IP, i.e., where the event occurred. As opposed
to the pebs->ip which is the PEBS interrupt IP which is always off
by one.
The problem is that the real_ip just like the IP needs to be fixed up
because PEBS does not record all the machine state registers, and
in particular the code segement (cs). This is why we have the set_linear_ip()
function. The problem was that set_linear_ip() was only used on the pebs->ip
and not the pebs->real_ip.
We have profiles which ran into invalid callstacks because of this.
Here is an example:
..... 0: ffffffffffffff80 recent entry, marker kernel v
..... 1: 000000000040044d <= user address in kernel space!
..... 2: fffffffffffffe00 marker enter user v
..... 3: 000000000040044d
..... 4: 00000000004004b6 oldest entry
Debugging output in get_perf_callchain():
[ 857.769909] CALLCHAIN: CPU8 ip=40044d regs->cs=10 user_mode(regs)=0
The problem is that the kernel entry in 1: points to a user level
address. How can that be?
The reason is that with PEBS sampling the instruction that caused the event
to occur and the instruction where the CPU was when the interrupt was posted
may be far apart. And sometime during that time window, the privilege level may
change. This happens, for instance, when the PEBS sample is taken close to a
kernel entry point. Here PEBS, eventing IP (real_ip) captured a user level
instruction. But by the time the PMU interrupt fired, the processor had already
entered kernel space. This is why the debug output shows a user address with
user_mode() false.
The problem comes from PEBS not recording the code segment (cs) register.
The register is used in x86_64 to determine if executing in kernel vs user
space. This is okay because the kernel has a software workaround called
set_linear_ip(). But the issue in setup_pebs_sample_data() is that
set_linear_ip() is never called on the real_ip value when it is available
(Haswell and later) and precise_ip > 1.
This patch fixes this problem and eliminates the callchain discrepancy.
The patch restructures the code around set_linear_ip() to minimize the number
of times the IP has to be set.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1521788507-10231-1-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the cherry-picked perf/urgent commit merged separately we can now
merge all the fixes without conflicts.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 99770737ca ("x86/asm/tsc: Add rdtscll() merge helper") added
rdtscll() in August 2015 along with the comment:
/* Deprecated, keep it for a cycle for easier merging: */
12 cycles later it's really overdue for removal.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The number of CHAs is miscalculated on multi-domain PCI Skylake server systems,
resulting in an uncore driver initialization error.
Gary Kroening explains:
"For systems with a single PCI segment, it is sufficient to look for the
bus number to change in order to determine that all of the CHa's have
been counted for a single socket.
However, for multi PCI segment systems, each socket is given a new
segment and the bus number does NOT change. So looking only for the
bus number to change ends up counting all of the CHa's on all sockets
in the system. This leads to writing CPU MSRs beyond a valid range and
causes an error in ivbep_uncore_msr_init_box()."
To fix this bug, query the number of CHAs from the CAPID6 register:
it should read bits 27:0 in the CAPID6 register located at
Device 30, Function 3, Offset 0x9C. These 28 bits form a bit vector
of available LLC slices and the CHAs that manage those slices.
Reported-by: Kroening, Gary <gary.kroening@hpe.com>
Tested-by: Kroening, Gary <gary.kroening@hpe.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: abanman@hpe.com
Cc: dimitri.sivanich@hpe.com
Cc: hpa@zytor.com
Cc: mike.travis@hpe.com
Cc: russ.anderson@hpe.com
Fixes: cd34cd97b7 ("perf/x86/intel/uncore: Add Skylake server uncore support")
Link: http://lkml.kernel.org/r/1520967094-13219-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'freerunning PEBS' and 'large PEBS' are the same thing. Both of these
names appear in the code and in the API, which causes confusion.
Rename 'freerunning PEBS' to 'large PEBS' to unify the code,
which eliminates the confusion.
No functional change.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1520865937-22910-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We intended to clear the lowest 6 bits but because of a type bug we
clear the high 32 bits as well. Andi says that periods are rarely more
than U32_MAX so this bug probably doesn't have a huge runtime impact.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 294fe0f52a ("perf/x86/intel: Add INST_RETIRED.ALL workarounds")
Link: http://lkml.kernel.org/r/20180317115216.GB4035@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Userspace RDPMC cannot possibly work for large PEBS, which was introduced in:
b8241d2069 ("perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold)")
When the PEBS interrupt threshold is larger than one, there is no way
to get exact auto-reload times and value for userspace RDPMC. Disable
the userspace RDPMC usage when large PEBS is enabled.
The only exception is when the PEBS interrupt threshold is 1, in which
case user-space RDPMC works well even with auto-reload events.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Fixes: b8241d2069 ("perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold)")
Link: http://lkml.kernel.org/r/1518474035-21006-6-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
(cherry picked from commit 1af22eba24)
Now that all the grouping is done with RB trees, we no longer need
group_entry and can replace the whole thing with sibling_list.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexey Budankov <alexey.budankov@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Carrillo-Cisneros <davidcc@google.com>
Cc: Dmitri Prokhorov <Dmitry.Prohorov@intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valery Cherepennikov <valery.cherepennikov@intel.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Userspace RDPMC cannot possibly work for large PEBS, which was introduced in:
b8241d2069 ("perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold)")
When the PEBS interrupt threshold is larger than one, there is no way
to get exact auto-reload times and value for userspace RDPMC. Disable
the userspace RDPMC usage when large PEBS is enabled.
The only exception is when the PEBS interrupt threshold is 1, in which
case user-space RDPMC works well even with auto-reload events.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Fixes: b8241d2069 ("perf/x86/intel: Implement batched PEBS interrupt handling (large PEBS interrupt threshold)")
Link: http://lkml.kernel.org/r/1518474035-21006-6-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no way to get exact auto-reload times and values which are needed
for event updates unless we flush the PEBS buffer.
Introduce intel_pmu_auto_reload_read() to drain the PEBS buffer for
auto reload event. To prevent races with the hardware, we can only
call drain_pebs() when the PMU is disabled.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/1518474035-21006-4-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a bug when reading event->count with large PEBS enabled.
Here is an example:
# ./read_count
0x71f0
0x122c0
0x1000000001c54
0x100000001257d
0x200000000bdc5
In fixed period mode, the auto-reload mechanism could be enabled for
PEBS events, but the calculation of event->count does not take the
auto-reload values into account.
Anyone who reads event->count will get the wrong result, e.g x86_pmu_read().
This bug was introduced with the auto-reload mechanism enabled since
commit:
851559e35f ("perf/x86/intel: Use the PEBS auto reload mechanism when possible")
Introduce intel_pmu_save_and_restart_reload() to calculate the
event->count only for auto-reload.
Since the counter increments a negative counter value and overflows on
the sign switch, giving the interval:
[-period, 0]
the difference between two consequtive reads is:
A) value2 - value1;
when no overflows have happened in between,
B) (0 - value1) + (value2 - (-period));
when one overflow happened in between,
C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
when @n overflows happened in between.
Here A) is the obvious difference, B) is the extension to the discrete
interval, where the first term is to the top of the interval and the
second term is from the bottom of the next interval and C) the extension
to multiple intervals, where the middle term is the whole intervals
covered.
The equation for all cases is:
value2 - value1 + n * period
Previously the event->count is updated right before the sample output.
But for case A, there is no PEBS record ready. It needs to be specially
handled.
Remove the auto-reload code from x86_perf_event_set_period() since
we'll not longer call that function in this case.
Based-on-code-from: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Fixes: 851559e35f ("perf/x86/intel: Use the PEBS auto reload mechanism when possible")
Link: http://lkml.kernel.org/r/1518474035-21006-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The PMU is disabled in intel_pmu_handle_irq(), but cpuc->enabled is not updated
accordingly.
This is fine in current usage because no-one checks it - but fix it
for future code: for example, the drain_pebs() will be modified to
fix an auto-reload bug.
Properly save/restore the old PMU state.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: kernel test robot <fengguang.wu@intel.com>
Link: http://lkml.kernel.org/r/6f44ee84-56f8-79f1-559b-08e371eaeb78@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Large fixed period values could be truncated on Broadwell, for example:
perf record -e cycles -c 10000000000
Here the fixed period is 0x2540BE400, but the period which finally applied is
0x540BE400 - which is wrong.
The reason is that x86_pmu::limit_period() uses an u32 parameter, so the
high 32 bits of 'period' get truncated.
This bug was introduced in:
commit 294fe0f52a ("perf/x86/intel: Add INST_RETIRED.ALL workarounds")
It's safe to use u64 instead of u32:
- Although the 'left' is s64, the value of 'left' must be positive when
calling limit_period().
- bdw_limit_period() only modifies the lowest 6 bits, it doesn't touch
the higher 32 bits.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 294fe0f52a ("perf/x86/intel: Add INST_RETIRED.ALL workarounds")
Link: http://lkml.kernel.org/r/1519926894-3520-1-git-send-email-kan.liang@linux.intel.com
[ Rewrote unacceptably bad changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no event extension (bit 21) for SKX UPI, so
use 'event' instead of 'event_ext'.
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: cd34cd97b7 ("perf/x86/intel/uncore: Add Skylake server uncore support")
Link: http://lkml.kernel.org/r/1520004150-4855-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 PTI and Spectre related fixes and updates from Ingo Molnar:
"Here's the latest set of Spectre and PTI related fixes and updates:
Spectre:
- Add entry code register clearing to reduce the Spectre attack
surface
- Update the Spectre microcode blacklist
- Inline the KVM Spectre helpers to get close to v4.14 performance
again.
- Fix indirect_branch_prediction_barrier()
- Fix/improve Spectre related kernel messages
- Fix array_index_nospec_mask() asm constraint
- KVM: fix two MSR handling bugs
PTI:
- Fix a paranoid entry PTI CR3 handling bug
- Fix comments
objtool:
- Fix paranoid_entry() frame pointer warning
- Annotate WARN()-related UD2 as reachable
- Various fixes
- Add Add Peter Zijlstra as objtool co-maintainer
Misc:
- Various x86 entry code self-test fixes
- Improve/simplify entry code stack frame generation and handling
after recent heavy-handed PTI and Spectre changes. (There's two
more WIP improvements expected here.)
- Type fix for cache entries
There's also some low risk non-fix changes I've included in this
branch to reduce backporting conflicts:
- rename a confusing x86_cpu field name
- de-obfuscate the naming of single-TLB flushing primitives"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
x86/entry/64: Fix CR3 restore in paranoid_exit()
x86/cpu: Change type of x86_cache_size variable to unsigned int
x86/spectre: Fix an error message
x86/cpu: Rename cpu_data.x86_mask to cpu_data.x86_stepping
selftests/x86/mpx: Fix incorrect bounds with old _sigfault
x86/mm: Rename flush_tlb_single() and flush_tlb_one() to __flush_tlb_one_[user|kernel]()
x86/speculation: Add <asm/msr-index.h> dependency
nospec: Move array_index_nospec() parameter checking into separate macro
x86/speculation: Fix up array_index_nospec_mask() asm constraint
x86/debug: Use UD2 for WARN()
x86/debug, objtool: Annotate WARN()-related UD2 as reachable
objtool: Fix segfault in ignore_unreachable_insn()
selftests/x86: Disable tests requiring 32-bit support on pure 64-bit systems
selftests/x86: Do not rely on "int $0x80" in single_step_syscall.c
selftests/x86: Do not rely on "int $0x80" in test_mremap_vdso.c
selftests/x86: Fix build bug caused by the 5lvl test which has been moved to the VM directory
selftests/x86/pkeys: Remove unused functions
selftests/x86: Clean up and document sscanf() usage
selftests/x86: Fix vDSO selftest segfault for vsyscall=none
x86/entry/64: Remove the unused 'icebp' macro
...
x86_mask is a confusing name which is hard to associate with the
processor's stepping.
Additionally, correct an indent issue in lib/cpu.c.
Signed-off-by: Jia Zhang <qianyue.zj@alibaba-inc.com>
[ Updated it to more recent kernels. ]
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: tony.luck@intel.com
Link: http://lkml.kernel.org/r/1514771530-70829-1-git-send-email-qianyue.zj@alibaba-inc.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stephane reported that we don't support period for enabling large PEBS
data, which there's no reason for. Adding PERF_SAMPLE_PERIOD into
freerunning flags.
Tested it with:
# perf record -e cycles:P -c 100 --no-timestamp -C 0 --period
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Tested-by: Kan Liang <kan.liang@intel.com>
Tested-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180201083812.11359-4-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Clean up the x86 instruction decoder (Masami Hiramatsu)
- Add new uprobes optimization for PUSH instructions on x86 (Yonghong
Song)
- Add MSR_IA32_THERM_STATUS to the MSR events (Stephane Eranian)
- Fix misc bugs, update documentation, plus various cleanups (Jiri
Olsa)
There's a large number of tooling side improvements:
- Intel-PT/BTS improvements (Adrian Hunter)
- Numerous 'perf trace' improvements (Arnaldo Carvalho de Melo)
- Introduce an errno code to string facility (Hendrik Brueckner)
- Various build system improvements (Jiri Olsa)
- Add support for CoreSight trace decoding by making the perf tools
use the external openCSD (Mathieu Poirier, Tor Jeremiassen)
- Add ARM Statistical Profiling Extensions (SPE) support (Kim
Phillips)
- libtraceevent updates (Steven Rostedt)
- Intel vendor event JSON updates (Andi Kleen)
- Introduce 'perf report --mmaps' and 'perf report --tasks' to show
info present in 'perf.data' (Jiri Olsa, Arnaldo Carvalho de Melo)
- Add infrastructure to record first and last sample time to the
perf.data file header, so that when processing all samples in a
'perf record' session, such as when doing build-id processing, or
when specifically requesting that that info be recorded, use that
in 'perf report --time', that also got support for percent slices
in addition to absolute ones.
I.e. now it is possible to ask for the samples in the 10%-20% time
slice of a perf.data file (Jin Yao)
- Allow system wide 'perf stat --per-thread', sorting the result (Jin
Yao)
E.g.:
[root@jouet ~]# perf stat --per-thread --metrics IPC
^C
Performance counter stats for 'system wide':
make-22229 23,012,094,032 inst_retired.any # 0.8 IPC
cc1-22419 692,027,497 inst_retired.any # 0.8 IPC
gcc-22418 328,231,855 inst_retired.any # 0.9 IPC
cc1-22509 220,853,647 inst_retired.any # 0.8 IPC
gcc-22486 199,874,810 inst_retired.any # 1.0 IPC
as-22466 177,896,365 inst_retired.any # 0.9 IPC
cc1-22465 150,732,374 inst_retired.any # 0.8 IPC
gcc-22508 112,555,593 inst_retired.any # 0.9 IPC
cc1-22487 108,964,079 inst_retired.any # 0.7 IPC
qemu-system-x86-2697 21,330,550 inst_retired.any # 0.3 IPC
systemd-journal-551 20,642,951 inst_retired.any # 0.4 IPC
docker-containe-17651 9,552,892 inst_retired.any # 0.5 IPC
dockerd-current-9809 7,528,586 inst_retired.any # 0.5 IPC
make-22153 12,504,194,380 inst_retired.any # 0.8 IPC
python2-22429 12,081,290,954 inst_retired.any # 0.8 IPC
<SNIP>
python2-22429 15,026,328,103 cpu_clk_unhalted.thread
cc1-22419 826,660,193 cpu_clk_unhalted.thread
gcc-22418 365,321,295 cpu_clk_unhalted.thread
cc1-22509 279,169,362 cpu_clk_unhalted.thread
gcc-22486 210,156,950 cpu_clk_unhalted.thread
<SNIP>
5.638075538 seconds time elapsed
[root@jouet ~]#
- Improve shell auto-completion of perf events (Jin Yao)
- 'perf probe' improvements (Masami Hiramatsu)
- Improve PMU infrastructure to support amp64's ThunderX2
implementation defined core events (Ganapatrao Kulkarni)
- Various annotation related improvements and fixes (Thomas Richter)
- Clarify usage of 'overwrite' and 'backward' in the evlist/mmap
code, removing the 'overwrite' parameter from several functions as
it was always used it as 'false' (Wang Nan)
- Fix/improve 'perf record' reverse recording support (Wang Nan)
- Improve command line options documentation (Sihyeon Jang)
- Optimize sample parsing for ordering events, where we don't need to
parse all the PERF_SAMPLE_ bits, just the ones leading to the
timestamp needed to reorder events (Jiri Olsa)
- Generalize the annotation code to support other source information
besides objdump/DWARF obtained ones, starting with python scripts,
that will is slated to be merged soon (Jiri Olsa)
- ... and a lot more that I failed to list, see the shortlog and
changelog for details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (262 commits)
perf trace beauty flock: Move to separate object file
perf evlist: Remove fcntl.h from evlist.h
perf trace beauty futex: Beautify FUTEX_BITSET_MATCH_ANY
perf trace: Do not print from time delta for interrupted syscall lines
perf trace: Add --print-sample
perf bpf: Remove misplaced __maybe_unused attribute
MAINTAINERS: Adding entry for CoreSight trace decoding
perf tools: Add mechanic to synthesise CoreSight trace packets
perf tools: Add full support for CoreSight trace decoding
pert tools: Add queue management functionality
perf tools: Add functionality to communicate with the openCSD decoder
perf tools: Add support for decoding CoreSight trace data
perf tools: Add decoder mechanic to support dumping trace data
perf tools: Add processing of coresight metadata
perf tools: Add initial entry point for decoder CoreSight traces
perf tools: Integrating the CoreSight decoding library
perf vendor events intel: Update IvyTown files to V20
perf vendor events intel: Update IvyBridge files to V20
perf vendor events intel: Update BroadwellDE events to V7
perf vendor events intel: Update SkylakeX events to V1.06
...
Pull x86 fixes from Thomas Gleixner:
"A set of small fixes for 4.15:
- Fix vmapped stack synchronization on systems with 4-level paging
and a large amount of memory caused by a missing 5-level folding
which made the pgd synchronization logic to fail and causing double
faults.
- Add a missing sanity check in the vmalloc_fault() logic on 5-level
paging systems.
- Bring back protection against accessing a freed initrd in the
microcode loader which was lost by a wrong merge conflict
resolution.
- Extend the Broadwell micro code loading sanity check.
- Add a missing ENDPROC annotation in ftrace assembly code which
makes ORC unhappy.
- Prevent loading the AMD power module on !AMD platforms. The load
itself is uncritical, but an unload attempt results in a kernel
crash.
- Update Peter Anvins role in the MAINTAINERS file"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ftrace: Add one more ENDPROC annotation
x86: Mark hpa as a "Designated Reviewer" for the time being
x86/mm/64: Tighten up vmalloc_fault() sanity checks on 5-level kernels
x86/mm/64: Fix vmapped stack syncing on very-large-memory 4-level systems
x86/microcode: Fix again accessing initrd after having been freed
x86/microcode/intel: Extend BDW late-loading further with LLC size check
perf/x86/amd/power: Do not load AMD power module on !AMD platforms
The AMD power module can be loaded on non AMD platforms, but unload fails
with the following Oops:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: __list_del_entry_valid+0x29/0x90
Call Trace:
perf_pmu_unregister+0x25/0xf0
amd_power_pmu_exit+0x1c/0xd23 [power]
SyS_delete_module+0x1a8/0x2b0
? exit_to_usermode_loop+0x8f/0xb0
entry_SYSCALL_64_fastpath+0x20/0x83
Return -ENODEV instead of 0 from the module init function if the CPU does
not match.
Fixes: c7ab62bfbe ("perf/x86/amd/power: Add AMD accumulated power reporting mechanism")
Signed-off-by: Xiao Liang <xiliang@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180122061252.6394-1-xiliang@redhat.com
Pull x86 perf fix from Ingo Molnar:
"An Intel RAPL events fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/rapl: Fix Haswell and Broadwell server RAPL event
Pull x86 pti updates from Thomas Gleixner:
"This contains:
- a PTI bugfix to avoid setting reserved CR3 bits when PCID is
disabled. This seems to cause issues on a virtual machine at least
and is incorrect according to the AMD manual.
- a PTI bugfix which disables the perf BTS facility if PTI is
enabled. The BTS AUX buffer is not globally visible and causes the
CPU to fault when the mapping disappears on switching CR3 to user
space. A full fix which restores BTS on PTI is non trivial and will
be worked on.
- PTI bugfixes for EFI and trusted boot which make sure that the user
space visible page table entries have the NX bit cleared
- removal of dead code in the PTI pagetable setup functions
- add PTI documentation
- add a selftest for vsyscall to verify that the kernel actually
implements what it advertises.
- a sysfs interface to expose vulnerability and mitigation
information so there is a coherent way for users to retrieve the
status.
- the initial spectre_v2 mitigations, aka retpoline:
+ The necessary ASM thunk and compiler support
+ The ASM variants of retpoline and the conversion of affected ASM
code
+ Make LFENCE serializing on AMD so it can be used as speculation
trap
+ The RSB fill after vmexit
- initial objtool support for retpoline
As I said in the status mail this is the most of the set of patches
which should go into 4.15 except two straight forward patches still on
hold:
- the retpoline add on of LFENCE which waits for ACKs
- the RSB fill after context switch
Both should be ready to go early next week and with that we'll have
covered the major holes of spectre_v2 and go back to normality"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86,perf: Disable intel_bts when PTI
security/Kconfig: Correct the Documentation reference for PTI
x86/pti: Fix !PCID and sanitize defines
selftests/x86: Add test_vsyscall
x86/retpoline: Fill return stack buffer on vmexit
x86/retpoline/irq32: Convert assembler indirect jumps
x86/retpoline/checksum32: Convert assembler indirect jumps
x86/retpoline/xen: Convert Xen hypercall indirect jumps
x86/retpoline/hyperv: Convert assembler indirect jumps
x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
x86/retpoline/entry: Convert entry assembler indirect jumps
x86/retpoline/crypto: Convert crypto assembler indirect jumps
x86/spectre: Add boot time option to select Spectre v2 mitigation
x86/retpoline: Add initial retpoline support
objtool: Allow alternatives to be ignored
objtool: Detect jumps to retpoline thunks
x86/pti: Make unpoison of pgd for trusted boot work for real
x86/alternatives: Fix optimize_nops() checking
sysfs/cpu: Fix typos in vulnerability documentation
x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
...
The intel_bts driver does not use the 'normal' BTS buffer which is exposed
through the cpu_entry_area but instead uses the memory allocated for the
perf AUX buffer.
This obviously comes apart when using PTI because then the kernel mapping;
which includes that AUX buffer memory; disappears. Fixing this requires to
expose a mapping which is visible in all context and that's not trivial.
As a quick fix disable this driver when PTI is enabled to prevent
malfunction.
Fixes: 385ce0ea4c ("x86/mm/pti: Add Kconfig")
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Reported-by: Robert Święcki <robert@swiecki.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: greg@kroah.com
Cc: hughd@google.com
Cc: luto@amacapital.net
Cc: Vince Weaver <vince@deater.net>
Cc: torvalds@linux-foundation.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180114102713.GB6166@worktop.programming.kicks-ass.net
Perf-fuzzer triggers non-existent MSR access in RAPL driver on
Haswell-EX.
Haswell/Broadwell server and client have differnt RAPL events.
Since 'commit 7f2236d0bf ("perf/x86/rapl: Use Intel family macros for
RAPL")', it accidentally assign RAPL client events to server.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux-kernel@vger.kernel.org
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Recent changes made a bit of an inconsistent mess out of arch/x86/events/msr.c,
fix it:
- re-align the initialization tables to be vertically aligned and readable again
- harmonize comment style in terms of punctuation, capitalization and spelling
- use curly braces for multi-condition branches
- remove extra newlines
- simplify the code a bit
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1515169132-3980-1-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds support for the Digital Readout provided by the
IA32_THERM_STATUS MSR (0x19C) on Intel X86 processors. The readout
shows the number of degrees Celcius to the TCC (critical temperature)
supported by the processor. Thus, the larger, the better.
The perf_event support is provided via the msr PMU. The new
logical event is called cpu_thermal_margin. It comes with a unit and
snapshot files. The event shows the current temprature distance (margin).
It is not an accumulating event. The unit is degrees C. The event
is provided per logical CPU to make things simpler but it is the
same for both hyper-threads sharing a physical core.
$ perf stat -I 1000 -a -A -e msr/cpu_thermal_margin/
This will print the temperature for all logical CPUs.
time CPU counts unit events
1.000123741 CPU0 38 C msr/cpu_thermal_margin/
1.000161837 CPU1 37 C msr/cpu_thermal_margin/
1.000187906 CPU2 36 C msr/cpu_thermal_margin/
1.000189046 CPU3 39 C msr/cpu_thermal_margin/
1.000283044 CPU4 40 C msr/cpu_thermal_margin/
1.000344297 CPU5 40 C msr/cpu_thermal_margin/
1.000365832 CPU6 39 C msr/cpu_thermal_margin/
...
In case the temperature margin cannot be read, the reported value would be -1.
Works on all processors supporting the Digital Readout (dtherm in cpuinfo)
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1515169132-3980-1-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull more x86 pti fixes from Thomas Gleixner:
"Another small stash of fixes for fallout from the PTI work:
- Fix the modules vs. KASAN breakage which was caused by making
MODULES_END depend of the fixmap size. That was done when the cpu
entry area moved into the fixmap, but now that we have a separate
map space for that this is causing more issues than it solves.
- Use the proper cache flush methods for the debugstore buffers as
they are mapped/unmapped during runtime and not statically mapped
at boot time like the rest of the cpu entry area.
- Make the map layout of the cpu_entry_area consistent for 4 and 5
level paging and fix the KASLR vaddr_end wreckage.
- Use PER_CPU_EXPORT for per cpu variable and while at it unbreak
nvidia gfx drivers by dropping the GPL export. The subject line of
the commit tells it the other way around, but I noticed that too
late.
- Fix the ASM alternative macros so they can be used in the middle of
an inline asm block.
- Rename the BUG_CPU_INSECURE flag to BUG_CPU_MELTDOWN so the attack
vector is properly identified. The Spectre mitigations will come
with their own bug bits later"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pti: Rename BUG_CPU_INSECURE to BUG_CPU_MELTDOWN
x86/alternatives: Add missing '\n' at end of ALTERNATIVE inline asm
x86/tlb: Drop the _GPL from the cpu_tlbstate export
x86/events/intel/ds: Use the proper cache flush method for mapping ds buffers
x86/kaslr: Fix the vaddr_end mess
x86/mm: Map cpu_entry_area at the same place on 4/5 level
x86/mm: Set MODULES_END to 0xffffffffff000000
Thomas reported the following warning:
BUG: using smp_processor_id() in preemptible [00000000] code: ovsdb-server/4498
caller is native_flush_tlb_single+0x57/0xc0
native_flush_tlb_single+0x57/0xc0
__set_pte_vaddr+0x2d/0x40
set_pte_vaddr+0x2f/0x40
cea_set_pte+0x30/0x40
ds_update_cea.constprop.4+0x4d/0x70
reserve_ds_buffers+0x159/0x410
x86_reserve_hardware+0x150/0x160
x86_pmu_event_init+0x3e/0x1f0
perf_try_init_event+0x69/0x80
perf_event_alloc+0x652/0x740
SyS_perf_event_open+0x3f6/0xd60
do_syscall_64+0x5c/0x190
set_pte_vaddr is used to map the ds buffers into the cpu entry area, but
there are two problems with that:
1) The resulting flush is not supposed to be called in preemptible context
2) The cpu entry area is supposed to be per CPU, but the debug store
buffers are mapped for all CPUs so these mappings need to be flushed
globally.
Add the necessary preemption protection across the mapping code and flush
TLBs globally.
Fixes: c1961a4631 ("x86/events/intel/ds: Map debug buffers in cpu_entry_area")
Reported-by: Thomas Zeitlhofer <thomas.zeitlhofer+lkml@ze-it.at>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Thomas Zeitlhofer <thomas.zeitlhofer+lkml@ze-it.at>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180104170712.GB3040@hirez.programming.kicks-ass.net
Pull perf fixes from Thomas Gleixner:
- plug a memory leak in the intel pmu init code
- clang fixes
- tooling fix to avoid including kernel headers
- a fix for jvmti to generate correct debug information for inlined
code
- replace backtick with a regular shell function
- fix the build in hardened environments
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Plug memory leak in intel_pmu_init()
x86/asm: Allow again using asm.h when building for the 'bpf' clang target
tools arch s390: Do not include header files from the kernel sources
perf jvmti: Generate correct debug information for inlined code
perf tools: Fix up build in hardened environments
perf tools: Use shell function for perl cflags retrieval
Pull x86 page table isolation updates from Thomas Gleixner:
"This is the final set of enabling page table isolation on x86:
- Infrastructure patches for handling the extra page tables.
- Patches which map the various bits and pieces which are required to
get in and out of user space into the user space visible page
tables.
- The required changes to have CR3 switching in the entry/exit code.
- Optimizations for the CR3 switching along with documentation how
the ASID/PCID mechanism works.
- Updates to dump pagetables to cover the user space page tables for
W+X scans and extra debugfs files to analyze both the kernel and
the user space visible page tables
The whole functionality is compile time controlled via a config switch
and can be turned on/off on the command line as well"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/ldt: Make the LDT mapping RO
x86/mm/dump_pagetables: Allow dumping current pagetables
x86/mm/dump_pagetables: Check user space page table for WX pages
x86/mm/dump_pagetables: Add page table directory to the debugfs VFS hierarchy
x86/mm/pti: Add Kconfig
x86/dumpstack: Indicate in Oops whether PTI is configured and enabled
x86/mm: Clarify the whole ASID/kernel PCID/user PCID naming
x86/mm: Use INVPCID for __native_flush_tlb_single()
x86/mm: Optimize RESTORE_CR3
x86/mm: Use/Fix PCID to optimize user/kernel switches
x86/mm: Abstract switching CR3
x86/mm: Allow flushing for future ASID switches
x86/pti: Map the vsyscall page if needed
x86/pti: Put the LDT in its own PGD if PTI is on
x86/mm/64: Make a full PGD-entry size hole in the memory map
x86/events/intel/ds: Map debug buffers in cpu_entry_area
x86/cpu_entry_area: Add debugstore entries to cpu_entry_area
x86/mm/pti: Map ESPFIX into user space
x86/mm/pti: Share entry text PMD
x86/entry: Align entry text section to PMD boundary
...
A recent commit introduced an extra merge_attr() call in the skylake
branch, which causes a memory leak.
Store the pointer to the extra allocated memory and free it at the end of
the function.
Fixes: a5df70c354 ("perf/x86: Only show format attributes when supported")
Reported-by: Tommi Rantala <tommi.t.rantala@nokia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
The BTS and PEBS buffers both have their virtual addresses programmed into
the hardware. This means that any access to them is performed via the page
tables. The times that the hardware accesses these are entirely dependent
on how the performance monitoring hardware events are set up. In other
words, there is no way for the kernel to tell when the hardware might
access these buffers.
To avoid perf crashes, place 'debug_store' allocate pages and map them into
the cpu_entry_area.
The PEBS fixup buffer does not need this treatment.
[ tglx: Got rid of the kaiser_add_mapping() complication ]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Intel PEBS/BTS debug store is a design trainwreck as it expects virtual
addresses which must be visible in any execution context.
So it is required to make these mappings visible to user space when kernel
page table isolation is active.
Provide enough room for the buffer mappings in the cpu_entry_area so the
buffers are available in the user space visible page tables.
At the point where the kernel side entry area is populated there is no
buffer available yet, but the kernel PMD must be populated. To achieve this
set the entries for these buffers to non present.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ Note, this is a Git cherry-pick of the following commit:
506458efaf ("locking/barriers: Convert users of lockless_dereference() to READ_ONCE()")
... for easier x86 PTI code testing and back-porting. ]
READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it
can be used instead of lockless_dereference() without any change in
semantics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ Note, this is a Git cherry-pick of the following commit:
a47ba4d77e ("perf/x86: Enable free running PEBS for REGS_USER/INTR")
... for easier x86 PTI code testing and back-porting. ]
Currently free running PEBS is disabled when user or interrupt
registers are requested. Most of the registers are actually
available in the PEBS record and can be supported.
So we just need to check for the supported registers and then
allow it: it is all except for the segment register.
For user registers this only works when the counter is limited
to ring 3 only, so this also needs to be checked.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170831214630.21892-1-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull misc x86 fixes from Ingo Molnar:
- topology enumeration fixes
- KASAN fix
- two entry fixes (not yet the big series related to KASLR)
- remove obsolete code
- instruction decoder fix
- better /dev/mem sanity checks, hopefully working better this time
- pkeys fixes
- two ACPI fixes
- 5-level paging related fixes
- UMIP fixes that should make application visible faults more debuggable
- boot fix for weird virtualization environment
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/decoder: Add new TEST instruction pattern
x86/PCI: Remove unused HyperTransport interrupt support
x86/umip: Fix insn_get_code_seg_params()'s return value
x86/boot/KASLR: Remove unused variable
x86/entry/64: Add missing irqflags tracing to native_load_gs_index()
x86/mm/kasan: Don't use vmemmap_populate() to initialize shadow
x86/entry/64: Fix entry_SYSCALL_64_after_hwframe() IRQ tracing
x86/pkeys/selftests: Fix protection keys write() warning
x86/pkeys/selftests: Rename 'si_pkey' to 'siginfo_pkey'
x86/mpx/selftests: Fix up weird arrays
x86/pkeys: Update documentation about availability
x86/umip: Print a warning into the syslog if UMIP-protected instructions are used
x86/smpboot: Fix __max_logical_packages estimate
x86/topology: Avoid wasting 128k for package id array
perf/x86/intel/uncore: Cache logical pkg id in uncore driver
x86/acpi: Reduce code duplication in mp_override_legacy_irq()
x86/acpi: Handle SCI interrupts above legacy space gracefully
x86/boot: Fix boot failure when SMP MP-table is based at 0
x86/mm: Limit mmap() of /dev/mem to valid physical addresses
x86/selftests: Add test for mapping placement for 5-level paging
...
Pull perf fixes from Ingo Molnar:
"Misc fixes: two PMU driver fixes and a memory leak fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Fix memory leak triggered by perf --namespace
perf/x86/intel/uncore: Add event constraint for BDX PCU
perf/x86/intel: Hide TSX events when RTM is not supported
The SNB-EP uncore driver is the only user of topology_phys_to_logical_pkg
in a performance critical path.
Change it query the logical pkg ID only once at initialization time and
then cache it in box structure. This allows to change the logical package
management without affecting the performance critical path.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: He Chen <he.chen@linux.intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Piotr Luc <piotr.luc@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arvind Yadav <arvind.yadav.cs@gmail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20171114124257.22013-2-prarit@redhat.com
Pull x86 cleanups from Ingo Molnar:
"Two changes: Propagate const/__initconst, and use ARRAY_SIZE() some
more"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/events/amd/iommu: Make iommu_pmu const and __initconst
x86: Use ARRAY_SIZE
Pull perf updates from Ingo Molnar:
"The main changes in this cycle were:
Kernel:
- kprobes updates: use better W^X patterns for code modifications,
improve optprobes, remove jprobes. (Masami Hiramatsu, Kees Cook)
- core fixes: event timekeeping (enabled/running times statistics)
fixes, perf_event_read() locking fixes and cleanups, etc. (Peter
Zijlstra)
- Extend x86 Intel free-running PEBS support and support x86
user-register sampling in perf record and perf script. (Andi Kleen)
Tooling:
- Completely rework the way inline frames are handled. Instead of
querying for the inline nodes on-demand in the individual tools, we
now create proper callchain nodes for inlined frames. (Milian
Wolff)
- 'perf trace' updates (Arnaldo Carvalho de Melo)
- Implement a way to print formatted output to per-event files in
'perf script' to facilitate generate flamegraphs, elliminating the
need to write scripts to do that separation (yuzhoujian, Arnaldo
Carvalho de Melo)
- Update vendor events JSON metrics for Intel's Broadwell, Broadwell
Server, Haswell, Haswell Server, IvyBridge, IvyTown, JakeTown,
Sandy Bridge, Skylake, SkyLake Server - and Goldmont Plus V1 (Andi
Kleen, Kan Liang)
- Multithread the synthesizing of PERF_RECORD_ events for
pre-existing threads in 'perf top', speeding up that phase, greatly
improving the user experience in systems such as Intel's Knights
Mill (Kan Liang)
- Introduce the concept of weak groups in 'perf stat': try to set up
a group, but if it's not schedulable fallback to not using a group.
That gives us the best of both worlds: groups if they work, but
still a usable fallback if they don't. E.g: (Andi Kleen)
- perf sched timehist enhancements (David Ahern)
- ... various other enhancements, updates, cleanups and fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (139 commits)
kprobes: Don't spam the build log with deprecation warnings
arm/kprobes: Remove jprobe test case
arm/kprobes: Fix kretprobe test to check correct counter
perf srcline: Show correct function name for srcline of callchains
perf srcline: Fix memory leak in addr2inlines()
perf trace beauty kcmp: Beautify arguments
perf trace beauty: Implement pid_fd beautifier
tools include uapi: Grab a copy of linux/kcmp.h
perf callchain: Fix double mapping al->addr for children without self period
perf stat: Make --per-thread update shadow stats to show metrics
perf stat: Move the shadow stats scale computation in perf_stat__update_shadow_stats
perf tools: Add perf_data_file__write function
perf tools: Add struct perf_data_file
perf tools: Rename struct perf_data_file to perf_data
perf script: Print information about per-event-dump files
perf trace beauty prctl: Generate 'option' string table from kernel headers
tools include uapi: Grab a copy of linux/prctl.h
perf script: Allow creating per-event dump files
perf evsel: Restore evsel->priv as a tool private area
perf script: Use event_format__fprintf()
...
0day testing reported a perf test regression on Haswell systems without
RTM. Commit a5df70c35 hides the in_tx/in_tx_cp attributes when RTM is not
available, but the TSX events are still available in sysfs. Due to the
missing attributes the event parser fails on those files.
Don't show the TSX events in sysfs when RTM is not available on
Haswell/Broadwell/Skylake.
Fixes: a5df70c354 (perf/x86: Only show format attributes when supported)
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Tested-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20171109000718.14137-1-andi@firstfloor.org
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA
6dVh26uchcEQLN/XqUDt
=x306
-----END PGP SIGNATURE-----
Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
d2878d642a ("perf/x86/intel/bts: Disallow use by unprivileged users on paranoid systems")
... adds a privilege check in the exactly wrong place in the event init path:
after the 'LBR exclusive' reference has been taken, and doesn't release it
in the case of insufficient privileges. After this, nobody in the system
gets to use PT or LBR afterwards.
This patch moves the privilege check to where it should have been in the
first place.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d2878d642a ("perf/x86/intel/bts: Disallow use by unprivileged users on paranoid systems")
Link: http://lkml.kernel.org/r/20171023123533.16973-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it
can be used instead of lockless_dereference() without any change in
semantics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf fixes from Ingo Molnar:
"Some tooling fixes plus three kernel fixes: a memory leak fix, a
statistics fix and a crash fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix memory leaks on allocation failures
perf/core: Fix cgroup time when scheduling descendants
perf/core: Avoid freeing static PMU contexts when PMU is unregistered
tools include uapi bpf.h: Sync kernel ABI header with tooling header
perf pmu: Unbreak perf record for arm/arm64 with events with explicit PMU
perf script: Add missing separator for "-F ip,brstack" (and brstackoff)
perf callchain: Compare dsos (as well) for CCKEY_FUNCTION
Currently if an allocation fails then the error return paths
don't free up any currently allocated pmus[].boxes and pmus causing
a memory leak. Add an error clean up exit path that frees these
objects.
Detected by CoverityScan, CID#711632 ("Resource Leak")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Fixes: 087bfbb032 ("perf/x86: Add generic Intel uncore PMU support")
Link: http://lkml.kernel.org/r/20171009172655.6132-1-colin.king@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull watchddog clean-up and fixes from Thomas Gleixner:
"The watchdog (hard/softlockup detector) code is pretty much broken in
its current state. The patch series addresses this by removing all
duct tape and refactoring it into a workable state.
The reasons why I ask for inclusion that late in the cycle are:
1) The code causes lockdep splats vs. hotplug locking which get
reported over and over. Unfortunately there is no easy fix.
2) The risk of breakage is minimal because it's already broken
3) As 4.14 is a long term stable kernel, I prefer to have working
watchdog code in that and the lockdep issues resolved. I wouldn't
ask you to pull if 4.14 wouldn't be a LTS kernel or if the
solution would be easy to backport.
4) The series was around before the merge window opened, but then got
delayed due to the UP failure caused by the for_each_cpu()
surprise which we discussed recently.
Changes vs. V1:
- Addressed your review points
- Addressed the warning in the powerpc code which was discovered late
- Changed two function names which made sense up to a certain point
in the series. Now they match what they do in the end.
- Fixed a 'unused variable' warning, which got not detected by the
intel robot. I triggered it when trying all possible related config
combinations manually. Randconfig testing seems not random enough.
The changes have been tested by and reviewed by Don Zickus and tested
and acked by Micheal Ellerman for powerpc"
* 'core-watchdog-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
watchdog/core: Put softlockup_threads_initialized under ifdef guard
watchdog/core: Rename some softlockup_* functions
powerpc/watchdog: Make use of watchdog_nmi_probe()
watchdog/core, powerpc: Lock cpus across reconfiguration
watchdog/core, powerpc: Replace watchdog_nmi_reconfigure()
watchdog/hardlockup/perf: Fix spelling mistake: "permanetely" -> "permanently"
watchdog/hardlockup/perf: Cure UP damage
watchdog/hardlockup: Clean up hotplug locking mess
watchdog/hardlockup/perf: Simplify deferred event destroy
watchdog/hardlockup/perf: Use new perf CPU enable mechanism
watchdog/hardlockup/perf: Implement CPU enable replacement
watchdog/hardlockup/perf: Implement init time detection of perf
watchdog/hardlockup/perf: Implement init time perf validation
watchdog/core: Get rid of the racy update loop
watchdog/core, powerpc: Make watchdog_nmi_reconfigure() two stage
watchdog/sysctl: Clean up sysctl variable name space
watchdog/sysctl: Get rid of the #ifdeffery
watchdog/core: Clean up header mess
watchdog/core: Further simplify sysctl handling
watchdog/core: Get rid of the thread teardown/setup dance
...
Currently free running PEBS is disabled when user or interrupt
registers are requested. Most of the registers are actually
available in the PEBS record and can be supported.
So we just need to check for the supported registers and then
allow it: it is all except for the segment register.
For user registers this only works when the counter is limited
to ring 3 only, so this also needs to be checked.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170831214630.21892-1-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The lockup_detector_suspend/resume() interface is broken in several ways
especially as it results in recursive locking of the CPU hotplug lock.
Use the new stop/restart interface in the perf NMI watchdog to temporarily
disable and reenable the already active watchdog events. That's enough to
handle it.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Don Zickus <dzickus@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Link: http://lkml.kernel.org/r/20170912194146.247141871@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 cache quality monitoring update from Thomas Gleixner:
"This update provides a complete rewrite of the Cache Quality
Monitoring (CQM) facility.
The existing CQM support was duct taped into perf with a lot of issues
and the attempts to fix those turned out to be incomplete and
horrible.
After lengthy discussions it was decided to integrate the CQM support
into the Resource Director Technology (RDT) facility, which is the
obvious choise as in hardware CQM is part of RDT. This allowed to add
Memory Bandwidth Monitoring support on top.
As a result the mechanisms for allocating cache/memory bandwidth and
the corresponding monitoring mechanisms are integrated into a single
management facility with a consistent user interface"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/intel_rdt: Turn off most RDT features on Skylake
x86/intel_rdt: Add command line options for resource director technology
x86/intel_rdt: Move special case code for Haswell to a quirk function
x86/intel_rdt: Remove redundant ternary operator on return
x86/intel_rdt/cqm: Improve limbo list processing
x86/intel_rdt/mbm: Fix MBM overflow handler during CPU hotplug
x86/intel_rdt: Modify the intel_pqr_state for better performance
x86/intel_rdt/cqm: Clear the default RMID during hotcpu
x86/intel_rdt: Show bitmask of shareable resource with other executing units
x86/intel_rdt/mbm: Handle counter overflow
x86/intel_rdt/mbm: Add mbm counter initialization
x86/intel_rdt/mbm: Basic counting of MBM events (total and local)
x86/intel_rdt/cqm: Add CPU hotplug support
x86/intel_rdt/cqm: Add sched_in support
x86/intel_rdt: Introduce rdt_enable_key for scheduling
x86/intel_rdt/cqm: Add mount,umount support
x86/intel_rdt/cqm: Add rmdir support
x86/intel_rdt: Separate the ctrl bits from rmdir
x86/intel_rdt/cqm: Add mon_data
x86/intel_rdt: Prepare for RDT monitor data support
...
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Add branch type profiling/tracing support. (Jin Yao)
- Add the PERF_SAMPLE_PHYS_ADDR ABI to allow the tracing/profiling of
physical memory addresses, where the PMU supports it. (Kan Liang)
- Export some PMU capability details in the new
/sys/bus/event_source/devices/cpu/caps/ sysfs directory. (Andi
Kleen)
- Aux data fixes and updates (Will Deacon)
- kprobes fixes and updates (Masami Hiramatsu)
- AMD uncore PMU driver fixes and updates (Janakarajan Natarajan)
On the tooling side, here's a (limited!) list of highlights - there
were many other changes that I could not list, see the shortlog and
git history for details:
UI improvements:
- Implement a visual marker for fused x86 instructions in the
annotate TUI browser, available now in 'perf report', more work
needed to have it available as well in 'perf top' (Jin Yao)
Further explanation from one of Jin's patches:
│ ┌──cmpl $0x0,argp_program_version_hook
81.93 │ ├──je 20
│ │ lock cmpxchg %esi,0x38a9a4(%rip)
│ │↓ jne 29
│ │↓ jmp 43
11.47 │20:└─→cmpxch %esi,0x38a999(%rip)
That means the cmpl+je is a fused instruction pair and they should
be considered together.
- Record the branch type and then show statistics and info about in
callchain entries (Jin Yao)
Example from one of Jin's patches:
# perf record -g -j any,save_type
# perf report --branch-history --stdio --no-children
38.50% div.c:45 [.] main div
|
---main div.c:42 (RET CROSS_2M cycles:2)
compute_flag div.c:28 (cycles:2)
compute_flag div.c:27 (RET CROSS_2M cycles:1)
rand rand.c:28 (cycles:1)
rand rand.c:28 (RET CROSS_2M cycles:1)
__random random.c:298 (cycles:1)
__random random.c:297 (COND_BWD CROSS_2M cycles:1)
__random random.c:295 (cycles:1)
__random random.c:295 (COND_BWD CROSS_2M cycles:1)
__random random.c:295 (cycles:1)
__random random.c:295 (RET CROSS_2M cycles:9)
namespaces support:
- Add initial support for namespaces, using setns to access files in
namespaces, grabbing their build-ids, etc. (Krister Johansen)
perf trace enhancements:
- Beautify pkey_{alloc,free,mprotect} arguments in 'perf trace'
(Arnaldo Carvalho de Melo)
- Add initial 'clone' syscall args beautifier in 'perf trace'
(Arnaldo Carvalho de Melo)
- Ignore 'fd' and 'offset' args for MAP_ANONYMOUS in 'perf trace'
(Arnaldo Carvalho de Melo)
- Beautifiers for the 'cmd' arg of several ioctl types, including:
sound, DRM, KVM, vhost virtio and perf_events. (Arnaldo Carvalho de
Melo)
- Add PERF_SAMPLE_CALLCHAIN and PERF_RECORD_MMAP[2] to 'perf data'
CTF conversion, allowing CTF trace visualization tools to show
callchains and to resolve symbols (Geneviève Bastien)
- Beautify the fcntl syscall, which is an interesting one in the
sense that infrastructure had to be put in place to change the
formatters of some arguments according to the value in a previous
one, i.e. cmd dictates how arg and the syscall return will be
formatted. (Arnaldo Carvalho de Melo
perf stat enhancements:
- Use group read for event groups in 'perf stat', reducing overhead
when groups are defined in the event specification, i.e. when using
{} to enclose a list of events, asking them to be read at the same
time, e.g.: "perf stat -e '{cycles,instructions}'" (Jiri Olsa)
pipe mode improvements:
- Process tracing data in 'perf annotate' pipe mode (David
Carrillo-Cisneros)
- Add header record types to pipe-mode, now this command:
$ perf record -o - -e cycles sleep 1 | perf report --stdio --header
Will show the same as in non-pipe mode, i.e. involving a perf.data
file (David Carrillo-Cisneros)
Vendor specific hardware event support updates/enhancements:
- Update POWER9 vendor events tables (Sukadev Bhattiprolu)
- Add POWER9 PMU events Sukadev (Bhattiprolu)
- Support additional POWER8+ PVR in PMU mapfile (Shriya)
- Add Skylake server uncore JSON vendor events (Andi Kleen)
- Support exporting Intel PT data to sqlite3 with python perf
scripts, this is in addition to the postgresql support that was
already there (Adrian Hunter)"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (253 commits)
perf symbols: Fix plt entry calculation for ARM and AARCH64
perf probe: Fix kprobe blacklist checking condition
perf/x86: Fix caps/ for !Intel
perf/core, x86: Add PERF_SAMPLE_PHYS_ADDR
perf/core, pt, bts: Get rid of itrace_started
perf trace beauty: Beautify pkey_{alloc,free,mprotect} arguments
tools headers: Sync cpu features kernel ABI headers with tooling headers
perf tools: Pass full path of FEATURES_DUMP
perf tools: Robustify detection of clang binary
tools lib: Allow external definition of CC, AR and LD
perf tools: Allow external definition of flex and bison binary names
tools build tests: Don't hardcode gcc name
perf report: Group stat values on global event id
perf values: Zero value buffers
perf values: Fix allocation check
perf values: Fix thread index bug
perf report: Add dump_read function
perf record: Set read_format for inherit_stat
perf c2c: Fix remote HITM detection for Skylake
perf tools: Fix static build with newer toolchains
...
Move the 'max_precise' capability into generic x86 code where it
belongs. This fixes a sysfs splat on !Intel systems where we fail to set
x86_pmu_caps_group.atts.
Reported-and-tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Fixes: 22688d1c20f5 ("x86/perf: Export some PMU attributes in caps/ directory")
Link: http://lkml.kernel.org/r/20170828104650.2u3rsim4jafyjzv2@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For understanding how the workload maps to memory channels and hardware
behavior, it's very important to collect address maps with physical
addresses. For example, 3D XPoint access can only be found by filtering
the physical address.
Add a new sample type for physical address.
perf already has a facility to collect data virtual address. This patch
introduces a function to convert the virtual address to physical address.
The function is quite generic and can be extended to any architecture as
long as a virtual address is provided.
- For kernel direct mapping addresses, virt_to_phys is used to convert
the virtual addresses to physical address.
- For user virtual addresses, __get_user_pages_fast is used to walk the
pages tables for user physical address.
- This does not work for vmalloc addresses right now. These are not
resolved, but code to do that could be added.
The new sample type requires collecting the virtual address. The
virtual address will not be output unless SAMPLE_ADDR is applied.
For security, the physical address can only be exposed to root or
privileged user.
Tested-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: mpe@ellerman.id.au
Link: http://lkml.kernel.org/r/1503967969-48278-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I just noticed that hw.itrace_started and hw.config are aliased to the
same location. Now, the PT driver happens to use both, which works out
fine by sheer luck:
- STORE(hw.itrace_start) is ordered before STORE(hw.config), in the
program order, although there are no compiler barriers to ensure that,
- to the perf_log_itrace_start() hw.itrace_start looks set at the same
time as when it is intended to be set because both stores happen in the
same path,
- hw.config is never reset to zero in the PT driver.
Now, the use of hw.config by the PT driver makes more sense (it being a
HW PMU) than messing around with itrace_started, which is an awkward API
to begin with.
This patch replaces hw.itrace_started with an attach_state bit and an
API call for the PMU drivers to use to communicate the condition.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170330153956.25994-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ldt->entries[] is allocated in alloc_ldt_struct(). It has
ldt->nr_entries elements and ldt->nr_entries is capped at LDT_ENTRIES.
So if "idx" is == ldt->nr_entries then we're reading beyond the end of
the buffer. It seems duplicative to have two limit checks when one
would work just as well so I removed the check against LDT_ENTRIES.
The gdt_page.gdt[] array has GDT_ENTRIES entries.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Fixes: d07bdfd322 ("perf/x86: Fix USER/KERNEL tagging of samples properly")
Link: http://lkml.kernel.org/r/20170818102516.gqwm4xdvvuvjw5ho@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It can be difficult to figure out for user programs what features
the x86 CPU PMU driver actually supports. Currently it requires
grepping in dmesg, but dmesg is not always available.
This adds a caps directory to /sys/bus/event_source/devices/cpu/,
similar to the caps already used on intel_pt, which can be used to
discover the available capabilities cleanly.
Three capabilities are defined:
- pmu_name: Underlying CPU name known to the driver
- max_precise: Max precise level supported
- branches: Known depth of LBR.
Example:
% grep . /sys/bus/event_source/devices/cpu/caps/*
/sys/bus/event_source/devices/cpu/caps/branches:32
/sys/bus/event_source/devices/cpu/caps/max_precise:3
/sys/bus/event_source/devices/cpu/caps/pmu_name:skylake
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170822185201.9261-3-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Only show the Intel format attributes in sysfs when the feature is actually
supported with the current model numbers. This allows programs to probe
what format attributes are available, and give a sensible error message
to users if they are not.
This handles near all cases for intel attributes since Nehalem,
except the (obscure) case when the model number if known, but PEBS
is disabled in PERF_CAPABILITIES.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170822185201.9261-2-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Skylake changed the encoding of the PEBS data source field.
Some combinations are not available anymore, but some new cases
e.g. for L4 cache hit are added.
Fix up the conversion table for Skylake, similar as had been done
for Nehalem.
On Skylake server the encoding for L4 actually means persistent
memory. Handle this case too.
To properly describe it in the abstracted perf format I had to add
some new fields. Since a hit can have only one level add a new
field that is an enumeration, not a bit field to describe
the level. It can describe any level. Some numbers are also
used to describe PMEM and LFB.
Also add a new generic remote flag that can be combined with
the generic level to signify a remote cache.
And there is an extension field for the snoop indication to handle
the Forward state.
I didn't add a generic flag for hops because it's not needed
for Skylake.
I changed the existing encodings for older CPUs to also fill in the
new level and remote fields.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/20170816222156.19953-3-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Minor cleanup: use an explicit x86_pmu flag to handle the
missing Lock / TLB information on Nehalem, instead of always
checking the model number for each PEBS sample.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/20170816222156.19953-2-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"Another pile of small fixes and updates for x86:
- Plug a hole in the SMAP implementation which misses to clear AC on
NMI entry
- Fix the norandmaps/ADDR_NO_RANDOMIZE logic so the command line
parameter works correctly again
- Use the proper accessor in the startup64 code for next_early_pgt to
prevent accessing of invalid addresses and faulting in the early
boot code.
- Prevent CPU hotplug lock recursion in the MTRR code
- Unbreak CPU0 hotplugging
- Rename overly long CPUID bits which got introduced in this cycle
- Two commits which mark data 'const' and restrict the scope of data
and functions to file scope by making them 'static'"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Constify attribute_group structures
x86/boot/64/clang: Use fixup_pointer() to access 'next_early_pgt'
x86/elf: Remove the unnecessary ADDR_NO_RANDOMIZE checks
x86: Fix norandmaps/ADDR_NO_RANDOMIZE
x86/mtrr: Prevent CPU hotplug lock recursion
x86: Mark various structures and functions as 'static'
x86/cpufeature, kvm/svm: Rename (shorten) the new "virtualized VMSAVE/VMLOAD" CPUID flag
x86/smpboot: Unbreak CPU0 hotplug
x86/asm/64: Clear AC on NMI entries
Mark a couple of structures and functions as 'static', pointed out by Sparse:
warning: symbol 'bts_pmu' was not declared. Should it be static?
warning: symbol 'p4_event_aliases' was not declared. Should it be static?
warning: symbol 'rapl_attr_groups' was not declared. Should it be static?
symbol 'process_uv2_message' was not declared. Should it be static?
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Andrew Banman <abanman@hpe.com> # for the UV change
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kernel-janitors@vger.kernel.org
Link: http://lkml.kernel.org/r/20170810155709.7094-1-colin.king@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In Family 17h, the number of cores sharing a cache level is obtained
from the Cache Properties CPUID leaf (0x8000001d) by passing in the
cache level in ECX. In prior families, a cache level of 2 was used to
determine this information.
To get the right information, irrespective of Family, iterate over
the cache levels using CPUID 0x8000001d. The last level cache is the
last value to return a non-zero value in EAX.
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5ab569025b39cdfaeca55b571d78c0fc800bdb69.1497452002.git.Janakarajan.Natarajan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In Family 17h, L3 is the last level cache as opposed to L2 in previous
families. Avoid this name confusion and rename X86_FEATURE_PERFCTR_L2 to
X86_FEATURE_PERFCTR_LLC to indicate the performance counter on the last
level of cache.
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/016311029fdecdc3fdc13b7ed865c6cbf48b2f15.1497452002.git.Janakarajan.Natarajan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vince reported the following rdpmc() testcase failure:
> Failing test case:
>
> fd=perf_event_open();
> addr=mmap(fd);
> exec() // without closing or unmapping the event
> fd=perf_event_open();
> addr=mmap(fd);
> rdpmc() // GPFs due to rdpmc being disabled
The problem is of course that exec() plays tricks with what is
current->mm, only destroying the old mappings after having
installed the new mm.
Fix this confusion by passing along vma->vm_mm instead of relying on
current->mm.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 1e0fb9ec67 ("perf: Add pmu callbacks to track event mapping and unmapping")
Link: http://lkml.kernel.org/r/20170802173930.cstykcqefmqt7jau@hirez.programming.kicks-ass.net
[ Minor cleanups. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'perf cqm' never worked due to the incompatibility between perf
infrastructure and cqm hardware support. The hardware uses RMIDs to
track the llc occupancy of tasks and these RMIDs are per package. This
makes monitoring a hierarchy like cgroup along with monitoring of tasks
separately difficult and several patches sent to lkml to fix them were
NACKed. Further more, the following issues in the current perf cqm make
it almost unusable:
1. No support to monitor the same group of tasks for which we do
allocation using resctrl.
2. It gives random and inaccurate data (mostly 0s) once we run out
of RMIDs due to issues in Recycling.
3. Recycling results in inaccuracy of data because we cannot
guarantee that the RMID was stolen from a task when it was not
pulling data into cache or even when it pulled the least data. Also
for monitoring llc_occupancy, if we stop using an RMID_x and then
start using an RMID_y after we reclaim an RMID from an other event,
we miss accounting all the occupancy that was tagged to RMID_x at a
later perf_count.
2. Recycling code makes the monitoring code complex including
scheduling because the event can lose RMID any time. Since MBM
counters count bandwidth for a period of time by taking snap shot of
total bytes at two different times, recycling complicates the way we
count MBM in a hierarchy. Also we need a spin lock while we do the
processing to account for MBM counter overflow. We also currently
use a spin lock in scheduling to prevent the RMID from being taken
away.
4. Lack of support when we run different kind of event like task,
system-wide and cgroup events together. Data mostly prints 0s. This
is also because we can have only one RMID tied to a cpu as defined
by the cqm hardware but a perf can at the same time tie multiple
events during one sched_in.
5. No support of monitoring a group of tasks. There is partial support
for cgroup but it does not work once there is a hierarchy of cgroups
or if we want to monitor a task in a cgroup and the cgroup itself.
6. No support for monitoring tasks for the lifetime without perf
overhead.
7. It reported the aggregate cache occupancy or memory bandwidth over
all sockets. But most cloud and VMM based use cases want to know the
individual per-socket usage.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-2-git-send-email-vikas.shivappa@linux.intel.com
This patch adds two missing event extra regs for Skylake Server CHA PMU:
- TOR_INSERTS
- TOR_OCCUPANCY
Were missing support for all the filters, including opcode matchers.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1499967350-10385-6-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no field c6 and link for CHA BOX FILTER.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1499967350-10385-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PCU event format for SKX are different from snbep. Introduce a new
format group for SKX PCU.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1499967350-10385-3-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch fixes the event_mask and event_ext_mask for the Intel Skylake
Server UPI PMU. Bit 21 is not used as a filter. The extended umask is
from bit 32 to bit 55. Correct both umasks.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1499967350-10385-2-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Half of the fixes are for various build time warnings triggered by
randconfig builds. Most (but not all...) were harmless.
There's also:
- ACPI boundary condition fixes
- UV platform fixes
- defconfig updates
- an AMD K6 CPU init fix
- a %pOF printk format related preparatory change
- .. and a warning fix related to the tlb/PCID changes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/devicetree: Convert to using %pOF instead of ->full_name
x86/platform/uv/BAU: Disable BAU on single hub configurations
x86/platform/intel-mid: Fix a format string overflow warning
x86/platform: Add PCI dependency for PUNIT_ATOM_DEBUG
x86/build: Silence the build with "make -s"
x86/io: Add "memory" clobber to insb/insw/insl/outsb/outsw/outsl
x86/fpu/math-emu: Avoid bogus -Wint-in-bool-context warning
x86/fpu/math-emu: Fix possible uninitialized variable use
perf/x86: Shut up false-positive -Wmaybe-uninitialized warning
x86/defconfig: Remove stale, old Kconfig options
x86/ioapic: Pass the correct data to unmask_ioapic_irq()
x86/acpi: Prevent out of bound access caused by broken ACPI tables
x86/mm, KVM: Fix warning when !CONFIG_PREEMPT_COUNT
x86/platform/uv/BAU: Fix congested_response_us not taking effect
x86/cpu: Use indirect call to measure performance in init_amd_k6()
We have 2 functions using the same sched_task callback:
- PEBS drain for free running counters
- LBR save/store
Both of them are called from intel_pmu_sched_task() and
either of them can be unwillingly triggered when the
other one is configured to run.
Let's say there's PEBS drain configured in sched_task
callback for the event, but in the callback itself
(intel_pmu_sched_task()) we will also run the code for
LBR save/restore, which we did not ask for, but the
code in intel_pmu_sched_task() does not check for that.
This can lead to extra cycles in some perf monitoring,
like when we monitor PEBS event without LBR data.
# perf record --no-timestamp -c 10000 -e cycles:p ./perf bench sched pipe -l 1000000
(We need PEBS, non freq/non timestamp event to enable
the sched_task callback)
The perf stat of cycles and msr:write_msr for above
command before the change:
...
Performance counter stats for './perf record --no-timestamp -c 10000 -e cycles:p \
./perf bench sched pipe -l 1000000' (5 runs):
18,519,557,441 cycles:k
91,195,527 msr:write_msr
29.334476406 seconds time elapsed
And after the change:
...
Performance counter stats for './perf record --no-timestamp -c 10000 -e cycles:p \
./perf bench sched pipe -l 1000000' (5 runs):
18,704,973,540 cycles:k
27,184,720 msr:write_msr
16.977875900 seconds time elapsed
There's no affect on cycles:k because the sched_task happens
with events switched off, however the msr:write_msr tracepoint
counter together with almost 50% of time speedup show the
improvement.
Monitoring LBR event and having extra PEBS drain processing
in sched_task callback showed just a little speedup, because
the drain function does not do much extra work in case there
is no PEBS data.
Adding conditions to recognize the configured work that needs
to be done in the x86_pmu's sched_task callback.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Link: http://lkml.kernel.org/r/20170719075247.GA27506@krava
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The intialization function checks for various failure scenarios, but
unfortunately the compiler gets a little confused about the possible
combinations, leading to a false-positive build warning when
-Wmaybe-uninitialized is set:
arch/x86/events/core.c: In function ‘init_hw_perf_events’:
arch/x86/events/core.c:264:3: warning: ‘reg_fail’ may be used uninitialized in this function [-Wmaybe-uninitialized]
arch/x86/events/core.c:264:3: warning: ‘val_fail’ may be used uninitialized in this function [-Wmaybe-uninitialized]
pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
We can't actually run into this case, so this shuts up the warning
by initializing the variables to a known-invalid state.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170719125310.2487451-2-arnd@arndb.de
Link: https://patchwork.kernel.org/patch/9392595/
Signed-off-by: Ingo Molnar <mingo@kernel.org>
User visible:
. Initial support for namespaces, using setns to access files in
namespaces, grabbing their build-ids, etc. We still need to work
more to deal with namespaces that vanish before we can get the
needed data to do analysis, but this should be as good as what is
in bcc now (Krister Johansen)
. Add header record types to pipe-mode, now this command:
$ perf record -o - -e cycles sleep 1 | perf report --stdio --header
Will show the same as in non-pipe mode, i.e. involving a perf.data
file (David Carrillo-Cisneros)
. Implement a visual marker for fused x86 instructions in the annotate
TUI browser, available now in 'perf report', more work needed to have
it available as well in 'perf top' (Jin Yao)
Further explanation from one of Jin's patches:
│ ┌──cmpl $0x0,argp_program_version_hook
81.93 │ ├──je 20
│ │ lock cmpxchg %esi,0x38a9a4(%rip)
│ │↓ jne 29
│ │↓ jmp 43
11.47 │20:└─→cmpxch %esi,0x38a999(%rip)
That means the cmpl+je is a fused instruction pair and they should be
considered together.
. Record the branch type and then show statistics and info about
in callchain entries (Jin Yao)
Example from one of Jin's patches:
# perf record -g -j any,save_type
# perf report --branch-history --stdio --no-children
38.50% div.c:45 [.] main div
|
---main div.c:42 (RET CROSS_2M cycles:2)
compute_flag div.c:28 (cycles:2)
compute_flag div.c:27 (RET CROSS_2M cycles:1)
rand rand.c:28 (cycles:1)
rand rand.c:28 (RET CROSS_2M cycles:1)
__random random.c:298 (cycles:1)
__random random.c:297 (COND_BWD CROSS_2M cycles:1)
__random random.c:295 (cycles:1)
__random random.c:295 (COND_BWD CROSS_2M cycles:1)
__random random.c:295 (cycles:1)
__random random.c:295 (RET CROSS_2M cycles:9)
. Beautify the fcntl syscall, which is an interesting one in the sense
that infrastructure had to be put in place to change the formatters of
some arguments according to the value in a previous one, i.e. cmd
dictates how arg and the syscall return will be formatted.
(Arnaldo Carvalho de Melo
Infrastructure:
. 'perf test attr' fixes (Jiri Olsa)
Vendor events:
- Add POWER9 PMU events Sukadev (Bhattiprolu)
- Support additional POWER8+ PVR in PMU mapfile (Shriya)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJZbsEtAAoJENZQFvNTUqpA0rIP/j8pJ2uzOpaAqioWsqrVAY1q
y1ezQxv9z6Saifa4nd8Li2fAoYMi7JeMQaTWl9GahNypTyafjWGn/i8Of0ajHh4m
iRrEWEXh6DmSfHjt1Kh4hdFUQ+Au2p52Rcdu1BUnQR0+y9CJpaCuktnnkkp1bNq6
U56GKU/c5lXdHZtBenX86712eTZcG+ZfucdlhsZOdXEzgLtlkjbKtZ50wIt+tLjO
dVg22hKoDDF71sxzakiSQQR8VrUrhlygd5jP3L62W2i1inVjJTGJ1rGyPOtBandX
pqFitDLkZn8CzpBq4snzrUtctDLevsyy27YqPMRKbErmtnhGtTARm3utFvJkqFPE
YNVYDf5Clnw9SCimY0GQE5OF9ZnmmIHzJp7Tu4cD3fVb6FTDf5q6Xy9Vlc5oOKDe
ea+EEwXEeJPLZKfIuwW3osK7ukmDtN+KDO52Fw4etkvdDwzitXqLT4vDWSz3tLxj
bFMr5g07cZ5t/7+0/fDfQJHhpeg5yEbNIcIkkYfEMwNFUBTLjoMoB67CNnCpa/d8
2PMsw6BEoGUV4tigI2L9jEkEiZwqIu51tgRlOHn1BZzW192egF/1R+pj4vrsZxM9
D2T98CEsbgJ1+NHXfALMcwhEsGBy3iQ34qyUpCeQi5+t/T3lCoyCJ6jRPjUC4deN
+zlBbJNNNRcV53w08koC
=eFUO
-----END PGP SIGNATURE-----
Merge tag 'perf-core-for-mingo-4.13-20170718' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/core
Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:
User visible changes:
- Initial support for namespaces, using setns to access files in
namespaces, grabbing their build-ids, etc. We still need to work
more to deal with namespaces that vanish before we can get the
needed data to do analysis, but this should be as good as what is
in bcc now (Krister Johansen)
- Add header record types to pipe-mode, now this command:
$ perf record -o - -e cycles sleep 1 | perf report --stdio --header
Will show the same as in non-pipe mode, i.e. involving a perf.data
file (David Carrillo-Cisneros)
- Implement a visual marker for fused x86 instructions in the annotate
TUI browser, available now in 'perf report', more work needed to have
it available as well in 'perf top' (Jin Yao)
Further explanation from one of Jin's patches:
│ ┌──cmpl $0x0,argp_program_version_hook
81.93 │ ├──je 20
│ │ lock cmpxchg %esi,0x38a9a4(%rip)
│ │↓ jne 29
│ │↓ jmp 43
11.47 │20:└─→cmpxch %esi,0x38a999(%rip)
That means the cmpl+je is a fused instruction pair and they should be
considered together.
- Record the branch type and then show statistics and info about
in callchain entries (Jin Yao)
Example from one of Jin's patches:
# perf record -g -j any,save_type
# perf report --branch-history --stdio --no-children
38.50% div.c:45 [.] main div
|
---main div.c:42 (RET CROSS_2M cycles:2)
compute_flag div.c:28 (cycles:2)
compute_flag div.c:27 (RET CROSS_2M cycles:1)
rand rand.c:28 (cycles:1)
rand rand.c:28 (RET CROSS_2M cycles:1)
__random random.c:298 (cycles:1)
__random random.c:297 (COND_BWD CROSS_2M cycles:1)
__random random.c:295 (cycles:1)
__random random.c:295 (COND_BWD CROSS_2M cycles:1)
__random random.c:295 (cycles:1)
__random random.c:295 (RET CROSS_2M cycles:9)
- Beautify the fcntl syscall, which is an interesting one in the sense
that infrastructure had to be put in place to change the formatters of
some arguments according to the value in a previous one, i.e. cmd
dictates how arg and the syscall return will be formatted.
(Arnaldo Carvalho de Melo
Infrastructure changes:
- 'perf test attr' fixes (Jiri Olsa)
Vendor events changes:
- Add POWER9 PMU events Sukadev (Bhattiprolu)
- Support additional POWER8+ PVR in PMU mapfile (Shriya)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Perf already has support for disassembling the branch instruction
and using the branch type for filtering. The patch just records
the branch type in perf_branch_entry.
Before recording, the patch converts the x86 branch type to
common branch type.
Change log:
v10: Set the branch_map array to be static. The previous version
has it on stack then makes the compiler to create it every
time when the function gets called.
v9: Use __ffs() to find first bit in type in common_branch_type().
It lets the code be clear.
v8: Change PERF_BR_NONE to PERF_BR_UNKNOWN.
v7: Just convert following x86 branch types to common branch types.
X86_BR_CALL -> PERF_BR_CALL
X86_BR_RET -> PERF_BR_RET
X86_BR_JCC -> PERF_BR_COND
X86_BR_JMP -> PERF_BR_UNCOND
X86_BR_IND_CALL -> PERF_BR_IND_CALL
X86_BR_ZERO_CALL -> PERF_BR_CALL
X86_BR_IND_JMP -> PERF_BR_IND
X86_BR_SYSCALL -> PERF_BR_SYSCALL
X86_BR_SYSRET -> PERF_BR_SYSRET
Others are set to PERF_BR_NONE
v6: Not changed.
v5: Just fix the merge error. No other update.
v4: Comparing to previous version, the major changes are:
1. Uses a lookup table to convert x86 branch type to common branch
type.
2. Move the JCC forward/JCC backward and cross page computing to
user space.
3. Initialize branch type to 0 in intel_pmu_lbr_read_32 and
intel_pmu_lbr_read_64
Signed-off-by: Yao Jin <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Link: http://lkml.kernel.org/r/1500379995-6449-3-git-send-email-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
There's a bug in PEBs event enabling code, that prevents PEBS
freq events to work properly after non freq PEBS event was run.
freq events - perf_event_attr::freq set
-F <freq> option of perf record
PEBS events - perf_event_attr::precise_ip > 0
default for perf record
Like in following example with CPU 0 busy, we expect ~10000 samples
for following perf tool run:
# perf record -F 10000 -C 0 sleep 1
[ perf record: Woken up 2 times to write data ]
[ perf record: Captured and wrote 0.640 MB perf.data (10031 samples) ]
Everything's fine, but once we run non freq PEBS event like:
# perf record -c 10000 -C 0 sleep 1
[ perf record: Woken up 4 times to write data ]
[ perf record: Captured and wrote 1.053 MB perf.data (20061 samples) ]
the freq events start to fail like this:
# perf record -F 10000 -C 0 sleep 1
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.185 MB perf.data (40 samples) ]
The issue is in non freq PEBs event initialization of debug_store reset
field, which value is used to auto-reload the counter value after PEBS
event drain. This value is not being used for PEBS freq events, but once
we run non freq event it stays in debug_store data and screws the
sample_freq counting for PEBS freq events.
Setting the reset field to 0 for freq events.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170714163551.19459-1-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add perf core PMU support for Intel Goldmont Plus CPU cores:
- The init code is based on Goldmont.
- There is a new cache event list, based on the Goldmont cache event
list.
- All four general-purpose performance counters support PEBS.
- The first general-purpose performance counter is for reduced skid
PEBS mechanism. Using :ppp to indicate the event which want to do
reduced skid PEBS.
- Goldmont Plus has 4-wide pipeline for Topdown
Signed-off-by: Kan Liang <kan.liang@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/20170712134423.17766-1-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Goldmont microarchitecture supports C1/C3/C6, PC2/PC3/PC6/PC10 state
residency counters, the patch enables them for Apollo Lake platform.
The MSR information is based on Intel Software Developers' Manual,
Vol. 4, Order No. 335592, Table 2-6 and 2-12.
Signed-off-by: Harry Pan <harry.pan@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: bp@suse.de
Cc: davidcc@google.com
Cc: gs0622@gmail.com
Cc: lukasz.odzioba@intel.com
Cc: piotr.luc@intel.com
Cc: srinivas.pandruvada@linux.intel.com
Link: http://lkml.kernel.org/r/20170717103749.24337-1-harry.pan@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull SMP hotplug updates from Thomas Gleixner:
"This update is primarily a cleanup of the CPU hotplug locking code.
The hotplug locking mechanism is an open coded RWSEM, which allows
recursive locking. The main problem with that is the recursive nature
as it evades the full lockdep coverage and hides potential deadlocks.
The rework replaces the open coded RWSEM with a percpu RWSEM and
establishes full lockdep coverage that way.
The bulk of the changes fix up recursive locking issues and address
the now fully reported potential deadlocks all over the place. Some of
these deadlocks have been observed in the RT tree, but on mainline the
probability was low enough to hide them away."
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
cpu/hotplug: Constify attribute_group structures
powerpc: Only obtain cpu_hotplug_lock if called by rtasd
ARM/hw_breakpoint: Fix possible recursive locking for arch_hw_breakpoint_init
cpu/hotplug: Remove unused check_for_tasks() function
perf/core: Don't release cred_guard_mutex if not taken
cpuhotplug: Link lock stacks for hotplug callbacks
acpi/processor: Prevent cpu hotplug deadlock
sched: Provide is_percpu_thread() helper
cpu/hotplug: Convert hotplug locking to percpu rwsem
s390: Prevent hotplug rwsem recursion
arm: Prevent hotplug rwsem recursion
arm64: Prevent cpu hotplug rwsem recursion
kprobes: Cure hotplug lock ordering issues
jump_label: Reorder hotplug lock and jump_label_lock
perf/tracing/cpuhotplug: Fix locking order
ACPI/processor: Use cpu_hotplug_disable() instead of get_online_cpus()
PCI: Replace the racy recursion prevention
PCI: Use cpu_hotplug_disable() instead of get_online_cpus()
perf/x86/intel: Drop get_online_cpus() in intel_snb_check_microcode()
x86/perf: Drop EXPORT of perf_check_microcode
...
Pull x86 mm updates from Ingo Molnar:
"The main changes in this cycle were:
- Continued work to add support for 5-level paging provided by future
Intel CPUs. In particular we switch the x86 GUP code to the generic
implementation. (Kirill A. Shutemov)
- Continued work to add PCID CPU support to native kernels as well.
In this round most of the focus is on reworking/refreshing the TLB
flush infrastructure for the upcoming PCID changes. (Andy
Lutomirski)"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
x86/mm: Delete a big outdated comment about TLB flushing
x86/mm: Don't reenter flush_tlb_func_common()
x86/KASLR: Fix detection 32/64 bit bootloaders for 5-level paging
x86/ftrace: Exclude functions in head64.c from function-tracing
x86/mmap, ASLR: Do not treat unlimited-stack tasks as legacy mmap
x86/mm: Remove reset_lazy_tlbstate()
x86/ldt: Simplify the LDT switching logic
x86/boot/64: Put __startup_64() into .head.text
x86/mm: Add support for 5-level paging for KASLR
x86/mm: Make kernel_physical_mapping_init() support 5-level paging
x86/mm: Add sync_global_pgds() for configuration with 5-level paging
x86/boot/64: Add support of additional page table level during early boot
x86/boot/64: Rename init_level4_pgt and early_level4_pgt
x86/boot/64: Rewrite startup_64() in C
x86/boot/compressed: Enable 5-level paging during decompression stage
x86/boot/efi: Define __KERNEL32_CS GDT on 64-bit configurations
x86/boot/efi: Fix __KERNEL_CS definition of GDT entry on 64-bit configurations
x86/boot/efi: Cleanup initialization of GDT entries
x86/asm: Fix comment in return_from_SYSCALL_64()
x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Add the SYSTEM_SCHEDULING bootup state to move various scheduler
debug checks earlier into the bootup. This turns silent and
sporadically deadly bugs into nice, deterministic splats. Fix some
of the splats that triggered. (Thomas Gleixner)
- A round of restructuring and refactoring of the load-balancing and
topology code (Peter Zijlstra)
- Another round of consolidating ~20 of incremental scheduler code
history: this time in terms of wait-queue nomenclature. (I didn't
get much feedback on these renaming patches, and we can still
easily change any names I might have misplaced, so if anyone hates
a new name, please holler and I'll fix it.) (Ingo Molnar)
- sched/numa improvements, fixes and updates (Rik van Riel)
- Another round of x86/tsc scheduler clock code improvements, in hope
of making it more robust (Peter Zijlstra)
- Improve NOHZ behavior (Frederic Weisbecker)
- Deadline scheduler improvements and fixes (Luca Abeni, Daniel
Bristot de Oliveira)
- Simplify and optimize the topology setup code (Lauro Ramos
Venancio)
- Debloat and decouple scheduler code some more (Nicolas Pitre)
- Simplify code by making better use of llist primitives (Byungchul
Park)
- ... plus other fixes and improvements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
sched/cputime: Refactor the cputime_adjust() code
sched/debug: Expose the number of RT/DL tasks that can migrate
sched/numa: Hide numa_wake_affine() from UP build
sched/fair: Remove effective_load()
sched/numa: Implement NUMA node level wake_affine()
sched/fair: Simplify wake_affine() for the single socket case
sched/numa: Override part of migrate_degrades_locality() when idle balancing
sched/rt: Move RT related code from sched/core.c to sched/rt.c
sched/deadline: Move DL related code from sched/core.c to sched/deadline.c
sched/cpuset: Only offer CONFIG_CPUSETS if SMP is enabled
sched/fair: Spare idle load balancing on nohz_full CPUs
nohz: Move idle balancer registration to the idle path
sched/loadavg: Generalize "_idle" naming to "_nohz"
sched/core: Drop the unused try_get_task_struct() helper function
sched/fair: WARN() and refuse to set buddy when !se->on_rq
sched/debug: Fix SCHED_WARN_ON() to return a value on !CONFIG_SCHED_DEBUG as well
sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming
sched/wait: Move bit_wait_table[] and related functionality from sched/core.c to sched/wait_bit.c
sched/wait: Split out the wait_bit*() APIs from <linux/wait.h> into <linux/wait_bit.h>
sched/wait: Re-adjust macro line continuation backslashes in <linux/wait.h>
...
Pull perf updates from Ingo Molnar:
"Most of the changes are for tooling, the main changes in this cycle were:
- Improve Intel-PT hardware tracing support, both on the kernel and
on the tooling side: PTWRITE instruction support, power events for
C-state tracing, etc. (Adrian Hunter)
- Add support to measure SMI cost to the x86 architecture, with
tooling support in 'perf stat' (Kan Liang)
- Support function filtering in 'perf ftrace', plus related
improvements (Namhyung Kim)
- Allow adding and removing fields to the default 'perf script'
columns, using + or - as field prefixes to do so (Andi Kleen)
- Allow resolving the DSO name with 'perf script -F brstack{sym,off},dso'
(Mark Santaniello)
- Add perf tooling unwind support for PowerPC (Paolo Bonzini)
- ... and various other improvements as well"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (84 commits)
perf auxtrace: Add CPU filter support
perf intel-pt: Do not use TSC packets for calculating CPU cycles to TSC
perf intel-pt: Update documentation to include new ptwrite and power events
perf intel-pt: Add example script for power events and PTWRITE
perf intel-pt: Synthesize new power and "ptwrite" events
perf intel-pt: Move code in intel_pt_synth_events() to simplify attr setting
perf intel-pt: Factor out intel_pt_set_event_name()
perf intel-pt: Tidy messages into called function intel_pt_synth_event()
perf intel-pt: Tidy Intel PT evsel lookup into separate function
perf intel-pt: Join needlessly wrapped lines
perf intel-pt: Remove unused instructions_sample_period
perf intel-pt: Factor out common code synthesizing event samples
perf script: Add synthesized Intel PT power and ptwrite events
perf/x86/intel: Constify the 'lbr_desc[]' array and make a function static
perf script: Add 'synth' field for synthesized event payloads
perf auxtrace: Add itrace option to output power events
perf auxtrace: Add itrace option to output ptwrite events
tools include: Add byte-swapping macros to kernel.h
perf script: Add 'synth' event type for synthesized events
x86/insn: perf tools: Add new ptwrite instruction
...
A few minor clean-ups: constify the lbr_desc[] array and make
local function lbr_from_signext_quirk_rd() static to fix a sparse warning:
"symbol 'lbr_from_signext_quirk_rd' was not declared. Should it be static?"
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Link: http://lkml.kernel.org/r/20170629091406.9870-1-colin.king@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Should not init a NULL box. It will cause system crash.
The issue looks like caused by a typo.
This was not noticed because there is no NULL box. Also, for most
boxes, they are enabled by default. The init code is not critical.
Fixes: fff4b87e59 ("perf/x86/intel/uncore: Make package handling more robust")
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170629190926.2456-1-kan.liang@intel.com
Current DTLB load/store miss events (0x608/0x649) only counts 4K,2M and
4M page size.
Need to extend the events to support any page size (4K/2M/4M/1G).
The complete DTLB load/store miss events are:
DTLB_LOAD_MISSES.WALK_COMPLETED 0xe08
DTLB_STORE_MISSES.WALK_COMPLETED 0xe49
Signed-off-by: Kan Liang <Kan.liang@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/20170619142609.11058-1-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... because this is exactly what it is: the number of entries in the
LDT. Calling it "size" is simply confusing and it is actually begging
to be called "nr_entries" or somesuch, especially if you see constructs
like:
alloc_size = size * LDT_ENTRY_SIZE;
since LDT_ENTRY_SIZE is the size of a single entry.
There should be no functionality change resulting from this patch, as
the before/after output from tools/testing/selftests/x86/ldt_gdt.c
shows.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170606173116.13977-1-bp@alien8.de
[ Renamed 'n_entries' to 'nr_entries' ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lazy TLB state is currently managed in a rather baroque manner.
AFAICT, there are three possible states:
- Non-lazy. This means that we're running a user thread or a
kernel thread that has called use_mm(). current->mm ==
current->active_mm == cpu_tlbstate.active_mm and
cpu_tlbstate.state == TLBSTATE_OK.
- Lazy with user mm. We're running a kernel thread without an mm
and we're borrowing an mm_struct. We have current->mm == NULL,
current->active_mm == cpu_tlbstate.active_mm, cpu_tlbstate.state
!= TLBSTATE_OK (i.e. TLBSTATE_LAZY or 0). The current cpu is set
in mm_cpumask(current->active_mm). CR3 points to
current->active_mm->pgd. The TLB is up to date.
- Lazy with init_mm. This happens when we call leave_mm(). We
have current->mm == NULL, current->active_mm ==
cpu_tlbstate.active_mm, but that mm is only relelvant insofar as
the scheduler is tracking it for refcounting. cpu_tlbstate.state
!= TLBSTATE_OK. The current cpu is clear in
mm_cpumask(current->active_mm). CR3 points to swapper_pg_dir,
i.e. init_mm->pgd.
This patch simplifies the situation. Other than perf, x86 stops
caring about current->active_mm at all. We have
cpu_tlbstate.loaded_mm pointing to the mm that CR3 references. The
TLB is always up to date for that mm. leave_mm() just switches us
to init_mm. There are no longer any special cases for mm_cpumask,
and switch_mm() switches mms without worrying about laziness.
After this patch, cpu_tlbstate.state serves only to tell the TLB
flush code whether it may switch to init_mm instead of doing a
normal flush.
This makes fairly extensive changes to xen_exit_mmap(), which used
to look a bit like black magic.
Perf is unchanged. With or without this change, perf may behave a bit
erratically if it tries to read user memory in kernel thread context.
We should build on this patch to teach perf to never look at user
memory when cpu_tlbstate.loaded_mm != current->mm.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If intel_snb_check_microcode() is invoked via
microcode_init -> perf_check_microcode -> intel_snb_check_microcode
then get_online_cpus() is invoked nested. This works with the current
implementation of get_online_cpus() but prevents converting it to a percpu
rwsem.
intel_snb_check_microcode() is also invoked from intel_sandybridge_quirk()
unprotected.
Drop get_online_cpus() from intel_snb_check_microcode() and add it to
intel_sandybridge_quirk() so both call sites are protected.
Convert *_online_cpus() to the new interfaces while at it.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20170524081548.594862191@linutronix.de
The only caller is the microcode update, which cannot be modular.
Drop the export.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20170524081548.515204988@linutronix.de
intel_cqm_init() holds get_online_cpus() while registerring the hotplug
callbacks.
cpuhp_setup_state() invokes get_online_cpus() as well. This is correct, but
prevents the conversion of the hotplug locking to a percpu rwsem.
Use cpuhp_setup_state_cpuslocked() to avoid the nested call. Convert
*_online_cpus() to the new interfaces while at it.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170524081548.075604046@linutronix.de
Currently, the SMIs are visible to all performance counters, because
many users want to measure everything including SMIs. But in some
cases, the SMI cycles should not be counted - for example, to calculate
the cost of an SMI itself. So a knob is needed.
When setting FREEZE_WHILE_SMM bit in IA32_DEBUGCTL, all performance
counters will be effected. There is no way to do per-counter freeze
on SMI. So it should not use the per-event interface (e.g. ioctl or
event attribute) to set FREEZE_WHILE_SMM bit.
Adds sysfs entry /sys/device/cpu/freeze_on_smi to set FREEZE_WHILE_SMM
bit in IA32_DEBUGCTL. When set, freezes perfmon and trace messages
while in SMM.
Value has to be 0 or 1. It will be applied to all processors.
Also serialize the entire setting so we don't get multiple concurrent
threads trying to update to different values.
Signed-off-by: Kan Liang <Kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: bp@alien8.de
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/1494600673-244667-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace the custom multi-value scheme with the more regular
seqcount_latch() scheme. Along with scrapping a lot of lines, the latch
scheme is better documented and used in more places.
The immediate benefit however is not being limited on the update side.
The current code has a limit where the writers block which is hit by
future changes.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fixes:
- Support setting probes in versioned user space symbols, such as
pthread_create@@GLIBC_2.1, picking the default one, more work
needed to make it possible to set it on the other versions, as
the 'perf probe' syntax already uses @ for other purposes.
(Paul Clarke)
- Do not special case address zero as an error for routines that
return addresses (symbol lookup), instead use the return as the
success/error indication and pass a pointer to return the address,
fixing 'perf test vmlinux' (the one that compares address between
vmlinux and kallsyms) on s/390, where the '_text' address is equal
to zero (Arnaldo Carvalho de Melo)
Infrastructure:
- More header sanitization, moving stuff out of util.h into
more appropriate headers and objects and sometimes creating
new ones (Arnaldo Carvalho de Melo)
- Refactor a duplicated code for obtaining config file name (Taeung Song)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJZCd/DAAoJENZQFvNTUqpAHLkP/i834z2r9/CQBIMiPOq3ciCd
W3K4JsHp3IGFg2rFwit6QnRtTycaZyhupBBNnBj+4OLLT5zujemP3VHbLRf3rvrY
Xhx7dlpSYkvpDXOB4lUElrIknIp4jLO329aGW9plRk7vGYa2q97NfDcQYqwRKnd+
1Y4Z2Bg2ImTWhsrmD+YuI8MwzFcQnG5oAavbbXFP5Bnmorh56auJ4Y6doEThmVbC
T0CnYyG29i9KlN1pIm4CDpjVH/aGNZpGhKBJlYGhCWDgxQwstMY2bKwa+6VyITpv
FgtU/YKW9ebqT0v2nENjU2XAoFktd3Chn3b8nhuNqN3081mGvIdr4ugMuh7bP0k2
XGiO7ILQAfpO9b0uxGlUX9evvduvM7GMIwdRuJ/jurxxIn4cHy1i6rcU/l096Y0b
9s81bd11NyK4eE7c4Z1IX9JNV0Jw3Knb9B2XEHXfbOx4s7QPsNUQvE0zXUefwmS+
h0YZ1GcAwxIc92JC7gy2iuik1tJ18Nd8Y9/Qnfziem8AIVX205d4miEz9Zx1NUJI
pRB4CB9HnrdFZW1rgZ5ob53ToVTdFLAziKq2tEJPdCq2+e2VZfrb3KqeVeGvgRUN
xDRvTwc2rgeGynn80t/ShsSpbXPwnmbBapbp5MQdF5T5ObSQOnYVmIGQ3SN3ST5y
azaqjBjikhiPzxQJxIHM
=gqm+
-----END PGP SIGNATURE-----
Merge tag 'perf-core-for-mingo-4.12-20170503' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/urgent
Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:
Fixes:
- Support setting probes in versioned user space symbols, such as
pthread_create@@GLIBC_2.1, picking the default one, more work
needed to make it possible to set it on the other versions, as
the 'perf probe' syntax already uses @ for other purposes.
(Paul Clarke)
- Do not special case address zero as an error for routines that
return addresses (symbol lookup), instead use the return as the
success/error indication and pass a pointer to return the address,
fixing 'perf test vmlinux' (the one that compares address between
vmlinux and kallsyms) on s/390, where the '_text' address is equal
to zero (Arnaldo Carvalho de Melo)
Infrastructure changes:
- More header sanitization, moving stuff out of util.h into
more appropriate headers and objects and sometimes creating
new ones (Arnaldo Carvalho de Melo)
- Refactor a duplicated code for obtaining config file name (Taeung Song)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It appears as though the Broadwell-EP DRAM units share the special
units quirk with Haswell-EP/KNL.
Without this patch, you get really high results (a single DRAM using 20W
of power).
The powercap driver in drivers/powercap/intel_rapl.c already has this
change.
Signed-off-by: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@gmail.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: <stable@vger.kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Spurious NMIs will be observed with the following command:
while :; do
perf record -bae "cpu/umask=0x01,event=0xcd,ldlat=0x80/pp"
-e "cpu/umask=0x03,event=0x0/"
-e "cpu/umask=0x02,event=0x0/"
-e cycles,branches,cache-misses
-e cache-references -- sleep 10
done
The bug was introduced by commit:
8077eca079 ("perf/x86/pebs: Add workaround for broken OVFL status on HSW+")
That commit clears the status bits for the counters used for PEBS
events, by masking the whole 64 bits pebs_enabled. However, only the
low 32 bits of both status and pebs_enabled are reserved for PEBS-able
counters.
For status bits 32-34 are fixed counter overflow bits. For
pebs_enabled bits 32-34 are for PEBS Load Latency.
In the test case, the PEBS Load Latency event and fixed counter event
could overflow at the same time. The fixed counter overflow bit will
be cleared by mistake. Once it is cleared, the fixed counter overflow
never be processed, which finally trigger spurious NMI.
Correct the PEBS enabled mask by ignoring the non-PEBS bits.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 8077eca079 ("perf/x86/pebs: Add workaround for broken OVFL status on HSW+")
Link: http://lkml.kernel.org/r/1491333246-3965-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fam16h is the same as the default one, remove it. Turn the switch-case
into a simple if-else.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/20170410122047.3026-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add support for multiple IOMMUs to perf by exposing an AMD IOMMU PMU for
each IOMMU found in the system via:
/bus/event_source/devices/amd_iommu_x
where x is the IOMMU index. This allows users to specify different
events to be programmed into the performance counters of each IOMMU.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
[ Improve readability, shorten names. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Jörg Rödel <joro@8bytes.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/1490166162-10002-11-git-send-email-Suravee.Suthikulpanit@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current AMD IOMMU perf PMU inappropriately uses the hardware struct
inside the union in struct hw_perf_event, extra_reg in particular.
Instead, introduce an AMD IOMMU-specific struct with required parameters
to be programmed into the IOMMU performance counter control register.
Update the pasid field from 16 to 20 bits while at it.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
[ Fixup macros, shorten get_next_avail_iommu_bnk_cntr() local vars, massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Jörg Rödel <joro@8bytes.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/1487926102-13073-10-git-send-email-Suravee.Suthikulpanit@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, amd_iommu_pc_get_max_[banks|counters]() use end-point device
ID to locate an IOMMU and check the reported max banks/counters. The
logic assumes that the IOMMU_BASE_DEVID belongs to the first IOMMU, and
uses it to acquire a reference to the first IOMMU, which does not work
on certain systems. Instead, modify the function to take an IOMMU index,
and use it to query the corresponding AMD IOMMU instance.
Currently, hardcode the IOMMU index to 0 since the current AMD IOMMU
perf implementation supports only a single IOMMU. A subsequent patch
will add support for multiple IOMMUs, and will use a proper IOMMU index.
Signed-off-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Jörg Rödel <joro@8bytes.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/1487926102-13073-7-git-send-email-Suravee.Suthikulpanit@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce amd_iommu_get_num_iommus(), which returns the value of
amd_iommus_present. The function is used to replace direct access to the
variable, which is now declared as static.
This function will also be used by AMD IOMMU perf driver.
Signed-off-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Jörg Rödel <joro@8bytes.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/1487926102-13073-6-git-send-email-Suravee.Suthikulpanit@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clean up register initialization and make use of BIT_ULL(x) where
appropriate. This should not affect logic and functionality.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Jörg Rödel <joro@8bytes.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/1487926102-13073-3-git-send-email-Suravee.Suthikulpanit@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that Intel PT supports more types of trace content than just branch
tracing, it may be useful to allow the user to disable branch tracing
when it is not needed.
The special case is BDW, where not setting BranchEn is not supported.
This is slightly trickier than necessary, because up to this moment
the driver has been setting BranchEn automatically and the userspace
assumes as much. Instead of reversing the semantics of BranchEn, we
introduce a 'passthrough' bit, which will forego the default and allow
the user to set BranchEn to their heart's content.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170206144140.14402-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
People reported that commit:
5680d8094f ("sched/clock: Provide better clock continuity")
broke "perf test tsc".
That commit added another offset to the reported clock value; so
take that into account when computing the provided offset values.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Reported-by: Arnaldo Carvalho de Melo <acme@kernel.org>
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 5680d8094f ("sched/clock: Provide better clock continuity")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf fixes from Thomas Gleixner:
"A set of perf related fixes:
- fix a CR4.PCE propagation issue caused by usage of mm instead of
active_mm and therefore propagated the wrong value.
- perf core fixes, which plug a use-after-free issue and make the
event inheritance on fork more robust.
- a tooling fix for symbol handling"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf symbols: Fix symbols__fixup_end heuristic for corner cases
x86/perf: Clarify why x86_pmu_event_mapped() isn't racy
x86/perf: Fix CR4.PCE propagation to use active_mm instead of mm
perf/core: Better explain the inherit magic
perf/core: Simplify perf_event_free_task()
perf/core: Fix event inheritance on fork()
perf/core: Fix use-after-free in perf_release()
Naively, it looks racy, but ->mmap_sem saves it. Add a comment and a
lockdep assertion.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/03a1e629063899168dfc4707f3bb6e581e21f5c6.1489694270.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If one thread mmaps a perf event while another thread in the same mm
is in some context where active_mm != mm (which can happen in the
scheduler, for example), refresh_pce() would write the wrong value
to CR4.PCE. This broke some PAPI tests.
Reported-and-tested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 7911d3f7af ("perf/x86: Only allow rdpmc if a perf_event is mapped")
Link: http://lkml.kernel.org/r/0c5b38a76ea50e405f9abe07a13dfaef87c173a1.1489694270.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
1c5ac21a0e ("perf/x86/intel/pt: Don't die on VMXON")
... PT events depend on re-scheduling to get enabled after a VMX session
has taken place. This is, in particular, a problem for CPU context events,
which don't normally get re-scheduled, unless there is a reason.
This patch changes the VMX handling so that PT event gets re-enabled
when VMX root mode exits.
Also, notify the user when there's a gap in PT data due to VMX root
mode by flagging AUX records as partial.
In combination with vmm_exclusive=0 parameter of the kvm_intel driver,
this will result in trace gaps only for the duration of the guest's
timeslices.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170220133352.17995-5-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for adding more flags to perf AUX records, introduce a
separate API for setting the flags for a session, rather than appending
more bool arguments to perf_aux_output_end. This allows to set each
flag at the time a corresponding condition is detected, instead of
tracking it in each driver's private state.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20170220133352.17995-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Goldmont supports full Top Down level 1 metrics (FrontendBound,
Retiring, Backend Bound and Bad Speculation).
It has 3 wide pipeline.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1486711438-80058-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Misc fixes and minor updates all over the place:
- an SGI/UV fix
- a defconfig update
- a build warning fix
- move the boot_params file to the arch location in debugfs
- a pkeys fix
- selftests fix
- boot message fixes
- sparse fixes
- a resume warning fix
- ioapic hotplug fixes
- reboot quirks
... plus various minor cleanups"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/build/x86_64_defconfig: Enable CONFIG_R8169
x86/reboot/quirks: Add ASUS EeeBook X205TA/W reboot quirk
x86/hpet: Prevent might sleep splat on resume
x86/boot: Correct setup_header.start_sys name
x86/purgatory: Fix sparse warning, symbol not declared
x86/purgatory: Make functions and variables static
x86/events: Remove last remnants of old filenames
x86/pkeys: Check against max pkey to avoid overflows
x86/ioapic: Split IOAPIC hot-removal into two steps
x86/PCI: Implement pcibios_release_device to release IRQ from IOAPIC
x86/intel_rdt: Remove duplicate inclusion of linux/cpu.h
x86/vmware: Remove duplicate inclusion of asm/timer.h
x86/hyperv: Hide unused label
x86/reboot/quirks: Add ASUS EeeBook X205TA reboot quirk
x86/platform/uv/BAU: Fix HUB errors by remove initial write to sw-ack register
x86/selftests: Add clobbers for int80 on x86_64
x86/apic: Simplify enable_IR_x2apic(), remove try_to_enable_IR()
x86/apic: Fix a warning message in logical CPU IDs allocation
x86/kdebugfs: Move boot params hierarchy under (debugfs)/x86/
Update code that relied on sched.h including various MM types for them.
This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.
Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>