Commit Graph

193 Commits

Author SHA1 Message Date
Peter Zijlstra
73759c3463 perf/x86: Add two more x86_pmu methods
In order to clean up x86_perf_event_{set_period,update)() start by
adding them as x86_pmu methods.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220829101321.440196408@infradead.org
2022-09-07 21:54:02 +02:00
Anshuman Khandual
88081cfb69 x86/perf: Assert all platform event flags are within PERF_EVENT_FLAG_ARCH
Ensure all platform specific event flags are within PERF_EVENT_FLAG_ARCH.

Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: James Clark <james.clark@arm.com>
Link: https://lkml.kernel.org/r/20220907091924.439193-5-anshuman.khandual@arm.com
2022-09-07 21:54:01 +02:00
Kan Liang
24919fdea6 perf/x86/intel: Fix unchecked MSR access error for Alder Lake N
For some Alder Lake N machine, the below unchecked MSR access error may be
triggered.

[ 0.088017] rcu: Hierarchical SRCU implementation.
[ 0.088017] unchecked MSR access error: WRMSR to 0x38f (tried to write
0x0001000f0000003f) at rIP: 0xffffffffb5684de8 (native_write_msr+0x8/0x30)
[ 0.088017] Call Trace:
[ 0.088017] <TASK>
[ 0.088017] __intel_pmu_enable_all.constprop.46+0x4a/0xa0

The Alder Lake N only has e-cores. The X86_FEATURE_HYBRID_CPU flag is
not set. The perf cannot retrieve the correct CPU type via
get_this_hybrid_cpu_type(). The model specific get_hybrid_cpu_type() is
hardcode to p-core. The wrong CPU type is given to the PMU of the
Alder Lake N.

Since Alder Lake N isn't in fact a hybrid CPU, remove ALDERLAKE_N from
the rest of {ALDER,RAPTOP}LAKE and create a non-hybrid PMU setup.

The differences between Gracemont and the previous Tremont are,
- Number of GP counters
- Load and store latency Events
- PEBS event_constraints
- Instruction Latency support
- Data source encoding
- Memory access latency encoding

Fixes: c2a960f7c5 ("perf/x86: Add new Alder Lake and Raptor Lake support")
Reported-by: Jianfeng Gao <jianfeng.gao@intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220831142702.153110-1-kan.liang@linux.intel.com
2022-09-01 11:19:41 +02:00
Sandipan Das
df3e9612f7 perf/x86: Make branch classifier fusion-aware
With branch fusion and other optimizations, branch sampling hardware in
some processors can report a branch from address that points to an
instruction preceding the actual branch by several bytes.

In such cases, the classifier cannot determine the branch type which leads
to failures such as with the recently added test from commit b55878c90a
("perf test: Add test for branch stack sampling"). Branch information is
also easier to consume and annotate if branch from addresses always point
to branch instructions.

Add a new variant of the branch classifier that can account for instruction
fusion. If fusion is expected and the current branch from address does not
point to a branch instruction, it attempts to find the first branch within
the next (MAX_INSN_SIZE - 1) bytes and if found, additionally provides the
offset between the reported branch from address and the address of the
expected branch instruction.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/b6bb0abaa8a54c0b6d716344700ee11a1793d709.1660211399.git.sandipan.das@amd.com
2022-08-27 00:05:44 +02:00
Sandipan Das
4462fbfe6e perf/x86: Move branch classifier
Commit 3e702ff6d1 ("perf/x86: Add LBR software filter support for Intel
CPUs") introduces a software branch filter which complements the hardware
branch filter and adds an x86 branch classifier.

Move the branch classifier to arch/x86/events/ so that it can be utilized
by other vendors for branch record filtering.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/bae5b95470d6bd49f40954bd379f414f5afcb965.1660211399.git.sandipan.das@amd.com
2022-08-27 00:05:44 +02:00
Sandipan Das
ca5b7c0d96 perf/x86/amd/lbr: Add LbrExtV2 branch record support
If AMD Last Branch Record Extension Version 2 (LbrExtV2) is detected,
enable it alongside LBR Freeze on PMI when an event requests branch stack
i.e. PERF_SAMPLE_BRANCH_STACK.

Each branch record is represented by a pair of registers, LBR From and LBR
To. The freeze feature prevents any updates to these registers once a PMC
overflows. The contents remain unchanged until the freeze bit is cleared by
the PMI handler.

The branch records are read and copied to sample data before unfreezing.
However, only valid entries are copied. There is no additional register to
denote which of the register pairs represent the top of the stack (TOS)
since internal register renaming always ensures that the first pair (i.e.
index 0) is the one representing the most recent branch and so on.

The LBR registers are per-thread resources and are cleared explicitly
whenever a new task is scheduled in. There are no special implications on
the contents of these registers when transitioning to deep C-states.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/d3b8500a3627a0d4d0259b005891ee248f248d91.1660211399.git.sandipan.das@amd.com
2022-08-27 00:05:43 +02:00
Sandipan Das
703fb765f4 perf/x86/amd/lbr: Detect LbrExtV2 support
AMD Last Branch Record Extension Version 2 (LbrExtV2) is driven by Core PMC
overflows. It records recently taken branches up to the moment when the PMC
overflow occurs.

Detect the feature during PMU initialization and set the branch stack depth
using CPUID leaf 0x80000022 EBX.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/fc6e45378ada258f1bab79b0de6e05c393a8f1dd.1660211399.git.sandipan.das@amd.com
2022-08-27 00:05:43 +02:00
Sandipan Das
b40d0156f5 perf/x86/amd/brs: Move feature-specific functions
Move some of the Branch Sampling (BRS) specific functions out of the Core
events sources and into the BRS sources in preparation for adding other
mechanisms to record branches.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/b60283b57179475d18ee242d117c335c16733693.1660211399.git.sandipan.das@amd.com
2022-08-27 00:05:41 +02:00
Linus Torvalds
7c5c3a6177 ARM:
* Unwinder implementations for both nVHE modes (classic and
   protected), complete with an overflow stack
 
 * Rework of the sysreg access from userspace, with a complete
   rewrite of the vgic-v3 view to allign with the rest of the
   infrastructure
 
 * Disagregation of the vcpu flags in separate sets to better track
   their use model.
 
 * A fix for the GICv2-on-v3 selftest
 
 * A small set of cosmetic fixes
 
 RISC-V:
 
 * Track ISA extensions used by Guest using bitmap
 
 * Added system instruction emulation framework
 
 * Added CSR emulation framework
 
 * Added gfp_custom flag in struct kvm_mmu_memory_cache
 
 * Added G-stage ioremap() and iounmap() functions
 
 * Added support for Svpbmt inside Guest
 
 s390:
 
 * add an interface to provide a hypervisor dump for secure guests
 
 * improve selftests to use TAP interface
 
 * enable interpretive execution of zPCI instructions (for PCI passthrough)
 
 * First part of deferred teardown
 
 * CPU Topology
 
 * PV attestation
 
 * Minor fixes
 
 x86:
 
 * Permit guests to ignore single-bit ECC errors
 
 * Intel IPI virtualization
 
 * Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
 
 * PEBS virtualization
 
 * Simplify PMU emulation by just using PERF_TYPE_RAW events
 
 * More accurate event reinjection on SVM (avoid retrying instructions)
 
 * Allow getting/setting the state of the speaker port data bit
 
 * Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
 
 * "Notify" VM exit (detect microarchitectural hangs) for Intel
 
 * Use try_cmpxchg64 instead of cmpxchg64
 
 * Ignore benign host accesses to PMU MSRs when PMU is disabled
 
 * Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
 
 * Allow NX huge page mitigation to be disabled on a per-vm basis
 
 * Port eager page splitting to shadow MMU as well
 
 * Enable CMCI capability by default and handle injected UCNA errors
 
 * Expose pid of vcpu threads in debugfs
 
 * x2AVIC support for AMD
 
 * cleanup PIO emulation
 
 * Fixes for LLDT/LTR emulation
 
 * Don't require refcounted "struct page" to create huge SPTEs
 
 * Miscellaneous cleanups:
 ** MCE MSR emulation
 ** Use separate namespaces for guest PTEs and shadow PTEs bitmasks
 ** PIO emulation
 ** Reorganize rmap API, mostly around rmap destruction
 ** Do not workaround very old KVM bugs for L0 that runs with nesting enabled
 ** new selftests API for CPUID
 
 Generic:
 
 * Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
 
 * new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmLnyo4UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMtQQf/XjVWiRcWLPR9dqzRM/vvRXpiG+UL
 jU93R7m6ma99aqTtrxV/AE+kHgamBlma3Cwo+AcWk9uCVNbIhFjv2YKg6HptKU0e
 oJT3zRYp+XIjEo7Kfw+TwroZbTlG6gN83l1oBLFMqiFmHsMLnXSI2mm8MXyi3dNB
 vR2uIcTAl58KIprqNNsYJ2dNn74ogOMiXYx9XzoA9/5Xb6c0h4rreHJa5t+0s9RO
 Gz7Io3PxumgsbJngjyL1Ve5oxhlIAcZA8DU0PQmjxo3eS+k6BcmavGFd45gNL5zg
 iLpCh4k86spmzh8CWkAAwWPQE4dZknK6jTctJc0OFVad3Z7+X7n0E8TFrA==
 =PM8o
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "Quite a large pull request due to a selftest API overhaul and some
  patches that had come in too late for 5.19.

  ARM:

   - Unwinder implementations for both nVHE modes (classic and
     protected), complete with an overflow stack

   - Rework of the sysreg access from userspace, with a complete rewrite
     of the vgic-v3 view to allign with the rest of the infrastructure

   - Disagregation of the vcpu flags in separate sets to better track
     their use model.

   - A fix for the GICv2-on-v3 selftest

   - A small set of cosmetic fixes

  RISC-V:

   - Track ISA extensions used by Guest using bitmap

   - Added system instruction emulation framework

   - Added CSR emulation framework

   - Added gfp_custom flag in struct kvm_mmu_memory_cache

   - Added G-stage ioremap() and iounmap() functions

   - Added support for Svpbmt inside Guest

  s390:

   - add an interface to provide a hypervisor dump for secure guests

   - improve selftests to use TAP interface

   - enable interpretive execution of zPCI instructions (for PCI
     passthrough)

   - First part of deferred teardown

   - CPU Topology

   - PV attestation

   - Minor fixes

  x86:

   - Permit guests to ignore single-bit ECC errors

   - Intel IPI virtualization

   - Allow getting/setting pending triple fault with
     KVM_GET/SET_VCPU_EVENTS

   - PEBS virtualization

   - Simplify PMU emulation by just using PERF_TYPE_RAW events

   - More accurate event reinjection on SVM (avoid retrying
     instructions)

   - Allow getting/setting the state of the speaker port data bit

   - Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls
     are inconsistent

   - "Notify" VM exit (detect microarchitectural hangs) for Intel

   - Use try_cmpxchg64 instead of cmpxchg64

   - Ignore benign host accesses to PMU MSRs when PMU is disabled

   - Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior

   - Allow NX huge page mitigation to be disabled on a per-vm basis

   - Port eager page splitting to shadow MMU as well

   - Enable CMCI capability by default and handle injected UCNA errors

   - Expose pid of vcpu threads in debugfs

   - x2AVIC support for AMD

   - cleanup PIO emulation

   - Fixes for LLDT/LTR emulation

   - Don't require refcounted "struct page" to create huge SPTEs

   - Miscellaneous cleanups:
      - MCE MSR emulation
      - Use separate namespaces for guest PTEs and shadow PTEs bitmasks
      - PIO emulation
      - Reorganize rmap API, mostly around rmap destruction
      - Do not workaround very old KVM bugs for L0 that runs with nesting enabled
      - new selftests API for CPUID

  Generic:

   - Fix races in gfn->pfn cache refresh; do not pin pages tracked by
     the cache

   - new selftests API using struct kvm_vcpu instead of a (vm, id)
     tuple"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits)
  selftests: kvm: set rax before vmcall
  selftests: KVM: Add exponent check for boolean stats
  selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test
  selftests: KVM: Check stat name before other fields
  KVM: x86/mmu: remove unused variable
  RISC-V: KVM: Add support for Svpbmt inside Guest/VM
  RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap()
  RISC-V: KVM: Add G-stage ioremap() and iounmap() functions
  KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache
  RISC-V: KVM: Add extensible CSR emulation framework
  RISC-V: KVM: Add extensible system instruction emulation framework
  RISC-V: KVM: Factor-out instruction emulation into separate sources
  RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run
  RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function
  RISC-V: KVM: Fix variable spelling mistake
  RISC-V: KVM: Improve ISA extension by using a bitmap
  KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs()
  KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog
  KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
  KVM: x86: Do not block APIC write for non ICR registers
  ...
2022-08-04 14:59:54 -07:00
Kan Liang
ccf170e9d8 perf/x86/intel: Fix PEBS data source encoding for ADL
The PEBS data source encoding for the e-core is different from the
p-core.

Add the pebs_data_source[] in the struct x86_hybrid_pmu to store the
data source encoding for each type of the core.

Add intel_pmu_pebs_data_source_grt() for the e-core.
There is nothing changed for the data source encoding of the p-core,
which still reuse the intel_pmu_pebs_data_source_skl().

Fixes: f83d2f91d2 ("perf/x86/intel: Add Alder Lake Hybrid support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20220629150840.2235741-2-kan.liang@linux.intel.com
2022-07-04 09:23:09 +02:00
Kan Liang
39a41278f0 perf/x86/intel: Fix PEBS memory access info encoding for ADL
The PEBS memory access latency encoding for the e-core is slightly
different from the p-core. The bit 4 is Lock, while the bit 5 is TLB
access.

Add a new flag to indicate the load/store latency event on a hybrid
platform.
Add a new function pointer to retrieve the latency data for a hybrid
platform. Only implement the new flag and function for the e-core on
ADL. Still use the existing PERF_X86_EVENT_PEBS_LDLAT/STLAT flag for the
p-core on ADL.

Factor out pebs_set_tlb_lock() to set the generic memory data source
information of the TLB access and lock for both load and store latency.

Move the intel_get_event_constraints() to ahead of the :ppp check,
otherwise the new flag never gets a chance to be set for the :ppp
events.

Fixes: f83d2f91d2 ("perf/x86/intel: Add Alder Lake Hybrid support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20220629150840.2235741-1-kan.liang@linux.intel.com
2022-07-04 09:23:09 +02:00
Like Xu
e60b7cb089 x86/events/intel/ds: Enable large PEBS for PERF_SAMPLE_WEIGHT_TYPE
All the information required by the PERF_SAMPLE_WEIGHT is
available in the pebs record. Thus large PEBS could be enabled
for PERF_SAMPLE_WEIGHT sample type to save PMIs overhead until
other non-compatible flags such as PERF_SAMPLE_DATA_PAGE_SIZE
(due to lack of munmap tracking) stop it.

To cover new weight extension, add PERF_SAMPLE_WEIGHT_TYPE
to the guardian LARGE_PEBS_FLAGS.

Tested it with:

$ perf mem record -c 1000 workload
Before: Captured and wrote 0.126 MB perf.data (958 samples) [958 PMIs]
After: Captured and wrote 0.313 MB perf.data (4859 samples) [3 PMIs]

Reported-by: Yongchao Duan <yongduan@tencent.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220519151913.80545-1-likexu@tencent.com
2022-06-13 10:15:13 +02:00
Peter Zijlstra (Intel)
0d23dc34a7 x86/perf/core: Add pebs_capable to store valid PEBS_COUNTER_MASK value
The value of pebs_counter_mask will be accessed frequently
for repeated use in the intel_guest_get_msrs(). So it can be
optimized instead of endlessly mucking about with branches.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-7-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:52 -04:00
Like Xu
39a4d77954 perf/x86/core: Pass "struct kvm_pmu *" to determine the guest values
Splitting the logic for determining the guest values is unnecessarily
confusing, and potentially fragile. Perf should have full knowledge and
control of what values are loaded for the guest.

If we change .guest_get_msrs() to take a struct kvm_pmu pointer, then it
can generate the full set of guest values by grabbing guest ds_area and
pebs_data_cfg. Alternatively, .guest_get_msrs() could take the desired
guest MSR values directly (ds_area and pebs_data_cfg), but kvm_pmu is
vendor agnostic, so we don't see any reason to not just pass the pointer.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:45 -04:00
Like Xu
fb358e0b81 perf/x86/intel: Add EPT-Friendly PEBS for Ice Lake Server
Add support for EPT-Friendly PEBS, a new CPU feature that enlightens PEBS
to translate guest linear address through EPT, and facilitates handling
VM-Exits that occur when accessing PEBS records.  More information can
be found in the December 2021 release of Intel's SDM, Volume 3,
18.9.5 "EPT-Friendly PEBS". This new hardware facility makes sure the
guest PEBS records will not be lost, which is available on Intel Ice Lake
Server platforms (and later).

KVM will check this field through perf_get_x86_pmu_capability() instead
of hard coding the CPU models in the KVM code. If it is supported, the
guest PEBS capability will be exposed to the guest. Guest PEBS can be
enabled when and only when "EPT-Friendly PEBS" is supported and
EPT is enabled.

Cc: linux-perf-users@vger.kernel.org
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:39 -04:00
Peter Zijlstra
3c27b0c6ea perf/x86/amd: Fix AMD BRS period adjustment
There's two problems with the current amd_brs_adjust_period() code:

 - it isn't in fact AMD specific and wil always adjust the period;

 - it adjusts the period, while it should only adjust the event count,
   resulting in repoting a short period.

Fix this by using x86_pmu.limit_period, this makes it specific to the
AMD BRS case and ensures only the event count is adjusted while the
reported period is unmodified.

Fixes: ba2fe75008 ("perf/x86/amd: Add AMD branch sampling period adjustment")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2022-05-18 00:08:25 +02:00
Stephane Eranian
d5616bac7a perf/x86/amd: Add idle hooks for branch sampling
On AMD Fam19h Zen3, the branch sampling (BRS) feature must be disabled before
entering low power and re-enabled (if was active) when returning from low
power. Otherwise, the NMI interrupt may be held up for too long and cause
problems. Stopping BRS will cause the NMI to be delivered if it was held up.

Define a perf_amd_brs_lopwr_cb() callback to stop/restart BRS.  The callback
is protected by a jump label which is enabled only when AMD BRS is detected.
In all other cases, the callback is never called.

Signed-off-by: Stephane Eranian <eranian@google.com>
[peterz: static_call() and build fixes]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220322221517.2510440-10-eranian@google.com
2022-04-05 10:24:38 +02:00
Stephane Eranian
cc37e520a2 perf/x86/amd: Make Zen3 branch sampling opt-in
Add a kernel config option CONFIG_PERF_EVENTS_AMD_BRS
to make the support for AMD Zen3 Branch Sampling (BRS) an opt-in
compile time option.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220322221517.2510440-8-eranian@google.com
2022-04-05 10:24:38 +02:00
Stephane Eranian
ba2fe75008 perf/x86/amd: Add AMD branch sampling period adjustment
Add code to adjust the sampling event period when used with the Branch
Sampling feature (BRS). Given the depth of the BRS (16), the period is
reduced by that depth such that in the best case scenario, BRS saturates at
the desired sampling period. In practice, though, the processor may execute
more branches. Given a desired period P and a depth D, the kernel programs
the actual period at P - D. After P occurrences of the sampling event, the
counter overflows. It then may take X branches (skid) before the NMI is
caught and held by the hardware and BRS activates. Then, after D branches,
BRS saturates and the NMI is delivered.  With no skid, the effective period
would be (P - D) + D = P. In practice, however, it will likely be (P - D) +
X + D. There is no way to eliminate X or predict X.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220322221517.2510440-7-eranian@google.com
2022-04-05 10:24:37 +02:00
Stephane Eranian
ada543459c perf/x86/amd: Add AMD Fam19h Branch Sampling support
Add support for the AMD Fam19h 16-deep branch sampling feature as
described in the AMD PPR Fam19h Model 01h Revision B1.  This is a model
specific extension. It is not an architected AMD feature.

The Branch Sampling (BRS) operates with a 16-deep saturating buffer in MSR
registers. There is no branch type filtering. All control flow changes are
captured. BRS relies on specific programming of the core PMU of Fam19h.  In
particular, the following requirements must be met:
 - the sampling period be greater than 16 (BRS depth)
 - the sampling period must use a fixed and not frequency mode

BRS interacts with the NMI interrupt as well. Because enabling BRS is
expensive, it is only activated after P event occurrences, where P is the
desired sampling period.  At P occurrences of the event, the counter
overflows, the CPU catches the interrupt, activates BRS for 16 branches until
it saturates, and then delivers the NMI to the kernel.  Between the overflow
and the time BRS activates more branches may be executed skewing the period.
All along, the sampling event keeps counting. The skid may be attenuated by
reducing the sampling period by 16 (subsequent patch).

BRS is integrated into perf_events seamlessly via the same
PERF_RECORD_BRANCH_STACK sample format. BRS generates perf_branch_entry
records in the sampling buffer. No prediction information is supported. The
branches are stored in reverse order of execution.  The most recent branch is
the first entry in each record.

No modification to the perf tool is necessary.

BRS can be used with any sampling event. However, it is recommended to use
the RETIRED_BRANCH_INSTRUCTIONS event because it matches what the BRS
captures.

$ perf record -b -c 1000037 -e cpu/event=0xc2,name=ret_br_instructions/ test

$ perf report -D
56531696056126 0x193c000 [0x1a8]: PERF_RECORD_SAMPLE(IP, 0x2): 18122/18230: 0x401d24 period: 1000037 addr: 0
... branch stack: nr:16
.....  0: 0000000000401d24 -> 0000000000401d5a 0 cycles      0
.....  1: 0000000000401d5c -> 0000000000401d24 0 cycles      0
.....  2: 0000000000401d22 -> 0000000000401d5c 0 cycles      0
.....  3: 0000000000401d5e -> 0000000000401d22 0 cycles      0
.....  4: 0000000000401d20 -> 0000000000401d5e 0 cycles      0
.....  5: 0000000000401d3e -> 0000000000401d20 0 cycles      0
.....  6: 0000000000401d42 -> 0000000000401d3e 0 cycles      0
.....  7: 0000000000401d3c -> 0000000000401d42 0 cycles      0
.....  8: 0000000000401d44 -> 0000000000401d3c 0 cycles      0
.....  9: 0000000000401d3a -> 0000000000401d44 0 cycles      0
..... 10: 0000000000401d46 -> 0000000000401d3a 0 cycles      0
..... 11: 0000000000401d38 -> 0000000000401d46 0 cycles      0
..... 12: 0000000000401d48 -> 0000000000401d38 0 cycles      0
..... 13: 0000000000401d36 -> 0000000000401d48 0 cycles      0
..... 14: 0000000000401d4a -> 0000000000401d36 0 cycles      0
..... 15: 0000000000401d34 -> 0000000000401d4a 0 cycles      0
 ... thread: test:18230
 ...... dso: test

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220322221517.2510440-4-eranian@google.com
2022-04-05 10:24:37 +02:00
Peter Zijlstra (Intel)
1ac7fd8159 perf/x86/intel/lbr: Support LBR format V7
The Goldmont plus and Tremont have LBR format V7. The V7 has LBR_INFO,
which is the same as LBR format V5. But V7 doesn't support TSX.

Without the patch, the associated misprediction and cycles information
in the LBR_INFO may be lost on a Goldmont plus platform.
For Tremont, the patch only impacts the non-PEBS events. Because of the
adaptive PEBS, the LBR_INFO is always processed for a PEBS event.

Currently, two different ways are used to check the LBR capabilities,
which make the codes complex and confusing.
For the LBR format V4 and earlier, the global static lbr_desc array is
used to store the flags for the LBR capabilities in each LBR format.
For LBR format V5 and V6, the current code checks the version number
for the LBR capabilities.

There are common LBR capabilities among LBR format versions. Several
flags for the LBR capabilities are introduced into the struct x86_pmu.
The flags, which can be shared among LBR formats, are used to check
the LBR capabilities. Add intel_pmu_lbr_init() to set the flags
accordingly at boot time.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/1641315077-96661-1-git-send-email-peterz@infradead.org
2022-01-18 12:09:48 +01:00
Rob Herring
369461ce8f x86: perf: Move RDPMC event flag to a common definition
In preparation to enable user counter access on arm64 and to move some
of the user access handling to perf core, create a common event flag for
user counter access and convert x86 to use it.

Since the architecture specific flags start at the LSB, starting at the
MSB for common flags.

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: linux-perf-users@vger.kernel.org
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20211208201124.310740-2-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2021-12-14 11:30:54 +00:00
Linus Torvalds
fc02cb2b37 Core:
- Remove socket skb caches
 
  - Add a SO_RESERVE_MEM socket op to forward allocate buffer space
    and avoid memory accounting overhead on each message sent
 
  - Introduce managed neighbor entries - added by control plane and
    resolved by the kernel for use in acceleration paths (BPF / XDP
    right now, HW offload users will benefit as well)
 
  - Make neighbor eviction on link down controllable by userspace
    to work around WiFi networks with bad roaming implementations
 
  - vrf: Rework interaction with netfilter/conntrack
 
  - fq_codel: implement L4S style ce_threshold_ect1 marking
 
  - sch: Eliminate unnecessary RCU waits in mini_qdisc_pair_swap()
 
 BPF:
 
  - Add support for new btf kind BTF_KIND_TAG, arbitrary type tagging
    as implemented in LLVM14
 
  - Introduce bpf_get_branch_snapshot() to capture Last Branch Records
 
  - Implement variadic trace_printk helper
 
  - Add a new Bloomfilter map type
 
  - Track <8-byte scalar spill and refill
 
  - Access hw timestamp through BPF's __sk_buff
 
  - Disallow unprivileged BPF by default
 
  - Document BPF licensing
 
 Netfilter:
 
  - Introduce egress hook for looking at raw outgoing packets
 
  - Allow matching on and modifying inner headers / payload data
 
  - Add NFT_META_IFTYPE to match on the interface type either from
    ingress or egress
 
 Protocols:
 
  - Multi-Path TCP:
    - increase default max additional subflows to 2
    - rework forward memory allocation
    - add getsockopts: MPTCP_INFO, MPTCP_TCPINFO, MPTCP_SUBFLOW_ADDRS
 
  - MCTP flow support allowing lower layer drivers to configure msg
    muxing as needed
 
  - Automatic Multicast Tunneling (AMT) driver based on RFC7450
 
  - HSR support the redbox supervision frames (IEC-62439-3:2018)
 
  - Support for the ip6ip6 encapsulation of IOAM
 
  - Netlink interface for CAN-FD's Transmitter Delay Compensation
 
  - Support SMC-Rv2 eliminating the current same-subnet restriction,
    by exploiting the UDP encapsulation feature of RoCE adapters
 
  - TLS: add SM4 GCM/CCM crypto support
 
  - Bluetooth: initial support for link quality and audio/codec
    offload
 
 Driver APIs:
 
  - Add a batched interface for RX buffer allocation in AF_XDP
    buffer pool
 
  - ethtool: Add ability to control transceiver modules' power mode
 
  - phy: Introduce supported interfaces bitmap to express MAC
    capabilities and simplify PHY code
 
  - Drop rtnl_lock from DSA .port_fdb_{add,del} callbacks
 
 New drivers:
 
  - WiFi driver for Realtek 8852AE 802.11ax devices (rtw89)
 
  - Ethernet driver for ASIX AX88796C SPI device (x88796c)
 
 Drivers:
 
  - Broadcom PHYs
    - support 72165, 7712 16nm PHYs
    - support IDDQ-SR for additional power savings
 
  - PHY support for QCA8081, QCA9561 PHYs
 
  - NXP DPAA2: support for IRQ coalescing
 
  - NXP Ethernet (enetc): support for software TCP segmentation
 
  - Renesas Ethernet (ravb) - support DMAC and EMAC blocks of
    Gigabit-capable IP found on RZ/G2L SoC
 
  - Intel 100G Ethernet
    - support for eswitch offload of TC/OvS flow API, including
      offload of GRE, VxLAN, Geneve tunneling
    - support application device queues - ability to assign Rx and Tx
      queues to application threads
    - PTP and PPS (pulse-per-second) extensions
 
  - Broadcom Ethernet (bnxt)
    - devlink health reporting and device reload extensions
 
  - Mellanox Ethernet (mlx5)
    - offload macvlan interfaces
    - support HW offload of TC rules involving OVS internal ports
    - support HW-GRO and header/data split
    - support application device queues
 
  - Marvell OcteonTx2:
    - add XDP support for PF
    - add PTP support for VF
 
  - Qualcomm Ethernet switch (qca8k): support for QCA8328
 
  - Realtek Ethernet DSA switch (rtl8366rb)
    - support bridge offload
    - support STP, fast aging, disabling address learning
    - support for Realtek RTL8365MB-VC, a 4+1 port 10M/100M/1GE switch
 
  - Mellanox Ethernet/IB switch (mlxsw)
    - multi-level qdisc hierarchy offload (e.g. RED, prio and shaping)
    - offload root TBF qdisc as port shaper
    - support multiple routing interface MAC address prefixes
    - support for IP-in-IP with IPv6 underlay
 
  - MediaTek WiFi (mt76)
    - mt7921 - ASPM, 6GHz, SDIO and testmode support
    - mt7915 - LED and TWT support
 
  - Qualcomm WiFi (ath11k)
    - include channel rx and tx time in survey dump statistics
    - support for 80P80 and 160 MHz bandwidths
    - support channel 2 in 6 GHz band
    - spectral scan support for QCN9074
    - support for rx decapsulation offload (data frames in 802.3
      format)
 
  - Qualcomm phone SoC WiFi (wcn36xx)
    - enable Idle Mode Power Save (IMPS) to reduce power consumption
      during idle
 
  - Bluetooth driver support for MediaTek MT7922 and MT7921
 
  - Enable support for AOSP Bluetooth extension in Qualcomm WCN399x
    and Realtek 8822C/8852A
 
  - Microsoft vNIC driver (mana)
    - support hibernation and kexec
 
  - Google vNIC driver (gve)
    - support for jumbo frames
    - implement Rx page reuse
 
 Refactor:
 
  - Make all writes to netdev->dev_addr go thru helpers, so that we
    can add this address to the address rbtree and handle the updates
 
  - Various TCP cleanups and optimizations including improvements
    to CPU cache use
 
  - Simplify the gnet_stats, Qdisc stats' handling and remove
    qdisc->running sequence counter
 
  - Driver changes and API updates to address devlink locking
    deficiencies
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmGAzX4ACgkQMUZtbf5S
 IrvW3g//Q0ZLrOuHK9pZ8sCXMMhDj8qL6ajm0otMddHWA/+1UglwVBKFhsajfxOf
 wJ/5LZis+XKLpLqKTU5chKVfn39HuDGe/D3l+egi01Gv5BW0+XzEhagfyR5tJX5z
 wsGG5CXO/we/laVSzRiFtwwVEKHKN20YC+tIQwYOYP5Wy3q4G7qDsFhT7GqgsGCS
 n74QUEAIB5Tz0ODWFqLtbsySzIurXrskibwt5T9bvAAlPw/lCU68mmG+NVJ7VddO
 lBbNkLMOo8yW9Ci20H09SrYd4jZTmMARo9tsFO1tAvAMk7qpn0Wd8pnOYTjFFoMD
 +qjiFSVMh7E0JGb8Y7NCvwaB99suAK5rfGP68Xwe62DfP7vYWEx4pZGxBP19F4ld
 6Kn1ME33BX9rUF9tBecf0bdKfJUwB2Q2Xou/b9laG04bwiqsc9iG5FQq1C46lnLZ
 QdzNiS1My4dJMczkWt66HF3Kx30ibwHfvKMIHjf4PqkzEatkv6Y6SBZ57KXL+Lde
 0BQSFhbf0tm2Gf55etzrczLElI3uqHSFWUNZZ2Bt6WmzO1e6tpV9nAtRWF4C/dFg
 QDpLJtOOOY65uq+qz09zoPfv2lem868SrCAuFrVn99bEpYjx/CGNFDeEI02l6jyr
 84eUxd364UcbIk3fc+eTGdXHLQNVk30G0AHVBBxaWNIidwfqXeE=
 =srde
 -----END PGP SIGNATURE-----

Merge tag 'net-next-for-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:
 "Core:

   - Remove socket skb caches

   - Add a SO_RESERVE_MEM socket op to forward allocate buffer space and
     avoid memory accounting overhead on each message sent

   - Introduce managed neighbor entries - added by control plane and
     resolved by the kernel for use in acceleration paths (BPF / XDP
     right now, HW offload users will benefit as well)

   - Make neighbor eviction on link down controllable by userspace to
     work around WiFi networks with bad roaming implementations

   - vrf: Rework interaction with netfilter/conntrack

   - fq_codel: implement L4S style ce_threshold_ect1 marking

   - sch: Eliminate unnecessary RCU waits in mini_qdisc_pair_swap()

  BPF:

   - Add support for new btf kind BTF_KIND_TAG, arbitrary type tagging
     as implemented in LLVM14

   - Introduce bpf_get_branch_snapshot() to capture Last Branch Records

   - Implement variadic trace_printk helper

   - Add a new Bloomfilter map type

   - Track <8-byte scalar spill and refill

   - Access hw timestamp through BPF's __sk_buff

   - Disallow unprivileged BPF by default

   - Document BPF licensing

  Netfilter:

   - Introduce egress hook for looking at raw outgoing packets

   - Allow matching on and modifying inner headers / payload data

   - Add NFT_META_IFTYPE to match on the interface type either from
     ingress or egress

  Protocols:

   - Multi-Path TCP:
      - increase default max additional subflows to 2
      - rework forward memory allocation
      - add getsockopts: MPTCP_INFO, MPTCP_TCPINFO, MPTCP_SUBFLOW_ADDRS

   - MCTP flow support allowing lower layer drivers to configure msg
     muxing as needed

   - Automatic Multicast Tunneling (AMT) driver based on RFC7450

   - HSR support the redbox supervision frames (IEC-62439-3:2018)

   - Support for the ip6ip6 encapsulation of IOAM

   - Netlink interface for CAN-FD's Transmitter Delay Compensation

   - Support SMC-Rv2 eliminating the current same-subnet restriction, by
     exploiting the UDP encapsulation feature of RoCE adapters

   - TLS: add SM4 GCM/CCM crypto support

   - Bluetooth: initial support for link quality and audio/codec offload

  Driver APIs:

   - Add a batched interface for RX buffer allocation in AF_XDP buffer
     pool

   - ethtool: Add ability to control transceiver modules' power mode

   - phy: Introduce supported interfaces bitmap to express MAC
     capabilities and simplify PHY code

   - Drop rtnl_lock from DSA .port_fdb_{add,del} callbacks

  New drivers:

   - WiFi driver for Realtek 8852AE 802.11ax devices (rtw89)

   - Ethernet driver for ASIX AX88796C SPI device (x88796c)

  Drivers:

   - Broadcom PHYs
      - support 72165, 7712 16nm PHYs
      - support IDDQ-SR for additional power savings

   - PHY support for QCA8081, QCA9561 PHYs

   - NXP DPAA2: support for IRQ coalescing

   - NXP Ethernet (enetc): support for software TCP segmentation

   - Renesas Ethernet (ravb) - support DMAC and EMAC blocks of
     Gigabit-capable IP found on RZ/G2L SoC

   - Intel 100G Ethernet
      - support for eswitch offload of TC/OvS flow API, including
        offload of GRE, VxLAN, Geneve tunneling
      - support application device queues - ability to assign Rx and Tx
        queues to application threads
      - PTP and PPS (pulse-per-second) extensions

   - Broadcom Ethernet (bnxt)
      - devlink health reporting and device reload extensions

   - Mellanox Ethernet (mlx5)
      - offload macvlan interfaces
      - support HW offload of TC rules involving OVS internal ports
      - support HW-GRO and header/data split
      - support application device queues

   - Marvell OcteonTx2:
      - add XDP support for PF
      - add PTP support for VF

   - Qualcomm Ethernet switch (qca8k): support for QCA8328

   - Realtek Ethernet DSA switch (rtl8366rb)
      - support bridge offload
      - support STP, fast aging, disabling address learning
      - support for Realtek RTL8365MB-VC, a 4+1 port 10M/100M/1GE switch

   - Mellanox Ethernet/IB switch (mlxsw)
      - multi-level qdisc hierarchy offload (e.g. RED, prio and shaping)
      - offload root TBF qdisc as port shaper
      - support multiple routing interface MAC address prefixes
      - support for IP-in-IP with IPv6 underlay

   - MediaTek WiFi (mt76)
      - mt7921 - ASPM, 6GHz, SDIO and testmode support
      - mt7915 - LED and TWT support

   - Qualcomm WiFi (ath11k)
      - include channel rx and tx time in survey dump statistics
      - support for 80P80 and 160 MHz bandwidths
      - support channel 2 in 6 GHz band
      - spectral scan support for QCN9074
      - support for rx decapsulation offload (data frames in 802.3
        format)

   - Qualcomm phone SoC WiFi (wcn36xx)
      - enable Idle Mode Power Save (IMPS) to reduce power consumption
        during idle

   - Bluetooth driver support for MediaTek MT7922 and MT7921

   - Enable support for AOSP Bluetooth extension in Qualcomm WCN399x and
     Realtek 8822C/8852A

   - Microsoft vNIC driver (mana)
      - support hibernation and kexec

   - Google vNIC driver (gve)
      - support for jumbo frames
      - implement Rx page reuse

  Refactor:

   - Make all writes to netdev->dev_addr go thru helpers, so that we can
     add this address to the address rbtree and handle the updates

   - Various TCP cleanups and optimizations including improvements to
     CPU cache use

   - Simplify the gnet_stats, Qdisc stats' handling and remove
     qdisc->running sequence counter

   - Driver changes and API updates to address devlink locking
     deficiencies"

* tag 'net-next-for-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2122 commits)
  Revert "net: avoid double accounting for pure zerocopy skbs"
  selftests: net: add arp_ndisc_evict_nocarrier
  net: ndisc: introduce ndisc_evict_nocarrier sysctl parameter
  net: arp: introduce arp_evict_nocarrier sysctl parameter
  libbpf: Deprecate AF_XDP support
  kbuild: Unify options for BTF generation for vmlinux and modules
  selftests/bpf: Add a testcase for 64-bit bounds propagation issue.
  bpf: Fix propagation of signed bounds from 64-bit min/max into 32-bit.
  bpf: Fix propagation of bounds from 64-bit min/max into 32-bit and var_off.
  net: vmxnet3: remove multiple false checks in vmxnet3_ethtool.c
  net: avoid double accounting for pure zerocopy skbs
  tcp: rename sk_wmem_free_skb
  netdevsim: fix uninit value in nsim_drv_configure_vfs()
  selftests/bpf: Fix also no-alu32 strobemeta selftest
  bpf: Add missing map_delete_elem method to bloom filter map
  selftests/bpf: Add bloom map success test for userspace calls
  bpf: Add alignment padding for "map_extra" + consolidate holes
  bpf: Bloom filter map naming fixups
  selftests/bpf: Add test cases for struct_ops prog
  bpf: Add dummy BPF STRUCT_OPS for test purpose
  ...
2021-11-02 06:20:58 -07:00
Linus Torvalds
8cb1ae19bf x86/fpu updates:
- Cleanup of extable fixup handling to be more robust, which in turn
    allows to make the FPU exception fixups more robust as well.
 
  - Change the return code for signal frame related failures from explicit
    error codes to a boolean fail/success as that's all what the calling
    code evaluates.
 
  - A large refactoring of the FPU code to prepare for adding AMX support:
 
    - Distangle the public header maze and remove especially the misnomed
      kitchen sink internal.h which is despite it's name included all over
      the place.
 
    - Add a proper abstraction for the register buffer storage (struct
      fpstate) which allows to dynamically size the buffer at runtime by
      flipping the pointer to the buffer container from the default
      container which is embedded in task_struct::tread::fpu to a
      dynamically allocated container with a larger register buffer.
 
    - Convert the code over to the new fpstate mechanism.
 
    - Consolidate the KVM FPU handling by moving the FPU related code into
      the FPU core which removes the number of exports and avoids adding
      even more export when AMX has to be supported in KVM. This also
      removes duplicated code which was of course unnecessary different and
      incomplete in the KVM copy.
 
    - Simplify the KVM FPU buffer handling by utilizing the new fpstate
      container and just switching the buffer pointer from the user space
      buffer to the KVM guest buffer when entering vcpu_run() and flipping
      it back when leaving the function. This cuts the memory requirements
      of a vCPU for FPU buffers in half and avoids pointless memory copy
      operations.
 
      This also solves the so far unresolved problem of adding AMX support
      because the current FPU buffer handling of KVM inflicted a circular
      dependency between adding AMX support to the core and to KVM.  With
      the new scheme of switching fpstate AMX support can be added to the
      core code without affecting KVM.
 
    - Replace various variables with proper data structures so the extra
      information required for adding dynamically enabled FPU features (AMX)
      can be added in one place
 
  - Add AMX (Advanved Matrix eXtensions) support (finally):
 
     AMX is a large XSTATE component which is going to be available with
     Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
     which allows to trap the (first) use of an AMX related instruction,
     which has two benefits:
 
     1) It allows the kernel to control access to the feature
 
     2) It allows the kernel to dynamically allocate the large register
        state buffer instead of burdening every task with the the extra 8K
        or larger state storage.
 
     It would have been great to gain this kind of control already with
     AVX512.
 
     The support comes with the following infrastructure components:
 
     1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature
 
        Permission is granted per process, inherited on fork() and cleared
        on exec(). The permission policy of the kernel is restricted to
        sigaltstack size validation, but the syscall obviously allows
        further restrictions via seccomp etc.
 
     2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
        takes granted permissions and the potentially resulting larger
        signal frame into account. This mechanism can also be used to
        enforce factual sigaltstack validation independent of dynamic
        features to help with finding potential victims of the 2K
        sigaltstack size constant which is broken since AVX512 support was
        added.
 
     3) Exception handling for #NM traps to catch first use of a extended
        feature via a new cause MSR. If the exception was caused by the use
        of such a feature, the handler checks permission for that
        feature. If permission has not been granted, the handler sends a
        SIGILL like the #UD handler would do if the feature would have been
        disabled in XCR0. If permission has been granted, then a new fpstate
        which fits the larger buffer requirement is allocated.
 
        In the unlikely case that this allocation fails, the handler sends
        SIGSEGV to the task. That's not elegant, but unavoidable as the
        other discussed options of preallocation or full per task
        permissions come with their own set of horrors for kernel and/or
        userspace. So this is the lesser of the evils and SIGSEGV caused by
        unexpected memory allocation failures is not a fundamentally new
        concept either.
 
        When allocation succeeds, the fpstate properties are filled in to
        reflect the extended feature set and the resulting sizes, the
        fpu::fpstate pointer is updated accordingly and the trap is disarmed
        for this task permanently.
 
     4) Enumeration and size calculations
 
     5) Trap switching via MSR_XFD
 
        The XFD (eXtended Feature Disable) MSR is context switched with the
        same life time rules as the FPU register state itself. The mechanism
        is keyed off with a static key which is default disabled so !AMX
        equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
        is limited by comparing the tasks XFD value with a per CPU shadow
        variable to avoid redundant MSR writes. In case of switching from a
        AMX using task to a non AMX using task or vice versa, the extra MSR
        write is obviously inevitable.
 
        All other places which need to be aware of the variable feature sets
        and resulting variable sizes are not affected at all because they
        retrieve the information (feature set, sizes) unconditonally from
        the fpstate properties.
 
     6) Enable the new AMX states
 
   Note, this is relatively new code despite the fact that AMX support is in
   the works for more than a year now.
 
   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which has
   not been caught in review and testing right away was restricted to AMX
   enabled systems, which is completely irrelevant for anyone outside Intel
   and their early access program. There might be dragons lurking as usual,
   but so far the fine grained refactoring has held up and eventual yet
   undetected fallout is bisectable and should be easily addressable before
   the 5.16 release. Famous last words...
 
   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity to
   follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for inclusion
   into 5.16-rc1.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
 /3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
 YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
 jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
 jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
 EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
 RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
 YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
 dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
 FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
 75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
 hcKvDmehQLrUvg==
 =x3WL
 -----END PGP SIGNATURE-----

Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fpu updates from Thomas Gleixner:

 - Cleanup of extable fixup handling to be more robust, which in turn
   allows to make the FPU exception fixups more robust as well.

 - Change the return code for signal frame related failures from
   explicit error codes to a boolean fail/success as that's all what the
   calling code evaluates.

 - A large refactoring of the FPU code to prepare for adding AMX
   support:

      - Distangle the public header maze and remove especially the
        misnomed kitchen sink internal.h which is despite it's name
        included all over the place.

      - Add a proper abstraction for the register buffer storage (struct
        fpstate) which allows to dynamically size the buffer at runtime
        by flipping the pointer to the buffer container from the default
        container which is embedded in task_struct::tread::fpu to a
        dynamically allocated container with a larger register buffer.

      - Convert the code over to the new fpstate mechanism.

      - Consolidate the KVM FPU handling by moving the FPU related code
        into the FPU core which removes the number of exports and avoids
        adding even more export when AMX has to be supported in KVM.
        This also removes duplicated code which was of course
        unnecessary different and incomplete in the KVM copy.

      - Simplify the KVM FPU buffer handling by utilizing the new
        fpstate container and just switching the buffer pointer from the
        user space buffer to the KVM guest buffer when entering
        vcpu_run() and flipping it back when leaving the function. This
        cuts the memory requirements of a vCPU for FPU buffers in half
        and avoids pointless memory copy operations.

        This also solves the so far unresolved problem of adding AMX
        support because the current FPU buffer handling of KVM inflicted
        a circular dependency between adding AMX support to the core and
        to KVM. With the new scheme of switching fpstate AMX support can
        be added to the core code without affecting KVM.

      - Replace various variables with proper data structures so the
        extra information required for adding dynamically enabled FPU
        features (AMX) can be added in one place

 - Add AMX (Advanced Matrix eXtensions) support (finally):

   AMX is a large XSTATE component which is going to be available with
   Saphire Rapids XEON CPUs. The feature comes with an extra MSR
   (MSR_XFD) which allows to trap the (first) use of an AMX related
   instruction, which has two benefits:

    1) It allows the kernel to control access to the feature

    2) It allows the kernel to dynamically allocate the large register
       state buffer instead of burdening every task with the the extra
       8K or larger state storage.

   It would have been great to gain this kind of control already with
   AVX512.

   The support comes with the following infrastructure components:

    1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature

       Permission is granted per process, inherited on fork() and
       cleared on exec(). The permission policy of the kernel is
       restricted to sigaltstack size validation, but the syscall
       obviously allows further restrictions via seccomp etc.

    2) A stronger sigaltstack size validation for sys_sigaltstack(2)
       which takes granted permissions and the potentially resulting
       larger signal frame into account. This mechanism can also be used
       to enforce factual sigaltstack validation independent of dynamic
       features to help with finding potential victims of the 2K
       sigaltstack size constant which is broken since AVX512 support
       was added.

    3) Exception handling for #NM traps to catch first use of a extended
       feature via a new cause MSR. If the exception was caused by the
       use of such a feature, the handler checks permission for that
       feature. If permission has not been granted, the handler sends a
       SIGILL like the #UD handler would do if the feature would have
       been disabled in XCR0. If permission has been granted, then a new
       fpstate which fits the larger buffer requirement is allocated.

       In the unlikely case that this allocation fails, the handler
       sends SIGSEGV to the task. That's not elegant, but unavoidable as
       the other discussed options of preallocation or full per task
       permissions come with their own set of horrors for kernel and/or
       userspace. So this is the lesser of the evils and SIGSEGV caused
       by unexpected memory allocation failures is not a fundamentally
       new concept either.

       When allocation succeeds, the fpstate properties are filled in to
       reflect the extended feature set and the resulting sizes, the
       fpu::fpstate pointer is updated accordingly and the trap is
       disarmed for this task permanently.

    4) Enumeration and size calculations

    5) Trap switching via MSR_XFD

       The XFD (eXtended Feature Disable) MSR is context switched with
       the same life time rules as the FPU register state itself. The
       mechanism is keyed off with a static key which is default
       disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
       CPUs the overhead is limited by comparing the tasks XFD value
       with a per CPU shadow variable to avoid redundant MSR writes. In
       case of switching from a AMX using task to a non AMX using task
       or vice versa, the extra MSR write is obviously inevitable.

       All other places which need to be aware of the variable feature
       sets and resulting variable sizes are not affected at all because
       they retrieve the information (feature set, sizes) unconditonally
       from the fpstate properties.

    6) Enable the new AMX states

   Note, this is relatively new code despite the fact that AMX support
   is in the works for more than a year now.

   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which
   has not been caught in review and testing right away was restricted
   to AMX enabled systems, which is completely irrelevant for anyone
   outside Intel and their early access program. There might be dragons
   lurking as usual, but so far the fine grained refactoring has held up
   and eventual yet undetected fallout is bisectable and should be
   easily addressable before the 5.16 release. Famous last words...

   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity
   to follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for
   inclusion into 5.16-rc1

* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
  Documentation/x86: Add documentation for using dynamic XSTATE features
  x86/fpu: Include vmalloc.h for vzalloc()
  selftests/x86/amx: Add context switch test
  selftests/x86/amx: Add test cases for AMX state management
  x86/fpu/amx: Enable the AMX feature in 64-bit mode
  x86/fpu: Add XFD handling for dynamic states
  x86/fpu: Calculate the default sizes independently
  x86/fpu/amx: Define AMX state components and have it used for boot-time checks
  x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
  x86/fpu/xstate: Add fpstate_realloc()/free()
  x86/fpu/xstate: Add XFD #NM handler
  x86/fpu: Update XFD state where required
  x86/fpu: Add sanity checks for XFD
  x86/fpu: Add XFD state to fpstate
  x86/msr-index: Add MSRs for XFD
  x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
  x86/fpu: Reset permission and fpstate on exec()
  x86/fpu: Prepare fpu_clone() for dynamically enabled features
  x86/fpu/signal: Prepare for variable sigframe length
  x86/signal: Use fpu::__state_user_size for sigalt stack validation
  ...
2021-11-01 14:03:56 -07:00
Thomas Gleixner
b50854eca0 x86/pkru: Remove useless include
PKRU code does not need anything from FPU headers. Include cpufeature.h
instead and fixup the resulting fallout in perf.

This is a preparation for FPU changes in order to prevent recursive include
hell.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011538.551522694@linutronix.de
2021-10-20 15:27:25 +02:00
Adrian Hunter
8b8ff8cc3b perf/x86: Add new event for AUX output counter index
PEBS-via-PT records contain a mask of applicable counters. To identify
which event belongs to which counter, a side-band event is needed. Until
now, there has been no side-band event, and consequently users were limited
to using a single event.

Add such a side-band event. Note the event is optimised to output only
when the counter index changes for an event. That works only so long as
all PEBS-via-PT events are scheduled together, which they are for a
recording session because they are in a single group.

Also no attribute bit is used to select the new event, so a new
kernel is not compatible with older perf tools.  The assumption
being that PEBS-via-PT is sufficiently esoteric that users will not
be troubled by this.

Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210907163903.11820-2-adrian.hunter@intel.com
2021-10-15 11:25:31 +02:00
Song Liu
c22ac2a3d4 perf: Enable branch record for software events
The typical way to access branch record (e.g. Intel LBR) is via hardware
perf_event. For CPUs with FREEZE_LBRS_ON_PMI support, PMI could capture
reliable LBR. On the other hand, LBR could also be useful in non-PMI
scenario. For example, in kretprobe or bpf fexit program, LBR could
provide a lot of information on what happened with the function. Add API
to use branch record for software use.

Note that, when the software event triggers, it is necessary to stop the
branch record hardware asap. Therefore, static_call is used to remove some
branch instructions in this process.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/bpf/20210910183352.3151445-2-songliubraving@fb.com
2021-09-13 10:53:50 -07:00
Kan Liang
acade63799 perf/x86/intel: Apply mid ACK for small core
A warning as below may be occasionally triggered in an ADL machine when
these conditions occur:

 - Two perf record commands run one by one. Both record a PEBS event.
 - Both runs on small cores.
 - They have different adaptive PEBS configuration (PEBS_DATA_CFG).

  [ ] WARNING: CPU: 4 PID: 9874 at arch/x86/events/intel/ds.c:1743 setup_pebs_adaptive_sample_data+0x55e/0x5b0
  [ ] RIP: 0010:setup_pebs_adaptive_sample_data+0x55e/0x5b0
  [ ] Call Trace:
  [ ]  <NMI>
  [ ]  intel_pmu_drain_pebs_icl+0x48b/0x810
  [ ]  perf_event_nmi_handler+0x41/0x80
  [ ]  </NMI>
  [ ]  __perf_event_task_sched_in+0x2c2/0x3a0

Different from the big core, the small core requires the ACK right
before re-enabling counters in the NMI handler, otherwise a stale PEBS
record may be dumped into the later NMI handler, which trigger the
warning.

Add a new mid_ack flag to track the case. Add all PMI handler bits in
the struct x86_hybrid_pmu to track the bits for different types of
PMUs.  Apply mid ACK for the small cores on an Alder Lake machine.

The existing hybrid() macro has a compile error when taking address of
a bit-field variable. Add a new macro hybrid_bit() to get the
bit-field value of a given PMU.

Fixes: f83d2f91d2 ("perf/x86/intel: Add Alder Lake Hybrid support")
Reported-by: Ammy Yi <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Tested-by: Ammy Yi <ammy.yi@intel.com>
Link: https://lkml.kernel.org/r/1627997128-57891-1-git-send-email-kan.liang@linux.intel.com
2021-08-06 14:25:15 +02:00
Like Xu
df51fe7ea1 perf/x86/amd: Don't touch the AMD64_EVENTSEL_HOSTONLY bit inside the guest
If we use "perf record" in an AMD Milan guest, dmesg reports a #GP
warning from an unchecked MSR access error on MSR_F15H_PERF_CTLx:

  [] unchecked MSR access error: WRMSR to 0xc0010200 (tried to write 0x0000020000110076) at rIP: 0xffffffff8106ddb4 (native_write_msr+0x4/0x20)
  [] Call Trace:
  []  amd_pmu_disable_event+0x22/0x90
  []  x86_pmu_stop+0x4c/0xa0
  []  x86_pmu_del+0x3a/0x140

The AMD64_EVENTSEL_HOSTONLY bit is defined and used on the host,
while the guest perf driver should avoid such use.

Fixes: 1018faa6cf ("perf/x86/kvm: Fix Host-Only/Guest-Only counting with SVM disabled")
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Tested-by: Kim Phillips <kim.phillips@amd.com>
Tested-by: Liam Merwick <liam.merwick@oracle.com>
Link: https://lkml.kernel.org/r/20210802070850.35295-1-likexu@tencent.com
2021-08-04 15:16:34 +02:00
Linus Torvalds
28a27cbd86 Perf events updates for this cycle:
- Platform PMU driver updates:
 
      - x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
      - Fix RDPMC support
      - Fix [extended-]PEBS-via-PT support
      - Fix Sapphire Rapids event constraints
      - Fix :ppp support on Sapphire Rapids
      - Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
      - Other heterogenous-PMU fixes
 
  - Kprobes:
 
      - Remove the unused and misguided kprobe::fault_handler callbacks.
      - Warn about kprobes taking a page fault.
      - Fix the 'nmissed' stat counter.
 
  - Misc cleanups and fixes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZaxMRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hPgw//f9SnGzFoP1uR5TBqM8j/QHulMewew/iD
 dM5lh2emdmqHWYPBeRxUHgag38K2Golr3Y+NxLA3R+RMx+OZQe8Mz/wYvPQcBvsV
 k1HHImU3GRMn4GM7GwxH3vPIottDUx3mNS2J6pzlw3kwRUVqrxUdj/0/pSY/4eJ7
 ZT4uq4yLV83Jd3qioU7o7e/u6MrdNIIcAXRpVDdE9Mm1+kWXSVN7/h3Vsiz4tj5E
 iS+UXEtSc1a2mnmekv63pYkJHHNUb6guD8jgI/wrm1KIFGjDRifM+3TV6R/kB96/
 TfD2LhCcTShfSp8KI191pgV7/NQbB/PmLdSYmff3rTBiii4cqXuCygJCHInZ09z0
 4fTSSqM6aHg7kfTQyOCp+DUQ+9vNVXWo8mxt9c6B8xA0GyCI3zhjQ4UIiSUWRpjs
 Be5ZyF0kNNuPxYrKFnGnBf8+51DURpCz3sDdYRuK4KNkj1+4ZvJo/KzGTMUUIE4B
 IDQG6wDP5Kb388eRDtKrG5X7IXg+L5F/kezin60j0QF5MwDgxirT217teN8H1lNn
 YgWMjRK8Tw0flUJsbCxa51/nl93UtByB+fIRIc88MSeLxcI6/ORW+TxBBEqkYm5Z
 6BLFtmHSuAqAXUuyZXSGLcW7XLJvIaDoHgvbDn6l4g7FMWHqPOIq6nJQY3L8ben2
 e+fQrGh4noI=
 =20Vc
 -----END PGP SIGNATURE-----

Merge tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull perf events updates from Ingo Molnar:

 - Platform PMU driver updates:

     - x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
     - Fix RDPMC support
     - Fix [extended-]PEBS-via-PT support
     - Fix Sapphire Rapids event constraints
     - Fix :ppp support on Sapphire Rapids
     - Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
     - Other heterogenous-PMU fixes

 - Kprobes:

     - Remove the unused and misguided kprobe::fault_handler callbacks.
     - Warn about kprobes taking a page fault.
     - Fix the 'nmissed' stat counter.

 - Misc cleanups and fixes.

* tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf: Fix task context PMU for Hetero
  perf/x86/intel: Fix instructions:ppp support in Sapphire Rapids
  perf/x86/intel: Add more events requires FRONTEND MSR on Sapphire Rapids
  perf/x86/intel: Fix fixed counter check warning for some Alder Lake
  perf/x86/intel: Fix PEBS-via-PT reload base value for Extended PEBS
  perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
  kprobes: Do not increment probe miss count in the fault handler
  x86,kprobes: WARN if kprobes tries to handle a fault
  kprobes: Remove kprobe::fault_handler
  uprobes: Update uprobe_write_opcode() kernel-doc comment
  perf/hw_breakpoint: Fix DocBook warnings in perf hw_breakpoint
  perf/core: Fix DocBook warnings
  perf/core: Make local function perf_pmu_snapshot_aux() static
  perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on ICX
  perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on SNR
  perf/x86/intel/uncore: Generalize I/O stacks to PMON mapping procedure
  perf/x86/intel/uncore: Drop unnecessary NULL checks after container_of()
2021-06-28 12:03:20 -07:00
Kan Liang
5471eea5d3 perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
The counter value of a perf task may leak to another RDPMC task.
For example, a perf stat task as below is running on CPU 0.

    perf stat -e 'branches,cycles' -- taskset -c 0 ./workload

In the meantime, an RDPMC task, which is also running on CPU 0, may read
the GP counters periodically. (The RDPMC task creates a fixed event,
but read four GP counters.)

    $./rdpmc_read_all_counters
    index 0x0 value 0x8001e5970f99
    index 0x1 value 0x8005d750edb6
    index 0x2 value 0x0
    index 0x3 value 0x0

    index 0x0 value 0x8002358e48a5
    index 0x1 value 0x8006bd1e3bc9
    index 0x2 value 0x0
    index 0x3 value 0x0

It is a potential security issue. Once the attacker knows what the other
thread is counting. The PerfMon counter can be used as a side-channel to
attack cryptosystems.

The counter value of the perf stat task leaks to the RDPMC task because
perf never clears the counter when it's stopped.

Three methods were considered to address the issue.

 - Unconditionally reset the counter in x86_pmu_del(). It can bring extra
   overhead even when there is no RDPMC task running.

 - Only reset the un-assigned dirty counters when the RDPMC task is
   scheduled in via sched_task(). It fails for the below case.

	Thread A			Thread B

	clone(CLONE_THREAD) --->
	set_affine(0)
					set_affine(1)
					while (!event-enabled)
						;
	event = perf_event_open()
	mmap(event)
	ioctl(event, IOC_ENABLE); --->
					RDPMC

   Counters are still leaked to the thread B.

 - Only reset the un-assigned dirty counters before updating the CR4.PCE
   bit. The method is implemented here.

The dirty counter is a counter, on which the assigned event has been
deleted, but the counter is not reset. To track the dirty counters,
add a 'dirty' variable in the struct cpu_hw_events.

The security issue can only be found with an RDPMC task. To enable the
RDMPC, the CR4.PCE bit has to be updated. Add a
perf_clear_dirty_counters() right before updating the CR4.PCE bit to
clear the existing dirty counters. Only the current un-assigned dirty
counters are reset, because the RDPMC assigned dirty counters will be
updated soon.

After applying the patch,

        $ ./rdpmc_read_all_counters
        index 0x0 value 0x0
        index 0x1 value 0x0
        index 0x2 value 0x0
        index 0x3 value 0x0

        index 0x0 value 0x0
        index 0x1 value 0x0
        index 0x2 value 0x0
        index 0x3 value 0x0

Performance

The performance of a context switch only be impacted when there are two
or more perf users and one of the users must be an RDPMC user. In other
cases, there is no performance impact.

The worst-case occurs when there are two users: the RDPMC user only
uses one counter; while the other user uses all available counters.
When the RDPMC task is scheduled in, all the counters, other than the
RDPMC assigned one, have to be reset.

Test results for the worst-case, using a modified lat_ctx as measured
on an Ice Lake platform, which has 8 GP and 3 FP counters (ignoring
SLOTS).

    lat_ctx -s 128K -N 1000 processes 2

Without the patch:
  The context switch time is 4.97 us

With the patch:
  The context switch time is 5.16 us

There is ~4% performance drop for the context switching time in the
worst-case.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1623693582-187370-1-git-send-email-kan.liang@linux.intel.com
2021-06-17 14:11:47 +02:00
Like Xu
488e13a489 perf/x86/lbr: Remove cpuc->lbr_xsave allocation from atomic context
If the kernel is compiled with the CONFIG_LOCKDEP option, the conditional
might_sleep_if() deep in kmem_cache_alloc() will generate the following
trace, and potentially cause a deadlock when another LBR event is added:

  [] BUG: sleeping function called from invalid context at include/linux/sched/mm.h:196
  [] Call Trace:
  []  kmem_cache_alloc+0x36/0x250
  []  intel_pmu_lbr_add+0x152/0x170
  []  x86_pmu_add+0x83/0xd0

Make it symmetric with the release_lbr_buffers() call and mirror the
existing DS buffers.

Fixes: c085fb8774 ("perf/x86/intel/lbr: Support XSAVES for arch LBR read")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
[peterz: simplified]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20210430052247.3079672-2-like.xu@linux.intel.com
2021-05-18 12:53:47 +02:00
Kan Liang
f83d2f91d2 perf/x86/intel: Add Alder Lake Hybrid support
Alder Lake Hybrid system has two different types of core, Golden Cove
core and Gracemont core. The Golden Cove core is registered to
"cpu_core" PMU. The Gracemont core is registered to "cpu_atom" PMU.

The difference between the two PMUs include:
- Number of GP and fixed counters
- Events
- The "cpu_core" PMU supports Topdown metrics.
  The "cpu_atom" PMU supports PEBS-via-PT.

The "cpu_core" PMU is similar to the Sapphire Rapids PMU, but without
PMEM.
The "cpu_atom" PMU is similar to Tremont, but with different events,
event_constraints, extra_regs and number of counters.

The mem-loads AUX event workaround only applies to the Golden Cove core.

Users may disable all CPUs of the same CPU type on the command line or
in the BIOS. For this case, perf still register a PMU for the CPU type
but the CPU mask is 0.

Current caps/pmu_name is usually the microarch codename. Assign the
"alderlake_hybrid" to the caps/pmu_name of both PMUs to indicate the
hybrid Alder Lake microarchitecture.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-21-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:28 +02:00
Kan Liang
3e9a8b219e perf/x86: Support filter_match callback
Implement filter_match callback for X86, which check whether an event is
schedulable on the current CPU.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-20-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:28 +02:00
Kan Liang
a9c81ccdf5 perf/x86: Add structures for the attributes of Hybrid PMUs
Hybrid PMUs have different events and formats. In theory, Hybrid PMU
specific attributes should be maintained in the dedicated struct
x86_hybrid_pmu, but it wastes space because the events and formats are
similar among Hybrid PMUs.

To reduce duplication, all hybrid PMUs will share a group of attributes
in the following patch. To distinguish an attribute from different
Hybrid PMUs, a PMU aware attribute structure is introduced. A PMU type
is required for the attribute structure. The type is internal usage. It
is not visible in the sysfs API.

Hybrid PMUs may support the same event name, but with different event
encoding, e.g., the mem-loads event on an Atom PMU has different event
encoding from a Core PMU. It brings issue if two attributes are
created for them. Current sysfs_update_group finds an attribute by
searching the attr name (aka event name). If two attributes have the
same event name, the first attribute will be replaced.
To address the issue, only one attribute is created for the event. The
event_str is extended and stores event encodings from all Hybrid PMUs.
Each event encoding is divided by ";". The order of the event encodings
must follow the order of the hybrid PMU index. The event_str is internal
usage as well. When a user wants to show the attribute of a Hybrid PMU,
only the corresponding part of the string is displayed.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-18-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:28 +02:00
Kan Liang
d9977c43bf perf/x86: Register hybrid PMUs
Different hybrid PMUs have different PMU capabilities and events. Perf
should registers a dedicated PMU for each of them.

To check the X86 event, perf has to go through all possible hybrid pmus.

All the hybrid PMUs are registered at boot time. Before the
registration, add intel_pmu_check_hybrid_pmus() to check and update the
counters information, the event constraints, the extra registers and the
unique capabilities for each hybrid PMUs.

Postpone the display of the PMU information and HW check to
CPU_STARTING, because the boot CPU is the only online CPU in the
init_hw_perf_events(). Perf doesn't know the availability of the other
PMUs. Perf should display the PMU information only if the counters of
the PMU are available.

One type of CPUs may be all offline. For this case, users can still
observe the PMU in /sys/devices, but its CPU mask is 0.

All hybrid PMUs have capability PERF_PMU_CAP_HETEROGENEOUS_CPUS.
The PMU name for hybrid PMUs will be "cpu_XXX", which will be assigned
later in a separated patch.

The PMU type id for the core PMU is still PERF_TYPE_RAW. For the other
hybrid PMUs, the PMU type id is not hard code.

The event->cpu must be compatitable with the supported CPUs of the PMU.
Add a check in the x86_pmu_event_init().

The events in a group must be from the same type of hybrid PMU.
The fake cpuc used in the validation must be from the supported CPU of
the event->pmu.

Perf may not retrieve a valid core type from get_this_hybrid_cpu_type().
For example, ADL may have an alternative configuration. With that
configuration, Perf cannot retrieve the core type from the CPUID leaf
0x1a. Add a platform specific get_hybrid_cpu_type(). If the generic way
fails, invoke the platform specific get_hybrid_cpu_type().

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-17-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:27 +02:00
Kan Liang
e11c1a7eb3 perf/x86: Factor out x86_pmu_show_pmu_cap
The PMU capabilities are different among hybrid PMUs. Perf should dump
the PMU capabilities information for each hybrid PMU.

Factor out x86_pmu_show_pmu_cap() which shows the PMU capabilities
information. The function will be reused later when registering a
dedicated hybrid PMU.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-16-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:27 +02:00
Kan Liang
183af7366b perf/x86: Hybrid PMU support for extra_regs
Different hybrid PMU may have different extra registers, e.g. Core PMU
may have offcore registers, frontend register and ldlat register. Atom
core may only have offcore registers and ldlat register. Each hybrid PMU
should use its own extra_regs.

An Intel Hybrid system should always have extra registers.
Unconditionally allocate shared_regs for Intel Hybrid system.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-11-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:26 +02:00
Kan Liang
24ee38ffe6 perf/x86: Hybrid PMU support for event constraints
The events are different among hybrid PMUs. Each hybrid PMU should use
its own event constraints.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-10-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:25 +02:00
Kan Liang
0d18f2dfea perf/x86: Hybrid PMU support for hardware cache event
The hardware cache events are different among hybrid PMUs. Each hybrid
PMU should have its own hw cache event table.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-9-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:25 +02:00
Kan Liang
eaacf07d11 perf/x86: Hybrid PMU support for unconstrained
The unconstrained value depends on the number of GP and fixed counters.
Each hybrid PMU should use its own unconstrained.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-8-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:25 +02:00
Kan Liang
d4b294bf84 perf/x86: Hybrid PMU support for counters
The number of GP and fixed counters are different among hybrid PMUs.
Each hybrid PMU should use its own counter related information.

When handling a certain hybrid PMU, apply the number of counters from
the corresponding hybrid PMU.

When reserving the counters in the initialization of a new event,
reserve all possible counters.

The number of counter recored in the global x86_pmu is for the
architecture counters which are available for all hybrid PMUs. KVM
doesn't support the hybrid PMU yet. Return the number of the
architecture counters for now.

For the functions only available for the old platforms, e.g.,
intel_pmu_drain_pebs_nhm(), nothing is changed.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-7-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:25 +02:00
Kan Liang
fc4b8fca2d perf/x86: Hybrid PMU support for intel_ctrl
The intel_ctrl is the counter mask of a PMU. The PMU counter information
may be different among hybrid PMUs, each hybrid PMU should use its own
intel_ctrl to check and access the counters.

When handling a certain hybrid PMU, apply the intel_ctrl from the
corresponding hybrid PMU.

When checking the HW existence, apply the PMU and number of counters
from the corresponding hybrid PMU as well. Perf will check the HW
existence for each Hybrid PMU before registration. Expose the
check_hw_exists() for a later patch.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/1618237865-33448-6-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:24 +02:00
Kan Liang
d0946a882e perf/x86/intel: Hybrid PMU support for perf capabilities
Some platforms, e.g. Alder Lake, have hybrid architecture. Although most
PMU capabilities are the same, there are still some unique PMU
capabilities for different hybrid PMUs. Perf should register a dedicated
pmu for each hybrid PMU.

Add a new struct x86_hybrid_pmu, which saves the dedicated pmu and
capabilities for each hybrid PMU.

The architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicates the
architecture features which are available on all hybrid PMUs. The
architecture features are stored in the global x86_pmu.intel_cap.

For Alder Lake, the model-specific features are perf metrics and
PEBS-via-PT. The corresponding bits of the global x86_pmu.intel_cap
should be 0 for these two features. Perf should not use the global
intel_cap to check the features on a hybrid system.
Add a dedicated intel_cap in the x86_hybrid_pmu to store the
model-specific capabilities. Use the dedicated intel_cap to replace
the global intel_cap for thse two features. The dedicated intel_cap
will be set in the following "Add Alder Lake Hybrid support" patch.

Add is_hybrid() to distinguish a hybrid system. ADL may have an
alternative configuration. With that configuration, the
X86_FEATURE_HYBRID_CPU is not set. Perf cannot rely on the feature bit.
Add a new static_key_false, perf_is_hybrid, to indicate a hybrid system.
It will be assigned in the following "Add Alder Lake Hybrid support"
patch as well.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-5-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:24 +02:00
Kan Liang
61e76d53c3 perf/x86: Track pmu in per-CPU cpu_hw_events
Some platforms, e.g. Alder Lake, have hybrid architecture. In the same
package, there may be more than one type of CPU. The PMU capabilities
are different among different types of CPU. Perf will register a
dedicated PMU for each type of CPU.

Add a 'pmu' variable in the struct cpu_hw_events to track the dedicated
PMU of the current CPU.

Current x86_get_pmu() use the global 'pmu', which will be broken on a
hybrid platform. Modify it to apply the 'pmu' of the specific CPU.

Initialize the per-CPU 'pmu' variable with the global 'pmu'. There is
nothing changed for the non-hybrid platforms.

The is_x86_event() will be updated in the later patch ("perf/x86:
Register hybrid PMUs") for hybrid platforms. For the non-hybrid
platforms, nothing is changed here.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618237865-33448-4-git-send-email-kan.liang@linux.intel.com
2021-04-19 20:03:24 +02:00
Kan Liang
46ade4740b perf/x86: Move cpuc->running into P4 specific code
The 'running' variable is only used in the P4 PMU. Current perf sets the
variable in the critical function x86_pmu_start(), which wastes cycles
for everybody not running on P4.

Move cpuc->running into the P4 specific p4_pmu_enable_event().

Add a static per-CPU 'p4_running' variable to replace the 'running'
variable in the struct cpu_hw_events. Saves space for the generic
structure.

The p4_pmu_enable_all() also invokes the p4_pmu_enable_event(), but it
should not set cpuc->running. Factor out __p4_pmu_enable_event() for
p4_pmu_enable_all().

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1618410990-21383-1-git-send-email-kan.liang@linux.intel.com
2021-04-16 16:32:42 +02:00
Kan Liang
32451614da perf/x86/intel: Support CPUID 10.ECX to disable fixed counters
With Architectural Performance Monitoring Version 5, CPUID 10.ECX cpu
leaf indicates the fixed counter enumeration. This extends the previous
count to a bitmap which allows disabling even lower fixed counters.
It could be used by a Hypervisor.

The existing intel_ctrl variable is used to remember the bitmask of the
counters. All code that reads all counters is fixed to check this extra
bitmask.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-6-git-send-email-kan.liang@linux.intel.com
2021-02-01 15:31:37 +01:00
Kan Liang
61b985e3e7 perf/x86/intel: Add perf core PMU support for Sapphire Rapids
Add perf core PMU support for the Intel Sapphire Rapids server, which is
the successor of the Intel Ice Lake server. The enabling code is based
on Ice Lake, but there are several new features introduced.

The event encoding is changed and simplified, e.g., the event codes
which are below 0x90 are restricted to counters 0-3. The event codes
which above 0x90 are likely to have no restrictions. The event
constraints, extra_regs(), and hardware cache events table are changed
accordingly.

A new Precise Distribution (PDist) facility is introduced, which
further minimizes the skid when a precise event is programmed on the GP
counter 0. Enable the Precise Distribution (PDist) facility with :ppp
event. For this facility to work, the period must be initialized with a
value larger than 127. Add spr_limit_period() to apply the limit for
:ppp event.

Two new data source fields, data block & address block, are added in the
PEBS Memory Info Record for the load latency event. To enable the
feature,
- An auxiliary event has to be enabled together with the load latency
  event on Sapphire Rapids. A new flag PMU_FL_MEM_LOADS_AUX is
  introduced to indicate the case. A new event, mem-loads-aux, is
  exposed to sysfs for the user tool.
  Add a check in hw_config(). If the auxiliary event is not detected,
  return an unique error -ENODATA.
- The union perf_mem_data_src is extended to support the new fields.
- Ice Lake and earlier models do not support block information, but the
  fields may be set by HW on some machines. Add pebs_no_block to
  explicitly indicate the previous platforms which don't support the new
  block fields. Accessing the new block fields are ignored on those
  platforms.

A new store Latency facility is introduced, which leverages the PEBS
facility where it can provide additional information about sampled
stores. The additional information includes the data address, memory
auxiliary info (e.g. Data Source, STLB miss) and the latency of the
store access. To enable the facility, the new event (0x02cd) has to be
programed on the GP counter 0. A new flag PERF_X86_EVENT_PEBS_STLAT is
introduced to indicate the event. The store_latency_data() is introduced
to parse the memory auxiliary info.

The layout of access latency field of PEBS Memory Info Record has been
changed. Two latency, instruction latency (bit 15:0) and cache access
latency (bit 47:32) are recorded.
- The cache access latency is similar to previous memory access latency.
  For loads, the latency starts by the actual cache access until the
  data is returned by the memory subsystem.
  For stores, the latency starts when the demand write accesses the L1
  data cache and lasts until the cacheline write is completed in the
  memory subsystem.
  The cache access latency is stored in low 32bits of the sample type
  PERF_SAMPLE_WEIGHT_STRUCT.
- The instruction latency starts by the dispatch of the load operation
  for execution and lasts until completion of the instruction it belongs
  to.
  Add a new flag PMU_FL_INSTR_LATENCY to indicate the instruction
  latency support. The instruction latency is stored in the bit 47:32
  of the sample type PERF_SAMPLE_WEIGHT_STRUCT.

Extends the PERF_METRICS MSR to feature TMA method level 2 metrics. The
lower half of the register is the TMA level 1 metrics (legacy). The
upper half is also divided into four 8-bit fields for the new level 2
metrics. Expose all eight Topdown metrics events to user space.

The full description for the SPR features can be found at Intel
Architecture Instruction Set Extensions and Future Features
Programming Reference, 319433-041.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-5-git-send-email-kan.liang@linux.intel.com
2021-02-01 15:31:37 +01:00
Kan Liang
1ab5f235c1 perf/x86/intel: Filter unsupported Topdown metrics event
Intel Sapphire Rapids server will introduce 8 metrics events. Intel
Ice Lake only supports 4 metrics events. A perf tool user may mistakenly
use the unsupported events via RAW format on Ice Lake. The user can
still get a value from the unsupported Topdown metrics event once the
following Sapphire Rapids enabling patch is applied.

To enable the 8 metrics events on Intel Sapphire Rapids, the
INTEL_TD_METRIC_MAX has to be updated, which impacts the
is_metric_event(). The is_metric_event() is a generic function.
On Ice Lake, the newly added SPR metrics events will be mistakenly
accepted as metric events on creation. At runtime, the unsupported
Topdown metrics events will be updated.

Add a variable num_topdown_events in x86_pmu to indicate the available
number of the Topdown metrics event on the platform. Apply the number
into is_metric_event(). Only the supported Topdown metrics events
should be created as metrics events.

Apply the num_topdown_events in icl_update_topdown_event() as well. The
function can be reused by the following patch.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1611873611-156687-4-git-send-email-kan.liang@linux.intel.com
2021-02-01 15:31:36 +01:00
Peter Zijlstra
3daa96d672 perf/intel: Remove Perfmon-v4 counter_freezing support
Perfmon-v4 counter freezing is fundamentally broken; remove this default
disabled code to make sure nobody uses it.

The feature is called Freeze-on-PMI in the SDM, and if it would do that,
there wouldn't actually be a problem, *however* it does something subtly
different. It globally disables the whole PMU when it raises the PMI,
not when the PMI hits.

This means there's a window between the PMI getting raised and the PMI
actually getting served where we loose events and this violates the
perf counter independence. That is, a counting event should not result
in a different event count when there is a sampling event co-scheduled.

This is known to break existing software (RR).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2021-01-27 17:26:58 +01:00
Peter Zijlstra
20c7775aec Merge remote-tracking branch 'origin/master' into perf/core
Further perf/core patches will depend on:

  d3f7b1bb20 ("mm/gup: fix gup_fast with dynamic page table folding")

which is already in Linus' tree.
2020-11-26 13:16:55 +01:00
Stephane Eranian
cadbaa039b perf/x86/intel: Make anythread filter support conditional
Starting with Arch Perfmon v5, the anythread filter on generic counters may be
deprecated. The current kernel was exporting the any filter without checking.
On Icelake, it means you could do cpu/event=0x3c,any/ even though the filter
does not exist. This patch corrects the problem by relying on the CPUID 0xa leaf
function to determine if anythread is supported or not as described in the
Intel SDM Vol3b 18.2.5.1 AnyThread Deprecation section.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201028194247.3160610-1-eranian@google.com
2020-11-09 18:12:36 +01:00
Peter Zijlstra
9dfa9a5c9b perf/x86: Reduce stack usage for x86_pmu::drain_pebs()
intel_pmu_drain_pebs_*() is typically called from handle_pmi_common(),
both have an on-stack struct perf_sample_data, which is *big*. Rewire
things so that drain_pebs() can use the one handle_pmi_common() has.

Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201030151955.054099690@infradead.org
2020-11-09 18:12:33 +01:00
Stephane Eranian
995f088efe perf/core: Add support for PERF_SAMPLE_CODE_PAGE_SIZE
When studying code layout, it is useful to capture the page size of the
sampled code address.

Add a new sample type for code page size.
The new sample type requires collecting the ip. The code page size can
be calculated from the NMI-safe perf_get_page_size().

For large PEBS, it's very unlikely that the mapping is gone for the
earlier PEBS records. Enable the feature for the large PEBS. The worst
case is that page-size '0' is returned.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-5-kan.liang@linux.intel.com
2020-10-29 11:00:39 +01:00
Peter Zijlstra
3dbde69575 perf/x86: Fix n_metric for cancelled txn
When a group that has TopDown members is failed to be scheduled, any
later TopDown groups will not return valid values.

Here is an example.

A background perf that occupies all the GP counters and the fixed
counter 1.
 $perf stat -e "{cycles,cycles,cycles,cycles,cycles,cycles,cycles,
                 cycles,cycles}:D" -a

A user monitors a TopDown group. It works well, because the fixed
counter 3 and the PERF_METRICS are available.
 $perf stat -x, --topdown -- ./workload
   retiring,bad speculation,frontend bound,backend bound,
   18.0,16.1,40.4,25.5,

Then the user tries to monitor a group that has TopDown members.
Because of the cycles event, the group is failed to be scheduled.
 $perf stat -x, -e '{slots,topdown-retiring,topdown-be-bound,
                     topdown-fe-bound,topdown-bad-spec,cycles}'
                     -- ./workload
    <not counted>,,slots,0,0.00,,
    <not counted>,,topdown-retiring,0,0.00,,
    <not counted>,,topdown-be-bound,0,0.00,,
    <not counted>,,topdown-fe-bound,0,0.00,,
    <not counted>,,topdown-bad-spec,0,0.00,,
    <not counted>,,cycles,0,0.00,,

The user tries to monitor a TopDown group again. It doesn't work anymore.
 $perf stat -x, --topdown -- ./workload

    ,,,,,

In a txn, cancel_txn() is to truncate the event_list for a canceled
group and update the number of events added in this transaction.
However, the number of TopDown events added in this transaction is not
updated. The kernel will probably fail to add new Topdown events.

Fixes: 7b2c05a15d ("perf/x86/intel: Generic support for hardware TopDown metrics")
Reported-by: Andi Kleen <ak@linux.intel.com>
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20201005082611.GH2628@hirez.programming.kicks-ass.net
2020-10-06 15:18:17 +02:00
Peter Zijlstra
871a93b0aa perf/x86: Fix n_pair for cancelled txn
Kan reported that n_metric gets corrupted for cancelled transactions;
a similar issue exists for n_pair for AMD's Large Increment thing.

The problem was confirmed and confirmed fixed by Kim using:

  sudo perf stat -e "{cycles,cycles,cycles,cycles}:D" -a sleep 10 &

  # should succeed:
  sudo perf stat -e "{fp_ret_sse_avx_ops.all}:D" -a workload

  # should fail:
  sudo perf stat -e "{fp_ret_sse_avx_ops.all,fp_ret_sse_avx_ops.all,cycles}:D" -a workload

  # previously failed, now succeeds with this patch:
  sudo perf stat -e "{fp_ret_sse_avx_ops.all}:D" -a workload

Fixes: 5738891229 ("perf/x86/amd: Add support for Large Increment per Cycle Events")
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kim Phillips <kim.phillips@amd.com>
Link: https://lkml.kernel.org/r/20201005082516.GG2628@hirez.programming.kicks-ass.net
2020-10-06 15:18:17 +02:00
Kan Liang
59a854e2f3 perf/x86/intel: Support TopDown metrics on Ice Lake
Ice Lake supports the hardware TopDown metrics feature, which can free
up the scarce GP counters.

Update the event constraints for the metrics events. The metric counters
do not exist, which are mapped to a dummy offset. The sharing between
multiple users of the same metric without multiplexing is not allowed.

Implement set_topdown_event_period for Ice Lake. The values in
PERF_METRICS MSR are derived from the fixed counter 3. Both registers
should start from zero.

Implement update_topdown_event for Ice Lake. The metric is reported by
multiplying the metric (fraction) with slots. To maintain accurate
measurements, both registers are cleared for each update. The fixed
counter 3 should always be cleared before the PERF_METRICS.

Implement td_attr for the new metrics events and the new slots fixed
counter. Make them visible to the perf user tools.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-11-kan.liang@linux.intel.com
2020-08-18 16:34:37 +02:00
Kan Liang
7b2c05a15d perf/x86/intel: Generic support for hardware TopDown metrics
Intro
=====

The TopDown Microarchitecture Analysis (TMA) Method is a structured
analysis methodology to identify critical performance bottlenecks in
out-of-order processors. Current perf has supported the method.

The method works well, but there is one problem. To collect the TopDown
events, several GP counters have to be used. If a user wants to collect
other events at the same time, the multiplexing probably be triggered,
which impacts the accuracy.

To free up the scarce GP counters, the hardware TopDown metrics feature
is introduced from Ice Lake. The hardware implements an additional
"metrics" register and a new Fixed Counter 3 that measures pipeline
"slots". The TopDown events can be calculated from them instead.

Events
======

The level 1 TopDown has four metrics. There is no event-code assigned to
the TopDown metrics. Four metric events are exported as separate perf
events, which map to the internal "metrics" counter register. Those
events do not exist in hardware, but can be allocated by the scheduler.

For the event mapping, a special 0x00 event code is used, which is
reserved for fake events. The metric events start from umask 0x10.

When setting up the metric events, they point to the Fixed Counter 3.
They have to be specially handled.
- Add the update_topdown_event() callback to read the additional metrics
  MSR and generate the metrics.
- Add the set_topdown_event_period() callback to initialize metrics MSR
  and the fixed counter 3.
- Add a variable n_metric_event to track the number of the accepted
  metrics events. The sharing between multiple users of the same metric
  without multiplexing is not allowed.
- Only enable/disable the fixed counter 3 when there are no other active
  TopDown events, which avoid the unnecessary writing of the fixed
  control register.
- Disable the PMU when reading the metrics event. The metrics MSR and
  the fixed counter 3 are read separately. The values may be modified by
  an NMI.

All four metric events don't support sampling. Since they will be
handled specially for event update, a flag PERF_X86_EVENT_TOPDOWN is
introduced to indicate this case.

The slots event can support both sampling and counting.
For counting, the flag is also applied.
For sampling, it will be handled normally as other normal events.

Groups
======

The slots event is required in a Topdown group.
To avoid reading the METRICS register multiple times, the metrics and
slots value can only be updated by slots event in a group.
All active slots and metrics events will be updated one time.
Therefore, the slots event must be before any metric events in a Topdown
group.

NMI
======

The METRICS related register may be overflow. The bit 48 of the STATUS
register will be set. If so, PERF_METRICS and Fixed counter 3 are
required to be reset. The patch also update all active slots and
metrics events in the NMI handler.

The update_topdown_event() has to read two registers separately. The
values may be modified by an NMI. PMU has to be disabled before calling
the function.

RDPMC
======

RDPMC is temporarily disabled. A later patch will enable it.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-9-kan.liang@linux.intel.com
2020-08-18 16:34:36 +02:00
Kan Liang
bbdbde2a41 perf/x86/intel: Fix the name of perf METRICS
Bit 15 of the PERF_CAPABILITIES MSR indicates that the perf METRICS
feature is supported. The perf METRICS is not a PEBS feature.

Rename pebs_metrics_available perf_metrics.

The bit is not used in the current code. It will be used in a later
patch.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200723171117.9918-6-kan.liang@linux.intel.com
2020-08-18 16:34:35 +02:00
Kan Liang
c085fb8774 perf/x86/intel/lbr: Support XSAVES for arch LBR read
Reading LBR registers in a perf NMI handler for a non-PEBS event
causes a high overhead because the number of LBR registers is huge.
To reduce the overhead, the XSAVES instruction should be used to replace
the LBR registers' reading method.

The XSAVES buffer used for LBR read has to be per-CPU because the NMI
handler invoked the lbr_read(). The existing task_ctx_data buffer
cannot be used which is per-task and only be allocated for the LBR call
stack mode. A new lbr_xsave pointer is introduced in the cpu_hw_events
as an XSAVES buffer for LBR read.

The XSAVES buffer should be allocated only when LBR is used by a
non-PEBS event on the CPU because the total size of the lbr_xsave is
not small (~1.4KB).

The XSAVES buffer is allocated when a non-PEBS event is added, but it
is lazily released in x86_release_hardware() when perf releases the
entire PMU hardware resource, because perf may frequently schedule the
event, e.g. high context switch. The lazy release method reduces the
overhead of frequently allocate/free the buffer.

If the lbr_xsave fails to be allocated, roll back to normal Arch LBR
lbr_read().

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-24-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:57 +02:00
Kan Liang
ce711ea3ca perf/x86/intel/lbr: Support XSAVES/XRSTORS for LBR context switch
In the LBR call stack mode, LBR information is used to reconstruct a
call stack. To get the complete call stack, perf has to save/restore
all LBR registers during a context switch. Due to a large number of the
LBR registers, this process causes a high CPU overhead. To reduce the
CPU overhead during a context switch, use the XSAVES/XRSTORS
instructions.

Every XSAVE area must follow a canonical format: the legacy region, an
XSAVE header and the extended region. Although the LBR information is
only kept in the extended region, a space for the legacy region and
XSAVE header is still required. Add a new dedicated structure for LBR
XSAVES support.

Before enabling XSAVES support, the size of the LBR state has to be
sanity checked, because:
- the size of the software structure is calculated from the max number
of the LBR depth, which is enumerated by the CPUID leaf for Arch LBR.
The size of the LBR state is enumerated by the CPUID leaf for XSAVE
support of Arch LBR. If the values from the two CPUID leaves are not
consistent, it may trigger a buffer overflow. For example, a hypervisor
may unconsciously set inconsistent values for the two emulated CPUID.
- unlike other state components, the size of an LBR state depends on the
max number of LBRs, which may vary from generation to generation.

Expose the function xfeature_size() for the sanity check.
The LBR XSAVES support will be disabled if the size of the LBR state
enumerated by CPUID doesn't match with the size of the software
structure.

The XSAVE instruction requires 64-byte alignment for state buffers. A
new macro is added to reflect the alignment requirement. A 64-byte
aligned kmem_cache is created for architecture LBR.

Currently, the structure for each state component is maintained in
fpu/types.h. The structure for the new LBR state component should be
maintained in the same place. Move structure lbr_entry to fpu/types.h as
well for broader sharing.

Add dedicated lbr_save/lbr_restore functions for LBR XSAVES support,
which invokes the corresponding xstate helpers to XSAVES/XRSTORS LBR
information at the context switch when the call stack mode is enabled.
Since the XSAVES/XRSTORS instructions will be eventually invoked, the
dedicated functions is named with '_xsaves'/'_xrstors' postfix.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-23-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:56 +02:00
Kan Liang
47125db27e perf/x86/intel/lbr: Support Architectural LBR
Last Branch Records (LBR) enables recording of software path history by
logging taken branches and other control flows within architectural
registers now. Intel CPUs have had model-specific LBR for quite some
time, but this evolves them into an architectural feature now.

The main improvements of Architectural LBR implemented includes:
- Linux kernel can support the LBR features without knowing the model
  number of the current CPU.
- Architectural LBR capabilities can be enumerated by CPUID. The
  lbr_ctl_map is based on the CPUID Enumeration.
- The possible LBR depth can be retrieved from CPUID enumeration. The
  max value is written to the new MSR_ARCH_LBR_DEPTH as the number of
  LBR entries.
- A new IA32_LBR_CTL MSR is introduced to enable and configure LBRs,
  which replaces the IA32_DEBUGCTL[bit 0] and the LBR_SELECT MSR.
- Each LBR record or entry is still comprised of three MSRs,
  IA32_LBR_x_FROM_IP, IA32_LBR_x_TO_IP and IA32_LBR_x_TO_IP.
  But they become the architectural MSRs.
- Architectural LBR is stack-like now. Entry 0 is always the youngest
  branch, entry 1 the next youngest... The TOS MSR has been removed.

The way to enable/disable Architectural LBR is similar to the previous
model-specific LBR. __intel_pmu_lbr_enable/disable() can be reused, but
some modifications are required, which include:
- MSR_ARCH_LBR_CTL is used to enable and configure the Architectural
  LBR.
- When checking the value of the IA32_DEBUGCTL MSR, ignoring the
  DEBUGCTLMSR_LBR (bit 0) for Architectural LBR, which has no meaning
  and always return 0.
- The FREEZE_LBRS_ON_PMI has to be explicitly set/clear, because
  MSR_IA32_DEBUGCTLMSR is not touched in __intel_pmu_lbr_disable() for
  Architectural LBR.
- Only MSR_ARCH_LBR_CTL is cleared in __intel_pmu_lbr_disable() for
  Architectural LBR.

Some Architectural LBR dedicated functions are implemented to
reset/read/save/restore LBR.
- For reset, writing to the ARCH_LBR_DEPTH MSR clears all Arch LBR
  entries, which is a lot faster and can improve the context switch
  latency.
- For read, the branch type information can be retrieved from
  the MSR_ARCH_LBR_INFO_*. But it's not fully compatible due to
  OTHER_BRANCH type. The software decoding is still required for the
  OTHER_BRANCH case.
  LBR records are stored in the age order as well. Reuse
  intel_pmu_store_lbr(). Check the CPUID enumeration before accessing
  the corresponding bits in LBR_INFO.
- For save/restore, applying the fast reset (writing ARCH_LBR_DEPTH).
  Reading 'lbr_from' of entry 0 instead of the TOS MSR to check if the
  LBR registers are reset in the deep C-state. If 'the deep C-state
  reset' bit is not set in CPUID enumeration, ignoring the check.
  XSAVE support for Architectural LBR will be implemented later.

The number of LBR entries cannot be hardcoded anymore, which should be
retrieved from CPUID enumeration. A new structure
x86_perf_task_context_arch_lbr is introduced for Architectural LBR.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-15-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:54 +02:00
Kan Liang
fda1f99f34 perf/x86/intel/lbr: Factor out rdlbr_all() and wrlbr_all()
The previous model-specific LBR and Architecture LBR (legacy way) use a
similar method to save/restore the LBR information, which directly
accesses the LBR registers. The codes which read/write a set of LBR
registers can be shared between them.

Factor out two functions which are used to read/write a set of LBR
registers.

Add lbr_info into structure x86_pmu, and use it to replace the hardcoded
LBR INFO MSR, because the LBR INFO MSR address of the previous
model-specific LBR is different from Architecture LBR. The MSR address
should be assigned at boot time. For now, only Sky Lake and later
platforms have the LBR INFO MSR.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-13-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:54 +02:00
Kan Liang
5624986dc6 perf/x86/intel/lbr: Unify the stored format of LBR information
Current LBR information in the structure x86_perf_task_context is stored
in a different format from the PEBS LBR record and Architecture LBR,
which prevents the sharing of the common codes.

Use the format of the PEBS LBR record as a unified format. Use a generic
name lbr_entry to replace pebs_lbr_entry.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-11-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:53 +02:00
Kan Liang
49d8184f20 perf/x86/intel/lbr: Support LBR_CTL
An IA32_LBR_CTL is introduced for Architecture LBR to enable and config
LBR registers to replace the previous LBR_SELECT.

All the related members in struct cpu_hw_events and struct x86_pmu
have to be renamed.

Some new macros are added to reflect the layout of LBR_CTL.

The mapping from PERF_SAMPLE_BRANCH_* to the corresponding bits in
LBR_CTL MSR is saved in lbr_ctl_map now, which is not a const value.
The value relies on the CPUID enumeration.

For the previous model-specific LBR, most of the bits in LBR_SELECT
operate in the suppressed mode. For the bits in LBR_CTL, the polarity is
inverted.

For the previous model-specific LBR format 5 (LBR_FORMAT_INFO), if the
NO_CYCLES and NO_FLAGS type are set, the flag LBR_NO_INFO will be set to
avoid the unnecessary LBR_INFO MSR read. Although Architecture LBR also
has a dedicated LBR_INFO MSR, perf doesn't need to check and set the
flag LBR_NO_INFO. For Architecture LBR, XSAVES instruction will be used
as the default way to read the LBR MSRs all together. The overhead which
the flag tries to avoid doesn't exist anymore. Dropping the flag can
save the extra check for the flag in the lbr_read() later, and make the
code cleaner.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-10-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:53 +02:00
Kan Liang
af6cf12970 perf/x86: Expose CPUID enumeration bits for arch LBR
The LBR capabilities of Architecture LBR are retrieved from the CPUID
enumeration once at boot time. The capabilities have to be saved for
future usage.

Several new fields are added into structure x86_pmu to indicate the
capabilities. The fields will be used in the following patches.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-9-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:53 +02:00
Kan Liang
f42be8651a perf/x86/intel/lbr: Use dynamic data structure for task_ctx
The type of task_ctx is hardcoded as struct x86_perf_task_context,
which doesn't apply for Architecture LBR. For example, Architecture LBR
doesn't have the TOS MSR. The number of LBR entries is variable. A new
struct will be introduced for Architecture LBR. Perf has to determine
the type of task_ctx at run time.

The type of task_ctx pointer is changed to 'void *', which will be
determined at run time.

The generic LBR optimization can be shared between Architecture LBR and
model-specific LBR. Both need to access the structure for the generic
LBR optimization. A helper task_context_opt() is introduced to retrieve
the pointer of the structure at run time.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-7-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:52 +02:00
Kan Liang
530bfff648 perf/x86/intel/lbr: Factor out a new struct for generic optimization
To reduce the overhead of a context switch with LBR enabled, some
generic optimizations were introduced, e.g. avoiding restore LBR if no
one else touched them. The generic optimizations can also be used by
Architecture LBR later. Currently, the fields for the generic
optimizations are part of structure x86_perf_task_context, which will be
deprecated by Architecture LBR. A new structure should be introduced
for the common fields of generic optimization, which can be shared
between Architecture LBR and model-specific LBR.

Both 'valid_lbrs' and 'tos' are also used by the generic optimizations,
but they are not moved into the new structure, because Architecture LBR
is stack-like. The 'valid_lbrs' which records the index of the valid LBR
is not required anymore. The TOS MSR will be removed.

LBR registers may be cleared in the deep Cstate. If so, the generic
optimizations should not be applied. Perf has to unconditionally
restore the LBR registers. A generic function is required to detect the
reset due to the deep Cstate. lbr_is_reset_in_cstate() is introduced.
Currently, for the model-specific LBR, the TOS MSR is used to detect the
reset. There will be another method introduced for Architecture LBR
later.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-6-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:52 +02:00
Kan Liang
799571bf38 perf/x86/intel/lbr: Add the function pointers for LBR save and restore
The MSRs of Architectural LBR are different from previous model-specific
LBR. Perf has to implement different functions to save and restore them.

The function pointers for LBR save and restore are introduced. Perf
should initialize the corresponding functions at boot time.

The generic optimizations, e.g. avoiding restore LBR if no one else
touched them, still apply for Architectural LBRs. The related codes are
not moved to model-specific functions.

Current model-specific LBR functions are set as default.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-5-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:52 +02:00
Kan Liang
c301b1d80e perf/x86/intel/lbr: Add a function pointer for LBR read
The method to read Architectural LBRs is different from previous
model-specific LBR. Perf has to implement a different function.

A function pointer for LBR read is introduced. Perf should initialize
the corresponding function at boot time, and avoid checking lbr_format
at run time.

The current 64-bit LBR read function is set as default.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-4-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:51 +02:00
Kan Liang
9f354a726c perf/x86/intel/lbr: Add a function pointer for LBR reset
The method to reset Architectural LBRs is different from previous
model-specific LBR. Perf has to implement a different function.

A function pointer is introduced for LBR reset. The enum of
LBR_FORMAT_* is also moved to perf_event.h. Perf should initialize the
corresponding functions at boot time, and avoid checking lbr_format at
run time.

The current 64-bit LBR reset function is set as default.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1593780569-62993-3-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:51 +02:00
Like Xu
e1ad1ac2de perf/x86: Keep LBR records unchanged in host context for guest usage
When a guest wants to use the LBR registers, its hypervisor creates a guest
LBR event and let host perf schedules it. The LBR records msrs are
accessible to the guest when its guest LBR event is scheduled on
by the perf subsystem.

Before scheduling this event out, we should avoid host changes on
IA32_DEBUGCTLMSR or LBR_SELECT. Otherwise, some unexpected branch
operations may interfere with guest behavior, pollute LBR records, and even
cause host branches leakage. In addition, the read operation
on host is also avoidable.

To ensure that guest LBR records are not lost during the context switch,
the guest LBR event would enable the callstack mode which could
save/restore guest unread LBR records with the help of
intel_pmu_lbr_sched_task() naturally.

However, the guest LBR_SELECT may changes for its own use and the host
LBR event doesn't save/restore it. To ensure that we doesn't lost the guest
LBR_SELECT value when the guest LBR event is running, the vlbr_constraint
is bound up with a new constraint flag PERF_X86_EVENT_LBR_SELECT.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200514083054.62538-6-like.xu@linux.intel.com
2020-07-02 15:51:46 +02:00
Like Xu
097e4311cd perf/x86: Add constraint to create guest LBR event without hw counter
The hypervisor may request the perf subsystem to schedule a time window
to directly access the LBR records msrs for its own use. Normally, it would
create a guest LBR event with callstack mode enabled, which is scheduled
along with other ordinary LBR events on the host but in an exclusive way.

To avoid wasting a counter for the guest LBR event, the perf tracks its
hw->idx via INTEL_PMC_IDX_FIXED_VLBR and assigns it with a fake VLBR
counter with the help of new vlbr_constraint. As with the BTS event,
there is actually no hardware counter assigned for the guest LBR event.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200514083054.62538-5-like.xu@linux.intel.com
2020-07-02 15:51:46 +02:00
Wei Wang
3cb9d5464c perf/x86: Fix variable types for LBR registers
The MSR variable type can be 'unsigned int', which uses less memory than
the longer 'unsigned long'. Fix 'struct x86_pmu' for that. The lbr_nr won't
be a negative number, so make it 'unsigned int' as well.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200613080958.132489-2-like.xu@linux.intel.com
2020-07-02 15:51:45 +02:00
CodyYao-oc
3a4ac121c2 x86/perf: Add hardware performance events support for Zhaoxin CPU.
Zhaoxin CPU has provided facilities for monitoring performance
via PMU (Performance Monitor Unit), but the functionality is unused so far.
Therefore, add support for zhaoxin pmu to make performance related
hardware events available.

The PMU is mostly an Intel Architectural PerfMon-v2 with a novel
errata for the ZXC line. It supports the following events:

  -----------------------------------------------------------------------------------------------------------------------------------
  Event                      | Event  | Umask |          Description
			     | Select |       |
  -----------------------------------------------------------------------------------------------------------------------------------
  cpu-cycles                 |  82h   |  00h  | unhalt core clock
  instructions               |  00h   |  00h  | number of instructions at retirement.
  cache-references           |  15h   |  05h  | number of fillq pushs at the current cycle.
  cache-misses               |  1ah   |  05h  | number of l2 miss pushed by fillq.
  branch-instructions        |  28h   |  00h  | counts the number of branch instructions retired.
  branch-misses              |  29h   |  00h  | mispredicted branch instructions at retirement.
  bus-cycles                 |  83h   |  00h  | unhalt bus clock
  stalled-cycles-frontend    |  01h   |  01h  | Increments each cycle the # of Uops issued by the RAT to RS.
  stalled-cycles-backend     |  0fh   |  04h  | RS0/1/2/3/45 empty
  L1-dcache-loads            |  68h   |  05h  | number of retire/commit load.
  L1-dcache-load-misses      |  4bh   |  05h  | retired load uops whose data source followed an L1 miss.
  L1-dcache-stores           |  69h   |  06h  | number of retire/commit Store,no LEA
  L1-dcache-store-misses     |  62h   |  05h  | cache lines in M state evicted out of L1D due to Snoop HitM or dirty line replacement.
  L1-icache-loads            |  00h   |  03h  | number of l1i cache access for valid normal fetch,including un-cacheable access.
  L1-icache-load-misses      |  01h   |  03h  | number of l1i cache miss for valid normal fetch,including un-cacheable miss.
  L1-icache-prefetches       |  0ah   |  03h  | number of prefetch.
  L1-icache-prefetch-misses  |  0bh   |  03h  | number of prefetch miss.
  dTLB-loads                 |  68h   |  05h  | number of retire/commit load
  dTLB-load-misses           |  2ch   |  05h  | number of load operations miss all level tlbs and cause a tablewalk.
  dTLB-stores                |  69h   |  06h  | number of retire/commit Store,no LEA
  dTLB-store-misses          |  30h   |  05h  | number of store operations miss all level tlbs and cause a tablewalk.
  dTLB-prefetches            |  64h   |  05h  | number of hardware pte prefetch requests dispatched out of the prefetch FIFO.
  dTLB-prefetch-misses       |  65h   |  05h  | number of hardware pte prefetch requests miss the l1d data cache.
  iTLB-load                  |  00h   |  00h  | actually counter instructions.
  iTLB-load-misses           |  34h   |  05h  | number of code operations miss all level tlbs and cause a tablewalk.
  -----------------------------------------------------------------------------------------------------------------------------------

Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: CodyYao-oc <CodyYao-oc@zhaoxin.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1586747669-4827-1-git-send-email-CodyYao-oc@zhaoxin.com
2020-04-30 20:14:35 +02:00
Kim Phillips
5738891229 perf/x86/amd: Add support for Large Increment per Cycle Events
Description of hardware operation
---------------------------------

The core AMD PMU has a 4-bit wide per-cycle increment for each
performance monitor counter.  That works for most events, but
now with AMD Family 17h and above processors, some events can
occur more than 15 times in a cycle.  Those events are called
"Large Increment per Cycle" events. In order to count these
events, two adjacent h/w PMCs get their count signals merged
to form 8 bits per cycle total.  In addition, the PERF_CTR count
registers are merged to be able to count up to 64 bits.

Normally, events like instructions retired, get programmed on a single
counter like so:

PERF_CTL0 (MSR 0xc0010200) 0x000000000053ff0c # event 0x0c, umask 0xff
PERF_CTR0 (MSR 0xc0010201) 0x0000800000000001 # r/w 48-bit count

The next counter at MSRs 0xc0010202-3 remains unused, or can be used
independently to count something else.

When counting Large Increment per Cycle events, such as FLOPs,
however, we now have to reserve the next counter and program the
PERF_CTL (config) register with the Merge event (0xFFF), like so:

PERF_CTL0 (msr 0xc0010200) 0x000000000053ff03 # FLOPs event, umask 0xff
PERF_CTR0 (msr 0xc0010201) 0x0000800000000001 # rd 64-bit cnt, wr lo 48b
PERF_CTL1 (msr 0xc0010202) 0x0000000f004000ff # Merge event, enable bit
PERF_CTR1 (msr 0xc0010203) 0x0000000000000000 # wr hi 16-bits count

The count is widened from the normal 48-bits to 64 bits by having the
second counter carry the higher 16 bits of the count in its lower 16
bits of its counter register.

The odd counter, e.g., PERF_CTL1, is programmed with the enabled Merge
event before the even counter, PERF_CTL0.

The Large Increment feature is available starting with Family 17h.
For more details, search any Family 17h PPR for the "Large Increment
per Cycle Events" section, e.g., section 2.1.15.3 on p. 173 in this
version:

https://www.amd.com/system/files/TechDocs/56176_ppr_Family_17h_Model_71h_B0_pub_Rev_3.06.zip

Description of software operation
---------------------------------

The following steps are taken in order to support reserving and
enabling the extra counter for Large Increment per Cycle events:

1. In the main x86 scheduler, we reduce the number of available
counters by the number of Large Increment per Cycle events being
scheduled, tracked by a new cpuc variable 'n_pair' and a new
amd_put_event_constraints_f17h().  This improves the counter
scheduler success rate.

2. In perf_assign_events(), if a counter is assigned to a Large
Increment event, we increment the current counter variable, so the
counter used for the Merge event is removed from assignment
consideration by upcoming event assignments.

3. In find_counter(), if a counter has been found for the Large
Increment event, we set the next counter as used, to prevent other
events from using it.

4. We perform steps 2 & 3 also in the x86 scheduler fastpath, i.e.,
we add Merge event accounting to the existing used_mask logic.

5. Finally, we add on the programming of Merge event to the
neighbouring PMC counters in the counter enable/disable{_all}
code paths.

Currently, software does not support a single PMU with mixed 48- and
64-bit counting, so Large increment event counts are limited to 48
bits.  In set_period, we zero-out the upper 16 bits of the count, so
the hardware doesn't copy them to the even counter's higher bits.

Simple invocation example showing counting 8 FLOPs per 256-bit/%ymm
vaddps instruction executed in a loop 100 million times:

perf stat -e cpu/fp_ret_sse_avx_ops.all/,cpu/instructions/ <workload>

 Performance counter stats for '<workload>':

       800,000,000      cpu/fp_ret_sse_avx_ops.all/u
       300,042,101      cpu/instructions/u

Prior to this patch, the reported SSE/AVX FLOPs retired count would
be wrong.

[peterz: lots of renames and edits to the code]

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2020-01-17 10:19:26 +01:00
Kim Phillips
471af006a7 perf/x86/amd: Constrain Large Increment per Cycle events
AMD Family 17h processors and above gain support for Large Increment
per Cycle events.  Unfortunately there is no CPUID or equivalent bit
that indicates whether the feature exists or not, so we continue to
determine eligibility based on a CPU family number comparison.

For Large Increment per Cycle events, we add a f17h-and-compatibles
get_event_constraints_f17h() that returns an even counter bitmask:
Large Increment per Cycle events can only be placed on PMCs 0, 2,
and 4 out of the currently available 0-5.  The only currently
public event that requires this feature to report valid counts
is PMCx003 "Retired SSE/AVX Operations".

Note that the CPU family logic in amd_core_pmu_init() is changed
so as to be able to selectively add initialization for features
available in ranges of backward-compatible CPU families.  This
Large Increment per Cycle feature is expected to be retained
in future families.

A side-effect of assigning a new get_constraints function for f17h
disables calling the old (prior to f15h) amd_get_event_constraints
implementation left enabled by commit e40ed1542d ("perf/x86: Add perf
support for AMD family-17h processors"), which is no longer
necessary since those North Bridge event codes are obsoleted.

Also fix a spelling mistake whilst in the area (calulating ->
calculating).

Fixes: e40ed1542d ("perf/x86: Add perf support for AMD family-17h processors")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191114183720.19887-2-kim.phillips@amd.com
2020-01-17 10:19:26 +01:00
Alexey Budankov
421ca868ea perf/x86/intel: Implement LBR callstack context synchronization
Implement intel_pmu_lbr_swap_task_ctx() method updating counters
of the events that requested LBR callstack data on a sample.

The counter can be zero for the case when task context belongs to
a thread that has just come from a block on a futex and the context
contains saved (lbr_stack_state == LBR_VALID) LBR register values.

For the values to be restored at LBR registers on the next thread's
switch-in event it swaps the counter value with the one that is
expected to be non zero at the previous equivalent task perf event
context.

Swap operation type ensures the previous task perf event context
stays consistent with the amount of events that requested LBR
callstack data on a sample.

Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/261ac742-9022-c3f4-5885-1eae7415b091@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-28 12:51:01 +01:00
Alexey Budankov
fc1adfe306 perf/core, perf/x86: Introduce swap_task_ctx() method at 'struct pmu'
Declare swap_task_ctx() methods at the generic and x86 specific
pmu types to bridge calls to platform specific PMU code on optimized
context switch path between equivalent task perf event contexts.

Signed-off-by: Alexey Budankov <alexey.budankov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/9a0aa84a-f062-9b64-3133-373658550c4b@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-28 12:50:59 +01:00
Alexander Shishkin
42880f726c perf/x86/intel: Support PEBS output to PT
If PEBS declares ability to output its data to Intel PT stream, use the
aux_output attribute bit to enable PEBS data output to PT. This requires
a PT event to be present and scheduled in the same context. Unlike the
DS area, the kernel does not extract PEBS records from the PT stream to
generate corresponding records in the perf stream, because that would
require real time in-kernel PT decoding, which is not feasible. The PMI,
however, can still be used.

The output setting is per-CPU, so all PEBS events must be either writing
to PT or to the DS area, therefore, in case of conflict, the conflicting
event will fail to schedule, allowing the rotation logic to alternate
between the PEBS->PT and PEBS->DS events.

Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: kan.liang@linux.intel.com
Link: https://lkml.kernel.org/r/20190806084606.4021-3-alexander.shishkin@linux.intel.com
2019-08-28 11:29:39 +02:00
Ingo Molnar
552a031ba1 Linux 5.2
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl0idTweHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGZesIAJDKicw2Voyx8K8m
 3pXSK+71RuO/d3Y9M51mdfTMKRP4PHR9/4wVZ9wHPwC4dV6wxgsmIYCF69a1Wety
 LD1MpDCP1DK5wVfPNKVX2xmj7ua6iutPtSsJHzdzM2TlscgsrFKjmUccqJ5JLwL5
 c34nqwXWnzzRyI5Ga9cQSlwzAXq0vDHXyML3AnCosSsLX0lKFrHlK1zttdOPNkfj
 dXRN62g3q+9kVQozzhDXb8atZZ7IkBk8Q0lujpNXW83Ci1VjaVNv3SB8GZTXIlLj
 U15VdyuwfJDfpBgFBN6/unzVaAB6FFrEKy0jT1aeTyKarMKDKgOnJjn10aKjDNno
 /bXsKKc=
 =TVqV
 -----END PGP SIGNATURE-----

Merge tag 'v5.2' into perf/core, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-08 18:04:41 +02:00
Kan Liang
cd6b984f6d perf/x86: Remove pmu->pebs_no_xmm_regs
We don't need pmu->pebs_no_xmm_regs anymore, the capabilities
PERF_PMU_CAP_EXTENDED_REGS can be used to check if XMM registers
collection is supported.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/1559081314-9714-4-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:19:25 +02:00
Kan Liang
dce86ac75d perf/x86: Clean up PEBS_XMM_REGS
Use generic macro PERF_REG_EXTENDED_MASK to replace PEBS_XMM_REGS to
avoid duplication.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/1559081314-9714-3-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24 19:19:24 +02:00
Jiri Olsa
6a9f4efe78 perf/x86: Use update attribute groups for default attributes
Using the new pmu::update_attrs attribute group for default
attributes - freeze_on_smi, allow_tsx_force_abort.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-10-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:58:27 +02:00
Jiri Olsa
1f15728682 perf/x86: Use update attribute groups for caps
Using the new pmu::update_attrs attribute group for
"caps" directory.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-7-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:58:24 +02:00
Jiri Olsa
baa0c83363 perf/x86: Use the new pmu::update_attrs attribute group
Using the new pmu::update_attrs attribute group to
create detected events for x86_pmu.

Moving the topdown/memory/tsx attributes to separate
attribute groups with specific is_visible functions.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-5-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:58:23 +02:00
Jiri Olsa
21b0dbc5e8 perf/x86: Get rid of x86_pmu::event_attrs
Nobody is using that.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190512155518.21468-4-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03 11:58:22 +02:00
Stephane Eranian
6b89d4c1ae perf/x86/intel: Fix INTEL_FLAGS_EVENT_CONSTRAINT* masking
On Intel Westmere, a cmdline as follows:

  $ perf record -e cpu/event=0xc4,umask=0x2,name=br_inst_retired.near_call/p ....

was failing. Yet the event+ umask support PEBS.

It turns out this is due to a bug in the the PEBS event constraint table for
westmere. All forms of BR_INST_RETIRED.* support PEBS. Therefore the constraint
mask should ignore the umask. The name of the macro INTEL_FLAGS_EVENT_CONSTRAINT()
hint that this is the case but it was not. That macros was checking both the
event code and event umask. Therefore, it was only matching on 0x00c4.
There are code+umask macros, they all have *UEVENT*.

This bug fixes the issue by checking only the event code in the mask.
Both single and range version are modified.

Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/20190509214556.123493-1-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-10 08:04:17 +02:00
Kan Liang
6017608936 perf/x86/intel: Add Icelake support
Add Icelake core PMU perf code, including constraint tables and the main
enable code.

Icelake expanded the generic counters to always 8 even with HT on, but a
range of events cannot be scheduled on the extra 4 counters.
Add new constraint ranges to describe this to the scheduler.
The number of constraints that need to be checked is larger now than
with earlier CPUs.
At some point we may need a new data structure to look them up more
efficiently than with linear search. So far it still seems to be
acceptable however.

Icelake added a new fixed counter SLOTS. Full support for it is added
later in the patch series.

The cache events table is identical to Skylake.

Compare to PEBS instruction event on generic counter, fixed counter 0
has less skid. Force instruction:ppp always in fixed counter 0.

Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-9-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 12:26:18 +02:00
Peter Zijlstra
63b79f6ebc perf/x86: Support constraint ranges
Icelake extended the general counters to 8, even when SMT is enabled.
However only a (large) subset of the events can be used on all 8
counters.

The events that can or cannot be used on all counters are organized
in ranges.

A lot of scheduler constraints are required to handle all this.

To avoid blowing up the tables add event code ranges to the constraint
tables, and a new inline function to match them.

Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # developer hat on
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> # maintainer hat on
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-8-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 12:26:17 +02:00
Andi Kleen
d3617b98b0 perf/x86/lbr: Avoid reading the LBRs when adaptive PEBS handles them
With adaptive PEBS the CPU can directly supply the LBR information,
so we don't need to read it again. But the LBRs still need to be
enabled. Add a special count to the cpuc that distinguishes these
two cases, and avoid reading the LBRs unnecessarily when PEBS is
active.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-7-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 12:26:17 +02:00
Kan Liang
c22497f583 perf/x86/intel: Support adaptive PEBS v4
Adaptive PEBS is a new way to report PEBS sampling information. Instead
of a fixed size record for all PEBS events it allows to configure the
PEBS record to only include the information needed. Events can then opt
in to use such an extended record, or stay with a basic record which
only contains the IP.

The major new feature is to support LBRs in PEBS record.
Besides normal LBR, this allows (much faster) large PEBS, while still
supporting callstacks through callstack LBR. So essentially a lot of
profiling can now be done without frequent interrupts, dropping the
overhead significantly.

The main requirement still is to use a period, and not use frequency
mode, because frequency mode requires reevaluating the frequency on each
overflow.

The floating point state (XMM) is also supported, which allows efficient
profiling of FP function arguments.

Introduce specific drain function to handle variable length records.
Use a new callback to parse the new record format, and also handle the
STATUS field now being at a different offset.

Add code to set up the configuration register. Since there is only a
single register, all events either get the full super set of all events,
or only the basic record.

Originally-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-6-kan.liang@linux.intel.com
[ Renamed GPRS => GP. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 12:25:47 +02:00
Kan Liang
878068ea27 perf/x86: Support outputting XMM registers
Starting from Icelake, XMM registers can be collected in PEBS record.
But current code only output the pt_regs.

Add a new struct x86_perf_regs for both pt_regs and xmm_regs. The
xmm_regs will be used later to keep a pointer to PEBS record which has
XMM information.

XMM registers are 128 bit. To simplify the code, they are handled like
two different registers, which means setting two bits in the register
bitmap. This also allows only sampling the lower 64bit bits in XMM.

The index of XMM registers starts from 32. There are 16 XMM registers.
So all reserved space for regs are used. Remove REG_RESERVED.

Add PERF_REG_X86_XMM_MAX, which stands for the max number of all x86
regs including both GPRs and XMM.

Add REG_NOSUPPORT for 32bit to exclude unsupported registers.

Previous platforms can not collect XMM information in PEBS record.
Adding pebs_no_xmm_regs to indicate the unsupported platforms.

The common code still validates the supported registers. However, it
cannot check model specific registers, e.g. XMM. Add extra check in
x86_pmu_hw_config() to reject invalid config of regs_user and regs_intr.
The regs_user never supports XMM collection.
The regs_intr only supports XMM collection when sampling PEBS event on
icelake and later platforms.

Originally-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-3-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 12:19:36 +02:00
Stephane Eranian
f447e4eb3a perf/x86/intel: Force resched when TFA sysctl is modified
This patch provides guarantee to the sysadmin that when TFA is disabled, no PMU
event is using PMC3 when the echo command returns. Vice-Versa, when TFA
is enabled, PMU can use PMC3 immediately (to eliminate possible multiplexing).

  $ perf stat -a -I 1000 --no-merge -e branches,branches,branches,branches
     1.000123979    125,768,725,208      branches
     1.000562520    125,631,000,456      branches
     1.000942898    125,487,114,291      branches
     1.001333316    125,323,363,620      branches
     2.004721306    125,514,968,546      branches
     2.005114560    125,511,110,861      branches
     2.005482722    125,510,132,724      branches
     2.005851245    125,508,967,086      branches
     3.006323475    125,166,570,648      branches
     3.006709247    125,165,650,056      branches
     3.007086605    125,164,639,142      branches
     3.007459298    125,164,402,912      branches
     4.007922698    125,045,577,140      branches
     4.008310775    125,046,804,324      branches
     4.008670814    125,048,265,111      branches
     4.009039251    125,048,677,611      branches
     5.009503373    125,122,240,217      branches
     5.009897067    125,122,450,517      branches

Then on another connection, sysadmin does:

  $ echo  1 >/sys/devices/cpu/allow_tsx_force_abort

Then perf stat adjusts the events immediately:

     5.010286029    125,121,393,483      branches
     5.010646308    125,120,556,786      branches
     6.011113588    124,963,351,832      branches
     6.011510331    124,964,267,566      branches
     6.011889913    124,964,829,130      branches
     6.012262996    124,965,841,156      branches
     7.012708299    124,419,832,234      branches [79.69%]
     7.012847908    124,416,363,853      branches [79.73%]
     7.013225462    124,400,723,712      branches [79.73%]
     7.013598191    124,376,154,434      branches [79.70%]
     8.014089834    124,250,862,693      branches [74.98%]
     8.014481363    124,267,539,139      branches [74.94%]
     8.014856006    124,259,519,786      branches [74.98%]
     8.014980848    124,225,457,969      branches [75.04%]
     9.015464576    124,204,235,423      branches [75.03%]
     9.015858587    124,204,988,490      branches [75.04%]
     9.016243680    124,220,092,486      branches [74.99%]
     9.016620104    124,231,260,146      branches [74.94%]

And vice-versa if the syadmin does:

  $ echo  0 >/sys/devices/cpu/allow_tsx_force_abort

Events are again spread over the 4 counters:

    10.017096277    124,276,230,565      branches [74.96%]
    10.017237209    124,228,062,171      branches [75.03%]
    10.017478637    124,178,780,626      branches [75.03%]
    10.017853402    124,198,316,177      branches [75.03%]
    11.018334423    124,602,418,933      branches [85.40%]
    11.018722584    124,602,921,320      branches [85.42%]
    11.019095621    124,603,956,093      branches [85.42%]
    11.019467742    124,595,273,783      branches [85.42%]
    12.019945736    125,110,114,864      branches
    12.020330764    125,109,334,472      branches
    12.020688740    125,109,818,865      branches
    12.021054020    125,108,594,014      branches
    13.021516774    125,109,164,018      branches
    13.021903640    125,108,794,510      branches
    13.022270770    125,107,756,978      branches
    13.022630819    125,109,380,471      branches
    14.023114989    125,133,140,817      branches
    14.023501880    125,133,785,858      branches
    14.023868339    125,133,852,700      branches

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Cc: nelson.dsouza@intel.com
Cc: tonyj@suse.com
Link: https://lkml.kernel.org/r/20190408173252.37932-3-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 12:19:35 +02:00
Ingo Molnar
cc8670945d Merge branch 'perf/urgent' into perf/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 12:14:46 +02:00
Kan Liang
9d5dcc93a6 perf/x86: Fix incorrect PEBS_REGS
PEBS_REGS used as mask for the supported registers for large PEBS.
However, the mask cannot filter the sample_regs_user/sample_regs_intr
correctly.

(1ULL << PERF_REG_X86_*) should be used to replace PERF_REG_X86_*, which
is only the index.

Rename PEBS_REGS to PEBS_GP_REGS, because the mask is only for general
purpose registers.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Fixes: 2fe1bc1f50 ("perf/x86: Enable free running PEBS for REGS_USER/INTR")
Link: https://lkml.kernel.org/r/20190402194509.2832-2-kan.liang@linux.intel.com
[ Renamed it to PEBS_GP_REGS - as 'GPRS' is used elsewhere ;-) ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-16 12:13:58 +02:00
Peter Zijlstra
1f6a1e2d7d perf/x86: Remove PERF_X86_EVENT_COMMITTED
The flag PERF_X86_EVENT_COMMITTED is used to find uncommitted events
for which to call put_event_constraint() when scheduling fails.

These are the newly added events to the list, and must form, per
definition, the tail of cpuc->event_list[]. By computing the list
index of the last successfull schedule, then iteration can start there
and the flag is redundant.

There are only 3 callers of x86_schedule_events(), notably:

 - x86_pmu_add()
 - x86_pmu_commit_txn()
 - validate_group()

For x86_pmu_add(), cpuc->n_events isn't updated until after
schedule_events() succeeds, therefore cpuc->n_events points to the
desired index.

For x86_pmu_commit_txn(), cpuc->n_events is updated, but we can
trivially compute the desired value with cpuc->n_txn -- the number of
events added in this transaction.

For validate_group(), we can make the rule for x86_pmu_add() work by
simply setting cpuc->n_events to 0 before calling schedule_events().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-03 09:25:31 +02:00
Peter Zijlstra
f764c58b7f perf/x86: Fixup typo in stub functions
Guenter reported a build warning for CONFIG_CPU_SUP_INTEL=n:

  > With allmodconfig-CONFIG_CPU_SUP_INTEL, this patch results in:
  >
  > In file included from arch/x86/events/amd/core.c:8:0:
  > arch/x86/events/amd/../perf_event.h:1036:45: warning: ‘struct cpu_hw_event’ declared inside parameter list will not be visible outside of this definition or declaration
  >  static inline int intel_cpuc_prepare(struct cpu_hw_event *cpuc, int cpu)

While harmless (an unsed pointer is an unused pointer, no matter the type)
it needs fixing.

Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: d01b1f96a8 ("perf/x86/intel: Make cpuc allocations consistent")
Link: http://lkml.kernel.org/r/20190315081410.GR5996@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-03-15 13:12:42 +01:00
Linus Torvalds
004cc08675 Merge branch 'x86-tsx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 tsx fixes from Thomas Gleixner:
 "This update provides kernel side handling for the TSX erratum of Intel
  Skylake (and later) CPUs.

  On these CPUs Intel Transactional Synchronization Extensions (TSX)
  functions can result in unpredictable system behavior under certain
  circumstances.

  The issue is mitigated with an microcode update which utilizes
  Performance Monitoring Counter (PMC) 3 when TSX functions are in use.
  This mitigation is enabled unconditionally by the updated microcode.

  As a consequence the usage of TSX functions can cause corrupted
  performance monitoring results for events which utilize PMC3. The
  corruption is silent on kernels which have no update for this issue.

  This update makes the kernel aware of the PMC3 utilization by the
  microcode:

  The microcode offers a possibility to enforce TSX abort which prevents
  the malfunction and frees up PMC3. The enforced TSX abort requires the
  TSX using application to have a software fallback path implemented;
  abort handlers which solely retry the transaction will fail over and
  over.

  The enforced TSX abort request is issued by the kernel when:

   - enforced TSX abort is enabled (PMU attribute)

   - A performance monitoring request needs PMC3

  When PMC3 is not longer used by the kernel the TSX force abort request
  is cleared.

  The enforced TSX abort mechanism is enabled by default and can be
  controlled by the administrator via the new PMU attribute
  'allow_tsx_force_abort'. This attribute is only visible when updated
  microcode is detected on affected systems. Writing '0' disables the
  enforced TSX abort mechanism, '1' enables it.

  As a result of disabling the enforced TSX abort mechanism, PMC3 is
  permanentely unavailable for performance monitoring which can cause
  performance monitoring requests to fail or switch to multiplexing
  mode"

* branch 'x86-tsx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/x86/intel: Implement support for TSX Force Abort
  x86: Add TSX Force Abort CPUID/MSR
  perf/x86/intel: Generalize dynamic constraint creation
  perf/x86/intel: Make cpuc allocations consistent
2019-03-12 09:02:36 -07:00
Peter Zijlstra (Intel)
400816f60c perf/x86/intel: Implement support for TSX Force Abort
Skylake (and later) will receive a microcode update to address a TSX
errata. This microcode will, on execution of a TSX instruction
(speculative or not) use (clobber) PMC3. This update will also provide
a new MSR to change this behaviour along with a CPUID bit to enumerate
the presence of this new MSR.

When the MSR gets set; the microcode will no longer use PMC3 but will
Force Abort every TSX transaction (upon executing COMMIT).

When TSX Force Abort (TFA) is allowed (default); the MSR gets set when
PMC3 gets scheduled and cleared when, after scheduling, PMC3 is
unused.

When TFA is not allowed; clear PMC3 from all constraints such that it
will not get used.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-03-06 09:25:41 +01:00