Alexandre Ghiti <alexghiti@rivosinc.com> says:
In RISC-V, after a new mapping is established, a sfence.vma needs to be
emitted for different reasons:
- if the uarch caches invalid entries, we need to invalidate it otherwise
we would trap on this invalid entry,
- if the uarch does not cache invalid entries, a reordered access could fail
to see the new mapping and then trap (sfence.vma acts as a fence).
We can actually avoid emitting those (mostly) useless and costly sfence.vma
by handling the traps instead:
- for new kernel mappings: only vmalloc mappings need to be taken care of,
other new mapping are rare and already emit the required sfence.vma if
needed.
That must be achieved very early in the exception path as explained in
patch 3, and this also fixes our fragile way of dealing with vmalloc faults.
- for new user mappings: Svvptc makes update_mmu_cache() a no-op but we can
take some gratuitous page faults (which are very unlikely though).
Patch 1 and 2 introduce Svvptc extension probing.
On our uarch that does not cache invalid entries and a 6.5 kernel, the
gains are measurable:
* Kernel boot: 6%
* ltp - mmapstress01: 8%
* lmbench - lat_pagefault: 20%
* lmbench - lat_mmap: 5%
Here are the corresponding numbers of sfence.vma emitted:
* Ubuntu boot to login:
Before: ~630k sfence.vma
After: ~200k sfence.vma
* ltp - mmapstress01
Before: ~45k
After: ~6.3k
* lmbench - lat_pagefault
Before: ~665k
After: 832 (!)
* lmbench - lat_mmap
Before: ~546k
After: 718 (!)
Thanks to Ved and Matt Evans for triggering the discussion that led to
this patchset!
* b4-shazam-merge:
riscv: Stop emitting preventive sfence.vma for new userspace mappings with Svvptc
riscv: Stop emitting preventive sfence.vma for new vmalloc mappings
dt-bindings: riscv: Add Svvptc ISA extension description
riscv: Add ISA extension parsing for Svvptc
Link: https://lore.kernel.org/r/20240717060125.139416-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The preventive sfence.vma were emitted because new mappings must be made
visible to the page table walker but Svvptc guarantees that it will
happen within a bounded timeframe, so no need to sfence.vma for the uarchs
that implement this extension, we will then take gratuitous (but very
unlikely) page faults, similarly to x86 and arm64.
This allows to drastically reduce the number of sfence.vma emitted:
* Ubuntu boot to login:
Before: ~630k sfence.vma
After: ~200k sfence.vma
* ltp - mmapstress01
Before: ~45k
After: ~6.3k
* lmbench - lat_pagefault
Before: ~665k
After: 832 (!)
* lmbench - lat_mmap
Before: ~546k
After: 718 (!)
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240717060125.139416-5-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
In 6.5, we removed the vmalloc fault path because that can't work (see
[1] [2]). Then in order to make sure that new page table entries were
seen by the page table walker, we had to preventively emit a sfence.vma
on all harts [3] but this solution is very costly since it relies on IPI.
And even there, we could end up in a loop of vmalloc faults if a vmalloc
allocation is done in the IPI path (for example if it is traced, see
[4]), which could result in a kernel stack overflow.
Those preventive sfence.vma needed to be emitted because:
- if the uarch caches invalid entries, the new mapping may not be
observed by the page table walker and an invalidation may be needed.
- if the uarch does not cache invalid entries, a reordered access
could "miss" the new mapping and traps: in that case, we would actually
only need to retry the access, no sfence.vma is required.
So this patch removes those preventive sfence.vma and actually handles
the possible (and unlikely) exceptions. And since the kernel stacks
mappings lie in the vmalloc area, this handling must be done very early
when the trap is taken, at the very beginning of handle_exception: this
also rules out the vmalloc allocations in the fault path.
Link: https://lore.kernel.org/linux-riscv/20230531093817.665799-1-bjorn@kernel.org/ [1]
Link: https://lore.kernel.org/linux-riscv/20230801090927.2018653-1-dylan@andestech.com [2]
Link: https://lore.kernel.org/linux-riscv/20230725132246.817726-1-alexghiti@rivosinc.com/ [3]
Link: https://lore.kernel.org/lkml/20200508144043.13893-1-joro@8bytes.org/ [4]
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Yunhui Cui <cuiyunhui@bytedance.com>
Link: https://lore.kernel.org/r/20240717060125.139416-4-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The original reason for reserving the top 4GiB of the direct map
(space for modules/BPF/kernel) hasn't applied since the address
map was reworked for KASAN.
Signed-off-by: Stuart Menefy <stuart.menefy@codasip.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240624121723.2186279-1-stuart.menefy@codasip.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Nam Cao <namcao@linutronix.de> says:
Hi,
For XIP kernel, the writable data section is always at offset specified in
XIP_OFFSET, which is hard-coded to 32MB.
Unfortunately, this means the read-only section (placed before the
writable section) is restricted in size. This causes build failure if the
kernel gets too large.
This series remove the use of XIP_OFFSET one by one, then remove this
macro entirely at the end, with the goal of lifting this size restriction.
Also some cleanup and documentation along the way.
* b4-shazam-merge
riscv: remove limit on the size of read-only section for XIP kernel
riscv: drop the use of XIP_OFFSET in create_kernel_page_table()
riscv: drop the use of XIP_OFFSET in kernel_mapping_va_to_pa()
riscv: drop the use of XIP_OFFSET in XIP_FIXUP_FLASH_OFFSET
riscv: drop the use of XIP_OFFSET in XIP_FIXUP_OFFSET
riscv: replace misleading va_kernel_pa_offset on XIP kernel
riscv: don't export va_kernel_pa_offset in vmcoreinfo for XIP kernel
riscv: cleanup XIP_FIXUP macro
riscv: change XIP's kernel_map.size to be size of the entire kernel
...
Link: https://lore.kernel.org/r/cover.1717789719.git.namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
XIP_OFFSET is the hard-coded offset of writable data section within the
kernel.
By hard-coding this value, the read-only section of the kernel (which is
placed before the writable data section) is restricted in size.
As a preparation to remove this hard-coded value entirely, stop using
XIP_OFFSET in create_kernel_page_table(). Instead use _sdata and _start to
do the same thing.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/4ea3f222a7eb9f91c04b155ff2e4d3ef19158acc.1717789719.git.namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
On XIP kernel, the name "va_kernel_pa_offset" is misleading: unlike
"normal" kernel, it is not the virtual-physical address offset of kernel
mapping, it is the offset of kernel mapping's first virtual address to
first physical address in DRAM, which is not meaningful because the
kernel's first physical address is not in DRAM.
For XIP kernel, there are 2 different offsets because the read-only part of
the kernel resides in ROM while the rest is in RAM. The offset to ROM is in
kernel_map.va_kernel_xip_pa_offset, while the offset to RAM is not stored
anywhere: it is calculated on-the-fly.
Remove this confusing "va_kernel_pa_offset" and add
"va_kernel_xip_data_pa_offset" as its replacement. This new variable is the
offset of virtual mapping of the kernel's data portion to the corresponding
physical addresses.
With the introduction of this new variable, also rename
va_kernel_xip_pa_offset -> va_kernel_xip_text_pa_offset to make it clear
that this one is about the .text section.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/84e5d005c1386d88d7b2531e0b6707ec5352ee54.1717789719.git.namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The icache will be flushed in switch_to() if force_icache_flush is true,
or in flush_icache_deferred() if icache_stale_mask is set. Between
setting force_icache_flush to false and calculating the new
icache_stale_mask, preemption needs to be disabled. There are two
reasons for this:
1. If CPU migration happens between force_icache_flush = false, and the
icache_stale_mask is set, an icache flush will not be emitted.
2. smp_processor_id() is used in set_icache_stale_mask() to mark the
current CPU as not needing another flush since a flush will have
happened either by userspace or by the kernel when performing the
migration. smp_processor_id() is currently called twice with preemption
enabled which causes a race condition. It allows
icache_stale_mask to be populated with inconsistent CPU ids.
Resolve these two issues by setting the icache_stale_mask before setting
force_icache_flush to false, and using get_cpu()/put_cpu() to obtain the
smp_processor_id().
Signed-off-by: Charlie Jenkins <charlie@rivosinc.com>
Fixes: 6b9391b581 ("riscv: Include riscv_set_icache_flush_ctx prctl")
Link: https://lore.kernel.org/r/20240903-fix_fencei_optimization-v2-1-8025f20171fc@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
With XIP kernel, kernel_map.size is set to be only the size of data part of
the kernel. This is inconsistent with "normal" kernel, who sets it to be
the size of the entire kernel.
More importantly, XIP kernel fails to boot if CONFIG_DEBUG_VIRTUAL is
enabled, because there are checks on virtual addresses with the assumption
that kernel_map.size is the size of the entire kernel (these checks are in
arch/riscv/mm/physaddr.c).
Change XIP's kernel_map.size to be the size of the entire kernel.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Cc: <stable@vger.kernel.org> # v6.1+
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240508191917.2892064-1-namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Jesse Taube <jesse@rivosinc.com> says:
Add functions to pi/fdt_early.c to help parse the FDT to check if
the isa string has the Zkr extension. Then use the Zkr extension to
seed the KASLR base address.
The first two patches fix the visibility of symbols.
* b4-shazam-merge:
RISC-V: Use Zkr to seed KASLR base address
RISC-V: pi: Add kernel/pi/pi.h
RISC-V: lib: Add pi aliases for string functions
RISC-V: pi: Force hidden visibility for all symbol references
Link: https://lore.kernel.org/r/20240709173937.510084-1-jesse@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Parse the device tree for Zkr in the isa string.
If Zkr is present, use it to seed the kernel base address.
On an ACPI system, as of this commit, there is no easy way to check if
Zkr is present. Blindly running the instruction isn't an option as;
we have to be able to trust the firmware.
Signed-off-by: Jesse Taube <jesse@rivosinc.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Tested-by: Zong Li <zong.li@sifive.com>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20240709173937.510084-5-jesse@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The RISC-V kernel already has checks to ensure that memory which would
lie outside of the linear mapping is not used. However those checks
use memory_limit, which is used to implement the mem= kernel command
line option (to limit the total amount of memory, not its address
range). When memory is made up of two or more non-contiguous memory
banks this check is incorrect.
Two changes are made here:
- add a call in setup_bootmem() to memblock_cap_memory_range() which
will cause any memory which falls outside the linear mapping to be
removed from the memory regions.
- remove the check in create_linear_mapping_page_table() which was
intended to remove memory which is outside the liner mapping based
on memory_limit, as it is no longer needed. Note a check for
mapping more memory than memory_limit (to implement mem=) is
unnecessary because of the existing call to
memblock_enforce_memory_limit().
This issue was seen when booting on a SV39 platform with two memory
banks:
0x00,80000000 1GiB
0x20,00000000 32GiB
This memory range is 158GiB from top to bottom, but the linear mapping
is limited to 128GiB, so the lower block of RAM will be mapped at
PAGE_OFFSET, and the upper block straddles the top of the linear
mapping.
This causes the following Oops:
[ 0.000000] Linux version 6.10.0-rc2-gd3b8dd5b51dd-dirty (stuart.menefy@codasip.com) (riscv64-codasip-linux-gcc (GCC) 13.2.0, GNU ld (GNU Binutils) 2.41.0.20231213) #20 SMP Sat Jun 22 11:34:22 BST 2024
[ 0.000000] memblock_add: [0x0000000080000000-0x00000000bfffffff] early_init_dt_add_memory_arch+0x4a/0x52
[ 0.000000] memblock_add: [0x0000002000000000-0x00000027ffffffff] early_init_dt_add_memory_arch+0x4a/0x52
...
[ 0.000000] memblock_alloc_try_nid: 23724 bytes align=0x8 nid=-1 from=0x0000000000000000 max_addr=0x0000000000000000 early_init_dt_alloc_memory_arch+0x1e/0x48
[ 0.000000] memblock_reserve: [0x00000027ffff5350-0x00000027ffffaffb] memblock_alloc_range_nid+0xb8/0x132
[ 0.000000] Unable to handle kernel paging request at virtual address fffffffe7fff5350
[ 0.000000] Oops [#1]
[ 0.000000] Modules linked in:
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.10.0-rc2-gd3b8dd5b51dd-dirty #20
[ 0.000000] Hardware name: codasip,a70x (DT)
[ 0.000000] epc : __memset+0x8c/0x104
[ 0.000000] ra : memblock_alloc_try_nid+0x74/0x84
[ 0.000000] epc : ffffffff805e88c8 ra : ffffffff806148f6 sp : ffffffff80e03d50
[ 0.000000] gp : ffffffff80ec4158 tp : ffffffff80e0bec0 t0 : fffffffe7fff52f8
[ 0.000000] t1 : 00000027ffffb000 t2 : 5f6b636f6c626d65 s0 : ffffffff80e03d90
[ 0.000000] s1 : 0000000000005cac a0 : fffffffe7fff5350 a1 : 0000000000000000
[ 0.000000] a2 : 0000000000005cac a3 : fffffffe7fffaff8 a4 : 000000000000002c
[ 0.000000] a5 : ffffffff805e88c8 a6 : 0000000000005cac a7 : 0000000000000030
[ 0.000000] s2 : fffffffe7fff5350 s3 : ffffffffffffffff s4 : 0000000000000000
[ 0.000000] s5 : ffffffff8062347e s6 : 0000000000000000 s7 : 0000000000000001
[ 0.000000] s8 : 0000000000002000 s9 : 00000000800226d0 s10: 0000000000000000
[ 0.000000] s11: 0000000000000000 t3 : ffffffff8080a928 t4 : ffffffff8080a928
[ 0.000000] t5 : ffffffff8080a928 t6 : ffffffff8080a940
[ 0.000000] status: 0000000200000100 badaddr: fffffffe7fff5350 cause: 000000000000000f
[ 0.000000] [<ffffffff805e88c8>] __memset+0x8c/0x104
[ 0.000000] [<ffffffff8062349c>] early_init_dt_alloc_memory_arch+0x1e/0x48
[ 0.000000] [<ffffffff8043e892>] __unflatten_device_tree+0x52/0x114
[ 0.000000] [<ffffffff8062441e>] unflatten_device_tree+0x9e/0xb8
[ 0.000000] [<ffffffff806046fe>] setup_arch+0xd4/0x5bc
[ 0.000000] [<ffffffff806007aa>] start_kernel+0x76/0x81a
[ 0.000000] Code: b823 02b2 bc23 02b2 b023 04b2 b423 04b2 b823 04b2 (bc23) 04b2
[ 0.000000] ---[ end trace 0000000000000000 ]---
[ 0.000000] Kernel panic - not syncing: Attempted to kill the idle task!
[ 0.000000] ---[ end Kernel panic - not syncing: Attempted to kill the idle task! ]---
The problem is that memblock (unaware that some physical memory cannot
be used) has allocated memory from the top of memory but which is
outside the linear mapping region.
Signed-off-by: Stuart Menefy <stuart.menefy@codasip.com>
Fixes: c99127c452 ("riscv: Make sure the linear mapping does not use the kernel mapping")
Reviewed-by: David McKay <david.mckay@codasip.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240622114217.2158495-1-stuart.menefy@codasip.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Handle VM_FAULT_SIGSEGV in the page fault path so that we correctly
kill the process and we don't BUG() the kernel.
Fixes: 07037db5d4 ("RISC-V: Paging and MMU")
Signed-off-by: Zhe Qiao <qiaozhe@iscas.ac.cn>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240731084547.85380-1-qiaozhe@iscas.ac.cn
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
walkers") is known to cause a performance regression
(https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff).
Yu has a fix which I'll send along later via the hotfixes branch.
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability of
cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of the
zeropage in MAP_SHARED mappings. I don't see any runtime effects here -
more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of
higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the
series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has
simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Is anyone reading this stuff? If so, email me!
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large folio
userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's self
testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are
"mm: memcg: separate legacy cgroup v1 code and put under config
option" and
"mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of excessive
correctable memory errors. In order to permit userspace to monitor and
handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from migrate
folio" teaches the kernel to appropriately handle migration from
poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare
refcount increments. So these paes can first be moved aside if they
reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps
for much faster reading of vma information. The series is "query VMAs
from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance Yang
improves the kernel's presentation of developer information related to
multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and not
very useful feature from slab fault injection.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA
joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3
xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8=
=z0Lf
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My
bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability
of cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache
index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of
the zeropage in MAP_SHARED mappings. I don't see any runtime effects
here - more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
of higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
the series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
has simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large
folio userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's
self testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
under config option" and "mm: memcg: put cgroup v1-specific memcg
data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of
excessive correctable memory errors. In order to permit userspace to
monitor and handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from
migrate folio" teaches the kernel to appropriately handle migration
from poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory
utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than
bare refcount increments. So these paes can first be moved aside if
they reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to
/proc/pid/maps for much faster reading of vma information. The series
is "query VMAs from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance
Yang improves the kernel's presentation of developer information
related to multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and
not very useful feature from slab fault injection.
* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
mm/mglru: fix ineffective protection calculation
mm/zswap: fix a white space issue
mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
mm/hugetlb: fix possible recursive locking detected warning
mm/gup: clear the LRU flag of a page before adding to LRU batch
mm/numa_balancing: teach mpol_to_str about the balancing mode
mm: memcg1: convert charge move flags to unsigned long long
alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
lib: reuse page_ext_data() to obtain codetag_ref
lib: add missing newline character in the warning message
mm/mglru: fix overshooting shrinker memory
mm/mglru: fix div-by-zero in vmpressure_calc_level()
mm/kmemleak: replace strncpy() with strscpy()
mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
mm: ignore data-race in __swap_writepage
hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
mm: shmem: rename mTHP shmem counters
mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
mm/migrate: putback split folios when numa hint migration fails
...
* Support for various new ISA extensions:
* The Zve32[xf] and Zve64[xfd] sub-extensios of the vector
extension.
* Zimop and Zcmop for may-be-operations.
* The Zca, Zcf, Zcd and Zcb sub-extensions of the C extension.
* Zawrs,
* riscv,cpu-intc is now dtschema.
* A handful of performance improvements and cleanups to text patching.
* Support for memory hot{,un}plug
* The highest user-allocatable virtual address is now visible in
hwprobe.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmabIGETHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYiQe8D/9QPCaOnoP5OCZbwjkRBwaVxyknNyD0
l+YNXk7Jk3B/oaOv3d7Bz+uWt1SG4j4jkfyuGJ81StZykp4/R7T823TZrPhog9VX
IJm580MtvE49I2i1qJ+ZQti9wpiM+80lFnyMCzY6S7rrM9m62tKgUpARZcWoA55P
iUo5bku99TYCcU2k1pnPrNSPQvVpECpv7tG0PwKpQd5DiYjbPp+aw5cQWN+izdOB
6raOZ0buzP7McszvO/gcJs+kuHwrp0JSRvNxc2pwYZ0lx00p3hSV8UdtIMlI9Qm/
z3gkQGHwc6UVMPHo1x0Gr5ShUTCI/iSwy4/7aY4NNXF6Sj99b8alt9GcbYqNAE7V
k7sibCR7dhL4ods/GFMmzR7cQYlwlwtO+/ILak7rXhNvA32Xy1WUABguhP9ElTmw
1ZS2hnRv6wc7MA2V7HBamf5mPXM6HQyC3oKy3njzDSJdiGIG7aa+TOfRAD+L/1Du
QjIrKp6XcPIsZNjh8H3nMDVJ0VvDNnS4d4LbfNQc23VPzf57kFUqbli1pS0hBjFT
ELEItH9dgSx+T5Qebdy/QMC3RG8Yc1IUdw6VQ7Jny/uCCEZNq+VZ+bXxspMmswCp
sUIyDplJTJfRt3G2OxK0b95x6oj8jbaJOQfv6PBF71dDBsChg8eXFVJ2NDrX4Bvr
h2MPK7vGBtFz8w==
=+ICi
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.11-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for various new ISA extensions:
* The Zve32[xf] and Zve64[xfd] sub-extensios of the vector
extension
* Zimop and Zcmop for may-be-operations
* The Zca, Zcf, Zcd and Zcb sub-extensions of the C extension
* Zawrs
- riscv,cpu-intc is now dtschema
- A handful of performance improvements and cleanups to text patching
- Support for memory hot{,un}plug
- The highest user-allocatable virtual address is now visible in
hwprobe
* tag 'riscv-for-linus-6.11-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (58 commits)
riscv: lib: relax assembly constraints in hweight
riscv: set trap vector earlier
KVM: riscv: selftests: Add Zawrs extension to get-reg-list test
KVM: riscv: Support guest wrs.nto
riscv: hwprobe: export Zawrs ISA extension
riscv: Add Zawrs support for spinlocks
dt-bindings: riscv: Add Zawrs ISA extension description
riscv: Provide a definition for 'pause'
riscv: hwprobe: export highest virtual userspace address
riscv: Improve sbi_ecall() code generation by reordering arguments
riscv: Add tracepoints for SBI calls and returns
riscv: Optimize crc32 with Zbc extension
riscv: Enable DAX VMEMMAP optimization
riscv: mm: Add support for ZONE_DEVICE
virtio-mem: Enable virtio-mem for RISC-V
riscv: Enable memory hotplugging for RISC-V
riscv: mm: Take memory hotplug read-lock during kernel page table dump
riscv: mm: Add memory hotplugging support
riscv: mm: Add pfn_to_kaddr() implementation
riscv: mm: Refactor create_linear_mapping_range() for memory hot add
...
On powerpc 8xx huge_ptep_get() will need to know whether the given ptep is
a PTE entry or a PMD entry. This cannot be known with the PMD entry
itself because there is no easy way to know it from the content of the
entry.
So huge_ptep_get() will need to know either the size of the page or get
the pmd.
In order to be consistent with huge_ptep_get_and_clear(), give mm and
address to huge_ptep_get().
Link: https://lkml.kernel.org/r/cc00c70dd384298796a4e1b25d6c4eb306d3af85.1719928057.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
During memory hot remove, the ptdump functionality can end up touching
stale data. Avoid any potential crashes (or worse), by holding the
memory hotplug read-lock while traversing the page table.
This change is analogous to arm64's commit bf2b59f60e ("arm64/mm:
Hold memory hotplug lock while walking for kernel page table dump").
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20240605114100.315918-8-bjorn@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
For an architecture to support memory hotplugging, a couple of
callbacks needs to be implemented:
arch_add_memory()
This callback is responsible for adding the physical memory into the
direct map, and call into the memory hotplugging generic code via
__add_pages() that adds the corresponding struct page entries, and
updates the vmemmap mapping.
arch_remove_memory()
This is the inverse of the callback above.
vmemmap_free()
This function tears down the vmemmap mappings (if
CONFIG_SPARSEMEM_VMEMMAP is enabled), and also deallocates the
backing vmemmap pages. Note that for persistent memory, an
alternative allocator for the backing pages can be used; The
vmem_altmap. This means that when the backing pages are cleared,
extra care is needed so that the correct deallocation method is
used.
arch_get_mappable_range()
This functions returns the PA range that the direct map can map.
Used by the MHP internals for sanity checks.
The page table unmap/teardown functions are heavily based on code from
the x86 tree. The same remove_pgd_mapping() function is used in both
vmemmap_free() and arch_remove_memory(), but in the latter function
the backing pages are not removed.
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240605114100.315918-7-bjorn@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Add a parameter to the direct map setup function, so it can be used in
arch_add_memory() later.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20240605114100.315918-5-bjorn@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Prepare for memory hotplugging support by changing from __init to
__meminit for the page table functions that are used by the upcoming
architecture specific callbacks.
Changing the __init attribute to __meminit, avoids that the functions
are removed after init. The __meminit attribute makes sure the
functions are kept in the kernel text post init, but only if memory
hotplugging is enabled for the build.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20240605114100.315918-4-bjorn@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The RISC-V port copies the PGD table from init_mm/swapper_pg_dir to
all userland page tables, which means that if the PGD level table is
changed, other page tables has to be updated as well.
Instead of having the PGD changes ripple out to all tables, the
synchronization can be avoided by pre-allocating the PGD entries/pages
at boot, avoiding the synchronization all together.
This is currently done for the bpf/modules, and vmalloc PGD regions.
Extend this scheme for the PGD regions touched by memory hotplugging.
Prepare the RISC-V port for memory hotplug by pre-allocate
vmemmap/direct map/kasan entries at the PGD level. This will roughly
waste ~128 (plus 32 if KASAN is enabled) worth of 4K pages when memory
hotplugging is enabled in the kernel configuration.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20240605114100.315918-3-bjorn@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Make sure that the altmap parameter is properly passed on to
vmemmap_populate_hugepages().
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20240605114100.315918-2-bjorn@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
I accidentally picked up an earlier version of this patch, which had
already landed via mm. The patch I picked up contains a bug, which I
kept as I thought it was a fix. So let's just revert it.
This reverts commit 4c6c002042.
Fixes: 4c6c002042 ("riscv: mm: accelerate pagefault when badaccess")
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240530164451.21336-1-palmer@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
On riscv32, it is possible for the last page in virtual address space
(0xfffff000) to be allocated. This page overlaps with PTR_ERR, so that
shouldn't happen.
There is already some code to ensure memblock won't allocate the last page.
However, buddy allocator is left unchecked.
Fix this by reserving physical memory that would be mapped at virtual
addresses greater than 0xfffff000.
Reported-by: Björn Töpel <bjorn@kernel.org>
Closes: https://lore.kernel.org/linux-riscv/878r1ibpdn.fsf@all.your.base.are.belong.to.us
Fixes: 76d2a0493a ("RISC-V: Init and Halt Code")
Signed-off-by: Nam Cao <namcao@linutronix.de>
Cc: <stable@vger.kernel.org>
Tested-by: Björn Töpel <bjorn@rivosinc.com>
Reviewed-by: Björn Töpel <bjorn@rivosinc.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Link: https://lore.kernel.org/r/20240425115201.3044202-1-namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The access_error() of vma already checked under per-VMA lock, if it
is a bad access, directly handle error, no need to retry with mmap_lock
again. Since the page faut is handled under per-VMA lock, count it as
a vma lock event with VMA_LOCK_SUCCESS.
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Tested-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240403083805.1818160-6-wangkefeng.wang@huawei.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Nam Cao <namcao@linutronix.de> says:
The debug_pagealloc feature is not functional on RISCV. With this feature
enabled (CONFIG_DEBUG_PAGEALLOC=y and debug_pagealloc=on), kernel crashes
early during boot.
QEMU command that can reproduce this problem:
qemu-system-riscv64 -machine virt \
-kernel Image \
-append "console=ttyS0 root=/dev/vda debug_pagealloc=on" \
-nographic \
-drive "file=root.img,format=raw,id=hd0" \
-device virtio-blk-device,drive=hd0 \
-m 4G \
This series makes debug_pagealloc functional.
* b4-shazam-merge:
riscv: rewrite __kernel_map_pages() to fix sleeping in invalid context
riscv: force PAGE_SIZE linear mapping if debug_pagealloc is enabled
Link: https://lore.kernel.org/r/cover.1715750938.git.namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
* Support for byte/half-word compare-and-exchange, emulated via LR/SC
loops.
* Support for Rust.
* Support for Zihintpause in hwprobe.
* Support for the PR_RISCV_SET_ICACHE_FLUSH_CTX prctl().
* Support for lockless lockrefs.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmZN/hcTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYiVrGEACUT3gsbTx1q7fa11iQNxOjVkpl66Qn
7+kI+V9xt5+GuH2EjJk6AsSNHPKeQ8totbSTA8AZjINFvgVjXslN+DPpcjCFKvnh
NN5/Lyd64X0PZMsxGWlN9SHTFWf2b7lalCnY51BlX/IpBbHWc/no9XUsPSVixx6u
9q+JoS3D1DDV92nGcA/UK9ICCsDcf4omWgZW7KbjnVWnuY9jt4ctTy11jtF2RM9R
Z9KAWh0RqPzjz0vNbBBf9Iw7E4jt/Px6HDYPfZAiE2dVsCTHjdsC7TcGRYXzKt6F
4q9zg8kzwvUG5GaBl7/XprXO1vaeOUmPcTVoE7qlRkSdkknRH/iBz1P4hk+r0fze
f+h5ZUV/oJP7vDb+vHm/BExtGufgLuJ2oMA2Bp9qI17EMcMsGiRMt7DsBMEafWDk
bNrFcJdqqYBz6HxfTwzNH5ErxfS/59PuwYl913BTSOH//raCZCFXOfyrSICH7qXd
UFOLLmBpMuApLa8ayFeI9Mp3flWfbdQHR52zLRLiUvlpWNEDKrNQN417juVwTXF0
DYkjJDhFPLfFOr/sJBboftOMOUdA9c/CJepY9o4kPvBXUvPtRHN1jdXDNSCVDZRb
nErnsJ9rv0PzfxQU7Xjhd2QmCMeMlbCQDpXAKKETyyimpTbgF33rovN0i5ixX3m4
KG6RvKDubOzZdA==
=YLoD
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.10-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Add byte/half-word compare-and-exchange, emulated via LR/SC loops
- Support for Rust
- Support for Zihintpause in hwprobe
- Add PR_RISCV_SET_ICACHE_FLUSH_CTX prctl()
- Support lockless lockrefs
* tag 'riscv-for-linus-6.10-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (42 commits)
riscv: defconfig: Enable CONFIG_CLK_SOPHGO_CV1800
riscv: select ARCH_HAS_FAST_MULTIPLIER
riscv: mm: still create swiotlb buffer for kmalloc() bouncing if required
riscv: Annotate pgtable_l{4,5}_enabled with __ro_after_init
riscv: Remove redundant CONFIG_64BIT from pgtable_l{4,5}_enabled
riscv: mm: Always use an ASID to flush mm contexts
riscv: mm: Preserve global TLB entries when switching contexts
riscv: mm: Make asid_bits a local variable
riscv: mm: Use a fixed layout for the MM context ID
riscv: mm: Introduce cntx2asid/cntx2version helper macros
riscv: Avoid TLB flush loops when affected by SiFive CIP-1200
riscv: Apply SiFive CIP-1200 workaround to single-ASID sfence.vma
riscv: mm: Combine the SMP and UP TLB flush code
riscv: Only send remote fences when some other CPU is online
riscv: mm: Broadcast kernel TLB flushes only when needed
riscv: Use IPIs for remote cache/TLB flushes by default
riscv: Factor out page table TLB synchronization
riscv: Flush the instruction cache during SMP bringup
riscv: hwprobe: export Zihintpause ISA extension
riscv: misaligned: remove CONFIG_RISCV_M_MODE specific code
...
__kernel_map_pages() is a debug function which clears the valid bit in page
table entry for deallocated pages to detect illegal memory accesses to
freed pages.
This function set/clear the valid bit using __set_memory(). __set_memory()
acquires init_mm's semaphore, and this operation may sleep. This is
problematic, because __kernel_map_pages() can be called in atomic context,
and thus is illegal to sleep. An example warning that this causes:
BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1578
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 2, name: kthreadd
preempt_count: 2, expected: 0
CPU: 0 PID: 2 Comm: kthreadd Not tainted 6.9.0-g1d4c6d784ef6 #37
Hardware name: riscv-virtio,qemu (DT)
Call Trace:
[<ffffffff800060dc>] dump_backtrace+0x1c/0x24
[<ffffffff8091ef6e>] show_stack+0x2c/0x38
[<ffffffff8092baf8>] dump_stack_lvl+0x5a/0x72
[<ffffffff8092bb24>] dump_stack+0x14/0x1c
[<ffffffff8003b7ac>] __might_resched+0x104/0x10e
[<ffffffff8003b7f4>] __might_sleep+0x3e/0x62
[<ffffffff8093276a>] down_write+0x20/0x72
[<ffffffff8000cf00>] __set_memory+0x82/0x2fa
[<ffffffff8000d324>] __kernel_map_pages+0x5a/0xd4
[<ffffffff80196cca>] __alloc_pages_bulk+0x3b2/0x43a
[<ffffffff8018ee82>] __vmalloc_node_range+0x196/0x6ba
[<ffffffff80011904>] copy_process+0x72c/0x17ec
[<ffffffff80012ab4>] kernel_clone+0x60/0x2fe
[<ffffffff80012f62>] kernel_thread+0x82/0xa0
[<ffffffff8003552c>] kthreadd+0x14a/0x1be
[<ffffffff809357de>] ret_from_fork+0xe/0x1c
Rewrite this function with apply_to_existing_page_range(). It is fine to
not have any locking, because __kernel_map_pages() works with pages being
allocated/deallocated and those pages are not changed by anyone else in the
meantime.
Fixes: 5fde3db5eb ("riscv: add ARCH_SUPPORTS_DEBUG_PAGEALLOC support")
Signed-off-by: Nam Cao <namcao@linutronix.de>
Cc: stable@vger.kernel.org
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/1289ecba9606a19917bc12b6c27da8aa23e1e5ae.1715750938.git.namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
debug_pagealloc is a debug feature which clears the valid bit in page table
entry for freed pages to detect illegal accesses to freed memory.
For this feature to work, virtual mapping must have PAGE_SIZE resolution.
(No, we cannot map with huge pages and split them only when needed; because
pages can be allocated/freed in atomic context and page splitting cannot be
done in atomic context)
Force linear mapping to use small pages if debug_pagealloc is enabled.
Note that it is not necessary to force the entire linear mapping, but only
those that are given to memory allocator. Some parts of memory can keep
using huge page mapping (for example, kernel's executable code). But these
parts are minority, so keep it simple. This is just a debug feature, some
extra overhead should be acceptable.
Fixes: 5fde3db5eb ("riscv: add ARCH_SUPPORTS_DEBUG_PAGEALLOC support")
Signed-off-by: Nam Cao <namcao@linutronix.de>
Cc: stable@vger.kernel.org
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/2e391fa6c6f9b3fcf1b41cefbace02ee4ab4bf59.1715750938.git.namcao@linutronix.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
documented (hopefully adequately) in the respective changelogs. Notable
series include:
- Lucas Stach has provided some page-mapping
cleanup/consolidation/maintainability work in the series "mm/treewide:
Remove pXd_huge() API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being allocated:
number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in largely
similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
Weiner has fixed the page allocator's handling of migratetype requests,
with resulting improvements in compaction efficiency.
- In the series "make the hugetlb migration strategy consistent" Baolin
Wang has fixed a hugetlb migration issue, which should improve hugetlb
allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when memory
almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting" Kairui
Song has optimized pagecache insertion, yielding ~10% performance
improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various page->flags
cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
"mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs. This
is a simple first-cut implementation for now. The series is "support
multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in the
series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts in
the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes
the initialization code so that migration between different memory types
works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant driver
in the series "mm: follow_pte() improvements and acrn follow_pte()
fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to folio
in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size THP's
in the series "mm: add per-order mTHP alloc and swpout counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His series
"mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback instrumentation
in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series "Fix
and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
series "Improve anon_vma scalability for anon VMAs". Intel's test bot
reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
=V3R/
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
Including:
- Core:
- IOMMU memory usage observability - This will make the memory used
for IO page tables explicitly visible.
- Simplify arch_setup_dma_ops()
- Intel VT-d:
- Consolidate domain cache invalidation
- Remove private data from page fault message
- Allocate DMAR fault interrupts locally
- Cleanup and refactoring
- ARM-SMMUv2:
- Support for fault debugging hardware on Qualcomm implementations
- Re-land support for the ->domain_alloc_paging() callback
- ARM-SMMUv3:
- Improve handling of MSI allocation failure
- Drop support for the "disable_bypass" cmdline option
- Major rework of the CD creation code, following on directly from the
STE rework merged last time around.
- Add unit tests for the new STE/CD manipulation logic
- AMD-Vi:
- Final part of SVA changes with generic IO page fault handling
- Renesas IPMMU:
- Add support for R8A779H0 hardware
- A couple smaller fixes and updates across the sub-tree
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmZHJMkACgkQK/BELZcB
GuND1Q/+M4RN5jM66XCfhqoP8QaI8I7zDlPDd14ismx0bjtOZhoiXpptKkAA8guo
7mS57MLqBw/hKYucm1mw+F1qi1HnRWSstKXiCPmzDm3UXYgZJlKkrOw6vydFeHJH
zx2ei7TmBrc0SrsybWK3NWRfVBBkO8enGZTmti0DfHL/rOFcUM0LHegY51GcDaaH
SlDr+LLDMeGynSQWhRlVNJVmEI5gpVPitY/mDUpVPoELiW9C0WGk8kPlR11z2pCR
eUNiqGJUcGasOhmfiYnpJR462eg7J41glquu+YHj8ivPbbu3C4wxgruY/tR4dmJG
8s6AMAWR53JzG2SrCCwtzyRPSXmKfvixF+VKmlB2Ksc7VAn1xA0DYnY5Tx99EtXu
qcEaR4SICMti0urmBGo/cGFdXi2TB1ccXqwoRtp1N3KiYnnOaQdLNO9qZdl9uUTI
uleXACzkCVSssSpBfGjFcPyHU4r3WjMfX0f5ZJPpFMoQmvwV1yeMX7xTEZz4Sxew
cHfBt9FAW9+4mBMTQfokBt0hZ6jwKcYl/z3Xi2oD+Ik/Qrzx5kcLA8LZLEVRXIBa
SZh2ASazq/dr8YoZ744VRmlmi+nISAIHbbQMeqQEQgYQh0HpwS9g5HtpsBzNP6aB
91RHqZSccb/zNdi8e+RH79Y7pX/G5QcuVKcW6KQUBcAAb6hAgOg=
=JUzp
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
"Core:
- IOMMU memory usage observability - This will make the memory used
for IO page tables explicitly visible.
- Simplify arch_setup_dma_ops()
Intel VT-d:
- Consolidate domain cache invalidation
- Remove private data from page fault message
- Allocate DMAR fault interrupts locally
- Cleanup and refactoring
ARM-SMMUv2:
- Support for fault debugging hardware on Qualcomm implementations
- Re-land support for the ->domain_alloc_paging() callback
ARM-SMMUv3:
- Improve handling of MSI allocation failure
- Drop support for the "disable_bypass" cmdline option
- Major rework of the CD creation code, following on directly from
the STE rework merged last time around.
- Add unit tests for the new STE/CD manipulation logic
AMD-Vi:
- Final part of SVA changes with generic IO page fault handling
Renesas IPMMU:
- Add support for R8A779H0 hardware
... and a couple smaller fixes and updates across the sub-tree"
* tag 'iommu-updates-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (80 commits)
iommu/arm-smmu-v3: Make the kunit into a module
arm64: Properly clean up iommu-dma remnants
iommu/amd: Enable Guest Translation after reading IOMMU feature register
iommu/vt-d: Decouple igfx_off from graphic identity mapping
iommu/amd: Fix compilation error
iommu/arm-smmu-v3: Add unit tests for arm_smmu_write_entry
iommu/arm-smmu-v3: Build the whole CD in arm_smmu_make_s1_cd()
iommu/arm-smmu-v3: Move the CD generation for SVA into a function
iommu/arm-smmu-v3: Allocate the CD table entry in advance
iommu/arm-smmu-v3: Make arm_smmu_alloc_cd_ptr()
iommu/arm-smmu-v3: Consolidate clearing a CD table entry
iommu/arm-smmu-v3: Move the CD generation for S1 domains into a function
iommu/arm-smmu-v3: Make CD programming use arm_smmu_write_entry()
iommu/arm-smmu-v3: Add an ops indirection to the STE code
iommu/arm-smmu-qcom: Don't build debug features as a kernel module
iommu/amd: Add SVA domain support
iommu: Add ops->domain_alloc_sva()
iommu/amd: Initial SVA support for AMD IOMMU
iommu/amd: Add support for enable/disable IOPF
iommu/amd: Add IO page fault notifier handler
...
execmem does not depend on modules, on the contrary modules use
execmem.
To make execmem available when CONFIG_MODULES=n, for instance for
kprobes, split execmem_params initialization out from
arch/*/kernel/module.c and compile it when CONFIG_EXECMEM=y
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Samuel Holland <samuel.holland@sifive.com> says:
This series converts uniprocessor kernel builds to use the same TLB
flushing code as SMP builds, to take advantage of batching and existing
range- and ASID-based TLB flush optimizations. It optimizes out IPIs and
SBI calls based on the online CPU count, which also covers the scenario
where SMP was enabled at build time but only one CPU is present/online.
A final optimization is to use single-ASID flushes wherever possible, to
avoid unnecessary TLB misses for kernel mappings.
This series has a semantic conflict with the AIA patches that are in
linux-next due to the removal of the third parameter of
riscv_ipi_set_virq_range(), which is called from imsic_ipi_domain_init()
in drivers/irqchip/irq-riscv-imsic-early.c. The resolution is to remove
the extra argument from the call site.
Here are some numbers from D1 which show the performance impact:
v6.9-rc1:
System Benchmarks Partial Index BASELINE RESULT INDEX
Execl Throughput 43.0 198.5 46.2
File Copy 1024 bufsize 2000 maxblocks 3960.0 73934.4 186.7
File Copy 256 bufsize 500 maxblocks 1655.0 20242.6 122.3
File Copy 4096 bufsize 8000 maxblocks 5800.0 197706.4 340.9
Pipe Throughput 12440.0 176974.2 142.3
Pipe-based Context Switching 4000.0 23626.8 59.1
Process Creation 126.0 449.9 35.7
Shell Scripts (1 concurrent) 42.4 544.4 128.4
Shell Scripts (16 concurrent) --- 35.3 ---
Shell Scripts (8 concurrent) 6.0 71.6 119.3
System Call Overhead 15000.0 248072.6 165.4
========
System Benchmarks Index Score (Partial Only) 110.6
v6.9-rc1 + this patch series:
System Benchmarks Partial Index BASELINE RESULT INDEX
Execl Throughput 43.0 196.8 45.8
File Copy 1024 bufsize 2000 maxblocks 3960.0 71782.2 181.3
File Copy 256 bufsize 500 maxblocks 1655.0 21269.4 128.5
File Copy 4096 bufsize 8000 maxblocks 5800.0 199424.0 343.8
Pipe Throughput 12440.0 196468.6 157.9
Pipe-based Context Switching 4000.0 24261.8 60.7
Process Creation 126.0 459.0 36.4
Shell Scripts (1 concurrent) 42.4 543.8 128.2
Shell Scripts (16 concurrent) --- 35.5 ---
Shell Scripts (8 concurrent) 6.0 71.7 119.6
System Call Overhead 15000.0 259415.2 172.9
========
System Benchmarks Index Score (Partial Only) 113.0
* b4-shazam-lts:
riscv: mm: Always use an ASID to flush mm contexts
riscv: mm: Preserve global TLB entries when switching contexts
riscv: mm: Make asid_bits a local variable
riscv: mm: Use a fixed layout for the MM context ID
riscv: mm: Introduce cntx2asid/cntx2version helper macros
riscv: Avoid TLB flush loops when affected by SiFive CIP-1200
riscv: Apply SiFive CIP-1200 workaround to single-ASID sfence.vma
riscv: mm: Combine the SMP and UP TLB flush code
riscv: Only send remote fences when some other CPU is online
riscv: mm: Broadcast kernel TLB flushes only when needed
riscv: Use IPIs for remote cache/TLB flushes by default
riscv: Factor out page table TLB synchronization
riscv: Flush the instruction cache during SMP bringup
Link: https://lore.kernel.org/r/20240327045035.368512-1-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
After commit f51f7a0fc2 ("riscv: enable DMA_BOUNCE_UNALIGNED_KMALLOC
for !dma_coherent"), for non-coherent platforms with less than 4GB
memory, we rely on users to pass "swiotlb=mmnn,force" kernel parameters
to enable DMA bouncing for unaligned kmalloc() buffers. Now let's go
further: If no bouncing needed for ZONE_DMA, let kernel automatically
allocate 1MB swiotlb buffer per 1GB of RAM for kmalloc() bouncing on
non-coherent platforms, so that no need to pass "swiotlb=mmnn,force"
any more.
The math of "1MB swiotlb buffer per 1GB of RAM for kmalloc() bouncing"
is taken from arm64. Users can still force smaller swiotlb buffer by
passing "swiotlb=mmnn".
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240325110036.1564-1-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
pgtable_l{4,5}_enabled are read only after initialization, make explicit
annotation of __ro_after_init on them.
Signed-off-by: Dawei Li <dawei.li@shingroup.cn>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240320064712.442579-3-dawei.li@shingroup.cn
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
IS_ENABLED(CONFIG_64BIT) in initialization of pgtable_l{4,5}_enabled is
redundant, remove it.
Signed-off-by: Dawei Li <dawei.li@shingroup.cn>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240320064712.442579-2-dawei.li@shingroup.cn
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Charlie Jenkins <charlie@rivosinc.com> says:
Improve the performance of icache flushing by creating a new prctl flag
PR_RISCV_SET_ICACHE_FLUSH_CTX. The interface is left generic to allow
for future expansions such as with the proposed J extension [1].
Documentation is also provided to explain the use case.
Patch sent to add PR_RISCV_SET_ICACHE_FLUSH_CTX to man-pages [2].
[1] https://github.com/riscv/riscv-j-extension
[2] https://lore.kernel.org/linux-man/20240124-fencei_prctl-v1-1-0bddafcef331@rivosinc.com
* b4-shazam-merge:
cpumask: Add assign cpu
documentation: Document PR_RISCV_SET_ICACHE_FLUSH_CTX prctl
riscv: Include riscv_set_icache_flush_ctx prctl
riscv: Remove unnecessary irqflags processor.h include
Link: https://lore.kernel.org/r/20240312-fencei-v13-0-4b6bdc2bbf32@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Even if multiple ASIDs are not supported, using the single-ASID variant
of the sfence.vma instruction preserves TLB entries for global (kernel)
pages. So it is always more efficient to use the single-ASID code path.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20240327045035.368512-14-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
If the CPU does not support multiple ASIDs, all MM contexts use ASID 0.
In this case, it is still beneficial to flush the TLB by ASID, as the
single-ASID variant of the sfence.vma instruction preserves TLB entries
for global (kernel) pages.
This optimization is recommended by the RISC-V privileged specification:
If the implementation does not provide ASIDs, or software chooses
to always use ASID 0, then after every satp write, software should
execute SFENCE.VMA with rs1=x0. In the common case that no global
translations have been modified, rs2 should be set to a register
other than x0 but which contains the value zero, so that global
translations are not flushed.
It is not possible to apply this optimization when using the ASID
allocator, because that code must flush the TLB for all ASIDs at once
when incrementing the version number.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20240327045035.368512-13-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Currently, the size of the ASID field in the MM context ID dynamically
depends on the number of hardware-supported ASID bits. This requires
reading a global variable to extract either field from the context ID.
Instead, allocate the maximum possible number of bits to the ASID field,
so the layout of the context ID is known at compile-time.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20240327045035.368512-11-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When using the ASID allocator, the MM context ID contains two values:
the ASID in the lower bits, and the allocator version number in the
remaining bits. Use macros to make this separation more obvious.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20240327045035.368512-10-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Implementations affected by SiFive errata CIP-1200 have a bug which
forces the kernel to always use the global variant of the sfence.vma
instruction. When affected by this errata, do not attempt to flush a
range of addresses; each iteration of the loop would actually flush the
whole TLB instead. Instead, minimize the overall number of sfence.vma
instructions.
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Reviewed-by: Yunhui Cui <cuiyunhui@bytedance.com>
Link: https://lore.kernel.org/r/20240327045035.368512-9-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
commit 3f1e782998 ("riscv: add ASID-based tlbflushing methods") added
calls to the sfence.vma instruction with rs2 != x0. These single-ASID
instruction variants are also affected by SiFive errata CIP-1200.
Until now, the errata workaround was not needed for the single-ASID
sfence.vma variants, because they were only used when the ASID allocator
was enabled, and the affected SiFive platforms do not support multiple
ASIDs. However, we are going to start using those sfence.vma variants
regardless of ASID support, so now we need alternatives covering them.
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20240327045035.368512-8-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
In SMP configurations, all TLB flushing narrower than flush_tlb_all()
goes through __flush_tlb_range(). Do the same in UP configurations.
This allows UP configurations to take advantage of recent improvements
to the code in tlbflush.c, such as support for huge pages and flushing
multiple-page ranges.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Reviewed-by: Yunhui Cui <cuiyunhui@bytedance.com>
Link: https://lore.kernel.org/r/20240327045035.368512-7-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
If no other CPU is online, a local cache or TLB flush is sufficient.
These checks can be constant-folded when SMP is disabled.
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240327045035.368512-6-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
__flush_tlb_range() avoids broadcasting TLB flushes when an mm context
is only active on the local CPU. Apply this same optimization to TLB
flushes of kernel memory when only one CPU is online. This check can be
constant-folded when SMP is disabled.
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20240327045035.368512-5-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
An IPI backend is always required in an SMP configuration, but an SBI
implementation is not. For example, SBI will be unavailable when the
kernel runs in M mode. For this reason, consider IPI delivery of cache
and TLB flushes to be the base case, and any other implementation (such
as the SBI remote fence extension) to be an optimization.
Generally, if IPIs can be delivered without firmware assistance, they
are assumed to be faster than SBI calls due to the SBI context switch
overhead. However, when SBI is used as the IPI backend, then the context
switch cost must be paid anyway, and performing the cache/TLB flush
directly in the SBI implementation is more efficient than injecting an
interrupt to S-mode. This is the only existing scenario where
riscv_ipi_set_virq_range() is called with use_for_rfence set to false.
sbi_ipi_init() already checks riscv_ipi_have_virq_range(), so it only
calls riscv_ipi_set_virq_range() when no other IPI device is available.
This allows moving the static key and dropping the use_for_rfence
parameter. This decouples the static key from the irqchip driver probe
order.
Furthermore, the static branch only makes sense when CONFIG_RISCV_SBI is
enabled. Optherwise, IPIs must be used. Add a fallback definition of
riscv_use_sbi_for_rfence() which handles this case and removes the need
to check CONFIG_RISCV_SBI elsewhere, such as in cacheflush.c.
Reviewed-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240327045035.368512-4-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Samuel Holland <samuel.holland@sifive.com> says:
This series aims to improve support for NOMMU, specifically by making it
easier to test NOMMU kernels in QEMU and on various widely-available
hardware (errata permitting). After all, everything supports Svbare...
After applying this series, a NOMMU kernel based on defconfig (changing
only the three options below*) boots to userspace on QEMU when passed as
-kernel.
# CONFIG_RISCV_M_MODE is not set
# CONFIG_MMU is not set
CONFIG_NONPORTABLE=y
*if you are using LLD, you must also disable BPF_SYSCALL and KALLSYMS,
because LLD bails on out-of-range references to undefined weak symbols.
* b4-shazam-merge:
riscv: Allow NOMMU kernels to run in S-mode
riscv: Remove MMU dependency from Zbb and Zicboz
riscv: Fix loading 64-bit NOMMU kernels past the start of RAM
riscv: Fix TASK_SIZE on 64-bit NOMMU
Link: https://lore.kernel.org/r/20240227003630.3634533-1-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The dma_base, size and iommu arguments are only used by ARM, and can
now easily be deduced from the device itself, so there's no need to pass
them through the callchain as well.
Acked-by: Rob Herring <robh@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Michael Kelley <mhklinux@outlook.com> # For Hyper-V
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/5291c2326eab405b1aa7693aa964e8d3cb7193de.1713523152.git.robin.murphy@arm.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The access_error() of vma already checked under per-VMA lock, if it is a
bad access, directly handle error, no need to retry with mmap_lock again.
Since the page faut is handled under per-VMA lock, count it as a vma lock
event with VMA_LOCK_SUCCESS.
[wangkefeng.wang@huawei.com: use `cause' rather than SIGSEGV, per Alexandre]
Link: https://lkml.kernel.org/r/ac978061-ce1a-40a4-8b0a-61883b42bea7@huawei.com
Link: https://lkml.kernel.org/r/20240403083805.1818160-6-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Tested-by: Alexandre Ghiti <alexghiti@rivosinc.com
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This API is not used anymore, drop it for the whole tree.
Link: https://lkml.kernel.org/r/20240318200404.448346-13-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Bjorn Andersson <andersson@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fabio Estevam <festevam@denx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Konrad Dybcio <konrad.dybcio@linaro.org>
Cc: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Cc: Lucas Stach <l.stach@pengutronix.de>
Cc: Mark Salter <msalter@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Support new prctl with key PR_RISCV_SET_ICACHE_FLUSH_CTX to enable
optimization of cross modifying code. This prctl enables userspace code
to use icache flushing instructions such as fence.i with the guarantee
that the icache will continue to be clean after thread migration.
Signed-off-by: Charlie Jenkins <charlie@rivosinc.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20240312-fencei-v13-2-4b6bdc2bbf32@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
These two patches are fixes that the feature depends on, but they also
fix generic issues. So I'm picking them up for fixes as well as
for-next.
* commit 'aea702dde7e9876fb00571a2602f25130847bf0f':
riscv: Fix loading 64-bit NOMMU kernels past the start of RAM
riscv: Fix TASK_SIZE on 64-bit NOMMU
Link: https://lore.kernel.org/r/20240227003630.3634533-1-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
commit 3335068f87 ("riscv: Use PUD/P4D/PGD pages for the linear
mapping") added logic to allow using RAM below the kernel load address.
However, this does not work for NOMMU, where PAGE_OFFSET is fixed to the
kernel load address. Since that range of memory corresponds to PFNs
below ARCH_PFN_OFFSET, mm initialization runs off the beginning of
mem_map and corrupts adjacent kernel memory. Fix this by restoring the
previous behavior for NOMMU kernels.
Fixes: 3335068f87 ("riscv: Use PUD/P4D/PGD pages for the linear mapping")
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20240227003630.3634533-3-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
__flush_tlb_range() does not modify the provided cpumask, so its cmask
parameter can be pointer-to-const. This avoids the unsafe cast of
cpu_online_mask.
Fixes: 54d7431af7 ("riscv: Add support for BATCHED_UNMAP_TLB_FLUSH")
Signed-off-by: Samuel Holland <samuel.holland@sifive.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240301201837.2826172-1-samuel.holland@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
* Support for various vector-accelerated crypto routines.
* Hibernation is now enabled for portable kernel builds.
* mmap_rnd_bits_max is larger on systems with larger VAs.
* Support for fast GUP.
* Support for membarrier-based instruction cache synchronization.
* Support for the Andes hart-level interrupt controller and PMU.
* Some cleanups around unaligned access speed probing and Kconfig
settings.
* Support for ACPI LPI and CPPC.
* Various cleanus related to barriers.
* A handful of fixes.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmX9icgTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYib+UD/4xyL6UMixx6A06BVBL9UT4vOrxRvNr
JIihG5y5QNMjes9DHWL35mZTMqFtQ0tq94ViWFLmJWloV/8KRVM2C9R9KX7vplf3
M/OwvP106spxgvNHoeQbycgs42RU1t2mpqT7N1iK2hCjqieP3vLn6hsSLXWTAG0L
3gQbQw6XCLC3hPyLq+nbFY2i4faeCmpXWmixoy/IvQ5calZQrRU0LNlP6lcMBhVo
uocjG0uGAhrahw2s81jxcMZcxa3AvUCiplapdD5H5v9rBM85SkYJj2Q9SqdSorkb
xzuimRnKPI5s47yM3pTfZY0qnQUYHV7PXXuw4WujpCQVQdhaG+Ggq63UUZA61J9t
IzZK2zdcfHqICrGTtXImUzRT3dcc3oq+IFq4tTY+rEJm29hrXkAtx+qBm5xtMvax
fJz5feJ/iT0u7MDj4Oq24n+Kpl+Olm+MJaZX3m5Ovi/9V6a9iK9HXqxg9/Fs0fMO
+J/0kTgd8Vu9CYH7KNWz3uztcO9eMAH3VyzuXuab4BGj1i1Y/9EjpALQi7rDN73S
OsYQX6NnzMkBV4dvElJVLXiPlvNlMHZZwdak5CqPb48jaJu6iiIZAuvOrG6/naGP
wnQSLVA2WWWoOkl3AJhxfpa11CLhbMl9E2gYm1VtNvASXoSFIxlAq1Yv3sG8yjty
4ZT0rYFJOstYiQ==
=3dL5
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.9-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for various vector-accelerated crypto routines
- Hibernation is now enabled for portable kernel builds
- mmap_rnd_bits_max is larger on systems with larger VAs
- Support for fast GUP
- Support for membarrier-based instruction cache synchronization
- Support for the Andes hart-level interrupt controller and PMU
- Some cleanups around unaligned access speed probing and Kconfig
settings
- Support for ACPI LPI and CPPC
- Various cleanus related to barriers
- A handful of fixes
* tag 'riscv-for-linus-6.9-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (66 commits)
riscv: Fix syscall wrapper for >word-size arguments
crypto: riscv - add vector crypto accelerated AES-CBC-CTS
crypto: riscv - parallelize AES-CBC decryption
riscv: Only flush the mm icache when setting an exec pte
riscv: Use kcalloc() instead of kzalloc()
riscv/barrier: Add missing space after ','
riscv/barrier: Consolidate fence definitions
riscv/barrier: Define RISCV_FULL_BARRIER
riscv/barrier: Define __{mb,rmb,wmb}
RISC-V: defconfig: Enable CONFIG_ACPI_CPPC_CPUFREQ
cpufreq: Move CPPC configs to common Kconfig and add RISC-V
ACPI: RISC-V: Add CPPC driver
ACPI: Enable ACPI_PROCESSOR for RISC-V
ACPI: RISC-V: Add LPI driver
cpuidle: RISC-V: Move few functions to arch/riscv
riscv: Introduce set_compat_task() in asm/compat.h
riscv: Introduce is_compat_thread() into compat.h
riscv: add compile-time test into is_compat_task()
riscv: Replace direct thread flag check with is_compat_task()
riscv: Improve arch_get_mmap_end() macro
...
We used to emit a flush_icache_all() whenever a dirty executable
mapping is set in the page table but we can instead call
flush_icache_mm() which will only send IPIs to cores that currently run
this mm and add a deferred icache flush to the others.
The number of calls to sbi_remote_fence_i() (tested without IPI
support):
With a simple buildroot rootfs:
* Before: ~5k
* After : 4 (!)
Tested on HW, the boot to login is ~4.5% faster.
With an ubuntu rootfs:
* Before: ~24k
* After : ~13k
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Link: https://lore.kernel.org/r/20240202124711.256146-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is hotplugged
as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving policy
wherein we allocate memory across nodes in a weighted fashion rather
than uniformly. This is beneficial in heterogeneous memory environments
appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the process
has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown situations.
The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's series
"Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page faults.
He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction test",
Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
our handling of DAX on archiecctures which have virtually aliasing data
caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
improvements in worst-case mmap_lock hold times during certain
userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability improvements
in his series "Mitigate a vmap lock contention". It realizes a 12x
improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging of
large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages() to
an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which are
configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
=TG55
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
Now crash codes under kernel/ folder has been split out from kexec
code, crash dumping can be separated from kexec reboot in config
items on risc-v with some adjustments.
Here wrap up crash dumping codes with CONFIG_CRASH_DUMP ifdeffery, and
use IS_ENABLED(CONFIG_CRASH_RESERVE) check to decide if compiling
in the crashkernel reservation code.
Link: https://lkml.kernel.org/r/20240124051254.67105-13-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The new riscv specific arch_hugetlb_migration_supported() must be
guarded with a #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION to avoid
the following build error:
In file included from include/linux/hugetlb.h:851,
from kernel/fork.c:52:
>> arch/riscv/include/asm/hugetlb.h:15:42: error: static declaration of 'arch_hugetlb_migration_supported' follows non-static declaration
15 | #define arch_hugetlb_migration_supported arch_hugetlb_migration_supported
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
include/linux/hugetlb.h:916:20: note: in expansion of macro 'arch_hugetlb_migration_supported'
916 | static inline bool arch_hugetlb_migration_supported(struct hstate *h)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
arch/riscv/include/asm/hugetlb.h:14:6: note: previous declaration of 'arch_hugetlb_migration_supported' with type 'bool(struct hstate *)' {aka '_Bool(struct hstate *)'}
14 | bool arch_hugetlb_migration_supported(struct hstate *h);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202402110258.CV51JlEI-lkp@intel.com/
Fixes: ce68c03545 ("riscv: Fix arch_hugetlb_migration_supported() for NAPOT")
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240211083640.756583-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
All architectures using the core ptdump functionality also implement
CONFIG_DEBUG_WX, and they all do it more or less the same way, with a
function called debug_checkwx() that is called by mark_rodata_ro(), which
is a substitute to ptdump_check_wx() when CONFIG_DEBUG_WX is set and a
no-op otherwise.
Refactor by centrally defining debug_checkwx() in linux/ptdump.h and call
debug_checkwx() immediately after calling mark_rodata_ro() instead of
calling it at the end of every mark_rodata_ro().
On x86_32, mark_rodata_ro() first checks __supported_pte_mask has _PAGE_NX
before calling debug_checkwx(). Now the check is inside the callee
ptdump_walk_pgd_level_checkwx().
On powerpc_64, mark_rodata_ro() bails out early before calling
ptdump_check_wx() when the MMU doesn't have KERNEL_RO feature. The check
is now also done in ptdump_check_wx() as it is called outside
mark_rodata_ro().
Link: https://lkml.kernel.org/r/a59b102d7964261d31ead0316a9f18628e4e7a8e.1706610398.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Aneesh Kumar K.V (IBM)" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Phong Tran <tranmanphong@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Price <steven.price@arm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
RISC-V was lacking a membarrier implementation for the store/fetch
ordering, which is a bit tricky because of the deferred icache flushing
we use in RISC-V.
* b4-shazam-merge:
membarrier: riscv: Provide core serializing command
locking: Introduce prepare_sync_core_cmd()
membarrier: Create Documentation/scheduler/membarrier.rst
membarrier: riscv: Add full memory barrier in switch_mm()
Link: https://lore.kernel.org/r/20240131144936.29190-1-parri.andrea@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The membarrier system call requires a full memory barrier after storing
to rq->curr, before going back to user-space. The barrier is only
needed when switching between processes: the barrier is implied by
mmdrop() when switching from kernel to userspace, and it's not needed
when switching from userspace to kernel.
Rely on the feature/mechanism ARCH_HAS_MEMBARRIER_CALLBACKS and on the
primitive membarrier_arch_switch_mm(), already adopted by the PowerPC
architecture, to insert the required barrier.
Fixes: fab957c11e ("RISC-V: Atomic and Locking Code")
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/r/20240131144936.29190-2-parri.andrea@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
We must clear the cpumask once we have flushed the batch, otherwise cpus
get accumulated and we end sending IPIs to more cpus than needed.
Fixes: 54d7431af7 ("riscv: Add support for BATCHED_UNMAP_TLB_FLUSH")
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Reviewed-by: Jisheng Zhang <jszhang@kernel.org>
Link: https://lore.kernel.org/r/20240130115508.105386-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
arch_hugetlb_migration_supported() must be reimplemented to add support
for NAPOT hugepages, which is done here.
Fixes: 82a1a1f3bf ("riscv: mm: support Svnapot in hugetlb page")
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240130120114.106003-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Alexandre Ghiti <alexghiti@rivosinc.com> says:
While merging riscv napot and arm64 contpte support, I noticed we did
not abide by the specification which states that we should clear a
napot mapping before setting a new one, called "break before make" in
arm64 (patch 1). And also that we did not add the new hugetlb page size
added by napot in hugetlb_mask_last_page() (patch 2).
* b4-shazam-merge:
riscv: Fix hugetlb_mask_last_page() when NAPOT is enabled
riscv: Fix set_huge_pte_at() for NAPOT mapping
Link: https://lore.kernel.org/r/20240117195741.1926459-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When NAPOT is enabled, a new hugepage size is available and then we need
to make hugetlb_mask_last_page() aware of that.
Fixes: 82a1a1f3bf ("riscv: mm: support Svnapot in hugetlb page")
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240117195741.1926459-3-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
As stated by the privileged specification, we must clear a NAPOT
mapping and emit a sfence.vma before setting a new translation.
Fixes: 82a1a1f3bf ("riscv: mm: support Svnapot in hugetlb page")
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240117195741.1926459-2-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The spare_init() calls memmap_populate() many times to create VA to PA
mapping for the VMEMMAP area, where all "struct page" are located once
CONFIG_SPARSEMEM_VMEMMAP is defined. These "struct page" are later
initialized in the zone_sizes_init() function. However, during this
process, no sfence.vma instruction is executed for this VMEMMAP area.
This omission may cause the hart to fail to perform page table walk
because some data related to the address translation is invisible to the
hart. To solve this issue, the local_flush_tlb_kernel_range() is called
right after the sparse_init() to execute a sfence.vma instruction for this
VMEMMAP area, ensuring that all data related to the address translation
is visible to the hart.
Fixes: d95f1a542c ("RISC-V: Implement sparsemem")
Signed-off-by: Vincent Chen <vincent.chen@sifive.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20240117140333.2479667-1-vincent.chen@sifive.com
Fixes: 7a92fc8b4d ("mm: Introduce flush_cache_vmap_early()")
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
ARCH_MMAP_RND_BITS_MAX is based on Sv39, which leaves a few
potential bits of mmap randomness on the table if we end up enabling
4/5-level paging. Update mmap_rnd_bits_max to take the final address
space size into account. This increases mmap_rnd_bits_max from 24 to
33 with Sv48/57.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Palmer Dabbelt <palmer@rivosinc.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230929211155.3910949-6-samitolvanen@google.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This includes everything from part 2:
* Support for tuning for systems with fast misaligned accesses.
* Support for SBI-based suspend.
* Support for the new SBI debug console extension.
* The T-Head CMOs now use PA-based flushes.
* Support for enabling the V extension in kernel code.
* Optimized IP checksum routines.
* Various ftrace improvements.
* Support for archrandom, which depends on the Zkr extension.
and then also a fix for those:
* The build is no longer broken under NET=n, KUNIT=y for ports that
don't define their own ipv6 checksum.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmWsCOMTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYieQND/0f+1gizTM0OzuqZG9+DOdWTtqmILyr
sZaYXWBw6SPzbUSlwjoW4Qp/S3Ur7IhrbfttM2aMoS4GHZvSESAXOMXC4c7AnCaQ
HOXBC2OuXvq6jA0ZjK5XPviR70A/7uD2iu5SNO1hyfJK08LSEu+AulxtkW50+wMc
bHXSpZxEf8AtwOJK1cRtwhH4qy+Qcs3Nla3jG7OnDsPbhJVcydHx95eCtfwn2cQA
KwJPN1fjRtm4ALZb91QcMDO8VAoanfPEkSR3DoNVE/UfdTItYk35VHmf4RWh7IWA
qDnV5Mp/XMX2RmJqwi1ZmSHHX0rfVLL5UqgBhGHC8PuMpLJn5p9U6DZ0qD7YWxcB
NDlrHsaXt112RHEEM/7CcLkqEexua/ezcC45E5tSQ4sRDZE3fvgbALao67xSQ22D
lCpVAY0Z3o5oWaM/jISiQHjSNn5RrAwEYSvvv2pkW4QAMShA2eggmQaCF+Jl4EMp
u6yqJpXxDI99C088uvM6Bi2gcX8fnBSmOzCB/sSU4a1I72UpWrGngqUpTYKHG8Jz
cTZhbIKmQirBP0vC/UgMOS0sNuw/NykItfRXZ2g0qGKvw1TjJ6djdeZBKcAj3h0E
fJpMxuhmeOFYE7DavnhSt3CResFTXZzXLChjxGbT+g10YzVEf9g7vBVnjxAwad9f
tryMVpL/ipGpQQ==
=Sjhj
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.8-mw4' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull more RISC-V updates from Palmer Dabbelt:
- Support for tuning for systems with fast misaligned accesses.
- Support for SBI-based suspend.
- Support for the new SBI debug console extension.
- The T-Head CMOs now use PA-based flushes.
- Support for enabling the V extension in kernel code.
- Optimized IP checksum routines.
- Various ftrace improvements.
- Support for archrandom, which depends on the Zkr extension.
- The build is no longer broken under NET=n, KUNIT=y for ports that
don't define their own ipv6 checksum.
* tag 'riscv-for-linus-6.8-mw4' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (56 commits)
lib: checksum: Fix build with CONFIG_NET=n
riscv: lib: Check if output in asm goto supported
riscv: Fix build error on rv32 + XIP
riscv: optimize ELF relocation function in riscv
RISC-V: Implement archrandom when Zkr is available
riscv: Optimize hweight API with Zbb extension
riscv: add dependency among Image(.gz), loader(.bin), and vmlinuz.efi
samples: ftrace: Add RISC-V support for SAMPLE_FTRACE_DIRECT[_MULTI]
riscv: ftrace: Add DYNAMIC_FTRACE_WITH_DIRECT_CALLS support
riscv: ftrace: Make function graph use ftrace directly
riscv: select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY
lib/Kconfig.debug: Update AS_HAS_NON_CONST_LEB128 comment and name
riscv: Restrict DWARF5 when building with LLVM to known working versions
riscv: Hoist linker relaxation disabling logic into Kconfig
kunit: Add tests for csum_ipv6_magic and ip_fast_csum
riscv: Add checksum library
riscv: Add checksum header
riscv: Add static key for misaligned accesses
asm-generic: Improve csum_fold
RISC-V: selftests: cbo: Ensure asm operands match constraints
...
Including:
- Core changes:
- Fix race conditions in device probe path
- Retire IOMMU bus_ops
- Support for passing custom allocators to page table drivers
- Clean up Kconfig around IOMMU_SVA
- Support for sharing SVA domains with all devices bound to
a mm
- Firmware data parsing cleanup
- Tracing improvements for iommu-dma code
- Some smaller fixes and cleanups
- ARM-SMMU drivers:
- Device-tree binding updates:
- Add additional compatible strings for Qualcomm SoCs
- Document Adreno clocks for Qualcomm's SM8350 SoC
- SMMUv2:
- Implement support for the ->domain_alloc_paging() callback
- Ensure Secure context is restored following suspend of Qualcomm SMMU
implementation
- SMMUv3:
- Disable stalling mode for the "quiet" context descriptor
- Minor refactoring and driver cleanups
- Intel VT-d driver:
- Cleanup and refactoring
- AMD IOMMU driver:
- Improve IO TLB invalidation logic
- Small cleanups and improvements
- Rockchip IOMMU driver:
- DT binding update to add Rockchip RK3588
- Apple DART driver:
- Apple M1 USB4/Thunderbolt DART support
- Cleanups
- Virtio IOMMU driver:
- Add support for iotlb_sync_map
- Enable deferred IO TLB flushes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmWecQoACgkQK/BELZcB
GuN5ZxAAzC5QUKAzANx0puk7QhPpKKlbSvj6Q7iRgCLk00KJO1+VQh9v4ouCmXqF
kn3Ko8gddjhtrgwN0OQ54F39cLUrp1SBemy71K5YOR+vu8VKtwtmawZGeeRZ+k+B
Eohw58oaXTiR1maYvoLixLYczLrjklqyJOQ1vZ0GxFGxDqrFByAryHDgG/3OCpJx
C9e6PsLbbfhfqA8Kv97iKcBqniGbXxAMuodqSUG0buQ3oZgfpIP6Bt3EgUzFGPGk
3BTlYxowS/gkjUWd3fgjQFIFLTA01u9FhpA2Jb0a4v67pUCR64YxHN7rBQ6ZChtG
kB9laQfU9re79RsHhqQzr0JT9x/eyq7pzGzjp5TV5TPW6IW+sqjMIPhzd9P08Ef7
BclkCVobx0jSAHOhnnG4QJiKANr2Y2oM3HfsAJccMMY45RRhUKmVqM7jxMPfGn3A
i+inlee73xTjZXJse1EWG1fmKKMLvX9LDEp4DyOfn9CqVT+7hpZvzPjfbGr937Rm
JlwXhF3rQXEpOCagEsbt1vOf+V0e9QiCLf1Y2KpkIkDbE5wwSD/2qLm3tFhJG3oF
fkW+J14Cid0pj+hY0afGe0kOUOIYlimu0nFmSf0pzMH+UktZdKogSfyb1gSDsy+S
rsZRGPFhMJ832ExqhlDfxqBebqh+jsfKynlskui6Td5C9ZULaHA=
=q751
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
"Core changes:
- Fix race conditions in device probe path
- Retire IOMMU bus_ops
- Support for passing custom allocators to page table drivers
- Clean up Kconfig around IOMMU_SVA
- Support for sharing SVA domains with all devices bound to a mm
- Firmware data parsing cleanup
- Tracing improvements for iommu-dma code
- Some smaller fixes and cleanups
ARM-SMMU drivers:
- Device-tree binding updates:
- Add additional compatible strings for Qualcomm SoCs
- Document Adreno clocks for Qualcomm's SM8350 SoC
- SMMUv2:
- Implement support for the ->domain_alloc_paging() callback
- Ensure Secure context is restored following suspend of Qualcomm
SMMU implementation
- SMMUv3:
- Disable stalling mode for the "quiet" context descriptor
- Minor refactoring and driver cleanups
Intel VT-d driver:
- Cleanup and refactoring
AMD IOMMU driver:
- Improve IO TLB invalidation logic
- Small cleanups and improvements
Rockchip IOMMU driver:
- DT binding update to add Rockchip RK3588
Apple DART driver:
- Apple M1 USB4/Thunderbolt DART support
- Cleanups
Virtio IOMMU driver:
- Add support for iotlb_sync_map
- Enable deferred IO TLB flushes"
* tag 'iommu-updates-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (66 commits)
iommu: Don't reserve 0-length IOVA region
iommu/vt-d: Move inline helpers to header files
iommu/vt-d: Remove unused vcmd interfaces
iommu/vt-d: Remove unused parameter of intel_pasid_setup_pass_through()
iommu/vt-d: Refactor device_to_iommu() to retrieve iommu directly
iommu/sva: Fix memory leak in iommu_sva_bind_device()
dt-bindings: iommu: rockchip: Add Rockchip RK3588
iommu/dma: Trace bounce buffer usage when mapping buffers
iommu/arm-smmu: Convert to domain_alloc_paging()
iommu/arm-smmu: Pass arm_smmu_domain to internal functions
iommu/arm-smmu: Implement IOMMU_DOMAIN_BLOCKED
iommu/arm-smmu: Convert to a global static identity domain
iommu/arm-smmu: Reorganize arm_smmu_domain_add_master()
iommu/arm-smmu-v3: Remove ARM_SMMU_DOMAIN_NESTED
iommu/arm-smmu-v3: Master cannot be NULL in arm_smmu_write_strtab_ent()
iommu/arm-smmu-v3: Add a type for the STE
iommu/arm-smmu-v3: disable stall for quiet_cd
iommu/qcom: restore IOMMU state if needed
iommu/arm-smmu-qcom: Add QCM2290 MDSS compatible
iommu/arm-smmu-qcom: Add missing GMU entry to match table
...
- Enable percpu page allocator for risc-v. There are risc-v
configurations with sparse NUMA configurations and small vmalloc
space causing dynamic percpu allocations to fail as the backing chunk
stride is too far apart.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE3hZPHJdcVwe+yTTtiDc0yuoFPR0FAmWhz5YACgkQiDc0yuoF
PR33fQ//TImRNBOvLn0zSL6eKE49pBOg1lhff82GroMkjIw/jHLOp0WfdtCRKBZm
8234WiQRPk3TNKkvmrikMwmDG249Bc/U+RwaHTkfDao6Fm1Pb4SESaggNXw/VKDe
zWFvI/zoVQGC3+xuUYo6KDtFE9shnphsT7surRt21wdDeZOojH89FtrrEHnnQpIx
Zl5miPx0H1V+Hlzk7PZkPYmEwcZHp7Sjcx1/t7QzvtzzkiDKmOLROO2gxRMXaCJz
zeM5UAQi1294EftLpHTgrtn9NEbwt8xOQnaNtZozYSznmcy6CztyiNH43XCOapFC
10iVxn4NlioXGzaT/Vo2As3PGjJueg2kl+TJur7lAdENgWyqT0qksgtu+9Q2SSYg
hzWMk8KKqpLHvjnDpKu0spl7EI7u4J8MdIfHLlw/a2vWUU1bBQeRzIZHGe56/yFu
asHsTlqWzLPZy8ZvqjhX63HQnWnglHhmY63BcHr5kCeUN8F6cNAS0WWtSrvj5bXM
OHuq+OaSUms9Ktl/igaaXDLUW+0t04vtH4qh1l2ncEdElYWBzT3d9WBkW8RfQzcu
aXmu0ItxTHGTgmjafibGoQCkMzJ0NG0b7IW4NMNz5nWgpf5ghBXnSjz17Z4FkMgo
PY/+uF3Gr7w+OYxsIDSzvMef/J14qgJ9oPMVUJWOJIwVUO7+nMQ=
=fwxu
-----END PGP SIGNATURE-----
Merge tag 'percpu-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu updates from Dennis Zhou:
"Enable percpu page allocator for RISC-V.
There are RISC-V configurations with sparse NUMA configurations and
small vmalloc space causing dynamic percpu allocations to fail as the
backing chunk stride is too far apart"
* tag 'percpu-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
riscv: Enable pcpu page first chunk allocator
mm: Introduce flush_cache_vmap_early()
commit 66f1e68093 ("riscv: Make XIP bootable again") restricted page
offset to the sv39 page offset instead of the default sv57, which makes
sense since probably the platforms that target XIP kernels do not
support anything else than sv39 and we do not try to find out the
largest address space supported on XIP kernels (ie set_satp_mode()).
But PAGE_OFFSET_L3 is not defined for rv32, so fix the build error by
restoring the previous behaviour which picks CONFIG_PAGE_OFFSET for rv32.
Fixes: 66f1e68093 ("riscv: Make XIP bootable again")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Closes: https://lore.kernel.org/linux-riscv/344dca85-5c48-44e1-bc64-4fa7973edd12@infradead.org/T/#u
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Link: https://lore.kernel.org/r/20240118212120.2087803-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
* Support for many new extensions in hwprobe, along with a handful of
cleanups.
* Various cleanups to our page table handling code, so we alwayse use
{READ,WRITE}_ONCE.
* Support for the which-cpus flavor of hwprobe.
* Support for XIP kernels has been resurrected.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmWhb+sTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYiWyJEADH/l2PND3AE2sfhtkDceMR8k+MOrjn
3T0+EIow28tBEpcu7Bdu7aw65ZQDgV9aEDuo8HYlwtimPUfvTQ01QiwDRVZoxPGT
4Br2X7n5lczQOvp6r5+8p34viQVNXaBXApgZc+iMbelj0W7AnNJNdr8/d1pMw/hA
y6v8rq6BBgFKZKmU0va+T2AaXQN3nj/fme1l8Rn6Wf8JpaBtTnlNWGOepRfJdFbv
ZewTEqu4CVmCE6ij8c+Gatk8k71KXLjH3mSjZ2F0FIreI0I5pdD9OKQJk+hiRCEA
wnEneWyl+rHPUTRXpZEeLVPD4gBTbKt20awImpNG+eN+l68s4ESNWP2EZM4n5utF
NWJAscxMA1c8NlWhnQfAKK2eAmi2sp0/9O3pTfpvZ7yWAp/GpkZGEuAaQe4R80X+
0lLKrS8P8T2ZSA5UVfszN5vLXU/Ae3GpAQCJkzoYXjDes8sxw4fjHcg/AWn/ZmrO
FoqPA1ka/2i0b5be+p3Emt5kfTK8WeDnV2rV1ZLYEJYBkXdTLAM8jR+mhXJ7z59P
shfOSpZ7icvX7Q3t/eFKApryM93JE3w6WZBOYuY4D7FPoPSxJG7VgL2U42wiTZjj
xr1ta4vdfEqWgRpAOvGaP569MQ9awzA6JZHJQOVLx9FOWox2gMWsTB8xQ33y5k/n
eNd7JjUOu4K3jQ==
=fLgG
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.8-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for many new extensions in hwprobe, along with a handful of
cleanups
- Various cleanups to our page table handling code, so we alwayse use
{READ,WRITE}_ONCE
- Support for the which-cpus flavor of hwprobe
- Support for XIP kernels has been resurrected
* tag 'riscv-for-linus-6.8-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (52 commits)
riscv: hwprobe: export Zicond extension
riscv: hwprobe: export Zacas ISA extension
riscv: add ISA extension parsing for Zacas
dt-bindings: riscv: add Zacas ISA extension description
riscv: hwprobe: export Ztso ISA extension
riscv: add ISA extension parsing for Ztso
use linux/export.h rather than asm-generic/export.h
riscv: Remove SHADOW_OVERFLOW_STACK_SIZE macro
riscv; fix __user annotation in save_v_state()
riscv: fix __user annotation in traps_misaligned.c
riscv: Select ARCH_WANTS_NO_INSTR
riscv: Remove obsolete rv32_defconfig file
riscv: Allow disabling of BUILTIN_DTB for XIP
riscv: Fixed wrong register in XIP_FIXUP_FLASH_OFFSET macro
riscv: Make XIP bootable again
riscv: Fix set_direct_map_default_noflush() to reset _PAGE_EXEC
riscv: Fix module_alloc() that did not reset the linear mapping permissions
riscv: Fix wrong usage of lm_alias() when splitting a huge linear mapping
riscv: Check if the code to patch lies in the exit section
riscv: Use the same CPU operations for all CPUs
...
Allow to defer the flushing of the TLB when unmapping pages, which allows
to reduce the numbers of IPI and the number of sfence.vma.
The ubenchmarch used in commit 43b3dfdd04 ("arm64: support
batched/deferred tlb shootdown during page reclamation/migration") that
was multithreaded to force the usage of IPI shows good performance
improvement on all platforms:
* Unmatched: ~34%
* TH1520 : ~78%
* Qemu : ~81%
In addition, perf on qemu reports an important decrease in time spent
dealing with IPIs:
Before: 68.17% main [kernel.kallsyms] [k] __sbi_rfence_v02_call
After : 8.64% main [kernel.kallsyms] [k] __sbi_rfence_v02_call
* Benchmark:
int stick_this_thread_to_core(int core_id) {
int num_cores = sysconf(_SC_NPROCESSORS_ONLN);
if (core_id < 0 || core_id >= num_cores)
return EINVAL;
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(core_id, &cpuset);
pthread_t current_thread = pthread_self();
return pthread_setaffinity_np(current_thread,
sizeof(cpu_set_t), &cpuset);
}
static void *fn_thread (void *p_data)
{
int ret;
pthread_t thread;
stick_this_thread_to_core((int)p_data);
while (1) {
sleep(1);
}
return NULL;
}
int main()
{
volatile unsigned char *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
pthread_t threads[4];
int ret;
for (int i = 0; i < 4; ++i) {
ret = pthread_create(&threads[i], NULL, fn_thread, (void *)i);
if (ret)
{
printf("%s", strerror (ret));
}
}
memset(p, 0x88, SIZE);
for (int k = 0; k < 10000; k++) {
/* swap in */
for (int i = 0; i < SIZE; i += 4096) {
(void)p[i];
}
/* swap out */
madvise(p, SIZE, MADV_PAGEOUT);
}
for (int i = 0; i < 4; i++)
{
pthread_cancel(threads[i]);
}
for (int i = 0; i < 4; i++)
{
pthread_join(threads[i], NULL);
}
return 0;
}
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Jisheng Zhang <jszhang@kernel.org>
Tested-by: Jisheng Zhang <jszhang@kernel.org> # Tested on TH1520
Tested-by: Nam Cao <namcao@linutronix.de>
Link: https://lore.kernel.org/r/20240108193640.344929-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This will allow better TLB utilization and then should be more performant.
Before:
---[ vmemmap start ]---
0xffff8d8002000000-0xffff8d8012000000 0x000000046ec00000 256M PTE . .. .. D A G . . W R V
---[ vmemmap end ]---
After:
---[ vmemmap start ]---
0xffff8d8002000000-0xffff8d8012000000 0x000000046ec00000 256M PMD . .. .. D A G . . W R V
---[ vmemmap end ]---
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231214132935.212864-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Jisheng Zhang <jszhang@kernel.org> says:
Some riscv implementations such as T-HEAD's C906, C908, C910 and C920
support efficient unaligned access, for performance reason we want
to enable HAVE_EFFICIENT_UNALIGNED_ACCESS on these platforms. To
avoid performance regressions on non efficient unaligned access
platforms, HAVE_EFFICIENT_UNALIGNED_ACCESS can't be globally selected.
To solve this problem, runtime code patching based on the detected
speed is a good solution. But that's not easy, it involves lots of
work to modify vairous subsystems such as net, mm, lib and so on.
This can be done step by step.
So let's take an easier solution: add support to efficient unaligned
access and hide the support under NONPORTABLE.
patch1 introduces RISCV_EFFICIENT_UNALIGNED_ACCESS which depends on
NONPORTABLE, if users know during config time that the kernel will be
only run on those efficient unaligned access hw platforms, they can
enable it. Obviously, generic unified kernel Image shouldn't enable it.
patch2 adds support DCACHE_WORD_ACCESS when MMU and
RISCV_EFFICIENT_UNALIGNED_ACCESS.
Below test program and step shows how much performance can be improved:
$ cat tt.c
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#define ITERATIONS 1000000
#define PATH "123456781234567812345678123456781"
int main(void)
{
unsigned long i;
struct stat buf;
for (i = 0; i < ITERATIONS; i++)
stat(PATH, &buf);
return 0;
}
$ gcc -O2 tt.c
$ touch 123456781234567812345678123456781
$ time ./a.out
Per my test on T-HEAD C910 platforms, the above test performance is
improved by about 7.5%.
* b4-shazam-merge:
riscv: select DCACHE_WORD_ACCESS for efficient unaligned access HW
riscv: introduce RISCV_EFFICIENT_UNALIGNED_ACCESS
Link: https://lore.kernel.org/r/20231225044207.3821-1-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
DCACHE_WORD_ACCESS uses the word-at-a-time API for optimised string
comparisons in the vfs layer.
This patch implements support for load_unaligned_zeropad in much the
same way as has been done for arm64.
Here is the test program and step:
$ cat tt.c
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#define ITERATIONS 1000000
#define PATH "123456781234567812345678123456781"
int main(void)
{
unsigned long i;
struct stat buf;
for (i = 0; i < ITERATIONS; i++)
stat(PATH, &buf);
return 0;
}
$ gcc -O2 tt.c
$ touch 123456781234567812345678123456781
$ time ./a.out
Per my test on T-HEAD C910 platforms, the above test performance is
improved by about 7.5%.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Link: https://lore.kernel.org/r/20231225044207.3821-3-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Frederik Haxel <haxel@fzi.de> says:
XIP boot seems to be broken for some time now. A likely reason why no one
seems to have noticed this is that XIP is more difficult to test, as it is
currently not easily testable with QEMU.
These patches fix the XIP boot and allow an XIP build without BUILTIN_DTB,
which in turn makes it easier to test an image with the QEMU virt machine.
* b4-shazam-merge:
riscv: Allow disabling of BUILTIN_DTB for XIP
riscv: Fixed wrong register in XIP_FIXUP_FLASH_OFFSET macro
riscv: Make XIP bootable again
Link: https://lore.kernel.org/r/20231212130116.848530-1-haxel@fzi.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
I don't usually merge these in, but I missed sending a PR due to the
holidays.
* palmer/fixes:
riscv: Fix set_direct_map_default_noflush() to reset _PAGE_EXEC
riscv: Fix module_alloc() that did not reset the linear mapping permissions
riscv: Fix wrong usage of lm_alias() when splitting a huge linear mapping
riscv: Check if the code to patch lies in the exit section
riscv: errata: andes: Probe for IOCP only once in boot stage
riscv: Fix SMP when shadow call stacks are enabled
dt-bindings: perf: riscv,pmu: drop unneeded quotes
riscv: fix misaligned access handling of C.SWSP and C.SDSP
RISC-V: hwprobe: Always use u64 for extension bits
Support rv32 ULEB128 test
riscv: Correct type casting in module loading
riscv: Safely remove entries from relocation list
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Currently, the XIP kernel seems to fail to boot due to missing
XIP_FIXUP and a wrong page_offset value. A superfluous XIP_FIXUP
has also been removed.
Signed-off-by: Frederik Haxel <haxel@fzi.de>
Link: https://lore.kernel.org/r/20231212130116.848530-2-haxel@fzi.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When resetting the linear mapping permissions, we must make sure that we
clear the X bit so that do not end up with WX mappings (since we set
PAGE_KERNEL).
Fixes: 395a21ff85 ("riscv: add ARCH_HAS_SET_DIRECT_MAP support")
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231213134027.155327-3-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
A test [1] in Android test suite started failing after [2] was merged. It
turns out that after handling a major fault under per-VMA lock, the
process major fault counter does not register that fault as major. Before
[2] read faults would be done under mmap_lock, in which case
FAULT_FLAG_TRIED flag is set before retrying. That in turn causes
mm_account_fault() to account the fault as major once retry completes.
With per-VMA locks we often retry because a fault can't be handled without
locking the whole mm using mmap_lock. Therefore such retries do not set
FAULT_FLAG_TRIED flag. This logic does not work after [2] because we can
now handle read major faults under per-VMA lock and upon retry the fact
there was a major fault gets lost. Fix this by setting FAULT_FLAG_TRIED
after retrying under per-VMA lock if VM_FAULT_MAJOR was returned. Ideally
we would use an additional VM_FAULT bit to indicate the reason for the
retry (could not handle under per-VMA lock vs other reason) but this
simpler solution seems to work, so keeping it simple.
[1] https://cs.android.com/android/platform/superproject/+/master:test/vts-testcase/kernel/api/drop_caches_prop/drop_caches_test.cpp
[2] https://lore.kernel.org/all/20231006195318.4087158-6-willy@infradead.org/
Link: https://lkml.kernel.org/r/20231226214610.109282-1-surenb@google.com
Fixes: 12214eba19 ("mm: handle read faults under the VMA lock")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
As very well explained in commit 20a004e7b0 ("arm64: mm: Use
READ_ONCE/WRITE_ONCE when accessing page tables"), an architecture whose
page table walker can modify the PTE in parallel must use
READ_ONCE()/WRITE_ONCE() macro to avoid any compiler transformation.
So apply that to riscv which is such architecture.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Acked-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20231213203001.179237-5-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
As explained in commit 6ea529a203 ("percpu: make embedding first chunk
allocator check vmalloc space size"), the embedding first chunk allocator
needs the vmalloc space to be larger than the maximum distance between
units which are grouped into NUMA nodes.
On a very sparse NUMA configurations and a small vmalloc area (for example,
it is 64GB in sv39), the allocation of dynamic percpu data in the vmalloc
area could fail.
So provide the pcpu page allocator as a fallback in case we fall into
such a sparse configuration (which happened in arm64 as shown by
commit 09cea61950 ("arm64: support page mapping percpu first chunk
allocator")).
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
The pcpu setup when using the page allocator sets up a new vmalloc
mapping very early in the boot process, so early that it cannot use the
flush_cache_vmap() function which may depend on structures not yet
initialized (for example in riscv, we currently send an IPI to flush
other cpus TLB).
But on some architectures, we must call flush_cache_vmap(): for example,
in riscv, some uarchs can cache invalid TLB entries so we need to flush
the new established mapping to avoid taking an exception.
So fix this by introducing a new function flush_cache_vmap_early() which
is called right after setting the new page table entry and before
accessing this new mapping. This new function implements a local flush
tlb on riscv and is no-op for other architectures (same as today).
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
This is not being used to pass ops, it is just a way to tell if an
iommu driver was probed. These days this can be detected directly via
device_iommu_mapped(). Call device_iommu_mapped() in the two places that
need to check it and remove the iommu parameter everywhere.
Reviewed-by: Jerry Snitselaar <jsnitsel@redhat.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Moritz Fischer <mdf@kernel.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rob Herring <robh@kernel.org>
Tested-by: Hector Martin <marcan@marcan.st>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/1-v2-16e4def25ebb+820-iommu_fwspec_p1_jgg@nvidia.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
* Support for handling misaligned accesses in S-mode.
* Probing for misaligned access support is now properly cached and
handled in parallel.
* PTDUMP now reflects the SW reserved bits, as well as the PBMT and
NAPOT extensions.
* Performance improvements for TLB flushing.
* Support for many new relocations in the module loader.
* Various bug fixes and cleanups.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmVOUCcTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYicJ2D/9S+9dnHYHVGTeJfr9Zf2T4r+qHBPyx
LXbTAbgHN6139MgcRLMRlcUaQ04RVxuBCWhxewJ6mQiHiYNlullgKmJO8oYMS4uZ
2yQGHKhzKEVluXxe+qT6VW+zsP0cY6pDQ+e59AqZgyWzvATxMU4VtFfCDdjFG03I
k/8Y3MUKSHAKzIHUsGHiMW5J2YRiM/iVehv2gZfanreulWlK6lyiV4AZ4KChu8Sa
gix9QkFJw+9+7RHnouHvczt4xTqLPJQcdecLJsbisEI4VaaPtTVzkvXx/kwbMwX0
qkQnZ7I60fPHrCb9ccuedjDMa1Z0lrfwRldBGz9f9QaW37Eppirn6LA5JiZ1cA47
wKTwba6gZJCTRXELFTJLcv+Cwdy003E0y3iL5UK2rkbLqcxfvLdq1WAJU2t05Lmh
aRQN10BtM2DZG+SNPlLoBpXPDw0Q3KOc20zGtuhmk010+X4yOK7WXlu8zNGLLE0+
yHamiZqAbpIUIEzwDdGbb95jywR1sUhNTbScuhj4Rc79ZqLtPxty1PUhnfqFat1R
i3ngQtCbeUUYFS2YV9tKkXjLf/xkQNRbt7kQBowuvFuvfksl9UwMdRAWcE/h0M9P
7uz7cBFhuG0v/XblB7bUhYLkKITvP+ltSMyxaGlfpGqCLAH2KIztdZ2PLWLRdKeU
+9dtZSQR6oBLqQ==
=NhdR
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.7-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull more RISC-V updates from Palmer Dabbelt:
- Support for handling misaligned accesses in S-mode
- Probing for misaligned access support is now properly cached and
handled in parallel
- PTDUMP now reflects the SW reserved bits, as well as the PBMT and
NAPOT extensions
- Performance improvements for TLB flushing
- Support for many new relocations in the module loader
- Various bug fixes and cleanups
* tag 'riscv-for-linus-6.7-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (51 commits)
riscv: Optimize bitops with Zbb extension
riscv: Rearrange hwcap.h and cpufeature.h
drivers: perf: Do not broadcast to other cpus when starting a counter
drivers: perf: Check find_first_bit() return value
of: property: Add fw_devlink support for msi-parent
RISC-V: Don't fail in riscv_of_parent_hartid() for disabled HARTs
riscv: Fix set_memory_XX() and set_direct_map_XX() by splitting huge linear mappings
riscv: Don't use PGD entries for the linear mapping
RISC-V: Probe misaligned access speed in parallel
RISC-V: Remove __init on unaligned_emulation_finish()
RISC-V: Show accurate per-hart isa in /proc/cpuinfo
RISC-V: Don't rely on positional structure initialization
riscv: Add tests for riscv module loading
riscv: Add remaining module relocations
riscv: Avoid unaligned access when relocating modules
riscv: split cache ops out of dma-noncoherent.c
riscv: Improve flush_tlb_kernel_range()
riscv: Make __flush_tlb_range() loop over pte instead of flushing the whole tlb
riscv: Improve flush_tlb_range() for hugetlb pages
riscv: Improve tlb_flush()
...
* Support for cbo.zero in userspace.
* Support for CBOs on ACPI-based systems.
* A handful of improvements for the T-Head cache flushing ops.
* Support for software shadow call stacks.
* Various cleanups and fixes.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmVJAJoTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYiWZrD/9ECV/0tuX5LbS56kA0ElkwiakyIVGu
ZVuF26yGJ6w+XvwnHPhqKNVN0ReYR6s6CwH1WpHI5Du9QHZGQU3DKJ43dFMTP3Dn
dQFli7QJ+tsNo1nre8NZWKj5Ac+Cu906F794qM0q0XrZmyb9DY3ojVYJAYy+dtoo
/9gwbB7P0GLyDlURLn48oQyz36WQW3CkL5Jkfu+uYwnFe9DAFtfakIKq5mLlNuaH
PgUk8pAVhSy2GdPOGFtnFFhdXMrTjpgxdo62ZIZC0lbsts26Dxp95oUygqMg51Iy
ilaXkA2U1c1+gFQNpEove7BVZa5708Kaj6RLQ3/kAJblAzibszwQvIWlWOh7RVni
3GQAS7/0D0+0cjDwXdWaPIaFFzLfi3bDxRYkc7n59p6nOz+GrxnSNsRPQJGgYxeU
oTtJfaqWKntm72iutiHmXgx/pvAxWOHpqDnSTlDdtjvgzXCplqBbxZFF/azj30o5
jplNW5YvdvD9fviYMAoGSOz03IwDeZF5rMlAhqu6vXlyD2//mID82yw/hBluIA3+
/hLo5QfTLiUGs9nnijxMcfoyusN6AXsJOxwYdAJCIuJOr78YUj0S974gd9KvJXma
KedrwRVwW7KE7CwY1jhrWBsZEpzl8YrtpMDN47y4gRtDZN8XJMQ+lHqd+BHT/DUO
TGUCYi5xvr6Vlw==
=hKWl
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for cbo.zero in userspace
- Support for CBOs on ACPI-based systems
- A handful of improvements for the T-Head cache flushing ops
- Support for software shadow call stacks
- Various cleanups and fixes
* tag 'riscv-for-linus-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (31 commits)
RISC-V: hwprobe: Fix vDSO SIGSEGV
riscv: configs: defconfig: Enable configs required for RZ/Five SoC
riscv: errata: prefix T-Head mnemonics with th.
riscv: put interrupt entries into .irqentry.text
riscv: mm: Update the comment of CONFIG_PAGE_OFFSET
riscv: Using TOOLCHAIN_HAS_ZIHINTPAUSE marco replace zihintpause
riscv/mm: Fix the comment for swap pte format
RISC-V: clarify the QEMU workaround in ISA parser
riscv: correct pt_level name via pgtable_l5/4_enabled
RISC-V: Provide pgtable_l5_enabled on rv32
clocksource: timer-riscv: Increase rating of clock_event_device for Sstc
clocksource: timer-riscv: Don't enable/disable timer interrupt
lkdtm: Fix CFI_BACKWARD on RISC-V
riscv: Use separate IRQ shadow call stacks
riscv: Implement Shadow Call Stack
riscv: Move global pointer loading to a macro
riscv: Deduplicate IRQ stack switching
riscv: VMAP_STACK overflow detection thread-safe
RISC-V: cacheflush: Initialize CBO variables on ACPI systems
RISC-V: ACPI: RHCT: Add function to get CBO block sizes
...
Alexandre Ghiti <alexghiti@rivosinc.com> says:
Those 2 patches fix the set_memory_XX() and set_direct_map_XX() APIs, which
in turn fix STRICT_KERNEL_RWX and memfd_secret(). Those were broken since the
permission changes were not applied to the linear mapping because the linear
mapping is mapped using hugepages and walk_page_range_novma() does not split
such mappings.
To fix that, patch 1 disables PGD mappings in the linear mapping as it is
hard to propagate changes at this level in *all* the page tables, this has the
downside of disabling PMD mapping for sv32 and PUD (1GB) mapping for sv39 in
the linear mapping (for specific kernels, we could add a Kconfig to enable
ARCH_HAS_SET_DIRECT_MAP and STRICT_KERNEL_RWX if needed, I'm pretty sure we'll
discuss that).
patch 2 implements the split of the huge linear mappings so that
walk_page_range_novma() can properly apply the permissions. The whole split is
protected with mmap_sem in write mode, but I'm wondering if that's enough,
any opinion on that is appreciated.
* b4-shazam-merge:
riscv: Fix set_memory_XX() and set_direct_map_XX() by splitting huge linear mappings
riscv: Don't use PGD entries for the linear mapping
Link: https://lore.kernel.org/r/20231108075930.7157-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When STRICT_KERNEL_RWX is set, any change of permissions on any kernel
mapping (vmalloc/modules/kernel text...etc) should be applied on its
linear mapping alias. The problem is that the riscv kernel uses huge
mappings for the linear mapping and walk_page_range_novma() does not
split those huge mappings.
So this patchset implements such split in order to apply fine-grained
permissions on the linear mapping.
Below is the difference before and after (the first PUD mapping is split
into PTE/PMD mappings):
Before:
---[ Linear mapping ]---
0xffffaf8000080000-0xffffaf8000200000 0x0000000080080000 1536K PTE D A G . . W R V
0xffffaf8000200000-0xffffaf8077c00000 0x0000000080200000 1914M PMD D A G . . W R V
0xffffaf8077c00000-0xffffaf8078800000 0x00000000f7c00000 12M PMD D A G . . . R V
0xffffaf8078800000-0xffffaf8078c00000 0x00000000f8800000 4M PMD D A G . . W R V
0xffffaf8078c00000-0xffffaf8079200000 0x00000000f8c00000 6M PMD D A G . . . R V
0xffffaf8079200000-0xffffaf807e600000 0x00000000f9200000 84M PMD D A G . . W R V
0xffffaf807e600000-0xffffaf807e716000 0x00000000fe600000 1112K PTE D A G . . W R V
0xffffaf807e717000-0xffffaf807e71a000 0x00000000fe717000 12K PTE D A G . . W R V
0xffffaf807e71d000-0xffffaf807e71e000 0x00000000fe71d000 4K PTE D A G . . W R V
0xffffaf807e722000-0xffffaf807e800000 0x00000000fe722000 888K PTE D A G . . W R V
0xffffaf807e800000-0xffffaf807fe00000 0x00000000fe800000 22M PMD D A G . . W R V
0xffffaf807fe00000-0xffffaf807ff54000 0x00000000ffe00000 1360K PTE D A G . . W R V
0xffffaf807ff55000-0xffffaf8080000000 0x00000000fff55000 684K PTE D A G . . W R V
0xffffaf8080000000-0xffffaf8400000000 0x0000000100000000 14G PUD D A G . . W R V
After:
---[ Linear mapping ]---
0xffffaf8000080000-0xffffaf8000200000 0x0000000080080000 1536K PTE D A G . . W R V
0xffffaf8000200000-0xffffaf8077c00000 0x0000000080200000 1914M PMD D A G . . W R V
0xffffaf8077c00000-0xffffaf8078800000 0x00000000f7c00000 12M PMD D A G . . . R V
0xffffaf8078800000-0xffffaf8078a00000 0x00000000f8800000 2M PMD D A G . . W R V
0xffffaf8078a00000-0xffffaf8078c00000 0x00000000f8a00000 2M PTE D A G . . W R V
0xffffaf8078c00000-0xffffaf8079200000 0x00000000f8c00000 6M PMD D A G . . . R V
0xffffaf8079200000-0xffffaf807e600000 0x00000000f9200000 84M PMD D A G . . W R V
0xffffaf807e600000-0xffffaf807e716000 0x00000000fe600000 1112K PTE D A G . . W R V
0xffffaf807e717000-0xffffaf807e71a000 0x00000000fe717000 12K PTE D A G . . W R V
0xffffaf807e71d000-0xffffaf807e71e000 0x00000000fe71d000 4K PTE D A G . . W R V
0xffffaf807e722000-0xffffaf807e800000 0x00000000fe722000 888K PTE D A G . . W R V
0xffffaf807e800000-0xffffaf807fe00000 0x00000000fe800000 22M PMD D A G . . W R V
0xffffaf807fe00000-0xffffaf807ff54000 0x00000000ffe00000 1360K PTE D A G . . W R V
0xffffaf807ff55000-0xffffaf8080000000 0x00000000fff55000 684K PTE D A G . . W R V
0xffffaf8080000000-0xffffaf8080800000 0x0000000100000000 8M PMD D A G . . W R V
0xffffaf8080800000-0xffffaf8080af6000 0x0000000100800000 3032K PTE D A G . . W R V
0xffffaf8080af6000-0xffffaf8080af8000 0x0000000100af6000 8K PTE D A G . X . R V
0xffffaf8080af8000-0xffffaf8080c00000 0x0000000100af8000 1056K PTE D A G . . W R V
0xffffaf8080c00000-0xffffaf8081a00000 0x0000000100c00000 14M PMD D A G . . W R V
0xffffaf8081a00000-0xffffaf8081a40000 0x0000000101a00000 256K PTE D A G . . W R V
0xffffaf8081a40000-0xffffaf8081a44000 0x0000000101a40000 16K PTE D A G . X . R V
0xffffaf8081a44000-0xffffaf8081a52000 0x0000000101a44000 56K PTE D A G . . W R V
0xffffaf8081a52000-0xffffaf8081a54000 0x0000000101a52000 8K PTE D A G . X . R V
...
0xffffaf809e800000-0xffffaf80c0000000 0x000000011e800000 536M PMD D A G . . W R V
0xffffaf80c0000000-0xffffaf8400000000 0x0000000140000000 13G PUD D A G . . W R V
Note that this also fixes memfd_secret() syscall which uses
set_direct_map_invalid_noflush() and set_direct_map_default_noflush() to
remove the pages from the linear mapping. Below is the kernel page table
while a memfd_secret() syscall is running, you can see all the !valid
page table entries in the linear mapping:
...
0xffffaf8082240000-0xffffaf8082241000 0x0000000102240000 4K PTE D A G . . W R .
0xffffaf8082241000-0xffffaf8082250000 0x0000000102241000 60K PTE D A G . . W R V
0xffffaf8082250000-0xffffaf8082252000 0x0000000102250000 8K PTE D A G . . W R .
0xffffaf8082252000-0xffffaf8082256000 0x0000000102252000 16K PTE D A G . . W R V
0xffffaf8082256000-0xffffaf8082257000 0x0000000102256000 4K PTE D A G . . W R .
0xffffaf8082257000-0xffffaf8082258000 0x0000000102257000 4K PTE D A G . . W R V
0xffffaf8082258000-0xffffaf8082259000 0x0000000102258000 4K PTE D A G . . W R .
0xffffaf8082259000-0xffffaf808225a000 0x0000000102259000 4K PTE D A G . . W R V
0xffffaf808225a000-0xffffaf808225c000 0x000000010225a000 8K PTE D A G . . W R .
0xffffaf808225c000-0xffffaf8082266000 0x000000010225c000 40K PTE D A G . . W R V
0xffffaf8082266000-0xffffaf8082268000 0x0000000102266000 8K PTE D A G . . W R .
0xffffaf8082268000-0xffffaf8082284000 0x0000000102268000 112K PTE D A G . . W R V
0xffffaf8082284000-0xffffaf8082288000 0x0000000102284000 16K PTE D A G . . W R .
0xffffaf8082288000-0xffffaf808229c000 0x0000000102288000 80K PTE D A G . . W R V
0xffffaf808229c000-0xffffaf80822a0000 0x000000010229c000 16K PTE D A G . . W R .
0xffffaf80822a0000-0xffffaf80822a5000 0x00000001022a0000 20K PTE D A G . . W R V
0xffffaf80822a5000-0xffffaf80822a6000 0x00000001022a5000 4K PTE D A G . . . R V
0xffffaf80822a6000-0xffffaf80822ab000 0x00000001022a6000 20K PTE D A G . . W R V
...
And when the memfd_secret() fd is released, the linear mapping is
correctly reset:
...
0xffffaf8082240000-0xffffaf80822a5000 0x0000000102240000 404K PTE D A G . . W R V
0xffffaf80822a5000-0xffffaf80822a6000 0x00000001022a5000 4K PTE D A G . . . R V
0xffffaf80822a6000-0xffffaf80822af000 0x00000001022a6000 36K PTE D A G . . W R V
...
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231108075930.7157-3-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Propagating changes at this level is cumbersome as we need to go through
all the page tables when that happens (either when changing the
permissions or when splitting the mapping).
Note that this prevents the use of 4MB mapping for sv32 and 1GB mapping for
sv39 in the linear mapping.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231108075930.7157-2-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>