called SEV by also encrypting the guest register state, making the
registers inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared between
the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so
in order for that exception mechanism to work, the early x86 init code
needed to be made able to handle exceptions, which, in itself, brings
a bunch of very nice cleanups and improvements to the early boot code
like an early page fault handler, allowing for on-demand building of the
identity mapping. With that, !KASLR configurations do not use the EFI
page table anymore but switch to a kernel-controlled one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly
separate from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and behind
static keys to minimize the performance impact on !SEV-ES setups.
Work by Joerg Roedel and Thomas Lendacky and others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+FiKYACgkQEsHwGGHe
VUqS5BAAlh5mKwtxXMyFyAIHa5tpsgDjbecFzy1UVmZyxN0JHLlM3NLmb+K52drY
PiWjNNMi/cFMFazkuLFHuY0poBWrZml8zRS/mExKgUJC6EtguS9FQnRE9xjDBoWQ
gOTSGJWEzT5wnFqo8qHwlC2CDCSF1hfL8ks3cUFW2tCWus4F9pyaMSGfFqD224rg
Lh/8+arDMSIKE4uH0cm7iSuyNpbobId0l5JNDfCEFDYRigQZ6pZsQ9pbmbEpncs4
rmjDvBA5eHDlNMXq0ukqyrjxWTX4ZLBOBvuLhpyssSXnnu2T+Tcxg09+ZSTyJAe0
LyC9Wfo0v78JASXMAdeH9b1d1mRYNMqjvnBItNQoqweoqUXWz7kvgxCOp6b/G4xp
cX5YhB6BprBW2DXL45frMRT/zX77UkEKYc5+0IBegV2xfnhRsjqQAQaWLIksyEaX
nz9/C6+1Sr2IAv271yykeJtY6gtlRjg/usTlYpev+K0ghvGvTmuilEiTltjHrso1
XAMbfWHQGSd61LNXofvx/GLNfGBisS6dHVHwtkayinSjXNdWxI6w9fhbWVjQ+y2V
hOF05lmzaJSG5kPLrsFHFqm2YcxOmsWkYYDBHvtmBkMZSf5B+9xxDv97Uy9NETcr
eSYk//TEkKQqVazfCQS/9LSm0MllqKbwNO25sl0Tw2k6PnheO2g=
=toqi
-----END PGP SIGNATURE-----
Merge tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
Call set_sev_encryption_mask() while still on the stage 1 #VC-handler
because the stage 2 handler needs the kernel's own page tables to be
set up, to which calling set_sev_encryption_mask() is a prerequisite.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-21-joro@8bytes.org
When booted through startup_64(), the kernel keeps running on the EFI
page table until the KASLR code sets up its own page table. Without
KASLR, the pre-decompression boot code never switches off the EFI page
table. Change that by unconditionally switching to a kernel-controlled
page table after relocation.
This makes sure the kernel can make changes to the mapping when
necessary, for example map pages unencrypted in SEV and SEV-ES guests.
Also, remove the debug_putstr() calls in initialize_identity_maps()
because the function now runs before console_init() is called.
[ bp: Massage commit message. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200907131613.12703-17-joro@8bytes.org
Add code needed to setup an IDT in the early pre-decompression
boot-code. The IDT is loaded first in startup_64, which is after
EfiExitBootServices() has been called, and later reloaded when the
kernel image has been relocated to the end of the decompression area.
This allows to setup different IDT handlers before and after the
relocation.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-14-joro@8bytes.org
The BFD linker generates run-time relocations for z_input_len and
z_output_len, even though they are absolute symbols.
This is fixed for binutils-2.35 [1]. Work around this for earlier
versions by defining two variables input_len and output_len in addition
to the symbols, and use them via position-independent references.
This eliminates the last two run-time relocations in the head code and
allows us to drop the -z noreloc-overflow flag to the linker.
Move the -pie and --no-dynamic-linker LDFLAGS to LDFLAGS_vmlinux instead
of KBUILD_LDFLAGS. There shouldn't be anything else getting linked, but
this is the more logical location for these flags, and modversions might
call the linker if an EXPORT_SYMBOL is left over accidentally in one of
the decompressors.
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=25754
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Fangrui Song <maskray@google.com>
Link: https://lore.kernel.org/r/20200731230820.1742553-7-keescook@chromium.org
The assembly code in head_{32,64}.S, while meant to be
position-independent, generates run-time relocations because it uses
instructions such as:
leal gdt(%edx), %eax
which make the assembler and linker think that the code is using %edx as
an index into gdt, and hence gdt needs to be relocated to its run-time
address.
On 32-bit, with lld Dmitry Golovin reports that this results in a
link-time error with default options (i.e. unless -z notext is
explicitly passed):
LD arch/x86/boot/compressed/vmlinux
ld.lld: error: can't create dynamic relocation R_386_32 against local
symbol in readonly segment; recompile object files with -fPIC or pass
'-Wl,-z,notext' to allow text relocations in the output
With the BFD linker, this generates a warning during the build, if
--warn-shared-textrel is enabled, which at least Gentoo enables by
default:
LD arch/x86/boot/compressed/vmlinux
ld: arch/x86/boot/compressed/head_32.o: warning: relocation in read-only section `.head.text'
ld: warning: creating a DT_TEXTREL in object
On 64-bit, it is not possible to link the kernel as -pie with lld, and
it is only possible with a BFD linker that supports -z noreloc-overflow,
i.e. versions >2.26. This is because these instructions cannot really be
relocated: the displacement field is only 32-bits wide, and thus cannot
be relocated for a 64-bit load address. The -z noreloc-overflow option
simply overrides the linker error, and results in R_X86_64_RELATIVE
relocations that apply a 64-bit relocation to a 32-bit field anyway.
This happens to work because nothing will process these run-time
relocations.
Start fixing this by removing relocations from .head.text:
- On 32-bit, use a base register that holds the address of the GOT and
reference symbol addresses using @GOTOFF, i.e.
leal gdt@GOTOFF(%edx), %eax
- On 64-bit, most of the code can (and already does) use %rip-relative
addressing, however the .code32 bits can't, and the 64-bit code also
needs to reference symbol addresses as they will be after moving the
compressed kernel to the end of the decompression buffer.
For these cases, reference the symbols as an offset to startup_32 to
avoid creating relocations, i.e.:
leal (gdt-startup_32)(%bp), %eax
This only works in .head.text as the subtraction cannot be represented
as a PC-relative relocation unless startup_32 is in the same section
as the code. Move efi32_pe_entry into .head.text so that it can use
the same method to avoid relocations.
Reported-by: Dmitry Golovin <dima@golovin.in>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Fangrui Song <maskray@google.com>
Link: https://lore.kernel.org/r/20200731230820.1742553-6-keescook@chromium.org
In a previous patch, we have eliminated GOT entries from the decompressor
binary and added an assertion that the .got section is empty. This means
that the GOT fixup routines that exist in both the 32-bit and 64-bit
startup routines have become dead code, and can be removed.
While at it, drop the KEEP() from the linker script, as it has no effect
on the contents of output sections that are created by the linker itself.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200731230820.1742553-4-keescook@chromium.org
Commit
17054f492d ("efi/x86: Implement mixed mode boot without the handover protocol")
introduced a new entry point for the EFI stub to be booted in mixed mode
on 32-bit firmware.
When entered via efi32_pe_entry, control is first transferred to
startup_32 to setup for the switch to long mode, and then the EFI stub
proper is entered via efi_pe_entry. efi_pe_entry is an MS ABI function,
and the ABI requires 32 bytes of shadow stack space to be allocated by
the caller, as well as the stack being aligned to 8 mod 16 on entry.
Allocate 40 bytes on the stack before switching to 64-bit mode when
calling efi_pe_entry to account for this.
For robustness, explicitly align boot_stack_end to 16 bytes. It is
currently implicitly aligned since .bss is cacheline-size aligned,
head_64.o is the first object file with a .bss section, and the heap and
boot sizes are aligned.
Fixes: 17054f492d ("efi/x86: Implement mixed mode boot without the handover protocol")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200617131957.2507632-1-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
For the 32-bit kernel, as described in
6d92bc9d48 ("x86/build: Build compressed x86 kernels as PIE"),
pre-2.26 binutils generates R_386_32 relocations in PIE mode. Since the
startup code does not perform relocation, any reloc entry with R_386_32
will remain as 0 in the executing code.
Commit
974f221c84 ("x86/boot: Move compressed kernel to the end of the
decompression buffer")
added a new symbol _end but did not mark it hidden, which doesn't give
the correct offset on older linkers. This causes the compressed kernel
to be copied beyond the end of the decompression buffer, rather than
flush against it. This region of memory may be reserved or already
allocated for other purposes by the bootloader.
Mark _end as hidden to fix. This changes the relocation from R_386_32 to
R_386_RELATIVE even on the pre-2.26 binutils.
For 64-bit, this is not strictly necessary, as the 64-bit kernel is only
built as PIE if the linker supports -z noreloc-overflow, which implies
binutils-2.27+, but for consistency, mark _end as hidden here too.
The below illustrates the before/after impact of the patch using
binutils-2.25 and gcc-4.6.4 (locally compiled from source) and QEMU.
Disassembly before patch:
48: 8b 86 60 02 00 00 mov 0x260(%esi),%eax
4e: 2d 00 00 00 00 sub $0x0,%eax
4f: R_386_32 _end
Disassembly after patch:
48: 8b 86 60 02 00 00 mov 0x260(%esi),%eax
4e: 2d 00 f0 76 00 sub $0x76f000,%eax
4f: R_386_RELATIVE *ABS*
Dump from extract_kernel before patch:
early console in extract_kernel
input_data: 0x0207c098 <--- this is at output + init_size
input_len: 0x0074fef1
output: 0x01000000
output_len: 0x00fa63d0
kernel_total_size: 0x0107c000
needed_size: 0x0107c000
Dump from extract_kernel after patch:
early console in extract_kernel
input_data: 0x0190d098 <--- this is at output + init_size - _end
input_len: 0x0074fef1
output: 0x01000000
output_len: 0x00fa63d0
kernel_total_size: 0x0107c000
needed_size: 0x0107c000
Fixes: 974f221c84 ("x86/boot: Move compressed kernel to the end of the decompression buffer")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200207214926.3564079-1-nivedita@alum.mit.edu
When the pre-decompression code loads its first GDT in startup_64(), it
is still running on the CS value of the previous GDT. In the case of
SEV-ES, this is the EFI GDT but it can be anything depending on what has
loaded the kernel (boot loader, container runtime, etc.)
To make exception handling work (especially IRET) the CPU needs to
switch to a CS value in the current GDT, so jump to __KERNEL_CS after
the first GDT is loaded. This is prudent also as a general sanitization
of CS to a known good value.
[ bp: Massage commit message. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200428151725.31091-13-joro@8bytes.org
Pull x86 boot updates from Ingo Molnar:
"Misc cleanups and small enhancements all around the map"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Fix debug_puthex() parameter type
x86/setup: Fix static memory detection
x86/vmlinux: Drop unneeded linker script discard of .eh_frame
x86/*/Makefile: Use -fno-asynchronous-unwind-tables to suppress .eh_frame sections
x86/boot/compressed: Remove .eh_frame section from bzImage
x86/boot/compressed/64: Remove .bss/.pgtable from bzImage
x86/boot/compressed/64: Use 32-bit (zero-extended) MOV for z_output_len
x86/boot/compressed/64: Use LEA to initialize boot stack pointer
The load address is compared with LOAD_PHYSICAL_ADDR using a signed
comparison currently (using jge instruction).
When loading a 64-bit kernel using the new efi32_pe_entry() point added by:
97aa276579 ("efi/x86: Add true mixed mode entry point into .compat section")
using Qemu with -m 3072, the firmware actually loads us above 2Gb,
resulting in a very early crash.
Use the JAE instruction to perform a unsigned comparison instead, as physical
addresses should be considered unsigned.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200301230436.2246909-6-nivedita@alum.mit.edu
Link: https://lore.kernel.org/r/20200308080859.21568-14-ardb@kernel.org
code32_start is meant for 16-bit real-mode bootloaders to inform the
kernel where the 32-bit protected mode code starts. Nothing in the
protected mode kernel except the EFI stub uses it.
efi_main() currently returns boot_params, with code32_start set inside it
to tell efi_stub_entry() where startup_32 is located. Since it was invoked
by efi_stub_entry() in the first place, boot_params is already known.
Return the address of startup_32 instead.
This will allow a 64-bit kernel to live above 4Gb, for example, and it's
cleaner as well.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200301230436.2246909-5-nivedita@alum.mit.edu
Link: https://lore.kernel.org/r/20200308080859.21568-13-ardb@kernel.org
The following commit:
ef5a7b5eb1 ("efi/x86: Remove GDT setup from efi_main")
introduced GDT setup into the 32-bit kernel's startup_32, and reloads
the GDTR after relocating the kernel for paranoia's sake.
A followup commit:
32d009137a ("x86/boot: Reload GDTR after copying to the end of the buffer")
introduced a similar GDTR reload in the 64-bit kernel as well.
The GDTR is adjusted by (init_size-_end), however this may not be the
correct offset to apply if the kernel was loaded at a misaligned address
or below LOAD_PHYSICAL_ADDR, as in that case the decompression buffer
has an additional offset from the original load address.
This should never happen for a conformant bootloader, but we're being
paranoid anyway, so just store the new GDT address in there instead of
adding any offsets, which is simpler as well.
Fixes: ef5a7b5eb1 ("efi/x86: Remove GDT setup from efi_main")
Fixes: 32d009137a ("x86/boot: Reload GDTR after copying to the end of the buffer")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Link: https://lore.kernel.org/r/20200226230031.3011645-2-nivedita@alum.mit.edu
Add support for booting 64-bit x86 kernels from 32-bit firmware running
on 64-bit capable CPUs without requiring the bootloader to implement
the EFI handover protocol or allocate the setup block, etc etc, all of
which can be done by the stub itself, using code that already exists.
Instead, create an ordinary EFI application entrypoint but implemented
in 32-bit code [so that it can be invoked by 32-bit firmware], and stash
the address of this 32-bit entrypoint in the .compat section where the
bootloader can find it.
Note that we use the setup block embedded in the binary to go through
startup_32(), but it gets reallocated and copied in efi_pe_entry(),
using the same code that runs when the x86 kernel is booted in EFI
mode from native firmware. This requires the loaded image protocol to
be installed on the kernel image's EFI handle, and point to the kernel
image itself and not to its loader. This, in turn, requires the
bootloader to use the LoadImage() boot service to load the 64-bit
image from 32-bit firmware, which is in fact supported by firmware
based on EDK2. (Only StartImage() will fail, and instead, the newly
added entrypoint needs to be invoked)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Rearrange the instructions a bit to use a 32-bit displacement once
instead of 2/3 times. This saves 8 bytes of machine code.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200202171353.3736319-8-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The limit value for the GDTR should be such that adding it to the base
address gives the address of the last byte of the GDT, i.e. it should be
one less than the size, not the size.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200202171353.3736319-7-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
startup_32 already clears these flags on entry, do it in startup_64 as
well for consistency.
The direction flag in particular is not specified to be cleared in the
boot protocol documentation, and we currently call into C code
(paging_prepare) without explicitly clearing it.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200202171353.3736319-5-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The GDT may get overwritten during the copy or during extract_kernel,
which will cause problems if any segment register is touched before the
GDTR is reloaded by the decompressed kernel. For safety update the GDTR
to point to the GDT within the copied kernel.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200202171353.3736319-4-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When booting in mixed mode, the firmware's GDT is still installed at
handover entry in efi32_stub_entry. We save the GDTR for later use in
__efi64_thunk but we are assuming that descriptor 2 (__KERNEL_CS) is a
valid 32-bit code segment descriptor and that descriptor 3
(__KERNEL_DS/__BOOT_DS) is a valid data segment descriptor.
This happens to be true for OVMF (it actually uses descriptor 1 for data
segments, but descriptor 3 is also setup as data), but we shouldn't
depend on this being the case.
Fix this by saving the code and data selectors in addition to the GDTR
in efi32_stub_entry, and restoring them in __efi64_thunk before calling
the firmware. The UEFI specification guarantees that selectors will be
flat, so using the DS selector for all the segment registers should be
enough.
We also need to install our own GDT before initializing segment
registers in startup_32, so move the GDT load up to the beginning of the
function.
[ardb: mention mixed mode in the commit log]
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200202171353.3736319-3-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit
5b11f1cee5 ("x86, boot: straighten out ranges to copy/zero in
compressed/head*.S")
introduced a separate .pgtable section, splitting it out from the rest
of .bss. This section was added without the writeable flag, marking it
as read-only. This results in the linker putting the .rela.dyn section
(containing bogus dynamic relocations from head_64.o) after the .bss and
.pgtable sections.
When objcopy is used to convert compressed/vmlinux into a binary for
the bzImage:
$ objcopy -O binary -R .note -R .comment -S arch/x86/boot/compressed/vmlinux \
arch/x86/boot/vmlinux.bin
the .bss and .pgtable sections get materialized as ~176KiB of zero
bytes in the binary in order to place .rela.dyn at the correct location.
Fix this by marking .pgtable as writeable. This moves the .rela.dyn
section up in the ELF image layout so that .bss and .pgtable are the
last allocated sections and so don't appear in bzImage.
[ bp: Massage commit message. ]
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200109150218.16544-1-nivedita@alum.mit.edu
z_output_len is the size of the decompressed payload (i.e. vmlinux +
vmlinux.relocs) and is generated as an unsigned 32-bit quantity by
mkpiggy.c.
The current
movq $z_output_len, %r9
instruction generates a sign-extended move to %r9. Using
movl $z_output_len, %r9d
will instead zero-extend into %r9, which is appropriate for an unsigned
32-bit quantity. This is also what is already done for z_input_len, the
size of the compressed payload.
[ bp:
Also, z_output_len cannot be a 64-bit quantity because it participates
in:
init_size: .long INIT_SIZE # kernel initialization size
through INIT_SIZE which is a 32-bit quantity determined by the .long
directive (vs .quad for 64-bit). Furthermore, if it really must be a
64-bit quantity, then the insn must be MOVABS which can accommodate a
64-bit immediate and which the toolchain does not generate automatically.
]
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200211173333.1722739-1-nivedita@alum.mit.edu
Reshuffle the x86 stub code a bit so that we can tag the efi_is_64bit()
function with the 'const' attribute, which permits the compiler to
optimize away any redundant calls. Since we have two different entry
points for 32 and 64 bit firmware in the startup code, this also
simplifies the C code since we'll enter it with the efi_is64 variable
already set.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-2-ardb@kernel.org
The mixed mode refactor actually broke mixed mode by failing to
pass the bootparam structure to startup_32(). This went unnoticed
because it apparently has a high tolerance for being passed random
junk, and still boots fine in some cases. So let's fix this by
populating %esi as required when entering via efi32_stub_entry,
and while at it, preserve the arguments themselves instead of their
address in memory (via the stack pointer) since that memory could
be clobbered before we get to it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-2-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The various pointers we stash in the efi_config struct which we
retrieve using __efi_early() are simply copies of the ones in
the EFI system table, which we have started accessing directly
in the previous patch. So drop all the __efi_early() related
plumbing, as well as all the assembly code dealing with efi_config,
which allows us to move the PE/COFF entry point to C code as well.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-18-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We use special wrapper routines to invoke firmware services in the
native case as well as the mixed mode case. For mixed mode, the need
is obvious, but for the native cases, we can simply rely on the
compiler to generate the indirect call, given that GCC now has
support for the MS calling convention (and has had it for quite some
time now). Note that on i386, the decompressor and the EFI stub are not
built with -mregparm=3 like the rest of the i386 kernel, so we can
safely allow the compiler to emit the indirect calls here as well.
So drop all the wrappers and indirection, and switch to either native
calls, or direct calls into the thunk routine for mixed mode.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-14-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The EFI mixed mode entry code goes through the ordinary startup_32()
routine before jumping into the kernel's EFI boot code in 64-bit
mode. The 32-bit startup code must be entered with paging disabled,
but this is not documented as a requirement for the EFI handover
protocol, and so we should disable paging explicitly when entering
the kernel from 32-bit EFI firmware.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224132909.102540-4-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These are all functions which are invoked from elsewhere, so annotate
them as global using the new SYM_FUNC_START and their ENDPROC's by
SYM_FUNC_END.
Make sure ENTRY/ENDPROC is not defined on X86_64, given these were the
last users.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [hibernate]
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits]
Acked-by: Herbert Xu <herbert@gondor.apana.org.au> [crypto]
Cc: Allison Randal <allison@lohutok.net>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Armijn Hemel <armijn@tjaldur.nl>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Enrico Weigelt <info@metux.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: platform-driver-x86@vger.kernel.org
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20191011115108.12392-25-jslaby@suse.cz
All these are functions which are invoked from elsewhere but they are
not typical C functions. So annotate them using the new SYM_CODE_START.
All these were not balanced with any END, so mark their ends by
SYM_CODE_END appropriately too.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits]
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [power mgmt]
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: platform-driver-x86@vger.kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20191011115108.12392-23-jslaby@suse.cz
Use the new SYM_DATA, SYM_DATA_START, and SYM_DATA_END* macros for data,
so that the data in the object file look sane:
Value Size Type Bind Vis Ndx Name
0000 10 OBJECT GLOBAL DEFAULT 3 efi32_boot_gdt
000a 10 OBJECT LOCAL DEFAULT 3 save_gdt
0014 8 OBJECT LOCAL DEFAULT 3 func_rt_ptr
001c 48 OBJECT GLOBAL DEFAULT 3 efi_gdt64
004c 0 OBJECT LOCAL DEFAULT 3 efi_gdt64_end
0000 48 OBJECT LOCAL DEFAULT 3 gdt
0030 0 OBJECT LOCAL DEFAULT 3 gdt_end
0030 8 OBJECT LOCAL DEFAULT 3 efi_config
0038 49 OBJECT GLOBAL DEFAULT 3 efi32_config
0069 49 OBJECT GLOBAL DEFAULT 3 efi64_config
All have correct size and type now.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Allison Randal <allison@lohutok.net>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Enrico Weigelt <info@metux.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: linux-arch@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20191011115108.12392-13-jslaby@suse.cz
.Lrelocated, .Lpaging_enabled, .Lno_longmode, and .Lin_pm32 are
self-standing local functions, annotate them as such and preserve "no
alignment".
The annotations do not generate anything yet.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: linux-arch@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20191011115108.12392-8-jslaby@suse.cz
Boris suggests to make a local label (prepend ".L") to these functions
to eliminate them from the symbol table. These are functions with very
local names and really should not be visible anywhere.
Note that objtool won't see these functions anymore (to generate ORC
debug info). But all the functions are not annotated with ENDPROC, so
they won't have objtool's attention anyway.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steve Winslow <swinslow@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20190906075550.23435-2-jslaby@suse.cz
The segment descriptors are loaded with an implicitly LOCK-ed instruction,
which could trigger the split lock #AC exception if the variable is not
properly aligned and crosses a cache line.
Align the GDT properly so the descriptors are all 8 byte aligned.
Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Link: https://lkml.kernel.org/r/20190627045525.105266-1-xiaoyao.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 cleanups from Ingo Molnar:
"Various cleanups and simplifications, none of them really stands out,
they are all over the place"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/uaccess: Remove unused __addr_ok() macro
x86/smpboot: Remove unused phys_id variable
x86/mm/dump_pagetables: Remove the unused prev_pud variable
x86/fpu: Move init_xstate_size() to __init section
x86/cpu_entry_area: Move percpu_setup_debug_store() to __init section
x86/mtrr: Remove unused variable
x86/boot/compressed/64: Explain paging_prepare()'s return value
x86/resctrl: Remove duplicate MSR_MISC_FEATURE_CONTROL definition
x86/asm/suspend: Drop ENTRY from local data
x86/hw_breakpoints, kprobes: Remove kprobes ifdeffery
x86/boot: Save several bytes in decompressor
x86/trap: Remove useless declaration
x86/mm/tlb: Remove unused cpu variable
x86/events: Mark expected switch-case fall-throughs
x86/asm-prototypes: Remove duplicate include <asm/page.h>
x86/kernel: Mark expected switch-case fall-throughs
x86/insn-eval: Mark expected switch-case fall-through
x86/platform/UV: Replace kmalloc() and memset() with k[cz]alloc() calls
x86/e820: Replace kmalloc() + memcpy() with kmemdup()
paging_prepare() returns a two-quadword structure which lands
into RDX:RAX:
- Address of the trampoline is returned in RAX.
- Non zero RDX means trampoline needs to enable 5-level paging.
Document that explicitly.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: dave.hansen@linux.intel.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kyle D Pelton <kyle.d.pelton@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190206154756.matwldebbxkmlnae@black.fi.intel.com
RDMSR in the trampoline code overwrites EDX but that register is used
to indicate whether 5-level paging has to be enabled and if clobbered,
leads to failure to boot on a 5-level paging machine.
Preserve EDX on the stack while we are dealing with EFER.
Fixes: b677dfae5a ("x86/boot/compressed/64: Set EFER.LME=1 in 32-bit trampoline before returning to long mode")
Reported-by: Kyle D Pelton <kyle.d.pelton@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: dave.hansen@linux.intel.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190206115253.1907-1-kirill.shutemov@linux.intel.com
gdt64 represents the content of GDTR under x86-64, which actually needs
10 bytes only, ".long" & ".word" is superfluous.
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <bp@alien8.de>
Cc: <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190123100014.23721-1-caoj.fnst@cn.fujitsu.com
In some old AMD KVM implementation, guest's EFER.LME bit is cleared by KVM
when the hypervsior detects that the guest sets CR0.PG to 0. This causes
the guest OS to reboot when it tries to return from 32-bit trampoline code
because the CPU is in incorrect state: CR4.PAE=1, CR0.PG=1, CS.L=1, but
EFER.LME=0. As a precaution, set EFER.LME=1 as part of long mode
activation procedure. This extra step won't cause any harm when Linux is
booted on a bare-metal machine.
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20190104054411.12489-1-wei@redhat.com
This kernel parameter allows to force kernel to use 4-level paging even
if hardware and kernel support 5-level paging.
The option may be useful to work around regressions related to 5-level
paging.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180518103528.59260-5-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cleanup_trampoline() relocates the top-level page table out of
trampoline memory. We use 'top_pgtable' as our new top-level page table.
But if the 'top_pgtable' would be referenced from C in a usual way,
the address of the table will be calculated relative to RIP.
After kernel gets relocated, the address will be in the middle of
decompression buffer and the page table may get overwritten.
This leads to a crash.
We calculate the address of other page tables relative to the relocation
address. It makes them safe. We should do the same for 'top_pgtable'.
Calculate the address of 'top_pgtable' in assembly and pass down to
cleanup_trampoline().
Move the page table to .pgtable section where the rest of page tables
are. The section is @nobits so we save 4k in kernel image.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: e9d0e6330e ("x86/boot/compressed/64: Prepare new top-level page table for trampoline")
Link: http://lkml.kernel.org/r/20180516080131.27913-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Eric and Hugh have reported instant reboot due to my recent changes in
decompression code.
The root cause is that I didn't realize that we need to adjust GOT to be
able to run C code that early.
The problem is only visible with an older toolchain. Binutils >= 2.24 is
able to eliminate GOT references by replacing them with RIP-relative
address loads:
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commitdiff;h=80d873266dec
We need to adjust GOT two times:
- before calling paging_prepare() using the initial load address
- before calling C code from the relocated kernel
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: 194a9749c7 ("x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G")
Link: http://lkml.kernel.org/r/20180516080131.27913-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch addresses a shortcoming in current boot process on machines
that supports 5-level paging.
If a bootloader enables 64-bit mode with 4-level paging, we might need to
switch over to 5-level paging. The switching requires the disabling
paging. It works fine if kernel itself is loaded below 4G.
But if the bootloader put the kernel above 4G (not sure if anybody does
this), we would lose control as soon as paging is disabled, because the
code becomes unreachable to the CPU.
This patch implements a trampoline in lower memory to handle this
situation.
We only need the memory for a very short time, until the main kernel
image sets up own page tables.
We go through the trampoline even if we don't have to: if we're already
in 5-level paging mode or if we don't need to switch to it. This way the
trampoline gets tested on every boot.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180312100246.89175-5-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a bootloader enables 64-bit mode with 4-level paging, we might need to
switch over to 5-level paging. The switching requires the disabling
paging. It works fine if kernel itself is loaded below 4G.
But if the bootloader put the kernel above 4G (i.e. in kexec() case),
we would lose control as soon as paging is disabled, because the code
becomes unreachable to the CPU.
To handle the situation, we need a trampoline in lower memory that would
take care of switching on 5-level paging.
Apart from the trampoline code itself we also need a place to store
top-level page table in lower memory as we don't have a way to load
64-bit values into CR3 in 32-bit mode. We only really need 8 bytes there
as we only use the very first entry of the page table. But we allocate a
whole page anyway.
This patch switches 32-bit code to use page table in trampoline memory.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180312100246.89175-4-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As the first step on using trampoline memory, let's make 32-bit code use
stack there.
Separate stack is required to return back from trampoline and we cannot
user stack from 64-bit mode as it may be above 4G.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180312100246.89175-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When kernel starts in 64-bit mode we inherit the GDT from the bootloader.
It may cause a problem if the GDT doesn't have a 32-bit code segment
where we expect it to be.
Load our own GDT with known segments.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180312100246.89175-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The memory area we found for trampoline shouldn't contain anything
useful. But let's preserve the data anyway. Just to be on safe side.
paging_prepare() would save the data into a buffer.
cleanup_trampoline() would restore it back once we are done with the
trampoline.
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180226180451.86788-4-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename l5_paging_required() to paging_prepare() and change the
interface of the function.
This is a preparation for the next patch, which would make the function
also allocate memory for the 32-bit trampoline.
The function now returns a 128-bit structure. RAX would return
trampoline memory address (zero for now) and RDX would indicate if we
need to enable 5-level paging.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
[ Typo fixes and general clarification. ]
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180209142228.21231-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prerequisite for fixing the current problem of instantaneous reboots when a
5-level paging kernel is booted on 4-level paging hardware.
At the same time this change prepares the decompression code to boot-time
switching between 4- and 5-level paging.
[ tglx: Folded the GCC < 5 fix. ]
Fixes: 77ef56e4f0 ("x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: linux-mm@kvack.org
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20171204124059.63515-2-kirill.shutemov@linux.intel.com
Early in the boot process, add checks to determine if the kernel is
running with Secure Encrypted Virtualization (SEV) active.
Checking for SEV requires checking that the kernel is running under a
hypervisor (CPUID 0x00000001, bit 31), that the SEV feature is available
(CPUID 0x8000001f, bit 1) and then checking a non-interceptable SEV MSR
(0xc0010131, bit 0).
This check is required so that during early compressed kernel booting the
pagetables (both the boot pagetables and KASLR pagetables (if enabled) are
updated to include the encryption mask so that when the kernel is
decompressed into encrypted memory, it can boot properly.
After the kernel is decompressed and continues booting the same logic is
used to check if SEV is active and set a flag indicating so. This allows
to distinguish between SME and SEV, each of which have unique differences
in how certain things are handled: e.g. DMA (always bounce buffered with
SEV) or EFI tables (always access decrypted with SME).
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: kvm@vger.kernel.org
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20171020143059.3291-13-brijesh.singh@amd.com
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Similarly to the 32-bit code, efi_pe_entry body() is somehow squashed into
startup_64().
In the old days, we forced startup_64() to start at offset 0x200 and efi_pe_entry()
to start at 0x210. But this requirement was removed long time ago, in:
99f857db88 ("x86, build: Dynamically find entry points in compressed startup code")
The way it is now makes the code less readable and illogical. Given
we can now safely extract the inlined efi_pe_entry() body from
startup_64() into a separate function, we do so.
We also annotate the function appropriatelly by ENTRY+ENDPROC.
ABI offsets are preserved:
0000000000000000 T startup_32
0000000000000200 T startup_64
0000000000000390 T efi64_stub_entry
On the top-level, it looked like:
.org 0x200
ENTRY(startup_64)
#ifdef CONFIG_EFI_STUB ; start of inlined
jmp preferred_addr
GLOBAL(efi_pe_entry)
... ; a lot of assembly (efi_pe_entry)
leaq preferred_addr(%rax), %rax
jmp *%rax
preferred_addr:
#endif ; end of inlined
... ; a lot of assembly (startup_64)
ENDPROC(startup_64)
And it is now converted into:
.org 0x200
ENTRY(startup_64)
... ; a lot of assembly (startup_64)
ENDPROC(startup_64)
#ifdef CONFIG_EFI_STUB
ENTRY(efi_pe_entry)
... ; a lot of assembly (efi_pe_entry)
leaq startup_64(%rax), %rax
jmp *%rax
ENDPROC(efi_pe_entry)
#endif
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: ard.biesheuvel@linaro.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20170824073327.4129-2-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to cover two basic cases: when bootloader left us in 32-bit mode
and when bootloader enabled long mode.
The patch implements unified codepath to enabled 5-level paging for both
cases. It means case when we start in 32-bit mode, we first enable long
mode with 4-level and then switch over to 5-level paging.
Switching from 4-level to 5-level paging is not trivial. We cannot do it
directly. Setting LA57 in long mode would trigger #GP. So we need to
switch off long mode first and the then re-enable with 5-level paging.
NOTE: The need of switching off long mode means we are in trouble if
bootloader put us above 4G boundary. If bootloader wants to boot 5-level
paging kernel, it has to put kernel below 4G or enable 5-level paging on
it's own, so we could avoid the step.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-7-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Provide the ability to perform mixed-mode runtime service calls for x86 in
the same way the following commit provided the ability to invoke for boot
services:
0a637ee612 ("x86/efi: Allow invocation of arbitrary boot services")
Suggested-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1486380166-31868-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch calculates the GDTR's base address via a single instruction.
( EBP contains the address where it is loaded and GDTR's base address is
already set to "gdt" in compilation. It is fine to get the correct base
address by adding the delta to GDTR's base address. )
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1478015364-5547-1-git-send-email-richard.weiyang@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently allow invocation of 8 boot services with efi_call_early().
Not included are LocateHandleBuffer and LocateProtocol in particular.
For graphics output or to retrieve PCI ROMs and Apple device properties,
we're thus forced to use the LocateHandle + AllocatePool + LocateHandle
combo, which is cumbersome and needs more code.
The ARM folks allow invocation of the full set of boot services but are
restricted to our 8 boot services in functions shared across arches.
Thus, rather than adding just LocateHandleBuffer and LocateProtocol to
struct efi_config, let's rework efi_call_early() to allow invocation of
arbitrary boot services by selecting the 64 bit vs 32 bit code path in
the macro itself.
When compiling for 32 bit or for 64 bit without mixed mode, the unused
code path is optimized away and the binary code is the same as before.
But on 64 bit with mixed mode enabled, this commit adds one compare
instruction to each invocation of a boot service and, depending on the
code path selected, two jump instructions. (Most of the time gcc
arranges the jumps in the 32 bit code path.) The result is a minuscule
performance penalty and the binary code becomes slightly larger and more
difficult to read when disassembled. This isn't a hot path, so these
drawbacks are arguably outweighed by the attainable simplification of
the C code. We have some overhead anyway for thunking or conversion
between calling conventions.
The 8 boot services can consequently be removed from struct efi_config.
No functional change intended (for now).
Example -- invocation of free_pool before (64 bit code path):
0x2d4 movq %ds:efi_early, %rdx ; efi_early
0x2db movq %ss:arg_0-0x20(%rsp), %rsi
0x2e0 xorl %eax, %eax
0x2e2 movq %ds:0x28(%rdx), %rdi ; efi_early->free_pool
0x2e6 callq *%ds:0x58(%rdx) ; efi_early->call()
Example -- invocation of free_pool after (64 / 32 bit mixed code path):
0x0dc movq %ds:efi_early, %rax ; efi_early
0x0e3 cmpb $0, %ds:0x28(%rax) ; !efi_early->is64 ?
0x0e7 movq %ds:0x20(%rax), %rdx ; efi_early->call()
0x0eb movq %ds:0x10(%rax), %rax ; efi_early->boot_services
0x0ef je $0x150
0x0f1 movq %ds:0x48(%rax), %rdi ; free_pool (64 bit)
0x0f5 xorl %eax, %eax
0x0f7 callq *%rdx
...
0x150 movl %ds:0x30(%rax), %edi ; free_pool (32 bit)
0x153 jmp $0x0f5
Size of eboot.o text section:
CONFIG_X86_32: 6464 before, 6318 after
CONFIG_X86_64 && !CONFIG_EFI_MIXED: 7670 before, 7573 after
CONFIG_X86_64 && CONFIG_EFI_MIXED: 7670 before, 8319 after
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Currently KASLR only supports relocation in a small physical range (from
16M to 1G), due to using the initial kernel page table identity mapping.
To support ranges above this, we need to have an identity mapping for the
desired memory range before we can decompress (and later run) the kernel.
32-bit kernels already have the needed identity mapping. This patch adds
identity mappings for the needed memory ranges on 64-bit kernels. This
happens in two possible boot paths:
If loaded via startup_32(), we need to set up the needed identity map.
If loaded from a 64-bit bootloader, the bootloader will have already
set up an identity mapping, and we'll start via the compressed kernel's
startup_64(). In this case, the bootloader's page tables need to be
avoided while selecting the new uncompressed kernel location. If not,
the decompressor could overwrite them during decompression.
To accomplish this, we could walk the pagetable and find every page
that is used, and add them to mem_avoid, but this needs extra code and
will require increasing the size of the mem_avoid array.
Instead, we can create a new set of page tables for our own identity
mapping instead. The pages for the new page table will come from the
_pagetable section of the compressed kernel, which means they are
already contained by in mem_avoid array. To do this, we reuse the code
from the uncompressed kernel's identity mapping routines.
The _pgtable will be shared by both the 32-bit and 64-bit paths to reduce
init_size, as now the compressed kernel's _rodata to _end will contribute
to init_size.
To handle the possible mappings, we need to increase the existing page
table buffer size:
When booting via startup_64(), we need to cover the old VO, params,
cmdline and uncompressed kernel. In an extreme case we could have them
all beyond the 512G boundary, which needs (2+2)*4 pages with 2M mappings.
And we'll need 2 for first 2M for VGA RAM. One more is needed for level4.
This gets us to 19 pages total.
When booting via startup_32(), KASLR could move the uncompressed kernel
above 4G, so we need to create extra identity mappings, which should only
need (2+2) pages at most when it is beyond the 512G boundary. So 19
pages is sufficient for this case as well.
The resulting BOOT_*PGT_SIZE defines use the "_SIZE" suffix on their
names to maintain logical consistency with the existing BOOT_HEAP_SIZE
and BOOT_STACK_SIZE defines.
This patch is based on earlier patches from Yinghai Lu and Baoquan He.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1462572095-11754-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since 'run_size' is now calculated in misc.c, the old script and associated
argument passing is no longer needed. This patch removes them, and renames
'run_size' to the more descriptive 'kernel_total_size'.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
[ Rewrote the changelog, renamed 'run_size' to 'kernel_total_size' ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Junjie Mao <eternal.n08@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This change makes later calculations about where the kernel is located
easier to reason about. To better understand this change, we must first
clarify what 'VO' and 'ZO' are. These values were introduced in commits
by hpa:
77d1a49995 ("x86, boot: make symbols from the main vmlinux available")
37ba7ab5e3 ("x86, boot: make kernel_alignment adjustable; new bzImage fields")
Specifically:
All names prefixed with 'VO_':
- relate to the uncompressed kernel image
- the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define)
All names prefixed with 'ZO_':
- relate to the bootable compressed kernel image (boot/compressed/vmlinux),
which is composed of the following memory areas:
- head text
- compressed kernel (VO image and relocs table)
- decompressor code
- the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below)
The 'INIT_SIZE' value is used to find the larger of the two image sizes:
#define ZO_INIT_SIZE (ZO__end - ZO_startup_32 + ZO_z_extract_offset)
#define VO_INIT_SIZE (VO__end - VO__text)
#if ZO_INIT_SIZE > VO_INIT_SIZE
# define INIT_SIZE ZO_INIT_SIZE
#else
# define INIT_SIZE VO_INIT_SIZE
#endif
The current code uses extract_offset to decide where to position the
copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE
currently includes the extract_offset.)
Why does z_extract_offset exist? It's needed because we are trying to minimize
the amount of RAM used for the whole act of creating an uncompressed, executable,
properly relocation-linked kernel image in system memory. We do this so that
kernels can be booted on even very small systems.
To achieve the goal of minimal memory consumption we have implemented an in-place
decompression strategy: instead of cleanly separating the VO and ZO images and
also allocating some memory for the decompression code's runtime needs, we instead
create this elaborate layout of memory buffers where the output (decompressed)
stream, as it progresses, overlaps with and destroys the input (compressed)
stream. This can only be done safely if the ZO image is placed to the end of the
VO range, plus a certain amount of safety distance to make sure that when the last
bytes of the VO range are decompressed, the compressed stream pointer is safely
beyond the end of the VO range.
z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during
the build process, at a point when we know the exact compressed and
uncompressed size of the kernel images and can calculate this safe minimum
offset value. (Note that the mkpiggy.c calculation is not perfect, because
we don't know the decompressor used at that stage, so the z_extract_offset
calculation is necessarily imprecise and is mostly based on gzip internals -
we'll improve that in the next patch.)
When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible),
the copied ZO occupies the memory from extract_offset to the end of
decompression buffer. It overlaps with the soon-to-be-uncompressed kernel
like this:
|-----compressed kernel image------|
V V
0 extract_offset +INIT_SIZE
|-----------|---------------|-------------------------|--------|
| | | |
VO__text startup_32 of ZO VO__end ZO__end
^ ^
|-------uncompressed kernel image---------|
When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space
left from end of ZO to the end of decompressing buffer, like below.
|-compressed kernel image-|
V V
0 extract_offset +INIT_SIZE
|-----------|---------------|-------------------------|--------|
| | | |
VO__text startup_32 of ZO ZO__end VO__end
^ ^
|------------uncompressed kernel image-------------|
To simplify calculations and avoid special cases, it is cleaner to
always place the compressed kernel image in memory so that ZO__end
is at the end of the decompression buffer, instead of placing t at
the start of extract_offset as is currently done.
This patch adds BP_init_size (which is the INIT_SIZE as passed in from
the boot_params) into asm-offsets.c to make it visible to the assembly
code.
Then when moving the ZO, it calculates the starting position of
the copied ZO (via BP_init_size and the ZO run size) so that the VO__end
will be at the end of the decompression buffer. To make the position
calculation safe, the end of ZO is page aligned (and a comment is added
to the existing VO alignment for good measure).
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[ Rewrote changelog and comments. ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: lasse.collin@tukaani.org
Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org
[ Rewrote the changelog some more. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The function "decompress_kernel" now performs many more duties, so this
patch renames it to "extract_kernel" and updates callers and comments.
Additionally the file header comment for misc.c is improved to actually
describe what is contained.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1460997735-24785-5-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 32-bit x86 assembler in binutils 2.26 will generate R_386_GOT32X
relocation to get the symbol address in PIC. When the compressed x86
kernel isn't built as PIC, the linker optimizes R_386_GOT32X relocations
to their fixed symbol addresses. However, when the compressed x86
kernel is loaded at a different address, it leads to the following
load failure:
Failed to allocate space for phdrs
during the decompression stage.
If the compressed x86 kernel is relocatable at run-time, it should be
compiled with -fPIE, instead of -fPIC, if possible and should be built as
Position Independent Executable (PIE) so that linker won't optimize
R_386_GOT32X relocation to its fixed symbol address.
Older linkers generate R_386_32 relocations against locally defined
symbols, _bss, _ebss, _got and _egot, in PIE. It isn't wrong, just less
optimal than R_386_RELATIVE. But the x86 kernel fails to properly handle
R_386_32 relocations when relocating the kernel. To generate
R_386_RELATIVE relocations, we mark _bss, _ebss, _got and _egot as
hidden in both 32-bit and 64-bit x86 kernels.
To build a 64-bit compressed x86 kernel as PIE, we need to disable the
relocation overflow check to avoid relocation overflow errors. We do
this with a new linker command-line option, -z noreloc-overflow, which
got added recently:
commit 4c10bbaa0912742322f10d9d5bb630ba4e15dfa7
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Tue Mar 15 11:07:06 2016 -0700
Add -z noreloc-overflow option to x86-64 ld
Add -z noreloc-overflow command-line option to the x86-64 ELF linker to
disable relocation overflow check. This can be used to avoid relocation
overflow check if there will be no dynamic relocation overflow at
run-time.
The 64-bit compressed x86 kernel is built as PIE only if the linker supports
-z noreloc-overflow. So far 64-bit relocatable compressed x86 kernel
boots fine even when it is built as a normal executable.
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
[ Edited the changelog and comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is already defined macro KEEP_SEGMENTS in
<asm/bootparam.h>, let's use it instead of hardcoded
constants.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1424331298-7456-1-git-send-email-kuleshovmail@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When choosing a random address, the current implementation does not take into
account the reversed space for .bss and .brk sections. Thus the relocated kernel
may overlap other components in memory. Here is an example of the overlap from a
x86_64 kernel in qemu (the ranges of physical addresses are presented):
Physical Address
0x0fe00000 --+--------------------+ <-- randomized base
/ | relocated kernel |
vmlinux.bin | (from vmlinux.bin) |
0x1336d000 (an ELF file) +--------------------+--
\ | | \
0x1376d870 --+--------------------+ |
| relocs table | |
0x13c1c2a8 +--------------------+ .bss and .brk
| | |
0x13ce6000 +--------------------+ |
| | /
0x13f77000 | initrd |--
| |
0x13fef374 +--------------------+
The initrd image will then be overwritten by the memset during early
initialization:
[ 1.655204] Unpacking initramfs...
[ 1.662831] Initramfs unpacking failed: junk in compressed archive
This patch prevents the above situation by requiring a larger space when looking
for a random kernel base, so that existing logic can effectively avoids the
overlap.
[kees: switched to perl to avoid hex translation pain in mawk vs gawk]
[kees: calculated overlap without relocs table]
Fixes: 82fa9637a2 ("x86, kaslr: Select random position from e820 maps")
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Junjie Mao <eternal.n08@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1414762838-13067-1-git-send-email-eternal.n08@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This reverts commit 9cb0e39423.
It causes my Sony Vaio Pro 11 to immediately reboot at startup.
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Maarten reported that his Macbook pro 8.2 stopped booting after commit
f23cf8bd5c ("efi/x86: efistub: Move shared dependencies to
<asm/efi.h>"), the main feature of which is changing the visibility of
symbol 'efi_early' from local to global.
By making 'efi_early' global we end up requiring an entry in the Global
Offset Table. Unfortunately, while we do include code to fixup GOT
entries in the early boot code, it's only called after we've executed
the EFI boot stub.
What this amounts to is that references to 'efi_early' in the EFI boot
stub don't point to the correct place.
Since we've got multiple boot entry points we need to be prepared to
fixup the GOT in multiple places, while ensuring that we never do it
more than once, otherwise the GOT entries will still point to the wrong
place.
Reported-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
We really only need one phys and one virt function call, and then only
one assembly function to make firmware calls.
Since we are not using the C type system anyway, we're not really losing
much by deleting the macros apart from no longer having a check that
we are passing the correct number of parameters. The lack of duplicated
code seems like a worthwhile trade-off.
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
code32_start should point at the start of the protected mode code, and
*not* at the beginning of the bzImage. This is much easier to do in
assembly so document that callers of make_boot_params() need to fill out
code32_start.
The fallout from this bug is that we would end up relocating the image
but copying the image at some offset, resulting in what appeared to be
memory corruption.
Reported-by: Thomas Bächler <thomas@archlinux.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The kbuild test robot reported the following errors, introduced with
commit 54b52d8726 ("x86/efi: Build our own EFI services pointer
table"),
arch/x86/boot/compressed/head_32.o: In function `efi32_config':
>> (.data+0x58): undefined reference to `efi_call_phys'
arch/x86/boot/compressed/head_64.o: In function `efi64_config':
>> (.data+0x90): undefined reference to `efi_call6'
Wrap the efi*_config structures in #ifdef CONFIG_EFI_STUB so that we
don't make references to EFI functions if they're not compiled in.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Some EFI firmware makes use of the FPU during boottime services and
clearing X86_CR4_OSFXSR by overwriting %cr4 causes the firmware to
crash.
Add the PAE bit explicitly instead of trashing the existing contents,
leaving the rest of the bits as the firmware set them.
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The EFI handover code only works if the "bitness" of the firmware and
the kernel match, i.e. 64-bit firmware and 64-bit kernel - it is not
possible to mix the two. This goes against the tradition that a 32-bit
kernel can be loaded on a 64-bit BIOS platform without having to do
anything special in the boot loader. Linux distributions, for one thing,
regularly run only 32-bit kernels on their live media.
Despite having only one 'handover_offset' field in the kernel header,
EFI boot loaders use two separate entry points to enter the kernel based
on the architecture the boot loader was compiled for,
(1) 32-bit loader: handover_offset
(2) 64-bit loader: handover_offset + 512
Since we already have two entry points, we can leverage them to infer
the bitness of the firmware we're running on, without requiring any boot
loader modifications, by making (1) and (2) valid entry points for both
CONFIG_X86_32 and CONFIG_X86_64 kernels.
To be clear, a 32-bit boot loader will always use (1) and a 64-bit boot
loader will always use (2). It's just that, if a single kernel image
supports (1) and (2) that image can be used with both 32-bit and 64-bit
boot loaders, and hence both 32-bit and 64-bit EFI.
(1) and (2) must be 512 bytes apart at all times, but that is already
part of the boot ABI and we could never change that delta without
breaking existing boot loaders anyhow.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
It's not possible to dereference the EFI System table directly when
booting a 64-bit kernel on a 32-bit EFI firmware because the size of
pointers don't match.
In preparation for supporting the above use case, build a list of
function pointers on boot so that callers don't have to worry about
converting pointer sizes through multiple levels of indirection.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This allows decompress_kernel to return a new location for the kernel to
be relocated to. Additionally, enforces CONFIG_PHYSICAL_START as the
minimum relocation position when building with CONFIG_RELOCATABLE.
With CONFIG_RANDOMIZE_BASE set, the choose_kernel_location routine
will select a new location to decompress the kernel, though here it is
presently a no-op. The kernel command line option "nokaslr" is introduced
to bypass these routines.
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/1381450698-28710-3-git-send-email-keescook@chromium.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Moves the relocation handling into C, after decompression. This requires
that the decompressed size is passed to the decompression routine as
well so that relocations can be found. Only kernels that need relocation
support will use the code (currently just x86_32), but this is laying
the ground work for 64-bit using it in support of KASLR.
Based on work by Neill Clift and Michael Davidson.
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20130708161517.GA4832@www.outflux.net
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
arch/x86/boot/compressed/head_64.S includes <asm/pgtable_types.h> and
<asm/page_types.h> but it doesn't look like it needs them. So remove them.
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/5191FAE2.4020403@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In startup_32, the running code still uses the initial GDT
located in setup. Thus, __BOOT_DS is preferred. Currently
__KERNEL_DS is lucky to equal to __BOOT_DS, but this is
not always a safe way.
Signed-off-by: Lans Zhang <lans.zhang2008@gmail.com>
Link: http://lkml.kernel.org/r/51300267.6000008@gmail.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Pull x86 mm changes from Peter Anvin:
"This is a huge set of several partly interrelated (and concurrently
developed) changes, which is why the branch history is messier than
one would like.
The *really* big items are two humonguous patchsets mostly developed
by Yinghai Lu at my request, which completely revamps the way we
create initial page tables. In particular, rather than estimating how
much memory we will need for page tables and then build them into that
memory -- a calculation that has shown to be incredibly fragile -- we
now build them (on 64 bits) with the aid of a "pseudo-linear mode" --
a #PF handler which creates temporary page tables on demand.
This has several advantages:
1. It makes it much easier to support things that need access to data
very early (a followon patchset uses this to load microcode way
early in the kernel startup).
2. It allows the kernel and all the kernel data objects to be invoked
from above the 4 GB limit. This allows kdump to work on very large
systems.
3. It greatly reduces the difference between Xen and native (Xen's
equivalent of the #PF handler are the temporary page tables created
by the domain builder), eliminating a bunch of fragile hooks.
The patch series also gets us a bit closer to W^X.
Additional work in this pull is the 64-bit get_user() work which you
were also involved with, and a bunch of cleanups/speedups to
__phys_addr()/__pa()."
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (105 commits)
x86, mm: Move reserving low memory later in initialization
x86, doc: Clarify the use of asm("%edx") in uaccess.h
x86, mm: Redesign get_user with a __builtin_choose_expr hack
x86: Be consistent with data size in getuser.S
x86, mm: Use a bitfield to mask nuisance get_user() warnings
x86/kvm: Fix compile warning in kvm_register_steal_time()
x86-32: Add support for 64bit get_user()
x86-32, mm: Remove reference to alloc_remap()
x86-32, mm: Remove reference to resume_map_numa_kva()
x86-32, mm: Rip out x86_32 NUMA remapping code
x86/numa: Use __pa_nodebug() instead
x86: Don't panic if can not alloc buffer for swiotlb
mm: Add alloc_bootmem_low_pages_nopanic()
x86, 64bit, mm: hibernate use generic mapping_init
x86, 64bit, mm: Mark data/bss/brk to nx
x86: Merge early kernel reserve for 32bit and 64bit
x86: Add Crash kernel low reservation
x86, kdump: Remove crashkernel range find limit for 64bit
memblock: Add memblock_mem_size()
x86, boot: Not need to check setup_header version for setup_data
...
Now 64bit entry is fixed on 0x200, can not be changed anymore.
Update the comments to reflect that.
Also put info about it in boot.txt
-v2: fix some grammar error
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-27-git-send-email-yinghai@kernel.org
Cc: Rob Landley <rob@landley.net>
Cc: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
commit 08da5a2ca
x86_64: Early segment setup for VT
sets up LDT and TR into a valid state in order to speed up boot
decompression under VT.
Those code are put in code64, and it is using GDT that is only
loaded from code32 path.
That breaks booting with 64bit bootloader that does not go through
code32 path and jump to startup_64 directly, and it has different
GDT.
Move those lines into code32 after their GDT is loaded.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-21-git-send-email-yinghai@kernel.org
Cc: Zachary Amsden <zamsden@gmail.com>
Cc: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We need to move some code to 32bit section in following patch:
x86, boot: Move lldt/ltr out of 64bit code section
but that will push startup_64 down from 0x200.
According to hpa, we can not change startup_64 position and that
is an ABI.
We could move function verify_cpu and no_longmode down, because
verify_cpu is used via function call and no_longmode will not
return, then we don't need to add extra code for jumping back.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-20-git-send-email-yinghai@kernel.org
Cc: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We have historically hard-coded entry points in head.S just so it's easy
to build the executable/bzImage headers with references to them.
Unfortunately, this leads to boot loaders abusing these "known" addresses
even when they are *explicitly* told that they "should look at the ELF
header to find this address, as it may change in the future". And even
when the address in question *has* actually been changed in the past,
without fanfare or thought to compatibility.
Thus we have bootloaders doing stunningly broken things like jumping
to offset 0x200 in the kernel startup code in 64-bit mode, *hoping*
that startup_64 is still there (it has moved at least once
before). And hoping that it's actually a 64-bit kernel despite the
fact that we don't give them any indication of that fact.
This patch should hopefully remove the temptation to abuse internal
addresses in future, where sternly worded comments have not sufficed.
Instead of having hard-coded addresses and saying "please don't abuse
these", we actually pull the addresses out of the ELF payload into
zoffset.h, and make build.c shove them back into the right places in
the bzImage header.
Rather than including zoffset.h into build.c and thus having to rebuild
the tool for every kernel build, we parse it instead. The parsing code
is small and simple.
This patch doesn't actually move any of the interesting entry points, so
any offending bootloader will still continue to "work" after this patch
is applied. For some version of "work" which includes jumping into the
compressed payload and crashing, if the bzImage it's given is a 32-bit
kernel. No change there then.
[ hpa: some of the issues in the description are addressed or
retconned by the 2.12 boot protocol. This patch has been edited to
only remove fixed addresses that were *not* thus retconned. ]
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Link: http://lkml.kernel.org/r/1358513837.2397.247.camel@shinybook.infradead.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Matt Fleming <matt.fleming@intel.com>
As things currently stand, traditional EFI boot loaders and the EFI
boot stub are carrying essentially the same initialisation code
required to setup an EFI machine for booting a kernel. There's really
no need to have this code in two places and the hope is that, with
this new protocol, initialisation and booting of the kernel can be
left solely to the kernel's EFI boot stub. The responsibilities of the
boot loader then become,
o Loading the kernel image from boot media
File system code still needs to be carried by boot loaders for the
scenario where the kernel and initrd files reside on a file system
that the EFI firmware doesn't natively understand, such as ext4, etc.
o Providing a user interface
Boot loaders still need to display any menus/interfaces, for example
to allow the user to select from a list of kernels.
Bump the boot protocol number because we added the 'handover_offset'
field to indicate the location of the handover protocol entry point.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Acked-and-Tested-by: Matthew Garrett <mjg@redhat.com>
Link: http://lkml.kernel.org/r/1342689828-16815-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The method used to work out whether we were booted by EFI firmware or
via a boot loader is broken. Because efi_main() is always executed
when booting from a boot loader we will dereference invalid pointers
either on the stack (CONFIG_X86_32) or contained in %rdx
(CONFIG_X86_64) when searching for an EFI System Table signature.
Instead of dereferencing these invalid system table pointers, add a
new entry point that is only used when booting from EFI firmware, when
we know the pointer arguments will be valid. With this change legacy
boot loaders will no longer execute efi_main(), but will instead skip
EFI stub initialisation completely.
[ hpa: Marking this for urgent/stable since it is a regression when
the option is enabled; without the option the patch has no effect ]
Signed-off-by: Matt Fleming <matt.hfleming@intel.com>
Link: http://lkml.kernel.org/r/1334584744.26997.14.camel@mfleming-mobl1.ger.corp.intel.com
Reported-by: Jordan Justen <jordan.l.justen@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> v3.3
There is currently a large divide between kernel development and the
development of EFI boot loaders. The idea behind this patch is to give
the kernel developers full control over the EFI boot process. As
H. Peter Anvin put it,
"The 'kernel carries its own stub' approach been very successful in
dealing with BIOS, and would make a lot of sense to me for EFI as
well."
This patch introduces an EFI boot stub that allows an x86 bzImage to
be loaded and executed by EFI firmware. The bzImage appears to the
firmware as an EFI application. Luckily there are enough free bits
within the bzImage header so that it can masquerade as an EFI
application, thereby coercing the EFI firmware into loading it and
jumping to its entry point. The beauty of this masquerading approach
is that both BIOS and EFI boot loaders can still load and run the same
bzImage, thereby allowing a single kernel image to work in any boot
environment.
The EFI boot stub supports multiple initrds, but they must exist on
the same partition as the bzImage. Command-line arguments for the
kernel can be appended after the bzImage name when run from the EFI
shell, e.g.
Shell> bzImage console=ttyS0 root=/dev/sdb initrd=initrd.img
v7:
- Fix checkpatch warnings.
v6:
- Try to allocate initrd memory just below hdr->inird_addr_max.
v5:
- load_options_size is UTF-16, which needs dividing by 2 to convert
to the corresponding ASCII size.
v4:
- Don't read more than image->load_options_size
v3:
- Fix following warnings when compiling CONFIG_EFI_STUB=n
arch/x86/boot/tools/build.c: In function ‘main’:
arch/x86/boot/tools/build.c:138:24: warning: unused variable ‘pe_header’
arch/x86/boot/tools/build.c:138:15: warning: unused variable ‘file_sz’
- As reported by Matthew Garrett, some Apple machines have GOPs that
don't have hardware attached. We need to weed these out by
searching for ones that handle the PCIIO protocol.
- Don't allocate memory if no initrds are on cmdline
- Don't trust image->load_options_size
Maarten Lankhorst noted:
- Don't strip first argument when booted from efibootmgr
- Don't allocate too much memory for cmdline
- Don't update cmdline_size, the kernel considers it read-only
- Don't accept '\n' for initrd names
v2:
- File alignment was too large, was 8192 should be 512. Reported by
Maarten Lankhorst on LKML.
- Added UGA support for graphics
- Use VIDEO_TYPE_EFI instead of hard-coded number.
- Move linelength assignment until after we've assigned depth
- Dynamically fill out AddressOfEntryPoint in tools/build.c
- Don't use magic number for GDT/TSS stuff. Requested by Andi Kleen
- The bzImage may need to be relocated as it may have been loaded at
a high address address by the firmware. This was required to get my
macbook booting because the firmware loaded it at 0x7cxxxxxx, which
triggers this error in decompress_kernel(),
if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff))
error("Destination address too large");
Cc: Mike Waychison <mikew@google.com>
Cc: Matthew Garrett <mjg@redhat.com>
Tested-by: Henrik Rydberg <rydberg@euromail.se>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1321383097.2657.9.camel@mfleming-mobl1.ger.corp.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The code is 32bit already, and can be used in 32bit routines.
Signed-off-by: Kees Cook <kees.cook@canonical.com>
LKML-Reference: <1289414154-7829-2-git-send-email-kees.cook@canonical.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
In order for global variables and functions to work in the
decompressor, we need to fix up the GOT in assembly code.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
LKML-Reference: <4C57382E.8050501@zytor.com>
A single 'movl' is shorter than the 'xorl'-'orl' pair.
No change in behaviour.
Signed-off-by: Alexander Potashev <aspotashev@gmail.com>
LKML-Reference: <1256341043-4928-1-git-send-email-aspotashev@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This has the consequence of changing the section name use for head
code from ".text.head" to ".head.text".
Linus suggested that we merge the ".text.head" section with ".text"
(presumably while preserving the fact that the head code starts at 0).
When I tried this it caused the kernel to not boot.
Signed-off-by: Tim Abbott <tabbott@ksplice.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Make the kernel_alignment field adjustable; this allows us to set it
to a large value (intended to be 16 MB to avoid ZONE_DMA contention,
memory holes and other weirdness) while a smart bootloader can still
force a loading at a lesser alignment if absolutely necessary.
Also export pref_address (preferred loading address, corresponding to
the link-time address) and init_size, the total amount of linear
memory the kernel will require during initialization.
[ Impact: allows better kernel placement, gives bootloader more info ]
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Remove a couple of lines of dead code from
arch/x86/boot/compressed/head_*.S; all of these update registers that
are dead in the current code.
[ Impact: cleanup ]
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Use LOAD_PHYSICAL_ADDR instead of CONFIG_PHYSICAL_START in the 64-bit
decompression code, for equivalence with the 32-bit code.
[ Impact: cleanup, increases code similarity ]
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Determine the compressed code offset (from the kernel runtime address)
at compile time. This allows some minor optimizations in
arch/x86/boot/compressed/head_*.S, but more importantly it makes this
value available to the build process, which will enable a future patch
to export the necessary linear memory footprint into the bzImage
header.
[ Impact: cleanup, future patch enabling ]
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
In the pre-decompression code, use the appropriate largest possible
rep movs and rep stos to move code and clear bss, respectively. For
reverse copy, do note that the initial values are supposed to be the
address of the first (highest) copy datum, not one byte beyond the end
of the buffer.
rep strings are not necessarily the fastest way to perform these
operations on all current processors, but are likely to be in the
future, and perhaps more importantly, we want to encourage the
architecturally right thing to do here.
This also fixes a couple of trivial inefficiencies on 64 bits.
[ Impact: trivial performance enhancement, increase code similarity ]
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Set up the decompression stack as soon as we know where it needs to
go. That way we have a full-service stack as soon as possible, rather
than relying on the BP_scratch field.
Note that the stack does need to be empty during bss zeroing (or
else the stack needs to be moved out of the bss segment, which is also
an option.)
[ Impact: cleanup, minor paranoia ]
Signed-off-by: H. Peter Anvin <hpa@zytor.com>