mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
synced 2025-09-03 17:51:23 +00:00
loongarch-next
4884 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
30431774fe |
Merge branch 'for-next/rip-vpipt' into for-next/core
* for-next/rip-vpipt: arm64: Rename reserved values for CTR_EL0.L1Ip arm64: Kill detection of VPIPT i-cache policy KVM: arm64: Remove VPIPT I-cache handling |
||
![]() |
3b47bd8fed |
Merge branch 'for-next/mm' into for-next/core
* for-next/mm: arm64: irq: set the correct node for shadow call stack arm64: irq: set the correct node for VMAP stack |
||
![]() |
ccaeeec529 |
Merge branch 'for-next/lpa2-prep' into for-next/core
* for-next/lpa2-prep: arm64: mm: get rid of kimage_vaddr global variable arm64: mm: Take potential load offset into account when KASLR is off arm64: kernel: Disable latent_entropy GCC plugin in early C runtime arm64: Add ARM64_HAS_LPA2 CPU capability arm64/mm: Add FEAT_LPA2 specific ID_AA64MMFR0.TGRAN[2] arm64/mm: Update tlb invalidation routines for FEAT_LPA2 arm64/mm: Add lpa2_is_enabled() kvm_lpa2_is_enabled() stubs arm64/mm: Modify range-based tlbi to decrement scale |
||
![]() |
88619527b4 |
Merge branch 'for-next/kbuild' into for-next/core
* for-next/kbuild: efi/libstub: zboot: do not use $(shell ...) in cmd_copy_and_pad arm64: properly install vmlinuz.efi arm64: replace <asm-generic/export.h> with <linux/export.h> arm64: vdso32: rename 32-bit debug vdso to vdso32.so.dbg |
||
![]() |
79eb42b269 |
Merge branch 'for-next/fpsimd' into for-next/core
* for-next/fpsimd: arm64: fpsimd: Implement lazy restore for kernel mode FPSIMD arm64: fpsimd: Preserve/restore kernel mode NEON at context switch arm64: fpsimd: Drop unneeded 'busy' flag |
||
![]() |
e90a8a210f |
Merge branch 'for-next/early-idreg-overrides' into for-next/core
* for-next/early-idreg-overrides: arm64/kernel: Move 'nokaslr' parsing out of early idreg code arm64: idreg-override: Avoid kstrtou64() to parse a single hex digit arm64: idreg-override: Avoid sprintf() for simple string concatenation arm64: idreg-override: avoid strlen() to check for empty strings arm64: idreg-override: Avoid parameq() and parameqn() arm64: idreg-override: Prepare for place relative reloc patching arm64: idreg-override: Omit non-NULL checks for override pointer |
||
![]() |
932562a604 |
rseq: Split out rseq.h from sched.h
We're trying to get sched.h down to more or less just types only, not code - rseq can live in its own header. This helps us kill the dependency on preempt.h in sched.h. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> |
||
![]() |
1f023007f5 |
arm64/amu: Use capacity_ref_freq() to set AMU ratio
Use the new capacity_ref_freq() method to set the ratio that is used by AMU for computing the arch_scale_freq_capacity(). This helps to keep everything aligned using the same reference for computing CPUs capacity. The default value of the ratio (stored in per_cpu(arch_max_freq_scale)) ensures that arch_scale_freq_capacity() returns max capacity until it is set to its correct value with the cpu capacity and capacity_ref_freq(). Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20231211104855.558096-8-vincent.guittot@linaro.org |
||
![]() |
6f8c1da071 |
kexec_file, arm64: print out debugging message if required
Then when specifying '-d' for kexec_file_load interface, loaded locations of kernel/initrd/cmdline etc can be printed out to help debug. Here replace pr_debug() with the newly added kexec_dprintk() in kexec_file loading related codes. And also remove the kimage->segment[] printing because the generic code has done the printing. Link: https://lkml.kernel.org/r/20231213055747.61826-5-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Conor Dooley <conor@kernel.org> Cc: Joe Perches <joe@perches.com> Cc: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
d016264d07 |
Merge branch kvm-arm64/nv-6.8-prefix into kvmarm-master/next
* kvm-arm64/nv-6.8-prefix: : . : Nested Virtualization support update, focussing on the : NV2 support (VNCR mapping and such). : . KVM: arm64: nv: Handle virtual EL2 registers in vcpu_read/write_sys_reg() KVM: arm64: nv: Map VNCR-capable registers to a separate page KVM: arm64: nv: Add EL2_REG_VNCR()/EL2_REG_REDIR() sysreg helpers KVM: arm64: Introduce a bad_trap() primitive for unexpected trap handling KVM: arm64: nv: Add include containing the VNCR_EL2 offsets KVM: arm64: nv: Add non-VHE-EL2->EL1 translation helpers KVM: arm64: nv: Drop EL12 register traps that are redirected to VNCR KVM: arm64: nv: Compute NV view of idregs as a one-off KVM: arm64: nv: Hoist vcpu_has_nv() into is_hyp_ctxt() arm64: cpufeatures: Restrict NV support to FEAT_NV2 Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
2bfc654b89 |
arm64: cpufeatures: Restrict NV support to FEAT_NV2
To anyone who has played with FEAT_NV, it is obvious that the level of performance is rather low due to the trap amplification that it imposes on the host hypervisor. FEAT_NV2 solves a number of the problems that FEAT_NV had. It also turns out that all the existing hardware that has FEAT_NV also has FEAT_NV2. Finally, it is now allowed by the architecture to build FEAT_NV2 *only* (as denoted by ID_AA64MMFR4_EL1.NV_frac), which effectively seals the fate of FEAT_NV. Restrict the NV support to NV2, and be done with it. Nobody will cry over the old crap. NV_frac will eventually be supported once the intrastructure is ready. Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
eb15d707c2 |
arm64: Align boot cpucap handling with system cpucap handling
Currently the detection+enablement of boot cpucaps is separate from the patching of boot cpucap alternatives, which means there's a period where cpus_have_cap($CAP) and alternative_has_cap($CAP) may be mismatched. It would be preferable to manage the boot cpucaps in the same way as the system cpucaps, both for clarity and to minimize the risk of accidental usage of code relying upon an alternative which has not yet been patched. This patch aligns the handling of boot cpucaps with the handling of system cpucaps: * The existing setup_boot_cpu_capabilities() function is moved to be closer to the setup_system_capabilities() and setup_system_features() functions so that they're more clearly related and more likely to be updated together in future. * The patching of boot cpucap alternatives is moved into setup_boot_cpu_capabilities(), immediately after boot cpucaps are detected and enabled. * A new setup_boot_cpu_features() function is added to mirror setup_system_features(); this handles initialization of cpucap data structures and calls setup_boot_cpu_capabilities(). This makes init_cpu_features() a closer mirror to update_cpu_features(), and makes smp_prepare_boot_cpu() a closer mirror to smp_cpus_done(). Importantly, while these changes alter the structure of the code, they retain the existing order of calls to: init_cpu_features(); // prefix initializing feature regs init_cpucap_indirect_list(); detect_system_supports_pseudo_nmi(); update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); enable_cpu_capabilities(SCOPE_BOOT_CPU); apply_boot_alternatives(); ... and hence there should be no functional change as a result of this patch; this is purely a structural cleanup. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20231212170910.3745497-3-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
63a2d92e14 |
arm64: Cleanup system cpucap handling
Recent changes to remove cpus_have_const_cap() introduced new users of cpus_have_cap() in the period between detecting system cpucaps and patching alternatives. It would be preferable to defer these until after the relevant cpucaps have been patched so that these can use the usual feature check helper functions, which is clearer and has less risk of accidental usage of code relying upon an alternative which has not yet been patched. This patch reworks the system-wide cpucap detection and patching to minimize this transient period: * The detection, enablement, and patching of system cpucaps is moved into a new setup_system_capabilities() function so that these can be grouped together more clearly, with no other functions called in the period between detection and patching. This is called from setup_system_features() before the subsequent checks that depend on the cpucaps. The logging of TTBR0 PAN and cpucaps with a mask is also moved here to keep these as close as possible to update_cpu_capabilities(). At the same time, comments are corrected and improved to make the intent clearer. * As hyp_mode_check() only tests system register values (not hwcaps) and must be called prior to patching, the call to hyp_mode_check() is moved before the call to setup_system_features(). * In setup_system_features(), the use of system_uses_ttbr0_pan() is restored, now that this occurs after alternatives are patched. This is a partial revert of commit: |
||
![]() |
7b1a09e44d |
arm64: irq: set the correct node for shadow call stack
The init_irq_stacks() has been changed to use the correct node: https://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git/commit/?id=75b5e0bf90bf The init_irq_scs() has the same issue with init_irq_stacks(): cpu_to_node() is not initialized yet, it does not work. This patch uses early_cpu_to_node() to set the init_irq_scs() with the correct node. Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20231213012046.12014-1-shijie@os.amperecomputing.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
2632e25217 |
arm64: fpsimd: Implement lazy restore for kernel mode FPSIMD
Now that kernel mode FPSIMD state is context switched along with other task state, we can enable the existing logic that keeps track of which task's FPSIMD state the CPU is holding in its registers. If it is the context of the task that we are switching to, we can elide the reload of the FPSIMD state from memory. Note that we also need to check whether the FPSIMD state on this CPU is the most recent: if a task gets migrated away and back again, the state in memory may be more recent than the state in the CPU. So add another CPU id field to task_struct to keep track of this. (We could reuse the existing CPU id field used for user mode context, but that might result in user state to be discarded unnecessarily, given that two distinct CPUs could be holding the most recent user mode state and the most recent kernel mode state) Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20231208113218.3001940-9-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
aefbab8e77 |
arm64: fpsimd: Preserve/restore kernel mode NEON at context switch
Currently, the FPSIMD register file is not preserved and restored along with the general registers on exception entry/exit or context switch. For this reason, we disable preemption when enabling FPSIMD for kernel mode use in task context, and suspend the processing of softirqs so that there are no concurrent uses in the kernel. (Kernel mode FPSIMD may not be used at all in other contexts). Disabling preemption while doing CPU intensive work on inputs of potentially unbounded size is bad for real-time performance, which is why we try and ensure that SIMD crypto code does not operate on more than ~4k at a time, which is an arbitrary limit and requires assembler code to implement efficiently. We can avoid the need for disabling preemption if we can ensure that any in-kernel users of the NEON will not lose the FPSIMD register state across a context switch. And given that disabling softirqs implicitly disables preemption as well, we will also have to ensure that a softirq that runs code using FPSIMD can safely interrupt an in-kernel user. So introduce a thread_info flag TIF_KERNEL_FPSTATE, and modify the context switch hook for FPSIMD to preserve and restore the kernel mode FPSIMD to/from struct thread_struct when it is set. This avoids any scheduling blackouts due to prolonged use of FPSIMD in kernel mode, without the need for manual yielding. In order to support softirq processing while FPSIMD is being used in kernel task context, use the same flag to decide whether the kernel mode FPSIMD state needs to be preserved and restored before allowing FPSIMD to be used in softirq context. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20231208113218.3001940-8-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
9b19700e62 |
arm64: fpsimd: Drop unneeded 'busy' flag
Kernel mode NEON will preserve the user mode FPSIMD state by saving it
into the task struct before clobbering the registers. In order to avoid
the need for preserving kernel mode state too, we disallow nested use of
kernel mode NEON, i..e, use in softirq context while the interrupted
task context was using kernel mode NEON too.
Originally, this policy was implemented using a per-CPU flag which was
exposed via may_use_simd(), requiring the users of the kernel mode NEON
to deal with the possibility that it might return false, and having NEON
and non-NEON code paths. This policy was changed by commit
|
||
![]() |
50f176175e |
arm64/kernel: Move 'nokaslr' parsing out of early idreg code
Parsing and ignoring 'nokaslr' can be done from anywhere, except from the code that runs very early and is therefore built with limitations on the kind of relocations it is permitted to use. So move it to a source file that is part of the ordinary kernel build. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20231129111555.3594833-63-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
ea48626f8f |
arm64: idreg-override: Avoid kstrtou64() to parse a single hex digit
All ID register value overrides are =0 with the exception of the nokaslr pseudo feature which uses =1. In order to remove the dependency on kstrtou64(), which is part of the core kernel and no longer usable once we move idreg-override into the early mini C runtime, let's just parse a single hex digit (with optional leading 0x) and set the output value accordingly. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20231129111555.3594833-62-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
060260a6be |
arm64: idreg-override: Avoid sprintf() for simple string concatenation
Instead of using sprintf() with the "%s.%s=" format, where the first string argument is always the same in the inner loop of match_options(), use simple memcpy() for string concatenation, and move the first copy to the outer loop. This removes the dependency on sprintf(), which will be difficult to fulfil when we move this code into the early mini C runtime. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20231129111555.3594833-61-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
bcf1eed3f8 |
arm64: idreg-override: avoid strlen() to check for empty strings
strlen() is a costly way to decide whether a string is empty, as in that case, the first character will be NUL so we can check for that directly. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20231129111555.3594833-60-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
dc3f5aae06 |
arm64: idreg-override: Avoid parameq() and parameqn()
The only way parameq() and parameqn() deviate from the ordinary string and memory routines is that they ignore the difference between dashes and underscores. Since we copy each command line argument into a buffer before passing it to parameq() and parameqn() numerous times, let's just convert all dashes to underscores just once, and update the alias array accordingly. This also helps reduce the dependency on kernel APIs that are no longer available once we move this code into the early mini C runtime. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20231129111555.3594833-59-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
01fd29092a |
arm64: idreg-override: Prepare for place relative reloc patching
The ID reg override handling code uses a rather elaborate data structure that relies on statically initialized absolute address values in pointer fields. This means that this code cannot run until relocation fixups have been applied, and this is unfortunate, because it means we cannot discover overrides for KASLR or LVA/LPA without creating the kernel mapping and performing the relocations first. This can be solved by switching to place-relative relocations, which can be applied by the linker at build time. This means some additional arithmetic is required when dereferencing these pointers, as we can no longer dereference the pointer members directly. So let's implement this for idreg-override.c in a preliminary way, i.e., convert all the references in code to use a special accessor that produces the correct absolute value at runtime. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20231129111555.3594833-58-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
cbc59c9a4e |
arm64: idreg-override: Omit non-NULL checks for override pointer
Now that override pointers are always set, we can drop the various non-NULL checks that we have in the code. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20231129111555.3594833-57-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
376f5a3bd7 |
arm64: mm: get rid of kimage_vaddr global variable
We store the address of _text in kimage_vaddr, but since commit
|
||
![]() |
3dfdc2750c |
arm64: kernel: Disable latent_entropy GCC plugin in early C runtime
In subsequent patches, mark portions of the early C code will be marked as __init. Unfortunarely, __init implies __latent_entropy, and this would result in the early C code being instrumented in an unsafe manner. Disable the latent entropy plugin for the early C code. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20231129111555.3594833-44-ardb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
1aba06e7b2 |
arm64: stacktrace: factor out kunwind_stack_walk()
Currently arm64 uses the generic arch_stack_walk() interface for all stack walking code. This only passes a PC value and cookie to the unwind callback, whereas we'd like to pass some additional information in some cases. For example, the BPF exception unwinder wants the FP, for reliable stacktrace we'll want to perform additional checks on other portions of unwind state, and we'd like to expand the information printed by dump_backtrace() to include provenance and reliability information. As preparation for all of the above, this patch factors the core unwind logic out of arch_stack_walk() and into a new kunwind_stack_walk() function which provides all of the unwind state to a callback function. The existing arch_stack_walk() interface is implemented atop this. The kunwind_stack_walk() function is intended to be a private implementation detail of unwinders in stacktrace.c, and not something to be exported generally to kernel code. It is __always_inline'd into its caller so that neither it or its caller appear in stactraces (which is the existing/required behavior for arch_stack_walk() and friends) and so that the compiler can optimize away some of the indirection. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Mark Brown <broonie@kernel.org> Cc: Puranjay Mohan <puranjay12@gmail.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20231124110511.2795958-3-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
1beef60e7d |
arm64: stacktrace: factor out kernel unwind state
On arm64 we share some unwinding code between the regular kernel unwinder and the KVM hyp unwinder. Some of this common code only matters to the regular unwinder, e.g. the `kr_cur` and `task` fields in the common struct unwind_state. We're likely to add more state which only matters for regular kernel unwinding (or only for hyp unwinding). In preparation for such changes, this patch factors out the kernel-specific state into a new struct kunwind_state, and updates the kernel unwind code accordingly. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Mark Brown <broonie@kernel.org> Cc: Puranjay Mohan <puranjay12@gmail.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Puranjay Mohan <puranjay12@gmail.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20231124110511.2795958-2-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
092cfbc6b5 |
arm64: convert to arch_cpu_is_hotpluggable()
Convert arm64 to use the arch_cpu_is_hotpluggable() helper rather than arch_register_cpu(). Reviewed-by: Shaoqin Huang <shahuang@redhat.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: "Russell King (Oracle)" <rmk+kernel@armlinux.org.uk> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/E1r5R3g-00Cszg-PP@rmk-PC.armlinux.org.uk Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
d127db1a23 |
arm64: setup: Switch over to GENERIC_CPU_DEVICES using arch_register_cpu()
To allow ACPI's _STA value to hide CPUs that are present, but not available to online right now due to VMM or firmware policy, the register_cpu() call needs to be made by the ACPI machinery when ACPI is in use. This allows it to hide CPUs that are unavailable from sysfs. Switching to GENERIC_CPU_DEVICES is an intermediate step to allow all five ACPI architectures to be modified at once. Switch over to GENERIC_CPU_DEVICES, and provide an arch_register_cpu() that populates the hotpluggable flag. arch_register_cpu() is also the interface the ACPI machinery expects. The struct cpu in struct cpuinfo_arm64 is never used directly, remove it to use the one GENERIC_CPU_DEVICES provides. This changes the CPUs visible in sysfs from possible to present, but on arm64 smp_prepare_cpus() ensures these are the same. This patch also has the effect of moving the registration of CPUs from subsys to driver core initialisation, prior to any initcalls running. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: "Russell King (Oracle)" <rmk+kernel@armlinux.org.uk> Reviewed-by: Shaoqin Huang <shahuang@redhat.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: "Russell King (Oracle)" <rmk+kernel@armlinux.org.uk> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/E1r5R3b-00Csza-Ku@rmk-PC.armlinux.org.uk Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
75b5e0bf90 |
arm64: irq: set the correct node for VMAP stack
In current code, init_irq_stacks() will call cpu_to_node(). The cpu_to_node() depends on percpu "numa_node" which is initialized in: arch_call_rest_init() --> rest_init() -- kernel_init() --> kernel_init_freeable() --> smp_prepare_cpus() But init_irq_stacks() is called in init_IRQ() which is before arch_call_rest_init(). So in init_irq_stacks(), the cpu_to_node() does not work, it always return 0. In NUMA, it makes the node 1 cpu accesses the IRQ stack which is in the node 0. This patch fixes it by: 1.) export the early_cpu_to_node(), and use it in the init_irq_stacks(). 2.) change init_irq_stacks() to __init function. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com> Link: https://lore.kernel.org/r/20231124031513.81548-1-shijie@os.amperecomputing.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
103423ad7e |
arm64: Get rid of ARM64_HAS_NO_HW_PREFETCH
Back in 2016, it was argued that implementations lacking a HW prefetcher could be helped by sprinkling a number of PRFM instructions in strategic locations. In 2023, the one platform that presumably needed this hack is no longer in active use (let alone maintained), and an quick experiment shows dropping this hack only leads to a 0.4% drop on a full kernel compilation (tested on a MT30-GS0 48 CPU system). Given that this is pretty much in the noise department and that it may give odd ideas to other implementers, drop the hack for good. Suggested-by: Will Deacon <will@kernel.org> Suggested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20231122133754.1240687-1-maz@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
a099bec7a8 |
arm64: vdso32: rename 32-bit debug vdso to vdso32.so.dbg
'make vdso_install' renames arch/arm64/kernel/vdso32/vdso.so.dbg to vdso32.so during installation, which allows 64-bit and 32-bit vdso files to be installed in the same directory. However, arm64 is the only architecture that requires this renaming. To simplify the vdso_install logic, rename the in-tree vdso file so its base name matches the installed file name. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Link: https://lore.kernel.org/r/20231117125620.1058300-1-masahiroy@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d8e12a0d37 |
arm64: Kill detection of VPIPT i-cache policy
Since the kernel will never run on a system with the VPIPT i-cache policy, drop the detection code altogether. Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20231204143606.1806432-3-maz@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
f5259997f3 |
arm64: Avoid enabling KPTI unnecessarily
Commit |
||
![]() |
7192ad2add |
arm64: vdso32: Define BUILD_VDSO32_64 to correct prototypes
After commit |
||
![]() |
b1366d21da |
arm64: Add ARM64_HAS_LPA2 CPU capability
Expose FEAT_LPA2 as a capability so that we can take advantage of alternatives patching in the hypervisor. Although FEAT_LPA2 presence is advertised separately for stage1 and stage2, the expectation is that in practice both stages will either support or not support it. Therefore, we combine both into a single capability, allowing us to simplify the implementation. KVM requires support in both stages in order to use LPA2 since the same library is used for hyp stage 1 and guest stage 2 pgtables. Reviewed-by: Oliver Upton <oliver.upton@linux.dev> Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20231127111737.1897081-6-ryan.roberts@arm.com |
||
![]() |
42874e4eb3 |
arch: vdso: consolidate gettime prototypes
The VDSO functions are defined as globals in the kernel sources but intended to be called from userspace, so there is no need to declare them in a kernel side header. Without a prototype, this now causes warnings such as arch/mips/vdso/vgettimeofday.c:14:5: error: no previous prototype for '__vdso_clock_gettime' [-Werror=missing-prototypes] arch/mips/vdso/vgettimeofday.c:28:5: error: no previous prototype for '__vdso_gettimeofday' [-Werror=missing-prototypes] arch/mips/vdso/vgettimeofday.c:36:5: error: no previous prototype for '__vdso_clock_getres' [-Werror=missing-prototypes] arch/mips/vdso/vgettimeofday.c:42:5: error: no previous prototype for '__vdso_clock_gettime64' [-Werror=missing-prototypes] arch/sparc/vdso/vclock_gettime.c:254:1: error: no previous prototype for '__vdso_clock_gettime' [-Werror=missing-prototypes] arch/sparc/vdso/vclock_gettime.c:282:1: error: no previous prototype for '__vdso_clock_gettime_stick' [-Werror=missing-prototypes] arch/sparc/vdso/vclock_gettime.c:307:1: error: no previous prototype for '__vdso_gettimeofday' [-Werror=missing-prototypes] arch/sparc/vdso/vclock_gettime.c:343:1: error: no previous prototype for '__vdso_gettimeofday_stick' [-Werror=missing-prototypes] Most architectures have already added workarounds for these by adding declarations somewhere, but since these are all compatible, we should really just have one copy, with an #ifdef check for the 32-bit vs 64-bit variant and use that everywhere. Unfortunately, the sparc an um versions are currently incompatible since they never added support for __vdso_clock_gettime64() in 32-bit userland. For the moment, I'm leaving this one out, as I can't easily test it and it requires a larger rework. Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
![]() |
ac347a0655 |
arm64 fixes:
- Move the MediaTek GIC quirk handling from irqchip to core. Before the merging window commit |
||
![]() |
4bb49009e0 |
Revert "arm64: smp: avoid NMI IPIs with broken MediaTek FW"
This reverts commit
|
||
![]() |
1d816ba168 |
arm64: Move MediaTek GIC quirk handling from irqchip to core
In commit |
||
![]() |
5c5e048b24 |
Kbuild updates for v6.7
- Implement the binary search in modpost for faster symbol lookup - Respect HOSTCC when linking host programs written in Rust - Change the binrpm-pkg target to generate kernel-devel RPM package - Fix endianness issues for tee and ishtp MODULE_DEVICE_TABLE - Unify vdso_install rules - Remove unused __memexit* annotations - Eliminate stale whitelisting for __devinit/__devexit from modpost - Enable dummy-tools to handle the -fpatchable-function-entry flag - Add 'userldlibs' syntax -----BEGIN PGP SIGNATURE----- iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmVFIZgVHG1hc2FoaXJv eUBrZXJuZWwub3JnAAoJED2LAQed4NsGeKwP+wd2kCrxAgS4zPffOcO3cVHfZwJe AXOrTp/v73gzxb9eHXH6TmEDf1Rv7EwW3fmmGJosopJGD6itBqzJa4bNDrbq40rY XStmg0NRmTrIG20CHGgaGWxb8/7WMrYfu0rhFdUXJjmbny6XwJ3US9FvDPC0mZz7 w9VCq5CZOqMsJcQyGkAR7uCHDRzNWiZ/Vnfbz3aa6abFzp7dsjhOgDy5SQ6qZgQz AwHHKNEN+G3HWmGDZqcbV9aDaCk4btnz64h843RAxjy2HNJF360Ohm2KOcdJr5lo DSSStkogBkZNSRQPtqtfknDjzITjeF4JAnUw5ivOtt8ERaO3JRUcr5gHjfw5iV/n o4pC1SXmFzdfoN4dogoYF9rz3j955mSFlT/DSbSbuQS/ELzQs0nsqERxhV4zNCsX KvYPUqKzZLW3i8pHNuhh7z7t4Nbz1zXqUa19FvaLNtFTCtS8/IA868a59S0uqT9I EAIqrNy9qAsk8UuQUxWVx0qf9f5wKGYxW62iMIF9F2lsFRWA8H588CFPUuSU9Bhk KAsvzq249MUGJd0RAjF92EWJgNz/nYzZfFTEL5HKAVauYY5UCyR3AVjrak761I8z ctVskA7eVkaW4eARfcp15Fna15FHVzxBJ3B26oKYIJBQfJLjzZcV8XeMtEcQjEGU jzl+oRqB/Q3oD7Nx =PeX7 -----END PGP SIGNATURE----- Merge tag 'kbuild-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Implement the binary search in modpost for faster symbol lookup - Respect HOSTCC when linking host programs written in Rust - Change the binrpm-pkg target to generate kernel-devel RPM package - Fix endianness issues for tee and ishtp MODULE_DEVICE_TABLE - Unify vdso_install rules - Remove unused __memexit* annotations - Eliminate stale whitelisting for __devinit/__devexit from modpost - Enable dummy-tools to handle the -fpatchable-function-entry flag - Add 'userldlibs' syntax * tag 'kbuild-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (30 commits) kbuild: support 'userldlibs' syntax kbuild: dummy-tools: pretend we understand -fpatchable-function-entry kbuild: Correct missing architecture-specific hyphens modpost: squash ALL_{INIT,EXIT}_TEXT_SECTIONS to ALL_TEXT_SECTIONS modpost: merge sectioncheck table entries regarding init/exit sections modpost: use ALL_INIT_SECTIONS for the section check from DATA_SECTIONS modpost: disallow the combination of EXPORT_SYMBOL and __meminit* modpost: remove EXIT_SECTIONS macro modpost: remove MEM_INIT_SECTIONS macro modpost: remove more symbol patterns from the section check whitelist modpost: disallow *driver to reference .meminit* sections linux/init: remove __memexit* annotations modpost: remove ALL_EXIT_DATA_SECTIONS macro kbuild: simplify cmd_ld_multi_m kbuild: avoid too many execution of scripts/pahole-flags.sh kbuild: remove ARCH_POSTLINK from module builds kbuild: unify no-compiler-targets and no-sync-config-targets kbuild: unify vdso_install rules docs: kbuild: add INSTALL_DTBS_PATH UML: remove unused cmd_vdso_install ... |
||
![]() |
1f24458a10 |
TTY/Serial changes for 6.7-rc1
Here is the big set of tty/serial driver changes for 6.7-rc1. Included in here are: - console/vgacon cleanups and removals from Arnd - tty core and n_tty cleanups from Jiri - lots of 8250 driver updates and cleanups - sc16is7xx serial driver updates - dt binding updates - first set of port lock wrapers from Thomas for the printk fixes coming in future releases - other small serial and tty core cleanups and updates All of these have been in linux-next for a while with no reported issues. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZUTbaw8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+yk9+gCeKdoRb8FDwGCO/GaoHwR4EzwQXhQAoKXZRmN5 LTtw9sbfGIiBdOTtgLPb =6PJr -----END PGP SIGNATURE----- Merge tag 'tty-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty Pull tty and serial updates from Greg KH: "Here is the big set of tty/serial driver changes for 6.7-rc1. Included in here are: - console/vgacon cleanups and removals from Arnd - tty core and n_tty cleanups from Jiri - lots of 8250 driver updates and cleanups - sc16is7xx serial driver updates - dt binding updates - first set of port lock wrapers from Thomas for the printk fixes coming in future releases - other small serial and tty core cleanups and updates All of these have been in linux-next for a while with no reported issues" * tag 'tty-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (193 commits) serdev: Replace custom code with device_match_acpi_handle() serdev: Simplify devm_serdev_device_open() function serdev: Make use of device_set_node() tty: n_gsm: add copyright Siemens Mobility GmbH tty: n_gsm: fix race condition in status line change on dead connections serial: core: Fix runtime PM handling for pending tx vgacon: fix mips/sibyte build regression dt-bindings: serial: drop unsupported samsung bindings tty: serial: samsung: drop earlycon support for unsupported platforms tty: 8250: Add note for PX-835 tty: 8250: Fix IS-200 PCI ID comment tty: 8250: Add Brainboxes Oxford Semiconductor-based quirks tty: 8250: Add support for Intashield IX cards tty: 8250: Add support for additional Brainboxes PX cards tty: 8250: Fix up PX-803/PX-857 tty: 8250: Fix port count of PX-257 tty: 8250: Add support for Intashield IS-100 tty: 8250: Add support for Brainboxes UP cards tty: 8250: Add support for additional Brainboxes UC cards tty: 8250: Remove UC-257 and UC-431 ... |
||
![]() |
ecae0bd517 |
Many singleton patches against the MM code. The patch series which are
included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ... |
||
![]() |
6803bd7956 |
ARM:
* Generalized infrastructure for 'writable' ID registers, effectively allowing userspace to opt-out of certain vCPU features for its guest * Optimization for vSGI injection, opportunistically compressing MPIDR to vCPU mapping into a table * Improvements to KVM's PMU emulation, allowing userspace to select the number of PMCs available to a VM * Guest support for memory operation instructions (FEAT_MOPS) * Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing bugs and getting rid of useless code * Changes to the way the SMCCC filter is constructed, avoiding wasted memory allocations when not in use * Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing the overhead of errata mitigations * Miscellaneous kernel and selftest fixes LoongArch: * New architecture. The hardware uses the same model as x86, s390 and RISC-V, where guest/host mode is orthogonal to supervisor/user mode. The virtualization extensions are very similar to MIPS, therefore the code also has some similarities but it's been cleaned up to avoid some of the historical bogosities that are found in arch/mips. The kernel emulates MMU, timer and CSR accesses, while interrupt controllers are only emulated in userspace, at least for now. RISC-V: * Support for the Smstateen and Zicond extensions * Support for virtualizing senvcfg * Support for virtualized SBI debug console (DBCN) S390: * Nested page table management can be monitored through tracepoints and statistics x86: * Fix incorrect handling of VMX posted interrupt descriptor in KVM_SET_LAPIC, which could result in a dropped timer IRQ * Avoid WARN on systems with Intel IPI virtualization * Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs without forcing more common use cases to eat the extra memory overhead. * Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and SBPB, aka Selective Branch Predictor Barrier). * Fix a bug where restoring a vCPU snapshot that was taken within 1 second of creating the original vCPU would cause KVM to try to synchronize the vCPU's TSC and thus clobber the correct TSC being set by userspace. * Compute guest wall clock using a single TSC read to avoid generating an inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads. * "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain about a "Firmware Bug" if the bit isn't set for select F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to appease Windows Server 2022. * Don't apply side effects to Hyper-V's synthetic timer on writes from userspace to fix an issue where the auto-enable behavior can trigger spurious interrupts, i.e. do auto-enabling only for guest writes. * Remove an unnecessary kick of all vCPUs when synchronizing the dirty log without PML enabled. * Advertise "support" for non-serializing FS/GS base MSR writes as appropriate. * Harden the fast page fault path to guard against encountering an invalid root when walking SPTEs. * Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n. * Use the fast path directly from the timer callback when delivering Xen timer events, instead of waiting for the next iteration of the run loop. This was not done so far because previously proposed code had races, but now care is taken to stop the hrtimer at critical points such as restarting the timer or saving the timer information for userspace. * Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag. * Optimize injection of PMU interrupts that are simultaneous with NMIs. * Usual handful of fixes for typos and other warts. x86 - MTRR/PAT fixes and optimizations: * Clean up code that deals with honoring guest MTRRs when the VM has non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled. * Zap EPT entries when non-coherent DMA assignment stops/start to prevent using stale entries with the wrong memtype. * Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y. This was done as a workaround for virtual machine BIOSes that did not bother to clear CR0.CD (because ancient KVM/QEMU did not bother to set it, in turn), and there's zero reason to extend the quirk to also ignore guest PAT. x86 - SEV fixes: * Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while running an SEV-ES guest. * Clean up the recognition of emulation failures on SEV guests, when KVM would like to "skip" the instruction but it had already been partially emulated. This makes it possible to drop a hack that second guessed the (insufficient) information provided by the emulator, and just do the right thing. Documentation: * Various updates and fixes, mostly for x86 * MTRR and PAT fixes and optimizations: -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmVBZc0UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroP1LQf+NgsmZ1lkGQlKdSdijoQ856w+k0or l2SV1wUwiEdFPSGK+RTUlHV5Y1ni1dn/CqCVIJZKEI3ZtZ1m9/4HKIRXvbMwFHIH hx+E4Lnf8YUjsGjKTLd531UKcpphztZavQ6pXLEwazkSkDEra+JIKtooI8uU+9/p bd/eF1V+13a8CHQf1iNztFJVxqBJbVlnPx4cZDRQQvewskIDGnVDtwbrwCUKGtzD eNSzhY7si6O2kdQNkuA8xPhg29dYX9XLaCK2K1l8xOUm8WipLdtF86GAKJ5BVuOL 6ek/2QCYjZ7a+coAZNfgSEUi8JmFHEqCo7cnKmWzPJp+2zyXsdudqAhT1g== =UIxm -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Generalized infrastructure for 'writable' ID registers, effectively allowing userspace to opt-out of certain vCPU features for its guest - Optimization for vSGI injection, opportunistically compressing MPIDR to vCPU mapping into a table - Improvements to KVM's PMU emulation, allowing userspace to select the number of PMCs available to a VM - Guest support for memory operation instructions (FEAT_MOPS) - Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing bugs and getting rid of useless code - Changes to the way the SMCCC filter is constructed, avoiding wasted memory allocations when not in use - Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing the overhead of errata mitigations - Miscellaneous kernel and selftest fixes LoongArch: - New architecture for kvm. The hardware uses the same model as x86, s390 and RISC-V, where guest/host mode is orthogonal to supervisor/user mode. The virtualization extensions are very similar to MIPS, therefore the code also has some similarities but it's been cleaned up to avoid some of the historical bogosities that are found in arch/mips. The kernel emulates MMU, timer and CSR accesses, while interrupt controllers are only emulated in userspace, at least for now. RISC-V: - Support for the Smstateen and Zicond extensions - Support for virtualizing senvcfg - Support for virtualized SBI debug console (DBCN) S390: - Nested page table management can be monitored through tracepoints and statistics x86: - Fix incorrect handling of VMX posted interrupt descriptor in KVM_SET_LAPIC, which could result in a dropped timer IRQ - Avoid WARN on systems with Intel IPI virtualization - Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs without forcing more common use cases to eat the extra memory overhead. - Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and SBPB, aka Selective Branch Predictor Barrier). - Fix a bug where restoring a vCPU snapshot that was taken within 1 second of creating the original vCPU would cause KVM to try to synchronize the vCPU's TSC and thus clobber the correct TSC being set by userspace. - Compute guest wall clock using a single TSC read to avoid generating an inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads. - "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain about a "Firmware Bug" if the bit isn't set for select F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to appease Windows Server 2022. - Don't apply side effects to Hyper-V's synthetic timer on writes from userspace to fix an issue where the auto-enable behavior can trigger spurious interrupts, i.e. do auto-enabling only for guest writes. - Remove an unnecessary kick of all vCPUs when synchronizing the dirty log without PML enabled. - Advertise "support" for non-serializing FS/GS base MSR writes as appropriate. - Harden the fast page fault path to guard against encountering an invalid root when walking SPTEs. - Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n. - Use the fast path directly from the timer callback when delivering Xen timer events, instead of waiting for the next iteration of the run loop. This was not done so far because previously proposed code had races, but now care is taken to stop the hrtimer at critical points such as restarting the timer or saving the timer information for userspace. - Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag. - Optimize injection of PMU interrupts that are simultaneous with NMIs. - Usual handful of fixes for typos and other warts. x86 - MTRR/PAT fixes and optimizations: - Clean up code that deals with honoring guest MTRRs when the VM has non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled. - Zap EPT entries when non-coherent DMA assignment stops/start to prevent using stale entries with the wrong memtype. - Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y This was done as a workaround for virtual machine BIOSes that did not bother to clear CR0.CD (because ancient KVM/QEMU did not bother to set it, in turn), and there's zero reason to extend the quirk to also ignore guest PAT. x86 - SEV fixes: - Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while running an SEV-ES guest. - Clean up the recognition of emulation failures on SEV guests, when KVM would like to "skip" the instruction but it had already been partially emulated. This makes it possible to drop a hack that second guessed the (insufficient) information provided by the emulator, and just do the right thing. Documentation: - Various updates and fixes, mostly for x86 - MTRR and PAT fixes and optimizations" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (164 commits) KVM: selftests: Avoid using forced target for generating arm64 headers tools headers arm64: Fix references to top srcdir in Makefile KVM: arm64: Add tracepoint for MMIO accesses where ISV==0 KVM: arm64: selftest: Perform ISB before reading PAR_EL1 KVM: arm64: selftest: Add the missing .guest_prepare() KVM: arm64: Always invalidate TLB for stage-2 permission faults KVM: x86: Service NMI requests after PMI requests in VM-Enter path KVM: arm64: Handle AArch32 SPSR_{irq,abt,und,fiq} as RAZ/WI KVM: arm64: Do not let a L1 hypervisor access the *32_EL2 sysregs KVM: arm64: Refine _EL2 system register list that require trap reinjection arm64: Add missing _EL2 encodings arm64: Add missing _EL12 encodings KVM: selftests: aarch64: vPMU test for validating user accesses KVM: selftests: aarch64: vPMU register test for unimplemented counters KVM: selftests: aarch64: vPMU register test for implemented counters KVM: selftests: aarch64: Introduce vpmu_counter_access test tools: Import arm_pmuv3.h KVM: arm64: PMU: Allow userspace to limit PMCR_EL0.N for the guest KVM: arm64: Sanitize PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} before first run KVM: arm64: Add {get,set}_user for PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} ... |
||
![]() |
426ee5196d |
sysctl-6.7-rc1
To help make the move of sysctls out of kernel/sysctl.c not incur a size penalty sysctl has been changed to allow us to not require the sentinel, the final empty element on the sysctl array. Joel Granados has been doing all this work. On the v6.6 kernel we got the major infrastructure changes required to support this. For v6.7-rc1 we have all arch/ and drivers/ modified to remove the sentinel. Both arch and driver changes have been on linux-next for a bit less than a month. It is worth re-iterating the value: - this helps reduce the overall build time size of the kernel and run time memory consumed by the kernel by about ~64 bytes per array - the extra 64-byte penalty is no longer inncurred now when we move sysctls out from kernel/sysctl.c to their own files For v6.8-rc1 expect removal of all the sentinels and also then the unneeded check for procname == NULL. The last 2 patches are fixes recently merged by Krister Johansen which allow us again to use softlockup_panic early on boot. This used to work but the alias work broke it. This is useful for folks who want to detect softlockups super early rather than wait and spend money on cloud solutions with nothing but an eventual hung kernel. Although this hadn't gone through linux-next it's also a stable fix, so we might as well roll through the fixes now. -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmVCqKsSHG1jZ3JvZkBr ZXJuZWwub3JnAAoJEM4jHQowkoinEgYQAIpkqRL85DBwems19Uk9A27lkctwZ6Fc HdslQCObQTsbuKVimZFP4IL2beUfUE0cfLZCXlzp+4nRDOf6vyhyf3w19jPQtI0Q YdqwTk9y6G5VjDsb35QK0+UBloY/kZ1H3/LW4uCwjXTuksUGmWW2Qvey35696Scv hDMLADqKQmdpYxLUaNi9QyYbEAjYtOai2ezg3+i7hTG168t1k/Ab2BxIFrPVsCR2 FAiq05L4ugWjNskdsWBjck05JZsx9SK/qcAxpIPoUm4nGiFNHApXE0E0hs3vsnmn WIHIbxCQw8ZlUDlmw4S+0YH3NFFzFbWfmW8k2b0f2qZTJm/rU4KiJfcJVknkAUVF raFox6XDW0AUQ9L/NOUJ9ip5rup57GcFrMYocdJ3PPAvvmHKOb1D1O741p75RRcc 9j7zwfIRrzjPUqzhsQS/GFjdJu3lJNmEBK1AcgrVry6WoItrAzJHKPPDC7TwaNmD eXpjxMl1sYzzHqtVh4hn+xkUYphj/6gTGMV8zdo+/FopFswgeJW9G8kHtlEWKDPk MRIKwACmfetP6f3ngHunBg+BOipbjCANL7JI0nOhVOQoaULxCCPx+IPJ6GfSyiuH AbcjH8DGI7fJbUkBFoF0dsRFZ2gH8ds1PYMbWUJ6x3FtuCuv5iIuvQYoaWU6itm7 6f0KvCogg0fU =Qf50 -----END PGP SIGNATURE----- Merge tag 'sysctl-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux Pull sysctl updates from Luis Chamberlain: "To help make the move of sysctls out of kernel/sysctl.c not incur a size penalty sysctl has been changed to allow us to not require the sentinel, the final empty element on the sysctl array. Joel Granados has been doing all this work. On the v6.6 kernel we got the major infrastructure changes required to support this. For v6.7-rc1 we have all arch/ and drivers/ modified to remove the sentinel. Both arch and driver changes have been on linux-next for a bit less than a month. It is worth re-iterating the value: - this helps reduce the overall build time size of the kernel and run time memory consumed by the kernel by about ~64 bytes per array - the extra 64-byte penalty is no longer inncurred now when we move sysctls out from kernel/sysctl.c to their own files For v6.8-rc1 expect removal of all the sentinels and also then the unneeded check for procname == NULL. The last two patches are fixes recently merged by Krister Johansen which allow us again to use softlockup_panic early on boot. This used to work but the alias work broke it. This is useful for folks who want to detect softlockups super early rather than wait and spend money on cloud solutions with nothing but an eventual hung kernel. Although this hadn't gone through linux-next it's also a stable fix, so we might as well roll through the fixes now" * tag 'sysctl-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (23 commits) watchdog: move softlockup_panic back to early_param proc: sysctl: prevent aliased sysctls from getting passed to init intel drm: Remove now superfluous sentinel element from ctl_table array Drivers: hv: Remove now superfluous sentinel element from ctl_table array raid: Remove now superfluous sentinel element from ctl_table array fw loader: Remove the now superfluous sentinel element from ctl_table array sgi-xp: Remove the now superfluous sentinel element from ctl_table array vrf: Remove the now superfluous sentinel element from ctl_table array char-misc: Remove the now superfluous sentinel element from ctl_table array infiniband: Remove the now superfluous sentinel element from ctl_table array macintosh: Remove the now superfluous sentinel element from ctl_table array parport: Remove the now superfluous sentinel element from ctl_table array scsi: Remove now superfluous sentinel element from ctl_table array tty: Remove now superfluous sentinel element from ctl_table array xen: Remove now superfluous sentinel element from ctl_table array hpet: Remove now superfluous sentinel element from ctl_table array c-sky: Remove now superfluous sentinel element from ctl_talbe array powerpc: Remove now superfluous sentinel element from ctl_table arrays riscv: Remove now superfluous sentinel element from ctl_table array x86/vdso: Remove now superfluous sentinel element from ctl_table array ... |
||
![]() |
56ec8e4cd8 |
arm64 updates for 6.7:
* Major refactoring of the CPU capability detection logic resulting in the removal of the cpus_have_const_cap() function and migrating the code to "alternative" branches where possible * Backtrace/kgdb: use IPIs and pseudo-NMI * Perf and PMU: - Add support for Ampere SoC PMUs - Multi-DTC improvements for larger CMN configurations with multiple Debug & Trace Controllers - Rework the Arm CoreSight PMU driver to allow separate registration of vendor backend modules - Fixes: add missing MODULE_DEVICE_TABLE to the amlogic perf driver; use device_get_match_data() in the xgene driver; fix NULL pointer dereference in the hisi driver caused by calling cpuhp_state_remove_instance(); use-after-free in the hisi driver * HWCAP updates: - FEAT_SVE_B16B16 (BFloat16) - FEAT_LRCPC3 (release consistency model) - FEAT_LSE128 (128-bit atomic instructions) * SVE: remove a couple of pseudo registers from the cpufeature code. There is logic in place already to detect mismatched SVE features * Miscellaneous: - Reduce the default swiotlb size (currently 64MB) if no ZONE_DMA bouncing is needed. The buffer is still required for small kmalloc() buffers - Fix module PLT counting with !RANDOMIZE_BASE - Restrict CPU_BIG_ENDIAN to LLVM IAS 15.x or newer move synchronisation code out of the set_ptes() loop - More compact cpufeature displaying enabled cores - Kselftest updates for the new CPU features -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmU7/QUACgkQa9axLQDI XvEx3xAAjICmHm+ryKJxS1IGXLYu2DXMcHUjeW6w1SxkK/vKhTMlHRx/CIWDze2l eENu7TcDLtTw+Gv9kqg30TSwzLfJhP9oFpX2T5TKkh5qlJlbz8fBtm+as14DTLCZ p2sra3J0w4B5JwTVqnj2RHOlEftMKvbyLGRkz3ve6wIUbsp5pXMkxAd/k3wOf0lC m6d9w1OMA2sOsw9YCgjcCNQGEzFMJk+13w7K+4w6A8Djn/Jxkt4fAFVn2ZlCiZzD NA2lTDWJqGmeGHo3iFdCTensWXmWTqjzxsNEf7PyBk5mBOdzDVxlTfEL7vnJg7gf BlTQ/nhIpra7rHQ9q2rwqEzbF+4Tn3uWlQfdDb7+/4goPjDh7tlBhEOYyOwTCEIT 0t9cCSvBmSCKeXC3lKWWtJ+QJKhZHSmXN84EotTs65KyyfIsi4RuSezvV/+aIL86 06sHYlYxETuujZP1cgOjf69Wsdsgizx0mqXJXf/xOjp22HFDcL4Bki6Rgi6t5OZj GEHG15kSE+eJ+RIpxpuAN8fdrlxYubsVLIksCqK7cZf9zXbQGIlifKAIrYiEx6kz FD+o+j/5niRWR6yJZCtCcGxqpSlwnYWPqc1Ds0GES8A/BphWMPozXUAZ0ll4Fnp1 yyR2/Due/eBsCNESn579kP8989rashubB8vxvdx2fcWVtLC7VgE= =QaEo -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "No major architecture features this time around, just some new HWCAP definitions, support for the Ampere SoC PMUs and a few fixes/cleanups. The bulk of the changes is reworking of the CPU capability checking code (cpus_have_cap() etc). - Major refactoring of the CPU capability detection logic resulting in the removal of the cpus_have_const_cap() function and migrating the code to "alternative" branches where possible - Backtrace/kgdb: use IPIs and pseudo-NMI - Perf and PMU: - Add support for Ampere SoC PMUs - Multi-DTC improvements for larger CMN configurations with multiple Debug & Trace Controllers - Rework the Arm CoreSight PMU driver to allow separate registration of vendor backend modules - Fixes: add missing MODULE_DEVICE_TABLE to the amlogic perf driver; use device_get_match_data() in the xgene driver; fix NULL pointer dereference in the hisi driver caused by calling cpuhp_state_remove_instance(); use-after-free in the hisi driver - HWCAP updates: - FEAT_SVE_B16B16 (BFloat16) - FEAT_LRCPC3 (release consistency model) - FEAT_LSE128 (128-bit atomic instructions) - SVE: remove a couple of pseudo registers from the cpufeature code. There is logic in place already to detect mismatched SVE features - Miscellaneous: - Reduce the default swiotlb size (currently 64MB) if no ZONE_DMA bouncing is needed. The buffer is still required for small kmalloc() buffers - Fix module PLT counting with !RANDOMIZE_BASE - Restrict CPU_BIG_ENDIAN to LLVM IAS 15.x or newer move synchronisation code out of the set_ptes() loop - More compact cpufeature displaying enabled cores - Kselftest updates for the new CPU features" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (83 commits) arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer arm64: module: Fix PLT counting when CONFIG_RANDOMIZE_BASE=n arm64, irqchip/gic-v3, ACPI: Move MADT GICC enabled check into a helper perf: hisi: Fix use-after-free when register pmu fails drivers/perf: hisi_pcie: Initialize event->cpu only on success drivers/perf: hisi_pcie: Check the type first in pmu::event_init() arm64: cpufeature: Change DBM to display enabled cores arm64: cpufeature: Display the set of cores with a feature perf/arm-cmn: Enable per-DTC counter allocation perf/arm-cmn: Rework DTC counters (again) perf/arm-cmn: Fix DTC domain detection drivers: perf: arm_pmuv3: Drop some unused arguments from armv8_pmu_init() drivers: perf: arm_pmuv3: Read PMMIR_EL1 unconditionally drivers/perf: hisi: use cpuhp_state_remove_instance_nocalls() for hisi_hns3_pmu uninit process clocksource/drivers/arm_arch_timer: limit XGene-1 workaround arm64: Remove system_uses_lse_atomics() arm64: Mark the 'addr' argument to set_ptes() and __set_pte_at() as unused drivers/perf: xgene: Use device_get_match_data() perf/amlogic: add missing MODULE_DEVICE_TABLE arm64/mm: Hoist synchronization out of set_ptes() loop ... |
||
![]() |
45b890f768 |
KVM/arm64 updates for 6.7
- Generalized infrastructure for 'writable' ID registers, effectively allowing userspace to opt-out of certain vCPU features for its guest - Optimization for vSGI injection, opportunistically compressing MPIDR to vCPU mapping into a table - Improvements to KVM's PMU emulation, allowing userspace to select the number of PMCs available to a VM - Guest support for memory operation instructions (FEAT_MOPS) - Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing bugs and getting rid of useless code - Changes to the way the SMCCC filter is constructed, avoiding wasted memory allocations when not in use - Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing the overhead of errata mitigations - Miscellaneous kernel and selftest fixes -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQSNXHjWXuzMZutrKNKivnWIJHzdFgUCZUFJRgAKCRCivnWIJHzd FtgYAP9cMsc1Mhlw3jNQnTc6q0cbTulD/SoEDPUat1dXMqjs+gEAnskwQTrTX834 fgGQeCAyp7Gmar+KeP64H0xm8kPSpAw= =R4M7 -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 6.7 - Generalized infrastructure for 'writable' ID registers, effectively allowing userspace to opt-out of certain vCPU features for its guest - Optimization for vSGI injection, opportunistically compressing MPIDR to vCPU mapping into a table - Improvements to KVM's PMU emulation, allowing userspace to select the number of PMCs available to a VM - Guest support for memory operation instructions (FEAT_MOPS) - Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing bugs and getting rid of useless code - Changes to the way the SMCCC filter is constructed, avoiding wasted memory allocations when not in use - Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing the overhead of errata mitigations - Miscellaneous kernel and selftest fixes |
||
![]() |
2656821f1f |
RCU pull request for v6.7
This pull request contains the following branches: rcu/torture: RCU torture, locktorture and generic torture infrastructure updates that include various fixes, cleanups and consolidations. Among the user visible things, ftrace dumps can now be found into their own file, and module parameters get better documented and reported on dumps. rcu/fixes: Generic and misc fixes all over the place. Some highlights: * Hotplug handling has seen some light cleanups and comments. * An RCU barrier can now be triggered through sysfs to serialize memory stress testing and avoid OOM. * Object information is now dumped in case of invalid callback invocation. * Also various SRCU issues, too hard to trigger to deserve urgent pull requests, have been fixed. rcu/docs: RCU documentation updates rcu/refscale: RCU reference scalability test minor fixes and doc improvements. rcu/tasks: RCU tasks minor fixes rcu/stall: Stall detection updates. Introduce RCU CPU Stall notifiers that allows a subsystem to provide informations to help debugging. Also cure some false positive stalls. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmU21h0ACgkQhSRUR1CO jHdUgA/+Myy5K5OxNrqlF/gIK+flOSg635RyZ0DBx8OMXZ/fAg9qRI+PKt5I4Lha eXAg6EtmwSgHmIbjcg8WzsvwniEsqqjOF+n1qil447fHUI2Qqw6c7fIm/MXQkeHJ qA7CODDRtsAnwnjmTteasmMeGV0bmXDENxhNrAZBFnVkRgTqfyDbFcn+nxOaPK6b fmbKvnB07WUg1KOV8/MbEtAZPb8QgHo58bXSZRKjKkiqRQWB/D3On+tShFK7SYJi wIqQ96MLyUXLaIWQ47v6xEO4PZO+3o1wAryvP1DRdb5UrPjO6yKFfQaoo5Mza92G zhBJhnXkVvCoNoCU7GKJIDV54SgDHaB6Sf1GN5cjwfujOkLuGCyg0CpKktCGm7uH n3X66PVep608Uj2Y/pAo/hv3Hbv7lCu4nfrERvVLG9YoxUvTJDsKmBv+SF/g2mxF rHqFa39HUPr1yHA5WjqOQS3lLdqCXEGKvNi6zXCvOceiDbHbiJFkBo6p8TVrbSMX FCOWZ3LoE+6uiLu/lLOEroTjeBd8GhDh1LgWgyVK7o0LhP1018DSBolrpcSwnmOo Q/E4G2x+aPWs+5NTOmMGOIPY70khKQIM3c8YZelSRffJBo6O3yV68h6X45NQxYvx keLvrDaza8h4hKwaof/QaX4ZJgTOZ0xjpawr1vR0hbK8LNtPrUw= =cVD7 -----END PGP SIGNATURE----- Merge tag 'rcu-next-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks Pull RCU updates from Frederic Weisbecker: - RCU torture, locktorture and generic torture infrastructure updates that include various fixes, cleanups and consolidations. Among the user visible things, ftrace dumps can now be found into their own file, and module parameters get better documented and reported on dumps. - Generic and misc fixes all over the place. Some highlights: * Hotplug handling has seen some light cleanups and comments * An RCU barrier can now be triggered through sysfs to serialize memory stress testing and avoid OOM * Object information is now dumped in case of invalid callback invocation * Also various SRCU issues, too hard to trigger to deserve urgent pull requests, have been fixed - RCU documentation updates - RCU reference scalability test minor fixes and doc improvements. - RCU tasks minor fixes - Stall detection updates. Introduce RCU CPU Stall notifiers that allows a subsystem to provide informations to help debugging. Also cure some false positive stalls. * tag 'rcu-next-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: (56 commits) srcu: Only accelerate on enqueue time locktorture: Check the correct variable for allocation failure srcu: Fix callbacks acceleration mishandling rcu: Comment why callbacks migration can't wait for CPUHP_RCUTREE_PREP rcu: Standardize explicit CPU-hotplug calls rcu: Conditionally build CPU-hotplug teardown callbacks rcu: Remove references to rcu_migrate_callbacks() from diagrams rcu: Assume rcu_report_dead() is always called locally rcu: Assume IRQS disabled from rcu_report_dead() rcu: Use rcu_segcblist_segempty() instead of open coding it rcu: kmemleak: Ignore kmemleak false positives when RCU-freeing objects srcu: Fix srcu_struct node grpmask overflow on 64-bit systems torture: Convert parse-console.sh to mktemp rcutorture: Traverse possible cpu to set maxcpu in rcu_nocb_toggle() rcutorture: Replace schedule_timeout*() 1-jiffy waits with HZ/20 torture: Add kvm.sh --debug-info argument locktorture: Rename readers_bind/writers_bind to bind_readers/bind_writers doc: Catch-up update for locktorture module parameters locktorture: Add call_rcu_chains module parameter locktorture: Add new module parameters to lock_torture_print_module_parms() ... |
||
![]() |
56769ba4b2 |
kbuild: unify vdso_install rules
Currently, there is no standard implementation for vdso_install,
leading to various issues:
1. Code duplication
Many architectures duplicate similar code just for copying files
to the install destination.
Some architectures (arm, sparc, x86) create build-id symlinks,
introducing more code duplication.
2. Unintended updates of in-tree build artifacts
The vdso_install rule depends on the vdso files to install.
It may update in-tree build artifacts. This can be problematic,
as explained in commit
|
||
![]() |
14dcf78a6c |
Merge branch 'for-next/cpus_have_const_cap' into for-next/core
* for-next/cpus_have_const_cap: (38 commits) : cpus_have_const_cap() removal arm64: Remove cpus_have_const_cap() arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_REPEAT_TLBI arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_NVIDIA_CARMEL_CNP arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_CAVIUM_23154 arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_2645198 arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_1742098 arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_1542419 arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_843419 arm64: Avoid cpus_have_const_cap() for ARM64_UNMAP_KERNEL_AT_EL0 arm64: Avoid cpus_have_const_cap() for ARM64_{SVE,SME,SME2,FA64} arm64: Avoid cpus_have_const_cap() for ARM64_SPECTRE_V2 arm64: Avoid cpus_have_const_cap() for ARM64_SSBS arm64: Avoid cpus_have_const_cap() for ARM64_MTE arm64: Avoid cpus_have_const_cap() for ARM64_HAS_TLB_RANGE arm64: Avoid cpus_have_const_cap() for ARM64_HAS_WFXT arm64: Avoid cpus_have_const_cap() for ARM64_HAS_RNG arm64: Avoid cpus_have_const_cap() for ARM64_HAS_EPAN arm64: Avoid cpus_have_const_cap() for ARM64_HAS_PAN arm64: Avoid cpus_have_const_cap() for ARM64_HAS_GIC_PRIO_MASKING arm64: Avoid cpus_have_const_cap() for ARM64_HAS_DIT ... |
||
![]() |
2baca17e6a |
Merge branch 'for-next/feat_lse128' into for-next/core
* for-next/feat_lse128: : HWCAP for FEAT_LSE128 kselftest/arm64: add FEAT_LSE128 to hwcap test arm64: add FEAT_LSE128 HWCAP |
||
![]() |
023113fe66 |
Merge branch 'for-next/feat_lrcpc3' into for-next/core
* for-next/feat_lrcpc3: : HWCAP for FEAT_LRCPC3 selftests/arm64: add HWCAP2_LRCPC3 test arm64: add FEAT_LRCPC3 HWCAP |
||
![]() |
2a3f8ce3bb |
Merge branch 'for-next/feat_sve_b16b16' into for-next/core
* for-next/feat_sve_b16b16: : Add support for FEAT_SVE_B16B16 (BFloat16) kselftest/arm64: Verify HWCAP2_SVE_B16B16 arm64/sve: Report FEAT_SVE_B16B16 to userspace |
||
![]() |
1519018ccb |
Merge branches 'for-next/sve-remove-pseudo-regs', 'for-next/backtrace-ipi', 'for-next/kselftest', 'for-next/misc' and 'for-next/cpufeat-display-cores', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: perf: hisi: Fix use-after-free when register pmu fails drivers/perf: hisi_pcie: Initialize event->cpu only on success drivers/perf: hisi_pcie: Check the type first in pmu::event_init() perf/arm-cmn: Enable per-DTC counter allocation perf/arm-cmn: Rework DTC counters (again) perf/arm-cmn: Fix DTC domain detection drivers: perf: arm_pmuv3: Drop some unused arguments from armv8_pmu_init() drivers: perf: arm_pmuv3: Read PMMIR_EL1 unconditionally drivers/perf: hisi: use cpuhp_state_remove_instance_nocalls() for hisi_hns3_pmu uninit process drivers/perf: xgene: Use device_get_match_data() perf/amlogic: add missing MODULE_DEVICE_TABLE docs/perf: Add ampere_cspmu to toctree to fix a build warning perf: arm_cspmu: ampere_cspmu: Add support for Ampere SoC PMU perf: arm_cspmu: Support implementation specific validation perf: arm_cspmu: Support implementation specific filters perf: arm_cspmu: Split 64-bit write to 32-bit writes perf: arm_cspmu: Separate Arm and vendor module * for-next/sve-remove-pseudo-regs: : arm64/fpsimd: Remove the vector length pseudo registers arm64/sve: Remove SMCR pseudo register from cpufeature code arm64/sve: Remove ZCR pseudo register from cpufeature code * for-next/backtrace-ipi: : Add IPI for backtraces/kgdb, use NMI arm64: smp: Don't directly call arch_smp_send_reschedule() for wakeup arm64: smp: avoid NMI IPIs with broken MediaTek FW arm64: smp: Mark IPI globals as __ro_after_init arm64: kgdb: Implement kgdb_roundup_cpus() to enable pseudo-NMI roundup arm64: smp: IPI_CPU_STOP and IPI_CPU_CRASH_STOP should try for NMI arm64: smp: Add arch support for backtrace using pseudo-NMI arm64: smp: Remove dedicated wakeup IPI arm64: idle: Tag the arm64 idle functions as __cpuidle irqchip/gic-v3: Enable support for SGIs to act as NMIs * for-next/kselftest: : Various arm64 kselftest updates kselftest/arm64: Validate SVCR in streaming SVE stress test * for-next/misc: : Miscellaneous patches arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer arm64: module: Fix PLT counting when CONFIG_RANDOMIZE_BASE=n arm64, irqchip/gic-v3, ACPI: Move MADT GICC enabled check into a helper clocksource/drivers/arm_arch_timer: limit XGene-1 workaround arm64: Remove system_uses_lse_atomics() arm64: Mark the 'addr' argument to set_ptes() and __set_pte_at() as unused arm64/mm: Hoist synchronization out of set_ptes() loop arm64: swiotlb: Reduce the default size if no ZONE_DMA bouncing needed * for-next/cpufeat-display-cores: : arm64 cpufeature display enabled cores arm64: cpufeature: Change DBM to display enabled cores arm64: cpufeature: Display the set of cores with a feature |
||
![]() |
d35686444f |
arm64: module: Fix PLT counting when CONFIG_RANDOMIZE_BASE=n
The counting of module PLTs has been broken when CONFIG_RANDOMIZE_BASE=n since commit: |
||
![]() |
c54e52f84d |
arm64, irqchip/gic-v3, ACPI: Move MADT GICC enabled check into a helper
ACPI, irqchip and the architecture code all inspect the MADT enabled bit for a GICC entry in the MADT. The addition of an 'online capable' bit means all these sites need updating. Move the current checks behind a helper to make future updates easier. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Signed-off-by: "Russell King (Oracle)" <rmk+kernel@armlinux.org.uk> Acked-by: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Link: https://lore.kernel.org/r/E1quv5D-00AeNJ-U8@rmk-PC.armlinux.org.uk Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
04d402a453 |
arm64: cpufeature: Change DBM to display enabled cores
Now that we have the ability to display the list of cores with a feature when its selectivly enabled, lets convert DBM to use that as well. Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> Link: https://lore.kernel.org/r/20231017052322.1211099-3-jeremy.linton@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
23b727dc20 |
arm64: cpufeature: Display the set of cores with a feature
The AMU feature can be enabled on a subset of the cores in a system. Because of that, it prints a message for each core as it is detected. This becomes tedious when there are hundreds of cores. Instead, for CPU features which can be enabled on a subset of the present cores, lets wait until update_cpu_capabilities() and print the subset of cores the feature was enabled on. Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Ionela Voinescu <ionela.voinescu@arm.com> Reviewed-by: Punit Agrawal <punit.agrawal@bytedance.com> Tested-by: Punit Agrawal <punit.agrawal@bytedance.com> Link: https://lore.kernel.org/r/20231017052322.1211099-2-jeremy.linton@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
6a1960b8a8 |
mm/gup: adapt get_user_page_vma_remote() to never return NULL
get_user_pages_remote() will never return 0 except in the case of FOLL_NOWAIT being specified, which we explicitly disallow. This simplifies error handling for the caller and avoids the awkwardness of dealing with both errors and failing to pin. Failing to pin here is an error. Link: https://lkml.kernel.org/r/00319ce292d27b3aae76a0eb220ce3f528187508.1696288092.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Suggested-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
b8466fe82b |
efi: move screen_info into efi init code
After the vga console no longer relies on global screen_info, there are only two remaining use cases: - on the x86 architecture, it is used for multiple boot methods (bzImage, EFI, Xen, kexec) to commucate the initial VGA or framebuffer settings to a number of device drivers. - on other architectures, it is only used as part of the EFI stub, and only for the three sysfb framebuffers (simpledrm, simplefb, efifb). Remove the duplicate data structure definitions by moving it into the efi-init.c file that sets it up initially for the EFI case, leaving x86 as an exception that retains its own definition for non-EFI boots. The added #ifdefs here are optional, I added them to further limit the reach of screen_info to configurations that have at least one of the users enabled. Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Acked-by: Helge Deller <deller@gmx.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Link: https://lore.kernel.org/r/20231017093947.3627976-1-arnd@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
3425cec42c |
arm64/mm: Hoist synchronization out of set_ptes() loop
set_ptes() sets a physically contiguous block of memory (which all belongs to the same folio) to a contiguous block of ptes. The arm64 implementation of this previously just looped, operating on each individual pte. But the __sync_icache_dcache() and mte_sync_tags() operations can both be hoisted out of the loop so that they are performed once for the contiguous set of pages (which may be less than the whole folio). This should result in minor performance gains. __sync_icache_dcache() already acts on the whole folio, and sets a flag in the folio so that it skips duplicate calls. But by hoisting the call, all the pte testing is done only once. mte_sync_tags() operates on each individual page with its own loop. But by passing the number of pages explicitly, we can rely solely on its loop and do the checks only once. This approach also makes it robust for the future, rather than assuming if a head page of a compound page is being mapped, then the whole compound page is being mapped, instead we explicitly know how many pages are being mapped. The old assumption may not continue to hold once the "anonymous large folios" feature is merged. Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20231005140730.2191134-1-ryan.roberts@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
e8d4006dc2 |
arm64: Remove cpus_have_const_cap()
There are no longer any users of cpus_have_const_cap(), and therefore it can be removed. Remove cpus_have_const_cap(). At the same time, remove __cpus_have_const_cap(), as this is a trivial wrapper of alternative_has_cap_unlikely(), which can be used directly instead. The comment for __system_matches_cap() is updated to no longer refer to cpus_have_const_cap(). As we have a number of ways to check the cpucaps, the specific suggestions are removed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Kristina Martsenko <kristina.martsenko@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
0d48058ef8 |
arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_NVIDIA_CARMEL_CNP
In has_useable_cnp() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_NVIDIA_CARMEL_CNP, but this is not necessary and cpus_have_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. We use has_useable_cnp() to determine whether we have the system-wide ARM64_HAS_CNP cpucap. Due to the structure of the cpufeature code, we call has_useable_cnp() in two distinct cases: 1) When finalizing system capabilities, setup_system_capabilities() will call has_useable_cnp() with SCOPE_SYSTEM to determine whether all CPUs have the feature. This is called after we've detected any local cpucaps including ARM64_WORKAROUND_NVIDIA_CARMEL_CNP, but prior to patching alternatives. If the ARM64_WORKAROUND_NVIDIA_CARMEL_CNP was detected, we will not detect ARM64_HAS_CNP. 2) After finalizing system capabilties, verify_local_cpu_capabilities() will call has_useable_cnp() with SCOPE_LOCAL_CPU to verify that CPUs have CNP if we previously detected it. Note that if ARM64_WORKAROUND_NVIDIA_CARMEL_CNP was detected, we will not have detected ARM64_HAS_CNP. For case 1 we must check the system_cpucaps bitmap as this occurs prior to patching the alternatives. For case 2 we'll only call has_useable_cnp() once per subsequent onlining of a CPU, and as this isn't a fast path it's not necessary to optimize for this case. This patch replaces the use of cpus_have_const_cap() with cpus_have_cap(), which will only generate the bitmap test and avoid generating an alternative sequence, resulting in slightly simpler annd smaller code being generated. The ARM64_WORKAROUND_NVIDIA_CARMEL_CNP cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
48b57d9199 |
arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_1742098
In elf_hwcap_fixup() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_1742098, but this is not necessary and cpus_have_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_WORKAROUND_1742098 cpucap is detected and patched before elf_hwcap_fixup() can run, and hence it is not necessary to use cpus_have_const_cap(). We run cpus_have_const_cap() at most twice: once after finalizing system cpucaps, and potentially once more after detecting mismatched CPUs which support AArch32 at EL0. Due to this, it's not necessary to optimize for many calls to elf_hwcap_fixup(), and it's fine to use cpus_have_cap(). This patch replaces the use of cpus_have_const_cap() with cpus_have_cap(), which will only generate the bitmap test and avoid generating an alternative sequence, resulting in slightly simpler annd smaller code being generated. For consistenct with other cpucaps, the ARM64_WORKAROUND_1742098 cpucap is added to cpucap_is_possible() so that code can be elided when this is not possible. However, as we only define compat_elf_hwcap2 when CONFIG_COMPAT=y, some ifdeffery is still required within user_feature_fixup() to avoid build errors when CONFIG_COMPAT=n. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d1e40f8222 |
arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_1542419
We use cpus_have_const_cap() to check for ARM64_WORKAROUND_1542419 but this is not necessary and cpus_have_final_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_WORKAROUND_1542419 cpucap is detected and patched before any userspace code can run, and the both __do_compat_cache_op() and ctr_read_handler() are only reachable from exceptions taken from userspace. Thus it is not necessary for either to use cpus_have_const_cap(), and cpus_have_final_cap() is equivalent. This patch replaces the use of cpus_have_const_cap() with cpus_have_final_cap(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Using cpus_have_final_cap() clearly documents that we do not expect this code to run before cpucaps are finalized, and will make it easier to spot issues if code is changed in future to allow these functions to be reached earlier. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
0a285dfe87 |
arm64: Avoid cpus_have_const_cap() for ARM64_WORKAROUND_843419
In count_plts() and is_forbidden_offset_for_adrp() we use cpus_have_const_cap() to check for ARM64_WORKAROUND_843419, but this is not necessary and cpus_have_final_cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. It's not possible to load a module in the window between detecting the ARM64_WORKAROUND_843419 cpucap and patching alternatives. The module VA range limits are initialized much later in module_init_limits() which is a subsys_initcall, and module loading cannot happen before this. Hence it's not necessary for count_plts() or is_forbidden_offset_for_adrp() to use cpus_have_const_cap(). This patch replaces the use of cpus_have_const_cap() with cpus_have_final_cap() which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Using cpus_have_final_cap() clearly documents that we do not expect this code to run before cpucaps are finalized, and will make it easier to spot issues if code is changed in future to allow modules to be loaded earlier. The ARM64_WORKAROUND_843419 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible, and redundant IS_ENABLED() checks are removed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c2ef5f1e15 |
arm64: Avoid cpus_have_const_cap() for ARM64_UNMAP_KERNEL_AT_EL0
In arm64_kernel_unmapped_at_el0() we use cpus_have_const_cap() to check for ARM64_UNMAP_KERNEL_AT_EL0, but this is only necessary so that arm64_get_bp_hardening_vector() and this_cpu_set_vectors() can run prior to alternatives being patched. Otherwise this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_UNMAP_KERNEL_AT_EL0 cpucap is a system-wide feature that is detected and patched before any translation tables are created for userspace. In the window between detecting the ARM64_UNMAP_KERNEL_AT_EL0 cpucap and patching alternatives, most users of arm64_kernel_unmapped_at_el0() do not need to know that the cpucap has been detected: * As KVM is initialized after cpucaps are finalized, no usaef of arm64_kernel_unmapped_at_el0() in the KVM code is reachable during this window. * The arm64_mm_context_get() function in arch/arm64/mm/context.c is only called after the SMMU driver is brought up after alternatives have been patched. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). Similarly the asids_update_limit() function is called after alternatives have been patched as an arch_initcall, and this can safely use cpus_have_final_cap() or alternative_has_cap_*(). Similarly we do not expect an ASID rollover to occur between cpucaps being detected and patching alternatives. Thus set_reserved_asid_bits() can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The __tlbi_user() and __tlbi_user_level() macros are not used during this window, and only need to invalidate additional entries once userspace translation tables have been active on a CPU. Thus these can safely use alternative_has_cap_*(). * The xen_kernel_unmapped_at_usr() function is not used during this window as it is only used in a late_initcall. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The arm64_get_meltdown_state() function is not used during this window. It only used by arm64_get_meltdown_state() and KVM code, both of which are only used after cpucaps have been finalized. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The tls_thread_switch() uses arm64_kernel_unmapped_at_el0() as an optimization to avoid zeroing tpidrro_el0 when KPTI is enabled and this will be trampled by the KPTI trampoline. It doesn't matter if this continues to zero the register during the window between detecting the cpucap and patching alternatives, so this can safely use alternative_has_cap_*(). * The sdei_arch_get_entry_point() and do_sdei_event() functions aren't reachable at this time as the SDEI driver is registered later by acpi_init() -> acpi_ghes_init() -> sdei_init(), where acpi_init is a subsys_initcall. Thus these can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The uses under drivers/ aren't reachable at this time as the drivers are registered later: - TRBE is registered via module_init() - SMMUv3 is registred via module_driver() - SPE is registred via module_init() * The arm64_get_bp_hardening_vector() and this_cpu_set_vectors() functions need to run on boot CPUs prior to patching alternatives. As these are only called during the onlining of a CPU, it's fine to perform a system_cpucaps bitmap test using cpus_have_cap(). This patch modifies this_cpu_set_vectors() to use cpus_have_cap(), and replaced all other use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The ARM64_UNMAP_KERNEL_AT_EL0 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
a76521d160 |
arm64: Avoid cpus_have_const_cap() for ARM64_{SVE,SME,SME2,FA64}
In system_supports_{sve,sme,sme2,fa64}() we use cpus_have_const_cap() to check for the relevant cpucaps, but this is only necessary so that sve_setup() and sme_setup() can run prior to alternatives being patched, and otherwise alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. All of system_supports_{sve,sme,sme2,fa64}() will return false prior to system cpucaps being detected. In the window between system cpucaps being detected and patching alternatives, we need system_supports_sve() and system_supports_sme() to run to initialize SVE and SME properties, but all other users of system_supports_{sve,sme,sme2,fa64}() don't depend on the relevant cpucap becoming true until alternatives are patched: * No KVM code runs until after alternatives are patched, and so this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The cpuid_cpu_online() callback in arch/arm64/kernel/cpuinfo.c is registered later from cpuinfo_regs_init() as a device_initcall, and so this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The entry, signal, and ptrace code isn't reachable until userspace has run, and so this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * Currently perf_reg_validate() will un-reserve the PERF_REG_ARM64_VG pseudo-register before alternatives are patched, and before sve_setup() has run. If a sampling event is created early enough, this would allow perf_ext_reg_value() to sample (the as-yet uninitialized) thread_struct::vl[] prior to alternatives being patched. It would be preferable to defer this until alternatives are patched, and this can safely use alternative_has_cap_*(). * The context-switch code will run during this window as part of stop_machine() used during alternatives_patch_all(), and potentially for other work if other kernel threads are created early. No threads require the use of SVE/SME/SME2/FA64 prior to alternatives being patched, and it would be preferable for the related context-switch logic to take effect after alternatives are patched so that ths is guaranteed to see a consistent system-wide state (e.g. anything initialized by sve_setup() and sme_setup(). This can safely ues alternative_has_cap_*(). This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The sve_setup() and sme_setup() functions are modified to use cpus_have_cap() directly so that they can observe the cpucaps being set prior to alternatives being patched. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
bc75d0c0f3 |
arm64: Avoid cpus_have_const_cap() for ARM64_SSBS
In ssbs_thread_switch() we use cpus_have_const_cap() to check for ARM64_SSBS, but this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The cpus_have_const_cap() check in ssbs_thread_switch() is an optimization to avoid the overhead of spectre_v4_enable_task_mitigation() where all CPUs implement SSBS and naturally preserve the SSBS bit in SPSR_ELx. In the window between detecting the ARM64_SSBS system-wide and patching alternative branches it is benign to continue to call spectre_v4_enable_task_mitigation(). This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
53d62e995d |
arm64: Avoid cpus_have_const_cap() for ARM64_HAS_PAN
In system_uses_hw_pan() we use cpus_have_const_cap() to check for ARM64_HAS_PAN, but this is only necessary so that the system_uses_ttbr0_pan() check in setup_cpu_features() can run prior to alternatives being patched, and otherwise this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_HAS_PAN cpucap is used by system_uses_hw_pan() and system_uses_ttbr0_pan() depending on whether CONFIG_ARM64_SW_TTBR0_PAN is selected, and: * We only use system_uses_hw_pan() directly in __sdei_handler(), which isn't reachable until after alternatives have been patched, and for this it is safe to use alternative_has_cap_*(). * We use system_uses_ttbr0_pan() in a few places: - In check_and_switch_context() and cpu_uninstall_idmap(), which will defer installing a translation table into TTBR0 when the ARM64_HAS_PAN cpucap is not detected. Prior to patching alternatives, all CPUs will be using init_mm with the reserved ttbr0 translation tables install in TTBR0, so these can safely use alternative_has_cap_*(). - In update_saved_ttbr0(), which will only save the active TTBR0 into a per-thread variable when the ARM64_HAS_PAN cpucap is not detected. Prior to patching alternatives, all CPUs will be using init_mm with the reserved ttbr0 translation tables install in TTBR0, so these can safely use alternative_has_cap_*(). - In efi_set_pgd(), which will handle check_and_switch_context() deferring the installation of TTBR0 when TTBR0 PAN is detected. The EFI runtime services are not initialized until after alternatives have been patched, and so this can safely use alternative_has_cap_*() or cpus_have_final_cap(). - In uaccess_ttbr0_disable() and uaccess_ttbr0_enable(), where we'll avoid installing/uninstalling a translation table in TTBR0 when ARM64_HAS_PAN is detected. Prior to patching alternatives we will not perform any uaccess and will not call uaccess_ttbr0_disable() or uaccess_ttbr0_enable(), and so these can safely use alternative_has_cap_*() or cpus_have_final_cap(). - In is_el1_permission_fault() where we will consider a translation fault on a TTBR0 address to be a permission fault when ARM64_HAS_PAN is not detected *and* we have set the PAN bit in the SPSR (which tells us that in the interrupted context, TTBR0 pointed at the reserved zero ttbr). In the window between detecting system cpucaps and patching alternatives we should not perform any accesses to TTBR0 addresses, and no userspace translation tables exist until after patching alternatives. Thus it is safe for this to use alternative_has_cap*(). This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. So that the check for TTBR0 PAN in setup_cpu_features() can run prior to alternatives being patched, the call to system_uses_ttbr0_pan() is replaced with an explicit check of the ARM64_HAS_PAN bit in the system_cpucaps bitmap. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
25693f1771 |
arm64: Avoid cpus_have_const_cap() for ARM64_HAS_DIT
In __cpu_suspend_exit() we use cpus_have_const_cap() to check for ARM64_HAS_DIT but this is not necessary and cpus_have_final_cap() of alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_HAS_DIT cpucap is detected and patched (along with all other cpucaps) before __cpu_suspend_exit() can run. We'll only use __cpu_suspend_exit() as part of PSCI cpuidle or hibernation, and both of these are intialized after system cpucaps are detected and patched: the PSCI cpuidle driver is registered with a device_initcall, hibernation restoration occurs in a late_initcall, and hibarnation saving is driven by usrspace. Therefore it is not necessary to use cpus_have_const_cap(), and using alternative_has_cap_*() or cpus_have_final_cap() is sufficient. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. To clearly document the ordering relationship between suspend/resume and alternatives patching, an explicit check for system_capabilities_finalized() is added to cpu_suspend() along with a comment block, which will make it easier to spot issues if code is changed in future to allow these functions to be reached earlier. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
54c8818aa2 |
arm64: Avoid cpus_have_const_cap() for ARM64_HAS_CNP
In system_supports_cnp() we use cpus_have_const_cap() to check for ARM64_HAS_CNP, but this is only necessary so that the cpu_enable_cnp() callback can run prior to alternatives being patched, and otherwise this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The cpu_enable_cnp() callback is run immediately after the ARM64_HAS_CNP cpucap is detected system-wide under setup_system_capabilities(), prior to alternatives being patched. During this window cpu_enable_cnp() uses cpu_replace_ttbr1() to set the CNP bit for the swapper_pg_dir in TTBR1. No other users of the ARM64_HAS_CNP cpucap need the up-to-date value during this window: * As KVM isn't initialized yet, kvm_get_vttbr() isn't reachable. * As cpuidle isn't initialized yet, __cpu_suspend_exit() isn't reachable. * At this point all CPUs are using the swapper_pg_dir with a reserved ASID in TTBR1, and the idmap_pg_dir in TTBR0, so neither check_and_switch_context() nor cpu_do_switch_mm() need to do anything special. This patch replaces the use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. To allow cpu_enable_cnp() to function prior to alternatives being patched, cpu_replace_ttbr1() is split into cpu_replace_ttbr1() and cpu_enable_swapper_cnp(), with the former only used for early TTBR1 replacement, and the latter used by both cpu_enable_cnp() and __cpu_suspend_exit(). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
bbbb65770b |
arm64: Avoid cpus_have_const_cap() for ARM64_HAS_BTI
In system_supports_bti() we use cpus_have_const_cap() to check for ARM64_HAS_BTI, but this is not necessary and alternative_has_cap_*() or cpus_have_final_*cap() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. When CONFIG_ARM64_BTI_KERNEL=y, the ARM64_HAS_BTI cpucap is a strict boot cpu feature which is detected and patched early on the boot cpu. All uses guarded by CONFIG_ARM64_BTI_KERNEL happen after the boot CPU has detected ARM64_HAS_BTI and patched boot alternatives, and hence can safely use alternative_has_cap_*() or cpus_have_final_boot_cap(). Regardless of CONFIG_ARM64_BTI_KERNEL, all other uses of ARM64_HAS_BTI happen after system capabilities have been finalized and alternatives have been patched. Hence these can safely use alternative_has_cap_*) or cpus_have_final_cap(). This patch splits system_supports_bti() into system_supports_bti() and system_supports_bti_kernel(), with the former handling where the cpucap affects userspace functionality, and ther latter handling where the cpucap affects kernel functionality. The use of cpus_have_const_cap() is replaced by cpus_have_final_cap() in cpus_have_const_cap, and cpus_have_final_boot_cap() in system_supports_bti_kernel(). This will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The use of cpus_have_final_cap() and cpus_have_final_boot_cap() will make it easier to spot if code is chaanged such that these run before the ARM64_HAS_BTI cpucap is guaranteed to have been finalized. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
34f66c4c4d |
arm64: Use a positive cpucap for FP/SIMD
Currently we have a negative cpucap which describes the *absence* of FP/SIMD rather than *presence* of FP/SIMD. This largely works, but is somewhat awkward relative to other cpucaps that describe the presence of a feature, and it would be nicer to have a cpucap which describes the presence of FP/SIMD: * This will allow the cpucap to be treated as a standard ARM64_CPUCAP_SYSTEM_FEATURE, which can be detected with the standard has_cpuid_feature() function and ARM64_CPUID_FIELDS() description. * This ensures that the cpucap will only transition from not-present to present, reducing the risk of unintentional and/or unsafe usage of FP/SIMD before cpucaps are finalized. * This will allow using arm64_cpu_capabilities::cpu_enable() to enable the use of FP/SIMD later, with FP/SIMD being disabled at boot time otherwise. This will ensure that any unintentional and/or unsafe usage of FP/SIMD prior to this is trapped, and will ensure that FP/SIMD is never unintentionally enabled for userspace in mismatched big.LITTLE systems. This patch replaces the negative ARM64_HAS_NO_FPSIMD cpucap with a positive ARM64_HAS_FPSIMD cpucap, making changes as described above. Note that as FP/SIMD will now be trapped when not supported system-wide, do_fpsimd_acc() must handle these traps in the same way as for SVE and SME. The commentary in fpsimd_restore_current_state() is updated to describe the new scheme. No users of system_supports_fpsimd() need to know that FP/SIMD is available prior to alternatives being patched, so this is updated to use alternative_has_cap_likely() to check for the ARM64_HAS_FPSIMD cpucap, without generating code to test the system_cpucaps bitmap. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
14567ba42c |
arm64: Rename SVE/SME cpu_enable functions
The arm64_cpu_capabilities::cpu_enable() callbacks for SVE, SME, SME2, and FA64 are named with an unusual "${feature}_kernel_enable" pattern rather than the much more common "cpu_enable_${feature}". Now that we only use these as cpu_enable() callbacks, it would be nice to have them match the usual scheme. This patch renames the cpu_enable() callbacks to match this scheme. At the same time, the comment above cpu_enable_sve() is removed for consistency with the other cpu_enable() callbacks. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
9077229170 |
arm64: Use build-time assertions for cpucap ordering
Both sme2_kernel_enable() and fa64_kernel_enable() need to run after sme_kernel_enable(). This happens to be true today as ARM64_SME has a lower index than either ARM64_SME2 or ARM64_SME_FA64, and both functions have a comment to this effect. It would be nicer to have a build-time assertion like we for for can_use_gic_priorities() and has_gic_prio_relaxed_sync(), as that way it will be harder to miss any potential breakage. This patch replaces the comments with build-time assertions. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
bc9bbb7880 |
arm64: Explicitly save/restore CPACR when probing SVE and SME
When a CPUs onlined we first probe for supported features and propetites, and then we subsequently enable features that have been detected. This is a little problematic for SVE and SME, as some properties (e.g. vector lengths) cannot be probed while they are disabled. Due to this, the code probing for SVE properties has to enable SVE for EL1 prior to proving, and the code probing for SME properties has to enable SME for EL1 prior to probing. We never disable SVE or SME for EL1 after probing. It would be a little nicer to transiently enable SVE and SME during probing, leaving them both disabled unless explicitly enabled, as this would make it much easier to catch unintentional usage (e.g. when they are not present system-wide). This patch reworks the SVE and SME feature probing code to only transiently enable support at EL1, disabling after probing is complete. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
42c5a3b04b |
arm64: Split kpti_install_ng_mappings()
The arm64_cpu_capabilities::cpu_enable callbacks are intended for cpu-local feature enablement (e.g. poking system registers). These get called for each online CPU when boot/system cpucaps get finalized and enabled, and get called whenever a CPU is subsequently onlined. For KPTI with the ARM64_UNMAP_KERNEL_AT_EL0 cpucap, we use the kpti_install_ng_mappings() function as the cpu_enable callback. This does a mixture of cpu-local configuration (setting VBAR_EL1 to the appropriate trampoline vectors) and some global configuration (rewriting the swapper page tables to sue non-glboal mappings) that must happen at most once. This patch splits kpti_install_ng_mappings() into a cpu-local cpu_enable_kpti() initialization function and a system-wide kpti_install_ng_mappings() function. The cpu_enable_kpti() function is responsible for selecting the necessary cpu-local vectors each time a CPU is onlined, and the kpti_install_ng_mappings() function performs the one-time rewrite of the translation tables too use non-global mappings. Splitting the two makes the code a bit easier to follow and also allows the page table rewriting code to be marked as __init such that it can be freed after use. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
7f632d331d |
arm64: Fixup user features at boot time
For ARM64_WORKAROUND_2658417, we use a cpu_enable() callback to hide the ID_AA64ISAR1_EL1.BF16 ID register field. This is a little awkward as CPUs may attempt to apply the workaround concurrently, requiring that we protect the bulk of the callback with a raw_spinlock, and requiring some pointless work every time a CPU is subsequently hotplugged in. This patch makes this a little simpler by handling the masking once at boot time. A new user_feature_fixup() function is called at the start of setup_user_features() to mask the feature, matching the style of elf_hwcap_fixup(). The ARM64_WORKAROUND_2658417 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Note that the ARM64_WORKAROUND_2658417 capability is matched with ERRATA_MIDR_RANGE(), which implicitly gives the capability a ARM64_CPUCAP_LOCAL_CPU_ERRATUM type, which forbids the late onlining of a CPU with the erratum if the erratum was not present at boot time. Therefore this patch doesn't change the behaviour for late onlining. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
075f48c924 |
arm64: Rework setup_cpu_features()
Currently setup_cpu_features() handles a mixture of one-time kernel feature setup (e.g. cpucaps) and one-time user feature setup (e.g. ELF hwcaps). Subsequent patches will rework other one-time setup and expand the logic currently in setup_cpu_features(), and in preparation for this it would be helpful to split the kernel and user setup into separate functions. This patch splits setup_user_features() out of setup_cpu_features(), with a few additional cleanups of note: * setup_cpu_features() is renamed to setup_system_features() to make it clear that it handles system-wide feature setup rather than cpu-local feature setup. * setup_system_capabilities() is folded into setup_system_features(). * Presence of TTBR0 pan is logged immediately after update_cpu_capabilities(), so that this is guaranteed to appear alongside all the other detected system cpucaps. * The 'cwg' variable is removed as its value is only consumed once and it's simpler to use cache_type_cwg() directly without assigning its return value to a variable. * The call to setup_user_features() is moved after alternatives are patched, which will allow user feature setup code to depend on alternative branches and allow for simplifications in subsequent patches. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
94d0657f9f |
arm64: add FEAT_LSE128 HWCAP
Add HWCAP for FEAT_LSE128 (128-bit Atomic instructions). Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20231003124544.858804-2-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
338a835f40 |
arm64: add FEAT_LRCPC3 HWCAP
FEAT_LRCPC3 adds more instructions to support the Release Consistency model. Add a HWCAP so that userspace can make decisions about instructions it can use. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230919162757.2707023-2-joey.gouly@arm.com [catalin.marinas@arm.com: change the HWCAP number] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
de8a660b03 |
arm: Remove now superfluous sentinel elem from ctl_table arrays
This commit comes at the tail end of a greater effort to remove the empty elements at the end of the ctl_table arrays (sentinels) which will reduce the overall build time size of the kernel and run time memory bloat by ~64 bytes per sentinel (further information Link : https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/) Removed the sentinel as well as the explicit size from ctl_isa_vars. The size is redundant as the initialization sets it. Changed insn_emulation->sysctl from a 2 element array of struct ctl_table to a simple struct. This has no consequence for the sysctl registration as it is forwarded as a pointer. Removed sentinel from sve_defatul_vl_table, sme_default_vl_table, tagged_addr_sysctl_table and armv8_pmu_sysctl_table. This removal is safe because register_sysctl_sz and register_sysctl use the array size in addition to checking for the sentinel. Signed-off-by: Joel Granados <j.granados@samsung.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
![]() |
2de451a329 |
KVM: arm64: Add handler for MOPS exceptions
An Armv8.8 FEAT_MOPS main or epilogue instruction will take an exception if executed on a CPU with a different MOPS implementation option (A or B) than the CPU where the preceding prologue instruction ran. In this case the OS exception handler is expected to reset the registers and restart execution from the prologue instruction. A KVM guest may use the instructions at EL1 at times when the guest is not able to handle the exception, expecting that the instructions will only run on one CPU (e.g. when running UEFI boot services in the guest). As KVM may reschedule the guest between different types of CPUs at any time (on an asymmetric system), it needs to also handle the resulting exception itself in case the guest is not able to. A similar situation will also occur in the future when live migrating a guest from one type of CPU to another. Add handling for the MOPS exception to KVM. The handling can be shared with the EL0 exception handler, as the logic and register layouts are the same. The exception can be handled right after exiting a guest, which avoids the cost of returning to the host exit handler. Similarly to the EL0 exception handler, in case the main or epilogue instruction is being single stepped, it makes sense to finish the step before executing the prologue instruction, so advance the single step state machine. Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230922112508.1774352-2-kristina.martsenko@arm.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
ef31b8ce31 |
arm64: smp: Don't directly call arch_smp_send_reschedule() for wakeup
In commit |
||
![]() |
a07a594152 |
arm64: smp: avoid NMI IPIs with broken MediaTek FW
Some MediaTek devices have broken firmware which corrupts some GICR registers behind the back of the OS, and pseudo-NMIs cannot be used on these devices. For more details see commit: |
||
![]() |
448e9f34d9 |
rcu: Standardize explicit CPU-hotplug calls
rcu_report_dead() and rcutree_migrate_callbacks() have their headers in rcupdate.h while those are pure rcutree calls, like the other CPU-hotplug functions. Also rcu_cpu_starting() and rcu_report_dead() have different naming conventions while they mirror each other's effects. Fix the headers and propose a naming that relates both functions and aligns with the prefix of other rcutree CPU-hotplug functions. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
||
![]() |
c964c1f5ee |
rcu: Assume rcu_report_dead() is always called locally
rcu_report_dead() has to be called locally by the CPU that is going to exit the RCU state machine. Passing a cpu argument here is error-prone and leaves the possibility for a racy remote call. Use local access instead. Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> |
||
![]() |
471470bc70 |
arm64: errata: Add Cortex-A520 speculative unprivileged load workaround
Implement the workaround for ARM Cortex-A520 erratum 2966298. On an affected Cortex-A520 core, a speculatively executed unprivileged load might leak data from a privileged load via a cache side channel. The issue only exists for loads within a translation regime with the same translation (e.g. same ASID and VMID). Therefore, the issue only affects the return to EL0. The workaround is to execute a TLBI before returning to EL0 after all loads of privileged data. A non-shareable TLBI to any address is sufficient. The workaround isn't necessary if page table isolation (KPTI) is enabled, but for simplicity it will be. Page table isolation should normally be disabled for Cortex-A520 as it supports the CSV3 feature and the E0PD feature (used when KASLR is enabled). Cc: stable@vger.kernel.org Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20230921194156.1050055-2-robh@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
5d5b4e8c2d |
arm64/sve: Report FEAT_SVE_B16B16 to userspace
SVE 2.1 introduced a new feature FEAT_SVE_B16B16 which adds instructions supporting the BFloat16 floating point format. Report this to userspace through the ID registers and hwcap. Reported-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230915-arm64-zfr-b16b16-el0-v1-1-f9aba807bdb5@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
62817d5ba2 |
arm64: smp: Mark IPI globals as __ro_after_init
Mark the three IPI-related globals in smp.c as "__ro_after_init" since they are only ever set in set_smp_ipi_range(), which is marked "__init". This is a better and more secure marking than the old "__read_mostly". Suggested-by: Stephen Boyd <swboyd@chromium.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Chen-Yu Tsai <wenst@chromium.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20230906090246.v13.7.I625d393afd71e1766ef73d3bfaac0b347a4afd19@changeid Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
2f5cd0c7ff |
arm64: kgdb: Implement kgdb_roundup_cpus() to enable pseudo-NMI roundup
Up until now we've been using the generic (weak) implementation for kgdb_roundup_cpus() when using kgdb on arm64. Let's move to a custom one. The advantage here is that, when pseudo-NMI is enabled on a device, we'll be able to round up CPUs using pseudo-NMI. This allows us to debug CPUs that are stuck with interrupts disabled. If pseudo-NMIs are not enabled then we'll fallback to just using an IPI, which is still slightly better than the generic implementation since it avoids the potential situation described in the generic kgdb_call_nmi_hook(). Co-developed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Chen-Yu Tsai <wenst@chromium.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Link: https://lore.kernel.org/r/20230906090246.v13.6.I2ef26d1b3bfbed2d10a281942b0da7d9854de05e@changeid Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d7402513c9 |
arm64: smp: IPI_CPU_STOP and IPI_CPU_CRASH_STOP should try for NMI
There's no reason why IPI_CPU_STOP and IPI_CPU_CRASH_STOP can't be handled as NMI. They are very simple and everything in them is NMI-safe. Mark them as things to use NMI for if NMI is available. Suggested-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Reviewed-by: Misono Tomohiro <misono.tomohiro@fujitsu.com> Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Chen-Yu Tsai <wenst@chromium.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Link: https://lore.kernel.org/r/20230906090246.v13.5.Ifadbfd45b22c52edcb499034dd4783d096343260@changeid Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
331a1b3a83 |
arm64: smp: Add arch support for backtrace using pseudo-NMI
Enable arch_trigger_cpumask_backtrace() support on arm64. This enables
things much like they are enabled on arm32 (including some of the
funky logic around NR_IPI, nr_ipi, and MAX_IPI) but with the
difference that, unlike arm32, we'll try to enable the backtrace to
use pseudo-NMI.
NOTE: this patch is a squash of the little bit of code adding the
ability to mark an IPI to try to use pseudo-NMI plus the little bit of
code to hook things up for kgdb. This approach was decided upon in the
discussion of v9 [1].
This patch depends on commit
|
||
![]() |
2b2d0a7a96 |
arm64: smp: Remove dedicated wakeup IPI
To enable NMI backtrace and KGDB's NMI cpu roundup, we need to free up at least one dedicated IPI. On arm64 the IPI_WAKEUP IPI is only used for the ACPI parking protocol, which itself is only used on some very early ARMv8 systems which couldn't implement PSCI. Remove the IPI_WAKEUP IPI, and rely on the IPI_RESCHEDULE IPI to wake CPUs from the parked state. This will cause a tiny amonut of redundant work to check the thread flags, but this is miniscule in relation to the cost of taking and handling the IPI in the first place. We can safely handle redundant IPI_RESCHEDULE IPIs, so there should be no functional impact as a result of this change. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Tested-by: Chen-Yu Tsai <wenst@chromium.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230906090246.v13.3.I7209db47ef8ec151d3de61f59005bbc59fe8f113@changeid Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d0c14a7d36 |
arm64: idle: Tag the arm64 idle functions as __cpuidle
As per the (somewhat recent) comment before the definition of `__cpuidle`, the tag is like `noinstr` but also marks a function so it can be identified by cpu_in_idle(). Let's add these markings to arm64 cpuidle functions With this change we get useful backtraces like: NMI backtrace for cpu N skipped: idling at cpu_do_idle+0x94/0x98 instead of useless backtraces when dumping all processors using nmi_cpu_backtrace(). NOTE: this patch won't make cpu_in_idle() work perfectly for arm64, but it doesn't hurt and does catch some cases. Specifically an example that wasn't caught in my testing looked like this: gic_cpu_sys_reg_init+0x1f8/0x314 gic_cpu_pm_notifier+0x40/0x78 raw_notifier_call_chain+0x5c/0x134 cpu_pm_notify+0x38/0x64 cpu_pm_exit+0x20/0x2c psci_enter_idle_state+0x48/0x70 cpuidle_enter_state+0xb8/0x260 cpuidle_enter+0x44/0x5c do_idle+0x188/0x30c Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Acked-by: Sumit Garg <sumit.garg@linaro.org> Tested-by: Chen-Yu Tsai <wenst@chromium.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Link: https://lore.kernel.org/r/20230906090246.v13.2.I4baba13e220bdd24d11400c67f137c35f07f82c7@changeid Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
391208485c |
arm64/sve: Remove SMCR pseudo register from cpufeature code
For reasons that are not currently apparent during cpufeature enumeration we maintain a pseudo register for SMCR which records the maximum supported vector length using the value that would be written to SMCR_EL1.LEN to configure it. This is not exposed to userspace and is not sufficient for detecting unsupportable configurations, we need the more detailed checks in vec_update_vq_map() for that since we can't cope with missing vector lengths on late CPUs and KVM requires an exactly matching set of supported vector lengths as EL1 can enumerate VLs directly with the hardware. Remove the code, replacing the usage in sme_setup() with a query of the vq_map. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230913-arm64-vec-len-cpufeature-v1-2-cc69b0600a8a@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
abef0695f9 |
arm64/sve: Remove ZCR pseudo register from cpufeature code
For reasons that are not currently apparent during cpufeature enumeration we maintain a pseudo register for ZCR which records the maximum supported vector length using the value that would be written to ZCR_EL1.LEN to configure it. This is not exposed to userspace and is not sufficient for detecting unsupportable configurations, we need the more detailed checks in vec_update_vq_map() for that since we can't cope with missing vector lengths on late CPUs and KVM requires an exactly matching set of supported vector lengths as EL1 can enumerate VLs directly with the hardware. Remove the code, replacing the usage in sve_setup() with a query of the vq_map. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230913-arm64-vec-len-cpufeature-v1-1-cc69b0600a8a@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
479965a2b7 |
arm64: cpufeature: Fix CLRBHB and BC detection
ClearBHB support is indicated by the CLRBHB field in ID_AA64ISAR2_EL1. Following some refactoring the kernel incorrectly checks the BC field instead. Fix the detection to use the right field. (Note: The original ClearBHB support had it as FTR_HIGHER_SAFE, but this patch uses FTR_LOWER_SAFE, which seems more correct.) Also fix the detection of BC (hinted conditional branches) to use FTR_LOWER_SAFE, so that it is not reported on mismatched systems. Fixes: |
||
![]() |
ca9c7abf95 |
arm64 fixes for -rc1
- Fix an incorrect mask in the CXL PMU driver - Fix a regression in early parsing of the kernel command line - Fix an IP checksum OoB access reported by syzbot -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmT6/MgQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNABnB/0XsQEfl+cjE1BJnYuwiZyMbraSAL2i5oy9 3LUKHOQblZpSnf+OCxr2otBoRVpM2hmXcGQymUzcI8SmLtgNt8RFmwVtyuj3X6ZX JTrdxLIMK2TQi/dqQ9ssJCejW4Y2fXDfJ2hZSpTG40TVyU8mL9BzI61HGQYcMA4T 0HFzvfDFoDDwslJgeKyVnaEU03o81HaRTOgL4OHAT9AhWlIzaWmVtJf+y/metd7U ccE1yA0LG9teAgN3wC2yWWR4iBG0/Fe1UHV8ouvtXXAuLLySIObYKSa3hhOWz5N0 QDNQH12El+I7pKoA6N/D8orgXVk9xt3Q+9DSI0wcyGn+HsbLNprC =9Une -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "The main one is a fix for a broken strscpy() conversion that landed in the merge window and broke early parsing of the kernel command line. - Fix an incorrect mask in the CXL PMU driver - Fix a regression in early parsing of the kernel command line - Fix an IP checksum OoB access reported by syzbot" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: csum: Fix OoB access in IP checksum code for negative lengths arm64/sysreg: Fix broken strncpy() -> strscpy() conversion perf: CXL: fix mismatched number of counters mask |
||
![]() |
0c02183427 |
ARM:
* Clean up vCPU targets, always returning generic v8 as the preferred target * Trap forwarding infrastructure for nested virtualization (used for traps that are taken from an L2 guest and are needed by the L1 hypervisor) * FEAT_TLBIRANGE support to only invalidate specific ranges of addresses when collapsing a table PTE to a block PTE. This avoids that the guest refills the TLBs again for addresses that aren't covered by the table PTE. * Fix vPMU issues related to handling of PMUver. * Don't unnecessary align non-stack allocations in the EL2 VA space * Drop HCR_VIRT_EXCP_MASK, which was never used... * Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu parameter instead * Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort() * Remove prototypes without implementations RISC-V: * Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest * Added ONE_REG interface for SATP mode * Added ONE_REG interface to enable/disable multiple ISA extensions * Improved error codes returned by ONE_REG interfaces * Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V * Added get-reg-list selftest for KVM RISC-V s390: * PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch) Allows a PV guest to use crypto cards. Card access is governed by the firmware and once a crypto queue is "bound" to a PV VM every other entity (PV or not) looses access until it is not bound anymore. Enablement is done via flags when creating the PV VM. * Guest debug fixes (Ilya) x86: * Clean up KVM's handling of Intel architectural events * Intel bugfixes * Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug registers and generate/handle #DBs * Clean up LBR virtualization code * Fix a bug where KVM fails to set the target pCPU during an IRTE update * Fix fatal bugs in SEV-ES intrahost migration * Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) * Retry APIC map recalculation if a vCPU is added/enabled * Overhaul emergency reboot code to bring SVM up to par with VMX, tie the "emergency disabling" behavior to KVM actually being loaded, and move all of the logic within KVM * Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC ratio MSR cannot diverge from the default when TSC scaling is disabled up related code * Add a framework to allow "caching" feature flags so that KVM can check if the guest can use a feature without needing to search guest CPUID * Rip out the ancient MMU_DEBUG crud and replace the useful bits with CONFIG_KVM_PROVE_MMU * Fix KVM's handling of !visible guest roots to avoid premature triple fault injection * Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface that is needed by external users (currently only KVMGT), and fix a variety of issues in the process This last item had a silly one-character bug in the topic branch that was sent to me. Because it caused pretty bad selftest failures in some configurations, I decided to squash in the fix. So, while the exact commit ids haven't been in linux-next, the code has (from the kvm-x86 tree). Generic: * Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass action specific data without needing to constantly update the main handlers. * Drop unused function declarations Selftests: * Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs * Add support for printf() in guest code and covert all guest asserts to use printf-based reporting * Clean up the PMU event filter test and add new testcases * Include x86 selftests in the KVM x86 MAINTAINERS entry -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT1m0kUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroMNgggAiN7nz6UC423FznuI+yO3TLm8tkx1 CpKh5onqQogVtchH+vrngi97cfOzZb1/AtifY90OWQi31KEWhehkeofcx7G6ERhj 5a9NFADY1xGBsX4exca/VHDxhnzsbDWaWYPXw5vWFWI6erft9Mvy3tp1LwTvOzqM v8X4aWz+g5bmo/DWJf4Wu32tEU6mnxzkrjKU14JmyqQTBawVmJ3RYvHVJ/Agpw+n hRtPAy7FU6XTdkmq/uCT+KUHuJEIK0E/l1js47HFAqSzwdW70UDg14GGo1o4ETxu RjZQmVNvL57yVgi6QU38/A0FWIsWQm5IlaX1Ug6x8pjZPnUKNbo9BY4T1g== =W+4p -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Clean up vCPU targets, always returning generic v8 as the preferred target - Trap forwarding infrastructure for nested virtualization (used for traps that are taken from an L2 guest and are needed by the L1 hypervisor) - FEAT_TLBIRANGE support to only invalidate specific ranges of addresses when collapsing a table PTE to a block PTE. This avoids that the guest refills the TLBs again for addresses that aren't covered by the table PTE. - Fix vPMU issues related to handling of PMUver. - Don't unnecessary align non-stack allocations in the EL2 VA space - Drop HCR_VIRT_EXCP_MASK, which was never used... - Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu parameter instead - Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort() - Remove prototypes without implementations RISC-V: - Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest - Added ONE_REG interface for SATP mode - Added ONE_REG interface to enable/disable multiple ISA extensions - Improved error codes returned by ONE_REG interfaces - Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V - Added get-reg-list selftest for KVM RISC-V s390: - PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch) Allows a PV guest to use crypto cards. Card access is governed by the firmware and once a crypto queue is "bound" to a PV VM every other entity (PV or not) looses access until it is not bound anymore. Enablement is done via flags when creating the PV VM. - Guest debug fixes (Ilya) x86: - Clean up KVM's handling of Intel architectural events - Intel bugfixes - Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug registers and generate/handle #DBs - Clean up LBR virtualization code - Fix a bug where KVM fails to set the target pCPU during an IRTE update - Fix fatal bugs in SEV-ES intrahost migration - Fix a bug where the recent (architecturally correct) change to reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to skip it) - Retry APIC map recalculation if a vCPU is added/enabled - Overhaul emergency reboot code to bring SVM up to par with VMX, tie the "emergency disabling" behavior to KVM actually being loaded, and move all of the logic within KVM - Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC ratio MSR cannot diverge from the default when TSC scaling is disabled up related code - Add a framework to allow "caching" feature flags so that KVM can check if the guest can use a feature without needing to search guest CPUID - Rip out the ancient MMU_DEBUG crud and replace the useful bits with CONFIG_KVM_PROVE_MMU - Fix KVM's handling of !visible guest roots to avoid premature triple fault injection - Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface that is needed by external users (currently only KVMGT), and fix a variety of issues in the process Generic: - Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass action specific data without needing to constantly update the main handlers. - Drop unused function declarations Selftests: - Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs - Add support for printf() in guest code and covert all guest asserts to use printf-based reporting - Clean up the PMU event filter test and add new testcases - Include x86 selftests in the KVM x86 MAINTAINERS entry" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits) KVM: x86/mmu: Include mmu.h in spte.h KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots KVM: x86/mmu: Disallow guest from using !visible slots for page tables KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page KVM: x86/mmu: Harden new PGD against roots without shadow pages KVM: x86/mmu: Add helper to convert root hpa to shadow page drm/i915/gvt: Drop final dependencies on KVM internal details KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers KVM: x86/mmu: Drop @slot param from exported/external page-track APIs KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled KVM: x86/mmu: Assert that correct locks are held for page write-tracking KVM: x86/mmu: Rename page-track APIs to reflect the new reality KVM: x86/mmu: Drop infrastructure for multiple page-track modes KVM: x86/mmu: Use page-track notifiers iff there are external users KVM: x86/mmu: Move KVM-only page-track declarations to internal header KVM: x86: Remove the unused page-track hook track_flush_slot() drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region() KVM: x86: Add a new page-track hook to handle memslot deletion drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot KVM: x86: Reject memslot MOVE operations if KVMGT is attached ... |
||
![]() |
ab41a97474 |
arm64/sysreg: Fix broken strncpy() -> strscpy() conversion
Mostafa reports that commit |
||
![]() |
df57721f9a |
Add x86 shadow stack support
Convert IBT selftest to asm to fix objtool warning -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTv1QQACgkQaDWVMHDJ krAUwhAAn6TOwHJK8BSkHeiQhON1nrlP3c5cv0AyZ2NP8RYDrZrSZvhpYBJ6wgKC Cx5CGq5nn9twYsYS3KsktLKDfR3lRdsQ7K9qtyFtYiaeaVKo+7gEKl/K+klwai8/ gninQWHk0zmSCja8Vi77q52WOMkQKapT8+vaON9EVDO8dVEi+CvhAIfPwMafuiwO Rk4X86SzoZu9FP79LcCg9XyGC/XbM2OG9eNUTSCKT40qTTKm5y4gix687NvAlaHR ko5MTsdl0Wfp6Qk0ohT74LnoA2c1g/FluvZIM33ci/2rFpkf9Hw7ip3lUXqn6CPx rKiZ+pVRc0xikVWkraMfIGMJfUd2rhelp8OyoozD7DB7UZw40Q4RW4N5tgq9Fhe9 MQs3p1v9N8xHdRKl365UcOczUxNAmv4u0nV5gY/4FMC6VjldCl2V9fmqYXyzFS4/ Ogg4FSd7c2JyGFKPs+5uXyi+RY2qOX4+nzHOoKD7SY616IYqtgKoz5usxETLwZ6s VtJOmJL0h//z0A7tBliB0zd+SQ5UQQBDC2XouQH2fNX2isJMn0UDmWJGjaHgK6Hh 8jVp6LNqf+CEQS387UxckOyj7fu438hDky1Ggaw4YqowEOhQeqLVO4++x+HITrbp AupXfbJw9h9cMN63Yc0gVxXQ9IMZ+M7UxLtZ3Cd8/PVztNy/clA= =3UUm -----END PGP SIGNATURE----- Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 shadow stack support from Dave Hansen: "This is the long awaited x86 shadow stack support, part of Intel's Control-flow Enforcement Technology (CET). CET consists of two related security features: shadow stacks and indirect branch tracking. This series implements just the shadow stack part of this feature, and just for userspace. The main use case for shadow stack is providing protection against return oriented programming attacks. It works by maintaining a secondary (shadow) stack using a special memory type that has protections against modification. When executing a CALL instruction, the processor pushes the return address to both the normal stack and to the special permission shadow stack. Upon RET, the processor pops the shadow stack copy and compares it to the normal stack copy. For more information, refer to the links below for the earlier versions of this patch set" Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/ Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/ * tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits) x86/shstk: Change order of __user in type x86/ibt: Convert IBT selftest to asm x86/shstk: Don't retry vm_munmap() on -EINTR x86/kbuild: Fix Documentation/ reference x86/shstk: Move arch detail comment out of core mm x86/shstk: Add ARCH_SHSTK_STATUS x86/shstk: Add ARCH_SHSTK_UNLOCK x86: Add PTRACE interface for shadow stack selftests/x86: Add shadow stack test x86/cpufeatures: Enable CET CR4 bit for shadow stack x86/shstk: Wire in shadow stack interface x86: Expose thread features in /proc/$PID/status x86/shstk: Support WRSS for userspace x86/shstk: Introduce map_shadow_stack syscall x86/shstk: Check that signal frame is shadow stack mem x86/shstk: Check that SSP is aligned on sigreturn x86/shstk: Handle signals for shadow stack x86/shstk: Introduce routines modifying shstk x86/shstk: Handle thread shadow stack x86/shstk: Add user-mode shadow stack support ... |
||
![]() |
e0fb12c673 |
KVM/arm64 updates for Linux 6.6
- Add support for TLB range invalidation of Stage-2 page tables, avoiding unnecessary invalidations. Systems that do not implement range invalidation still rely on a full invalidation when dealing with large ranges. - Add infrastructure for forwarding traps taken from a L2 guest to the L1 guest, with L0 acting as the dispatcher, another baby step towards the full nested support. - Simplify the way we deal with the (long deprecated) 'CPU target', resulting in a much needed cleanup. - Fix another set of PMU bugs, both on the guest and host sides, as we seem to never have any shortage of those... - Relax the alignment requirements of EL2 VA allocations for non-stack allocations, as we were otherwise wasting a lot of that precious VA space. - The usual set of non-functional cleanups, although I note the lack of spelling fixes... -----BEGIN PGP SIGNATURE----- iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmTsXrUPHG1hekBrZXJu ZWwub3JnAAoJECPQ0LrRPXpDZpIQAJUM1rNEOJ8ExYRfoG1LaTfcOm5TD6D1IWlO uCUx4xLMBudw/55HusmUSdiomQ3Xg5UdRaU7vX5OYwPbdoWebjEUfgdP3jCA/TiW mZTMv3x9hOvp+EOS/UnS469cERvg1/KfwcdOQsWL0HsCFZnu2XmQHWPD++vovLNp F1892ij875mC6C6mOR60H2nyjIiCuqWh/8eKBkp65CARCbFDYxWhqBnmcmTvoquh E87pQDPdtgXc0KlOWCABh5bYOu1WGVEXE5f3ixtdY9cQakkSI3NkFKw27/mIWS4q TCsagByNnPFDXTglb1dJopNdluLMFi1iXhRJX78R/PYaHxf4uFafWcQk1U7eDdLg 1kPANggwYe4KNAQZUvRhH7lIPWHCH0r4c1qHV+FsiOZVoDOSKHo4RW1ZFtirJSNW LNJMdk+8xyae0S7z164EpZB/tpFttX4gl3YvUT/T+4gH8+CRFAaoAlK39CoGDPpk f+P2GE1Z5YupF16YjpZtBnan55KkU1b6eORl5zpnAtoaz5WGXqj1t4qo0Q6e9WB9 X4rdDVhH7vRUmhjmSP6PuEygb84hnITLdGpkH2BmWj/4uYuCN+p+U2B2o/QdMJoo cPxdflLOU/+1gfAFYPtHVjVKCqzhwbw3iLXQpO12gzRYqE13rUnAr7RuGDf5fBVC LW7Pv81o =DKhx -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for Linux 6.6 - Add support for TLB range invalidation of Stage-2 page tables, avoiding unnecessary invalidations. Systems that do not implement range invalidation still rely on a full invalidation when dealing with large ranges. - Add infrastructure for forwarding traps taken from a L2 guest to the L1 guest, with L0 acting as the dispatcher, another baby step towards the full nested support. - Simplify the way we deal with the (long deprecated) 'CPU target', resulting in a much needed cleanup. - Fix another set of PMU bugs, both on the guest and host sides, as we seem to never have any shortage of those... - Relax the alignment requirements of EL2 VA allocations for non-stack allocations, as we were otherwise wasting a lot of that precious VA space. - The usual set of non-functional cleanups, although I note the lack of spelling fixes... |
||
![]() |
461f35f014 |
drm for 6.6-rc1
core: - fix gfp flags in drmm_kmalloc gpuva: - add new generic GPU VA manager (for nouveau initially) syncobj: - add new DRM_IOCTL_SYNCOBJ_EVENTFD ioctl dma-buf: - acquire resv lock for mmap() in exporters - support dma-buf self import automatically - docs fixes backlight: - fix fbdev interactions atomic: - improve logging prime: - remove struct gem_prim_mmap plus driver updates gem: - drm_exec: add locking over multiple GEM objects - fix lockdep checking fbdev: - make fbdev userspace interfaces optional - use linux device instead of fbdev device - use deferred i/o helper macros in various drivers - Make FB core selectable without drivers - Remove obsolete flags FBINFO_DEFAULT and FBINFO_FLAG_DEFAULT - Add helper macros and Kconfig tokens for DMA-allocated framebuffer ttm: - support init_on_free - swapout fixes panel: - panel-edp: Support AUO B116XAB01.4 - Support Visionox R66451 plus DT bindings - ld9040: Backlight support, magic improved, Kconfig fix - Convert to of_device_get_match_data() - Fix Kconfig dependencies - simple: Set bpc value to fix warning; Set connector type for AUO T215HVN01; Support Innolux G156HCE-L01 plus DT bindings - ili9881: Support TDO TL050HDV35 LCD panel plus DT bindings - startek: Support KD070FHFID015 MIPI-DSI panel plus DT bindings - sitronix-st7789v: Support Inanbo T28CP45TN89 plus DT bindings; Support EDT ET028013DMA plus DT bindings; Various cleanups - edp: Add timings for N140HCA-EAC - Allow panels and touchscreens to power sequence together - Fix Innolux G156HCE-L01 LVDS clock bridge: - debugfs for chains support - dw-hdmi: Improve support for YUV420 bus format CEC suspend/resume, update EDID on HDMI detect - dw-mipi-dsi: Fix enable/disable of DSI controller - lt9611uxc: Use MODULE_FIRMWARE() - ps8640: Remove broken EDID code - samsung-dsim: Fix command transfer - tc358764: Handle HS/VS polarity; Use BIT() macro; Various cleanups - adv7511: Fix low refresh rate - anx7625: Switch to macros instead of hardcoded values locking fixes - tc358767: fix hardware delays - sitronix-st7789v: Support panel orientation; Support rotation property; Add support for Jasonic JT240MHQS-HWT-EK-E3 plus DT bindings amdgpu: - SDMA 6.1.0 support - HDP 6.1 support - SMUIO 14.0 support - PSP 14.0 support - IH 6.1 support - Lots of checkpatch cleanups - GFX 9.4.3 updates - Add USB PD and IFWI flashing documentation - GPUVM updates - RAS fixes - DRR fixes - FAMS fixes - Virtual display fixes - Soft IH fixes - SMU13 fixes - Rework PSP firmware loading for other IPs - Kernel doc fixes - DCN 3.0.1 fixes - LTTPR fixes - DP MST fixes - DCN 3.1.6 fixes - SMU 13.x fixes - PSP 13.x fixes - SubVP fixes - GC 9.4.3 fixes - Display bandwidth calculation fixes - VCN4 secure submission fixes - Allow building DC on RISC-V - Add visible FB info to bo_print_info - HBR3 fixes - GFX9 MCBP fix - GMC10 vmhub index fix - GMC11 vmhub index fix - Create a new doorbell manager - SR-IOV fixes - initial freesync panel replay support - revert zpos properly until igt regression is fixeed - use TTM to manage doorbell BAR - Expose both current and average power via hwmon if supported amdkfd: - Cleanup CRIU dma-buf handling - Use KIQ to unmap HIQ - GFX 9.4.3 debugger updates - GFX 9.4.2 debugger fixes - Enable cooperative groups fof gfx11 - SVM fixes - Convert older APUs to use dGPU path like newer APUs - Drop IOMMUv2 path as it is no longer used - TBA fix for aldebaran i915: - ICL+ DSI modeset sequence - HDCP improvements - MTL display fixes and cleanups - HSW/BDW PSR1 restored - Init DDI ports in VBT order - General display refactors - Start using plane scale factor for relative data rate - Use shmem for dpt objects - Expose RPS thresholds in sysfs - Apply GuC SLPC min frequency softlimit correctly - Extend Wa_14015795083 to TGL, RKL, DG1 and ADL - Fix a VMA UAF for multi-gt platform - Do not use stolen on MTL due to HW bug - Check HuC and GuC version compatibility on MTL - avoid infinite GPU waits due to premature release of request memory - Fixes and updates for GSC memory allocation - Display SDVO fixes - Take stolen handling out of FBC code - Make i915_coherent_map_type GT-centric - Simplify shmem_create_from_object map_type msm: - SM6125 MDSS support - DPU: SM6125 DPU support - DSI: runtime PM support, burst mode support - DSI PHY: SM6125 support in 14nm DSI PHY driver - GPU: prepare for a7xx - fix a690 firmware - disable relocs on a6xx and newer radeon: - Lots of checkpatch cleanups ast: - improve device-model detection - Represent BMV as virtual connector - Report DP connection status nouveau: - add new exec/bind interface to support Vulkan - document some getparam ioctls - improve VRAM detection - various fixes/cleanups - workraound DPCD issues ivpu: - MMU updates - debugfs support - Support vpu4 virtio: - add sync object support atmel-hlcdc: - Support inverted pixclock polarity etnaviv: - runtime PM cleanups - hang handling fixes exynos: - use fbdev DMA helpers - fix possible NULL ptr dereference komeda: - always attach encoder omapdrm: - use fbdev DMA helpers ingenic: - kconfig regmap fixes loongson: - support display controller mediatek: - Small mtk-dpi cleanups - DisplayPort: support eDP and aux-bus - Fix coverity issues - Fix potential memory leak if vmap() fail mgag200: - minor fixes mxsfb: - support disabling overlay planes panfrost: - fix sync in IRQ handling ssd130x: - Support per-controller default resolution plus DT bindings - Reduce memory-allocation overhead - Improve intermediate buffer size computation - Fix allocation of temporary buffers - Fix pitch computation - Fix shadow plane allocation tegra: - use fbdev DMA helpers - Convert to devm_platform_ioremap_resource() - support bridge/connector - enable PM tidss: - Support TI AM625 plus DT bindings - Implement new connector model plus driver updates vkms: - improve write back support - docs fixes - support gamma LUT zynqmp-dpsub: - misc fixes -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEEKbZHaGwW9KfbeusDHTzWXnEhr4FAmTukSYACgkQDHTzWXnE hr6vnQ/+J7vBVkBr8JsaEV/twcZwzbNdpivsIagd8U83GQB50nDReVXbNx+Wo0/C WiGlrC6Sw3NVOGbkigd5IQ7fb5C/7RnBmzMi/iS7Qnk2uEqLqgV00VxfGwdm6wgr 0gNB8zuu2xYphHz2K8LzwnmeQRdN+YUQpUa2wNzLO88IEkTvq5vx2rJEn5p9/3hp OxbbPBzpDRRPlkNFfVQCN8todbKdsPc4am81Eqgv7BJf21RFgQodPGW5koCYuv0w 3m+PJh1KkfYAL974EsLr/pkY7yhhiZ6SlFLX8ssg4FyZl/Vthmc9bl14jRq/pqt4 GBp8yrPq1XjrwXR8wv3MiwNEdANQ+KD9IoGlzLxqVgmEFRE+g4VzZZXeC3AIrTVP FPg4iLUrDrmj9RpJmbVqhq9X2jZs+EtRAFkJPrPbq2fItAD2a2dW4X3ISSnnTqDI 6O2dVwuLCU6OfWnvN4bPW9p8CqRgR8Itqv1SI8qXooDy307YZu1eTUf5JAVwG/SW xbDEFVFlMPyFLm+KN5dv1csJKK21vWi9gLg8phK8mTWYWnqMEtJqbxbRzmdBEFmE pXKVu01P6ZqgBbaETpCljlOaEDdJnvO4W+o70MgBtpR2IWFMbMNO+iS0EmLZ6Vgj 9zYZctpL+dMuHV0Of1GMkHFRHTMYEzW4tuctLIQfG13y4WzyczY= =CwV9 -----END PGP SIGNATURE----- Merge tag 'drm-next-2023-08-30' of git://anongit.freedesktop.org/drm/drm Pull drm updates from Dave Airlie: "The drm core grew a new generic gpu virtual address manager, and new execution locking helpers. These are used by nouveau now to provide uAPI support for the userspace Vulkan driver. AMD had a bunch of new IP core support, loads of refactoring around fbdev, but mostly just the usual amount of stuff across the board. core: - fix gfp flags in drmm_kmalloc gpuva: - add new generic GPU VA manager (for nouveau initially) syncobj: - add new DRM_IOCTL_SYNCOBJ_EVENTFD ioctl dma-buf: - acquire resv lock for mmap() in exporters - support dma-buf self import automatically - docs fixes backlight: - fix fbdev interactions atomic: - improve logging prime: - remove struct gem_prim_mmap plus driver updates gem: - drm_exec: add locking over multiple GEM objects - fix lockdep checking fbdev: - make fbdev userspace interfaces optional - use linux device instead of fbdev device - use deferred i/o helper macros in various drivers - Make FB core selectable without drivers - Remove obsolete flags FBINFO_DEFAULT and FBINFO_FLAG_DEFAULT - Add helper macros and Kconfig tokens for DMA-allocated framebuffer ttm: - support init_on_free - swapout fixes panel: - panel-edp: Support AUO B116XAB01.4 - Support Visionox R66451 plus DT bindings - ld9040: - Backlight support - magic improved - Kconfig fix - Convert to of_device_get_match_data() - Fix Kconfig dependencies - simple: - Set bpc value to fix warning - Set connector type for AUO T215HVN01 - Support Innolux G156HCE-L01 plus DT bindings - ili9881: Support TDO TL050HDV35 LCD panel plus DT bindings - startek: Support KD070FHFID015 MIPI-DSI panel plus DT bindings - sitronix-st7789v: - Support Inanbo T28CP45TN89 plus DT bindings - Support EDT ET028013DMA plus DT bindings - Various cleanups - edp: Add timings for N140HCA-EAC - Allow panels and touchscreens to power sequence together - Fix Innolux G156HCE-L01 LVDS clock bridge: - debugfs for chains support - dw-hdmi: - Improve support for YUV420 bus format - CEC suspend/resume - update EDID on HDMI detect - dw-mipi-dsi: Fix enable/disable of DSI controller - lt9611uxc: Use MODULE_FIRMWARE() - ps8640: Remove broken EDID code - samsung-dsim: Fix command transfer - tc358764: - Handle HS/VS polarity - Use BIT() macro - Various cleanups - adv7511: Fix low refresh rate - anx7625: - Switch to macros instead of hardcoded values - locking fixes - tc358767: fix hardware delays - sitronix-st7789v: - Support panel orientation - Support rotation property - Add support for Jasonic JT240MHQS-HWT-EK-E3 plus DT bindings amdgpu: - SDMA 6.1.0 support - HDP 6.1 support - SMUIO 14.0 support - PSP 14.0 support - IH 6.1 support - Lots of checkpatch cleanups - GFX 9.4.3 updates - Add USB PD and IFWI flashing documentation - GPUVM updates - RAS fixes - DRR fixes - FAMS fixes - Virtual display fixes - Soft IH fixes - SMU13 fixes - Rework PSP firmware loading for other IPs - Kernel doc fixes - DCN 3.0.1 fixes - LTTPR fixes - DP MST fixes - DCN 3.1.6 fixes - SMU 13.x fixes - PSP 13.x fixes - SubVP fixes - GC 9.4.3 fixes - Display bandwidth calculation fixes - VCN4 secure submission fixes - Allow building DC on RISC-V - Add visible FB info to bo_print_info - HBR3 fixes - GFX9 MCBP fix - GMC10 vmhub index fix - GMC11 vmhub index fix - Create a new doorbell manager - SR-IOV fixes - initial freesync panel replay support - revert zpos properly until igt regression is fixeed - use TTM to manage doorbell BAR - Expose both current and average power via hwmon if supported amdkfd: - Cleanup CRIU dma-buf handling - Use KIQ to unmap HIQ - GFX 9.4.3 debugger updates - GFX 9.4.2 debugger fixes - Enable cooperative groups fof gfx11 - SVM fixes - Convert older APUs to use dGPU path like newer APUs - Drop IOMMUv2 path as it is no longer used - TBA fix for aldebaran i915: - ICL+ DSI modeset sequence - HDCP improvements - MTL display fixes and cleanups - HSW/BDW PSR1 restored - Init DDI ports in VBT order - General display refactors - Start using plane scale factor for relative data rate - Use shmem for dpt objects - Expose RPS thresholds in sysfs - Apply GuC SLPC min frequency softlimit correctly - Extend Wa_14015795083 to TGL, RKL, DG1 and ADL - Fix a VMA UAF for multi-gt platform - Do not use stolen on MTL due to HW bug - Check HuC and GuC version compatibility on MTL - avoid infinite GPU waits due to premature release of request memory - Fixes and updates for GSC memory allocation - Display SDVO fixes - Take stolen handling out of FBC code - Make i915_coherent_map_type GT-centric - Simplify shmem_create_from_object map_type msm: - SM6125 MDSS support - DPU: SM6125 DPU support - DSI: runtime PM support, burst mode support - DSI PHY: SM6125 support in 14nm DSI PHY driver - GPU: prepare for a7xx - fix a690 firmware - disable relocs on a6xx and newer radeon: - Lots of checkpatch cleanups ast: - improve device-model detection - Represent BMV as virtual connector - Report DP connection status nouveau: - add new exec/bind interface to support Vulkan - document some getparam ioctls - improve VRAM detection - various fixes/cleanups - workraound DPCD issues ivpu: - MMU updates - debugfs support - Support vpu4 virtio: - add sync object support atmel-hlcdc: - Support inverted pixclock polarity etnaviv: - runtime PM cleanups - hang handling fixes exynos: - use fbdev DMA helpers - fix possible NULL ptr dereference komeda: - always attach encoder omapdrm: - use fbdev DMA helpers ingenic: - kconfig regmap fixes loongson: - support display controller mediatek: - Small mtk-dpi cleanups - DisplayPort: support eDP and aux-bus - Fix coverity issues - Fix potential memory leak if vmap() fail mgag200: - minor fixes mxsfb: - support disabling overlay planes panfrost: - fix sync in IRQ handling ssd130x: - Support per-controller default resolution plus DT bindings - Reduce memory-allocation overhead - Improve intermediate buffer size computation - Fix allocation of temporary buffers - Fix pitch computation - Fix shadow plane allocation tegra: - use fbdev DMA helpers - Convert to devm_platform_ioremap_resource() - support bridge/connector - enable PM tidss: - Support TI AM625 plus DT bindings - Implement new connector model plus driver updates vkms: - improve write back support - docs fixes - support gamma LUT zynqmp-dpsub: - misc fixes" * tag 'drm-next-2023-08-30' of git://anongit.freedesktop.org/drm/drm: (1327 commits) drm/gpuva_mgr: remove unused prev pointer in __drm_gpuva_sm_map() drm/tests/drm_kunit_helpers: Place correct function name in the comment header drm/nouveau: uapi: don't pass NO_PREFETCH flag implicitly drm/nouveau: uvmm: fix unset region pointer on remap drm/nouveau: sched: avoid job races between entities drm/i915: Fix HPD polling, reenabling the output poll work as needed drm: Add an HPD poll helper to reschedule the poll work drm/i915: Fix TLB-Invalidation seqno store drm/ttm/tests: Fix type conversion in ttm_pool_test drm/msm/a6xx: Bail out early if setting GPU OOB fails drm/msm/a6xx: Move LLC accessors to the common header drm/msm/a6xx: Introduce a6xx_llc_read drm/ttm/tests: Require MMU when testing drm/panel: simple: Fix Innolux G156HCE-L01 LVDS clock Revert "Revert "drm/amdgpu/display: change pipe policy for DCN 2.0"" drm/amdgpu: Add memory vendor information drm/amd: flush any delayed gfxoff on suspend entry drm/amdgpu: skip fence GFX interrupts disable/enable for S0ix drm/amdgpu: Remove gfxoff check in GFX v9.4.3 drm/amd/pm: Update pci link speed for smu v13.0.6 ... |
||
![]() |
adfd671676 |
sysctl-6.6-rc1
Long ago we set out to remove the kitchen sink on kernel/sysctl.c arrays and placings sysctls to their own sybsystem or file to help avoid merge conflicts. Matthew Wilcox pointed out though that if we're going to do that we might as well also *save* space while at it and try to remove the extra last sysctl entry added at the end of each array, a sentintel, instead of bloating the kernel by adding a new sentinel with each array moved. Doing that was not so trivial, and has required slowing down the moves of kernel/sysctl.c arrays and measuring the impact on size by each new move. The complex part of the effort to help reduce the size of each sysctl is being done by the patient work of el señor Don Joel Granados. A lot of this is truly painful code refactoring and testing and then trying to measure the savings of each move and removing the sentinels. Although Joel already has code which does most of this work, experience with sysctl moves in the past shows is we need to be careful due to the slew of odd build failures that are possible due to the amount of random Kconfig options sysctls use. To that end Joel's work is split by first addressing the major housekeeping needed to remove the sentinels, which is part of this merge request. The rest of the work to actually remove the sentinels will be done later in future kernel releases. At first I was only going to send his first 7 patches of his patch series, posted 1 month ago, but in retrospect due to the testing the changes have received in linux-next and the minor changes they make this goes with the entire set of patches Joel had planned: just sysctl house keeping. There are networking changes but these are part of the house keeping too. The preliminary math is showing this will all help reduce the overall build time size of the kernel and run time memory consumed by the kernel by about ~64 bytes per array where we are able to remove each sentinel in the future. That also means there is no more bloating the kernel with the extra ~64 bytes per array moved as no new sentinels are created. Most of this has been in linux-next for about a month, the last 7 patches took a minor refresh 2 week ago based on feedback. -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmTuVnMSHG1jZ3JvZkBr ZXJuZWwub3JnAAoJEM4jHQowkoinIckP/imvRlfkO6L0IP7MmJBRPtwY01rsTAKO Q14dZ//bG4DVQeGl1FdzrF6hhuLgekU0qW1YDFIWiCXO7CbaxaNBPSUkeW6ReVoC R/VHNUPxSR1PWQy1OTJV2t4XKri2sB7ijmUsfsATtISwhei9bggTHEysShtP4tv+ U87DzhoqMnbYIsfMo49KCqOa1Qm7TmjC1a7WAp6Fph3GJuXAzZR5pXpsd0NtOZ9x Ud5RT22icnQpMl7K+yPsqY6XcS5JkgBe/WbSzMAUkYZvBZFBq9t2D+OW5h9TZMhw piJWQ9X0Rm7qI2D15mJfXwaOhhyDhWci391hzdJmS6DI0prf6Ma2NFdAWOt/zomI uiRujS4bGeBUaK5F4TX2WQ1+jdMtAZ+0FncFnzt4U8q7dzUc91uVCm6iHW3gcfAb N7OEg2ZL0gkkgCZHqKxN8wpNQiC2KwnNk+HLAbnL2a/oJYfBtdopQmlxWfrN2hpF xxROiENqk483BRdMXDq6DR/gyDZmZWCobXIglSzlqCOjCOcLbDziIJ7pJk83ok09 h/QnXTYHf9protBq9OIQesgh2pwNzBBLifK84KZLKcb7IbdIKjpQrW5STp04oNGf wcGJzEz8tXUe0UKyMM47AcHQGzIy6cdXNLjyF8a+m7rnZzr1ndnMqZyRStZzuQin AUg2VWHKPmW9 =sq2p -----END PGP SIGNATURE----- Merge tag 'sysctl-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux Pull sysctl updates from Luis Chamberlain: "Long ago we set out to remove the kitchen sink on kernel/sysctl.c arrays and placings sysctls to their own sybsystem or file to help avoid merge conflicts. Matthew Wilcox pointed out though that if we're going to do that we might as well also *save* space while at it and try to remove the extra last sysctl entry added at the end of each array, a sentintel, instead of bloating the kernel by adding a new sentinel with each array moved. Doing that was not so trivial, and has required slowing down the moves of kernel/sysctl.c arrays and measuring the impact on size by each new move. The complex part of the effort to help reduce the size of each sysctl is being done by the patient work of el señor Don Joel Granados. A lot of this is truly painful code refactoring and testing and then trying to measure the savings of each move and removing the sentinels. Although Joel already has code which does most of this work, experience with sysctl moves in the past shows is we need to be careful due to the slew of odd build failures that are possible due to the amount of random Kconfig options sysctls use. To that end Joel's work is split by first addressing the major housekeeping needed to remove the sentinels, which is part of this merge request. The rest of the work to actually remove the sentinels will be done later in future kernel releases. The preliminary math is showing this will all help reduce the overall build time size of the kernel and run time memory consumed by the kernel by about ~64 bytes per array where we are able to remove each sentinel in the future. That also means there is no more bloating the kernel with the extra ~64 bytes per array moved as no new sentinels are created" * tag 'sysctl-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: sysctl: Use ctl_table_size as stopping criteria for list macro sysctl: SIZE_MAX->ARRAY_SIZE in register_net_sysctl vrf: Update to register_net_sysctl_sz networking: Update to register_net_sysctl_sz netfilter: Update to register_net_sysctl_sz ax.25: Update to register_net_sysctl_sz sysctl: Add size to register_net_sysctl function sysctl: Add size arg to __register_sysctl_init sysctl: Add size to register_sysctl sysctl: Add a size arg to __register_sysctl_table sysctl: Add size argument to init_header sysctl: Add ctl_table_size to ctl_table_header sysctl: Use ctl_table_header in list_for_each_table_entry sysctl: Prefer ctl_table_header in proc_sysctl |
||
![]() |
daa22f5a78 |
Modules changes for v6.6-rc1
Summary of the changes worth highlighting from most interesting to boring below: * Christoph Hellwig's symbol_get() fix to Nvidia's efforts to circumvent the protection he put in place in year 2020 to prevent proprietary modules from using GPL only symbols, and also ensuring proprietary modules which export symbols grandfather their taint. That was done through year 2020 commit |
||
![]() |
b96a3e9142 |
- Some swap cleanups from Ma Wupeng ("fix WARN_ON in add_to_avail_list")
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which reduces the special-case code for handling hugetlb pages in GUP. It also speeds up GUP handling of transparent hugepages. - Peng Zhang provides some maple tree speedups ("Optimize the fast path of mas_store()"). - Sergey Senozhatsky has improved te performance of zsmalloc during compaction (zsmalloc: small compaction improvements"). - Domenico Cerasuolo has developed additional selftest code for zswap ("selftests: cgroup: add zswap test program"). - xu xin has doe some work on KSM's handling of zero pages. These changes are mainly to enable the user to better understand the effectiveness of KSM's treatment of zero pages ("ksm: support tracking KSM-placed zero-pages"). - Jeff Xu has fixes the behaviour of memfd's MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED"). - David Howells has fixed an fscache optimization ("mm, netfs, fscache: Stop read optimisation when folio removed from pagecache"). - Axel Rasmussen has given userfaultfd the ability to simulate memory poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD"). - Miaohe Lin has contributed some routine maintenance work on the memory-failure code ("mm: memory-failure: remove unneeded PageHuge() check"). - Peng Zhang has contributed some maintenance work on the maple tree code ("Improve the validation for maple tree and some cleanup"). - Hugh Dickins has optimized the collapsing of shmem or file pages into THPs ("mm: free retracted page table by RCU"). - Jiaqi Yan has a patch series which permits us to use the healthy subpages within a hardware poisoned huge page for general purposes ("Improve hugetlbfs read on HWPOISON hugepages"). - Kemeng Shi has done some maintenance work on the pagetable-check code ("Remove unused parameters in page_table_check"). - More folioification work from Matthew Wilcox ("More filesystem folio conversions for 6.6"), ("Followup folio conversions for zswap"). And from ZhangPeng ("Convert several functions in page_io.c to use a folio"). - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext"). - Baoquan He has converted some architectures to use the GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take GENERIC_IOREMAP way"). - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support batched/deferred tlb shootdown during page reclamation/migration"). - Better maple tree lockdep checking from Liam Howlett ("More strict maple tree lockdep"). Liam also developed some efficiency improvements ("Reduce preallocations for maple tree"). - Cleanup and optimization to the secondary IOMMU TLB invalidation, from Alistair Popple ("Invalidate secondary IOMMU TLB on permission upgrade"). - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes for arm64"). - Kemeng Shi provides some maintenance work on the compaction code ("Two minor cleanups for compaction"). - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most file-backed faults under the VMA lock"). - Aneesh Kumar contributes code to use the vmemmap optimization for DAX on ppc64, under some circumstances ("Add support for DAX vmemmap optimization for ppc64"). - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client data in page_ext"), ("minor cleanups to page_ext header"). - Some zswap cleanups from Johannes Weiner ("mm: zswap: three cleanups"). - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan"). - VMA handling cleanups from Kefeng Wang ("mm: convert to vma_is_initial_heap/stack()"). - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes: implement DAMOS tried total bytes file"), ("Extend DAMOS filters for address ranges and DAMON monitoring targets"). - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction"). - Liam Howlett has improved the maple tree node replacement code ("maple_tree: Change replacement strategy"). - ZhangPeng has a general code cleanup - use the K() macro more widely ("cleanup with helper macro K()"). - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap on memory feature on ppc64"). - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list in page_alloc"), ("Two minor cleanups for get pageblock migratetype"). - Vishal Moola introduces a memory descriptor for page table tracking, "struct ptdesc" ("Split ptdesc from struct page"). - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups for vm.memfd_noexec"). - MM include file rationalization from Hugh Dickins ("arch: include asm/cacheflush.h in asm/hugetlb.h"). - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text output"). - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use object_cache instead of kmemleak_initialized"). - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor and _folio_order"). - A VMA locking scalability improvement from Suren Baghdasaryan ("Per-VMA lock support for swap and userfaults"). - pagetable handling cleanups from Matthew Wilcox ("New page table range API"). - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop using page->private on tail pages for THP_SWAP + cleanups"). - Cleanups and speedups to the hugetlb fault handling from Matthew Wilcox ("Change calling convention for ->huge_fault"). - Matthew Wilcox has also done some maintenance work on the MM subsystem documentation ("Improve mm documentation"). -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZO1JUQAKCRDdBJ7gKXxA jrMwAP47r/fS8vAVT3zp/7fXmxaJYTK27CTAM881Gw1SDhFM/wEAv8o84mDenCg6 Nfio7afS1ncD+hPYT8947UnLxTgn+ww= =Afws -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Some swap cleanups from Ma Wupeng ("fix WARN_ON in add_to_avail_list") - Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which reduces the special-case code for handling hugetlb pages in GUP. It also speeds up GUP handling of transparent hugepages. - Peng Zhang provides some maple tree speedups ("Optimize the fast path of mas_store()"). - Sergey Senozhatsky has improved te performance of zsmalloc during compaction (zsmalloc: small compaction improvements"). - Domenico Cerasuolo has developed additional selftest code for zswap ("selftests: cgroup: add zswap test program"). - xu xin has doe some work on KSM's handling of zero pages. These changes are mainly to enable the user to better understand the effectiveness of KSM's treatment of zero pages ("ksm: support tracking KSM-placed zero-pages"). - Jeff Xu has fixes the behaviour of memfd's MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED"). - David Howells has fixed an fscache optimization ("mm, netfs, fscache: Stop read optimisation when folio removed from pagecache"). - Axel Rasmussen has given userfaultfd the ability to simulate memory poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD"). - Miaohe Lin has contributed some routine maintenance work on the memory-failure code ("mm: memory-failure: remove unneeded PageHuge() check"). - Peng Zhang has contributed some maintenance work on the maple tree code ("Improve the validation for maple tree and some cleanup"). - Hugh Dickins has optimized the collapsing of shmem or file pages into THPs ("mm: free retracted page table by RCU"). - Jiaqi Yan has a patch series which permits us to use the healthy subpages within a hardware poisoned huge page for general purposes ("Improve hugetlbfs read on HWPOISON hugepages"). - Kemeng Shi has done some maintenance work on the pagetable-check code ("Remove unused parameters in page_table_check"). - More folioification work from Matthew Wilcox ("More filesystem folio conversions for 6.6"), ("Followup folio conversions for zswap"). And from ZhangPeng ("Convert several functions in page_io.c to use a folio"). - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext"). - Baoquan He has converted some architectures to use the GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take GENERIC_IOREMAP way"). - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support batched/deferred tlb shootdown during page reclamation/migration"). - Better maple tree lockdep checking from Liam Howlett ("More strict maple tree lockdep"). Liam also developed some efficiency improvements ("Reduce preallocations for maple tree"). - Cleanup and optimization to the secondary IOMMU TLB invalidation, from Alistair Popple ("Invalidate secondary IOMMU TLB on permission upgrade"). - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes for arm64"). - Kemeng Shi provides some maintenance work on the compaction code ("Two minor cleanups for compaction"). - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most file-backed faults under the VMA lock"). - Aneesh Kumar contributes code to use the vmemmap optimization for DAX on ppc64, under some circumstances ("Add support for DAX vmemmap optimization for ppc64"). - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client data in page_ext"), ("minor cleanups to page_ext header"). - Some zswap cleanups from Johannes Weiner ("mm: zswap: three cleanups"). - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan"). - VMA handling cleanups from Kefeng Wang ("mm: convert to vma_is_initial_heap/stack()"). - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes: implement DAMOS tried total bytes file"), ("Extend DAMOS filters for address ranges and DAMON monitoring targets"). - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction"). - Liam Howlett has improved the maple tree node replacement code ("maple_tree: Change replacement strategy"). - ZhangPeng has a general code cleanup - use the K() macro more widely ("cleanup with helper macro K()"). - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap on memory feature on ppc64"). - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list in page_alloc"), ("Two minor cleanups for get pageblock migratetype"). - Vishal Moola introduces a memory descriptor for page table tracking, "struct ptdesc" ("Split ptdesc from struct page"). - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups for vm.memfd_noexec"). - MM include file rationalization from Hugh Dickins ("arch: include asm/cacheflush.h in asm/hugetlb.h"). - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text output"). - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use object_cache instead of kmemleak_initialized"). - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor and _folio_order"). - A VMA locking scalability improvement from Suren Baghdasaryan ("Per-VMA lock support for swap and userfaults"). - pagetable handling cleanups from Matthew Wilcox ("New page table range API"). - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop using page->private on tail pages for THP_SWAP + cleanups"). - Cleanups and speedups to the hugetlb fault handling from Matthew Wilcox ("Change calling convention for ->huge_fault"). - Matthew Wilcox has also done some maintenance work on the MM subsystem documentation ("Improve mm documentation"). * tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (489 commits) maple_tree: shrink struct maple_tree maple_tree: clean up mas_wr_append() secretmem: convert page_is_secretmem() to folio_is_secretmem() nios2: fix flush_dcache_page() for usage from irq context hugetlb: add documentation for vma_kernel_pagesize() mm: add orphaned kernel-doc to the rst files. mm: fix clean_record_shared_mapping_range kernel-doc mm: fix get_mctgt_type() kernel-doc mm: fix kernel-doc warning from tlb_flush_rmaps() mm: remove enum page_entry_size mm: allow ->huge_fault() to be called without the mmap_lock held mm: move PMD_ORDER to pgtable.h mm: remove checks for pte_index memcg: remove duplication detection for mem_cgroup_uncharge_swap mm/huge_memory: work on folio->swap instead of page->private when splitting folio mm/swap: inline folio_set_swap_entry() and folio_swap_entry() mm/swap: use dedicated entry for swap in folio mm/swap: stop using page->private on tail pages for THP_SWAP selftests/mm: fix WARNING comparing pointer to 0 selftests: cgroup: fix test_kmem_memcg_deletion kernel mem check ... |
||
![]() |
542034175c |
arm64 updates for 6.6
CPU features and system registers: * Advertise hinted conditional branch support (FEAT_HBC) to userspace * Avoid false positive "SANITY CHECK" warning when xCR registers differ outside of the length field Documentation: * Fix macro name typo in SME documentation Entry code: * Unmask exceptions earlier on the system call entry path Memory management: * Don't bother clearing PTE_RDONLY for dirty ptes in pte_wrprotect() and pte_modify() Perf and PMU drivers: * Initial support for Coresight TRBE devices on ACPI systems (the coresight driver changes will come later) * Fix hw_breakpoint single-stepping when called from bpf * Fixes for DDR PMU on i.MX8MP SoC * Add NUMA-awareness to Hisilicon PCIe PMU driver * Fix locking dependency issue in Arm DMC620 PMU driver * Workaround Hisilicon erratum 162001900 in the SMMUv3 PMU driver * Add support for Arm CMN-700 r3 parts to the CMN PMU driver * Add support for recent Arm Cortex CPU PMUs * Update Hisilicon PMU maintainers Selftests: * Add a bunch of new features to the hwcap test (JSCVT, PMULL, AES, SHA1, etc) * Fix SSVE test to leave streaming-mode after grabbing the signal context * Add new test for SVE vector-length changes with SME enabled Miscellaneous: * Allow compiler to warn on suspicious looking system register expressions * Work around SDEI firmware bug by aborting any running handlers on a kernel crash * Fix some harmless warnings when building with W=1 * Remove some unused function declarations * Other minor fixes and cleanup -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmTon4QQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNG0nCAC9lTqppELnqXPA3FswONhtDBnKEufZHp0+ 4+Z6CPjAYZpd7ruiezvxeZA62tZl3eX+tYOx+6lf4xYxFA5W/RQdmxM7e0mGJd+n sgps85kxArApCgJR9zJiTCAIPXzKH5ObsFWWbcRljI9fiISVDTYn1JFAEx9UERI5 5yr6blYF2H115oD8V2f/0vVObGOAuiqNnzqJIuKL1I8H9xBK0pssrKvuCCN8J2o4 28+PeO7PzwWPiSfnO15bLd/bGuzbMCcexv4/DdjtLZaAanW7crJRVAzOon+URuVx JXmkzQvXkOgSKnEFwfVRYTsUbtOz2cBafjSujVmjwIBymhbBCZR/ =WqmX -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "I think we have a bit less than usual on the architecture side, but that's somewhat balanced out by a large crop of perf/PMU driver updates and extensions to our selftests. CPU features and system registers: - Advertise hinted conditional branch support (FEAT_HBC) to userspace - Avoid false positive "SANITY CHECK" warning when xCR registers differ outside of the length field Documentation: - Fix macro name typo in SME documentation Entry code: - Unmask exceptions earlier on the system call entry path Memory management: - Don't bother clearing PTE_RDONLY for dirty ptes in pte_wrprotect() and pte_modify() Perf and PMU drivers: - Initial support for Coresight TRBE devices on ACPI systems (the coresight driver changes will come later) - Fix hw_breakpoint single-stepping when called from bpf - Fixes for DDR PMU on i.MX8MP SoC - Add NUMA-awareness to Hisilicon PCIe PMU driver - Fix locking dependency issue in Arm DMC620 PMU driver - Workaround Hisilicon erratum 162001900 in the SMMUv3 PMU driver - Add support for Arm CMN-700 r3 parts to the CMN PMU driver - Add support for recent Arm Cortex CPU PMUs - Update Hisilicon PMU maintainers Selftests: - Add a bunch of new features to the hwcap test (JSCVT, PMULL, AES, SHA1, etc) - Fix SSVE test to leave streaming-mode after grabbing the signal context - Add new test for SVE vector-length changes with SME enabled Miscellaneous: - Allow compiler to warn on suspicious looking system register expressions - Work around SDEI firmware bug by aborting any running handlers on a kernel crash - Fix some harmless warnings when building with W=1 - Remove some unused function declarations - Other minor fixes and cleanup" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (62 commits) drivers/perf: hisi: Update HiSilicon PMU maintainers arm_pmu: acpi: Add a representative platform device for TRBE arm_pmu: acpi: Refactor arm_spe_acpi_register_device() kselftest/arm64: Fix hwcaps selftest build hw_breakpoint: fix single-stepping when using bpf_overflow_handler arm64/sysreg: refactor deprecated strncpy kselftest/arm64: add jscvt feature to hwcap test kselftest/arm64: add pmull feature to hwcap test kselftest/arm64: add AES feature check to hwcap test kselftest/arm64: add SHA1 and related features to hwcap test arm64: sysreg: Generate C compiler warnings on {read,write}_sysreg_s arguments kselftest/arm64: build BTI tests in output directory perf/imx_ddr: don't enable counter0 if none of 4 counters are used perf/imx_ddr: speed up overflow frequency of cycle drivers/perf: hisi: Schedule perf session according to locality kselftest/arm64: fix a memleak in zt_regs_run() perf/arm-dmc620: Fix dmc620_pmu_irqs_lock/cpu_hotplug_lock circular lock dependency perf/smmuv3: Add MODULE_ALIAS for module auto loading perf/smmuv3: Enable HiSilicon Erratum 162001900 quirk for HIP08/09 kselftest/arm64: Size sycall-abi buffers for the actual maximum VL ... |
||
![]() |
d7dd9b449f |
EFI updates for v6.6
- one bugfix for x86 mixed mode that did not make it into v6.5 - first pass of cleanup for the EFI runtime wrappers - some cosmetic touchups -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQQm/3uucuRGn1Dmh0wbglWLn0tXAUCZOx+LAAKCRAwbglWLn0t XKzLAPwK8wIZ14NlC55NCtdvKEzK3N/muxKRqg2MAHfrbnREFgD9GgUxSbIEU2gz BXQM9GLaP86qCXkZlPYktjP6RVfDYAk= =e2mx -----END PGP SIGNATURE----- Merge tag 'efi-next-for-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "This primarily covers some cleanup work on the EFI runtime wrappers, which are shared between all EFI architectures except Itanium, and which provide some level of isolation to prevent faults occurring in the firmware code (which runs at the same privilege level as the kernel) from bringing down the system. Beyond that, there is a fix that did not make it into v6.5, and some doc fixes and dead code cleanup. - one bugfix for x86 mixed mode that did not make it into v6.5 - first pass of cleanup for the EFI runtime wrappers - some cosmetic touchups" * tag 'efi-next-for-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: x86/efistub: Fix PCI ROM preservation in mixed mode efi/runtime-wrappers: Clean up white space and add __init annotation acpi/prmt: Use EFI runtime sandbox to invoke PRM handlers efi/runtime-wrappers: Don't duplicate setup/teardown code efi/runtime-wrappers: Remove duplicated macro for service returning void efi/runtime-wrapper: Move workqueue manipulation out of line efi/runtime-wrappers: Use type safe encapsulation of call arguments efi/riscv: Move EFI runtime call setup/teardown helpers out of line efi/arm64: Move EFI runtime call setup/teardown helpers out of line efi/riscv: libstub: Fix comment about absolute relocation efi: memmap: Remove kernel-doc warnings efi: Remove unused extern declaration efi_lookup_mapped_addr() |
||
![]() |
f8f62118cb |
Merge branch 'for-next/perf' into for-next/core
* for-next/perf: drivers/perf: hisi: Update HiSilicon PMU maintainers arm_pmu: acpi: Add a representative platform device for TRBE arm_pmu: acpi: Refactor arm_spe_acpi_register_device() hw_breakpoint: fix single-stepping when using bpf_overflow_handler perf/imx_ddr: don't enable counter0 if none of 4 counters are used perf/imx_ddr: speed up overflow frequency of cycle drivers/perf: hisi: Schedule perf session according to locality perf/arm-dmc620: Fix dmc620_pmu_irqs_lock/cpu_hotplug_lock circular lock dependency perf/smmuv3: Add MODULE_ALIAS for module auto loading perf/smmuv3: Enable HiSilicon Erratum 162001900 quirk for HIP08/09 perf: pmuv3: Remove comments from armv8pmu_[enable|disable]_event() perf/arm-cmn: Add CMN-700 r3 support perf/arm-cmn: Refactor HN-F event selector macros perf/arm-cmn: Remove spurious event aliases drivers/perf: Explicitly include correct DT includes perf: pmuv3: Add Cortex A520, A715, A720, X3 and X4 PMUs dt-bindings: arm: pmu: Add Cortex A520, A715, A720, X3, and X4 perf/smmuv3: Remove build dependency on ACPI perf: xgene_pmu: Convert to devm_platform_ioremap_resource() driver/perf: Add identifier sysfs file for Yitian 710 DDR |
||
![]() |
7abb3e4ee0 |
Merge branch 'for-next/mm' into for-next/core
* for-next/mm: arm64: fix build warning for ARM64_MEMSTART_SHIFT arm64: Remove unsued extern declaration init_mem_pgprot() arm64/mm: Set only the PTE_DIRTY bit while preserving the HW dirty state arm64/mm: Add pte_rdonly() helper arm64/mm: Directly use ID_AA64MMFR2_EL1_VARange_MASK arm64/mm: Replace an open coding with ID_AA64MMFR1_EL1_HAFDBS_MASK |
||
![]() |
438ddc3c42 |
Merge branch 'for-next/misc' into for-next/core
* for-next/misc: arm64/sysreg: refactor deprecated strncpy arm64: sysreg: Generate C compiler warnings on {read,write}_sysreg_s arguments arm64: sdei: abort running SDEI handlers during crash arm64: Explicitly include correct DT includes arm64/Kconfig: Sort the RCpc feature under the ARMv8.3 features menu arm64: vdso: remove two .altinstructions related symbols arm64/ptrace: Clean up error handling path in sve_set_common() |
||
![]() |
cd07455764 |
Merge branch 'for-next/entry' into for-next/core
* for-next/entry: arm64: syscall: unmask DAIF earlier for SVCs |
||
![]() |
fdebffeba8 |
Linux 6.5-rc7
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmTiDvweHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG7doH/2Poj73npPKPVfT3 RF8AsgvAj2pLby67rdvwTdFX+exS63SsuwtGGRfAHfGabiwmNN+oT2dLb0aY15bp nskHnFpcqQ/pfZ2i2rUCenzBX8S9QULvPidLKRaf1FcSdOzqd97Bw5oDPMtzqy/R Pm+Dzs//7fYvtm69nt6hKW4d6wXxNcg7Fk/QgoJ5Ax9vGvDuZmWXH0ZgBf/5kH04 TTPQNtVX57lf+FHugkhFEn4JbYXvN168b+LuX2PHwOeG/8AIS69Hc0vgvhHNAycT mmpUI1gWA2jfrJ2RCyyezF/6wy9Ocsp+CbPjfwjuRUxOk0XIm1+cp9Mlz/cRbMsZ f0tOTpk= =xrJp -----END PGP SIGNATURE----- BackMerge tag 'v6.5-rc7' into drm-next Linux 6.5-rc7 This is needed for the CI stuff and the msm pull has fixes in it. Signed-off-by: Dave Airlie <airlied@redhat.com> |
||
![]() |
c37ce23591 |
efi/arm64: Move EFI runtime call setup/teardown helpers out of line
Only the arch_efi_call_virt() macro that some architectures override needs to be a macro, given that it is variadic and encapsulates calls via function pointers that have different prototypes. The associated setup and teardown code are not special in this regard, and don't need to be instantiated at each call site. So turn them into ordinary C functions and move them out of line. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
d4ddefee51 |
Two more SME fixes related to ptrace(): ensure that the SME is properly
set up for the target thread and that the thread sees the ZT registers set via ptrace. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmTftxwACgkQa9axLQDI XvFYOg/9HlGxpKuWlaNZ9g9pUXPdmCnlqBRbHkqDtPdPwH/Gylh3P5DFcRDFWCS0 74dls3iqQ0muAeKObB4EvfGTBRngX0HhEXTVnk81JFtTchVclzYtZa1J5+wO4c2Q UK/+iwRddGqTGUNQJWG9qEkV9FoaDOmnuV1ZSUDF+AiAzQloEJlWqPxnX3b+ZX33 agoEir1i8hhtfKVReappIxZHWEcGUiBCKMFtkTACaJkGucg6uaNM7vzhjfzYlCrB 3qxEQXCgTCjWTuzhOAAKi98Q/t8KP1Hcm4WGi6yLC16hyU/P3wy7HPL5s1CowROt /Ttkv9ux9W4ZUx8qmvWwmxjtFjmQZRAvcRGZg0XqdsnKul3NUCdVnXNWp+sGS8tk HVOtzTo5WlC+YKlO5uweTXBwS/hbH5M/mZPiEv4p3jsEVHpc43EUsM8RiLQRZPv7 6fllZXoSje2Npf2evTlwQqiDrSDe2fHxCiUbQ8NpLTD+tr9M2j0xCAbVJd7qhd9i PdbLHTKFgR0ScZCDcnWSUwqCSNIFUHQNhnvLaYx5PIWchOimE4HCcQZcM9mc7643 1jwGNIE2FP/7mLwoQNr/ri3rs0eYWXTZ6QaTXUmicCZnp4IhKKxeVzTmSSH67LRK DBcMUW4FXk85Z2dBgn3KbaMkdqAHcv4SAU3CzyfgWpJlb/z7/iI= =1dyE -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: "Two more SME fixes related to ptrace(): ensure that the SME is properly set up for the target thread and that the thread sees the ZT registers set via ptrace" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/ptrace: Ensure that the task sees ZT writes on first use arm64/ptrace: Ensure that SME is set up for target when writing SSVE state |
||
![]() |
332c151c71 |
arm64: mte: simplify swap tag restoration logic
As a result of the patches "mm: Call arch_swap_restore() from do_swap_page()" and "mm: Call arch_swap_restore() from unuse_pte()", there are no circumstances in which a swapped-in page is installed in a page table without first having arch_swap_restore() called on it. Therefore, we no longer need the logic in set_pte_at() that restores the tags, so remove it. Link: https://lkml.kernel.org/r/20230523004312.1807357-4-pcc@google.com Link: https://linux-review.googlesource.com/id/I8ad54476f3b2d0144ccd8ce0c1d7a2963e5ff6f3 Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Steven Price <steven.price@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexandru Elisei <alexandru.elisei@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Hildenbrand <david@redhat.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: kasan-dev@googlegroups.com Cc: kasan-dev <kasan-dev@googlegroups.com> Cc: "Kuan-Ying Lee (李冠穎)" <Kuan-Ying.Lee@mediatek.com> Cc: Qun-Wei Lin <qun-wei.lin@mediatek.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
d11a69873d |
hw_breakpoint: fix single-stepping when using bpf_overflow_handler
Arm platforms use is_default_overflow_handler() to determine if the hw_breakpoint code should single-step over the breakpoint trigger or let the custom handler deal with it. Since bpf_overflow_handler() currently isn't recognized as a default handler, attaching a BPF program to a PERF_TYPE_BREAKPOINT event causes it to keep firing (the instruction triggering the data abort exception is never skipped). For example: # bpftrace -e 'watchpoint:0x10000:4:w { print("hit") }' -c ./test Attaching 1 probe... hit hit [...] ^C (./test performs a single 4-byte store to 0x10000) This patch replaces the check with uses_default_overflow_handler(), which accounts for the bpf_overflow_handler() case by also testing if one of the perf_event_output functions gets invoked indirectly, via orig_default_handler. Signed-off-by: Tomislav Novak <tnovak@meta.com> Tested-by: Samuel Gosselin <sgosselin@google.com> # arm64 Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/linux-arm-kernel/20220923203644.2731604-1-tnovak@fb.com/ Link: https://lore.kernel.org/r/20230605191923.1219974-1-tnovak@meta.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
2f43f549cd |
arm64/ptrace: Ensure that the task sees ZT writes on first use
When the value of ZT is set via ptrace we don't disable traps for SME.
This means that when a the task has never used SME before then the value
set via ptrace will never be seen by the target task since it will
trigger a SME access trap which will flush the register state.
Disable SME traps when setting ZT, this means we also need to allocate
storage for SVE if it is not already allocated, for the benefit of
streaming SVE.
Fixes:
|
||
![]() |
5d0a8d2fba |
arm64/ptrace: Ensure that SME is set up for target when writing SSVE state
When we use NT_ARM_SSVE to either enable streaming mode or change the
vector length for a process we do not currently do anything to ensure that
there is storage allocated for the SME specific register state. If the
task had not previously used SME or we changed the vector length then
the task will not have had TIF_SME set or backing storage for ZA/ZT
allocated, resulting in inconsistent register sizes when saving state
and spurious traps which flush the newly set register state.
We should set TIF_SME to disable traps and ensure that storage is
allocated for ZA and ZT if it is not already allocated. This requires
modifying sme_alloc() to make the flush of any existing register state
optional so we don't disturb existing state for ZA and ZT.
Fixes:
|
||
![]() |
b206a708cb |
arm64: Add feature detection for fine grained traps
In order to allow us to have shared code for managing fine grained traps for KVM guests add it as a detected feature rather than relying on it being a dependency of other features. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Mark Brown <broonie@kernel.org> [maz: converted to ARM64_CPUID_FIELDS()] Link: https://lore.kernel.org/r/20230301-kvm-arm64-fgt-v4-1-1bf8d235ac1f@kernel.org Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Miguel Luis <miguel.luis@oracle.com> Reviewed-by: Jing Zhang <jingzhangos@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230815183903.2735724-10-maz@kernel.org |
||
![]() |
d232606773 |
arm64/sysreg: refactor deprecated strncpy
`strncpy` is deprecated for use on NUL-terminated destination strings [1]. Which seems to be the case here due to the forceful setting of `buf`'s tail to 0. A suitable replacement is `strscpy` [2] due to the fact that it guarantees NUL-termination on its destination buffer argument which is _not_ the case for `strncpy`! In this case, we can simplify the logic and also check for any silent truncation by using `strscpy`'s return value. This should have no functional change and yet uses a more robust and less ambiguous interface whilst reducing code complexity. Link: www.kernel.org/doc/html/latest/process/deprecated.html#strncpy-on-nul-terminated-strings[1] Link: https://manpages.debian.org/testing/linux-manual-4.8/strscpy.9.en.html [2] Link: https://github.com/KSPP/linux/issues/90 Suggested-by: Kees Cook <keescook@chromium.org> Cc: linux-hardening@vger.kernel.org Signed-off-by: Justin Stitt <justinstitt@google.com> Link: https://lore.kernel.org/r/20230811-strncpy-arch-arm64-v2-1-ba84eabffadb@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
9edbfe92a0 |
sysctl: Add size to register_sysctl
This commit adds table_size to register_sysctl in preparation for the removal of the sentinel elements in the ctl_table arrays (last empty markers). And though we do *not* remove any sentinels in this commit, we set things up by either passing the table_size explicitly or using ARRAY_SIZE on the ctl_table arrays. We replace the register_syctl function with a macro that will add the ARRAY_SIZE to the new register_sysctl_sz function. In this way the callers that are already using an array of ctl_table structs do not change. For the callers that pass a ctl_table array pointer, we pass the table_size to register_sysctl_sz instead of the macro. Signed-off-by: Joel Granados <j.granados@samsung.com> Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
![]() |
f130ac0ae4 |
arm64: syscall: unmask DAIF earlier for SVCs
For a number of historical reasons, when handling SVCs we don't unmask
DAIF in el0_svc() or el0_svc_compat(), and instead do so later in
el0_svc_common(). This is unfortunate and makes it harder to make
changes to the DAIF management in entry-common.c as we'd like to do as
cleanup and preparation for FEAT_NMI support. We can move the DAIF
unmasking to entry-common.c as long as we also hoist the
fp_user_discard() logic, as reasoned below.
We converted the syscall trace logic from assembly to C in commit:
|
||
![]() |
01948b09ed |
arm64/fpsimd: Only provide the length to cpufeature for xCR registers
For both SVE and SME we abuse the generic register field comparison support in the cpufeature code as part of our detection of unsupported variations in the vector lengths available to PEs, reporting the maximum vector lengths via ZCR_EL1.LEN and SMCR_EL1.LEN. Since these are configuration registers rather than identification registers the assumptions the cpufeature code makes about how unknown bitfields behave are invalid, leading to warnings when SME features like FA64 are enabled and we hotplug a CPU: CPU features: SANITY CHECK: Unexpected variation in SYS_SMCR_EL1. Boot CPU: 0x0000000000000f, CPU3: 0x0000008000000f CPU features: Unsupported CPU feature variation detected. SVE has no controls other than the vector length so is not yet impacted but the same issue will apply there if any are defined. Since the only field we are interested in having the cpufeature code handle is the length field and we use a custom read function to obtain the value we can avoid these warnings by filtering out all other bits when we return the register value, if we're doing that we don't need to bother reading the register at all and can simply use the RDVL/RDSVL value we were filling in instead. Fixes: |
||
![]() |
e6fda526d9 |
More SVE/SME fixes for ptrace() and for the (potentially future) case
where SME is implemented in hardware without SVE support. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmTNQv8ACgkQa9axLQDI XvF2lRAAhdMMFciXgU4KY13GnggPh83INemqDVgwdaOHb75Ucx/reDpSd6d2TaSo 0m3bK4vCI46xzWSRT4VGItvuUGwtpf8zQB+x6Gv9Kv/FWjRjsgvzcyflh+mn3C6X LTSSk9yC/mS71cutJil/Otyf8YWjpGHX8T3ki4heqyrBxIzfYnovoVQhiqxuErj7 KXitCCHqgmP0VwL14QGa+J5keThwv85xH/AtVMJa+Z1u/dYOfBGoahnuDGGDWzad shEHvLVVj7P25Bnp9ncdsHAhrumCOHFJ2c8UG71nGJH+ZGUQxcVJOXVJch/34kGj dBK6T+yASER5lt8vKsDfqwRx0KSTziF4ACDl3rGLei48qRSfMRVtkOSHuVcp/DtJ jTqj4oZswU3zokv8otMxWQHK+2uKlWXTcv3xeD154laX7+D0Tp/Og0h+ZDkpHU1N UfeuR0DwYYVEMLJo+Z1hGJ1qgrcx8qYveSDq9e4G4XaoIE7PjUEASCZ62aAXNQXB KpOUZ3h3Vrr++OMzHQ+fVcDvOcxyaSGiSuZIjfYy5S8oOz8jgsDZZaxzJEWz32ns fl3gRcVxPY65iFCL7Lnut8t+jmbvIIWzVjIOq1OICWFhDk/rQoB/KvFp+8b9ngpn GkAxuS5WZuIDyAKWf04nk4GX4vtDNARTvaRSC0y93H9JpU+dB7c= =Xy/A -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: "More SVE/SME fixes for ptrace() and for the (potentially future) case where SME is implemented in hardware without SVE support" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/fpsimd: Sync and zero pad FPSIMD state for streaming SVE arm64/fpsimd: Sync FPSIMD state with SVE for SME only systems arm64/ptrace: Don't enable SVE when setting streaming SVE arm64/ptrace: Flush FP state when setting ZT0 arm64/fpsimd: Clear SME state in the target task when setting the VL |
||
![]() |
5cd474e573 |
arm64: sdei: abort running SDEI handlers during crash
Interrupts are blocked in SDEI context, per the SDEI spec: "The client
interrupts cannot preempt the event handler." If we crashed in the SDEI
handler-running context (as with ACPI's AGDI) then we need to clean up the
SDEI state before proceeding to the crash kernel so that the crash kernel
can have working interrupts.
Track the active SDEI handler per-cpu so that we can COMPLETE_AND_RESUME
the handler, discarding the interrupted context.
Fixes:
|
||
![]() |
7f86d128e4 |
arm64: add HWCAP for FEAT_HBC (hinted conditional branches)
Add a HWCAP for FEAT_HBC, so that userspace can make a decision on using this feature. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230804143746.3900803-2-joey.gouly@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
69af56ae56 |
arm64/fpsimd: Sync and zero pad FPSIMD state for streaming SVE
We have a function sve_sync_from_fpsimd_zeropad() which is used by the
ptrace code to update the SVE state when the user writes to the the
FPSIMD register set. Currently this checks that the task has SVE
enabled but this will miss updates for tasks which have streaming SVE
enabled if SVE has not been enabled for the thread, also do the
conversion if the task has streaming SVE enabled.
Fixes:
|
||
![]() |
507ea5dd92 |
arm64/fpsimd: Sync FPSIMD state with SVE for SME only systems
Currently we guard FPSIMD/SVE state conversions with a check for the system
supporting SVE but SME only systems may need to sync streaming mode SVE
state so add a check for SME support too. These functions are only used
by the ptrace code.
Fixes:
|
||
![]() |
045aecdfcb |
arm64/ptrace: Don't enable SVE when setting streaming SVE
Systems which implement SME without also implementing SVE are
architecturally valid but were not initially supported by the kernel,
unfortunately we missed one issue in the ptrace code.
The SVE register setting code is shared between SVE and streaming mode
SVE. When we set full SVE register state we currently enable TIF_SVE
unconditionally, in the case where streaming SVE is being configured on a
system that supports vanilla SVE this is not an issue since we always
initialise enough state for both vector lengths but on a system which only
support SME it will result in us attempting to restore the SVE vector
length after having set streaming SVE registers.
Fix this by making the enabling of SVE conditional on setting SVE vector
state. If we set streaming SVE state and SVE was not already enabled this
will result in a SVE access trap on next use of normal SVE, this will cause
us to flush our register state but this is fine since the only way to
trigger a SVE access trap would be to exit streaming mode which will cause
the in register state to be flushed anyway.
Fixes:
|
||
![]() |
f928f8b1a2 |
arm64: module: Use module_init_layout_section() to spot init sections
Today module_frob_arch_sections() spots init sections from their 'init' prefix, and uses this to keep the init PLTs separate from the rest. module_emit_plt_entry() uses within_module_init() to determine if a location is in the init text or not, but this depends on whether core code thought this was an init section. Naturally the logic is different. module_init_layout_section() groups the init and exit text together if module unloading is disabled, as the exit code will never run. The result is kernels with this configuration can't load all their modules because there are not enough PLTs for the combined init+exit section. This results in the following: | WARNING: CPU: 2 PID: 51 at arch/arm64/kernel/module-plts.c:99 module_emit_plt_entry+0x184/0x1cc | Modules linked in: crct10dif_common | CPU: 2 PID: 51 Comm: modprobe Not tainted 6.5.0-rc4-yocto-standard-dirty #15208 | Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 | pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : module_emit_plt_entry+0x184/0x1cc | lr : module_emit_plt_entry+0x94/0x1cc | sp : ffffffc0803bba60 [...] | Call trace: | module_emit_plt_entry+0x184/0x1cc | apply_relocate_add+0x2bc/0x8e4 | load_module+0xe34/0x1bd4 | init_module_from_file+0x84/0xc0 | __arm64_sys_finit_module+0x1b8/0x27c | invoke_syscall.constprop.0+0x5c/0x104 | do_el0_svc+0x58/0x160 | el0_svc+0x38/0x110 | el0t_64_sync_handler+0xc0/0xc4 | el0t_64_sync+0x190/0x194 A previous patch exposed module_init_layout_section(), use that so the logic is the same. Reported-by: Adam Johnston <adam.johnston@arm.com> Tested-by: Adam Johnston <adam.johnston@arm.com> Fixes: |
||
![]() |
89a65c3f17 |
arm64/ptrace: Flush FP state when setting ZT0
When setting ZT0 via ptrace we do not currently force a reload of the
floating point register state from memory, do that to ensure that the newly
set value gets loaded into the registers on next task execution.
The function was templated off the function for FPSIMD which due to our
providing the option of embedding a FPSIMD regset within the SVE regset
does not directly include the flush.
Fixes:
|
||
![]() |
c9bb40b7f7 |
arm64/fpsimd: Clear SME state in the target task when setting the VL
When setting SME vector lengths we clear TIF_SME to reenable SME traps,
doing a reallocation of the backing storage on next use. We do this using
clear_thread_flag() which operates on the current thread, meaning that when
setting the vector length via ptrace we may both not force traps for the
target task and force a spurious flush of any SME state that the tracing
task may have.
Clear the flag in the target task.
Fixes:
|
||
![]() |
a5f6c2ace9 |
x86/shstk: Add user control-protection fault handler
A control-protection fault is triggered when a control-flow transfer attempt violates Shadow Stack or Indirect Branch Tracking constraints. For example, the return address for a RET instruction differs from the copy on the shadow stack. There already exists a control-protection fault handler for handling kernel IBT faults. Refactor this fault handler into separate user and kernel handlers, like the page fault handler. Add a control-protection handler for usermode. To avoid ifdeffery, put them both in a new file cet.c, which is compiled in the case of either of the two CET features supported in the kernel: kernel IBT or user mode shadow stack. Move some static inline functions from traps.c into a header so they can be used in cet.c. Opportunistically fix a comment in the kernel IBT part of the fault handler that is on the end of the line instead of preceding it. Keep the same behavior for the kernel side of the fault handler, except for converting a BUG to a WARN in the case of a #CP happening when the feature is missing. This unifies the behavior with the new shadow stack code, and also prevents the kernel from crashing under this situation which is potentially recoverable. The control-protection fault handler works in a similar way as the general protection fault handler. It provides the si_code SEGV_CPERR to the signal handler. Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: John Allen <john.allen@amd.com> Tested-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/all/20230613001108.3040476-28-rick.p.edgecombe%40intel.com |
||
![]() |
b9d6012497 |
arm64: Explicitly include correct DT includes
Remove unused 'of*.h' header inclusions from the arm64 arch code to allow for the eventual untangling of 'of_device.h and 'of_platform.h', which currently include each other. Signed-off-by: Rob Herring <robh@kernel.org> Link: https://lore.kernel.org/r/20230714174021.4039807-1-robh@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
f837f0a3c9 |
A couple of SME updates for recent fixes (one of which went to stable):
reverting the flushing of the SME hardware state along with the thread flushing and making sure we have the correct vector length before reallocating. An ACPI/IORT fix to avoid skipping ID mappings whose "number of IDs" is 0 (the spec reports the number of IDs in the mapping range minus 1). -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmTD40YACgkQa9axLQDI XvGmrw/+LSbXPWdBR4d4NnEOuw2YpD7jZ9DosfrtTUm5ca+gnQzLr+6Z9ysVOMX1 jzEEVMacFHidpY3cSl9waakl/SKHyu6yPFVkKONWz0iFGbqY9w1RWvCQb7APHWUe +aaav0GQU/WfnaOGfipuw5mcMpZT4NUTQK3EPZ4C++YvaN4uQiEzivNLmaHkQTqV DwY/tUf3AgbEslfV5SO97eXjuZ+TO1DANaI+wdVrHd1k5Zcq+XYIyw+sbTEdUJOx KBuK5SjfovNU8x7sg5i1aTBFVR3/sPlPrc0ueGYZsSn3/mWNQHOu/Iy3HYIdFPVM P16udTKruXFZsJCLUeykf9DD4d/WnV7wmKZOZgtDTmHUu45CKsZawYC+cVIkNAIx kUnEZM+GcLdMY7Ry2oyeeb/deFK6QEt8GfbKfqNubYn/MKvNabTGimKze2gk1cQR w7s/WWDN0finRJVy9SZrKvB3NbTw28aUZ+zDd1MzbSQncRtn0mZ2O06muxAbrP+C OqgtG1VEmwc0mWs8A79GQ9UBY4NCVCdl49bFTRBlot3eyLWu8nZyDzS6XELqB9/n Q5j7SOmj4CiOLfJGeTKNKs5cGf1mm2NUs8hpdEOaCEa0+rkAgfLsUnwDtMmHwQZ8 sHSsRwf4BR1KexfCpehqoic8XhOA9IjrDMQAx710cbQeLYiJ5iA= =qoWG -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: - A couple of SME updates for recent fixes (one of which went to stable): reverting the flushing of the SME hardware state along with the thread flushing and making sure we have the correct vector length before reallocating. - An ACPI/IORT fix to avoid skipping ID mappings whose "number of IDs" is 0 (the spec reports the number of IDs in the mapping range minus 1). * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: ACPI/IORT: Remove erroneous id_count check in iort_node_get_rmr_info() arm64/sme: Set new vector length before reallocating arm64/fpsimd: Don't flush SME register hardware state along with thread |
||
![]() |
a96a7a7ddf |
arm64: vdso: remove two .altinstructions related symbols
The two symbols __alt_instructions and __alt_instructions_end are not
used, since the vDSO patching code looks for the '.altinstructions' ELF
section directly.
Remove the unused linker symbols.
Fixes:
|
||
![]() |
ce33cea5d8 |
arm64/cpufeature: Use ARM64_CPUID_FIELD() to match EVT
The recently added Enhanced Virtualization Traps cpufeature does not use the ARM64_CPUID_FIELDS() helper, convert it to do so. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Zenghui Yu <zenghui.yu@linux.dev> Link: https://lore.kernel.org/r/20230718-arm64-evt-cpuid-helper-v1-1-68375d1e6b92@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
5f69ca4229 |
arm64/ptrace: Clean up error handling path in sve_set_common()
All error handling paths go to 'out', except this one. Be consistent and
also branch to 'out' here.
Fixes:
|
||
![]() |
62ce7af97b |
arm64/mm: Directly use ID_AA64MMFR2_EL1_VARange_MASK
Tools generated register fields have in place mask macros which can be used directly instead of shifting the older right end sided masks. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20230711092055.245756-1-anshuman.khandual@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
05d881b85b |
arm64/sme: Set new vector length before reallocating
As part of fixing the allocation of the buffer for SVE state when changing
SME vector length we introduced an immediate reallocation of the SVE state,
this is also done when changing the SVE vector length for consistency.
Unfortunately this reallocation is done prior to writing the new vector
length to the task struct, meaning the allocation is done with the old
vector length and can lead to memory corruption due to an undersized buffer
being used.
Move the update of the vector length before the allocation to ensure that
the new vector length is taken into account.
For some reason this isn't triggering any problems when running tests on
the arm64 fixes branch (even after repeated tries) but is triggering
issues very often after merge into mainline.
Fixes:
|
||
![]() |
3421ddbe6d |
arm64/fpsimd: Don't flush SME register hardware state along with thread
We recently changed the fpsimd thread flush to flush the physical SME
state as well as the thread state for the current thread. Unfortunately
this leads to intermittent corruption in interaction with the lazy
FPSIMD register switching. When under heavy load such as can be
triggered by the startup phase of fp-stress it is possible that the
current thread may not be scheduled prior to returning to userspace, and
indeed we may end up returning to the last thread that was scheduled on
the PE without ever exiting the kernel to any other task. If that
happens then we will not reload the register state from memory, leading
to loss of any SME register state.
Since this was purely an attempt to defensively close off potential
problems revert the change.
Fixes:
|
||
![]() |
d192f53825 |
arm64 fixes for -rc3
- Fix saving of SME state after SVE vector length is changed - Fix sparse warnings for missing vDSO function prototypes - Fix hibernation resume path when kfence is enabled - Fix field names for the HFGxTR_EL2 register -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmS6YxAQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNE+HB/9Jepme+pnScRs5b91+fA6NUYENIk/VkkHo sG8IVz44+ME53fX20scZRHZhqlecWJ4z59T3jpPvTAvUUq1ZV2J/l4sKqGfKsgQt Mqvd8vZ66dQn7mDA7ENBhax0V0YuYtsshQ4jHgIYvxNi+Ye1nqyLiziFGUhZNpco E/YdQuxcx7nAKA5a467NQZD9YRgpgwZLLyxYs2/dJaDCOqlN05Azi2RqaDhHOVtv ycu+PBG5SoILJoNxdBXWA5o6eE/0zwkeiWNmHYDpCe7M1J7UcwfE1i/EJ5eihXKt XrCWbMQJe9GyS9GVWv7Ywjmuoapp4ZnzNsXt+lUw/lj4/uXOnLg9 =MjJh -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "I've picked up a handful of arm64 fixes while Catalin's been away, so here they are. Below is the usual summary, but we have basically have two cleanups, a fix for an SME crash and a fix for hibernation: - Fix saving of SME state after SVE vector length is changed - Fix sparse warnings for missing vDSO function prototypes - Fix hibernation resume path when kfence is enabled - Fix field names for the HFGxTR_EL2 register" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/fpsimd: Ensure SME storage is allocated after SVE VL changes arm64: vdso: Clear common make C=2 warnings arm64: mm: Make hibernation aware of KFENCE arm64: Fix HFGxTR_EL2 field naming |
||
![]() |
d4d5be94a8 |
arm64/fpsimd: Ensure SME storage is allocated after SVE VL changes
When we reconfigure the SVE vector length we discard the backing storage
for the SVE vectors and then reallocate on next SVE use, leaving the SME
specific state alone. This means that we do not enable SME traps if they
were already disabled. That means that userspace code can enter streaming
mode without trapping, putting the task in a state where if we try to save
the state of the task we will fault.
Since the ABI does not specify that changing the SVE vector length disturbs
SME state, and since SVE code may not be aware of SME code in the process,
we shouldn't simply discard any ZA state. Instead immediately reallocate
the storage for SVE, and disable SME if we change the SVE vector length
while there is no SME state active.
Disabling SME traps on SVE vector length changes would make the overall
code more complex since we would have a state where we have valid SME state
stored but might get a SME trap.
Fixes:
|
||
![]() |
71e06e1ace |
arm64: vdso: Clear common make C=2 warnings
make C=2 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- xxx.o When I use the command above to do a 'make C=2' check on any object file, the following warnings are always output: CHECK arch/arm64/kernel/vdso/vgettimeofday.c arch/arm64/kernel/vdso/vgettimeofday.c:9:5: warning: symbol '__kernel_clock_gettime' was not declared. Should it be static? arch/arm64/kernel/vdso/vgettimeofday.c:15:5: warning: symbol '__kernel_gettimeofday' was not declared. Should it be static? arch/arm64/kernel/vdso/vgettimeofday.c:21:5: warning: symbol '__kernel_clock_getres' was not declared. Should it be static? Therefore, the declaration of the three functions is added to eliminate these common warnings to provide a clean output. Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20230713115831.777-1-thunder.leizhen@huawei.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
6c7f27441d |
drm-misc-next for v6.6:
UAPI Changes: * fbdev: * Make fbdev userspace interfaces optional; only leaves the framebuffer console active * prime: * Support dma-buf self-import for all drivers automatically: improves support for many userspace compositors Cross-subsystem Changes: * backlight: * Fix interaction with fbdev in several drivers * base: Convert struct platform.remove to return void; part of a larger, tree-wide effort * dma-buf: Acquire reservation lock for mmap() in exporters; part of an on-going effort to simplify locking around dma-bufs * fbdev: * Use Linux device instead of fbdev device in many places * Use deferred-I/O helper macros in various drivers * i2c: Convert struct i2c from .probe_new to .probe; part of a larger, tree-wide effort * video: * Avoid including <linux/screen_info.h> Core Changes: * atomic: * Improve logging * prime: * Remove struct drm_driver.gem_prime_mmap plus driver updates: all drivers now implement this callback with drm_gem_prime_mmap() * gem: * Support execution contexts: provides locking over multiple GEM objects * ttm: * Support init_on_free * Swapout fixes Driver Changes: * accel: * ivpu: MMU updates; Support debugfs * ast: * Improve device-model detection * Cleanups * bridge: * dw-hdmi: Improve support for YUV420 bus format * dw-mipi-dsi: Fix enable/disable of DSI controller * lt9611uxc: Use MODULE_FIRMWARE() * ps8640: Remove broken EDID code * samsung-dsim: Fix command transfer * tc358764: Handle HS/VS polarity; Use BIT() macro; Various cleanups * Cleanups * ingenic: * Kconfig REGMAP fixes * loongson: * Support display controller * mgag200: * Minor fixes * mxsfb: * Support disabling overlay planes * nouveau: * Improve VRAM detection * Various fixes and cleanups * panel: * panel-edp: Support AUO B116XAB01.4 * Support Visionox R66451 plus DT bindings * Cleanups * ssd130x: * Support per-controller default resolution plus DT bindings * Reduce memory-allocation overhead * Cleanups * tidss: * Support TI AM625 plus DT bindings * Implement new connector model plus driver updates * vkms * Improve write-back support * Documentation fixes -----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEchf7rIzpz2NEoWjlaA3BHVMLeiMFAmSvvRAACgkQaA3BHVML eiNpGQgAs8jq1XjN9t8jZsdgXnoCbkZyVUI2NO0HwoVwpRCLgbXp5AX5qq2oRciE TBhe4Fceh/ZsYqHTZQahnguxgRKM5JgXwbI4Z0iiOVcqasNbycaKAqipxJJ7kdo1 qPhGCbgQFVX7oIq2xjfXehh6O0SYX+R9r88X8dMJxMYv/pcLwOHG74kS040WOcQq uATgcnobOf/D8ZmlqvfKGAeTUoFo/RSR2Uhlauka58qgeUbicrTELZT2barY9d+k as6U5vv4wx2zMklTkjrlkMpAT1ZpbB9d3jGHwL27VEnjlfd3wV2bdH7Dzn9qZRf/ gn0ALg/b3u5yBWk/k7YBvijXyNcH6Q== =bBuG -----END PGP SIGNATURE----- Merge tag 'drm-misc-next-2023-07-13' of git://anongit.freedesktop.org/drm/drm-misc into drm-next drm-misc-next for v6.6: UAPI Changes: * fbdev: * Make fbdev userspace interfaces optional; only leaves the framebuffer console active * prime: * Support dma-buf self-import for all drivers automatically: improves support for many userspace compositors Cross-subsystem Changes: * backlight: * Fix interaction with fbdev in several drivers * base: Convert struct platform.remove to return void; part of a larger, tree-wide effort * dma-buf: Acquire reservation lock for mmap() in exporters; part of an on-going effort to simplify locking around dma-bufs * fbdev: * Use Linux device instead of fbdev device in many places * Use deferred-I/O helper macros in various drivers * i2c: Convert struct i2c from .probe_new to .probe; part of a larger, tree-wide effort * video: * Avoid including <linux/screen_info.h> Core Changes: * atomic: * Improve logging * prime: * Remove struct drm_driver.gem_prime_mmap plus driver updates: all drivers now implement this callback with drm_gem_prime_mmap() * gem: * Support execution contexts: provides locking over multiple GEM objects * ttm: * Support init_on_free * Swapout fixes Driver Changes: * accel: * ivpu: MMU updates; Support debugfs * ast: * Improve device-model detection * Cleanups * bridge: * dw-hdmi: Improve support for YUV420 bus format * dw-mipi-dsi: Fix enable/disable of DSI controller * lt9611uxc: Use MODULE_FIRMWARE() * ps8640: Remove broken EDID code * samsung-dsim: Fix command transfer * tc358764: Handle HS/VS polarity; Use BIT() macro; Various cleanups * Cleanups * ingenic: * Kconfig REGMAP fixes * loongson: * Support display controller * mgag200: * Minor fixes * mxsfb: * Support disabling overlay planes * nouveau: * Improve VRAM detection * Various fixes and cleanups * panel: * panel-edp: Support AUO B116XAB01.4 * Support Visionox R66451 plus DT bindings * Cleanups * ssd130x: * Support per-controller default resolution plus DT bindings * Reduce memory-allocation overhead * Cleanups * tidss: * Support TI AM625 plus DT bindings * Implement new connector model plus driver updates * vkms * Improve write-back support * Documentation fixes Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> From: Thomas Zimmermann <tzimmermann@suse.de> Link: https://patchwork.freedesktop.org/patch/msgid/20230713090830.GA23281@linux-uq9g |
||
![]() |
7d8b31b73c |
tracing: arm64: Avoid missing-prototype warnings
These are all tracing W=1 warnings in arm64 allmodconfig about missing prototypes: kernel/trace/trace_kprobe_selftest.c:7:5: error: no previous prototype for 'kprobe_trace_selftest_target' [-Werror=missing-pro totypes] kernel/trace/ftrace.c:329:5: error: no previous prototype for '__register_ftrace_function' [-Werror=missing-prototypes] kernel/trace/ftrace.c:372:5: error: no previous prototype for '__unregister_ftrace_function' [-Werror=missing-prototypes] kernel/trace/ftrace.c:4130:15: error: no previous prototype for 'arch_ftrace_match_adjust' [-Werror=missing-prototypes] kernel/trace/fgraph.c:243:15: error: no previous prototype for 'ftrace_return_to_handler' [-Werror=missing-prototypes] kernel/trace/fgraph.c:358:6: error: no previous prototype for 'ftrace_graph_sleep_time_control' [-Werror=missing-prototypes] arch/arm64/kernel/ftrace.c:460:6: error: no previous prototype for 'prepare_ftrace_return' [-Werror=missing-prototypes] arch/arm64/kernel/ptrace.c:2172:5: error: no previous prototype for 'syscall_trace_enter' [-Werror=missing-prototypes] arch/arm64/kernel/ptrace.c:2195:6: error: no previous prototype for 'syscall_trace_exit' [-Werror=missing-prototypes] Move the declarations to an appropriate header where they can be seen by the caller and callee, and make sure the headers are included where needed. Link: https://lore.kernel.org/linux-trace-kernel/20230517125215.930689-1-arnd@kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Florent Revest <revest@chromium.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [ Fixed ftrace_return_to_handler() to handle CONFIG_HAVE_FUNCTION_GRAPH_RETVAL case ] Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
8b0d13545b |
efi: Do not include <linux/screen_info.h> from EFI header
The header file <linux/efi.h> does not need anything from <linux/screen_info.h>. Declare struct screen_info and remove the include statements. Update a number of source files that require struct screen_info's definition. v2: * update loongarch (Jingfeng) Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de> Reviewed-by: Javier Martinez Canillas <javierm@redhat.com> Reviewed-by: Sui Jingfeng <suijingfeng@loongson.cn> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Link: https://patchwork.freedesktop.org/patch/msgid/20230706104852.27451-2-tzimmermann@suse.de |
||
![]() |
8066178f53 |
Tracing fixes for 6.5:
- Fix bad git merge of #endif in arm64 code A merge of the arm64 tree caused #endif to go into the wrong place - Fix crash on lseek of write access to tracefs/error_log Opening error_log as write only, and then doing an lseek() causes a kernel panic, because the lseek() handle expects a "seq_file" to exist (which is not done on write only opens). Use tracing_lseek() that tests for this instead of calling the default seq lseek handler. - Check for negative instead of -E2BIG for error on strscpy() returns Instead of testing for -E2BIG from strscpy(), to be more robust, check for less than zero, which will make sure it catches any error that strscpy() may someday return. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZKbQUhQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qpWaAP9zQ1eLQSfMt0dHH01OBSJvc2mMd4QJ VZtWZ+xTSvk+4gD/axDzDS7Qisfrrli+1oQSPwVik2SXiz0SPJqJ25m9zw4= =xMlg -----END PGP SIGNATURE----- Merge tag 'trace-v6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fixes from Steven Rostedt: - Fix bad git merge of #endif in arm64 code A merge of the arm64 tree caused #endif to go into the wrong place - Fix crash on lseek of write access to tracefs/error_log Opening error_log as write only, and then doing an lseek() causes a kernel panic, because the lseek() handle expects a "seq_file" to exist (which is not done on write only opens). Use tracing_lseek() that tests for this instead of calling the default seq lseek handler. - Check for negative instead of -E2BIG for error on strscpy() returns Instead of testing for -E2BIG from strscpy(), to be more robust, check for less than zero, which will make sure it catches any error that strscpy() may someday return. * tag 'trace-v6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/boot: Test strscpy() against less than zero for error arm64: ftrace: fix build error with CONFIG_FUNCTION_GRAPH_TRACER=n tracing: Fix null pointer dereference in tracing_err_log_open() |
||
![]() |
931a2ca6a5 |
arm64: ftrace: fix build error with CONFIG_FUNCTION_GRAPH_TRACER=n
It appears that a merge conflict ended up hiding a newly added constant
in some configurations:
arch/arm64/kernel/entry-ftrace.S: Assembler messages:
arch/arm64/kernel/entry-ftrace.S:59: Error: undefined symbol FTRACE_OPS_DIRECT_CALL used as an immediate value
FTRACE_OPS_DIRECT_CALL is still used when CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
is enabled, even if CONFIG_FUNCTION_GRAPH_TRACER is disabled, so change the
ifdef accordingly.
Link: https://lkml.kernel.org/r/20230623152204.2216297-1-arnd@kernel.org
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Donglin Peng <pengdonglin@sangfor.com.cn>
Fixes:
|
||
![]() |
04f2933d37 |
Scope-based Resource Management infrastructure
These are the first few patches in the Scope-based Resource Management series that introduce the infrastructure but not any conversions as of yet. Adding the infrastructure now allows multiple people to start using them. Of note is that Sparse will need some work since it doesn't yet understand this attribute and might have decl-after-stmt issues -- but I think that's being worked on. -----BEGIN PGP SIGNATURE----- iQJJBAABCgAzFiEEv3OU3/byMaA0LqWJdkfhpEvA5LoFAmSZehYVHHBldGVyekBp bmZyYWRlYWQub3JnAAoJEHZH4aRLwOS6uC0P/0pduumvCE+osm869VOroHeVqz6B B36oqJlD1uqIA8JWiNW8TbpUUqTvU0FyW1jU1YnUdol5Kb3XH7APQIayGj2HM+Mc kMyHc4/ICxBzRI7STiBtCEbHIwYAfuibCAfuq7QP4GDw4vHKvUC7BUUaUdbQSey0 IyUsvgPqLRL1KW3tb2z7Zfz6Oo/f0A/+viTiqOKNxSctXaD7TOEUpIZ/RhIgWbIV as65sgzLD/87HV9LbtTyOQCxjR5lpDlTaITapMfgwC9bQ8vQwjmaX3WETIlUmufl 8QG3wiPIDynmqjmpEeY+Cyjcu/Gbz/2XENPgHBd6g2yJSFLSyhSGcDBAZ/lFKlnB eIJqwIFUvpMbAskNxHooNz1zHzqHhOYcCSUITRk6PG8AS1HOD/aNij4sWHMzJSWU R3ZUOEf5k6FkER3eAKxEEsJ2HtIurOVfvFXwN1e0iCKvNiQ1QdP74LddcJqsrTY6 ihXsfVbtJarM9dakuWgk3fOj79cx3BQEm82002vvNzhRRUB5Fx7v47lyB5mAcYEl Al9gsLg4mKkVNiRh/tcelchKPp9WOKcXFEKiqom75VNwZH4oa+KSaa4GdDUQZzNs 73/Zj6gPzFBP1iLwqicvg5VJIzacKuH59WRRQr1IudTxYgWE67yz1OVicplD0WaR l0tF9LFAdBHUy8m/ =adZ8 -----END PGP SIGNATURE----- Merge tag 'core_guards_for_6.5_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/peterz/queue Pull scope-based resource management infrastructure from Peter Zijlstra: "These are the first few patches in the Scope-based Resource Management series that introduce the infrastructure but not any conversions as of yet. Adding the infrastructure now allows multiple people to start using them. Of note is that Sparse will need some work since it doesn't yet understand this attribute and might have decl-after-stmt issues" * tag 'core_guards_for_6.5_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/peterz/queue: kbuild: Drop -Wdeclaration-after-statement locking: Introduce __cleanup() based infrastructure apparmor: Free up __cleanup() name dmaengine: ioat: Free up __cleanup() name |
||
![]() |
e8069f5a8e |
ARM64:
* Eager page splitting optimization for dirty logging, optionally allowing for a VM to avoid the cost of hugepage splitting in the stage-2 fault path. * Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with services that live in the Secure world. pKVM intervenes on FF-A calls to guarantee the host doesn't misuse memory donated to the hyp or a pKVM guest. * Support for running the split hypervisor with VHE enabled, known as 'hVHE' mode. This is extremely useful for testing the split hypervisor on VHE-only systems, and paves the way for new use cases that depend on having two TTBRs available at EL2. * Generalized framework for configurable ID registers from userspace. KVM/arm64 currently prevents arbitrary CPU feature set configuration from userspace, but the intent is to relax this limitation and allow userspace to select a feature set consistent with the CPU. * Enable the use of Branch Target Identification (FEAT_BTI) in the hypervisor. * Use a separate set of pointer authentication keys for the hypervisor when running in protected mode, as the host is untrusted at runtime. * Ensure timer IRQs are consistently released in the init failure paths. * Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps (FEAT_EVT), as it is a register commonly read from userspace. * Erratum workaround for the upcoming AmpereOne part, which has broken hardware A/D state management. RISC-V: * Redirect AMO load/store misaligned traps to KVM guest * Trap-n-emulate AIA in-kernel irqchip for KVM guest * Svnapot support for KVM Guest s390: * New uvdevice secret API * CMM selftest and fixes * fix racy access to target CPU for diag 9c x86: * Fix missing/incorrect #GP checks on ENCLS * Use standard mmu_notifier hooks for handling APIC access page * Drop now unnecessary TR/TSS load after VM-Exit on AMD * Print more descriptive information about the status of SEV and SEV-ES during module load * Add a test for splitting and reconstituting hugepages during and after dirty logging * Add support for CPU pinning in demand paging test * Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes included along the way * Add a "nx_huge_pages=never" option to effectively avoid creating NX hugepage recovery threads (because nx_huge_pages=off can be toggled at runtime) * Move handling of PAT out of MTRR code and dedup SVM+VMX code * Fix output of PIC poll command emulation when there's an interrupt * Add a maintainer's handbook to document KVM x86 processes, preferred coding style, testing expectations, etc. * Misc cleanups, fixes and comments Generic: * Miscellaneous bugfixes and cleanups Selftests: * Generate dependency files so that partial rebuilds work as expected -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmSgHrIUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroORcAf+KkBlXwQMf+Q0Hy6Mfe0OtkKmh0Ae 6HJ6dsuMfOHhWv5kgukh+qvuGUGzHq+gpVKmZg2yP3h3cLHOLUAYMCDm+rjXyjsk F4DbnJLfxq43Pe9PHRKFxxSecRcRYCNox0GD5UYL4PLKcH0FyfQrV+HVBK+GI8L3 FDzUcyJkR12Lcj1qf++7fsbzfOshL0AJPmidQCoc6wkLJpUEr/nYUqlI1Kx3YNuQ LKmxFHS4l4/O/px3GKNDrLWDbrVlwciGIa3GZLS52PZdW3mAqT+cqcPcYK6SW71P m1vE80VbNELX5q3YSRoOXtedoZ3Pk97LEmz/xQAsJ/jri0Z5Syk0Ok0m/Q== =AMXp -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM64: - Eager page splitting optimization for dirty logging, optionally allowing for a VM to avoid the cost of hugepage splitting in the stage-2 fault path. - Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with services that live in the Secure world. pKVM intervenes on FF-A calls to guarantee the host doesn't misuse memory donated to the hyp or a pKVM guest. - Support for running the split hypervisor with VHE enabled, known as 'hVHE' mode. This is extremely useful for testing the split hypervisor on VHE-only systems, and paves the way for new use cases that depend on having two TTBRs available at EL2. - Generalized framework for configurable ID registers from userspace. KVM/arm64 currently prevents arbitrary CPU feature set configuration from userspace, but the intent is to relax this limitation and allow userspace to select a feature set consistent with the CPU. - Enable the use of Branch Target Identification (FEAT_BTI) in the hypervisor. - Use a separate set of pointer authentication keys for the hypervisor when running in protected mode, as the host is untrusted at runtime. - Ensure timer IRQs are consistently released in the init failure paths. - Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps (FEAT_EVT), as it is a register commonly read from userspace. - Erratum workaround for the upcoming AmpereOne part, which has broken hardware A/D state management. RISC-V: - Redirect AMO load/store misaligned traps to KVM guest - Trap-n-emulate AIA in-kernel irqchip for KVM guest - Svnapot support for KVM Guest s390: - New uvdevice secret API - CMM selftest and fixes - fix racy access to target CPU for diag 9c x86: - Fix missing/incorrect #GP checks on ENCLS - Use standard mmu_notifier hooks for handling APIC access page - Drop now unnecessary TR/TSS load after VM-Exit on AMD - Print more descriptive information about the status of SEV and SEV-ES during module load - Add a test for splitting and reconstituting hugepages during and after dirty logging - Add support for CPU pinning in demand paging test - Add support for AMD PerfMonV2, with a variety of cleanups and minor fixes included along the way - Add a "nx_huge_pages=never" option to effectively avoid creating NX hugepage recovery threads (because nx_huge_pages=off can be toggled at runtime) - Move handling of PAT out of MTRR code and dedup SVM+VMX code - Fix output of PIC poll command emulation when there's an interrupt - Add a maintainer's handbook to document KVM x86 processes, preferred coding style, testing expectations, etc. - Misc cleanups, fixes and comments Generic: - Miscellaneous bugfixes and cleanups Selftests: - Generate dependency files so that partial rebuilds work as expected" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (153 commits) Documentation/process: Add a maintainer handbook for KVM x86 Documentation/process: Add a label for the tip tree handbook's coding style KVM: arm64: Fix misuse of KVM_ARM_VCPU_POWER_OFF bit index RISC-V: KVM: Remove unneeded semicolon RISC-V: KVM: Allow Svnapot extension for Guest/VM riscv: kvm: define vcpu_sbi_ext_pmu in header RISC-V: KVM: Expose IMSIC registers as attributes of AIA irqchip RISC-V: KVM: Add in-kernel virtualization of AIA IMSIC RISC-V: KVM: Expose APLIC registers as attributes of AIA irqchip RISC-V: KVM: Add in-kernel emulation of AIA APLIC RISC-V: KVM: Implement device interface for AIA irqchip RISC-V: KVM: Skeletal in-kernel AIA irqchip support RISC-V: KVM: Set kvm_riscv_aia_nr_hgei to zero RISC-V: KVM: Add APLIC related defines RISC-V: KVM: Add IMSIC related defines RISC-V: KVM: Implement guest external interrupt line management KVM: x86: Remove PRIx* definitions as they are solely for user space s390/uv: Update query for secret-UVCs s390/uv: replace scnprintf with sysfs_emit s390/uvdevice: Add 'Lock Secret Store' UVC ... |
||
![]() |
cccf0c2ee5 |
Tracing updates for 6.5:
- Add new feature to have function graph tracer record the return value. Adds a new option: funcgraph-retval ; when set, will show the return value of a function in the function graph tracer. - Also add the option: funcgraph-retval-hex where if it is not set, and the return value is an error code, then it will return the decimal of the error code, otherwise it still reports the hex value. - Add the file /sys/kernel/tracing/osnoise/per_cpu/cpu<cpu>/timerlat_fd That when a application opens it, it becomes the task that the timer lat tracer traces. The application can also read this file to find out how it's being interrupted. - Add the file /sys/kernel/tracing/available_filter_functions_addrs that works just the same as available_filter_functions but also shows the addresses of the functions like kallsyms, except that it gives the address of where the fentry/mcount jump/nop is. This is used by BPF to make it easier to attach BPF programs to ftrace hooks. - Replace strlcpy with strscpy in the tracing boot code. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZJy6ixQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qnzRAPsEI2YgjaJSHnuPoGRHbrNil6pq66wY LYaLizGI4Jv9BwEAqdSdcYcMiWo1SFBAO8QxEDM++BX3zrRyVgW8ahaTNgs= =TF0C -----END PGP SIGNATURE----- Merge tag 'trace-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing updates from Steven Rostedt: - Add new feature to have function graph tracer record the return value. Adds a new option: funcgraph-retval ; when set, will show the return value of a function in the function graph tracer. - Also add the option: funcgraph-retval-hex where if it is not set, and the return value is an error code, then it will return the decimal of the error code, otherwise it still reports the hex value. - Add the file /sys/kernel/tracing/osnoise/per_cpu/cpu<cpu>/timerlat_fd That when a application opens it, it becomes the task that the timer lat tracer traces. The application can also read this file to find out how it's being interrupted. - Add the file /sys/kernel/tracing/available_filter_functions_addrs that works just the same as available_filter_functions but also shows the addresses of the functions like kallsyms, except that it gives the address of where the fentry/mcount jump/nop is. This is used by BPF to make it easier to attach BPF programs to ftrace hooks. - Replace strlcpy with strscpy in the tracing boot code. * tag 'trace-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing: Fix warnings when building htmldocs for function graph retval riscv: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL tracing/boot: Replace strlcpy with strscpy tracing/timerlat: Add user-space interface tracing/osnoise: Skip running osnoise if all instances are off tracing/osnoise: Switch from PF_NO_SETAFFINITY to migrate_disable ftrace: Show all functions with addresses in available_filter_functions_addrs selftests/ftrace: Add funcgraph-retval test case LoongArch: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL x86/ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL arm64: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL tracing: Add documentation for funcgraph-retval and funcgraph-retval-hex function_graph: Support recording and printing the return value of function fgraph: Add declaration of "struct fgraph_ret_regs" |
||
![]() |
77b1a7f7a0 |
- Arnd Bergmann has fixed a bunch of -Wmissing-prototypes in
top-level directories. - Douglas Anderson has added a new "buddy" mode to the hardlockup detector. It permits the detector to work on architectures which cannot provide the required interrupts, by having CPUs periodically perform checks on other CPUs. - Zhen Lei has enhanced kexec's ability to support two crash regions. - Petr Mladek has done a lot of cleanup on the hard lockup detector's Kconfig entries. - And the usual bunch of singleton patches in various places. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJelTAAKCRDdBJ7gKXxA juDkAP0VXWynzkXoojdS/8e/hhi+htedmQ3v2dLZD+vBrctLhAEA7rcH58zAVoWa 2ejqO6wDrRGUC7JQcO9VEjT0nv73UwU= =F293 -----END PGP SIGNATURE----- Merge tag 'mm-nonmm-stable-2023-06-24-19-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-mm updates from Andrew Morton: - Arnd Bergmann has fixed a bunch of -Wmissing-prototypes in top-level directories - Douglas Anderson has added a new "buddy" mode to the hardlockup detector. It permits the detector to work on architectures which cannot provide the required interrupts, by having CPUs periodically perform checks on other CPUs - Zhen Lei has enhanced kexec's ability to support two crash regions - Petr Mladek has done a lot of cleanup on the hard lockup detector's Kconfig entries - And the usual bunch of singleton patches in various places * tag 'mm-nonmm-stable-2023-06-24-19-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (72 commits) kernel/time/posix-stubs.c: remove duplicated include ocfs2: remove redundant assignment to variable bit_off watchdog/hardlockup: fix typo in config HARDLOCKUP_DETECTOR_PREFER_BUDDY powerpc: move arch_trigger_cpumask_backtrace from nmi.h to irq.h devres: show which resource was invalid in __devm_ioremap_resource() watchdog/hardlockup: define HARDLOCKUP_DETECTOR_ARCH watchdog/sparc64: define HARDLOCKUP_DETECTOR_SPARC64 watchdog/hardlockup: make HAVE_NMI_WATCHDOG sparc64-specific watchdog/hardlockup: declare arch_touch_nmi_watchdog() only in linux/nmi.h watchdog/hardlockup: make the config checks more straightforward watchdog/hardlockup: sort hardlockup detector related config values a logical way watchdog/hardlockup: move SMP barriers from common code to buddy code watchdog/buddy: simplify the dependency for HARDLOCKUP_DETECTOR_PREFER_BUDDY watchdog/buddy: don't copy the cpumask in watchdog_next_cpu() watchdog/buddy: cleanup how watchdog_buddy_check_hardlockup() is called watchdog/hardlockup: remove softlockup comment in touch_nmi_watchdog() watchdog/hardlockup: in watchdog_hardlockup_check() use cpumask_copy() watchdog/hardlockup: don't use raw_cpu_ptr() in watchdog_hardlockup_kick() watchdog/hardlockup: HAVE_NMI_WATCHDOG must implement watchdog_hardlockup_probe() watchdog/hardlockup: keep kernel.nmi_watchdog sysctl as 0444 if probe fails ... |
||
![]() |
6e17c6de3d |
- Yosry Ahmed brought back some cgroup v1 stats in OOM logs.
- Yosry has also eliminated cgroup's atomic rstat flushing. - Nhat Pham adds the new cachestat() syscall. It provides userspace with the ability to query pagecache status - a similar concept to mincore() but more powerful and with improved usability. - Mel Gorman provides more optimizations for compaction, reducing the prevalence of page rescanning. - Lorenzo Stoakes has done some maintanance work on the get_user_pages() interface. - Liam Howlett continues with cleanups and maintenance work to the maple tree code. Peng Zhang also does some work on maple tree. - Johannes Weiner has done some cleanup work on the compaction code. - David Hildenbrand has contributed additional selftests for get_user_pages(). - Thomas Gleixner has contributed some maintenance and optimization work for the vmalloc code. - Baolin Wang has provided some compaction cleanups, - SeongJae Park continues maintenance work on the DAMON code. - Huang Ying has done some maintenance on the swap code's usage of device refcounting. - Christoph Hellwig has some cleanups for the filemap/directio code. - Ryan Roberts provides two patch series which yield some rationalization of the kernel's access to pte entries - use the provided APIs rather than open-coding accesses. - Lorenzo Stoakes has some fixes to the interaction between pagecache and directio access to file mappings. - John Hubbard has a series of fixes to the MM selftesting code. - ZhangPeng continues the folio conversion campaign. - Hugh Dickins has been working on the pagetable handling code, mainly with a view to reducing the load on the mmap_lock. - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from 128 to 8. - Domenico Cerasuolo has improved the zswap reclaim mechanism by reorganizing the LRU management. - Matthew Wilcox provides some fixups to make gfs2 work better with the buffer_head code. - Vishal Moola also has done some folio conversion work. - Matthew Wilcox has removed the remnants of the pagevec code - their functionality is migrated over to struct folio_batch. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJejewAKCRDdBJ7gKXxA joggAPwKMfT9lvDBEUnJagY7dbDPky1cSYZdJKxxM2cApGa42gEA6Cl8HRAWqSOh J0qXCzqaaN8+BuEyLGDVPaXur9KirwY= =B7yQ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: - Yosry Ahmed brought back some cgroup v1 stats in OOM logs - Yosry has also eliminated cgroup's atomic rstat flushing - Nhat Pham adds the new cachestat() syscall. It provides userspace with the ability to query pagecache status - a similar concept to mincore() but more powerful and with improved usability - Mel Gorman provides more optimizations for compaction, reducing the prevalence of page rescanning - Lorenzo Stoakes has done some maintanance work on the get_user_pages() interface - Liam Howlett continues with cleanups and maintenance work to the maple tree code. Peng Zhang also does some work on maple tree - Johannes Weiner has done some cleanup work on the compaction code - David Hildenbrand has contributed additional selftests for get_user_pages() - Thomas Gleixner has contributed some maintenance and optimization work for the vmalloc code - Baolin Wang has provided some compaction cleanups, - SeongJae Park continues maintenance work on the DAMON code - Huang Ying has done some maintenance on the swap code's usage of device refcounting - Christoph Hellwig has some cleanups for the filemap/directio code - Ryan Roberts provides two patch series which yield some rationalization of the kernel's access to pte entries - use the provided APIs rather than open-coding accesses - Lorenzo Stoakes has some fixes to the interaction between pagecache and directio access to file mappings - John Hubbard has a series of fixes to the MM selftesting code - ZhangPeng continues the folio conversion campaign - Hugh Dickins has been working on the pagetable handling code, mainly with a view to reducing the load on the mmap_lock - Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from 128 to 8 - Domenico Cerasuolo has improved the zswap reclaim mechanism by reorganizing the LRU management - Matthew Wilcox provides some fixups to make gfs2 work better with the buffer_head code - Vishal Moola also has done some folio conversion work - Matthew Wilcox has removed the remnants of the pagevec code - their functionality is migrated over to struct folio_batch * tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits) mm/hugetlb: remove hugetlb_set_page_subpool() mm: nommu: correct the range of mmap_sem_read_lock in task_mem() hugetlb: revert use of page_cache_next_miss() Revert "page cache: fix page_cache_next/prev_miss off by one" mm/vmscan: fix root proactive reclaim unthrottling unbalanced node mm: memcg: rename and document global_reclaim() mm: kill [add|del]_page_to_lru_list() mm: compaction: convert to use a folio in isolate_migratepages_block() mm: zswap: fix double invalidate with exclusive loads mm: remove unnecessary pagevec includes mm: remove references to pagevec mm: rename invalidate_mapping_pagevec to mapping_try_invalidate mm: remove struct pagevec net: convert sunrpc from pagevec to folio_batch i915: convert i915_gpu_error to use a folio_batch pagevec: rename fbatch_count() mm: remove check_move_unevictable_pages() drm: convert drm_gem_put_pages() to use a folio_batch i915: convert shmem_sg_free_table() to use a folio_batch scatterlist: add sg_set_folio() ... |
||
![]() |
6aeadf7896 |
Move the arm64 architecture documentation under Documentation/arch/. This
brings some order to the documentation directory, declutters the top-level directory, and makes the documentation organization more closely match that of the source. -----BEGIN PGP SIGNATURE----- iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmSbDsIPHGNvcmJldEBs d24ubmV0AAoJEBdDWhNsDH5Y+ksH/2Xqun1ipPvu66+bBdPIf8N9AVFatl2q3mt4 tgX3A4RH3Ejklb4GbRLOIP23PmCxt7LRv4P05ttw8VpTP3A+Cw1d1s2RxiXGvfDE j7IW6hrpUmVoDdiDCRGtjdIa7MVI5aAsj8CCTjEFywGi5CQe0Uzq4aTUKoxJDEnu GYVy2CwDNEt4GTQ6ClPpFx2rc4UZf/H2XqXsnod9ef8A5Nkt3EtgoS1hh3o1QZGA Mqx2HAOVS1tb6GUVUbVLCdj40+YjBLjXFlsH4dA+wsFFdUlZLKuTesdiAMg2X6eT E8C/6oRT+OiWbrnXUTJEn8z98Ds8VHn7D4n97O9bIQ+R9AFtmPI= =H/+D -----END PGP SIGNATURE----- Merge tag 'docs-arm64-move' of git://git.lwn.net/linux Pull arm64 documentation move from Jonathan Corbet: "Move the arm64 architecture documentation under Documentation/arch/. This brings some order to the documentation directory, declutters the top-level directory, and makes the documentation organization more closely match that of the source" * tag 'docs-arm64-move' of git://git.lwn.net/linux: perf arm-spe: Fix a dangling Documentation/arm64 reference mm: Fix a dangling Documentation/arm64 reference arm64: Fix dangling references to Documentation/arm64 dt-bindings: fix dangling Documentation/arm64 reference docs: arm64: Move arm64 documentation under Documentation/arch/ |
||
![]() |
04fc8904d5 |
Move the Arm architecture documentation under Documentation/arch/. This
brings some order to the documentation directory, declutters the top-level directory, and makes the documentation organization more closely match that of the source. -----BEGIN PGP SIGNATURE----- iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmSbDRwPHGNvcmJldEBs d24ubmV0AAoJEBdDWhNsDH5Y0b0H/A69Yxns1Bf465rNNINREaWWzJzIPGyJax9F 7x2zYphL2BLmDysHDvBpP858ytA4qzmqS7TopI1zjqTS6Uh4qTfsQTWNfk536Oyi XOkKONPAqzuk4Pvsam4t46lMb5xqkyy7FcsZSp25ona7t8nLiTkoxTWIabvFziFN F7qJ/u/Uzck53FgR2Xtss4vrkcWDTgva5SzQUhoxGfEqjEOoQi7CfqLQC468wfOt /XlBCnTRPnZ6bFiD/9QHU+D0setWVBs0IJHH2ogDlx/FHOvp83haJHVRFNYpx0Gd UY72gEbovzYauKMaa6azBo+1Tje6tTu6wfV3ZAG8UJYe/vJkdUw= =EBMZ -----END PGP SIGNATURE----- Merge tag 'docs-arm-move' of git://git.lwn.net/linux Pull arm documentation move from Jonathan Corbet: "Move the Arm architecture documentation under Documentation/arch/. This brings some order to the documentation directory, declutters the top-level directory, and makes the documentation organization more closely match that of the source" * tag 'docs-arm-move' of git://git.lwn.net/linux: dt-bindings: Update Documentation/arm references docs: update some straggling Documentation/arm references crypto: update some Arm documentation references mips: update a reference to a moved Arm Document arm64: Update Documentation/arm references arm: update in-source documentation references arm: docs: Move Arm documentation to Documentation/arch/ |
||
![]() |
2605e80d34 |
arm64 updates for 6.5:
- Support for the Armv8.9 Permission Indirection Extensions. While this feature doesn't add new functionality, it enables future support for Guarded Control Stacks (GCS) and Permission Overlays. - User-space support for the Armv8.8 memcpy/memset instructions. - arm64 perf: support the HiSilicon SoC uncore PMU, Arm CMN sysfs identifier, support for the NXP i.MX9 SoC DDRC PMU, fixes and cleanups. - Removal of superfluous ISBs on context switch (following retrospective architecture tightening). - Decode the ISS2 register during faults for additional information to help with debugging. - KPTI clean-up/simplification of the trampoline exit code. - Addressing several -Wmissing-prototype warnings. - Kselftest improvements for signal handling and ptrace. - Fix TPIDR2_EL0 restoring on sigreturn - Clean-up, robustness improvements of the module allocation code. - More sysreg conversions to the automatic register/bitfields generation. - CPU capabilities handling cleanup. - Arm documentation updates: ACPI, ptdump. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmSZyXwACgkQa9axLQDI XvEM3BAAkMzHGTDhNVNGLSO07PVmdzTiuoNFlfX7bktdIb+El76VhGXhHeEywTje wAq9JIYBf/Src2HbgZLwuly8Fn2vCrhyp++bRJW82o9SiBnx91+0mH7zLf+XHiQ4 FHKZxvaE6PaDc9o8WXr+IeucPRb5W2HgH37mktxh7ShMLsxorwS94V1oL29A2mV9 t4XQY7/tdmrDKMKMuQnIr1DurNXBhJ1OKvDnSN/Zzm96JOU/QQ32N2wEE7Y0aHOh bBzClksx2mguQqV515mySGFe5yy9NqaAfx2hTAciq+1rwbiCSjqQQmEswoUH8WLX JNLylxADWT2qXThFe8W6uyFzEshSAoI1yKxlCGuOsQpu4sFJtR8oh8dDj5669g4Y j0jR87r9rWm0iyYI5I+XDMxFVyuh2eFInvjtynRbj+mtS3f/SkO8fXG6Uya+I76C UGLlBUKnLr/zHuIGN0LE/V4dYTqsi9EtHoc2Am2xCZsS9jqkxKJG8C93Zsm4GlJC OcUtBSjW0rYJq+tLk0yhR6hbh59QbiRh05KnZsPpOKi8purlKSL9ZNPRi7TndLdm HjHUY+vQwNIpPIb6pyK4aYZuTdGEQIsQykQ8CULiIGlHi7kc4g9029ouLc5bBAeU mU8D62I2ztzPoYljYWNtO7K6g/Dq8c4lpsaMAJ+1Wp2iq2xBJjo= =rNBK -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "Notable features are user-space support for the memcpy/memset instructions and the permission indirection extension. - Support for the Armv8.9 Permission Indirection Extensions. While this feature doesn't add new functionality, it enables future support for Guarded Control Stacks (GCS) and Permission Overlays - User-space support for the Armv8.8 memcpy/memset instructions - arm64 perf: support the HiSilicon SoC uncore PMU, Arm CMN sysfs identifier, support for the NXP i.MX9 SoC DDRC PMU, fixes and cleanups - Removal of superfluous ISBs on context switch (following retrospective architecture tightening) - Decode the ISS2 register during faults for additional information to help with debugging - KPTI clean-up/simplification of the trampoline exit code - Addressing several -Wmissing-prototype warnings - Kselftest improvements for signal handling and ptrace - Fix TPIDR2_EL0 restoring on sigreturn - Clean-up, robustness improvements of the module allocation code - More sysreg conversions to the automatic register/bitfields generation - CPU capabilities handling cleanup - Arm documentation updates: ACPI, ptdump" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (124 commits) kselftest/arm64: Add a test case for TPIDR2 restore arm64/signal: Restore TPIDR2 register rather than memory state arm64: alternatives: make clean_dcache_range_nopatch() noinstr-safe Documentation/arm64: Add ptdump documentation arm64: hibernate: remove WARN_ON in save_processor_state kselftest/arm64: Log signal code and address for unexpected signals docs: perf: Fix warning from 'make htmldocs' in hisi-pmu.rst arm64/fpsimd: Exit streaming mode when flushing tasks docs: perf: Add new description for HiSilicon UC PMU drivers/perf: hisi: Add support for HiSilicon UC PMU driver drivers/perf: hisi: Add support for HiSilicon H60PA and PAv3 PMU driver perf: arm_cspmu: Add missing MODULE_DEVICE_TABLE perf/arm-cmn: Add sysfs identifier perf/arm-cmn: Revamp model detection perf/arm_dmc620: Add cpumask arm64: mm: fix VA-range sanity check arm64/mm: remove now-superfluous ISBs from TTBR writes Documentation/arm64: Update ACPI tables from BBR Documentation/arm64: Update references in arm-acpi Documentation/arm64: Update ARM and arch reference ... |
||
![]() |
9244724fbf |
A large update for SMP management:
- Parallel CPU bringup The reason why people are interested in parallel bringup is to shorten the (kexec) reboot time of cloud servers to reduce the downtime of the VM tenants. The current fully serialized bringup does the following per AP: 1) Prepare callbacks (allocate, intialize, create threads) 2) Kick the AP alive (e.g. INIT/SIPI on x86) 3) Wait for the AP to report alive state 4) Let the AP continue through the atomic bringup 5) Let the AP run the threaded bringup to full online state There are two significant delays: #3 The time for an AP to report alive state in start_secondary() on x86 has been measured in the range between 350us and 3.5ms depending on vendor and CPU type, BIOS microcode size etc. #4 The atomic bringup does the microcode update. This has been measured to take up to ~8ms on the primary threads depending on the microcode patch size to apply. On a two socket SKL server with 56 cores (112 threads) the boot CPU spends on current mainline about 800ms busy waiting for the APs to come up and apply microcode. That's more than 80% of the actual onlining procedure. This can be reduced significantly by splitting the bringup mechanism into two parts: 1) Run the prepare callbacks and kick the AP alive for each AP which needs to be brought up. The APs wake up, do their firmware initialization and run the low level kernel startup code including microcode loading in parallel up to the first synchronization point. (#1 and #2 above) 2) Run the rest of the bringup code strictly serialized per CPU (#3 - #5 above) as it's done today. Parallelizing that stage of the CPU bringup might be possible in theory, but it's questionable whether required surgery would be justified for a pretty small gain. If the system is large enough the first AP is already waiting at the first synchronization point when the boot CPU finished the wake-up of the last AP. That reduces the AP bringup time on that SKL from ~800ms to ~80ms, i.e. by a factor ~10x. The actual gain varies wildly depending on the system, CPU, microcode patch size and other factors. There are some opportunities to reduce the overhead further, but that needs some deep surgery in the x86 CPU bringup code. For now this is only enabled on x86, but the core functionality obviously works for all SMP capable architectures. - Enhancements for SMP function call tracing so it is possible to locate the scheduling and the actual execution points. That allows to measure IPI delivery time precisely. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZb/YTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoRoOD/9vAiGI3IhGyZcX/RjXxauSHf8Pmqll 05jUubFi5Vi3tKI1ubMOsnMmJTw2yy5xDyS/iGj7AcbRLq9uQd3iMtsXXHNBzo/X FNxnuWTXYUj0vcOYJ+j4puBumFzzpRCprqccMInH0kUnSWzbnaQCeelicZORAf+w zUYrswK4HpBXHDOnvPw6Z7MYQe+zyDQSwjSftstLyROzu+lCEw/9KUaysY2epShJ wHClxS2XqMnpY4rJ/CmJAlRhD0Plb89zXyo6k9YZYVDWoAcmBZy6vaTO4qoR171L 37ApqrgsksMkjFycCMnmrFIlkeb7bkrYDQ5y+xqC3JPTlYDKOYmITV5fZ83HD77o K7FAhl/CgkPq2Ec+d82GFLVBKR1rijbwHf7a0nhfUy0yMeaJCxGp4uQ45uQ09asi a/VG2T38EgxVdseC92HRhcdd3pipwCb5wqjCH/XdhdlQrk9NfeIeP+TxF4QhADhg dApp3ifhHSnuEul7+HNUkC6U+Zc8UeDPdu5lvxSTp2ooQ0JwaGgC5PJq3nI9RUi2 Vv826NHOknEjFInOQcwvp6SJPfcuSTF75Yx6xKz8EZ3HHxpvlolxZLq+3ohSfOKn 2efOuZO5bEu4S/G2tRDYcy+CBvNVSrtZmCVqSOS039c8quBWQV7cj0334cjzf+5T TRiSzvssbYYmaw== =Y8if -----END PGP SIGNATURE----- Merge tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull SMP updates from Thomas Gleixner: "A large update for SMP management: - Parallel CPU bringup The reason why people are interested in parallel bringup is to shorten the (kexec) reboot time of cloud servers to reduce the downtime of the VM tenants. The current fully serialized bringup does the following per AP: 1) Prepare callbacks (allocate, intialize, create threads) 2) Kick the AP alive (e.g. INIT/SIPI on x86) 3) Wait for the AP to report alive state 4) Let the AP continue through the atomic bringup 5) Let the AP run the threaded bringup to full online state There are two significant delays: #3 The time for an AP to report alive state in start_secondary() on x86 has been measured in the range between 350us and 3.5ms depending on vendor and CPU type, BIOS microcode size etc. #4 The atomic bringup does the microcode update. This has been measured to take up to ~8ms on the primary threads depending on the microcode patch size to apply. On a two socket SKL server with 56 cores (112 threads) the boot CPU spends on current mainline about 800ms busy waiting for the APs to come up and apply microcode. That's more than 80% of the actual onlining procedure. This can be reduced significantly by splitting the bringup mechanism into two parts: 1) Run the prepare callbacks and kick the AP alive for each AP which needs to be brought up. The APs wake up, do their firmware initialization and run the low level kernel startup code including microcode loading in parallel up to the first synchronization point. (#1 and #2 above) 2) Run the rest of the bringup code strictly serialized per CPU (#3 - #5 above) as it's done today. Parallelizing that stage of the CPU bringup might be possible in theory, but it's questionable whether required surgery would be justified for a pretty small gain. If the system is large enough the first AP is already waiting at the first synchronization point when the boot CPU finished the wake-up of the last AP. That reduces the AP bringup time on that SKL from ~800ms to ~80ms, i.e. by a factor ~10x. The actual gain varies wildly depending on the system, CPU, microcode patch size and other factors. There are some opportunities to reduce the overhead further, but that needs some deep surgery in the x86 CPU bringup code. For now this is only enabled on x86, but the core functionality obviously works for all SMP capable architectures. - Enhancements for SMP function call tracing so it is possible to locate the scheduling and the actual execution points. That allows to measure IPI delivery time precisely" * tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits) trace,smp: Add tracepoints for scheduling remotelly called functions trace,smp: Add tracepoints around remotelly called functions MAINTAINERS: Add CPU HOTPLUG entry x86/smpboot: Fix the parallel bringup decision x86/realmode: Make stack lock work in trampoline_compat() x86/smp: Initialize cpu_primary_thread_mask late cpu/hotplug: Fix off by one in cpuhp_bringup_mask() x86/apic: Fix use of X{,2}APIC_ENABLE in asm with older binutils x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it x86/smpboot: Support parallel startup of secondary CPUs x86/smpboot: Implement a bit spinlock to protect the realmode stack x86/apic: Save the APIC virtual base address cpu/hotplug: Allow "parallel" bringup up to CPUHP_BP_KICK_AP_STATE x86/apic: Provide cpu_primary_thread mask x86/smpboot: Enable split CPU startup cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism cpu/hotplug: Reset task stack state in _cpu_up() cpu/hotplug: Remove unused state functions riscv: Switch to hotplug core state synchronization parisc: Switch to hotplug core state synchronization ... |
||
![]() |
b5ec6fd286 |
kbuild: Drop -Wdeclaration-after-statement
With the advent on scope-based resource management it comes really tedious to abide by the contraints of -Wdeclaration-after-statement. It will still be recommeneded to place declarations at the start of a scope where possible, but it will no longer be enforced. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/CAHk-%3Dwi-RyoUhbChiVaJZoZXheAwnJ7OO%3DGxe85BkPAd93TwDA%40mail.gmail.com |
||
![]() |
abc17128c8 |
Merge branch 'for-next/feat_s1pie' into for-next/core
* for-next/feat_s1pie: : Support for the Armv8.9 Permission Indirection Extensions (stage 1 only) KVM: selftests: get-reg-list: add Permission Indirection registers KVM: selftests: get-reg-list: support ID register features arm64: Document boot requirements for PIE arm64: transfer permission indirection settings to EL2 arm64: enable Permission Indirection Extension (PIE) arm64: add encodings of PIRx_ELx registers arm64: disable EL2 traps for PIE arm64: reorganise PAGE_/PROT_ macros arm64: add PTE_WRITE to PROT_SECT_NORMAL arm64: add PTE_UXN/PTE_WRITE to SWAPPER_*_FLAGS KVM: arm64: expose ID_AA64MMFR3_EL1 to guests KVM: arm64: Save/restore PIE registers KVM: arm64: Save/restore TCR2_EL1 arm64: cpufeature: add Permission Indirection Extension cpucap arm64: cpufeature: add TCR2 cpucap arm64: cpufeature: add system register ID_AA64MMFR3 arm64/sysreg: add PIR*_ELx registers arm64/sysreg: update HCRX_EL2 register arm64/sysreg: add system registers TCR2_ELx arm64/sysreg: Add ID register ID_AA64MMFR3 |
||
![]() |
f42039d10b |
Merge branches 'for-next/kpti', 'for-next/missing-proto-warn', 'for-next/iss2-decode', 'for-next/kselftest', 'for-next/misc', 'for-next/feat_mops', 'for-next/module-alloc', 'for-next/sysreg', 'for-next/cpucap', 'for-next/acpi', 'for-next/kdump', 'for-next/acpi-doc', 'for-next/doc' and 'for-next/tpidr2-fix', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: docs: perf: Fix warning from 'make htmldocs' in hisi-pmu.rst docs: perf: Add new description for HiSilicon UC PMU drivers/perf: hisi: Add support for HiSilicon UC PMU driver drivers/perf: hisi: Add support for HiSilicon H60PA and PAv3 PMU driver perf: arm_cspmu: Add missing MODULE_DEVICE_TABLE perf/arm-cmn: Add sysfs identifier perf/arm-cmn: Revamp model detection perf/arm_dmc620: Add cpumask dt-bindings: perf: fsl-imx-ddr: Add i.MX93 compatible drivers/perf: imx_ddr: Add support for NXP i.MX9 SoC DDRC PMU driver perf/arm_cspmu: Decouple APMT dependency perf/arm_cspmu: Clean up ACPI dependency ACPI/APMT: Don't register invalid resource perf/arm_cspmu: Fix event attribute type perf: arm_cspmu: Set irq affinitiy only if overflow interrupt is used drivers/perf: hisi: Don't migrate perf to the CPU going to teardown drivers/perf: apple_m1: Force 63bit counters for M2 CPUs perf/arm-cmn: Fix DTC reset perf: qcom_l2_pmu: Make l2_cache_pmu_probe_cluster() more robust perf/arm-cci: Slightly optimize cci_pmu_sync_counters() * for-next/kpti: : Simplify KPTI trampoline exit code arm64: entry: Simplify tramp_alias macro and tramp_exit routine arm64: entry: Preserve/restore X29 even for compat tasks * for-next/missing-proto-warn: : Address -Wmissing-prototype warnings arm64: add alt_cb_patch_nops prototype arm64: move early_brk64 prototype to header arm64: signal: include asm/exception.h arm64: kaslr: add kaslr_early_init() declaration arm64: flush: include linux/libnvdimm.h arm64: module-plts: inline linux/moduleloader.h arm64: hide unused is_valid_bugaddr() arm64: efi: add efi_handle_corrupted_x18 prototype arm64: cpuidle: fix #ifdef for acpi functions arm64: kvm: add prototypes for functions called in asm arm64: spectre: provide prototypes for internal functions arm64: move cpu_suspend_set_dbg_restorer() prototype to header arm64: avoid prototype warnings for syscalls arm64: add scs_patch_vmlinux prototype arm64: xor-neon: mark xor_arm64_neon_*() static * for-next/iss2-decode: : Add decode of ISS2 to data abort reports arm64/esr: Add decode of ISS2 to data abort reporting arm64/esr: Use GENMASK() for the ISS mask * for-next/kselftest: : Various arm64 kselftest improvements kselftest/arm64: Log signal code and address for unexpected signals kselftest/arm64: Add a smoke test for ptracing hardware break/watch points * for-next/misc: : Miscellaneous patches arm64: alternatives: make clean_dcache_range_nopatch() noinstr-safe arm64: hibernate: remove WARN_ON in save_processor_state arm64/fpsimd: Exit streaming mode when flushing tasks arm64: mm: fix VA-range sanity check arm64/mm: remove now-superfluous ISBs from TTBR writes arm64: consolidate rox page protection logic arm64: set __exception_irq_entry with __irq_entry as a default arm64: syscall: unmask DAIF for tracing status arm64: lockdep: enable checks for held locks when returning to userspace arm64/cpucaps: increase string width to properly format cpucaps.h arm64/cpufeature: Use helper for ECV CNTPOFF cpufeature * for-next/feat_mops: : Support for ARMv8.8 memcpy instructions in userspace kselftest/arm64: add MOPS to hwcap test arm64: mops: allow disabling MOPS from the kernel command line arm64: mops: detect and enable FEAT_MOPS arm64: mops: handle single stepping after MOPS exception arm64: mops: handle MOPS exceptions KVM: arm64: hide MOPS from guests arm64: mops: don't disable host MOPS instructions from EL2 arm64: mops: document boot requirements for MOPS KVM: arm64: switch HCRX_EL2 between host and guest arm64: cpufeature: detect FEAT_HCX KVM: arm64: initialize HCRX_EL2 * for-next/module-alloc: : Make the arm64 module allocation code more robust (clean-up, VA range expansion) arm64: module: rework module VA range selection arm64: module: mandate MODULE_PLTS arm64: module: move module randomization to module.c arm64: kaslr: split kaslr/module initialization arm64: kasan: remove !KASAN_VMALLOC remnants arm64: module: remove old !KASAN_VMALLOC logic * for-next/sysreg: (21 commits) : More sysreg conversions to automatic generation arm64/sysreg: Convert TRBIDR_EL1 register to automatic generation arm64/sysreg: Convert TRBTRG_EL1 register to automatic generation arm64/sysreg: Convert TRBMAR_EL1 register to automatic generation arm64/sysreg: Convert TRBSR_EL1 register to automatic generation arm64/sysreg: Convert TRBBASER_EL1 register to automatic generation arm64/sysreg: Convert TRBPTR_EL1 register to automatic generation arm64/sysreg: Convert TRBLIMITR_EL1 register to automatic generation arm64/sysreg: Rename TRBIDR_EL1 fields per auto-gen tools format arm64/sysreg: Rename TRBTRG_EL1 fields per auto-gen tools format arm64/sysreg: Rename TRBMAR_EL1 fields per auto-gen tools format arm64/sysreg: Rename TRBSR_EL1 fields per auto-gen tools format arm64/sysreg: Rename TRBBASER_EL1 fields per auto-gen tools format arm64/sysreg: Rename TRBPTR_EL1 fields per auto-gen tools format arm64/sysreg: Rename TRBLIMITR_EL1 fields per auto-gen tools format arm64/sysreg: Convert OSECCR_EL1 to automatic generation arm64/sysreg: Convert OSDTRTX_EL1 to automatic generation arm64/sysreg: Convert OSDTRRX_EL1 to automatic generation arm64/sysreg: Convert OSLAR_EL1 to automatic generation arm64/sysreg: Standardise naming of bitfield constants in OSL[AS]R_EL1 arm64/sysreg: Convert MDSCR_EL1 to automatic register generation ... * for-next/cpucap: : arm64 cpucap clean-up arm64: cpufeature: fold cpus_set_cap() into update_cpu_capabilities() arm64: cpufeature: use cpucap naming arm64: alternatives: use cpucap naming arm64: standardise cpucap bitmap names * for-next/acpi: : Various arm64-related ACPI patches ACPI: bus: Consolidate all arm specific initialisation into acpi_arm_init() * for-next/kdump: : Simplify the crashkernel reservation behaviour of crashkernel=X,high on arm64 arm64: add kdump.rst into index.rst Documentation: add kdump.rst to present crashkernel reservation on arm64 arm64: kdump: simplify the reservation behaviour of crashkernel=,high * for-next/acpi-doc: : Update ACPI documentation for Arm systems Documentation/arm64: Update ACPI tables from BBR Documentation/arm64: Update references in arm-acpi Documentation/arm64: Update ARM and arch reference * for-next/doc: : arm64 documentation updates Documentation/arm64: Add ptdump documentation * for-next/tpidr2-fix: : Fix the TPIDR2_EL0 register restoring on sigreturn kselftest/arm64: Add a test case for TPIDR2 restore arm64/signal: Restore TPIDR2 register rather than memory state |
||
![]() |
616cb2f4b1 |
arm64/signal: Restore TPIDR2 register rather than memory state
Currently when restoring the TPIDR2 signal context we set the new value
from the signal frame in the thread data structure but not the register,
following the pattern for the rest of the data we are restoring. This does
not work in the case of TPIDR2, the register always has the value for the
current task. This means that either we return to userspace and ignore the
new value or we context switch and save the register value on top of the
newly restored value.
Load the value from the signal context into the register instead.
Fixes:
|
||
![]() |
39138093f1 |
arm64: alternatives: make clean_dcache_range_nopatch() noinstr-safe
When patching kernel alternatives, we need to be careful not to execute
kernel code which is itself subject to patching. In general, if code is
executed after the instructions in memory have been patched but prior to
the cache maintenance and barriers completing, it could lead to
UNPREDICTABLE results.
As our regular cache maintenance routines are patched with alternatives,
we have a clean_dcache_range_nopatch() function which is *intended* to
avoid patchable code and therefore supposed to be safe in the middle of
patching alternatives. Unfortunately, it's not marked as 'noinstr', and
so can be instrumented with patchable code.
Additionally, it calls read_sanitised_ftr_reg() (which may be
instrumented with patchable code) to find the sanitized value of
CTR_EL0.DminLine, and is therefore not safe to call during patching.
Luckily, since commit:
|
||
![]() |
6e4596c403 |
arm64: Fix dangling references to Documentation/arm64
The arm64 documentation has moved under Documentation/arch/; fix up references in the arm64 subtree to match. Cc: Will Deacon <will@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: linux-efi@vger.kernel.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
![]() |
615af0021a |
arm64: hibernate: remove WARN_ON in save_processor_state
During hibernation or restoration, freeze_secondary_cpus checks num_online_cpus via BUG_ON, and the subsequent save_processor_state also does the checking with WARN_ON. In the case of CONFIG_PM_SLEEP_SMP=n, freeze_secondary_cpus is not defined, but the sole possible condition to disable CONFIG_PM_SLEEP_SMP is !SMP where num_online_cpus is always 1. We also don't have to check it in save_processor_state. So remove the unnecessary checking in save_processor_state. Signed-off-by: Song Shuai <songshuaishuai@tinylab.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230609075049.2651723-3-songshuaishuai@tinylab.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3646970322 |
arm64: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
The previous patch ("function_graph: Support recording and printing the return value of function") has laid the groundwork for the for the funcgraph-retval, and this modification makes it available on the ARM64 platform. We introduce a new structure called fgraph_ret_regs for the ARM64 platform to hold return registers and the frame pointer. We then fill its content in the return_to_handler and pass its address to the function ftrace_return_to_handler to record the return value. Link: https://lkml.kernel.org/r/c78366416ce93f704ae7000c4ee60eb4258c38f7.1680954589.git.pengdonglin@sangfor.com.cn Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Donglin Peng <pengdonglin@sangfor.com.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> |
||
![]() |
af3215fd02 |
arm64/fpsimd: Exit streaming mode when flushing tasks
Ensure there is no path where we might attempt to save SME state after we flush a task by updating the SVCR register state as well as updating our in memory state. I haven't seen a specific case where this is happening or seen a path where it might happen but for the cost of a single low overhead instruction it seems sensible to close the potential gap. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230607-arm64-flush-svcr-v2-1-827306001841@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
92d05e2492 |
Merge branch kvm-arm64/ampere1-hafdbs-mitigation into kvmarm/next
* kvm-arm64/ampere1-hafdbs-mitigation: : AmpereOne erratum AC03_CPU_38 mitigation : : AmpereOne does not advertise support for FEAT_HAFDBS due to an : underlying erratum in the feature. The associated control bits do not : have RES0 behavior as required by the architecture. : : Introduce mitigations to prevent KVM from enabling the feature at : stage-2 as well as preventing KVM guests from enabling HAFDBS at : stage-1. KVM: arm64: Prevent guests from enabling HA/HD on Ampere1 KVM: arm64: Refactor HFGxTR configuration into separate helpers arm64: errata: Mitigate Ampere1 erratum AC03_CPU_38 at stage-2 Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
6df696cd9b |
arm64: errata: Mitigate Ampere1 erratum AC03_CPU_38 at stage-2
AmpereOne has an erratum in its implementation of FEAT_HAFDBS that required disabling the feature on the design. This was done by reporting the feature as not implemented in the ID register, although the corresponding control bits were not actually RES0. This does not align well with the requirements of the architecture, which mandates these bits be RES0 if HAFDBS isn't implemented. The kernel's use of stage-1 is unaffected, as the HA and HD bits are only set if HAFDBS is detected in the ID register. KVM, on the other hand, relies on the RES0 behavior at stage-2 to use the same value for VTCR_EL2 on any cpu in the system. Mitigate the non-RES0 behavior by leaving VTCR_EL2.HA clear on affected systems. Cc: stable@vger.kernel.org Cc: D Scott Phillips <scott@os.amperecomputing.com> Cc: Darren Hart <darren@os.amperecomputing.com> Acked-by: D Scott Phillips <scott@os.amperecomputing.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20230609220104.1836988-2-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
e1e315c4d5 |
Merge branch kvm-arm64/misc into kvmarm/next
* kvm-arm64/misc: : Miscellaneous updates : : - Avoid trapping CTR_EL0 on systems with FEAT_EVT, as the register is : commonly read by userspace : : - Make use of FEAT_BTI at hyp stage-1, setting the Guard Page bit to 1 : for executable mappings : : - Use a separate set of pointer authentication keys for the hypervisor : when running in protected mode (i.e. pKVM) : : - Plug a few holes in timer initialization where KVM fails to free the : timer IRQ(s) KVM: arm64: Use different pointer authentication keys for pKVM KVM: arm64: timers: Fix resource leaks in kvm_timer_hyp_init() KVM: arm64: Use BTI for nvhe KVM: arm64: Relax trapping of CTR_EL0 when FEAT_EVT is available Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
89a734b54c |
Merge branch kvm-arm64/configurable-id-regs into kvmarm/next
* kvm-arm64/configurable-id-regs: : Configurable ID register infrastructure, courtesy of Jing Zhang : : Create generalized infrastructure for allowing userspace to select the : supported feature set for a VM, so long as the feature set is a subset : of what hardware + KVM allows. This does not add any new features that : are user-configurable, and instead focuses on the necessary refactoring : to enable future work. : : As a consequence of the series, feature asymmetry is now deliberately : disallowed for KVM. It is unlikely that VMMs ever configured VMs with : asymmetry, nor does it align with the kernel's overall stance that : features must be uniform across all cores in the system. : : Furthermore, KVM incorrectly advertised an IMP_DEF PMU to guests for : some time. Migrations from affected kernels was supported by explicitly : allowing such an ID register value from userspace, and forwarding that : along to the guest. KVM now allows an IMP_DEF PMU version to be restored : through the ID register interface, but reinterprets the user value as : not implemented (0). KVM: arm64: Rip out the vestiges of the 'old' ID register scheme KVM: arm64: Handle ID register reads using the VM-wide values KVM: arm64: Use generic sanitisation for ID_AA64PFR0_EL1 KVM: arm64: Use generic sanitisation for ID_(AA64)DFR0_EL1 KVM: arm64: Use arm64_ftr_bits to sanitise ID register writes KVM: arm64: Save ID registers' sanitized value per guest KVM: arm64: Reuse fields of sys_reg_desc for idreg KVM: arm64: Rewrite IMPDEF PMU version as NI KVM: arm64: Make vCPU feature flags consistent VM-wide KVM: arm64: Relax invariance of KVM_ARM_VCPU_POWER_OFF KVM: arm64: Separate out feature sanitisation and initialisation Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
acfdf34c7d |
Merge branch for-next/module-alloc into kvmarm/next
* for-next/module-alloc: : Drag in module VA rework to handle conflicts w/ sw feature refactor arm64: module: rework module VA range selection arm64: module: mandate MODULE_PLTS arm64: module: move module randomization to module.c arm64: kaslr: split kaslr/module initialization arm64: kasan: remove !KASAN_VMALLOC remnants arm64: module: remove old !KASAN_VMALLOC logic Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
2e8bf0cbd0 |
KVM: arm64: Use arm64_ftr_bits to sanitise ID register writes
Rather than reinventing the wheel in KVM to do ID register sanitisation we can rely on the work already done in the core kernel. Implement a generalized sanitisation of ID registers based on the combination of the arm64_ftr_bits definitions from the core kernel and (optionally) a set of KVM-specific overrides. This all amounts to absolutely nothing for now, but will be used in subsequent changes to realize user-configurable ID registers. Signed-off-by: Jing Zhang <jingzhangos@google.com> Link: https://lore.kernel.org/r/20230609190054.1542113-8-oliver.upton@linux.dev [Oliver: split off from monster patch, rewrote commit description, reworked RAZ handling, return EINVAL to userspace] Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
1700f89cb9 |
KVM: arm64: Fix hVHE init on CPUs where HCR_EL2.E2H is not RES1
On CPUs where E2H is RES1, we very quickly set the scene for running EL2 with a VHE configuration, as we do not have any other choice. However, CPUs that conform to the current writing of the architecture start with E2H=0, and only later upgrade with E2H=1. This is all good, but nothing there is actually reconfiguring EL2 to be able to correctly run the kernel at EL1. Huhuh... The "obvious" solution is not to just reinitialise the timer controls like we do, but to really intitialise *everything* unconditionally. This requires a bit of surgery, and is a good opportunity to remove the macro that messes with SPSR_EL2 in init_el2_state. With that, hVHE now works correctly on my trusted A55 machine! Reported-by: Oliver Upton <oliver.upton@linux.dev> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230614155129.2697388-1-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
ad744e8cb3 |
arm64: Allow arm64_sw.hvhe on command line
Add the arm64_sw.hvhe=1 option to force the use of the hVHE mode in the hypervisor code only. This enables the hVHE mode of operation when using KVM on VHE hardware. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20230609162200.2024064-17-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
7a26e1f51e |
arm64: Don't enable VHE for the kernel if OVERRIDE_HVHE is set
If the OVERRIDE_HVHE SW override is set (as a precursor of the KVM_HVHE capability), do not enable VHE for the kernel and drop to EL1 as if VHE was either disabled or unavailable. Further changes will enable VHE at EL2 only, with the kernel still running at EL1. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20230609162200.2024064-6-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
e2d6c906f0 |
arm64: Add KVM_HVHE capability and has_hvhe() predicate
Expose a capability keying the hVHE feature as well as a new predicate testing it. Nothing is so far using it, and nothing is enabling it yet. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20230609162200.2024064-5-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
0ddc312b7c |
arm64: Turn kaslr_feature_override into a generic SW feature override
Disabling KASLR from the command line is implemented as a feature override. Repaint it slightly so that it can further be used as more generic infrastructure for SW override purposes. Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20230609162200.2024064-4-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
263638dc06 |
arm64: Update Documentation/arm references
The Arm documentation has moved to Documentation/arch/arm; update references under arch/arm64 to match. Cc: Will Deacon <will@kernel.org> Cc: linux-arm-kernel@lists.infradead.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
![]() |
d7a0fe9ef6 |
arm64: enable perf events based hard lockup detector
With the recent feature added to enable perf events to use pseudo NMIs as interrupts on platforms which support GICv3 or later, its now been possible to enable hard lockup detector (or NMI watchdog) on arm64 platforms. So enable corresponding support. One thing to note here is that normally lockup detector is initialized just after the early initcalls but PMU on arm64 comes up much later as device_initcall(). To cope with that, override arch_perf_nmi_is_available() to let the watchdog framework know PMU not ready, and inform the framework to re-initialize lockup detection once PMU has been initialized. [dianders@chromium.org: only HAVE_HARDLOCKUP_DETECTOR_PERF if the PMU config is enabled] Link: https://lkml.kernel.org/r/20230523073952.1.I60217a63acc35621e13f10be16c0cd7c363caf8c@changeid Link: https://lkml.kernel.org/r/20230519101840.v5.18.Ia44852044cdcb074f387e80df6b45e892965d4a1@changeid Co-developed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Co-developed-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com> Signed-off-by: Douglas Anderson <dianders@chromium.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Colin Cross <ccross@android.com> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guenter Roeck <groeck@chromium.org> Cc: Ian Rogers <irogers@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Stephen Boyd <swboyd@chromium.org> Cc: Tzung-Bi Shih <tzungbi@chromium.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
94946f9eaa |
arm64: add hw_nmi_get_sample_period for preparation of lockup detector
Set safe maximum CPU frequency to 5 GHz in case a particular platform doesn't implement cpufreq driver. Although, architecture doesn't put any restrictions on maximum frequency but 5 GHz seems to be safe maximum given the available Arm CPUs in the market which are clocked much less than 5 GHz. On the other hand, we can't make it much higher as it would lead to a large hard-lockup detection timeout on parts which are running slower (eg. 1GHz on Developerbox) and doesn't possess a cpufreq driver. Link: https://lkml.kernel.org/r/20230519101840.v5.17.Ia9d02578e89c3f44d3cb12eec8b0176603c8ab2f@changeid Co-developed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Co-developed-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com> Signed-off-by: Douglas Anderson <dianders@chromium.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Colin Cross <ccross@android.com> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guenter Roeck <groeck@chromium.org> Cc: Ian Rogers <irogers@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Stephen Boyd <swboyd@chromium.org> Cc: Tzung-Bi Shih <tzungbi@chromium.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
ca5e863233 |
mm/gup: remove vmas parameter from get_user_pages_remote()
The only instances of get_user_pages_remote() invocations which used the vmas parameter were for a single page which can instead simply look up the VMA directly. In particular:- - __update_ref_ctr() looked up the VMA but did nothing with it so we simply remove it. - __access_remote_vm() was already using vma_lookup() when the original lookup failed so by doing the lookup directly this also de-duplicates the code. We are able to perform these VMA operations as we already hold the mmap_lock in order to be able to call get_user_pages_remote(). As part of this work we add get_user_page_vma_remote() which abstracts the VMA lookup, error handling and decrementing the page reference count should the VMA lookup fail. This forms part of a broader set of patches intended to eliminate the vmas parameter altogether. [akpm@linux-foundation.org: avoid passing NULL to PTR_ERR] Link: https://lkml.kernel.org/r/d20128c849ecdbf4dd01cc828fcec32127ed939a.1684350871.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> (for arm64) Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Janosch Frank <frankja@linux.ibm.com> (for s390) Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Christian König <christian.koenig@amd.com> Cc: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jarkko Sakkinen <jarkko@kernel.org> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Sakari Ailus <sakari.ailus@linux.intel.com> Cc: Sean Christopherson <seanjc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
bb6e04a173 |
kasan: use internal prototypes matching gcc-13 builtins
gcc-13 warns about function definitions for builtin interfaces that have a different prototype, e.g.: In file included from kasan_test.c:31: kasan.h:574:6: error: conflicting types for built-in function '__asan_register_globals'; expected 'void(void *, long int)' [-Werror=builtin-declaration-mismatch] 574 | void __asan_register_globals(struct kasan_global *globals, size_t size); kasan.h:577:6: error: conflicting types for built-in function '__asan_alloca_poison'; expected 'void(void *, long int)' [-Werror=builtin-declaration-mismatch] 577 | void __asan_alloca_poison(unsigned long addr, size_t size); kasan.h:580:6: error: conflicting types for built-in function '__asan_load1'; expected 'void(void *)' [-Werror=builtin-declaration-mismatch] 580 | void __asan_load1(unsigned long addr); kasan.h:581:6: error: conflicting types for built-in function '__asan_store1'; expected 'void(void *)' [-Werror=builtin-declaration-mismatch] 581 | void __asan_store1(unsigned long addr); kasan.h:643:6: error: conflicting types for built-in function '__hwasan_tag_memory'; expected 'void(void *, unsigned char, long int)' [-Werror=builtin-declaration-mismatch] 643 | void __hwasan_tag_memory(unsigned long addr, u8 tag, unsigned long size); The two problems are: - Addresses are passes as 'unsigned long' in the kernel, but gcc-13 expects a 'void *'. - sizes meant to use a signed ssize_t rather than size_t. Change all the prototypes to match these. Using 'void *' consistently for addresses gets rid of a couple of type casts, so push that down to the leaf functions where possible. This now passes all randconfig builds on arm, arm64 and x86, but I have not tested it on the other architectures that support kasan, since they tend to fail randconfig builds in other ways. This might fail if any of the 32-bit architectures expect a 'long' instead of 'int' for the size argument. The __asan_allocas_unpoison() function prototype is somewhat weird, since it uses a pointer for 'stack_top' and an size_t for 'stack_bottom'. This looks like it is meant to be 'addr' and 'size' like the others, but the implementation clearly treats them as 'top' and 'bottom'. Link: https://lkml.kernel.org/r/20230509145735.9263-2-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
1da185fc82 |
arm64: syscall: unmask DAIF for tracing status
The following code: static void el0_svc_common(struct pt_regs *regs, int scno, int sc_nr, const syscall_fn_t syscall_table[]) { ... if (!has_syscall_work(flags) && !IS_ENABLED(CONFIG_DEBUG_RSEQ)) { local_daif_mask(); flags = read_thread_flags(); -------------------------------- A if (!has_syscall_work(flags) && !(flags & _TIF_SINGLESTEP)) return; local_daif_restore(DAIF_PROCCTX); } trace_exit: syscall_trace_exit(regs); ------- B } 1. The flags in the if conditional statement should be used in the same way as the flags in the function syscall_trace_exit, because DAIF is not shielded in the function syscall_trace_exit, so when the flags are obtained in line A of the code, there is no need to shield DAIF. Don't care about the modification of flags after line A. 2. Masking DAIF caused syscall performance to deteriorate by about 10%. The Unixbench single core syscall performance data is as follows: Machine: Kunpeng 920 Mask DAIF: System Call Overhead 1172314.1 lps (10.0 s, 7 samples) System Benchmarks Partial Index BASELINE RESULT INDEX System Call Overhead 15000.0 1172314.1 781.5 ======== System Benchmarks Index Score (Partial Only) 781.5 Unmask DAIF: System Call Overhead 1287944.6 lps (10.0 s, 7 samples) System Benchmarks Partial Index BASELINE RESULT INDEX System Call Overhead 15000.0 1287944.6 858.6 ======== System Benchmarks Index Score (Partial Only) 858.6 Rationale from Mark Rutland as for why this is safe: This masking is an artifact of the old "ret_fast_syscall" assembly that was converted to C in commit: |
||
![]() |
7dae5f086f |
arm64: cpufeature: fold cpus_set_cap() into update_cpu_capabilities()
We only use cpus_set_cap() in update_cpu_capabilities(), where we open-code an analgous update to boot_cpucaps. Due to the way the cpucap_ptrs[] array is initialized, we know that the capability number cannot be greater than or equal to ARM64_NCAPS, so the warning is superfluous. Fold cpus_set_cap() into update_cpu_capabilities(), matching what we do for the boot_cpucaps, and making the relationship between the two a bit clearer. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230607164846.3967305-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
1c8ae42975 |
arm64: cpufeature: use cpucap naming
To more clearly align the various users of the cpucap enumeration, this patch changes the cpufeature code to use the term `cpucap` in favour of `cpu_hwcap`. This more clearly aligns with other users of the cpucaps, and avoids confusion with the ELF hwcaps. There should be no functional change as a result of this patch; this is purely a renaming exercise. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230607164846.3967305-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
5235c7e2cf |
arm64: alternatives: use cpucap naming
To more clearly align the various users of the cpucap enumeration, this patch
changes the alternative code to use the term `cpucap` in favour of `feature`.
The alternative_has_feature_{likely,unlikely}() functions are renamed to
alternative_has_cap_<likely,unlikely}() to more clearly align with the
cpus_have_{const_,}cap() helpers.
At the same time remove the stale comment referring to the "ARM64_CB
bit", which is evidently a typo for ARM64_CB_PATCH, which was removed in
commit:
|
||
![]() |
7f242982e4 |
arm64: standardise cpucap bitmap names
The 'cpu_hwcaps' and 'boot_capabilities' bitmaps are bitmaps have the same enumerated bits, but are named wildly differently for no good reason. The terms 'hwcaps' and 'capabilities' have become ambiguous over time (e.g. due to clashes with ELF hwcaps and the structures used to manage feature detection), and it would be nicer to use 'cpucaps', matching the <asm/cpucaps.h> header the enumerated bit indices are defined in. While this isn't a functional problem, it makes the code harder than necessary to understand, and hard to extend with related functionality (e.g. per-cpu cpucap bitmaps). To that end, this patch renames `boot_capabilities` to `boot_cpucaps` and `cpu_hwcaps` to `system_cpucaps`. This more clearly indicates the relationship between the two and aligns with terminology used elsewhere in our feature management code. This change was scripted with: | find . -type f -name '*.[chS]' -print0 | \ | xargs -0 sed -i 's/\<boot_capabilities\>/boot_cpucaps/' | find . -type f -name '*.[chS]' -print0 | \ | xargs -0 sed -i 's/\<cpu_hwcaps\>/system_cpucaps/' ... and the instance of "cpu_hwcap" (without a trailing "s") in <asm/mmu_context.h> corrected manually to "system_cpucaps". Subsequent patches will adjust the naming of related functions to better align with the `cpucap` naming. There should be no functional change as a result of this patch; this is purely a renaming exercise. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230607164846.3967305-2-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3e35d303ab |
arm64: module: rework module VA range selection
Currently, the modules region is 128M in size, which is a problem for some large modules. Shanker reports [1] that the NVIDIA GPU driver alone can consume 110M of module space in some configurations. We'd like to make the modules region a full 2G such that we can always make use of a 2G range. It's possible to build kernel images which are larger than 128M in some configurations, such as when many debug options are selected and many drivers are built in. In these configurations, we can't legitimately select a base for a 128M module region, though we currently select a value for which allocation will fail. It would be nicer to have a diagnostic message in this case. Similarly, in theory it's possible to build a kernel image which is larger than 2G and which cannot support modules. While this isn't likely to be the case for any realistic kernel deplyed in the field, it would be nice if we could print a diagnostic in this case. This patch reworks the module VA range selection to use a 2G range, and improves handling of cases where we cannot select legitimate module regions. We now attempt to select a 128M region and a 2G region: * The 128M region is selected such that modules can use direct branches (with JUMP26/CALL26 relocations) to branch to kernel code and other modules, and so that modules can reference data and text (using PREL32 relocations) anywhere in the kernel image and other modules. This region covers the entire kernel image (rather than just the text) to ensure that all PREL32 relocations are in range even when the kernel data section is absurdly large. Where we cannot allocate from this region, we'll fall back to the full 2G region. * The 2G region is selected such that modules can use direct branches with PLTs to branch to kernel code and other modules, and so that modules can use reference data and text (with PREL32 relocations) in the kernel image and other modules. This region covers the entire kernel image, and the 128M region (if one is selected). The two module regions are randomized independently while ensuring the constraints described above. [1] https://lore.kernel.org/linux-arm-kernel/159ceeab-09af-3174-5058-445bc8dcf85b@nvidia.com/ Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Cc: Shanker Donthineni <sdonthineni@nvidia.com> Cc: Will Deacon <will@kernel.org> Tested-by: Shanker Donthineni <sdonthineni@nvidia.com> Link: https://lore.kernel.org/r/20230530110328.2213762-7-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ea3752ba96 |
arm64: module: mandate MODULE_PLTS
Contemporary kernels and modules can be relatively large, especially when common debug options are enabled. Using GCC 12.1.0, a v6.3-rc7 defconfig kernel is ~38M, and with PROVE_LOCKING + KASAN_INLINE enabled this expands to ~117M. Shanker reports [1] that the NVIDIA GPU driver alone can consume 110M of module space in some configurations. Both KASLR and ARM64_ERRATUM_843419 select MODULE_PLTS, so anyone wanting a kernel to have KASLR or run on Cortex-A53 will have MODULE_PLTS selected. This is the case in defconfig and distribution kernels (e.g. Debian, Android, etc). Practically speaking, this means we're very likely to need MODULE_PLTS and while it's almost guaranteed that MODULE_PLTS will be selected, it is possible to disable support, and we have to maintain some awkward special cases for such unusual configurations. This patch removes the MODULE_PLTS config option, with the support code always enabled if MODULES is selected. This results in a slight simplification, and will allow for further improvement in subsequent patches. For any config which currently selects MODULE_PLTS, there will be no functional change as a result of this patch. [1] https://lore.kernel.org/linux-arm-kernel/159ceeab-09af-3174-5058-445bc8dcf85b@nvidia.com/ Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Cc: Shanker Donthineni <sdonthineni@nvidia.com> Cc: Will Deacon <will@kernel.org> Tested-by: Shanker Donthineni <sdonthineni@nvidia.com> Link: https://lore.kernel.org/r/20230530110328.2213762-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
e46b7103ae |
arm64: module: move module randomization to module.c
When CONFIG_RANDOMIZE_BASE=y, module_alloc_base is a variable which is configured by kaslr_module_init() in kaslr.c, and otherwise it is an expression defined in module.h. As kaslr_module_init() is no longer tightly coupled with the KASLR initialization code, we can centralize this in module.c. This patch moves kaslr_module_init() to module.c, making module_alloc_base a static variable, and removing redundant includes from kaslr.c. For the defintion of struct arm64_ftr_override we must include <asm/cpufeature.h>, which was previously included transitively via another header. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Cc: Will Deacon <will@kernel.org> Tested-by: Shanker Donthineni <sdonthineni@nvidia.com> Link: https://lore.kernel.org/r/20230530110328.2213762-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
6e13b6b923 |
arm64: kaslr: split kaslr/module initialization
Currently kaslr_init() handles a mixture of detecting/announcing whether KASLR is enabled, and randomizing the module region depending on whether KASLR is enabled. To make it easier to rework the module region initialization, split the KASLR initialization into two steps: * kaslr_init() determines whether KASLR should be enabled, and announces this choice, recording this to a new global boolean variable. This is called from setup_arch() just before the existing call to kaslr_requires_kpti() so that this will always provide the expected result. * kaslr_module_init() randomizes the module region when required. This is called as a subsys_initcall, where we previously called kaslr_init(). As a bonus, moving the KASLR reporting earlier makes it easier to spot and permits it to be logged via earlycon, making it easier to debug any issues that could be triggered by KASLR. Booting a v6.4-rc1 kernel with this patch applied, the log looks like: | EFI stub: Booting Linux Kernel... | EFI stub: Generating empty DTB | EFI stub: Exiting boot services... | [ 0.000000] Booting Linux on physical CPU 0x0000000000 [0x000f0510] | [ 0.000000] Linux version 6.4.0-rc1-00006-g4763a8f8aeb3 (mark@lakrids) (aarch64-linux-gcc (GCC) 12.1.0, GNU ld (GNU Binutils) 2.38) #2 SMP PREEMPT Tue May 9 11:03:37 BST 2023 | [ 0.000000] KASLR enabled | [ 0.000000] earlycon: pl11 at MMIO 0x0000000009000000 (options '') | [ 0.000000] printk: bootconsole [pl11] enabled Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Cc: Will Deacon <will@kernel.org> Tested-by: Shanker Donthineni <sdonthineni@nvidia.com> Link: https://lore.kernel.org/r/20230530110328.2213762-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8339f7d8e1 |
arm64: module: remove old !KASAN_VMALLOC logic
Historically, KASAN could be selected with or without KASAN_VMALLOC, and we had to be very careful where to place modules when KASAN_VMALLOC was not selected. However, since commit: |
||
![]() |
ab1e29acdb |
arm64: lockdep: enable checks for held locks when returning to userspace
Currently arm64 doesn't use CONFIG_GENERIC_ENTRY and doesn't call lockdep_sys_exit() when returning to userspace. This means that lockdep won't check for held locks when returning to userspace, which would be useful to detect kernel bugs. Call lockdep_sys_exit() when returning to userspace, enabling checking for held locks. At the same time, rename arm64's prepare_exit_to_user_mode() to exit_to_user_mode_prepare() to more clearly align with the naming in the generic entry code. Signed-off-by: Eric Chan <ericchancf@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20230531090909.357047-1-ericchancf@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
6b776d3855 |
arm64: transfer permission indirection settings to EL2
Copy the EL1 registers: TCR2_EL1, PIR_EL1, PIRE0_EL1, such that PIE is also enabled for EL2. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Oliver Upton <oliver.upton@linux.dev> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20230606145859.697944-18-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
f0af339fc4 |
arm64: add PTE_UXN/PTE_WRITE to SWAPPER_*_FLAGS
With PIE enabled, the swapper PTEs would have a Permission Indirection Index (PIIndex) of 0. A PIIndex of 0 is not currently used by any other PTEs. To avoid using index 0 specifically for the swapper PTEs, mark them as PTE_UXN and PTE_WRITE, so that they map to a PAGE_KERNEL_EXEC equivalent. This also adds PTE_WRITE to KPTI_NG_PTE_FLAGS, which was tested by booting with kpti=on. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20230606145859.697944-12-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
e43454c442 |
arm64: cpufeature: add Permission Indirection Extension cpucap
This indicates if the system supports PIE. This is a CPUCAP_BOOT_CPU_FEATURE as the boot CPU will enable PIE if it has it, so secondary CPUs must also have this feature. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230606145859.697944-8-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
2b760046a2 |
arm64: cpufeature: add TCR2 cpucap
This capability indicates if the system supports the TCR2_ELx system register. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230606145859.697944-7-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
edc25898f0 |
arm64: cpufeature: add system register ID_AA64MMFR3
Add new system register ID_AA64MMFR3 to the cpufeature infrastructure. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20230606145859.697944-6-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3e1dedb29d |
arm64: mops: allow disabling MOPS from the kernel command line
Make it possible to disable the MOPS extension at runtime using the kernel command line. This can be useful for testing or working around hardware issues. For example it could be used to test new memory copy routines that do not use MOPS instructions (e.g. from Arm Optimized Routines). Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20230509142235.3284028-11-kristina.martsenko@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b7564127ff |
arm64: mops: detect and enable FEAT_MOPS
The Arm v8.8/9.3 FEAT_MOPS feature provides new instructions that perform a memory copy or set. Wire up the cpufeature code to detect the presence of FEAT_MOPS and enable it. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20230509142235.3284028-10-kristina.martsenko@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8cd076a67d |
arm64: mops: handle single stepping after MOPS exception
When a MOPS main or epilogue instruction is being executed, the task may get scheduled on a different CPU and restart execution from the prologue instruction. If the main or epilogue instruction is being single stepped then it makes sense to finish the step and take the step exception before starting to execute the next (prologue) instruction. So fast-forward the single step state machine when taking a MOPS exception. This means that if a main or epilogue instruction is single stepped with ptrace, the debugger will sometimes observe the PC moving back to the prologue instruction. (As already mentioned, this should be rare as it only happens when the task is scheduled to another CPU during the step.) This also ensures that perf breakpoints count prologue instructions consistently (i.e. every time they are executed), rather than skipping them when there also happens to be a breakpoint on a main or epilogue instruction. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20230509142235.3284028-9-kristina.martsenko@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8536ceaa74 |
arm64: mops: handle MOPS exceptions
The memory copy/set instructions added as part of FEAT_MOPS can take an exception (e.g. page fault) part-way through their execution and resume execution afterwards. If however the task is re-scheduled and execution resumes on a different CPU, then the CPU may take a new type of exception to indicate this. This is because the architecture allows two options (Option A and Option B) to implement the instructions and a heterogeneous system can have different implementations between CPUs. In this case the OS has to reset the registers and restart execution from the prologue instruction. The algorithm for doing this is provided as part of the Arm ARM. Add an exception handler for the new exception and wire it up for userspace tasks. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20230509142235.3284028-8-kristina.martsenko@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b0c756fe99 |
arm64: cpufeature: detect FEAT_HCX
Detect if the system has the new HCRX_EL2 register added in ARMv8.7/9.2, so that subsequent patches can check for its presence. KVM currently relies on the register being present on all CPUs (or none), so the kernel will panic if that is not the case. Fortunately no such systems currently exist, but this can be revisited if they appear. Note that the kernel will not panic if CONFIG_KVM is disabled. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20230509142235.3284028-3-kristina.martsenko@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
e34f78b970 |
arm64/cpufeature: Use helper for ECV CNTPOFF cpufeature
The newly added support for ECV CNTPOFF open codes the recently added helper ARM64_CPUID_FIELDS(), make use of the helper. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20230523-arm64-ecv-helper-v1-1-506dfb5fb199@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8ada7aab02 |
arm64: signal: include asm/exception.h
The do_notify_resume() is in a header that is not included for the definition, which causes a W=1 warning: arch/arm64/kernel/signal.c:1280:6: error: no previous prototype for 'do_notify_resume' [-Werror=missing-prototypes] Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230516160642.523862-14-arnd@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
60a0aab746 |
arm64: module-plts: inline linux/moduleloader.h
module_frob_arch_sections() is declared in moduleloader.h, but that is not included before the definition: arch/arm64/kernel/module-plts.c:286:5: error: no previous prototype for 'module_frob_arch_sections' [-Werror=missing-prototypes] Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230516160642.523862-11-arnd@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b925b4314c |
arm64: hide unused is_valid_bugaddr()
When generic BUG() support is disabled, this function has no declaration and no callers but causes a W=1 warning: arch/arm64/kernel/traps.c:950:5: error: no previous prototype for 'is_valid_bugaddr' [-Werror=missing-prototypes] Add an #ifdef that matches the one around the declaration. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230516160642.523862-10-arnd@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
68a879b553 |
arm64: cpuidle: fix #ifdef for acpi functions
The acpi_processor_ffh_lpi_* functions are defined whenever CONFIG_ACPI is enabled, but only called and declared when CONFIG_ACPI_PROCESSOR_IDLE is also enabled. Without that, a W=1 build triggers missing-prototope warnings, so the #ifdef needs to be adapted: arch/arm64/kernel/cpuidle.c:60:5: error: no previous prototype for 'acpi_processor_ffh_lpi_probe' [-Werror=missing-prototypes] arch/arm64/kernel/cpuidle.c:65:15: error: no previous prototype for 'acpi_processor_ffh_lpi_enter' [-Werror=missing-prototypes] Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230516160642.523862-8-arnd@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ec3a3db710 |
arm64: move cpu_suspend_set_dbg_restorer() prototype to header
The cpu_suspend_set_dbg_restorer() function is called by the hw_breakpoint code but defined in another file. Since the declaration is in the same file as the caller, the compiler warns about the definition without a prior prototype: arch/arm64/kernel/suspend.c:35:13: error: no previous prototype for 'cpu_suspend_set_dbg_restorer' [-Werror=missing-prototypes] Move it into the corresponding header instead to avoid the warning. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230516160642.523862-5-arnd@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
211ceca377 |
arm64: entry: Simplify tramp_alias macro and tramp_exit routine
The tramp_alias macro constructs the virtual alias of a symbol in the trampoline text mapping, based on its kernel text address, and does so in a way that is more convoluted than necessary. So let's simplify that. Also, now that the address of the vector table is kept in a per-CPU variable, there is no need to defer the load and the assignment of VBAR_EL1 to tramp_exit(). This means we can use a PC-relative reference to the per-CPU variable instead of storing its absolute address in a global variable in the trampoline rodata. And given that tramp_alias no longer needs a temp register, this means we can restore X30 earlier as well, and only leave X29 for tramp_exit() to restore. While at it, give some related symbols static linkage, considering that they are only referenced from the object file that defines them. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230418143604.1176437-3-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
0936243cab |
arm64: entry: Preserve/restore X29 even for compat tasks
Currently, the KPTI trampoline code for returning to user space takes care to only preserve X29 into FAR_EL1 for native tasks, as compat tasks don't have access to this register anyway, and so preserving it is not necessary. It also means it does not need to be restored, and so we have two code paths for returning back to user space: the native one that restores X29 from FAR_EL1, and the compat one that leaves X29 clobbered, containing the value of TTBR1_EL1, which carries a physical address pointing somewhere into the kernel image. This is needlessly complex, and given that FAR_EL1 becomes UNKNOWN after an exception return anway, the only benefit of avoiding the preserve and restore is that we can skip the system register write and read. So let's simplify this, and collapse the two code paths into one that always preserves X29 into FAR_EL1, and always restores it again after the TTBR switch. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230418143604.1176437-2-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c876c3f182 |
KVM: arm64: Relax trapping of CTR_EL0 when FEAT_EVT is available
CTR_EL0 can often be used in userspace, and it would be nice if KVM didn't have to emulate it unnecessarily. While it isn't possible to trap the cache configuration registers independently from CTR_EL0 in the base ARMv8.0 architecture, FEAT_EVT allows these cache configuration registers (CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1 and CSSELR_EL1) to be trapped independently by setting HCR_EL2.TID4. Switch to using TID4 instead of TID2 in the cases where FEAT_EVT is available *and* that KVM doesn't need to sanitise CTR_EL0 to paper over mismatched cache configurations. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230515170016.965378-1-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
c4c597f1b3 |
arm64: mte: Do not set PG_mte_tagged if tags were not initialized
The mte_sync_page_tags() function sets PG_mte_tagged if it initializes
page tags. Then we return to mte_sync_tags(), which sets PG_mte_tagged
again. At best, this is redundant. However, it is possible for
mte_sync_page_tags() to return without having initialized tags for the
page, i.e. in the case where check_swap is true (non-compound page),
is_swap_pte(old_pte) is false and pte_is_tagged is false. So at worst,
we set PG_mte_tagged on a page with uninitialized tags. This can happen
if, for example, page migration causes a PTE for an untagged page to
be replaced. If the userspace program subsequently uses mprotect() to
enable PROT_MTE for that page, the uninitialized tags will be exposed
to userspace.
Fix it by removing the redundant call to set_page_mte_tagged().
Fixes:
|
||
![]() |
b0abde8062 |
arm64: vdso: Pass (void *) to virt_to_page()
Like the other calls in this function virt_to_page() expects a pointer, not an integer. However since many architectures implement virt_to_pfn() as a macro, this function becomes polymorphic and accepts both a (unsigned long) and a (void *). Fix this up with an explicit cast. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Link: http://lists.infradead.org/pipermail/linux-arm-kernel/2023-May/832583.html Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
b3091f172f |
arm64: smp: Switch to hotplug core state synchronization
Switch to the CPU hotplug core state tracking and synchronization mechanim. No functional change intended. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205256.690926018@linutronix.de |
||
![]() |
671e148d07 |
arm64 fixes for -rc1
- Fix regression in CPU erratum workaround when disabling the MMU - Fix detection of pointer authentication hwcaps - Avoid writeable, executable ELF sections in vmlinux -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmRTe+UQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNJXqB/9C9DrrbHUg9ZPqAIUpXkyaxem4gpIS+kyU +ard53uweuQHchuR/x2s2K9Sp/ano5jGnQXEjikNy29Opu2UYI/wmsqdJEn3km8q kohTRsiFgQ40Y85/3iJ8ug6+llxCxK6AXdZCskdWTP56Jur0WpNiQd0a/ShYQLdX wBHdInT3QpDVzd5bEWDtUEj4H//tTCy4rESQyGsLhrHgb/x8uZKgZMtPJp6+Q3Eq ofs+PQc0qHr/Ri3ahQOCMbxTbNaLIgUzkyXbZN+y2JtxgE+l8E3Gsir2+Pv7mcSx 1gCSLCmpwE7rVJpTykN+jA6OSsoSUSJHXs6565nF4n8+ugdL7aqR =Tba+ -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: "A few arm64 fixes that came in during the merge window for -rc1. The main thing is restoring the pointer authentication hwcaps, which disappeared during some recent refactoring - Fix regression in CPU erratum workaround when disabling the MMU - Fix detection of pointer authentication hwcaps - Avoid writeable, executable ELF sections in vmlinux" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: lds: move .got section out of .text arm64: kernel: remove SHF_WRITE|SHF_EXECINSTR from .idmap.text arm64: cpufeature: Fix pointer auth hwcaps arm64: Fix label placement in record_mmu_state() |
||
![]() |
0fddb79bf2 |
arm64: lds: move .got section out of .text
Currently, the .got section is placed within the output section .text. However, when .got is non-empty, the SHF_WRITE flag is set for .text when linked by lld. GNU ld recognizes .text as a special section and ignores the SHF_WRITE flag. By renaming .text, we can also get the SHF_WRITE flag. The kernel has performed R_AARCH64_RELATIVE resolving very early, and can then assume that .got is read-only. Let's move .got to the vmlinux_rodata pseudo-segment. As Ard Biesheuvel notes: "This matters to consumers of the vmlinux ELF representation of the kernel image, such as syzkaller, which disregards writable PT_LOAD segments when resolving code symbols. The kernel itself does not care about this distinction, but given that the GOT contains data and not code, it does not require executable permissions, and therefore does not belong in .text to begin with." Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Fangrui Song <maskray@google.com> Link: https://lore.kernel.org/r/20230502074105.1541926-1-maskray@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
4df69e0df2 |
arm64: kernel: remove SHF_WRITE|SHF_EXECINSTR from .idmap.text
commit |
||
![]() |
eda081d2ef |
arm64: cpufeature: Fix pointer auth hwcaps
The pointer auth hwcaps are not getting reported to userspace, as they
are missing the .matches field. Add the field back.
Fixes:
|
||
![]() |
c8c655c34e |
s390:
* More phys_to_virt conversions * Improvement of AP management for VSIE (nested virtualization) ARM64: * Numerous fixes for the pathological lock inversion issue that plagued KVM/arm64 since... forever. * New framework allowing SMCCC-compliant hypercalls to be forwarded to userspace, hopefully paving the way for some more features being moved to VMMs rather than be implemented in the kernel. * Large rework of the timer code to allow a VM-wide offset to be applied to both virtual and physical counters as well as a per-timer, per-vcpu offset that complements the global one. This last part allows the NV timer code to be implemented on top. * A small set of fixes to make sure that we don't change anything affecting the EL1&0 translation regime just after having having taken an exception to EL2 until we have executed a DSB. This ensures that speculative walks started in EL1&0 have completed. * The usual selftest fixes and improvements. KVM x86 changes for 6.4: * Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled, and by giving the guest control of CR0.WP when EPT is enabled on VMX (VMX-only because SVM doesn't support per-bit controls) * Add CR0/CR4 helpers to query single bits, and clean up related code where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return as a bool * Move AMD_PSFD to cpufeatures.h and purge KVM's definition * Avoid unnecessary writes+flushes when the guest is only adding new PTEs * Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations when emulating invalidations * Clean up the range-based flushing APIs * Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle changed SPTE" overhead associated with writing the entire entry * Track the number of "tail" entries in a pte_list_desc to avoid having to walk (potentially) all descriptors during insertion and deletion, which gets quite expensive if the guest is spamming fork() * Disallow virtualizing legacy LBRs if architectural LBRs are available, the two are mutually exclusive in hardware * Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features * Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES * Apply PMU filters to emulated events and add test coverage to the pmu_event_filter selftest x86 AMD: * Add support for virtual NMIs * Fixes for edge cases related to virtual interrupts x86 Intel: * Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is not being reported due to userspace not opting in via prctl() * Fix a bug in emulation of ENCLS in compatibility mode * Allow emulation of NOP and PAUSE for L2 * AMX selftests improvements * Misc cleanups MIPS: * Constify MIPS's internal callbacks (a leftover from the hardware enabling rework that landed in 6.3) Generic: * Drop unnecessary casts from "void *" throughout kvm_main.c * Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct size by 8 bytes on 64-bit kernels by utilizing a padding hole Documentation: * Fix goof introduced by the conversion to rST -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmRNExkUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroNyjwf+MkzDael9y9AsOZoqhEZ5OsfQYJ32 Im5ZVYsPRU2K5TuoWql6meIihgclCj1iIU32qYHa2F1WYt2rZ72rJp+HoY8b+TaI WvF0pvNtqQyg3iEKUBKPA4xQ6mj7RpQBw86qqiCHmlfNt0zxluEGEPxH8xrWcfhC huDQ+NUOdU7fmJ3rqGitCvkUbCuZNkw3aNPR8dhU8RAWrwRzP2hBOmdxIeo81WWY XMEpJSijbGpXL9CvM0Jz9nOuMJwZwCCBGxg1vSQq0xTfLySNMxzvWZC2GFaBjucb j0UOQ7yE0drIZDVhd3sdNslubXXU6FcSEzacGQb9aigMUon3Tem9SHi7Kw== =S2Hq -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "s390: - More phys_to_virt conversions - Improvement of AP management for VSIE (nested virtualization) ARM64: - Numerous fixes for the pathological lock inversion issue that plagued KVM/arm64 since... forever. - New framework allowing SMCCC-compliant hypercalls to be forwarded to userspace, hopefully paving the way for some more features being moved to VMMs rather than be implemented in the kernel. - Large rework of the timer code to allow a VM-wide offset to be applied to both virtual and physical counters as well as a per-timer, per-vcpu offset that complements the global one. This last part allows the NV timer code to be implemented on top. - A small set of fixes to make sure that we don't change anything affecting the EL1&0 translation regime just after having having taken an exception to EL2 until we have executed a DSB. This ensures that speculative walks started in EL1&0 have completed. - The usual selftest fixes and improvements. x86: - Optimize CR0.WP toggling by avoiding an MMU reload when TDP is enabled, and by giving the guest control of CR0.WP when EPT is enabled on VMX (VMX-only because SVM doesn't support per-bit controls) - Add CR0/CR4 helpers to query single bits, and clean up related code where KVM was interpreting kvm_read_cr4_bits()'s "unsigned long" return as a bool - Move AMD_PSFD to cpufeatures.h and purge KVM's definition - Avoid unnecessary writes+flushes when the guest is only adding new PTEs - Overhaul .sync_page() and .invlpg() to utilize .sync_page()'s optimizations when emulating invalidations - Clean up the range-based flushing APIs - Revamp the TDP MMU's reaping of Accessed/Dirty bits to clear a single A/D bit using a LOCK AND instead of XCHG, and skip all of the "handle changed SPTE" overhead associated with writing the entire entry - Track the number of "tail" entries in a pte_list_desc to avoid having to walk (potentially) all descriptors during insertion and deletion, which gets quite expensive if the guest is spamming fork() - Disallow virtualizing legacy LBRs if architectural LBRs are available, the two are mutually exclusive in hardware - Disallow writes to immutable feature MSRs (notably PERF_CAPABILITIES) after KVM_RUN, similar to CPUID features - Overhaul the vmx_pmu_caps selftest to better validate PERF_CAPABILITIES - Apply PMU filters to emulated events and add test coverage to the pmu_event_filter selftest - AMD SVM: - Add support for virtual NMIs - Fixes for edge cases related to virtual interrupts - Intel AMX: - Don't advertise XTILE_CFG in KVM_GET_SUPPORTED_CPUID if XTILE_DATA is not being reported due to userspace not opting in via prctl() - Fix a bug in emulation of ENCLS in compatibility mode - Allow emulation of NOP and PAUSE for L2 - AMX selftests improvements - Misc cleanups MIPS: - Constify MIPS's internal callbacks (a leftover from the hardware enabling rework that landed in 6.3) Generic: - Drop unnecessary casts from "void *" throughout kvm_main.c - Tweak the layout of "struct kvm_mmu_memory_cache" to shrink the struct size by 8 bytes on 64-bit kernels by utilizing a padding hole Documentation: - Fix goof introduced by the conversion to rST" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (211 commits) KVM: s390: pci: fix virtual-physical confusion on module unload/load KVM: s390: vsie: clarifications on setting the APCB KVM: s390: interrupt: fix virtual-physical confusion for next alert GISA KVM: arm64: Have kvm_psci_vcpu_on() use WRITE_ONCE() to update mp_state KVM: arm64: Acquire mp_state_lock in kvm_arch_vcpu_ioctl_vcpu_init() KVM: selftests: Test the PMU event "Instructions retired" KVM: selftests: Copy full counter values from guest in PMU event filter test KVM: selftests: Use error codes to signal errors in PMU event filter test KVM: selftests: Print detailed info in PMU event filter asserts KVM: selftests: Add helpers for PMC asserts in PMU event filter test KVM: selftests: Add a common helper for the PMU event filter guest code KVM: selftests: Fix spelling mistake "perrmited" -> "permitted" KVM: arm64: vhe: Drop extra isb() on guest exit KVM: arm64: vhe: Synchronise with page table walker on MMU update KVM: arm64: pkvm: Document the side effects of kvm_flush_dcache_to_poc() KVM: arm64: nvhe: Synchronise with page table walker on TLBI KVM: arm64: Handle 32bit CNTPCTSS traps KVM: arm64: nvhe: Synchronise with page table walker on vcpu run KVM: arm64: vgic: Don't acquire its_lock before config_lock KVM: selftests: Add test to verify KVM's supported XCR0 ... |
||
![]() |
825a0714d2 |
EFI updates for v6.4:
- relocate the LoongArch kernel if the preferred address is already occupied; - implement BTI annotations for arm64 EFI stub and zboot images; - clean up arm64 zboot Kbuild rules for injecting the kernel code size. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQQm/3uucuRGn1Dmh0wbglWLn0tXAUCZEwUOwAKCRAwbglWLn0t XMNzAQChdPim0N+l2G4XLa1g8WCGany/+6/B9GHPJVcmQ25zLQD/UaNvAofkHwjR Y3P3ZEY1SPEA+UJBL/BTI0wO9/XgpAA= =hGWP -----END PGP SIGNATURE----- Merge tag 'efi-next-for-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: - relocate the LoongArch kernel if the preferred address is already occupied - implement BTI annotations for arm64 EFI stub and zboot images - clean up arm64 zboot Kbuild rules for injecting the kernel code size * tag 'efi-next-for-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: efi/zboot: arm64: Grab code size from ELF symbol in payload efi/zboot: arm64: Inject kernel code size symbol into the zboot payload efi/zboot: Set forward edge CFI compat header flag if supported efi/zboot: Add BSS padding before compression arm64: efi: Enable BTI codegen and add PE/COFF annotation efi/pe: Import new BTI/IBT header flags from the spec efi/loongarch: Reintroduce efi_relocate_kernel() to relocate kernel |
||
![]() |
f20730efbd |
SMP cross-CPU function-call updates for v6.4:
- Remove diagnostics and adjust config for CSD lock diagnostics - Add a generic IPI-sending tracepoint, as currently there's no easy way to instrument IPI origins: it's arch dependent and for some major architectures it's not even consistently available. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK438RHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1jJ5Q/5AZ0HGpyqwdFK8GmGznyu5qjP5HwV9pPq gZQScqSy4tZEeza4TFMi83CoXSg9uJ7GlYJqqQMKm78LGEPomnZtXXC7oWvTA9M5 M/jAvzytmvZloSCXV6kK7jzSejMHhag97J/BjTYhZYQpJ9T+hNC87XO6J6COsKr9 lPIYqkFrIkQNr6B0U11AQfFejRYP1ics2fnbnZL86G/zZAc6x8EveM3KgSer2iHl KbrO+xcYyGY8Ef9P2F72HhEGFfM3WslpT1yzqR3sm4Y+fuMG0oW3qOQuMJx0ZhxT AloterY0uo6gJwI0P9k/K4klWgz81Tf/zLb0eBAtY2uJV9Fo3YhPHuZC7jGPGAy3 JusW2yNYqc8erHVEMAKDUsl/1KN4TE2uKlkZy98wno+KOoMufK5MA2e2kPPqXvUi Jk9RvFolnWUsexaPmCftti0OCv3YFiviVAJ/t0pchfmvvJA2da0VC9hzmEXpLJVF 25nBTV/1uAOrWvOpCyo3ElrC2CkQVkFmK5rXMDdvf6ib0Nid4vFcCkCSLVfu+ePB 11mi7QYro+CcnOug1K+yKogUDmsZgV/u1kUwgQzTIpZ05Kkb49gUiXw9L2RGcBJh yoDoiI66KPR7PWQ2qBdQoXug4zfEEtWG0O9HNLB0FFRC3hu7I+HHyiUkBWs9jasK PA5+V7HcQRk= =Wp7f -----END PGP SIGNATURE----- Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull SMP cross-CPU function-call updates from Ingo Molnar: - Remove diagnostics and adjust config for CSD lock diagnostics - Add a generic IPI-sending tracepoint, as currently there's no easy way to instrument IPI origins: it's arch dependent and for some major architectures it's not even consistently available. * tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: trace,smp: Trace all smp_function_call*() invocations trace: Add trace_ipi_send_cpu() sched, smp: Trace smp callback causing an IPI smp: reword smp call IPI comment treewide: Trace IPIs sent via smp_send_reschedule() irq_work: Trace self-IPIs sent via arch_irq_work_raise() smp: Trace IPIs sent via arch_send_call_function_ipi_mask() sched, smp: Trace IPIs sent via send_call_function_single_ipi() trace: Add trace_ipi_send_cpumask() kernel/smp: Make csdlock_debug= resettable locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging locking/csd_lock: Remove added data from CSD lock debugging locking/csd_lock: Add Kconfig option for csd_debug default |
||
![]() |
2aff7c706c |
Objtool changes for v6.4:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures & drivers that did this inconsistently follow this new, common convention, and fix all the fallout that objtool can now detect statically. - Fix/improve the ORC unwinder becoming unreliable due to UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK and UNWIND_HINT_UNDEFINED to resolve it. - Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code. - Generate ORC data for __pfx code - Add more __noreturn annotations to various kernel startup/shutdown/panic functions. - Misc improvements & fixes. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK1x0RHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1ghxQ/+IkCynMYtdF5OG9YwbcGJqsPSfOPMEcEM pUSFYg+gGPBDT/fJfcVSqvUtdnWbLC2kXt9yiswXz3X3J2nmNkBk5YKQftsNDcul TmKeqIIAK51XTncpegKH0EGnOX63oZ9Vxa8CTPdDlb+YF23Km2FoudGRI9F5qbUd LoraXqGYeiaeySkGyWmZVl6Uc8dIxnMkTN3H/oI9aB6TOrsi059hAtFcSaFfyemP c4LqXXCH7k2baiQt+qaLZ8cuZVG/+K5r2N2cmjO5kmJc6ynIaFnfMe4XxZLjp5LT /PulYI15bXkvSARKx5CRh/CDHMOx5Blw+ASO0RhWbdy0WH4ZhhcaVF5AeIpPW86a 1LBcz97rMp72WmvKgrJeVO1r9+ll4SI6/YKGJRsxsCMdP3hgFpqntXyVjTFNdTM1 0gH6H5v55x06vJHvhtTk8SR3PfMTEM2fRU5jXEOrGowoGifx+wNUwORiwj6LE3KQ SKUdT19RNzoW3VkFxhgk65ThK1S7YsJUKRoac3YdhttpqqqtFV//erenrZoR4k/p vzvKy68EQ7RCNyD5wNWNFe0YjeJl5G8gQ8bUm4Xmab7djjgz+pn4WpQB8yYKJLAo x9dqQ+6eUbw3Hcgk6qQ9E+r/svbulnAL0AeALAWK/91DwnZ2mCzKroFkLN7napKi fRho4CqzrtM= =NwEV -----END PGP SIGNATURE----- Merge tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull objtool updates from Ingo Molnar: - Mark arch_cpu_idle_dead() __noreturn, make all architectures & drivers that did this inconsistently follow this new, common convention, and fix all the fallout that objtool can now detect statically - Fix/improve the ORC unwinder becoming unreliable due to UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK and UNWIND_HINT_UNDEFINED to resolve it - Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code - Generate ORC data for __pfx code - Add more __noreturn annotations to various kernel startup/shutdown and panic functions - Misc improvements & fixes * tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits) x86/hyperv: Mark hv_ghcb_terminate() as noreturn scsi: message: fusion: Mark mpt_halt_firmware() __noreturn x86/cpu: Mark {hlt,resume}_play_dead() __noreturn btrfs: Mark btrfs_assertfail() __noreturn objtool: Include weak functions in global_noreturns check cpu: Mark nmi_panic_self_stop() __noreturn cpu: Mark panic_smp_self_stop() __noreturn arm64/cpu: Mark cpu_park_loop() and friends __noreturn x86/head: Mark *_start_kernel() __noreturn init: Mark start_kernel() __noreturn init: Mark [arch_call_]rest_init() __noreturn objtool: Generate ORC data for __pfx code x86/linkage: Fix padding for typed functions objtool: Separate prefix code from stack validation code objtool: Remove superfluous dead_end_function() check objtool: Add symbol iteration helpers objtool: Add WARN_INSN() scripts/objdump-func: Support multiple functions context_tracking: Fix KCSAN noinstr violation objtool: Add stackleak instrumentation to uaccess safe list ... |
||
![]() |
b6a7828502 |
modules-6.4-rc1
The summary of the changes for this pull requests is: * Song Liu's new struct module_memory replacement * Nick Alcock's MODULE_LICENSE() removal for non-modules * My cleanups and enhancements to reduce the areas where we vmalloc module memory for duplicates, and the respective debug code which proves the remaining vmalloc pressure comes from userspace. Most of the changes have been in linux-next for quite some time except the minor fixes I made to check if a module was already loaded prior to allocating the final module memory with vmalloc and the respective debug code it introduces to help clarify the issue. Although the functional change is small it is rather safe as it can only *help* reduce vmalloc space for duplicates and is confirmed to fix a bootup issue with over 400 CPUs with KASAN enabled. I don't expect stable kernels to pick up that fix as the cleanups would have also had to have been picked up. Folks on larger CPU systems with modules will want to just upgrade if vmalloc space has been an issue on bootup. Given the size of this request, here's some more elaborate details on this pull request. The functional change change in this pull request is the very first patch from Song Liu which replaces the struct module_layout with a new struct module memory. The old data structure tried to put together all types of supported module memory types in one data structure, the new one abstracts the differences in memory types in a module to allow each one to provide their own set of details. This paves the way in the future so we can deal with them in a cleaner way. If you look at changes they also provide a nice cleanup of how we handle these different memory areas in a module. This change has been in linux-next since before the merge window opened for v6.3 so to provide more than a full kernel cycle of testing. It's a good thing as quite a bit of fixes have been found for it. Jason Baron then made dynamic debug a first class citizen module user by using module notifier callbacks to allocate / remove module specific dynamic debug information. Nick Alcock has done quite a bit of work cross-tree to remove module license tags from things which cannot possibly be module at my request so to: a) help him with his longer term tooling goals which require a deterministic evaluation if a piece a symbol code could ever be part of a module or not. But quite recently it is has been made clear that tooling is not the only one that would benefit. Disambiguating symbols also helps efforts such as live patching, kprobes and BPF, but for other reasons and R&D on this area is active with no clear solution in sight. b) help us inch closer to the now generally accepted long term goal of automating all the MODULE_LICENSE() tags from SPDX license tags In so far as a) is concerned, although module license tags are a no-op for non-modules, tools which would want create a mapping of possible modules can only rely on the module license tag after the commit |
||
![]() |
556eb8b791 |
Driver core changes for 6.4-rc1
Here is the large set of driver core changes for 6.4-rc1. Once again, a busy development cycle, with lots of changes happening in the driver core in the quest to be able to move "struct bus" and "struct class" into read-only memory, a task now complete with these changes. This will make the future rust interactions with the driver core more "provably correct" as well as providing more obvious lifetime rules for all busses and classes in the kernel. The changes required for this did touch many individual classes and busses as many callbacks were changed to take const * parameters instead. All of these changes have been submitted to the various subsystem maintainers, giving them plenty of time to review, and most of them actually did so. Other than those changes, included in here are a small set of other things: - kobject logging improvements - cacheinfo improvements and updates - obligatory fw_devlink updates and fixes - documentation updates - device property cleanups and const * changes - firwmare loader dependency fixes. All of these have been in linux-next for a while with no reported problems. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5 LEGadNS38k5fs+73UaxV =7K4B -----END PGP SIGNATURE----- Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is the large set of driver core changes for 6.4-rc1. Once again, a busy development cycle, with lots of changes happening in the driver core in the quest to be able to move "struct bus" and "struct class" into read-only memory, a task now complete with these changes. This will make the future rust interactions with the driver core more "provably correct" as well as providing more obvious lifetime rules for all busses and classes in the kernel. The changes required for this did touch many individual classes and busses as many callbacks were changed to take const * parameters instead. All of these changes have been submitted to the various subsystem maintainers, giving them plenty of time to review, and most of them actually did so. Other than those changes, included in here are a small set of other things: - kobject logging improvements - cacheinfo improvements and updates - obligatory fw_devlink updates and fixes - documentation updates - device property cleanups and const * changes - firwmare loader dependency fixes. All of these have been in linux-next for a while with no reported problems" * tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits) device property: make device_property functions take const device * driver core: update comments in device_rename() driver core: Don't require dynamic_debug for initcall_debug probe timing firmware_loader: rework crypto dependencies firmware_loader: Strip off \n from customized path zram: fix up permission for the hot_add sysfs file cacheinfo: Add use_arch[|_cache]_info field/function arch_topology: Remove early cacheinfo error message if -ENOENT cacheinfo: Check cache properties are present in DT cacheinfo: Check sib_leaf in cache_leaves_are_shared() cacheinfo: Allow early level detection when DT/ACPI info is missing/broken cacheinfo: Add arm64 early level initializer implementation cacheinfo: Add arch specific early level initializer tty: make tty_class a static const structure driver core: class: remove struct class_interface * from callbacks driver core: class: mark the struct class in struct class_interface constant driver core: class: make class_register() take a const * driver core: class: mark class_release() as taking a const * driver core: remove incorrect comment for device_create* MIPS: vpe-cmp: remove module owner pointer from struct class usage. ... |
||
![]() |
45dd403da8 |
efi/zboot: arm64: Inject kernel code size symbol into the zboot payload
The EFI zboot code is not built as part of the kernel proper, like the ordinary EFI stub, but still needs access to symbols that are defined only internally in the kernel, and are left unexposed deliberately to avoid creating ABI inadvertently that we're stuck with later. So capture the kernel code size of the kernel image, and inject it as an ELF symbol into the object that contains the compressed payload, where it will be accessible to zboot code that needs it. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> |
||
![]() |
4e8f6e44bc |
arm64: Fix label placement in record_mmu_state()
Fix label so that pre_disable_mmu_workaround() is called
before clearing sctlr_el1.M.
Fixes:
|
||
![]() |
df45da57cb |
arm64 updates for 6.4
ACPI: * Improve error reporting when failing to manage SDEI on AGDI device removal Assembly routines: * Improve register constraints so that the compiler can make use of the zero register instead of moving an immediate #0 into a GPR * Allow the compiler to allocate the registers used for CAS instructions CPU features and system registers: * Cleanups to the way in which CPU features are identified from the ID register fields * Extend system register definition generation to handle Enum types when defining shared register fields * Generate definitions for new _EL2 registers and add new fields for ID_AA64PFR1_EL1 * Allow SVE to be disabled separately from SME on the kernel command-line Tracing: * Support for "direct calls" in ftrace, which enables BPF tracing for arm64 Kdump: * Don't bother unmapping the crashkernel from the linear mapping, which then allows us to use huge (block) mappings and reduce TLB pressure when a crashkernel is loaded. Memory management: * Try again to remove data cache invalidation from the coherent DMA allocation path * Simplify the fixmap code by mapping at page granularity * Allow the kfence pool to be allocated early, preventing the rest of the linear mapping from being forced to page granularity Perf and PMU: * Move CPU PMU code out to drivers/perf/ where it can be reused by the 32-bit ARM architecture when running on ARMv8 CPUs * Fix race between CPU PMU probing and pKVM host de-privilege * Add support for Apple M2 CPU PMU * Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event dynamically, depending on what the CPU actually supports * Minor fixes and cleanups to system PMU drivers Stack tracing: * Use the XPACLRI instruction to strip PAC from pointers, rather than rolling our own function in C * Remove redundant PAC removal for toolchains that handle this in their builtins * Make backtracing more resilient in the face of instrumentation Miscellaneous: * Fix single-step with KGDB * Remove harmless warning when 'nokaslr' is passed on the kernel command-line * Minor fixes and cleanups across the board -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmRChcwQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNCgBCADFvkYY9ESztSnd3EpiMbbAzgRCQBiA5H7U F2Wc+hIWgeAeUEttSH22+F16r6Jb0gbaDvsuhtN2W/rwQhKNbCU0MaUME05MPmg2 AOp+RZb2vdT5i5S5dC6ZM6G3T6u9O78LBWv2JWBdd6RIybamEn+RL00ep2WAduH7 n1FgTbsKgnbScD2qd4K1ejZ1W/BQMwYulkNpyTsmCIijXM12lkzFlxWnMtky3uhR POpawcIZzXvWI02QAX+SIdynGChQV3VP+dh9GuFbt7ASigDEhgunvfUYhZNSaqf4 +/q0O8toCtmQJBUhF0DEDSB5T8SOz5v9CKxKuwfaX6Trq0ixFQpZ =78L9 -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "ACPI: - Improve error reporting when failing to manage SDEI on AGDI device removal Assembly routines: - Improve register constraints so that the compiler can make use of the zero register instead of moving an immediate #0 into a GPR - Allow the compiler to allocate the registers used for CAS instructions CPU features and system registers: - Cleanups to the way in which CPU features are identified from the ID register fields - Extend system register definition generation to handle Enum types when defining shared register fields - Generate definitions for new _EL2 registers and add new fields for ID_AA64PFR1_EL1 - Allow SVE to be disabled separately from SME on the kernel command-line Tracing: - Support for "direct calls" in ftrace, which enables BPF tracing for arm64 Kdump: - Don't bother unmapping the crashkernel from the linear mapping, which then allows us to use huge (block) mappings and reduce TLB pressure when a crashkernel is loaded. Memory management: - Try again to remove data cache invalidation from the coherent DMA allocation path - Simplify the fixmap code by mapping at page granularity - Allow the kfence pool to be allocated early, preventing the rest of the linear mapping from being forced to page granularity Perf and PMU: - Move CPU PMU code out to drivers/perf/ where it can be reused by the 32-bit ARM architecture when running on ARMv8 CPUs - Fix race between CPU PMU probing and pKVM host de-privilege - Add support for Apple M2 CPU PMU - Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event dynamically, depending on what the CPU actually supports - Minor fixes and cleanups to system PMU drivers Stack tracing: - Use the XPACLRI instruction to strip PAC from pointers, rather than rolling our own function in C - Remove redundant PAC removal for toolchains that handle this in their builtins - Make backtracing more resilient in the face of instrumentation Miscellaneous: - Fix single-step with KGDB - Remove harmless warning when 'nokaslr' is passed on the kernel command-line - Minor fixes and cleanups across the board" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits) KVM: arm64: Ensure CPU PMU probes before pKVM host de-privilege arm64: kexec: include reboot.h arm64: delete dead code in this_cpu_set_vectors() arm64/cpufeature: Use helper macro to specify ID register for capabilites drivers/perf: hisi: add NULL check for name drivers/perf: hisi: Remove redundant initialized of pmu->name arm64/cpufeature: Consistently use symbolic constants for min_field_value arm64/cpufeature: Pull out helper for CPUID register definitions arm64/sysreg: Convert HFGITR_EL2 to automatic generation ACPI: AGDI: Improve error reporting for problems during .remove() arm64: kernel: Fix kernel warning when nokaslr is passed to commandline perf/arm-cmn: Fix port detection for CMN-700 arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step arm64: move PAC masks to <asm/pointer_auth.h> arm64: use XPACLRI to strip PAC arm64: avoid redundant PAC stripping in __builtin_return_address() arm64/sme: Fix some comments of ARM SME arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2() arm64/signal: Use system_supports_tpidr2() to check TPIDR2 arm64/idreg: Don't disable SME when disabling SVE ... |
||
![]() |
e7989789c6 |
Timers and timekeeping updates:
- Improve the VDSO build time checks to cover all dynamic relocations VDSO does not allow dynamic relcations, but the build time check is incomplete and fragile. It's based on architectures specifying the relocation types to search for and does not handle R_*_NONE relocation entries correctly. R_*_NONE relocations are injected by some GNU ld variants if they fail to determine the exact .rel[a]/dyn_size to cover trailing zeros. R_*_NONE relocations must be ignored by dynamic loaders, so they should be ignored in the build time check too. Remove the architecture specific relocation types to check for and validate strictly that no other relocations than R_*_NONE end up in the VSDO .so file. - Prefer signal delivery to the current thread for CLOCK_PROCESS_CPUTIME_ID based posix-timers Such timers prefer to deliver the signal to the main thread of a process even if the context in which the timer expires is the current task. This has the downside that it might wake up an idle thread. As there is no requirement or guarantee that the signal has to be delivered to the main thread, avoid this by preferring the current task if it is part of the thread group which shares sighand. This not only avoids waking idle threads, it also distributes the signal delivery in case of multiple timers firing in the context of different threads close to each other better. - Align the tick period properly (again) For a long time the tick was starting at CLOCK_MONOTONIC zero, which allowed users space applications to either align with the tick or to place a periodic computation so that it does not interfere with the tick. The alignement of the tick period was more by chance than by intention as the tick is set up before a high resolution clocksource is installed, i.e. timekeeping is still tick based and the tick period advances from there. The early enablement of sched_clock() broke this alignement as the time accumulated by sched_clock() is taken into account when timekeeping is initialized. So the base value now(CLOCK_MONOTONIC) is not longer a multiple of tick periods, which breaks applications which relied on that behaviour. Cure this by aligning the tick starting point to the next multiple of tick periods, i.e 1000ms/CONFIG_HZ. - A set of NOHZ fixes and enhancements - Cure the concurrent writer race for idle and IO sleeptime statistics The statitic values which are exposed via /proc/stat are updated from the CPU local idle exit and remotely by cpufreq, but that happens without any form of serialization. As a consequence sleeptimes can be accounted twice or worse. Prevent this by restricting the accumulation writeback to the CPU local idle exit and let the remote access compute the accumulated value. - Protect idle/iowait sleep time with a sequence count Reading idle/iowait sleep time, e.g. from /proc/stat, can race with idle exit updates. As a consequence the readout may result in random and potentially going backwards values. Protect this by a sequence count, which fixes the idle time statistics issue, but cannot fix the iowait time problem because iowait time accounting races with remote wake ups decrementing the remote runqueues nr_iowait counter. The latter is impossible to fix, so the only way to deal with that is to document it properly and to remove the assertion in the selftest which triggers occasionally due to that. - Restructure struct tick_sched for better cache layout - Some small cleanups and a better cache layout for struct tick_sched - Implement the missing timer_wait_running() callback for POSIX CPU timers For unknown reason the introduction of the timer_wait_running() callback missed to fixup posix CPU timers, which went unnoticed for almost four years. While initially only targeted to prevent livelocks between a timer deletion and the timer expiry function on PREEMPT_RT enabled kernels, it turned out that fixing this for mainline is not as trivial as just implementing a stub similar to the hrtimer/timer callbacks. The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled systems there is a livelock issue independent of RT. CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU timers out from hard interrupt context to task work, which is handled before returning to user space or to a VM. The expiry mechanism moves the expired timers to a stack local list head with sighand lock held. Once sighand is dropped the task can be preempted and a task which wants to delete a timer will spin-wait until the expiry task is scheduled back in. In the worst case this will end up in a livelock when the preempting task and the expiry task are pinned on the same CPU. The timer wheel has a timer_wait_running() mechanism for RT, which uses a per CPU timer-base expiry lock which is held by the expiry code and the task waiting for the timer function to complete blocks on that lock. This does not work in the same way for posix CPU timers as there is no timer base and expiry for process wide timers can run on any task belonging to that process, but the concept of waiting on an expiry lock can be used too in a slightly different way. Add a per task mutex to struct posix_cputimers_work, let the expiry task hold it accross the expiry function and let the deleting task which waits for the expiry to complete block on the mutex. In the non-contended case this results in an extra mutex_lock()/unlock() pair on both sides. This avoids spin-waiting on a task which is scheduled out, prevents the livelock and cures the problem for RT and !RT systems. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmRGrj4THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoZhdEAC/lwfDWCnTXHC8ExQQRDIVNyXmDlLb EHB8ZY7Wc4gNZ8UEXEOLOXJHMG9bsbtPGctVewJwRGnXZWKVhpPwQba6kCRycyX0 0J6l5DlvUaGGrpoOzOZwgETRmtIZE9tEArZR8xlfRScYd93a7yLhwIjO8JaV9vKs IQpAQMeJ/ysp6gHrS59qakYfoHU/ERUAu3Tk4GqHUtPtcyz3nX3eTlLWV8LySqs+ 00qr2yc0bQFUFoKzTCxtM8lcEi9ja9SOj1rw28348O+BXE4d0HC12Ie7eU/CDN2Y OAlWYxVjy4LMh24LDrRQKTzoVqx9MXDx2g+09B3t8NK5LgeS+EJIjujDhZF147/H 5y906nplZUKa8BiZW5Rpm/HKH8tFI80T9XWSQCRBeMgTEJyRyRU1yASAwO4xw+dY Dn3tGmFGymcV/72o4ic9JFKQd8cTSxPjEJS3qqzMkEAtyI/zPBmKxj/Tce50OH40 6FSZq1uU21ZQzszwSHISwgFtNr75laUSK4Z1te5OhPOOz+C7O9YqHvqS/1jwhPj2 tMd8X17fRW3UTUBlBj+zqxqiEGBl/Yk2AvKrJIXGUtfWYCtjMJ7ieCf0kZ7NSVJx 9ewubA0gqseMD783YomZsy8LLtMKnhclJeslUOVb1oKs1q/WF1R/k6qjy9vUwYaB nIJuHl8mxSetag== =SVnj -----END PGP SIGNATURE----- Merge tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timers and timekeeping updates from Thomas Gleixner: - Improve the VDSO build time checks to cover all dynamic relocations VDSO does not allow dynamic relocations, but the build time check is incomplete and fragile. It's based on architectures specifying the relocation types to search for and does not handle R_*_NONE relocation entries correctly. R_*_NONE relocations are injected by some GNU ld variants if they fail to determine the exact .rel[a]/dyn_size to cover trailing zeros. R_*_NONE relocations must be ignored by dynamic loaders, so they should be ignored in the build time check too. Remove the architecture specific relocation types to check for and validate strictly that no other relocations than R_*_NONE end up in the VSDO .so file. - Prefer signal delivery to the current thread for CLOCK_PROCESS_CPUTIME_ID based posix-timers Such timers prefer to deliver the signal to the main thread of a process even if the context in which the timer expires is the current task. This has the downside that it might wake up an idle thread. As there is no requirement or guarantee that the signal has to be delivered to the main thread, avoid this by preferring the current task if it is part of the thread group which shares sighand. This not only avoids waking idle threads, it also distributes the signal delivery in case of multiple timers firing in the context of different threads close to each other better. - Align the tick period properly (again) For a long time the tick was starting at CLOCK_MONOTONIC zero, which allowed users space applications to either align with the tick or to place a periodic computation so that it does not interfere with the tick. The alignement of the tick period was more by chance than by intention as the tick is set up before a high resolution clocksource is installed, i.e. timekeeping is still tick based and the tick period advances from there. The early enablement of sched_clock() broke this alignement as the time accumulated by sched_clock() is taken into account when timekeeping is initialized. So the base value now(CLOCK_MONOTONIC) is not longer a multiple of tick periods, which breaks applications which relied on that behaviour. Cure this by aligning the tick starting point to the next multiple of tick periods, i.e 1000ms/CONFIG_HZ. - A set of NOHZ fixes and enhancements: * Cure the concurrent writer race for idle and IO sleeptime statistics The statitic values which are exposed via /proc/stat are updated from the CPU local idle exit and remotely by cpufreq, but that happens without any form of serialization. As a consequence sleeptimes can be accounted twice or worse. Prevent this by restricting the accumulation writeback to the CPU local idle exit and let the remote access compute the accumulated value. * Protect idle/iowait sleep time with a sequence count Reading idle/iowait sleep time, e.g. from /proc/stat, can race with idle exit updates. As a consequence the readout may result in random and potentially going backwards values. Protect this by a sequence count, which fixes the idle time statistics issue, but cannot fix the iowait time problem because iowait time accounting races with remote wake ups decrementing the remote runqueues nr_iowait counter. The latter is impossible to fix, so the only way to deal with that is to document it properly and to remove the assertion in the selftest which triggers occasionally due to that. * Restructure struct tick_sched for better cache layout * Some small cleanups and a better cache layout for struct tick_sched - Implement the missing timer_wait_running() callback for POSIX CPU timers For unknown reason the introduction of the timer_wait_running() callback missed to fixup posix CPU timers, which went unnoticed for almost four years. While initially only targeted to prevent livelocks between a timer deletion and the timer expiry function on PREEMPT_RT enabled kernels, it turned out that fixing this for mainline is not as trivial as just implementing a stub similar to the hrtimer/timer callbacks. The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled systems there is a livelock issue independent of RT. CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU timers out from hard interrupt context to task work, which is handled before returning to user space or to a VM. The expiry mechanism moves the expired timers to a stack local list head with sighand lock held. Once sighand is dropped the task can be preempted and a task which wants to delete a timer will spin-wait until the expiry task is scheduled back in. In the worst case this will end up in a livelock when the preempting task and the expiry task are pinned on the same CPU. The timer wheel has a timer_wait_running() mechanism for RT, which uses a per CPU timer-base expiry lock which is held by the expiry code and the task waiting for the timer function to complete blocks on that lock. This does not work in the same way for posix CPU timers as there is no timer base and expiry for process wide timers can run on any task belonging to that process, but the concept of waiting on an expiry lock can be used too in a slightly different way. Add a per task mutex to struct posix_cputimers_work, let the expiry task hold it accross the expiry function and let the deleting task which waits for the expiry to complete block on the mutex. In the non-contended case this results in an extra mutex_lock()/unlock() pair on both sides. This avoids spin-waiting on a task which is scheduled out, prevents the livelock and cures the problem for RT and !RT systems * tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: posix-cpu-timers: Implement the missing timer_wait_running callback selftests/proc: Assert clock_gettime(CLOCK_BOOTTIME) VS /proc/uptime monotonicity selftests/proc: Remove idle time monotonicity assertions MAINTAINERS: Remove stale email address timers/nohz: Remove middle-function __tick_nohz_idle_stop_tick() timers/nohz: Add a comment about broken iowait counter update race timers/nohz: Protect idle/iowait sleep time under seqcount timers/nohz: Only ever update sleeptime from idle exit timers/nohz: Restructure and reshuffle struct tick_sched tick/common: Align tick period with the HZ tick. selftests/timers/posix_timers: Test delivery of signals across threads posix-timers: Prefer delivery of signals to the current thread vdso: Improve cmd_vdso_check to check all dynamic relocations |
||
![]() |
b22498c484 |
Merge branch kvm-arm64/timer-vm-offsets into kvmarm-master/next
* kvm-arm64/timer-vm-offsets: (21 commits) : . : This series aims at satisfying multiple goals: : : - allow a VMM to atomically restore a timer offset for a whole VM : instead of updating the offset each time a vcpu get its counter : written : : - allow a VMM to save/restore the physical timer context, something : that we cannot do at the moment due to the lack of offsetting : : - provide a framework that is suitable for NV support, where we get : both global and per timer, per vcpu offsetting, and manage : interrupts in a less braindead way. : : Conflict resolution involves using the new per-vcpu config lock instead : of the home-grown timer lock. : . KVM: arm64: Handle 32bit CNTPCTSS traps KVM: arm64: selftests: Augment existing timer test to handle variable offset KVM: arm64: selftests: Deal with spurious timer interrupts KVM: arm64: selftests: Add physical timer registers to the sysreg list KVM: arm64: nv: timers: Support hyp timer emulation KVM: arm64: nv: timers: Add a per-timer, per-vcpu offset KVM: arm64: Document KVM_ARM_SET_CNT_OFFSETS and co KVM: arm64: timers: Abstract the number of valid timers per vcpu KVM: arm64: timers: Fast-track CNTPCT_EL0 trap handling KVM: arm64: Elide kern_hyp_va() in VHE-specific parts of the hypervisor KVM: arm64: timers: Move the timer IRQs into arch_timer_vm_data KVM: arm64: timers: Abstract per-timer IRQ access KVM: arm64: timers: Rationalise per-vcpu timer init KVM: arm64: timers: Allow save/restoring of the physical timer KVM: arm64: timers: Allow userspace to set the global counter offset KVM: arm64: Expose {un,}lock_all_vcpus() to the rest of KVM KVM: arm64: timers: Allow physical offset without CNTPOFF_EL2 KVM: arm64: timers: Use CNTPOFF_EL2 to offset the physical timer arm64: Add HAS_ECV_CNTPOFF capability arm64: Add CNTPOFF_EL2 register definition ... Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
eeb3557cc1 |
Merge branch 'for-next/sysreg' into for-next/core
* for-next/sysreg: arm64/sysreg: Convert HFGITR_EL2 to automatic generation arm64/idreg: Don't disable SME when disabling SVE arm64/sysreg: Update ID_AA64PFR1_EL1 for DDI0601 2022-12 arm64/sysreg: Convert HFG[RW]TR_EL2 to automatic generation arm64/sysreg: allow *Enum blocks in SysregFields blocks |
||
![]() |
9772b7f074 |
Merge branch 'for-next/stacktrace' into for-next/core
* for-next/stacktrace: arm64: move PAC masks to <asm/pointer_auth.h> arm64: use XPACLRI to strip PAC arm64: avoid redundant PAC stripping in __builtin_return_address() arm64: stacktrace: always inline core stacktrace functions arm64: stacktrace: move dump functions to end of file arm64: stacktrace: recover return address for first entry |
||
![]() |
9651f00eb4 |
Merge branch 'for-next/perf' into for-next/core
* for-next/perf: (24 commits) KVM: arm64: Ensure CPU PMU probes before pKVM host de-privilege drivers/perf: hisi: add NULL check for name drivers/perf: hisi: Remove redundant initialized of pmu->name perf/arm-cmn: Fix port detection for CMN-700 arm64: pmuv3: dynamically map PERF_COUNT_HW_BRANCH_INSTRUCTIONS perf/arm-cmn: Validate cycles events fully Revert "ARM: mach-virt: Select PMUv3 driver by default" drivers/perf: apple_m1: Add Apple M2 support dt-bindings: arm-pmu: Add PMU compatible strings for Apple M2 cores perf: arm_cspmu: Fix variable dereference warning perf/amlogic: Fix config1/config2 parsing issue drivers/perf: Use devm_platform_get_and_ioremap_resource() kbuild, drivers/perf: remove MODULE_LICENSE in non-modules perf: qcom: Use devm_platform_get_and_ioremap_resource() perf: arm: Use devm_platform_get_and_ioremap_resource() perf/arm-cmn: Move overlapping wp_combine field ARM: mach-virt: Select PMUv3 driver by default ARM: perf: Allow the use of the PMUv3 driver on 32bit ARM ARM: Make CONFIG_CPU_V7 valid for 32bit ARMv8 implementations perf: pmuv3: Change GENMASK to GENMASK_ULL ... |
||
![]() |
8358098b97 |
arm64: efi: Enable BTI codegen and add PE/COFF annotation
UEFI heavily relies on so-called protocols, which are essentially tables populated with pointers to executable code, and these are invoked indirectly using BR or BLR instructions. This makes the EFI execution context vulnerable to attacks on forward edge control flow, and so it would help if we could enable hardware enforcement (BTI) on CPUs that implement it. So let's no longer disable BTI codegen for the EFI stub, and set the newly introduced PE/COFF header flag when the kernel is built with BTI landing pads. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org> |
||
![]() |
81444b77a4 |
Merge branch 'for-next/misc' into for-next/core
* for-next/misc: arm64: kexec: include reboot.h arm64: delete dead code in this_cpu_set_vectors() arm64: kernel: Fix kernel warning when nokaslr is passed to commandline arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step arm64/sme: Fix some comments of ARM SME arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2() arm64/signal: Use system_supports_tpidr2() to check TPIDR2 arm64: compat: Remove defines now in asm-generic arm64: kexec: remove unnecessary (void*) conversions arm64: armv8_deprecated: remove unnecessary (void*) conversions firmware: arm_sdei: Fix sleep from invalid context BUG |
||
![]() |
f8863bc8c1 |
Merge branch 'for-next/kdump' into for-next/core
* for-next/kdump: arm64: kdump: defer the crashkernel reservation for platforms with no DMA memory zones arm64: kdump: do not map crashkernel region specifically arm64: kdump : take off the protection on crashkernel memory region |
||
![]() |
ea88dc925c |
Merge branch 'for-next/ftrace' into for-next/core
* for-next/ftrace: arm64: ftrace: Simplify get_ftrace_plt arm64: ftrace: Add direct call support ftrace: selftest: remove broken trace_direct_tramp ftrace: Make DIRECT_CALLS work WITH_ARGS and !WITH_REGS ftrace: Store direct called addresses in their ops ftrace: Rename _ftrace_direct_multi APIs to _ftrace_direct APIs ftrace: Remove the legacy _ftrace_direct API ftrace: Replace uses of _ftrace_direct APIs with _ftrace_direct_multi ftrace: Let unregister_ftrace_direct_multi() call ftrace_free_filter() |
||
![]() |
b7b4ce84c8 |
arm64: kexec: include reboot.h
Include reboot.h in machine_kexec.c for declaration of machine_crash_shutdown. gcc-12 with W=1 reports: arch/arm64/kernel/machine_kexec.c:257:6: warning: no previous prototype for 'machine_crash_shutdown' [-Wmissing-prototypes] 257 | void machine_crash_shutdown(struct pt_regs *regs) No functional changes intended. Compile tested only. Signed-off-by: Simon Horman <horms@kernel.org> Link: https://lore.kernel.org/r/20230418-arm64-kexec-include-reboot-v1-1-8453fd4fb3fb@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
460e70e2dc |
arm64: delete dead code in this_cpu_set_vectors()
The "slot" variable is an enum, and in this context it is an unsigned int. So the type means it can never be negative and also we never pass invalid data to this function. If something did pass invalid data then this check would be insufficient protection. Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/73859c9e-dea0-4764-bf01-7ae694fa2e37@kili.mountain Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
a7b3a470fd |
cacheinfo and arch_topology updates for v6.4
The cache information can be extracted from either a Device Tree(DT), the PPTT ACPI table, or arch registers (clidr_el1 for arm64). When the DT is used but no cache properties are advertised, the current code doesn't correctly fallback to using arch information. The changes fixes the same and also assuse the that L1 data/instruction caches are private and L2/higher caches are shared when the cache information is missing in DT/ACPI and is derived form clidr_el1/arch registers. Currently the cacheinfo is built from the primary CPU prior to secondary CPUs boot, if the DT/ACPI description contains cache information. However, if not present, it still reverts to the old behavior, which allocates the cacheinfo memory on each secondary CPUs which causes RT kernels to triggers a "BUG: sleeping function called from invalid context". The changes here attempts to enable automatic detection for RT kernels when no DT/ACPI cache information is available, by pre-allocating cacheinfo memory on the primary CPU. -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEunHlEgbzHrJD3ZPhAEG6vDF+4pgFAmQ9bmEACgkQAEG6vDF+ 4pggDhAAo75vFky/U63PV9x4IMvVTkNGIK/DSihvG+s5GsujiSS78f4tSSpLAY1X yWTEYsU+1q03cE8rv0Xmkw+cxLerjOGisvPZCdnKVljUF5TWez6OlwKw5V1QqWk9 faOmWBSb8fH4X0ys73e0SBsF3bzyJB/cORmbOL8OnCE7rGkyMQ0plhYVOBQ3CoV8 KMrw7rnPlc5Aoq/8LgTY+Gojqf82njacCIQPrn1TjS/V0SdobC8xm7ZoepZgG9Q1 MHzBtTmKzGrVxWawxcfTaE89t2rudAafa3noYr4xy+dI8ptSkTQNKCG9pvTxIcFo KXKfBO6+hTWNREf7a4ginKdKcIKDD7Oo2oTnPBYr9O9/2r727c5Wa5FEGsXa4c14 0dN3vFbhwWIDc5sA7eBOCDYycJm6XyTGJ6iPR+fmaWKwgXhIM2WxakeO8aptuwhn sV+XO7IJxSF79GrrAkSN6AtVj6NHvNpzwRx9mBwHkT3ajDGb04P23AOuqoNDt7kh wcz217ng3hG4CDEbOk9JCQqtFhJeSuIWP5T3wofUfYeXy2opQhwzmiOL+NVROuGY h/cwQCcXCEYUohJhln2PvbMS7w0bBNserpetzEFJfc5aLLdocaH3aQ/AFnCXmCdN YPXP6bp0WdbmfcMskVY8vlb/TBlcOzu6+W0qB1dXTWuib7cwm3o= =4hhJ -----END PGP SIGNATURE----- Merge tag 'cacheinfo-updates-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux into driver-core-next Sudeep writes: cacheinfo and arch_topology updates for v6.4 The cache information can be extracted from either a Device Tree(DT), the PPTT ACPI table, or arch registers (clidr_el1 for arm64). When the DT is used but no cache properties are advertised, the current code doesn't correctly fallback to using arch information. The changes fixes the same and also assuse the that L1 data/instruction caches are private and L2/higher caches are shared when the cache information is missing in DT/ACPI and is derived form clidr_el1/arch registers. Currently the cacheinfo is built from the primary CPU prior to secondary CPUs boot, if the DT/ACPI description contains cache information. However, if not present, it still reverts to the old behavior, which allocates the cacheinfo memory on each secondary CPUs which causes RT kernels to triggers a "BUG: sleeping function called from invalid context". The changes here attempts to enable automatic detection for RT kernels when no DT/ACPI cache information is available, by pre-allocating cacheinfo memory on the primary CPU. * tag 'cacheinfo-updates-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep.holla/linux: cacheinfo: Add use_arch[|_cache]_info field/function arch_topology: Remove early cacheinfo error message if -ENOENT cacheinfo: Check cache properties are present in DT cacheinfo: Check sib_leaf in cache_leaves_are_shared() cacheinfo: Allow early level detection when DT/ACPI info is missing/broken cacheinfo: Add arm64 early level initializer implementation cacheinfo: Add arch specific early level initializer |
||
![]() |
863da0bdb1 |
arm64/cpufeature: Use helper macro to specify ID register for capabilites
When defining which value to look for in a system register field we currently manually specify the register, field shift, width and sign and the value to look for. This opens the potential for error with for example the wrong field width or sign being specified, an enumeration value for a different similarly named field or letting something be initialised to 0. Since we now generate defines for all the ID registers we now have named constants for all of these things generated from the system register description, meaning that we can generate initialisation for all the fields used in matching from a minimal specification of register, field and match value. This is both shorter and eliminates or makes build failures several potential errors. No change in the generated binary. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230303-arm64-cpufeature-helpers-v2-3-4c8f28a6f203@kernel.org [will: Drop explicit '.sign' assignment for BTI feature] Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
21642da214 |
arm64/cpufeature: Consistently use symbolic constants for min_field_value
A number of the cpufeatures use raw numbers for the minimum field values specified rather than symbolic constants. In preparation for the use of helper macros replace all these with the appropriate constants. No change in the generated binary. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230303-arm64-cpufeature-helpers-v2-2-4c8f28a6f203@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
876e3c8efe |
arm64/cpufeature: Pull out helper for CPUID register definitions
We use the same structure to match hwcaps and CPU features so we can use the same helper to generate the fields required. Pull the portion of the current hwcaps helper that initialises the fields out into a separate define placed earlier in the file so we can use it for cpufeatures. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230303-arm64-cpufeature-helpers-v2-1-4c8f28a6f203@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
7412a60dec |
cpu: Mark panic_smp_self_stop() __noreturn
In preparation for improving objtool's handling of weak noreturn functions, mark panic_smp_self_stop() __noreturn. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/92d76ab5c8bf660f04fdcd3da1084519212de248.1681342859.git.jpoimboe@kernel.org |
||
![]() |
5ab6876c78 |
arm64/cpu: Mark cpu_park_loop() and friends __noreturn
In preparation for marking panic_smp_self_stop() __noreturn across the kernel, first mark the arm64 implementation of cpu_park_loop() and related functions __noreturn. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/55787d3193ea3e295ccbb097abfab0a10ae49d45.1681342859.git.jpoimboe@kernel.org |
||
![]() |
a2a83eb40f |
arm64: kernel: Fix kernel warning when nokaslr is passed to commandline
'Unknown kernel command line parameters "nokaslr", will be passed to user space' message is noticed in the dmesg when nokaslr is passed to the kernel commandline on ARM64 platform. This is because nokaslr param is handled by early cpufeature detection infrastructure and the parameter is never consumed by a kernel param handler. Fix this warning by providing a dummy kernel param handler for nokaslr. Signed-off-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com> Link: https://lore.kernel.org/r/20230412043258.397455-1-quic_pkondeti@quicinc.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
af6c0bd59f |
arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step
Currently only the first attempt to single-step has any effect. After
that all further stepping remains "stuck" at the same program counter
value.
Refer to the ARM Architecture Reference Manual (ARM DDI 0487E.a) D2.12,
PSTATE.SS=1 should be set at each step before transferring the PE to the
'Active-not-pending' state. The problem here is PSTATE.SS=1 is not set
since the second single-step.
After the first single-step, the PE transferes to the 'Inactive' state,
with PSTATE.SS=0 and MDSCR.SS=1, thus PSTATE.SS won't be set to 1 due to
kernel_active_single_step()=true. Then the PE transferes to the
'Active-pending' state when ERET and returns to the debugger by step
exception.
Before this patch:
==================
Entering kdb (current=0xffff3376039f0000, pid 1) on processor 0 due to Keyboard Entry
[0]kdb>
[0]kdb>
[0]kdb> bp write_sysrq_trigger
Instruction(i) BP #0 at 0xffffa45c13d09290 (write_sysrq_trigger)
is enabled addr at ffffa45c13d09290, hardtype=0 installed=0
[0]kdb> go
$ echo h > /proc/sysrq-trigger
Entering kdb (current=0xffff4f7e453f8000, pid 175) on processor 1 due to Breakpoint @ 0xffffad651a309290
[1]kdb> ss
Entering kdb (current=0xffff4f7e453f8000, pid 175) on processor 1 due to SS trap @ 0xffffad651a309294
[1]kdb> ss
Entering kdb (current=0xffff4f7e453f8000, pid 175) on processor 1 due to SS trap @ 0xffffad651a309294
[1]kdb>
After this patch:
=================
Entering kdb (current=0xffff6851c39f0000, pid 1) on processor 0 due to Keyboard Entry
[0]kdb> bp write_sysrq_trigger
Instruction(i) BP #0 at 0xffffc02d2dd09290 (write_sysrq_trigger)
is enabled addr at ffffc02d2dd09290, hardtype=0 installed=0
[0]kdb> go
$ echo h > /proc/sysrq-trigger
Entering kdb (current=0xffff6851c53c1840, pid 174) on processor 1 due to Breakpoint @ 0xffffc02d2dd09290
[1]kdb> ss
Entering kdb (current=0xffff6851c53c1840, pid 174) on processor 1 due to SS trap @ 0xffffc02d2dd09294
[1]kdb> ss
Entering kdb (current=0xffff6851c53c1840, pid 174) on processor 1 due to SS trap @ 0xffffc02d2dd09298
[1]kdb> ss
Entering kdb (current=0xffff6851c53c1840, pid 174) on processor 1 due to SS trap @ 0xffffc02d2dd0929c
[1]kdb>
Fixes:
|
||
![]() |
de1702f65f |
arm64: move PAC masks to <asm/pointer_auth.h>
Now that we use XPACLRI to strip PACs within the kernel, the ptrauth_user_pac_mask() and ptrauth_kernel_pac_mask() definitions no longer need to live in <asm/compiler.h>. Move them to <asm/pointer_auth.h>, and ensure that this header is included where they are used. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Kristina Martsenko <kristina.martsenko@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230412160134.306148-4-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
ca708599ca |
arm64: use XPACLRI to strip PAC
Currently we strip the PAC from pointers using C code, which requires generating bitmasks, and conditionally clearing/setting bits depending on bit 55. We can do better by using XPACLRI directly. When the logic was originally written to strip PACs from user pointers, contemporary toolchains used for the kernel had assemblers which were unaware of the PAC instructions. As stripping the PAC from userspace pointers required unconditional clearing of a fixed set of bits (which could be performed with a single instruction), it was simpler to implement the masking in C than it was to make use of XPACI or XPACLRI. When support for in-kernel pointer authentication was added, the stripping logic was extended to cover TTBR1 pointers, requiring several instructions to handle whether to clear/set bits dependent on bit 55 of the pointer. This patch simplifies the stripping of PACs by using XPACLRI directly, as contemporary toolchains do within __builtin_return_address(). This saves a number of instructions, especially where __builtin_return_address() does not implicitly strip the PAC but is heavily used (e.g. with tracepoints). As the kernel might be compiled with an assembler without knowledge of XPACLRI, it is assembled using the 'HINT #7' alias, which results in an identical opcode. At the same time, I've split ptrauth_strip_insn_pac() into ptrauth_strip_user_insn_pac() and ptrauth_strip_kernel_insn_pac() helpers so that we can avoid unnecessary PAC stripping when pointer authentication is not in use in userspace or kernel respectively. The underlying xpaclri() macro uses inline assembly which clobbers x30. The clobber causes the compiler to save/restore the original x30 value in a frame record (protected with PACIASP and AUTIASP when in-kernel authentication is enabled), so this does not provide a gadget to alter the return address. Similarly this does not adversely affect unwinding due to the presence of the frame record. The ptrauth_user_pac_mask() and ptrauth_kernel_pac_mask() are exported from the kernel in ptrace and core dumps, so these are retained. A subsequent patch will move them out of <asm/compiler.h>. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Kristina Martsenko <kristina.martsenko@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230412160134.306148-3-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
c931680cfa |
cacheinfo: Add arm64 early level initializer implementation
This patch adds an architecture specific early cache level detection
handler for arm64. This is basically the CLIDR_EL1 based detection that
was previously done (only) in init_cache_level().
This is part of a patch series that attempts to further the work in
commit
|
||
![]() |
97b5576b01 |
arm64/sme: Fix some comments of ARM SME
When TIF_SME is clear, fpsimd_restore_current_state will disable SME trap during ret_to_user, then SME access trap is impossible in userspace, not SVE. Besides, fix typo: alocated->allocated. Signed-off-by: Dongxu Sun <sundongxu3@huawei.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230317124915.1263-5-sundongxu3@huawei.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
19e99e7d59 |
arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2()
Move tpidr2 sigframe allocation from under the checking of system_supports_sme() to the checking of system_supports_tpidr2(). Signed-off-by: Dongxu Sun <sundongxu3@huawei.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230317124915.1263-3-sundongxu3@huawei.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
e9d14f3f3f |
arm64/signal: Use system_supports_tpidr2() to check TPIDR2
Since commit a9d6915859501("arm64/sme: Implement support for TPIDR2"), We introduced system_supports_tpidr2() for TPIDR2 handling. Let's use the specific check instead. No functional changes. Signed-off-by: Dongxu Sun <sundongxu3@huawei.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230317124915.1263-2-sundongxu3@huawei.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
b2ad9d4e24 |
arm64/idreg: Don't disable SME when disabling SVE
SVE and SME are separate features which can be implemented without each other but currently if the user specifies arm64.nosve then we disable SME as well as SVE. There is already a separate override for SME so remove the implicit disablement from the SVE override. One usecase for this would be testing SME only support on a system which implements both SVE and SME. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230315-arm64-override-sve-sme-v2-1-bab7593e842b@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
0d124e9605 |
arm64: kdump : take off the protection on crashkernel memory region
Problem: ======= On arm64, block and section mapping is supported to build page tables. However, currently it enforces to take base page mapping for the whole linear mapping if CONFIG_ZONE_DMA or CONFIG_ZONE_DMA32 is enabled and crashkernel kernel parameter is set. This will cause longer time of the linear mapping process during bootup and severe performance degradation during running time. Root cause: ========== On arm64, crashkernel reservation relies on knowing the upper limit of low memory zone because it needs to reserve memory in the zone so that devices' DMA addressing in kdump kernel can be satisfied. However, the upper limit of low memory on arm64 is variant. And the upper limit can only be decided late till bootmem_init() is called [1]. And we need to map the crashkernel region with base page granularity when doing linear mapping, because kdump needs to protect the crashkernel region via set_memory_valid(,0) after kdump kernel loading. However, arm64 doesn't support well on splitting the built block or section mapping due to some cpu reststriction [2]. And unfortunately, the linear mapping is done before bootmem_init(). To resolve the above conflict on arm64, the compromise is enforcing to take base page mapping for the entire linear mapping if crashkernel is set, and CONFIG_ZONE_DMA or CONFIG_ZONE_DMA32 is enabed. Hence performance is sacrificed. Solution: ========= Comparing with the base page mapping for the whole linear region, it's better to take off the protection on crashkernel memory region for the time being because the anticipated stamping on crashkernel memory region could only happen in a chance in one million, while the base page mapping for the whole linear region is mitigating arm64 systems with crashkernel set always. [1] https://lore.kernel.org/all/YrIIJkhKWSuAqkCx@arm.com/T/#u [2] https://lore.kernel.org/linux-arm-kernel/20190911182546.17094-1-nsaenzjulienne@suse.de/T/ Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com> Link: https://lore.kernel.org/r/20230407011507.17572-2-bhe@redhat.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
b5ecc19e68 |
arm64: stacktrace: always inline core stacktrace functions
The arm64 stacktrace code can be used in kprobe context, and so cannot be safely probed. Some (but not all) of the unwind functions are annotated with `NOKPROBE_SYMBOL()` to ensure this, with others markes as `__always_inline`, relying on the top-level unwind function being marked as `noinstr`. This patch has stacktrace.c consistently mark the internal stacktrace functions as `__always_inline`, removing the need for NOKPROBE_SYMBOL() as the top-level unwind function (arch_stack_walk()) is marked as `noinstr`. This is more consistent and is a simpler pattern to follow for future additions to stacktrace.c. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230411162943.203199-4-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
ead6122c28 |
arm64: stacktrace: move dump functions to end of file
For historical reasons, the backtrace dumping functions are placed in the middle of stacktrace.c, despite using functions defined later. For clarity, and to make subsequent refactoring easier, move the dumping functions to the end of stacktrace.c There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230411162943.203199-3-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
9e09d445f1 |
arm64: stacktrace: recover return address for first entry
The function which calls the top-level backtracing function may have been instrumented with ftrace and/or kprobes, and hence the first return address may have been rewritten. Factor out the existing fgraph / kretprobes address recovery, and use this for the first address. As the comment for the fgraph case isn't all that helpful, I've also dropped that. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230411162943.203199-2-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
0f59dca63b |
arm64: ftrace: Simplify get_ftrace_plt
Following recent refactorings, the get_ftrace_plt function only ever gets called with addr = FTRACE_ADDR so its code can be simplified to always return the ftrace trampoline plt. Signed-off-by: Florent Revest <revest@chromium.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20230405180250.2046566-3-revest@chromium.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
2aa6ac0351 |
arm64: ftrace: Add direct call support
This builds up on the CALL_OPS work which extends the ftrace patchsite on arm64 with an ops pointer usable by the ftrace trampoline. This ops pointer is valid at all time. Indeed, it is either pointing to ftrace_list_ops or to the single ops which should be called from that patchsite. There are a few cases to distinguish: - If a direct call ops is the only one tracing a function: - If the direct called trampoline is within the reach of a BL instruction -> the ftrace patchsite jumps to the trampoline - Else -> the ftrace patchsite jumps to the ftrace_caller trampoline which reads the ops pointer in the patchsite and jumps to the direct call address stored in the ops - Else -> the ftrace patchsite jumps to the ftrace_caller trampoline and its ops literal points to ftrace_list_ops so it iterates over all registered ftrace ops, including the direct call ops and calls its call_direct_funcs handler which stores the direct called trampoline's address in the ftrace_regs and the ftrace_caller trampoline will return to that address instead of returning to the traced function Signed-off-by: Florent Revest <revest@chromium.org> Co-developed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20230405180250.2046566-2-revest@chromium.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d523dc7b16 |
Fix uninitialised variable warning (from smatch) in the arm64 compat
alignment fixup code. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmQv6MkACgkQa9axLQDI XvHVyg//WpG3mikeENgSKvWSQYvieoHPKn+11u9Q/mtIcgZhr2KH/3kDmWNYBHx8 E0ZjK68WjnegYMAar/aIBomP+cV1wgMJ17qDCwegIrcmrXXneEnoZ1ID+to/7AEh JI74Sit9jHIyB2evmo11B1zhudqoovtPKSLT96sOhb1yyUmlBPH8cmyjfLV+ahMW e+WyiF3BqRQg2KSXmG1umJwqvFkbzfVHDTmpuNswmkr9uvwuj0C2fp5shDROAR2d DHW/luyeiv9cRYWNnH1HAtKbxCNAJAOcauSM5B5iv5LVMM7u33hv1gpoVFXWlLDy izME1O0d+7ytGWGFI5vi867FSlK3GnB/K/rTXYPNpY8Akuic3Vv2A6a+i8inRJMb qrM0EwY4ms0Pzk8p+WIzfbHrQxRbv0IFwiZtp5wid0KJCQ77fHh6bE/p+HciBMk9 3VYxdJNqgELzrImGVuI3gl6uvLnjGIZgYZS29kykuTzYt718CUZZcPgHj7ycDShB EcnOfpqIPUBKy0hNdWK0z2P0O5SR/co20fNvJKivnVQHWUsJfgESHJTsBcQvIz/h TqAHjOM1SzOkjtUApIzxQCnLW2SBGLF4/fvH1Iyrjt/8+HFiR7fVnZrww7lbvb8V jyfxtLMaOhNEcts4yAPC2+o67Q4P6/vE2gNZFkWV8AFMoy8RcIU= =JiMH -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fix from Catalin Marinas: "Fix uninitialised variable warning (from smatch) in the arm64 compat alignment fixup code" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: compat: Work around uninitialized variable warning |
||
![]() |
32d8599968 |
arm64: compat: Work around uninitialized variable warning
Dan reports that smatch complains about a potential uninitialized
variable being used in the compat alignment fixup code.
The logic is not wrong per se, but we do end up using an uninitialized
variable if reading the instruction that triggered the alignment fault
from user space faults, even if the fault ensures that the uninitialized
value doesn't propagate any further.
Given that we just give up and return 1 if any fault occurs when reading
the instruction, let's get rid of the 'success handling' pattern that
captures the fault in a variable and aborts later, and instead, just
return 1 immediately if any of the get_user() calls result in an
exception.
Fixes:
|
||
![]() |
cd8fe5b6db |
Merge 6.3-rc5 into driver-core-next
We need the fixes in here for testing, as well as the driver core changes for documentation updates to build on. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
326349943e |
arm64: Add HAS_ECV_CNTPOFF capability
Add the probing code for the FEAT_ECV variant that implements CNTPOFF_EL2. Why it is optional is a mystery, but let's try and detect it. Reviewed-by: Reiji Watanabe <reijiw@google.com> Reviewed-by: Colton Lewis <coltonlewis@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230330174800.2677007-4-maz@kernel.org |
||
![]() |
6915cffd48 |
arm64: kexec: remove unnecessary (void*) conversions
Pointer variables of void * type do not require type cast. Signed-off-by: Yu Zhe <yuzhe@nfschina.com> Link: https://lore.kernel.org/r/20230303025715.32570-1-yuzhe@nfschina.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
0e2cb49ef1 |
arm64: armv8_deprecated: remove unnecessary (void*) conversions
Pointer variables of void * type do not require type cast. Signed-off-by: Yu Zhe <yuzhe@nfschina.com> Link: https://lore.kernel.org/r/20230303025047.19717-1-yuzhe@nfschina.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
7755cec63a |
arm64: perf: Move PMUv3 driver to drivers/perf
Having the ARM PMUv3 driver sitting in arch/arm64/kernel is getting in the way of being able to use perf on ARMv8 cores running a 32bit kernel, such as 32bit KVM guests. This patch moves it into drivers/perf/arm_pmuv3.c, with an include file in include/linux/perf/arm_pmuv3.h. The only thing left in arch/arm64 is some mundane perf stuff. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Zaid Al-Bassam <zalbassam@google.com> Tested-by: Florian Fainelli <f.fainelli@gmail.com> Link: https://lore.kernel.org/r/20230317195027.3746949-2-zalbassam@google.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
4c8c3c7f70 |
treewide: Trace IPIs sent via smp_send_reschedule()
To be able to trace invocations of smp_send_reschedule(), rename the arch-specific definitions of it to arch_smp_send_reschedule() and wrap it into an smp_send_reschedule() that contains a tracepoint. Changes to include the declaration of the tracepoint were driven by the following coccinelle script: @func_use@ @@ smp_send_reschedule(...); @include@ @@ #include <trace/events/ipi.h> @no_include depends on func_use && !include@ @@ #include <...> + + #include <trace/events/ipi.h> [csky bits] [riscv bits] Signed-off-by: Valentin Schneider <vschneid@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Guo Ren <guoren@kernel.org> Acked-by: Palmer Dabbelt <palmer@rivosinc.com> Link: https://lore.kernel.org/r/20230307143558.294354-6-vschneid@redhat.com |
||
![]() |
cc9cb0a717 |
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
send_call_function_single_ipi() is the thing that sends IPIs at the bottom of smp_call_function*() via either generic_exec_single() or smp_call_function_many_cond(). Give it an IPI-related tracepoint. Note that this ends up tracing any IPI sent via __smp_call_single_queue(), which covers __ttwu_queue_wakelist() and irq_work_queue_on() "for free". Signed-off-by: Valentin Schneider <vschneid@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230307143558.294354-3-vschneid@redhat.com |
||
![]() |
aff69273af |
vdso: Improve cmd_vdso_check to check all dynamic relocations
The actual intention is that no dynamic relocation exists in the VDSO. For this the VDSO build validates that the resulting .so file does not have any relocations which are specified via $(ARCH_REL_TYPE_ABS) per architecture, which is fragile as e.g. ARM64 lacks an entry for R_AARCH64_RELATIVE. Aside of that ARCH_REL_TYPE_ABS is a misnomer as it checks for relative relocations too. However, some GNU ld ports produce unneeded R_*_NONE relocation entries. If a port fails to determine the exact .rel[a].dyn size, the trailing zeros become R_*_NONE relocations. E.g. ld's powerpc port recently fixed https://sourceware.org/bugzilla/show_bug.cgi?id=29540). R_*_NONE are generally a no-op in the dynamic loaders. So just ignore them. Remove the ARCH_REL_TYPE_ABS defines and just validate that the resulting .so file does not contain any R_* relocation entries except R_*_NONE. Signed-off-by: Fangrui Song <maskray@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> # for aarch64 Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> # for vDSO, aarch64 Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Link: https://lore.kernel.org/r/20230310190750.3323802-1-maskray@google.com |
||
![]() |
cb6b0cba1e |
arm64: cpufeature: move to use bus_get_dev_root()
Direct access to the struct bus_type dev_root pointer is going away soon so replace that with a call to bus_get_dev_root() instead, which is what it is there for. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Kristina Martsenko <kristina.martsenko@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: linux-arm-kernel@lists.infradead.org Link: https://lore.kernel.org/r/20230313182918.1312597-11-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
3c66bb1918 |
arm64: efi: Set NX compat flag in PE/COFF header
The PE/COFF header has a NX compat flag which informs the firmware that the application does not rely on memory regions being mapped with both executable and writable permissions at the same time. This is typically used by the firmware to decide whether it can set the NX attribute on all allocations it returns, but going forward, it may be used to enforce a policy that only permits applications with the NX flag set to be loaded to begin wiht in some configurations, e.g., when Secure Boot is in effect. Even though the arm64 version of the EFI stub may relocate the kernel before executing it, it always did so after disabling the MMU, and so we were always in line with what the NX compat flag conveys, we just never bothered to set it. So let's set the flag now. Cc: <stable@vger.kernel.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
ac3b432839 |
module: replace module_layout with module_memory
module_layout manages different types of memory (text, data, rodata, etc.) in one allocation, which is problematic for some reasons: 1. It is hard to enable CONFIG_STRICT_MODULE_RWX. 2. It is hard to use huge pages in modules (and not break strict rwx). 3. Many archs uses module_layout for arch-specific data, but it is not obvious how these data are used (are they RO, RX, or RW?) Improve the scenario by replacing 2 (or 3) module_layout per module with up to 7 module_memory per module: MOD_TEXT, MOD_DATA, MOD_RODATA, MOD_RO_AFTER_INIT, MOD_INIT_TEXT, MOD_INIT_DATA, MOD_INIT_RODATA, and allocating them separately. This adds slightly more entries to mod_tree (from up to 3 entries per module, to up to 7 entries per module). However, this at most adds a small constant overhead to __module_address(), which is expected to be fast. Various archs use module_layout for different data. These data are put into different module_memory based on their location in module_layout. IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT; data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc. module_memory simplifies quite some of the module code. For example, ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a different allocator for the data. kernel/module/strict_rwx.c is also much cleaner with module_memory. Signed-off-by: Song Liu <song@kernel.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
![]() |
071c44e427 |
sched/idle: Mark arch_cpu_idle_dead() __noreturn
Before commit 076cbf5d2163 ("x86/xen: don't let xen_pv_play_dead() return"), in Xen, when a previously offlined CPU was brought back online, it unexpectedly resumed execution where it left off in the middle of the idle loop. There were some hacks to make that work, but the behavior was surprising as do_idle() doesn't expect an offlined CPU to return from the dead (in arch_cpu_idle_dead()). Now that Xen has been fixed, and the arch-specific implementations of arch_cpu_idle_dead() also don't return, give it a __noreturn attribute. This will cause the compiler to complain if an arch-specific implementation might return. It also improves code generation for both caller and callee. Also fixes the following warning: vmlinux.o: warning: objtool: do_idle+0x25f: unreachable instruction Reported-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/60d527353da8c99d4cf13b6473131d46719ed16d.1676358308.git.jpoimboe@kernel.org Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
9bdc61ef27 |
arm64/cpu: Mark cpu_die() __noreturn
cpu_die() doesn't return. Annotate it as such. By extension this also makes arch_cpu_idle_dead() noreturn. Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Link: https://lkml.kernel.org/r/20230216184157.4hup6y6mmspr2kll@treble Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> |
||
![]() |
39ce4395c3 |
arm64 fixes:
- In copy_highpage(), only reset the tag of the destination pointer if KASAN_HW_TAGS is enabled so that user-space MTE does not interfere with KASAN_SW_TAGS (which relies on top-byte-ignore). - Remove warning if SME is detected without SVE, the kernel can cope with such configuration (though none in the field currently). - In cfi_handler(), pass the ESR_EL1 value to die() for consistency with other die() callers. - Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP on arm64 since the pte manipulation from the generic vmemmap_remap_pte() does not follow the required ARM break-before-make sequence (clear the pte, flush the TLBs, set the new pte). It may be re-enabled once this sequence is sorted. - Fix possible memory leak in the arm64 ACPI code if the SMCCC version and conduit checks fail. - Forbid CALL_OPS with CC_OPTIMIZE_FOR_SIZE since gcc ignores -falign-functions=N with -Os. - Don't pretend KASLR is enabled if offset < MIN_KIMG_ALIGN as no randomisation would actually take place. -----BEGIN PGP SIGNATURE----- iQIyBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmQBHFEACgkQa9axLQDI XvHf9Q/3Zg8o/8HchnWSvzgV//9ljGrrDfAjbfZHrE2W4PCniSd0op0uXYsVK3IH Nk6ZDiRe5uIXKgHuSq5caOoL4aRk0hk1TpQ3RKCuh8E3ybhQe9gwYm8xEWXDSSWh QzcfENsKlZLpuMoSMILJ2NlMPMbMLprXNCUlgENBbRT7KUToHZKTwE6BL2AUI3tg RdMntccorybxk1hiXV1YKT8482i+x2gAnylYXFsq3eI+G54rdfiks+tft0CQV3ng 1/i1PfbnGC45sBoxXPqYXzBSUDNHpAqb5dwvtlVinGo3J6STxIvbM6Zi5Ma5hl3u QrhwyduwCTZ6wVOqzd4KAH9gmhJSzRG75OzCek2dTwU9KXVMOPEvp1ZfTwUXDx7J 5j8UkjGgrbtj6IioGqBAO/HiFfoty8EBtmlSZIj0thwxkM73ZBG6efQOJaVWh85m ioUzMC2Y5yfKLfHEcy9yKIQVizMYoz6fl+QHOEbVSoFhJKNRc4wt5CCJCvsbMHsu K8rvD/CI9jFMP9GEK7ObTaC7ICjUz/+8wbIrRrm5ObRQ65Tm2zv3OLqGnK8O5O4W gcDEraTnSPHDUtgG6dAEPFN5Wi9hT3zYC0xAcNhc3aZC5ofS5RD6YXIWJvqjWrvL 5k8G1gfa57C/hfxO6pPw7bg/nY8vvYpxUkZ9erRWD430g7y0Sg== =jfPa -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: - In copy_highpage(), only reset the tag of the destination pointer if KASAN_HW_TAGS is enabled so that user-space MTE does not interfere with KASAN_SW_TAGS (which relies on top-byte-ignore). - Remove warning if SME is detected without SVE, the kernel can cope with such configuration (though none in the field currently). - In cfi_handler(), pass the ESR_EL1 value to die() for consistency with other die() callers. - Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP on arm64 since the pte manipulation from the generic vmemmap_remap_pte() does not follow the required ARM break-before-make sequence (clear the pte, flush the TLBs, set the new pte). It may be re-enabled once this sequence is sorted. - Fix possible memory leak in the arm64 ACPI code if the SMCCC version and conduit checks fail. - Forbid CALL_OPS with CC_OPTIMIZE_FOR_SIZE since gcc ignores -falign-functions=N with -Os. - Don't pretend KASLR is enabled if offset < MIN_KIMG_ALIGN as no randomisation would actually take place. * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: kaslr: don't pretend KASLR is enabled if offset < MIN_KIMG_ALIGN arm64: ftrace: forbid CALL_OPS with CC_OPTIMIZE_FOR_SIZE arm64: acpi: Fix possible memory leak of ffh_ctxt arm64: mm: hugetlb: Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP arm64: pass ESR_ELx to die() of cfi_handler arm64/fpsimd: Remove warning for SME without SVE arm64: Reset KASAN tag in copy_highpage with HW tags only |
||
![]() |
010338d729 |
arm64: kaslr: don't pretend KASLR is enabled if offset < MIN_KIMG_ALIGN
Our virtual KASLR displacement is a randomly chosen multiple of
2 MiB plus an offset that is equal to the physical placement modulo 2
MiB. This arrangement ensures that we can always use 2 MiB block
mappings (or contiguous PTE mappings for 16k or 64k pages) to map the
kernel.
This means that a KASLR offset of less than 2 MiB is simply the product
of this physical displacement, and no randomization has actually taken
place. Currently, we use 'kaslr_offset() > 0' to decide whether or not
randomization has occurred, and so we misidentify this case.
If the kernel image placement is not randomized, modules are allocated
from a dedicated region below the kernel mapping, which is only used for
modules and not for other vmalloc() or vmap() calls.
When randomization is enabled, the kernel image is vmap()'ed randomly
inside the vmalloc region, and modules are allocated in the vicinity of
this mapping to ensure that relative references are always in range.
However, unlike the dedicated module region below the vmalloc region,
this region is not reserved exclusively for modules, and so ordinary
vmalloc() calls may end up overlapping with it. This should rarely
happen, given that vmalloc allocates bottom up, although it cannot be
ruled out entirely.
The misidentified case results in a placement of the kernel image within
2 MiB of its default address. However, the logic that randomizes the
module region is still invoked, and this could result in the module
region overlapping with the start of the vmalloc region, instead of
using the dedicated region below it. If this happens, a single large
vmalloc() or vmap() call will use up the entire region, and leave no
space for loading modules after that.
Since commit
|
||
![]() |
49d5759268 |
ARM:
- Provide a virtual cache topology to the guest to avoid inconsistencies with migration on heterogenous systems. Non secure software has no practical need to traverse the caches by set/way in the first place. - Add support for taking stage-2 access faults in parallel. This was an accidental omission in the original parallel faults implementation, but should provide a marginal improvement to machines w/o FEAT_HAFDBS (such as hardware from the fruit company). - A preamble to adding support for nested virtualization to KVM, including vEL2 register state, rudimentary nested exception handling and masking unsupported features for nested guests. - Fixes to the PSCI relay that avoid an unexpected host SVE trap when resuming a CPU when running pKVM. - VGIC maintenance interrupt support for the AIC - Improvements to the arch timer emulation, primarily aimed at reducing the trap overhead of running nested. - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the interest of CI systems. - Avoid VM-wide stop-the-world operations when a vCPU accesses its own redistributor. - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions in the host. - Aesthetic and comment/kerneldoc fixes - Drop the vestiges of the old Columbia mailing list and add [Oliver] as co-maintainer This also drags in arm64's 'for-next/sme2' branch, because both it and the PSCI relay changes touch the EL2 initialization code. RISC-V: - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE - Correctly place the guest in S-mode after redirecting a trap to the guest - Redirect illegal instruction traps to guest - SBI PMU support for guest s390: - Two patches sorting out confusion between virtual and physical addresses, which currently are the same on s390. - A new ioctl that performs cmpxchg on guest memory - A few fixes x86: - Change tdp_mmu to a read-only parameter - Separate TDP and shadow MMU page fault paths - Enable Hyper-V invariant TSC control - Fix a variety of APICv and AVIC bugs, some of them real-world, some of them affecting architecurally legal but unlikely to happen in practice - Mark APIC timer as expired if its in one-shot mode and the count underflows while the vCPU task was being migrated - Advertise support for Intel's new fast REP string features - Fix a double-shootdown issue in the emergency reboot code - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM similar treatment to VMX - Update Xen's TSC info CPUID sub-leaves as appropriate - Add support for Hyper-V's extended hypercalls, where "support" at this point is just forwarding the hypercalls to userspace - Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and MSR filters - One-off fixes and cleanups - Fix and cleanup the range-based TLB flushing code, used when KVM is running on Hyper-V - Add support for filtering PMU events using a mask. If userspace wants to restrict heavily what events the guest can use, it can now do so without needing an absurd number of filter entries - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU support is disabled - Add PEBS support for Intel Sapphire Rapids - Fix a mostly benign overflow bug in SEV's send|receive_update_data() - Move several SVM-specific flags into vcpu_svm x86 Intel: - Handle NMI VM-Exits before leaving the noinstr region - A few trivial cleanups in the VM-Enter flows - Stop enabling VMFUNC for L1 purely to document that KVM doesn't support EPTP switching (or any other VM function) for L1 - Fix a crash when using eVMCS's enlighted MSR bitmaps Generic: - Clean up the hardware enable and initialization flow, which was scattered around multiple arch-specific hooks. Instead, just let the arch code call into generic code. Both x86 and ARM should benefit from not having to fight common KVM code's notion of how to do initialization. - Account allocations in generic kvm_arch_alloc_vm() - Fix a memory leak if coalesced MMIO unregistration fails selftests: - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit the correct hypercall instruction instead of relying on KVM to patch in VMMCALL - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O 9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV /WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw== =goe1 -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "ARM: - Provide a virtual cache topology to the guest to avoid inconsistencies with migration on heterogenous systems. Non secure software has no practical need to traverse the caches by set/way in the first place - Add support for taking stage-2 access faults in parallel. This was an accidental omission in the original parallel faults implementation, but should provide a marginal improvement to machines w/o FEAT_HAFDBS (such as hardware from the fruit company) - A preamble to adding support for nested virtualization to KVM, including vEL2 register state, rudimentary nested exception handling and masking unsupported features for nested guests - Fixes to the PSCI relay that avoid an unexpected host SVE trap when resuming a CPU when running pKVM - VGIC maintenance interrupt support for the AIC - Improvements to the arch timer emulation, primarily aimed at reducing the trap overhead of running nested - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the interest of CI systems - Avoid VM-wide stop-the-world operations when a vCPU accesses its own redistributor - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions in the host - Aesthetic and comment/kerneldoc fixes - Drop the vestiges of the old Columbia mailing list and add [Oliver] as co-maintainer RISC-V: - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE - Correctly place the guest in S-mode after redirecting a trap to the guest - Redirect illegal instruction traps to guest - SBI PMU support for guest s390: - Sort out confusion between virtual and physical addresses, which currently are the same on s390 - A new ioctl that performs cmpxchg on guest memory - A few fixes x86: - Change tdp_mmu to a read-only parameter - Separate TDP and shadow MMU page fault paths - Enable Hyper-V invariant TSC control - Fix a variety of APICv and AVIC bugs, some of them real-world, some of them affecting architecurally legal but unlikely to happen in practice - Mark APIC timer as expired if its in one-shot mode and the count underflows while the vCPU task was being migrated - Advertise support for Intel's new fast REP string features - Fix a double-shootdown issue in the emergency reboot code - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM similar treatment to VMX - Update Xen's TSC info CPUID sub-leaves as appropriate - Add support for Hyper-V's extended hypercalls, where "support" at this point is just forwarding the hypercalls to userspace - Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and MSR filters - One-off fixes and cleanups - Fix and cleanup the range-based TLB flushing code, used when KVM is running on Hyper-V - Add support for filtering PMU events using a mask. If userspace wants to restrict heavily what events the guest can use, it can now do so without needing an absurd number of filter entries - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU support is disabled - Add PEBS support for Intel Sapphire Rapids - Fix a mostly benign overflow bug in SEV's send|receive_update_data() - Move several SVM-specific flags into vcpu_svm x86 Intel: - Handle NMI VM-Exits before leaving the noinstr region - A few trivial cleanups in the VM-Enter flows - Stop enabling VMFUNC for L1 purely to document that KVM doesn't support EPTP switching (or any other VM function) for L1 - Fix a crash when using eVMCS's enlighted MSR bitmaps Generic: - Clean up the hardware enable and initialization flow, which was scattered around multiple arch-specific hooks. Instead, just let the arch code call into generic code. Both x86 and ARM should benefit from not having to fight common KVM code's notion of how to do initialization - Account allocations in generic kvm_arch_alloc_vm() - Fix a memory leak if coalesced MMIO unregistration fails selftests: - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit the correct hypercall instruction instead of relying on KVM to patch in VMMCALL - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits) KVM: SVM: hyper-v: placate modpost section mismatch error KVM: x86/mmu: Make tdp_mmu_allowed static KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes KVM: arm64: nv: Filter out unsupported features from ID regs KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2 KVM: arm64: nv: Allow a sysreg to be hidden from userspace only KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2 KVM: arm64: nv: Handle SMCs taken from virtual EL2 KVM: arm64: nv: Handle trapped ERET from virtual EL2 KVM: arm64: nv: Inject HVC exceptions to the virtual EL2 KVM: arm64: nv: Support virtual EL2 exceptions KVM: arm64: nv: Handle HCR_EL2.NV system register traps KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state KVM: arm64: nv: Add EL2 system registers to vcpu context KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set KVM: arm64: nv: Introduce nested virtualization VCPU feature KVM: arm64: Use the S2 MMU context to iterate over S2 table ... |
||
![]() |
a93e884edf |
Driver core changes for 6.3-rc1
Here is the large set of driver core changes for 6.3-rc1. There's a lot of changes this development cycle, most of the work falls into two different categories: - fw_devlink fixes and updates. This has gone through numerous review cycles and lots of review and testing by lots of different devices. Hopefully all should be good now, and Saravana will be keeping a watch for any potential regression on odd embedded systems. - driver core changes to work to make struct bus_type able to be moved into read-only memory (i.e. const) The recent work with Rust has pointed out a number of areas in the driver core where we are passing around and working with structures that really do not have to be dynamic at all, and they should be able to be read-only making things safer overall. This is the contuation of that work (started last release with kobject changes) in moving struct bus_type to be constant. We didn't quite make it for this release, but the remaining patches will be finished up for the release after this one, but the groundwork has been laid for this effort. Other than that we have in here: - debugfs memory leak fixes in some subsystems - error path cleanups and fixes for some never-able-to-be-hit codepaths. - cacheinfo rework and fixes - Other tiny fixes, full details are in the shortlog All of these have been in linux-next for a while with no reported problems. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCY/ipdg8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ynL3gCgwzbcWu0So3piZyLiJKxsVo9C2EsAn3sZ9gN6 6oeFOjD3JDju3cQsfGgd =Su6W -----END PGP SIGNATURE----- Merge tag 'driver-core-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is the large set of driver core changes for 6.3-rc1. There's a lot of changes this development cycle, most of the work falls into two different categories: - fw_devlink fixes and updates. This has gone through numerous review cycles and lots of review and testing by lots of different devices. Hopefully all should be good now, and Saravana will be keeping a watch for any potential regression on odd embedded systems. - driver core changes to work to make struct bus_type able to be moved into read-only memory (i.e. const) The recent work with Rust has pointed out a number of areas in the driver core where we are passing around and working with structures that really do not have to be dynamic at all, and they should be able to be read-only making things safer overall. This is the contuation of that work (started last release with kobject changes) in moving struct bus_type to be constant. We didn't quite make it for this release, but the remaining patches will be finished up for the release after this one, but the groundwork has been laid for this effort. Other than that we have in here: - debugfs memory leak fixes in some subsystems - error path cleanups and fixes for some never-able-to-be-hit codepaths. - cacheinfo rework and fixes - Other tiny fixes, full details are in the shortlog All of these have been in linux-next for a while with no reported problems" [ Geert Uytterhoeven points out that that last sentence isn't true, and that there's a pending report that has a fix that is queued up - Linus ] * tag 'driver-core-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (124 commits) debugfs: drop inline constant formatting for ERR_PTR(-ERROR) OPP: fix error checking in opp_migrate_dentry() debugfs: update comment of debugfs_rename() i3c: fix device.h kernel-doc warnings dma-mapping: no need to pass a bus_type into get_arch_dma_ops() driver core: class: move EXPORT_SYMBOL_GPL() lines to the correct place Revert "driver core: add error handling for devtmpfs_create_node()" Revert "devtmpfs: add debug info to handle()" Revert "devtmpfs: remove return value of devtmpfs_delete_node()" driver core: cpu: don't hand-override the uevent bus_type callback. devtmpfs: remove return value of devtmpfs_delete_node() devtmpfs: add debug info to handle() driver core: add error handling for devtmpfs_create_node() driver core: bus: update my copyright notice driver core: bus: add bus_get_dev_root() function driver core: bus: constify bus_unregister() driver core: bus: constify some internal functions driver core: bus: constify bus_get_kset() driver core: bus: constify bus_register/unregister_notifier() driver core: remove private pointer from struct bus_type ... |
||
![]() |
1b561d3949 |
arm64: acpi: Fix possible memory leak of ffh_ctxt
Allocated 'ffh_ctxt' memory leak is possible if the SMCCC version
and conduit checks fail and -EOPNOTSUPP is returned without freeing the
allocated memory.
Fix the same by moving the allocation after the SMCCC version and
conduit checks.
Fixes:
|
||
![]() |
3822a7c409 |
- Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at memfd creation time, with the option of sealing the state of the X bit. - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset() thread-safe for pmd unshare") which addresses a rare race condition related to PMD unsharing. - Several folioification patch serieses from Matthew Wilcox, Vishal Moola, Sidhartha Kumar and Lorenzo Stoakes - Johannes Weiner has a series ("mm: push down lock_page_memcg()") which does perform some memcg maintenance and cleanup work. - SeongJae Park has added DAMOS filtering to DAMON, with the series "mm/damon/core: implement damos filter". These filters provide users with finer-grained control over DAMOS's actions. SeongJae has also done some DAMON cleanup work. - Kairui Song adds a series ("Clean up and fixes for swap"). - Vernon Yang contributed the series "Clean up and refinement for maple tree". - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It adds to MGLRU an LRU of memcgs, to improve the scalability of global reclaim. - David Hildenbrand has added some userfaultfd cleanup work in the series "mm: uffd-wp + change_protection() cleanups". - Christoph Hellwig has removed the generic_writepages() library function in the series "remove generic_writepages". - Baolin Wang has performed some maintenance on the compaction code in his series "Some small improvements for compaction". - Sidhartha Kumar is doing some maintenance work on struct page in his series "Get rid of tail page fields". - David Hildenbrand contributed some cleanup, bugfixing and generalization of pte management and of pte debugging in his series "mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap PTEs". - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation flag in the series "Discard __GFP_ATOMIC". - Sergey Senozhatsky has improved zsmalloc's memory utilization with his series "zsmalloc: make zspage chain size configurable". - Joey Gouly has added prctl() support for prohibiting the creation of writeable+executable mappings. The previous BPF-based approach had shortcomings. See "mm: In-kernel support for memory-deny-write-execute (MDWE)". - Waiman Long did some kmemleak cleanup and bugfixing in the series "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF". - T.J. Alumbaugh has contributed some MGLRU cleanup work in his series "mm: multi-gen LRU: improve". - Jiaqi Yan has provided some enhancements to our memory error statistics reporting, mainly by presenting the statistics on a per-node basis. See the series "Introduce per NUMA node memory error statistics". - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog regression in compaction via his series "Fix excessive CPU usage during compaction". - Christoph Hellwig does some vmalloc maintenance work in the series "cleanup vfree and vunmap". - Christoph Hellwig has removed block_device_operations.rw_page() in ths series "remove ->rw_page". - We get some maple_tree improvements and cleanups in Liam Howlett's series "VMA tree type safety and remove __vma_adjust()". - Suren Baghdasaryan has done some work on the maintainability of our vm_flags handling in the series "introduce vm_flags modifier functions". - Some pagemap cleanup and generalization work in Mike Rapoport's series "mm, arch: add generic implementation of pfn_valid() for FLATMEM" and "fixups for generic implementation of pfn_valid()" - Baoquan He has done some work to make /proc/vmallocinfo and /proc/kcore better represent the real state of things in his series "mm/vmalloc.c: allow vread() to read out vm_map_ram areas". - Jason Gunthorpe rationalized the GUP system's interface to the rest of the kernel in the series "Simplify the external interface for GUP". - SeongJae Park wishes to migrate people from DAMON's debugfs interface over to its sysfs interface. To support this, we'll temporarily be printing warnings when people use the debugfs interface. See the series "mm/damon: deprecate DAMON debugfs interface". - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes and clean-ups" series. - Huang Ying has provided a dramatic reduction in migration's TLB flush IPI rates with the series "migrate_pages(): batch TLB flushing". - Arnd Bergmann has some objtool fixups in "objtool warning fixes". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY/PoPQAKCRDdBJ7gKXxA jlvpAPsFECUBBl20qSue2zCYWnHC7Yk4q9ytTkPB/MMDrFEN9wD/SNKEm2UoK6/K DmxHkn0LAitGgJRS/W9w81yrgig9tAQ= =MlGs -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Daniel Verkamp has contributed a memfd series ("mm/memfd: add F_SEAL_EXEC") which permits the setting of the memfd execute bit at memfd creation time, with the option of sealing the state of the X bit. - Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset() thread-safe for pmd unshare") which addresses a rare race condition related to PMD unsharing. - Several folioification patch serieses from Matthew Wilcox, Vishal Moola, Sidhartha Kumar and Lorenzo Stoakes - Johannes Weiner has a series ("mm: push down lock_page_memcg()") which does perform some memcg maintenance and cleanup work. - SeongJae Park has added DAMOS filtering to DAMON, with the series "mm/damon/core: implement damos filter". These filters provide users with finer-grained control over DAMOS's actions. SeongJae has also done some DAMON cleanup work. - Kairui Song adds a series ("Clean up and fixes for swap"). - Vernon Yang contributed the series "Clean up and refinement for maple tree". - Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It adds to MGLRU an LRU of memcgs, to improve the scalability of global reclaim. - David Hildenbrand has added some userfaultfd cleanup work in the series "mm: uffd-wp + change_protection() cleanups". - Christoph Hellwig has removed the generic_writepages() library function in the series "remove generic_writepages". - Baolin Wang has performed some maintenance on the compaction code in his series "Some small improvements for compaction". - Sidhartha Kumar is doing some maintenance work on struct page in his series "Get rid of tail page fields". - David Hildenbrand contributed some cleanup, bugfixing and generalization of pte management and of pte debugging in his series "mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with swap PTEs". - Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation flag in the series "Discard __GFP_ATOMIC". - Sergey Senozhatsky has improved zsmalloc's memory utilization with his series "zsmalloc: make zspage chain size configurable". - Joey Gouly has added prctl() support for prohibiting the creation of writeable+executable mappings. The previous BPF-based approach had shortcomings. See "mm: In-kernel support for memory-deny-write-execute (MDWE)". - Waiman Long did some kmemleak cleanup and bugfixing in the series "mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF". - T.J. Alumbaugh has contributed some MGLRU cleanup work in his series "mm: multi-gen LRU: improve". - Jiaqi Yan has provided some enhancements to our memory error statistics reporting, mainly by presenting the statistics on a per-node basis. See the series "Introduce per NUMA node memory error statistics". - Mel Gorman has a second and hopefully final shot at fixing a CPU-hog regression in compaction via his series "Fix excessive CPU usage during compaction". - Christoph Hellwig does some vmalloc maintenance work in the series "cleanup vfree and vunmap". - Christoph Hellwig has removed block_device_operations.rw_page() in ths series "remove ->rw_page". - We get some maple_tree improvements and cleanups in Liam Howlett's series "VMA tree type safety and remove __vma_adjust()". - Suren Baghdasaryan has done some work on the maintainability of our vm_flags handling in the series "introduce vm_flags modifier functions". - Some pagemap cleanup and generalization work in Mike Rapoport's series "mm, arch: add generic implementation of pfn_valid() for FLATMEM" and "fixups for generic implementation of pfn_valid()" - Baoquan He has done some work to make /proc/vmallocinfo and /proc/kcore better represent the real state of things in his series "mm/vmalloc.c: allow vread() to read out vm_map_ram areas". - Jason Gunthorpe rationalized the GUP system's interface to the rest of the kernel in the series "Simplify the external interface for GUP". - SeongJae Park wishes to migrate people from DAMON's debugfs interface over to its sysfs interface. To support this, we'll temporarily be printing warnings when people use the debugfs interface. See the series "mm/damon: deprecate DAMON debugfs interface". - Andrey Konovalov provided the accurately named "lib/stackdepot: fixes and clean-ups" series. - Huang Ying has provided a dramatic reduction in migration's TLB flush IPI rates with the series "migrate_pages(): batch TLB flushing". - Arnd Bergmann has some objtool fixups in "objtool warning fixes". * tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits) include/linux/migrate.h: remove unneeded externs mm/memory_hotplug: cleanup return value handing in do_migrate_range() mm/uffd: fix comment in handling pte markers mm: change to return bool for isolate_movable_page() mm: hugetlb: change to return bool for isolate_hugetlb() mm: change to return bool for isolate_lru_page() mm: change to return bool for folio_isolate_lru() objtool: add UACCESS exceptions for __tsan_volatile_read/write kmsan: disable ftrace in kmsan core code kasan: mark addr_has_metadata __always_inline mm: memcontrol: rename memcg_kmem_enabled() sh: initialize max_mapnr m68k/nommu: add missing definition of ARCH_PFN_OFFSET mm: percpu: fix incorrect size in pcpu_obj_full_size() maple_tree: reduce stack usage with gcc-9 and earlier mm: page_alloc: call panic() when memoryless node allocation fails mm: multi-gen LRU: avoid futile retries migrate_pages: move THP/hugetlb migration support check to simplify code migrate_pages: batch flushing TLB migrate_pages: share more code between _unmap and _move ... |
||
![]() |
06e1a81c48 |
A healthy mix of EFI contributions this time:
- Performance tweaks for efifb earlycon by Andy - Preparatory refactoring and cleanup work in the efivar layer by Johan, which is needed to accommodate the Snapdragon arm64 laptops that expose their EFI variable store via a TEE secure world API. - Enhancements to the EFI memory map handling so that Xen dom0 can safely access EFI configuration tables (Demi Marie) - Wire up the newly introduced IBT/BTI flag in the EFI memory attributes table, so that firmware that is generated with ENDBR/BTI landing pads will be mapped with enforcement enabled. - Clean up how we check and print the EFI revision exposed by the firmware. - Incorporate EFI memory attributes protocol definition contributed by Evgeniy and wire it up in the EFI zboot code. This ensures that these images can execute under new and stricter rules regarding the default memory permissions for EFI page allocations. (More work is in progress here) - CPER header cleanup by Dan Williams - Use a raw spinlock to protect the EFI runtime services stack on arm64 to ensure the correct semantics under -rt. (Pierre) - EFI framebuffer quirk for Lenovo Ideapad by Darrell. -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmPzuwsACgkQw08iOZLZ jyS7dwwAm95DlDxFIQi4FmTm2mqJws9PyDrkfaAK1CoyqCgeOLQT2FkVolgr8jne pwpwCTXtYP8y0BZvdQEIjpAq/BHKaD3GJSPfl7lo+pnUu68PpsFWaV6EdT33KKfj QeF0MnUvrqUeTFI77D+S0ZW2zxdo9eCcahF3TPA52/bEiiDHWBF8Qm9VHeQGklik zoXA15ft3mgITybgjEA0ncGrVZiBMZrYoMvbdkeoedfw02GN/eaQn8d2iHBtTDEh 3XNlo7ONX0v50cjt0yvwFEA0AKo0o7R1cj+ziKH/bc4KjzIiCbINhy7blroSq+5K YMlnPHuj8Nhv3I+MBdmn/nxRCQeQsE4RfRru04hfNfdcqjAuqwcBvRXvVnjWKZHl CmUYs+p/oqxrQ4BjiHfw0JKbXRsgbFI6o3FeeLH9kzI9IDUPpqu3Ma814FVok9Ai zbOCrJf5tEtg5tIavcUESEMBuHjEafqzh8c7j7AAqbaNjlihsqosDy9aYoarEi5M f/tLec86 =+pOz -----END PGP SIGNATURE----- Merge tag 'efi-next-for-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "A healthy mix of EFI contributions this time: - Performance tweaks for efifb earlycon (Andy) - Preparatory refactoring and cleanup work in the efivar layer, which is needed to accommodate the Snapdragon arm64 laptops that expose their EFI variable store via a TEE secure world API (Johan) - Enhancements to the EFI memory map handling so that Xen dom0 can safely access EFI configuration tables (Demi Marie) - Wire up the newly introduced IBT/BTI flag in the EFI memory attributes table, so that firmware that is generated with ENDBR/BTI landing pads will be mapped with enforcement enabled - Clean up how we check and print the EFI revision exposed by the firmware - Incorporate EFI memory attributes protocol definition and wire it up in the EFI zboot code (Evgeniy) This ensures that these images can execute under new and stricter rules regarding the default memory permissions for EFI page allocations (More work is in progress here) - CPER header cleanup (Dan Williams) - Use a raw spinlock to protect the EFI runtime services stack on arm64 to ensure the correct semantics under -rt (Pierre) - EFI framebuffer quirk for Lenovo Ideapad (Darrell)" * tag 'efi-next-for-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits) firmware/efi sysfb_efi: Add quirk for Lenovo IdeaPad Duet 3 arm64: efi: Make efi_rt_lock a raw_spinlock efi: Add mixed-mode thunk recipe for GetMemoryAttributes efi: x86: Wire up IBT annotation in memory attributes table efi: arm64: Wire up BTI annotation in memory attributes table efi: Discover BTI support in runtime services regions efi/cper, cxl: Remove cxl_err.h efi: Use standard format for printing the EFI revision efi: Drop minimum EFI version check at boot efi: zboot: Use EFI protocol to remap code/data with the right attributes efi/libstub: Add memory attribute protocol definitions efi: efivars: prevent double registration efi: verify that variable services are supported efivarfs: always register filesystem efi: efivars: add efivars printk prefix efi: Warn if trying to reserve memory under Xen efi: Actually enable the ESRT under Xen efi: Apply allowlist to EFI configuration tables when running under Xen efi: xen: Implement memory descriptor lookup based on hypercall efi: memmap: Disregard bogus entries instead of returning them ... |
||
![]() |
b61b82f81e |
arm64: pass ESR_ELx to die() of cfi_handler
Commit
|
||
![]() |
0269680e5e |
arm64/fpsimd: Remove warning for SME without SVE
Support for SME without SVE is architecturally valid and has now been tested well enough so let's remove the warning message that is displayed at boot. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230209-arm64-sme-no-sve-v1-1-74eb3df2f878@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8bf1a529cd |
arm64 updates for 6.3:
- Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit architectural register (ZT0, for the look-up table feature) that Linux needs to save/restore. - Include TPIDR2 in the signal context and add the corresponding kselftests. - Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG (ARM CMN) at probe time. - Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64. - Permit EFI boot with MMU and caches on. Instead of cleaning the entire loaded kernel image to the PoC and disabling the MMU and caches before branching to the kernel bare metal entry point, leave the MMU and caches enabled and rely on EFI's cacheable 1:1 mapping of all of system RAM to populate the initial page tables. - Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64 kernel (the arm32 kernel only defines the values). - Harden the arm64 shadow call stack pointer handling: stash the shadow stack pointer in the task struct on interrupt, load it directly from this structure. - Signal handling cleanups to remove redundant validation of size information and avoid reading the same data from userspace twice. - Refactor the hwcap macros to make use of the automatically generated ID registers. It should make new hwcaps writing less error prone. - Further arm64 sysreg conversion and some fixes. - arm64 kselftest fixes and improvements. - Pointer authentication cleanups: don't sign leaf functions, unify asm-arch manipulation. - Pseudo-NMI code generation optimisations. - Minor fixes for SME and TPIDR2 handling. - Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable, replace strtobool() to kstrtobool() in the cpufeature.c code, apply dynamic shadow call stack in two passes, intercept pfn changes in set_pte_at() without the required break-before-make sequence, attempt to dump all instructions on unhandled kernel faults. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmP0/QsACgkQa9axLQDI XvG+gA/+JDVEH9wRzAIZvbp9hSuohPc48xgAmIMP1eiVB0/5qeRjYAJwS33H0rXS BPC2kj9IBy/eQeM9ICg0nFd0zYznSVacITqe6NrqeJ1F+ftS4rrHdfxd+J7kIoCs V2L8e+BJvmHdhmNV2qMAgJdGlfxfQBA7fv2cy52HKYcouoOh1AUVR/x+yXVXAsCd qJP3+dlUKccgm/oc5unEC1eZ49u8O+EoasqOyfG6K5udMgzhEX3K6imT9J3hw0WT UjstYkx5uGS/prUrRCQAX96VCHoZmzEDKtQuHkHvQXEYXsYPF3ldbR2CziNJnHe7 QfSkjJlt8HAtExA+BkwEe9i0MQO/2VF5qsa2e4fA6l7uqGu3LOtS/jJd23C9n9fR Id8aBMeN6S8+MjqRA9L2uf4t6e4ISEHoG9ZRdc4WOwloxEEiJoIeun+7bHdOSZLj AFdHFCz4NXiiwC0UP0xPDI2YeCLqt5np7HmnrUqwzRpVO8UUagiJD8TIpcBSjBN9 J68eidenHUW7/SlIeaMKE2lmo8AUEAJs9AorDSugF19/ThJcQdx7vT2UAZjeVB3j 1dbbwajnlDOk/w8PQC4thFp5/MDlfst0htS3WRwa+vgkweE2EAdTU4hUZ8qEP7FQ smhYtlT1xUSTYDTqoaG/U2OWR6/UU79wP0jgcOsHXTuyYrtPI/Q= =VmXL -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit architectural register (ZT0, for the look-up table feature) that Linux needs to save/restore - Include TPIDR2 in the signal context and add the corresponding kselftests - Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG (ARM CMN) at probe time - Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64 - Permit EFI boot with MMU and caches on. Instead of cleaning the entire loaded kernel image to the PoC and disabling the MMU and caches before branching to the kernel bare metal entry point, leave the MMU and caches enabled and rely on EFI's cacheable 1:1 mapping of all of system RAM to populate the initial page tables - Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64 kernel (the arm32 kernel only defines the values) - Harden the arm64 shadow call stack pointer handling: stash the shadow stack pointer in the task struct on interrupt, load it directly from this structure - Signal handling cleanups to remove redundant validation of size information and avoid reading the same data from userspace twice - Refactor the hwcap macros to make use of the automatically generated ID registers. It should make new hwcaps writing less error prone - Further arm64 sysreg conversion and some fixes - arm64 kselftest fixes and improvements - Pointer authentication cleanups: don't sign leaf functions, unify asm-arch manipulation - Pseudo-NMI code generation optimisations - Minor fixes for SME and TPIDR2 handling - Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable, replace strtobool() to kstrtobool() in the cpufeature.c code, apply dynamic shadow call stack in two passes, intercept pfn changes in set_pte_at() without the required break-before-make sequence, attempt to dump all instructions on unhandled kernel faults * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (130 commits) arm64: fix .idmap.text assertion for large kernels kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests kselftest/arm64: Copy whole EXTRA context arm64: kprobes: Drop ID map text from kprobes blacklist perf: arm_spe: Print the version of SPE detected perf: arm_spe: Add support for SPEv1.2 inverted event filtering perf: Add perf_event_attr::config3 arm64/sme: Fix __finalise_el2 SMEver check drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable arm64/signal: Only read new data when parsing the ZT context arm64/signal: Only read new data when parsing the ZA context arm64/signal: Only read new data when parsing the SVE context arm64/signal: Avoid rereading context frame sizes arm64/signal: Make interface for restore_fpsimd_context() consistent arm64/signal: Remove redundant size validation from parse_user_sigframe() arm64/signal: Don't redundantly verify FPSIMD magic arm64/cpufeature: Use helper macros to specify hwcaps arm64/cpufeature: Always use symbolic name for feature value in hwcaps arm64/sysreg: Initial unsigned annotations for ID registers arm64/sysreg: Initial annotation of signed ID registers ... |
||
![]() |
4a7d37e824 |
hardening updates for v6.3-rc1
- Replace 0-length and 1-element arrays with flexible arrays in various subsystems (Paulo Miguel Almeida, Stephen Rothwell, Kees Cook) - randstruct: Disable Clang 15 support (Eric Biggers) - GCC plugins: Drop -std=gnu++11 flag (Sam James) - strpbrk(): Refactor to use strchr() (Andy Shevchenko) - LoadPin LSM: Allow root filesystem switching when non-enforcing - fortify: Use dynamic object size hints when available - ext4: Fix CFI function prototype mismatch - Nouveau: Fix DP buffer size arguments - hisilicon: Wipe entire crypto DMA pool on error - coda: Fully allocate sig_inputArgs - UBSAN: Improve arm64 trap code reporting - copy_struct_from_user(): Add minimum bounds check on kernel buffer size -----BEGIN PGP SIGNATURE----- iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmPv1Y8WHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJg5UD/9x3Lx0EG3iL4qPtjmohaXd899r AzP1ysoxYnmo/cY0//W3DPCJrUaVlTm7M2xXOpzi7YPVD8Jcofzy6Uxm9BiG/OJ9 bla7uQixlDMA2MBmWzAXhM7337WgEtBcr6kbXk6rHFnzmk8CdAY3wjmLmiefxEWT gkdeJlbkBFynssSF2nejgCvr/ZyiWQr2V9hRdEavLQH/MDS785bmNwbLyUNqK+eo gOtuyjyV90t+cSIN0bF7gOCFGf1ivKA/+GNFrob0jY0Fy2kGx1I2wQMn9yzjzerC o6Majz9r+7Z7xIaz2Pm9nDaWyZDI05RfoRpQZ9dSEJ+zYgbFBFpDpJShcJvSpNa0 POqeR400n/6VWBcbk7UU0s7VCVU13IsOFhBSVMQM5FfzIcUkj0/VBm0Jm0ODrpM9 13/nKyAkvHkH0uSJbQjn79rXvEvqQyi5f28emm2CuhiHHUiDEUdsmMD7fE8UXo4r U8dgfwTOLLQBKmOQJcgiLo8iLDPhatZKYQAZ7LMY9kbHLsJlRVxfzY9PriNCuI5o XuMLJG33TrlUDfqQrKeSJ9srVRiiIBAzoWnIfIVE3Xb46LqFNXVRdJCt4A2678jn gYIzkQ2HbVe2chUhUyjsjGTjmmeX9qZG0UOlhRQ0RvWFxi390wwYqhkSaOEGtDGv QbVh0Lb86m3H/G+M9g== =XnVa -----END PGP SIGNATURE----- Merge tag 'hardening-v6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardening updates from Kees Cook: "Beyond some specific LoadPin, UBSAN, and fortify features, there are other fixes scattered around in various subsystems where maintainers were okay with me carrying them in my tree or were non-responsive but the patches were reviewed by others: - Replace 0-length and 1-element arrays with flexible arrays in various subsystems (Paulo Miguel Almeida, Stephen Rothwell, Kees Cook) - randstruct: Disable Clang 15 support (Eric Biggers) - GCC plugins: Drop -std=gnu++11 flag (Sam James) - strpbrk(): Refactor to use strchr() (Andy Shevchenko) - LoadPin LSM: Allow root filesystem switching when non-enforcing - fortify: Use dynamic object size hints when available - ext4: Fix CFI function prototype mismatch - Nouveau: Fix DP buffer size arguments - hisilicon: Wipe entire crypto DMA pool on error - coda: Fully allocate sig_inputArgs - UBSAN: Improve arm64 trap code reporting - copy_struct_from_user(): Add minimum bounds check on kernel buffer size" * tag 'hardening-v6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: randstruct: disable Clang 15 support uaccess: Add minimum bounds check on kernel buffer size arm64: Support Clang UBSAN trap codes for better reporting coda: Avoid partial allocation of sig_inputArgs gcc-plugins: drop -std=gnu++11 to fix GCC 13 build lib/string: Use strchr() in strpbrk() crypto: hisilicon: Wipe entire pool on error net/i40e: Replace 0-length array with flexible array io_uring: Replace 0-length array with flexible array ext4: Fix function prototype mismatch for ext4_feat_ktype i915/gvt: Replace one-element array with flexible-array member drm/nouveau/disp: Fix nvif_outp_acquire_dp() argument size LoadPin: Allow filesystem switch when not enforcing LoadPin: Move pin reporting cleanly out of locking LoadPin: Refactor sysctl initialization LoadPin: Refactor read-only check into a helper ARM: ixp4xx: Replace 0-length arrays with flexible arrays fortify: Use __builtin_dynamic_object_size() when available rxrpc: replace zero-lenth array with DECLARE_FLEX_ARRAY() helper |
||
![]() |
1f2d9ffc7a |
Scheduler updates in this cycle are:
- Improve the scalability of the CFS bandwidth unthrottling logic with large number of CPUs. - Fix & rework various cpuidle routines, simplify interaction with the generic scheduler code. Add __cpuidle methods as noinstr to objtool's noinstr detection and fix boatloads of cpuidle bugs & quirks. - Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query previously issued registrations. - Limit scheduler slice duration to the sysctl_sched_latency period, to improve scheduling granularity with a large number of SCHED_IDLE tasks. - Debuggability enhancement on sys_exit(): warn about disabled IRQs, but also enable them to prevent a cascade of followup problems and repeat warnings. - Fix the rescheduling logic in prio_changed_dl(). - Micro-optimize cpufreq and sched-util methods. - Micro-optimize ttwu_runnable() - Micro-optimize the idle-scanning in update_numa_stats(), select_idle_capacity() and steal_cookie_task(). - Update the RSEQ code & self-tests - Constify various scheduler methods - Remove unused methods - Refine __init tags - Documentation updates - ... Misc other cleanups, fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmPzbJwRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1iIvA//ZcEaB8Z6ChLRQjM+bsaudKJu3pdLQbPK iYbP8Da+LsAfxbEfYuGV3m+jIp0LlBOtsI/EezxQrXV+V7FvNyAX9Y00eEu/zlj8 7Jn3LMy/DBYTwH7LwVdcU0MyIVI8ZPc6WNnkx0LOtGZn8n+qfHPSDzcP3CW+a5AV UvllPYpYyEmsX0Eby7CF4Ue8mSmbViw/xR3rNr8ZSve0c25XzKabw8O9kE3jiHxP d/zERJoAYeDyYUEuZqhfn5dTlB4an4IjNEkAfRE5SQ09RA8Gkxsa5Ar8gob9e9M1 eQsdd4/bdhnrkM8L5qDZczqmgCTZ2bukQrxkBXhRDhLgoFxwAn77b+2ZjmIW3Lae AyGqRcDSg1q2oxaYm5ZiuO/t26aDOZu9vPHyHRDGt95EGbZlrp+GgeePyfCigJYz UmPdZAAcHdSymnnnlcvdG37WVvaVkpgWZzd8LbtBi23QR+Zc4WQ2IlgnUS5WKNNf VOBcAcP6E1IslDotZDQCc2dPFFQoQQEssVooyUc5oMytm7BsvxXLOeHG+Ncu/8uc H+U8Qn8jnqTxJbC5hkWQIJlhVKCq2FJrHxxySYTKROfUNcDgCmxboFeAcXTCIU1K T0S+sdoTS/CvtLklRkG0j6B8N4N98mOd9cFwUV3tX+/gMLMep3hCQs5L76JagvC5 skkQXoONNaM= =l1nN -----END PGP SIGNATURE----- Merge tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Improve the scalability of the CFS bandwidth unthrottling logic with large number of CPUs. - Fix & rework various cpuidle routines, simplify interaction with the generic scheduler code. Add __cpuidle methods as noinstr to objtool's noinstr detection and fix boatloads of cpuidle bugs & quirks. - Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query previously issued registrations. - Limit scheduler slice duration to the sysctl_sched_latency period, to improve scheduling granularity with a large number of SCHED_IDLE tasks. - Debuggability enhancement on sys_exit(): warn about disabled IRQs, but also enable them to prevent a cascade of followup problems and repeat warnings. - Fix the rescheduling logic in prio_changed_dl(). - Micro-optimize cpufreq and sched-util methods. - Micro-optimize ttwu_runnable() - Micro-optimize the idle-scanning in update_numa_stats(), select_idle_capacity() and steal_cookie_task(). - Update the RSEQ code & self-tests - Constify various scheduler methods - Remove unused methods - Refine __init tags - Documentation updates - Misc other cleanups, fixes * tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits) sched/rt: pick_next_rt_entity(): check list_entry sched/deadline: Add more reschedule cases to prio_changed_dl() sched/fair: sanitize vruntime of entity being placed sched/fair: Remove capacity inversion detection sched/fair: unlink misfit task from cpu overutilized objtool: mem*() are not uaccess safe cpuidle: Fix poll_idle() noinstr annotation sched/clock: Make local_clock() noinstr sched/clock/x86: Mark sched_clock() noinstr x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read() x86/atomics: Always inline arch_atomic64*() cpuidle: tracing, preempt: Squash _rcuidle tracing cpuidle: tracing: Warn about !rcu_is_watching() cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG cpuidle: drivers: firmware: psci: Dont instrument suspend code KVM: selftests: Fix build of rseq test exit: Detect and fix irq disabled state in oops cpuidle, arm64: Fix the ARM64 cpuidle logic cpuidle: mvebu: Fix duplicate flags assignment sched/fair: Limit sched slice duration ... |
||
![]() |
d54170812e |
arm64: fix .idmap.text assertion for large kernels
When building a kernel with many debug options enabled (which happens in test configurations use by myself and syzbot), the kernel can become large enough that portions of .text can be more than 128M away from .idmap.text (which is placed inside the .rodata section). Where idmap code branches into .text, the linker will place veneers in the .idmap.text section to make those branches possible. Unfortunately, as Ard reports, GNU LD has bseen observed to add 4K of padding when adding such veneers, e.g. | .idmap.text 0xffffffc01e48e5c0 0x32c arch/arm64/mm/proc.o | 0xffffffc01e48e5c0 idmap_cpu_replace_ttbr1 | 0xffffffc01e48e600 idmap_kpti_install_ng_mappings | 0xffffffc01e48e800 __cpu_setup | *fill* 0xffffffc01e48e8ec 0x4 | .idmap.text.stub | 0xffffffc01e48e8f0 0x18 linker stubs | 0xffffffc01e48f8f0 __idmap_text_end = . | 0xffffffc01e48f000 . = ALIGN (0x1000) | *fill* 0xffffffc01e48f8f0 0x710 | 0xffffffc01e490000 idmap_pg_dir = . This makes the __idmap_text_start .. __idmap_text_end region bigger than the 4K we require it to fit within, and triggers an assertion in arm64's vmlinux.lds.S, which breaks the build: | LD .tmp_vmlinux.kallsyms1 | aarch64-linux-gnu-ld: ID map text too big or misaligned | make[1]: *** [scripts/Makefile.vmlinux:35: vmlinux] Error 1 | make: *** [Makefile:1264: vmlinux] Error 2 Avoid this by using an `ADRP+ADD+BLR` sequence for branches out of .idmap.text, which avoids the need for veneers. These branches are only executed once per boot, and only when the MMU is on, so there should be no noticeable performance penalty in replacing `BL` with `ADRP+ADD+BLR`. At the same time, remove the "x" and "w" attributes when placing code in .idmap.text, as these are not necessary, and this will prevent the linker from assuming that it is safe to place PLTs into .idmap.text, causing it to warn if and when there are out-of-range branches within .idmap.text, e.g. | LD .tmp_vmlinux.kallsyms1 | arch/arm64/kernel/head.o: in function `primary_entry': | (.idmap.text+0x1c): relocation truncated to fit: R_AARCH64_CALL26 against symbol `dcache_clean_poc' defined in .text section in arch/arm64/mm/cache.o | arch/arm64/kernel/head.o: in function `init_el2': | (.idmap.text+0x88): relocation truncated to fit: R_AARCH64_CALL26 against symbol `dcache_clean_poc' defined in .text section in arch/arm64/mm/cache.o | make[1]: *** [scripts/Makefile.vmlinux:34: vmlinux] Error 1 | make: *** [Makefile:1252: vmlinux] Error 2 Thus, if future changes add out-of-range branches in .idmap.text, it should be easy enough to identify those from the resulting linker errors. Reported-by: syzbot+f8ac312e31226e23302b@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-arm-kernel/00000000000028ea4105f4e2ef54@google.com/ Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Will Deacon <will@kernel.org> Tested-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230220162317.1581208-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
4090871d77 |
KVM/arm64 updates for 6.3
- Provide a virtual cache topology to the guest to avoid inconsistencies with migration on heterogenous systems. Non secure software has no practical need to traverse the caches by set/way in the first place. - Add support for taking stage-2 access faults in parallel. This was an accidental omission in the original parallel faults implementation, but should provide a marginal improvement to machines w/o FEAT_HAFDBS (such as hardware from the fruit company). - A preamble to adding support for nested virtualization to KVM, including vEL2 register state, rudimentary nested exception handling and masking unsupported features for nested guests. - Fixes to the PSCI relay that avoid an unexpected host SVE trap when resuming a CPU when running pKVM. - VGIC maintenance interrupt support for the AIC - Improvements to the arch timer emulation, primarily aimed at reducing the trap overhead of running nested. - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the interest of CI systems. - Avoid VM-wide stop-the-world operations when a vCPU accesses its own redistributor. - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions in the host. - Aesthetic and comment/kerneldoc fixes - Drop the vestiges of the old Columbia mailing list and add myself as co-maintainer This also drags in a couple of branches to avoid conflicts: - The shared 'kvm-hw-enable-refactor' branch that reworks initialization, as it conflicted with the virtual cache topology changes. - arm64's 'for-next/sme2' branch, as the PSCI relay changes, as both touched the EL2 initialization code. -----BEGIN PGP SIGNATURE----- iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmPw29cPHG1hekBrZXJu ZWwub3JnAAoJECPQ0LrRPXpD9doQAIJyMW0odT6JBe15uGCxTuTnJbb8mniajJdX CuSxPl85WyKLtZbIJLRTQgyt6Nzbu0N38zM0y/qBZT5BvAnWYI8etvnJhYZjooAy jrf0Me/GM5hnORXN+1dByCmlV+DSuBkax86tgIC7HhU71a2SWpjlmWQi/mYvQmIK PBAqpFF+w2cWHi0ZvCq96c5EXBdN4FLEA5cdZhekCbgw1oX8+x+HxdpBuGW5lTEr 9oWOzOzJQC1uFnjP3unFuIaG94QIo+NA4aGLMzfb7wm2wdQUnKebtdj/RxsDZOKe 43Q1+MDFWMsxxFu4FULH8fPMwidIm5rfz3pw3JJloqaZp8vk/vjDLID7AYucMIX8 1G/mjqz6E9lYvv57WBmBhT/+apSDAmeHlAT97piH73Nemga91esDKuHSdtA8uB5j mmzcUYajuB2GH9rsaXJhVKt/HW7l9fbGliCkI99ckq/oOTO9VsKLsnwS/rMRIsPn y2Y8Lyoe4eqokd1DNn5/bo+3qDnfmzm6iDmZOo+JYuJv9KS95zuw17Wu7la9UAPV e13+btoijHDvu8RnTecuXljWfAAKVtEjpEIoS5aP2R2iDvhr0d8POlMPaJ40YuRq D2fKr18b6ngt+aI0TY63/ksEIFexx67HuwQsUZ2lRjyjq5/x+u3YIqUPbKrU4Rnl uxXjSvyr =r4s/ -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 6.3 - Provide a virtual cache topology to the guest to avoid inconsistencies with migration on heterogenous systems. Non secure software has no practical need to traverse the caches by set/way in the first place. - Add support for taking stage-2 access faults in parallel. This was an accidental omission in the original parallel faults implementation, but should provide a marginal improvement to machines w/o FEAT_HAFDBS (such as hardware from the fruit company). - A preamble to adding support for nested virtualization to KVM, including vEL2 register state, rudimentary nested exception handling and masking unsupported features for nested guests. - Fixes to the PSCI relay that avoid an unexpected host SVE trap when resuming a CPU when running pKVM. - VGIC maintenance interrupt support for the AIC - Improvements to the arch timer emulation, primarily aimed at reducing the trap overhead of running nested. - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the interest of CI systems. - Avoid VM-wide stop-the-world operations when a vCPU accesses its own redistributor. - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions in the host. - Aesthetic and comment/kerneldoc fixes - Drop the vestiges of the old Columbia mailing list and add [Oliver] as co-maintainer This also drags in arm64's 'for-next/sme2' branch, because both it and the PSCI relay changes touch the EL2 initialization code. |
||
![]() |
0e68b5517d |
arm64: efi: Make efi_rt_lock a raw_spinlock
Running a rt-kernel base on 6.2.0-rc3-rt1 on an Ampere Altra outputs the following: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 9, name: kworker/u320:0 preempt_count: 2, expected: 0 RCU nest depth: 0, expected: 0 3 locks held by kworker/u320:0/9: #0: ffff3fff8c27d128 ((wq_completion)efi_rts_wq){+.+.}-{0:0}, at: process_one_work (./include/linux/atomic/atomic-long.h:41) #1: ffff80000861bdd0 ((work_completion)(&efi_rts_work.work)){+.+.}-{0:0}, at: process_one_work (./include/linux/atomic/atomic-long.h:41) #2: ffffdf7e1ed3e460 (efi_rt_lock){+.+.}-{3:3}, at: efi_call_rts (drivers/firmware/efi/runtime-wrappers.c:101) Preemption disabled at: efi_virtmap_load (./arch/arm64/include/asm/mmu_context.h:248) CPU: 0 PID: 9 Comm: kworker/u320:0 Tainted: G W 6.2.0-rc3-rt1 Hardware name: WIWYNN Mt.Jade Server System B81.03001.0005/Mt.Jade Motherboard, BIOS 1.08.20220218 (SCP: 1.08.20220218) 2022/02/18 Workqueue: efi_rts_wq efi_call_rts Call trace: dump_backtrace (arch/arm64/kernel/stacktrace.c:158) show_stack (arch/arm64/kernel/stacktrace.c:165) dump_stack_lvl (lib/dump_stack.c:107 (discriminator 4)) dump_stack (lib/dump_stack.c:114) __might_resched (kernel/sched/core.c:10134) rt_spin_lock (kernel/locking/rtmutex.c:1769 (discriminator 4)) efi_call_rts (drivers/firmware/efi/runtime-wrappers.c:101) [...] This seems to come from commit |
||
![]() |
0c2822b116 |
arm64 regression fix for 6.2
- Fix 'perf' regression for non-standard CPU PMU hardware (i.e. Apple M1)
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmPvVyAQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNEwzCACuxJI7xVvcjLktrcmdajkNH+j8Owvrpfq+
8Uja4ykbNJr9BIsZFcI9b7Y2vH7k4+noYDozPKvBgKlSYJVyUUsK2QoJNLzPflc2
RJDPjaM8KrBBE5OTgR5Pvbda+QJ2x5GQGmI1IZv//KVnRUoLTOAje9th4Yza+/oV
5y4THZjHlCeHpsfaVWNiVPqoodQw7Su++kXLABgBZrnRuBwg1lHUQp60cLdTx3lE
M4xgvB9MD1+QDFOgtP97AzegT7F251QFnr3JuBj9gtARX8qv2v/REBG/DRsgcPAm
piJ8pXaVuNf1rkznRlhiCtI5hhP+OIyySugDxzisBDUXfZ8AJOsv
=4A3e
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 regression fix from Will Deacon:
"Apologies for the _extremely_ late pull request here, but we had a
'perf' (i.e. CPU PMU) regression on the Apple M1 reported on Wednesday
[1] which was introduced by
|
||
![]() |
853e2dac25 |
arm64: perf: reject CHAIN events at creation time
Currently it's possible for a user to open CHAIN events arbitrarily, which we previously tried to rule out in commit: |
||
![]() |
61d0386273 |
arm_pmu: fix event CPU filtering
Janne reports that perf has been broken on Apple M1 as of commit: |
||
![]() |
0d3b2b4d23 |
Merge branch kvm-arm64/nv-prefix into kvmarm/next
* kvm-arm64/nv-prefix: : Preamble to NV support, courtesy of Marc Zyngier. : : This brings in a set of prerequisite patches for supporting nested : virtualization in KVM/arm64. Of course, there is a long way to go until : NV is actually enabled in KVM. : : - Introduce cpucap / vCPU feature flag to pivot the NV code on : : - Add support for EL2 vCPU register state : : - Basic nested exception handling : : - Hide unsupported features from the ID registers for NV-capable VMs KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes KVM: arm64: nv: Filter out unsupported features from ID regs KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2 KVM: arm64: nv: Allow a sysreg to be hidden from userspace only KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2 KVM: arm64: nv: Handle SMCs taken from virtual EL2 KVM: arm64: nv: Handle trapped ERET from virtual EL2 KVM: arm64: nv: Inject HVC exceptions to the virtual EL2 KVM: arm64: nv: Support virtual EL2 exceptions KVM: arm64: nv: Handle HCR_EL2.NV system register traps KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state KVM: arm64: nv: Add EL2 system registers to vcpu context KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set KVM: arm64: nv: Introduce nested virtualization VCPU feature KVM: arm64: Use the S2 MMU context to iterate over S2 table arm64: Add ARM64_HAS_NESTED_VIRT cpufeature Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
3f1a14af5e |
Merge branch kvm-arm64/psci-relay-fixes into kvmarm/next
* kvm-arm64/psci-relay-fixes: : Fixes for CPU on/resume with pKVM, courtesy Quentin Perret. : : A consequence of deprivileging the host is that pKVM relays PSCI calls : on behalf of the host. pKVM's CPU initialization failed to fully : initialize the CPU's EL2 state, which notably led to unexpected SVE : traps resulting in a hyp panic. : : The issue is addressed by reusing parts of __finalise_el2 to restore CPU : state in the PSCI relay. KVM: arm64: Finalise EL2 state from pKVM PSCI relay KVM: arm64: Use sanitized values in __check_override in nVHE KVM: arm64: Introduce finalise_el2_state macro KVM: arm64: Provide sanitized SYS_ID_AA64SMFR0_EL1 to nVHE |
||
![]() |
e8789ab704 |
Merge branch kvm-arm64/virtual-cache-geometry into kvmarm/next
* kvm-arm64/virtual-cache-geometry: : Virtualized cache geometry for KVM guests, courtesy of Akihiko Odaki. : : KVM/arm64 has always exposed the host cache geometry directly to the : guest, even though non-secure software should never perform CMOs by : Set/Way. This was slightly wrong, as the cache geometry was derived from : the PE on which the vCPU thread was running and not a sanitized value. : : All together this leads to issues migrating VMs on heterogeneous : systems, as the cache geometry saved/restored could be inconsistent. : : KVM/arm64 now presents 1 level of cache with 1 set and 1 way. The cache : geometry is entirely controlled by userspace, such that migrations from : older kernels continue to work. KVM: arm64: Mark some VM-scoped allocations as __GFP_ACCOUNT KVM: arm64: Normalize cache configuration KVM: arm64: Mask FEAT_CCIDX KVM: arm64: Always set HCR_TID2 arm64/cache: Move CLIDR macro definitions arm64/sysreg: Add CCSIDR2_EL1 arm64/sysreg: Convert CCSIDR_EL1 to automatic generation arm64: Allow the definition of UNKNOWN system register fields Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
619cec0085 |
Merge branch arm64/for-next/sme2 into kvmarm/next
Merge the SME2 branch to fix up a rather annoying conflict due to the EL2 finalization refactor. Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
675cabc899 |
arm64: Add ARM64_HAS_NESTED_VIRT cpufeature
Add a new ARM64_HAS_NESTED_VIRT feature to indicate that the CPU has the ARMv8.3 nested virtualization capability, together with the 'kvm-arm.mode=nested' command line option. This will be used to support nested virtualization in KVM. Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Jintack Lim <jintack.lim@linaro.org> Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> [maz: moved the command-line option to kvm-arm.mode] Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20230209175820.1939006-2-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
ad4a4d3aff |
Merge branch 'for-next/signal' into for-next/core
* for-next/signal: : Signal handling cleanups arm64/signal: Only read new data when parsing the ZT context arm64/signal: Only read new data when parsing the ZA context arm64/signal: Only read new data when parsing the SVE context arm64/signal: Avoid rereading context frame sizes arm64/signal: Make interface for restore_fpsimd_context() consistent arm64/signal: Remove redundant size validation from parse_user_sigframe() arm64/signal: Don't redundantly verify FPSIMD magic |
||
![]() |
960046361e |
Merge branch 'for-next/sysreg-hwcaps' into for-next/core
* for-next/sysreg-hwcaps: : Make use of sysreg helpers for hwcaps arm64/cpufeature: Use helper macros to specify hwcaps arm64/cpufeature: Always use symbolic name for feature value in hwcaps arm64/sysreg: Initial unsigned annotations for ID registers arm64/sysreg: Initial annotation of signed ID registers arm64/sysreg: Allow enumerations to be declared as signed or unsigned |
||
![]() |
156010ed9c |
Merge branches 'for-next/sysreg', 'for-next/sme', 'for-next/kselftest', 'for-next/misc', 'for-next/sme2', 'for-next/tpidr2', 'for-next/scs', 'for-next/compat-hwcap', 'for-next/ftrace', 'for-next/efi-boot-mmu-on', 'for-next/ptrauth' and 'for-next/pseudo-nmi', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: perf: arm_spe: Print the version of SPE detected perf: arm_spe: Add support for SPEv1.2 inverted event filtering perf: Add perf_event_attr::config3 drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable perf: arm_spe: Support new SPEv1.2/v8.7 'not taken' event perf: arm_spe: Use new PMSIDR_EL1 register enums perf: arm_spe: Drop BIT() and use FIELD_GET/PREP accessors arm64/sysreg: Convert SPE registers to automatic generation arm64: Drop SYS_ from SPE register defines perf: arm_spe: Use feature numbering for PMSEVFR_EL1 defines perf/marvell: Add ACPI support to TAD uncore driver perf/marvell: Add ACPI support to DDR uncore driver perf/arm-cmn: Reset DTM_PMU_CONFIG at probe drivers/perf: hisi: Extract initialization of "cpa_pmu->pmu" drivers/perf: hisi: Simplify the parameters of hisi_pmu_init() drivers/perf: hisi: Advertise the PERF_PMU_CAP_NO_EXCLUDE capability * for-next/sysreg: : arm64 sysreg and cpufeature fixes/updates KVM: arm64: Use symbolic definition for ISR_EL1.A arm64/sysreg: Add definition of ISR_EL1 arm64/sysreg: Add definition for ICC_NMIAR1_EL1 arm64/cpufeature: Remove 4 bit assumption in ARM64_FEATURE_MASK() arm64/sysreg: Fix errors in 32 bit enumeration values arm64/cpufeature: Fix field sign for DIT hwcap detection * for-next/sme: : SME-related updates arm64/sme: Optimise SME exit on syscall entry arm64/sme: Don't use streaming mode to probe the maximum SME VL arm64/ptrace: Use system_supports_tpidr2() to check for TPIDR2 support * for-next/kselftest: (23 commits) : arm64 kselftest fixes and improvements kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests kselftest/arm64: Copy whole EXTRA context kselftest/arm64: Fix enumeration of systems without 128 bit SME for SSVE+ZA kselftest/arm64: Fix enumeration of systems without 128 bit SME kselftest/arm64: Don't require FA64 for streaming SVE tests kselftest/arm64: Limit the maximum VL we try to set via ptrace kselftest/arm64: Correct buffer size for SME ZA storage kselftest/arm64: Remove the local NUM_VL definition kselftest/arm64: Verify simultaneous SSVE and ZA context generation kselftest/arm64: Verify that SSVE signal context has SVE_SIG_FLAG_SM set kselftest/arm64: Remove spurious comment from MTE test Makefile kselftest/arm64: Support build of MTE tests with clang kselftest/arm64: Initialise current at build time in signal tests kselftest/arm64: Don't pass headers to the compiler as source kselftest/arm64: Remove redundant _start labels from FP tests kselftest/arm64: Fix .pushsection for strings in FP tests kselftest/arm64: Run BTI selftests on systems without BTI kselftest/arm64: Fix test numbering when skipping tests kselftest/arm64: Skip non-power of 2 SVE vector lengths in fp-stress kselftest/arm64: Only enumerate power of two VLs in syscall-abi ... * for-next/misc: : Miscellaneous arm64 updates arm64/mm: Intercept pfn changes in set_pte_at() Documentation: arm64: correct spelling arm64: traps: attempt to dump all instructions arm64: Apply dynamic shadow call stack patching in two passes arm64: el2_setup.h: fix spelling typo in comments arm64: Kconfig: fix spelling arm64: cpufeature: Use kstrtobool() instead of strtobool() arm64: Avoid repeated AA64MMFR1_EL1 register read on pagefault path arm64: make ARCH_FORCE_MAX_ORDER selectable * for-next/sme2: (23 commits) : Support for arm64 SME 2 and 2.1 arm64/sme: Fix __finalise_el2 SMEver check kselftest/arm64: Remove redundant _start labels from zt-test kselftest/arm64: Add coverage of SME 2 and 2.1 hwcaps kselftest/arm64: Add coverage of the ZT ptrace regset kselftest/arm64: Add SME2 coverage to syscall-abi kselftest/arm64: Add test coverage for ZT register signal frames kselftest/arm64: Teach the generic signal context validation about ZT kselftest/arm64: Enumerate SME2 in the signal test utility code kselftest/arm64: Cover ZT in the FP stress test kselftest/arm64: Add a stress test program for ZT0 arm64/sme: Add hwcaps for SME 2 and 2.1 features arm64/sme: Implement ZT0 ptrace support arm64/sme: Implement signal handling for ZT arm64/sme: Implement context switching for ZT0 arm64/sme: Provide storage for ZT0 arm64/sme: Add basic enumeration for SME2 arm64/sme: Enable host kernel to access ZT0 arm64/sme: Manually encode ZT0 load and store instructions arm64/esr: Document ISS for ZT0 being disabled arm64/sme: Document SME 2 and SME 2.1 ABI ... * for-next/tpidr2: : Include TPIDR2 in the signal context kselftest/arm64: Add test case for TPIDR2 signal frame records kselftest/arm64: Add TPIDR2 to the set of known signal context records arm64/signal: Include TPIDR2 in the signal context arm64/sme: Document ABI for TPIDR2 signal information * for-next/scs: : arm64: harden shadow call stack pointer handling arm64: Stash shadow stack pointer in the task struct on interrupt arm64: Always load shadow stack pointer directly from the task struct * for-next/compat-hwcap: : arm64: Expose compat ARMv8 AArch32 features (HWCAPs) arm64: Add compat hwcap SSBS arm64: Add compat hwcap SB arm64: Add compat hwcap I8MM arm64: Add compat hwcap ASIMDBF16 arm64: Add compat hwcap ASIMDFHM arm64: Add compat hwcap ASIMDDP arm64: Add compat hwcap FPHP and ASIMDHP * for-next/ftrace: : Add arm64 support for DYNAMICE_FTRACE_WITH_CALL_OPS arm64: avoid executing padding bytes during kexec / hibernation arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS arm64: ftrace: Update stale comment arm64: patching: Add aarch64_insn_write_literal_u64() arm64: insn: Add helpers for BTI arm64: Extend support for CONFIG_FUNCTION_ALIGNMENT ACPI: Don't build ACPICA with '-Os' Compiler attributes: GCC cold function alignment workarounds ftrace: Add DYNAMIC_FTRACE_WITH_CALL_OPS * for-next/efi-boot-mmu-on: : Permit arm64 EFI boot with MMU and caches on arm64: kprobes: Drop ID map text from kprobes blacklist arm64: head: Switch endianness before populating the ID map efi: arm64: enter with MMU and caches enabled arm64: head: Clean the ID map and the HYP text to the PoC if needed arm64: head: avoid cache invalidation when entering with the MMU on arm64: head: record the MMU state at primary entry arm64: kernel: move identity map out of .text mapping arm64: head: Move all finalise_el2 calls to after __enable_mmu * for-next/ptrauth: : arm64 pointer authentication cleanup arm64: pauth: don't sign leaf functions arm64: unify asm-arch manipulation * for-next/pseudo-nmi: : Pseudo-NMI code generation optimisations arm64: irqflags: use alternative branches for pseudo-NMI logic arm64: add ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap arm64: make ARM64_HAS_GIC_PRIO_MASKING depend on ARM64_HAS_GIC_CPUIF_SYSREGS arm64: rename ARM64_HAS_IRQ_PRIO_MASKING to ARM64_HAS_GIC_PRIO_MASKING arm64: rename ARM64_HAS_SYSREG_GIC_CPUIF to ARM64_HAS_GIC_CPUIF_SYSREGS |
||
![]() |
1d959312e2 |
efi: arm64: Wire up BTI annotation in memory attributes table
UEFI v2.10 extends the EFI memory attributes table with a flag that indicates whether or not all RuntimeServicesCode regions were constructed with BTI landing pads, permitting the OS to map these regions with BTI restrictions enabled. So let's take this into account on arm64. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Will Deacon <will@kernel.org> |
||
![]() |
25b84002af |
arm64: Support Clang UBSAN trap codes for better reporting
When building with CONFIG_UBSAN_TRAP=y on arm64, Clang encodes the UBSAN check (handler) type in the esr. Extract this and actually report these traps as coming from the specific UBSAN check that tripped. Before: Internal error: BRK handler: 00000000f20003e8 [#1] PREEMPT SMP After: Internal error: UBSAN: shift out of bounds: 00000000f2005514 [#1] PREEMPT SMP Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Mukesh Ojha <quic_mojha@quicinc.com> Reviewed-by: Fangrui Song <maskray@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: John Stultz <jstultz@google.com> Cc: Yongqin Liu <yongqin.liu@linaro.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Yury Norov <yury.norov@gmail.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Cc: linux-arm-kernel@lists.infradead.org Cc: llvm@lists.linux.dev Signed-off-by: Kees Cook <keescook@chromium.org> |
||
![]() |
a088cf8eee |
arm64: kprobes: Drop ID map text from kprobes blacklist
The ID mapped text region is never accessed via the normal kernel
mapping of text, and so it was moved into .rodata instead. This means it
is no longer considered as a suitable place for kprobes by default, and
the explicit blacklist is unnecessary, and actually results in an error
message at boot:
kprobes: Failed to populate blacklist (error -22), kprobes not restricted, be careful using them!
So stop blacklisting the ID map text explicitly.
Fixes:
|
||
![]() |
9442d05bba |
arm64/sme: Fix __finalise_el2 SMEver check
When checking for ID_AA64SMFR0_EL1.SMEver, __check_override assumes
that the ID_AA64SMFR0_EL1 value is in x1, and the intent of the code
is to reuse value read a few lines above.
However, as the comment says at the beginning of the macro, x1 will
be clobbered, and the checks always fails.
The easiest fix is just to reload the id register before checking it.
Fixes:
|
||
![]() |
cf1d2ffcc6 |
efi: Discover BTI support in runtime services regions
Add the generic plumbing to detect whether or not the runtime code regions were constructed with BTI/IBT landing pads by the firmware, permitting the OS to enable enforcement when mapping these regions into the OS's address space. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> |
||
![]() |
e2d4f5ae17 |
KVM: arm64: Introduce finalise_el2_state macro
Factor out the first half of the finalise_el2 function into a macro to allow its reuse from the nVHE PSCI relay code. While at it, make the register allocation parametric for the check_override macros as they are now more widely exposed. No functional changes intended. Signed-off-by: Quentin Perret <qperret@google.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230201103755.1398086-3-qperret@google.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
ad678be423 |
arm64/signal: Only read new data when parsing the ZT context
When we parse the ZT signal context we read the entire context from userspace, including the generic signal context header which was already read by parse_user_sigframe() and padding bytes that we ignore. Avoid the possibility of relying on the second read of the data read twice by only reading the data which we are actually going to use. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221212-arm64-signal-cleanup-v3-7-4545c94b20ff@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
24d68345a0 |
arm64/signal: Only read new data when parsing the ZA context
When we parse the ZA signal context we read the entire context from userspace, including the generic signal context header which was already read by parse_user_sigframe() and padding bytes that we ignore. Avoid the possibility of relying on the second read of the data read twice by only reading the data which we are actually going to use. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221212-arm64-signal-cleanup-v3-6-4545c94b20ff@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
f3ac48aa3a |
arm64/signal: Only read new data when parsing the SVE context
When we parse the SVE signal context we read the entire context from userspace, including the generic signal context header which was already read by parse_user_sigframe() and padding bytes that we ignore. Avoid the possibility of relying on the second read of the data read twice by only reading the data which we are actually going to use. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221212-arm64-signal-cleanup-v3-5-4545c94b20ff@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b57682b315 |
arm64/signal: Avoid rereading context frame sizes
We need to read the sizes of the signal context frames as part of parsing the overall signal context in parse_user_sigframe(). In the cases where we defer frame specific parsing to other functions those functions (other than the recently added TPIDR2 parser) reread the size and validate the version they read, opening the possibility that the value may change. Avoid this possibility by passing the size read in parse_user_sigframe() through user_ctxs and referring to that. For consistency we move the size check for the TPIDR2 context into the TPIDR2 parsing function. Note that for SVE, ZA and ZT contexts we still read the size again but after this change we no longer use the value, further changes will avoid the read. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221212-arm64-signal-cleanup-v3-4-4545c94b20ff@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
4e4e93045f |
arm64/signal: Make interface for restore_fpsimd_context() consistent
Instead of taking a pointer to struct user_ctxs like the other two restore_blah_context() functions the FPSIMD function takes a pointer to the user struct it should read. Change it to be consistent with the rest, both for consistency and to prepare for changes which avoid rereading data that has already been read by the core parsing code. There should be no functional change from this patch. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221212-arm64-signal-cleanup-v3-3-4545c94b20ff@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
0eb23720f2 |
arm64/signal: Remove redundant size validation from parse_user_sigframe()
There is some minimal size validation in parse_user_sigframe() however all of the individual parsing functions perform frame specific validation of the sizing information, remove the frame specific size checks in the core so that there isn't any confusion about what we validate for size. Since the checks in the SVE and ZA parsing are after we have read the relevant context and since they won't report an error if the frame is undersized they are adjusted to check for this before doing anything else. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221212-arm64-signal-cleanup-v3-2-4545c94b20ff@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
92f14518cc |
arm64/signal: Don't redundantly verify FPSIMD magic
We validate that the magic in the struct fpsimd_context is correct in restore_fpsimd_context() but this is redundant since parse_user_sigframe() uses this magic to decide to call the function in the first place. Remove the extra validation. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221212-arm64-signal-cleanup-v3-1-4545c94b20ff@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ea776e4932 |
Merge branches 'for-next/tpidr2' and 'for-next/sme2' into for-next/signal
Patches on this branch depend on the branches merged above. |
||
![]() |
bfffd469e5 |
arm64/cpufeature: Use helper macros to specify hwcaps
At present the hwcaps are hard to read and a bit error prone since the macros used to specify matches require us to write out the register name multiple times and explicitly specify the width of the field, hopefully using the correct constant. Now that all the ID registers are generated we can improve this somewhat by redoing the macros so that we specify the register, field and minimum value symbolically and use token pasting to initialise the capability struct with the appropriate values. We move from specifying like this: HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_EL1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_EL1_BT_IMP, CAP_HWCAP, KERNEL_HWCAP_BTI), to this: HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI), which is shorter due to having less duplicate information and makes it much harder to make an error like specifying the wrong field width or an invalid enumeration value since everything must be a constant defined for the sysreg and names are only typed once. There should be no functional effect from this change, a check of the generated .rodata showed no differences. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221207-arm64-sysreg-helpers-v4-5-25b6b3fb9d18@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
82c5acefc9 |
arm64/cpufeature: Always use symbolic name for feature value in hwcaps
Our table of hwcaps sometimes uses the defined constant to specify the enumeration value they are attempting to match but in some cases an unadorned number is used. In preparation for using helper macros to to specify the hwcaps less verbosely replace the magic numbers with their constants, this will hopefully make the conversion to helper macros easier to review. There should be no functional effect from this change, a check of the generate .rodata showed no differences. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221207-arm64-sysreg-helpers-v4-4-25b6b3fb9d18@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
9b074bb1ea |
Merge branches 'for-next/sysreg', 'for-next/compat-hwcap' and 'for-next/sme2' into for-next/sysreg-hwcaps
Patches on this branch depend on the branches merged above. |
||
![]() |
8bf0a8048b |
arm64: add ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap
When Priority Mask Hint Enable (PMHE) == 0b1, the GIC may use the PMR value to determine whether to signal an IRQ to a PE, and consequently after a change to the PMR value, a DSB SY may be required to ensure that interrupts are signalled to a CPU in finite time. When PMHE == 0b0, interrupts are always signalled to the relevant PE, and all masking occurs locally, without requiring a DSB SY. Since commit: |
||
![]() |
4b43f1cd70 |
arm64: make ARM64_HAS_GIC_PRIO_MASKING depend on ARM64_HAS_GIC_CPUIF_SYSREGS
Currently the arm64_cpu_capabilities structure for ARM64_HAS_GIC_PRIO_MASKING open-codes the same CPU field definitions as the arm64_cpu_capabilities structure for ARM64_HAS_GIC_CPUIF_SYSREGS, so that can_use_gic_priorities() can use has_useable_gicv3_cpuif(). This duplication isn't ideal for the legibility of the code, and sets a bad example for any ARM64_HAS_GIC_* definitions added by subsequent patches. Instead, have ARM64_HAS_GIC_PRIO_MASKING check for the ARM64_HAS_GIC_CPUIF_SYSREGS cpucap, and add a comment explaining why this is safe. Subsequent patches will use the same pattern where one cpucap depends upon another. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230130145429.903791-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c888b7bd91 |
arm64: rename ARM64_HAS_IRQ_PRIO_MASKING to ARM64_HAS_GIC_PRIO_MASKING
Subsequent patches will add more GIC-related cpucaps. When we do so, it would be nice to give them a consistent HAS_GIC_* prefix. In preparation for doing so, this patch renames the existing ARM64_HAS_IRQ_PRIO_MASKING cap to ARM64_HAS_GIC_PRIO_MASKING. The cpucaps file was hand-modified; all other changes were scripted with: find . -type f -name '*.[chS]' -print0 | \ xargs -0 sed -i 's/ARM64_HAS_IRQ_PRIO_MASKING/ARM64_HAS_GIC_PRIO_MASKING/' There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230130145429.903791-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
0e62ccb959 |
arm64: rename ARM64_HAS_SYSREG_GIC_CPUIF to ARM64_HAS_GIC_CPUIF_SYSREGS
Subsequent patches will add more GIC-related cpucaps. When we do so, it would be nice to give them a consistent HAS_GIC_* prefix. In preparation for doing so, this patch renames the existing ARM64_HAS_SYSREG_GIC_CPUIF cap to ARM64_HAS_GIC_CPUIF_SYSREGS. The 'CPUIF_SYSREGS' suffix is chosen so that this will be ordered ahead of other ARM64_HAS_GIC_* definitions in subsequent patches. The cpucaps file was hand-modified; all other changes were scripted with: find . -type f -name '*.[chS]' -print0 | \ xargs -0 sed -i 's/ARM64_HAS_SYSREG_GIC_CPUIF/ARM64_HAS_GIC_CPUIF_SYSREGS/' There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230130145429.903791-2-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
921e672dee |
cacheinfo: Remove unused check in init_cache_level()
commit
|
||
![]() |
d931b83e62 |
cacheinfo: Make default acpi_get_cache_info() return an error
commit
|
||
![]() |
57a30218fa |
Linux 6.2-rc6
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmPW7E8eHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGf7MIAI0JnHN9WvtEukSZ E6j6+cEGWxsvD6q0g3GPolaKOCw7hlv0pWcFJFcUAt0jebspMdxV2oUGJ8RYW7Lg nCcHvEVswGKLAQtQSWw52qotW6fUfMPsNYYB5l31sm1sKH4Cgss0W7l2HxO/1LvG TSeNHX53vNAZ8pVnFYEWCSXC9bzrmU/VALF2EV00cdICmfvjlgkELGXoLKJJWzUp s63fBHYGGURSgwIWOKStoO6HNo0j/F/wcSMx8leY8qDUtVKHj4v24EvSgxUSDBER ch3LiSQ6qf4sw/z7pqruKFthKOrlNmcc0phjiES0xwwGiNhLv0z3rAhc4OM2cgYh SDc/Y/c= =zpaD -----END PGP SIGNATURE----- Merge tag 'v6.2-rc6' into sched/core, to pick up fixes Pick up fixes before merging another batch of cpuidle updates. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
![]() |
a873bb493f |
arm64: traps: attempt to dump all instructions
Currently dump_kernel_instr() dumps a few instructions around the pt_regs::pc value, dumping 4 instructions before the PC before dumping the instruction at the PC. If an attempt to read an instruction fails, it gives up and does not attempt to dump any subsequent instructions. This is unfortunate when the pt_regs::pc value points to the start of a page with a leading guard page, where the instruction at the PC can be read, but prior instructions cannot. This patch makes dump_kernel_instr() attempt to dump each instruction regardless of whether reading a prior instruction could be read, which gives a more useful code dump in such cases. When an instruction cannot be read, it is reported as "????????", which cannot be confused with a hex value, For example, with a `UDF #0` (AKA 0x00000000) early in the kexec control page, we'll now get the following code dump: | Internal error: Oops - Undefined instruction: 0000000002000000 [#1] SMP | Modules linked in: | CPU: 0 PID: 261 Comm: kexec Not tainted 6.2.0-rc5+ #26 | Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 | pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : 0x48c00000 | lr : machine_kexec+0x190/0x200 | sp : ffff80000d36ba80 | x29: ffff80000d36ba80 x28: ffff000002dfc380 x27: 0000000000000000 | x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 | x23: ffff80000a9f7858 x22: 000000004c460000 x21: 0000000000000010 | x20: 00000000ad821000 x19: ffff000000aa0000 x18: 0000000000000006 | x17: ffff8000758a2000 x16: ffff800008000000 x15: ffff80000d36b568 | x14: 0000000000000000 x13: ffff80000d36b707 x12: ffff80000a9bf6e0 | x11: 00000000ffffdfff x10: ffff80000aaaf8e0 x9 : ffff80000815eff8 | x8 : 000000000002ffe8 x7 : c0000000ffffdfff x6 : 00000000000affa8 | x5 : 0000000000001fff x4 : 0000000000000001 x3 : ffff80000a263008 | x2 : ffff80000a9e20f8 x1 : 0000000048c00000 x0 : ffff000000aa0000 | Call trace: | 0x48c00000 | kernel_kexec+0x88/0x138 | __do_sys_reboot+0x108/0x288 | __arm64_sys_reboot+0x2c/0x40 | invoke_syscall+0x78/0x140 | el0_svc_common.constprop.0+0x4c/0x100 | do_el0_svc+0x34/0x80 | el0_svc+0x34/0x140 | el0t_64_sync_handler+0xf4/0x140 | el0t_64_sync+0x194/0x1c0 | Code: ???????? ???????? ???????? ???????? (00000000) | ---[ end trace 0000000000000000 ]--- | Kernel panic - not syncing: Oops - Undefined instruction: Fatal exception | Kernel Offset: disabled | CPU features: 0x002000,00050108,c8004203 | Memory Limit: none Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230127121256.2141368-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
dc4824faa2 |
arm64: avoid executing padding bytes during kexec / hibernation
Currently we rely on the HIBERNATE_TEXT section starting with the entry
point to swsusp_arch_suspend_exit, and the KEXEC_TEXT section starting
with the entry point to arm64_relocate_new_kernel. In both cases we copy
the entire section into a dynamically-allocated page, and then later
branch to the start of this page.
SYM_FUNC_START() will align the function entry points to
CONFIG_FUNCTION_ALIGNMENT, and when the linker later processes the
assembled code it will place padding bytes before the function entry
point if the location counter was not already sufficiently aligned. The
linker happens to use the value zero for these padding bytes.
This padding may end up being applied whenever CONFIG_FUNCTION_ALIGNMENT
is greater than 4, which can be the case with
CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B=y or
CONFIG_DYNAMIC_FTRACE_WITH_CALL_OPS=y.
When such padding is applied, attempting to kexec or resume from
hibernate will result ina crash: the kernel will branch to the padding
bytes as the start of the dynamically-allocated page, and as those bytes
are zero they will decode as UDF #0, which reliably triggers an
UNDEFINED exception. For example:
| # ./kexec --reuse-cmdline -f Image
| [ 46.965800] kexec_core: Starting new kernel
| [ 47.143641] psci: CPU1 killed (polled 0 ms)
| [ 47.233653] psci: CPU2 killed (polled 0 ms)
| [ 47.323465] psci: CPU3 killed (polled 0 ms)
| [ 47.324776] Bye!
| [ 47.327072] Internal error: Oops - Undefined instruction: 0000000002000000 [#1] SMP
| [ 47.328510] Modules linked in:
| [ 47.329086] CPU: 0 PID: 259 Comm: kexec Not tainted 6.2.0-rc5+ #3
| [ 47.330223] Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
| [ 47.331497] pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| [ 47.332782] pc : 0x43a95000
| [ 47.333338] lr : machine_kexec+0x190/0x1e0
| [ 47.334169] sp : ffff80000d293b70
| [ 47.334845] x29: ffff80000d293b70 x28: ffff000002cc0000 x27: 0000000000000000
| [ 47.336292] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| [ 47.337744] x23: ffff80000a837858 x22: 0000000048ec9000 x21: 0000000000000010
| [ 47.339192] x20: 00000000adc83000 x19: ffff000000827000 x18: 0000000000000006
| [ 47.340638] x17: ffff800075a61000 x16: ffff800008000000 x15: ffff80000d293658
| [ 47.342085] x14: 0000000000000000 x13: ffff80000d2937f7 x12: ffff80000a7ff6e0
| [ 47.343530] x11: 00000000ffffdfff x10: ffff80000a8ef8e0 x9 : ffff80000813ef00
| [ 47.344976] x8 : 000000000002ffe8 x7 : c0000000ffffdfff x6 : 00000000000affa8
| [ 47.346431] x5 : 0000000000001fff x4 : 0000000000000001 x3 : ffff80000a0a3008
| [ 47.347877] x2 : ffff80000a8220f8 x1 : 0000000043a95000 x0 : ffff000000827000
| [ 47.349334] Call trace:
| [ 47.349834] 0x43a95000
| [ 47.350338] kernel_kexec+0x88/0x100
| [ 47.351070] __do_sys_reboot+0x108/0x268
| [ 47.351873] __arm64_sys_reboot+0x2c/0x40
| [ 47.352689] invoke_syscall+0x78/0x108
| [ 47.353458] el0_svc_common.constprop.0+0x4c/0x100
| [ 47.354426] do_el0_svc+0x34/0x50
| [ 47.355102] el0_svc+0x34/0x108
| [ 47.355747] el0t_64_sync_handler+0xf4/0x120
| [ 47.356617] el0t_64_sync+0x194/0x198
| [ 47.357374] Code: bad PC value
| [ 47.357999] ---[ end trace 0000000000000000 ]---
| [ 47.358937] Kernel panic - not syncing: Oops - Undefined instruction: Fatal exception
| [ 47.360515] Kernel Offset: disabled
| [ 47.361230] CPU features: 0x002000,00050108,c8004203
| [ 47.362232] Memory Limit: none
Note: Unfortunately the code dump reports "bad PC value" as it attempts
to dump some instructions prior to the UDF (i.e. before the start of the
page), and terminates early upon a fault, obscuring the problem.
This patch fixes this issue by aligning the section starter markes to
CONFIG_FUNCTION_ALIGNMENT using the ALIGN_FUNCTION() helper, which
ensures that the linker never needs to place padding bytes within the
section. Assertions are added to verify each section begins with the
function we expect, making our implicit requirement explicit.
In future it might be nice to rework the kexec and hibernation code to
decouple the section start from the entry point, but that involves much
more significant changes that come with a higher risk of error, so I've
tried to keep this fix as simple as possible for now.
Fixes:
|
||
![]() |
54c968bec3 |
arm64: Apply dynamic shadow call stack patching in two passes
Code patching for the dynamically enabled shadow call stack comes down to finding PACIASP and AUTIASP instructions -which behave as NOPs on cores that do not implement pointer authentication- and converting them into shadow call stack pushes and pops, respectively. Due to past bad experiences with the highly complex and overengineered DWARF standard that describes the unwind metadata that we are using to locate these instructions, let's make this patching logic a little bit more robust so that any issues with the unwind metadata detected at boot time can de dealt with gracefully. The DWARF annotations that are used for this are emitted at function granularity, and due to the fact that the instructions we are patching will simply behave as NOPs if left unpatched, we can abort on errors as long as we don't leave any functions in a half-patched state. So do a dry run of each FDE frame (covering a single function) before performing the actual patching, and give up if the DWARF metadata cannot be understood. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Will Deacon <will@kernel.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lore.kernel.org/r/20221213142849.1629026-1-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
2ced0f30a4 |
arm64: head: Switch endianness before populating the ID map
Ensure that the endianness used for populating the ID map matches the
endianness that the running kernel will be using, as this is no longer
guaranteed now that create_idmap() is invoked before init_kernel_el().
Note that doing so is only safe if the MMU is off, as switching the
endianness with the MMU on results in the active ID map to become
invalid. So also clear the M bit when toggling the EE bit in SCTLR, and
mark the MMU as disabled at boot.
Note that the same issue has resulted in preserve_boot_args() recording
the contents of registers X0 ... X3 in the wrong byte order, although
this is arguably a very minor concern.
Fixes:
|
||
![]() |
6178617038 |
efi: arm64: enter with MMU and caches enabled
Instead of cleaning the entire loaded kernel image to the PoC and disabling the MMU and caches before branching to the kernel's bare metal entry point, we can leave the MMU and caches enabled, and rely on EFI's cacheable 1:1 mapping of all of system RAM (which is mandated by the spec) to populate the initial page tables. This removes the need for managing coherency in software, which is tedious and error prone. Note that we still need to clean the executable region of the image to the PoU if this is required for I/D coherency, but only if we actually decided to move the image in memory, as otherwise, this will have been taken care of by the loader. This change affects both the builtin EFI stub as well as the zboot decompressor, which now carries the entire EFI stub along with the decompression code and the compressed image. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230111102236.1430401-7-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3dcf60bbfd |
arm64: head: Clean the ID map and the HYP text to the PoC if needed
If we enter with the MMU and caches enabled, the bootloader may not have performed any cache maintenance to the PoC. So clean the ID mapped page to the PoC, to ensure that instruction and data accesses with the MMU off see the correct data. For similar reasons, clean all the HYP text to the PoC as well when entering at EL2 with the MMU and caches enabled. Note that this means primary_entry() itself needs to be moved into the ID map as well, as we will return from init_kernel_el() with the MMU and caches off. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230111102236.1430401-6-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
32b135a7fa |
arm64: head: avoid cache invalidation when entering with the MMU on
If we enter with the MMU on, there is no need for explicit cache invalidation for stores to memory, as they will be coherent with the caches. Let's take advantage of this, and create the ID map with the MMU still enabled if that is how we entered, and avoid any cache invalidation calls in that case. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230111102236.1430401-5-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
9d7c13e5dd |
arm64: head: record the MMU state at primary entry
Prepare for being able to deal with primary entry with the MMU and caches enabled, by recording whether or not we entered with the MMU on in register x19 and in a global variable. (Note that setting this variable to '1' does not require cache invalidation, nor is it required for storing the bootargs in that case, so omit the cache maintenance). Since boot with the MMU and caches enabled is not permitted by the bare metal boot protocol, ensure that a diagnostic is emitted and a taint bit set if the MMU was found to be enabled on a non-EFI boot, and panic() once the console is likely to be up. We will make an exception for EFI boot later, which has strict requirements for the mapping of system memory, permitting us to relax the boot protocol and hand over from the EFI stub to the core kernel with MMU and caches left enabled. While at it, add 'pre_disable_mmu_workaround' macro invocations to init_kernel_el, as its manipulation of SCTLR_ELx may amount to disabling of the MMU after subsequent patches. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230111102236.1430401-4-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
af7249b317 |
arm64: kernel: move identity map out of .text mapping
Reorganize the ID map slightly so that only code that is executed with the MMU off or via the 1:1 mapping remains. This allows us to move the identity map out of the .text segment, as it will no longer need executable permissions via the kernel mapping. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230111102236.1430401-3-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
82e4958800 |
arm64: head: Move all finalise_el2 calls to after __enable_mmu
In the primary boot path, finalise_el2() is called much later than on the secondary boot or resume-from-suspend paths, and this does not appear to be intentional. Since we aim to do as little as possible before enabling the MMU and caches, align secondary and resume with primary boot, and defer the call to after the MMU is turned on. This also removes the need to clean finalise_el2() to the PoC once we enable support for booting with the MMU on. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230111102236.1430401-2-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
baaf553d3b |
arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS
This patch enables support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64. This allows each ftrace callsite to provide an ftrace_ops to the common ftrace trampoline, allowing each callsite to invoke distinct tracer functions without the need to fall back to list processing or to allocate custom trampolines for each callsite. This significantly speeds up cases where multiple distinct trace functions are used and callsites are mostly traced by a single tracer. The main idea is to place a pointer to the ftrace_ops as a literal at a fixed offset from the function entry point, which can be recovered by the common ftrace trampoline. Using a 64-bit literal avoids branch range limitations, and permits the ops to be swapped atomically without special considerations that apply to code-patching. In future this will also allow for the implementation of DYNAMIC_FTRACE_WITH_DIRECT_CALLS without branch range limitations by using additional fields in struct ftrace_ops. As noted in the core patch adding support for DYNAMIC_FTRACE_WITH_CALL_OPS, this approach allows for directly invoking ftrace_ops::func even for ftrace_ops which are dynamically-allocated (or part of a module), without going via ftrace_ops_list_func. Currently, this approach is not compatible with CLANG_CFI, as the presence/absence of pre-function NOPs changes the offset of the pre-function type hash, and there's no existing mechanism to ensure a consistent offset for instrumented and uninstrumented functions. When CLANG_CFI is enabled, the existing scheme with a global ops->func pointer is used, and there should be no functional change. I am currently working with others to allow the two to work together in future (though this will liekly require updated compiler support). I've benchamrked this with the ftrace_ops sample module [1], which is not currently upstream, but available at: https://lore.kernel.org/lkml/20230103124912.2948963-1-mark.rutland@arm.com git://git.kernel.org/pub/scm/linux/kernel/git/mark/linux.git ftrace-ops-sample-20230109 Using that module I measured the total time taken for 100,000 calls to a trivial instrumented function, with a number of tracers enabled with relevant filters (which would apply to the instrumented function) and a number of tracers enabled with irrelevant filters (which would not apply to the instrumented function). I tested on an M1 MacBook Pro, running under a HVF-accelerated QEMU VM (i.e. on real hardware). Before this patch: Number of tracers || Total time | Per-call average time (ns) Relevant | Irrelevant || (ns) | Total | Overhead =========+============++=============+==============+============ 0 | 0 || 94,583 | 0.95 | - 0 | 1 || 93,709 | 0.94 | - 0 | 2 || 93,666 | 0.94 | - 0 | 10 || 93,709 | 0.94 | - 0 | 100 || 93,792 | 0.94 | - ---------+------------++-------------+--------------+------------ 1 | 1 || 6,467,833 | 64.68 | 63.73 1 | 2 || 7,509,708 | 75.10 | 74.15 1 | 10 || 23,786,792 | 237.87 | 236.92 1 | 100 || 106,432,500 | 1,064.43 | 1063.38 ---------+------------++-------------+--------------+------------ 1 | 0 || 1,431,875 | 14.32 | 13.37 2 | 0 || 6,456,334 | 64.56 | 63.62 10 | 0 || 22,717,000 | 227.17 | 226.22 100 | 0 || 103,293,667 | 1032.94 | 1031.99 ---------+------------++-------------+--------------+-------------- Note: per-call overhead is estimated relative to the baseline case with 0 relevant tracers and 0 irrelevant tracers. After this patch Number of tracers || Total time | Per-call average time (ns) Relevant | Irrelevant || (ns) | Total | Overhead =========+============++=============+==============+============ 0 | 0 || 94,541 | 0.95 | - 0 | 1 || 93,666 | 0.94 | - 0 | 2 || 93,709 | 0.94 | - 0 | 10 || 93,667 | 0.94 | - 0 | 100 || 93,792 | 0.94 | - ---------+------------++-------------+--------------+------------ 1 | 1 || 281,000 | 2.81 | 1.86 1 | 2 || 281,042 | 2.81 | 1.87 1 | 10 || 280,958 | 2.81 | 1.86 1 | 100 || 281,250 | 2.81 | 1.87 ---------+------------++-------------+--------------+------------ 1 | 0 || 280,959 | 2.81 | 1.86 2 | 0 || 6,502,708 | 65.03 | 64.08 10 | 0 || 18,681,209 | 186.81 | 185.87 100 | 0 || 103,550,458 | 1,035.50 | 1034.56 ---------+------------++-------------+--------------+------------ Note: per-call overhead is estimated relative to the baseline case with 0 relevant tracers and 0 irrelevant tracers. As can be seen from the above: a) Whenever there is a single relevant tracer function associated with a tracee, the overhead of invoking the tracer is constant, and does not scale with the number of tracers which are *not* associated with that tracee. b) The overhead for a single relevant tracer has dropped to ~1/7 of the overhead prior to this series (from 13.37ns to 1.86ns). This is largely due to permitting calls to dynamically-allocated ftrace_ops without going through ftrace_ops_list_func. I've run the ftrace selftests from v6.2-rc3, which reports: | # of passed: 110 | # of failed: 0 | # of unresolved: 3 | # of untested: 0 | # of unsupported: 0 | # of xfailed: 1 | # of undefined(test bug): 0 ... where the unresolved entries were the tests for DIRECT functions (which are not supported), and the checkbashisms selftest (which is irrelevant here): | [8] Test ftrace direct functions against tracers [UNRESOLVED] | [9] Test ftrace direct functions against kprobes [UNRESOLVED] | [62] Meta-selftest: Checkbashisms [UNRESOLVED] ... with all other tests passing (or failing as expected). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Florent Revest <revest@chromium.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230123134603.1064407-9-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
90955d778a |
arm64: ftrace: Update stale comment
In commit:
|
||
![]() |
e4ecbe83fd |
arm64: patching: Add aarch64_insn_write_literal_u64()
In subsequent patches we'll need to atomically write to a naturally-aligned 64-bit literal embedded within the kernel text. Add a helper for this. For consistency with other text patching code we use copy_to_kernel_nofault(), which is atomic for naturally-aligned accesses up to 64-bits. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Florent Revest <revest@chromium.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230123134603.1064407-7-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
9946f0981f |
Some more EFI fixes for v6.2:
- ensure the EFI ResetSystem and ACPI PRM calls are recognized as users of the EFI runtime, and therefore protected against exceptions - account for the EFI runtime stack in the stacktrace code - remove Matt Garrett's MAINTAINERS entry for efivarfs -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmPOsW0ACgkQw08iOZLZ jySMWwv/RFYpNsvbG2QxrrgKvRAFzHiqOaWGWlBPXa3jvoZAEWvhtRNMEm+U+3JY jJA4F4COnhHy0xrCGb9VWP9ifrI61ZpMMpxFkkxpS/ciTUvilbkQGwLgDZP9g7Hf jb5+W36BwQKlSQH+bLPSeiIneBHgDY04Q3gTrslSWQs6/rVc4JvYd2+SGxAu9FGz wi5AX7hbF6zf3x1AJCyeihMClW5Pn+5PaO+ik+XZvyO2e/0YzMigStRbHL8ULRSp aldrwHuUlNOPa/09bTtHp1cZQwKShupim0DuXuSNvRwJg3+bR4s3673AOy/NUX0G P0Z0S/i28DOHDfj4Vf3QZiH8vqory+NGvKwr7bgFDwCdHWIS9FW8b1J3JxSLkckF wkzZ7xl8ppA3xYCzlLP2sr+al+kAHqNTEsBsjOK4PQY0lGhrqQpzjoXs9vZ3mUOw WAs6ZZI3Y+bhQAHSXqo7xFJr9kIbcE/3aIWc+fRT3EZXCCSkd9KnV8qm6oIeKZYr +FYcADzY =Qosm -----END PGP SIGNATURE----- Merge tag 'efi-fixes-for-v6.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI fixes from Ard Biesheuvel: "Another couple of EFI fixes, of which the first two were already in -next when I sent out the previous PR, but they caused some issues on non-EFI boots so I let them simmer for a bit longer. - ensure the EFI ResetSystem and ACPI PRM calls are recognized as users of the EFI runtime, and therefore protected against exceptions - account for the EFI runtime stack in the stacktrace code - remove Matthew Garrett's MAINTAINERS entry for efivarfs" * tag 'efi-fixes-for-v6.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: efi: Remove Matthew Garrett as efivarfs maintainer arm64: efi: Account for the EFI runtime stack in stack unwinder arm64: efi: Avoid workqueue to check whether EFI runtime is live |
||
![]() |
f89fd04323 |
Merge 6.2-rc5 into driver-core-next
We need the driver core fixes in here as well. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
![]() |
1a920c92cd |
arm64: cpufeature: Use kstrtobool() instead of strtobool()
strtobool() is the same as kstrtobool(). However, the latter is more used within the kernel. In order to remove strtobool() and slightly simplify kstrtox.h, switch to the other function name. While at it, include the corresponding header file (<linux/kstrtox.h>) Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/5a1b329cda34aec67615c0d2fd326eb0d6634bf7.1667336095.git.christophe.jaillet@wanadoo.fr Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
4f2c9bf16a |
arm64: Add compat hwcap SSBS
This hwcap was added for 32-bit native arm kernel by commit
|
||
![]() |
2d602aa99a |
arm64: Add compat hwcap SB
This hwcap was added for 32-bit native arm kernel by commit
|
||
![]() |
0864d1e429 |
arm64: Add compat hwcap I8MM
This hwcap was added earlier for 32-bit native arm kernel by commit
|
||
![]() |
f64234fa45 |
arm64: Add compat hwcap ASIMDBF16
This hwcap was added earlier for 32-bit native arm kernel by commit
|
||
![]() |
4a87be25b0 |
arm64: Add compat hwcap ASIMDFHM
This hwcap was added earlier for 32-bit native arm kernel by commit
|
||
![]() |
27addd402a |
arm64: Add compat hwcap ASIMDDP
This hwcap was added earlier for 32-bit native arm kernel by commit
|
||
![]() |
846b73a4a3 |
arm64: Add compat hwcap FPHP and ASIMDHP
These hwcaps were added earlier for 32-bit native arm kernel by commit
|
||
![]() |
59b37fe52f |
arm64: Stash shadow stack pointer in the task struct on interrupt
Instead of reloading the shadow call stack pointer from the ordinary stack, which may be vulnerable to the kind of gadget based attacks shadow call stacks were designed to prevent, let's store a task's shadow call stack pointer in the task struct when switching to the shadow IRQ stack. Given that currently, the task_struct::scs_sp field is only used to preserve the shadow call stack pointer while a task is scheduled out or running in user space, reusing this field to preserve and restore it while running off the IRQ stack must be safe, as those occurrences are guaranteed to never overlap. (The stack switching logic only switches stacks when running from the task stack, and so the value being saved here always corresponds to the task mode shadow stack) While at it, fold a mov/add/mov sequence into a single add. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20230109174800.3286265-3-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
2198d07c50 |
arm64: Always load shadow stack pointer directly from the task struct
All occurrences of the scs_load macro load the value of the shadow call stack pointer from the task which is current at that point. So instead of taking a task struct register argument in the scs_load macro to specify the task struct to load from, let's always reference the current task directly. This should make it much harder to exploit any instruction sequences reloading the shadow call stack pointer register from memory. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20230109174800.3286265-2-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
39e5449928 |
arm64/signal: Include TPIDR2 in the signal context
Add a new signal frame record for TPIDR2 using the same format as we already use for ESR with different magic, a header with the value from the register appended as the only data. If SME is supported then this record is always included. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com> Link: https://lore.kernel.org/r/20221208-arm64-tpidr2-sig-v3-2-c77c6c8775f4@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
7d5d8601e4 |
arm64/sme: Add hwcaps for SME 2 and 2.1 features
In order to allow userspace to discover the presence of the new SME features add hwcaps for them. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-13-f2fa0aef982f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
f90b529bcb |
arm64/sme: Implement ZT0 ptrace support
Implement support for a new note type NT_ARM64_ZT providing access to ZT0 when implemented. Since ZT0 is a register with constant size this is much simpler than for other SME state. As ZT0 is only accessible when PSTATE.ZA is set writes to ZT0 cause PSTATE.ZA to be set, the main alternative would be to return -EBUSY in this case but this seemed more constructive. Practical users are also going to be working with ZA anyway and have some understanding of the state. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-12-f2fa0aef982f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ee072cf708 |
arm64/sme: Implement signal handling for ZT
Add a new signal context type for ZT which is present in the signal frame when ZA is enabled and ZT is supported by the system. In order to account for the possible addition of further ZT registers in the future we make the number of registers variable in the ABI, though currently the only possible number is 1. We could just use a bare list head for the context since the number of registers can be inferred from the size of the context but for usability and future extensibility we define a header with the number of registers and some reserved fields in it. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-11-f2fa0aef982f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
95fcec7132 |
arm64/sme: Implement context switching for ZT0
When the system supports SME2 the ZT0 register must be context switched as part of the floating point state. This register is stored immediately after ZA in memory and is only accessible when PSTATE.ZA is set so we handle it in the same functions we use to save and restore ZA. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-10-f2fa0aef982f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d6138b4adc |
arm64/sme: Provide storage for ZT0
When the system supports SME2 there is an additional register ZT0 which we must store when the task is using SME. Since ZT0 is accessible only when PSTATE.ZA is set just like ZA we allocate storage for it along with ZA, increasing the allocation size for the memory region where we store ZA and storing the data for ZT after that for ZA. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-9-f2fa0aef982f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d4913eee15 |
arm64/sme: Add basic enumeration for SME2
Add basic feature detection for SME2, detecting that the feature is present and disabling traps for ZT0. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-8-f2fa0aef982f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
f122576f35 |
arm64/sme: Enable host kernel to access ZT0
The new register ZT0 introduced by SME2 comes with a new trap, disable it for the host kernel so that we can implement support for it. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-7-f2fa0aef982f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ce514000da |
arm64/sme: Rename za_state to sme_state
In preparation for adding support for storage for ZT0 to the thread_struct rename za_state to sme_state. Since ZT0 is accessible when PSTATE.ZA is set just like ZA itself we will extend the allocation done for ZA to cover it, avoiding the need to further expand task_struct for non-SME tasks. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-1-f2fa0aef982f@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
e9adcfecf5 |
mm: remove zap_page_range and create zap_vma_pages
zap_page_range was originally designed to unmap pages within an address range that could span multiple vmas. While working on [1], it was discovered that all callers of zap_page_range pass a range entirely within a single vma. In addition, the mmu notification call within zap_page range does not correctly handle ranges that span multiple vmas. When crossing a vma boundary, a new mmu_notifier_range_init/end call pair with the new vma should be made. Instead of fixing zap_page_range, do the following: - Create a new routine zap_vma_pages() that will remove all pages within the passed vma. Most users of zap_page_range pass the entire vma and can use this new routine. - For callers of zap_page_range not passing the entire vma, instead call zap_page_range_single(). - Remove zap_page_range. [1] https://lore.kernel.org/linux-mm/20221114235507.294320-2-mike.kravetz@oracle.com/ Link: https://lkml.kernel.org/r/20230104002732.232573-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Suggested-by: Peter Xu <peterx@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390] Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
19235e4727 |
cpuidle, arm64: Fix the ARM64 cpuidle logic
The recent cpuidle changes started triggering RCU splats on Juno development boards: | ============================= | WARNING: suspicious RCU usage | ----------------------------- | include/trace/events/ipi.h:19 suspicious rcu_dereference_check() usage! Fix cpuidle on ARM64: - ... by introducing a new 'is_rcu' flag to the cpuidle helpers & make ARM64 use it, as ARM64 wants to keep RCU active longer and wants to do the ct_cpuidle_enter()/exit() dance itself. - Also update the PSCI driver accordingly. - This also removes the last known RCU_NONIDLE() user as a bonus. Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Sudeep Holla <sudeep.holla@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/Y8Z31UbzG3LJgAXE@hirez.programming.kicks-ass.net -- |
||
![]() |
bd500361a9 |
ACPI: PPTT: Update acpi_find_last_cache_level() to acpi_get_cache_info()
acpi_find_last_cache_level() allows to find the last level of cache for a given CPU. The function is only called on arm64 ACPI based platforms to check for cache information that would be missing in the CLIDR_EL1 register. To allow populating (struct cpu_cacheinfo).num_leaves by only parsing a PPTT, update acpi_find_last_cache_level() to get the 'split_levels', i.e. the number of cache levels being split in data/instruction caches. It is assumed that there will not be data/instruction caches above a unified cache. If a split level consist of one data cache and no instruction cache (or opposite), then the missing cache will still be populated by default with minimal cache information, and maximal cpumask (all non-existing caches have the same fw_token). Suggested-by: Jeremy Linton <jeremy.linton@arm.com> Signed-off-by: Pierre Gondois <pierre.gondois@arm.com> Reviewed-by: Jeremy Linton <jeremy.linton@arm.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Palmer Dabbelt <palmer@rivosinc.com> Link: https://lore.kernel.org/r/20230104183033.755668-6-pierre.gondois@arm.com Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> |
||
![]() |
7ea55715c4 |
arm64: efi: Account for the EFI runtime stack in stack unwinder
The EFI runtime services run from a dedicated stack now, and so the stack unwinder needs to be informed about this. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
8a9a1a1873 |
arm64: efi: Avoid workqueue to check whether EFI runtime is live
Comparing current_work() against efi_rts_work.work is sufficient to decide whether current is currently running EFI runtime services code at any level in its call stack. However, there are other potential users of the EFI runtime stack, such as the ACPI subsystem, which may invoke efi_call_virt_pointer() directly, and so any sync exceptions occurring in firmware during those calls are currently misidentified. So instead, let's check whether the stashed value of the thread stack pointer points into current's thread stack. This can only be the case if current was interrupted while running EFI runtime code. Note that this implies that we should clear the stashed value after switching back, to avoid false positives. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
0bf913e07b |
First batch of EFI fixes for v6.2:
- avoid a potential crash on the efi_subsys_init() error path - use more appropriate error code for runtime services calls issued after a crash in the firmware occurred - avoid READ_ONCE() for accessing firmware tables that may appear misaligned in memory -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmPBg68ACgkQw08iOZLZ jyQs5Qv+PVg06BhEqN+vwNQy6vd4ezTxmDAy7yx751mo3HIw0qT0ohsCIpRydq0c +qlCXa+Uu/yr/IQplfDT9vY+MEwD9iuwJha8ltGRWM3++yEF4uQXowHDoEKsO84l 5PaC37EfOvHmV6UdFdIF0OYDOcRvX2FsIbmUKRyvIav1e+QRLvUWWKKEmAh04c7G yNc0837kmoOpjKrYPc8j2n3dVUbhrFUW5eLIFmd8yrR+GRu6Ae5RH3J7iF7Nqtrq oReYYq3XpmYg8c00WV0NKVuB0DK7fhGY7jcbDfLmTrPwqVzLjxQGecxsQPYnqrJd mZywkm2fM8KIJy2LQDJOVOZaDAzaC2SkrpELHX/MnPK1UrP561AIv/sXK+3+UBEm b6m5dHbJgaifKP3kkbc9Cy4f9avLJOdjdXH5f5zPe7it54yHLsacEvjT6M2oiunx zIvTd/MXi24J+tzgxr08KM5wHXgLGh+fUM7BfZTvEVQmUjY8TnIPjsaAJhTS3jzV TN3/XAWi =4LbF -----END PGP SIGNATURE----- Merge tag 'efi-fixes-for-v6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI fixes from Ard Biesheuvel: - avoid a potential crash on the efi_subsys_init() error path - use more appropriate error code for runtime services calls issued after a crash in the firmware occurred - avoid READ_ONCE() for accessing firmware tables that may appear misaligned in memory * tag 'efi-fixes-for-v6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: efi: tpm: Avoid READ_ONCE() for accessing the event log efi: rt-wrapper: Add missing include efi: fix userspace infinite retry read efivars after EFI runtime services page fault efi: fix NULL-deref in init error path |
||
![]() |
69e26b4f43 |
cpuidle, arch: Mark all ct_cpuidle_enter() callers __cpuidle
For all cpuidle drivers that use CPUIDLE_FLAG_RCU_IDLE, ensure that all functions that call ct_cpuidle_enter() are marked __cpuidle. ( due to lack of noinstr validation on these platforms it is entirely possible this isn't complete ) Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230112195542.274096325@infradead.org |
||
![]() |
4a3182e6d6 |
arm64, smp: Remove trace_.*_rcuidle() usage
Ever since commit
|
||
![]() |
89b3098703 |
arch/idle: Change arch_cpu_idle() behavior: always exit with IRQs disabled
Current arch_cpu_idle() is called with IRQs disabled, but will return with IRQs enabled. However, the very first thing the generic code does after calling arch_cpu_idle() is raw_local_irq_disable(). This means that architectures that can idle with IRQs disabled end up doing a pointless 'enable-disable' dance. Therefore, push this IRQ disabling into the idle function, meaning that those architectures can avoid the pointless IRQ state flipping. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Tony Lindgren <tony@atomide.com> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Acked-by: Mark Rutland <mark.rutland@arm.com> [arm64] Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Guo Ren <guoren@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20230112195540.618076436@infradead.org |
||
![]() |
2b5a0e425e |
objtool/idle: Validate __cpuidle code as noinstr
Idle code is very like entry code in that RCU isn't available. As such, add a little validation. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Tony Lindgren <tony@atomide.com> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20230112195540.373461409@infradead.org |
||
![]() |
805e6ec1c5 |
arm64/cache: Move CLIDR macro definitions
The macros are useful for KVM which needs to manage how CLIDR is exposed to vcpu so move them to include/asm/cache.h, which KVM can refer to. Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com> Link: https://lore.kernel.org/r/20230112023852.42012-5-akihiko.odaki@daynix.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev> |
||
![]() |
b2482807fb |
arm64/sme: Optimise SME exit on syscall entry
Our ABI says that we exit streaming mode on syscall entry. Currently we check if we are in streaming mode before doing this but since we have a SMSTOP SM instruction which will clear SVCR.SM in a single atomic operation we can save ourselves the read of the system register and check of the flag and just unconditionally do the SMSTOP SM. If we are not in streaming mode it results in a noop change to SVCR, if we are in streaming mode we will exit as desired. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20230110-arm64-sme-syscall-smstop-v1-1-ac94235fd810@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
fcd3d2c082 |
arm64/sme: Don't use streaming mode to probe the maximum SME VL
During development the architecture added the RDSVL instruction which means we do not need to enter streaming mode to enumerate the SME VLs, use it when we probe the maximum supported VL. Other users were already updated. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221223-arm64-sme-probe-max-v1-1-cbde68f67ad0@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c3cdd54c61 |
arm64/ptrace: Use system_supports_tpidr2() to check for TPIDR2 support
We have a separate system_supports_tpidr2() to check for TPIDR2 support but were using system_supports_sme() in tls_set(). While these are currently identical let's use the specific check instead so we don't have any surprises in future. Reported-by: Will Deacon <will@kernel.org> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221208-arm64-tpidr2-ptrace-feat-v2-1-3760c895a574@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
50daf5b7c4 |
arm64/cpufeature: Fix field sign for DIT hwcap detection
Since it was added our hwcap for DIT has specified that DIT is a signed field but this appears to be incorrect, the two values for the enumeration are: 0b0000 NI 0b0001 IMP which look like a normal unsigned enumeration and the in-kernel DIT usage added by |
||
![]() |
18bba1843f |
efi: rt-wrapper: Add missing include
Add the missing #include of asm/assembler.h, which is where the ldr_l
macro is defined.
Fixes:
|
||
![]() |
5db568e748 |
arm64: errata: Workaround possible Cortex-A715 [ESR|FAR]_ELx corruption
If a Cortex-A715 cpu sees a page mapping permissions change from executable to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers, on the next instruction abort caused by permission fault. Only user-space does executable to non-executable permission transition via mprotect() system call which calls ptep_modify_prot_start() and ptep_modify _prot_commit() helpers, while changing the page mapping. The platform code can override these helpers via __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION. Work around the problem via doing a break-before-make TLB invalidation, for all executable user space mappings, that go through mprotect() system call. This overrides ptep_modify_prot_start() and ptep_modify_prot_commit(), via defining HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION on the platform thus giving an opportunity to intercept user space exec mappings, and do the necessary TLB invalidation. Similar interceptions are also implemented for HugeTLB. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mark Rutland <mark.rutland@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20230102061651.34745-1-anshuman.khandual@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
f26cd73721 |
arm64/signal: Always allocate SVE signal frames on SME only systems
Currently we only allocate space for SVE signal frames on systems that
support SVE, meaning that SME only systems do not allocate a signal frame
for streaming mode SVE state. Change the check so space is allocated if
either feature is supported.
Fixes:
|
||
![]() |
7dde62f068 |
arm64/signal: Always accept SVE signal frames on SME only systems
Currently we reject an attempt to restore a SVE signal frame on a system
with SME but not SVE supported. This means that it is not possible to
disable streaming mode via signal return as this is configured via the
flags in the SVE signal context. Instead accept the signal frame, we will
require it to have a vector length of 0 specified and no payload since the
task will have no SVE vector length configured.
Fixes:
|
||
![]() |
0cab5b4964 |
arm64/sme: Fix context switch for SME only systems
When refactoring fpsimd_load() to support keeping SVE enabled over syscalls
support for systems with SME but not SVE was broken. The code that selects
between loading regular FPSIMD and SVE states was guarded by using
system_supports_sve() but is also needed to handle the streaming SVE state
in SME only systems where that check will be false. Fix this by also
checking for system_supports_sme().
Fixes:
|
||
![]() |
4f4c549feb |
arm64: mte: Avoid the racy walk of the vma list during core dump
The MTE coredump code in arch/arm64/kernel/elfcore.c iterates over the
vma list without the mmap_lock held. This can race with another process
or userfaultfd concurrently modifying the vma list. Change the
for_each_mte_vma macro and its callers to instead use the vma snapshot
taken by dump_vma_snapshot() and stored in the cprm object.
Fixes:
|
||
![]() |
19e183b545 |
elfcore: Add a cprm parameter to elf_core_extra_{phdrs,data_size}
A subsequent fix for arm64 will use this parameter to parse the vma
information from the snapshot created by dump_vma_snapshot() rather than
traversing the vma list without the mmap_lock.
Fixes:
|
||
![]() |
736eedc974 |
arm64: mte: Fix double-freeing of the temporary tag storage during coredump
Commit |
||
![]() |
eb9a85261e |
arm64: ptrace: Use ARM64_SME to guard the SME register enumerations
We currently guard REGSET_{SSVE, ZA} using ARM64_SVE for no good reason.
Both enumerations would be pointless without ARM64_SME and create two empty
entries in aarch64_regsets[] which would then become part of a process's
native regset view (they should be ignored though).
Switch to use ARM64_SME instead.
Fixes:
|
||
![]() |
77856d911a |
arm64 fixes for -rc1
- Fix Kconfig dependencies to re-allow the enabling of function graph tracer and shadow call stacks at the same time. - Revert the workaround for CPU erratum #2645198 since the CONFIG_ guards were incorrect and the code has therefore not seen any real exposure in -next. -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmOcVWkQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNF/7B/wIGicobLxXMMkuao+ipm5V/eLnVRuVt6WD T//5ZG+3Td3xON+mdt/byIm/Npl1I2l+NDjK9jIFcS5A/Q7DmwbcxJV+6BhRdb7o XQxkHsKR2DTbmbeqd0+AkZGJc4jk5D+vuyLeo8jcc6bSpQhepCOV5R5JVOadg9mg WxuITwsodI9GfQGmupggF6C31yMCYibmlD9WWNW8tNx8TBojU97pJbQaf1h3bC9i JE9CxBVYmt3Qg5BAB46EdH60lxELyHpEjJNvgvZZpFz4a/bBB47mG7Cy+ECldc5p LukJnAImydedwgQqgBD0e0HyXoIQ8r8NZ+yNgig2asQxA5DYsI1L =IZRW -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: - Fix Kconfig dependencies to re-allow the enabling of function graph tracer and shadow call stacks at the same time. - Revert the workaround for CPU erratum #2645198 since the CONFIG_ guards were incorrect and the code has therefore not seen any real exposure in -next. * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: Revert "arm64: errata: Workaround possible Cortex-A715 [ESR|FAR]_ELx corruption" ftrace: Allow WITH_ARGS flavour of graph tracer with shadow call stack |
||
![]() |
8fa590bf34 |
ARM64:
* Enable the per-vcpu dirty-ring tracking mechanism, together with an option to keep the good old dirty log around for pages that are dirtied by something other than a vcpu. * Switch to the relaxed parallel fault handling, using RCU to delay page table reclaim and giving better performance under load. * Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option, which multi-process VMMs such as crosvm rely on (see merge commit |
||
![]() |
c0cd1d5417 |
Revert "arm64: errata: Workaround possible Cortex-A715 [ESR|FAR]_ELx corruption"
This reverts commit
|
||
![]() |
48ea09cdda |
hardening updates for v6.2-rc1
- Convert flexible array members, fix -Wstringop-overflow warnings, and fix KCFI function type mismatches that went ignored by maintainers (Gustavo A. R. Silva, Nathan Chancellor, Kees Cook). - Remove the remaining side-effect users of ksize() by converting dma-buf, btrfs, and coredump to using kmalloc_size_roundup(), add more __alloc_size attributes, and introduce full testing of all allocator functions. Finally remove the ksize() side-effect so that each allocation-aware checker can finally behave without exceptions. - Introduce oops_limit (default 10,000) and warn_limit (default off) to provide greater granularity of control for panic_on_oops and panic_on_warn (Jann Horn, Kees Cook). - Introduce overflows_type() and castable_to_type() helpers for cleaner overflow checking. - Improve code generation for strscpy() and update str*() kern-doc. - Convert strscpy and sigphash tests to KUnit, and expand memcpy tests. - Always use a non-NULL argument for prepare_kernel_cred(). - Disable structleak plugin in FORTIFY KUnit test (Anders Roxell). - Adjust orphan linker section checking to respect CONFIG_WERROR (Xin Li). - Make sure siginfo is cleared for forced SIGKILL (haifeng.xu). - Fix um vs FORTIFY warnings for always-NULL arguments. -----BEGIN PGP SIGNATURE----- iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmOZSOoWHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJjAAD/0YkvpU7f03f8hcQMJK6wv//24K AW41hEaBikq9RcmkuvkLLrJRibGgZ5O2xUkUkxRs/HxhkhrZ0kEw8sbwZe8MoWls F4Y9+TDjsrdHmjhfcBZdLnVxwcKK5wlaEcpjZXtbsfcdhx3TbgcDA23YELl5t0K+ I11j4kYmf9SLl4CwIrSP5iACml8CBHARDh8oIMF7FT/LrjNbM8XkvBcVVT6hTbOV yjgA8WP2e9GXvj9GzKgqvd0uE/kwPkVAeXLNFWopPi4FQ8AWjlxbBZR0gamA6/EB d7TIs0ifpVU2JGQaTav4xO6SsFMj3ntoUI0qIrFaTxZAvV4KYGrPT/Kwz1O4SFaG rN5lcxseQbPQSBTFNG4zFjpywTkVCgD2tZqDwz5Rrmiraz0RyIokCN+i4CD9S0Ds oEd8JSyLBk1sRALczkuEKo0an5AyC9YWRcBXuRdIHpLo08PsbeUUSe//4pe303cw 0ApQxYOXnrIk26MLElTzSMImlSvlzW6/5XXzL9ME16leSHOIfDeerPnc9FU9Eb3z ODv22z6tJZ9H/apSUIHZbMciMbbVTZ8zgpkfydr08o87b342N/ncYHZ5cSvQ6DWb jS5YOIuvl46/IhMPT16qWC8p0bP5YhxoPv5l6Xr0zq0ooEj0E7keiD/SzoLvW+Qs AHXcibguPRQBPAdiPQ== =yaaN -----END PGP SIGNATURE----- Merge tag 'hardening-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull kernel hardening updates from Kees Cook: - Convert flexible array members, fix -Wstringop-overflow warnings, and fix KCFI function type mismatches that went ignored by maintainers (Gustavo A. R. Silva, Nathan Chancellor, Kees Cook) - Remove the remaining side-effect users of ksize() by converting dma-buf, btrfs, and coredump to using kmalloc_size_roundup(), add more __alloc_size attributes, and introduce full testing of all allocator functions. Finally remove the ksize() side-effect so that each allocation-aware checker can finally behave without exceptions - Introduce oops_limit (default 10,000) and warn_limit (default off) to provide greater granularity of control for panic_on_oops and panic_on_warn (Jann Horn, Kees Cook) - Introduce overflows_type() and castable_to_type() helpers for cleaner overflow checking - Improve code generation for strscpy() and update str*() kern-doc - Convert strscpy and sigphash tests to KUnit, and expand memcpy tests - Always use a non-NULL argument for prepare_kernel_cred() - Disable structleak plugin in FORTIFY KUnit test (Anders Roxell) - Adjust orphan linker section checking to respect CONFIG_WERROR (Xin Li) - Make sure siginfo is cleared for forced SIGKILL (haifeng.xu) - Fix um vs FORTIFY warnings for always-NULL arguments * tag 'hardening-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (31 commits) ksmbd: replace one-element arrays with flexible-array members hpet: Replace one-element array with flexible-array member um: virt-pci: Avoid GCC non-NULL warning signal: Initialize the info in ksignal lib: fortify_kunit: build without structleak plugin panic: Expose "warn_count" to sysfs panic: Introduce warn_limit panic: Consolidate open-coded panic_on_warn checks exit: Allow oops_limit to be disabled exit: Expose "oops_count" to sysfs exit: Put an upper limit on how often we can oops panic: Separate sysctl logic from CONFIG_SMP mm/pgtable: Fix multiple -Wstringop-overflow warnings mm: Make ksize() a reporting-only function kunit/fortify: Validate __alloc_size attribute results drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid() drm/fsl-dcu: Fix return type of fsl_dcu_drm_connector_mode_valid() driver core: Add __alloc_size hint to devm allocators overflow: Introduce overflows_type() and castable_to_type() coredump: Proactively round up to kmalloc bucket size ... |
||
![]() |
fc4c9f4504 |
EFI updates for v6.2:
- Refactor the zboot code so that it incorporates all the EFI stub logic, rather than calling the decompressed kernel as a EFI app. - Add support for initrd= command line option to x86 mixed mode. - Allow initrd= to be used with arbitrary EFI accessible file systems instead of just the one the kernel itself was loaded from. - Move some x86-only handling and manipulation of the EFI memory map into arch/x86, as it is not used anywhere else. - More flexible handling of any random seeds provided by the boot environment (i.e., systemd-boot) so that it becomes available much earlier during the boot. - Allow improved arch-agnostic EFI support in loaders, by setting a uniform baseline of supported features, and adding a generic magic number to the DOS/PE header. This should allow loaders such as GRUB or systemd-boot to reduce the amount of arch-specific handling substantially. - (arm64) Run EFI runtime services from a dedicated stack, and use it to recover from synchronous exceptions that might occur in the firmware code. - (arm64) Ensure that we don't allocate memory outside of the 48-bit addressable physical range. - Make EFI pstore record size configurable - Add support for decoding CXL specific CPER records -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmOTQ1cACgkQw08iOZLZ jyQRkAv+LqaZFWeVwhAQHiw/N3RnRM0nZHea6++D2p1y/ZbCpwv3pdLl2YHQ1KmW wDG9Nr4C1ITLtfy1YZKeYpwloQtq9S1GZDWnFpVv/hdo7L924eRAwIlxowWn1OnP ruxv2PaYXyb0plh1YD1f6E1BqrfUOtajET55Kxs9ZsxmnMtDpIX3NiYy4LKMBIZC +Eywt41M3uBX+wgmSujFBMVVJjhOX60WhUYXqy0RXwDKOyrz/oW5td+eotSCreB6 FVbjvwQvUdtzn4s1FayOMlTrkxxLw4vLhsaUGAdDOHd3rg3sZT9Xh1HqFFD6nss6 ZAzAYQ6BzdiV/5WSB9meJe+BeG1hjTNKjJI6JPO2lctzYJqlnJJzI6JzBuH9vzQ0 dffLB8NITeEW2rphIh+q+PAKFFNbXWkJtV4BMRpqmzZ/w7HwupZbUXAzbWE8/5km qlFpr0kmq8GlVcbXNOFjmnQVrJ8jPYn+O3AwmEiVAXKZJOsMH0sjlXHKsonme9oV Sk71c6Em =JEXz -----END PGP SIGNATURE----- Merge tag 'efi-next-for-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "Another fairly sizable pull request, by EFI subsystem standards. Most of the work was done by me, some of it in collaboration with the distro and bootloader folks (GRUB, systemd-boot), where the main focus has been on removing pointless per-arch differences in the way EFI boots a Linux kernel. - Refactor the zboot code so that it incorporates all the EFI stub logic, rather than calling the decompressed kernel as a EFI app. - Add support for initrd= command line option to x86 mixed mode. - Allow initrd= to be used with arbitrary EFI accessible file systems instead of just the one the kernel itself was loaded from. - Move some x86-only handling and manipulation of the EFI memory map into arch/x86, as it is not used anywhere else. - More flexible handling of any random seeds provided by the boot environment (i.e., systemd-boot) so that it becomes available much earlier during the boot. - Allow improved arch-agnostic EFI support in loaders, by setting a uniform baseline of supported features, and adding a generic magic number to the DOS/PE header. This should allow loaders such as GRUB or systemd-boot to reduce the amount of arch-specific handling substantially. - (arm64) Run EFI runtime services from a dedicated stack, and use it to recover from synchronous exceptions that might occur in the firmware code. - (arm64) Ensure that we don't allocate memory outside of the 48-bit addressable physical range. - Make EFI pstore record size configurable - Add support for decoding CXL specific CPER records" * tag 'efi-next-for-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (43 commits) arm64: efi: Recover from synchronous exceptions occurring in firmware arm64: efi: Execute runtime services from a dedicated stack arm64: efi: Limit allocations to 48-bit addressable physical region efi: Put Linux specific magic number in the DOS header efi: libstub: Always enable initrd command line loader and bump version efi: stub: use random seed from EFI variable efi: vars: prohibit reading random seed variables efi: random: combine bootloader provided RNG seed with RNG protocol output efi/cper, cxl: Decode CXL Error Log efi/cper, cxl: Decode CXL Protocol Error Section efi: libstub: fix efi_load_initrd_dev_path() kernel-doc comment efi: x86: Move EFI runtime map sysfs code to arch/x86 efi: runtime-maps: Clarify purpose and enable by default for kexec efi: pstore: Add module parameter for setting the record size efi: xen: Set EFI_PARAVIRT for Xen dom0 boot on all architectures efi: memmap: Move manipulation routines into x86 arch tree efi: memmap: Move EFI fake memmap support into x86 arch tree efi: libstub: Undeprecate the command line initrd loader efi: libstub: Add mixed mode support to command line initrd loader efi: libstub: Permit mixed mode return types other than efi_status_t ... |
||
![]() |
8702f2c611 |
Non-MM patches for 6.2-rc1.
- A ptrace API cleanup series from Sergey Shtylyov - Fixes and cleanups for kexec from ye xingchen - nilfs2 updates from Ryusuke Konishi - squashfs feature work from Xiaoming Ni: permit configuration of the filesystem's compression concurrency from the mount command line. - A series from Akinobu Mita which addresses bound checking errors when writing to debugfs files. - A series from Yang Yingliang to address rapido memory leaks - A series from Zheng Yejian to address possible overflow errors in encode_comp_t(). - And a whole shower of singleton patches all over the place. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5efRgAKCRDdBJ7gKXxA jgvdAP0al6oFDtaSsshIdNhrzcMwfjt6PfVxxHdLmNhF1hX2dwD/SVluS1bPSP7y 0sZp7Ustu3YTb8aFkMl96Y9m9mY1Nwg= =ga5B -----END PGP SIGNATURE----- Merge tag 'mm-nonmm-stable-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: - A ptrace API cleanup series from Sergey Shtylyov - Fixes and cleanups for kexec from ye xingchen - nilfs2 updates from Ryusuke Konishi - squashfs feature work from Xiaoming Ni: permit configuration of the filesystem's compression concurrency from the mount command line - A series from Akinobu Mita which addresses bound checking errors when writing to debugfs files - A series from Yang Yingliang to address rapidio memory leaks - A series from Zheng Yejian to address possible overflow errors in encode_comp_t() - And a whole shower of singleton patches all over the place * tag 'mm-nonmm-stable-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (79 commits) ipc: fix memory leak in init_mqueue_fs() hfsplus: fix bug causing custom uid and gid being unable to be assigned with mount rapidio: devices: fix missing put_device in mport_cdev_open kcov: fix spelling typos in comments hfs: Fix OOB Write in hfs_asc2mac hfs: fix OOB Read in __hfs_brec_find relay: fix type mismatch when allocating memory in relay_create_buf() ocfs2: always read both high and low parts of dinode link count io-mapping: move some code within the include guarded section kernel: kcsan: kcsan_test: build without structleak plugin mailmap: update email for Iskren Chernev eventfd: change int to __u64 in eventfd_signal() ifndef CONFIG_EVENTFD rapidio: fix possible UAF when kfifo_alloc() fails relay: use strscpy() is more robust and safer cpumask: limit visibility of FORCE_NR_CPUS acct: fix potential integer overflow in encode_comp_t() acct: fix accuracy loss for input value of encode_comp_t() linux/init.h: include <linux/build_bug.h> and <linux/stringify.h> rapidio: rio: fix possible name leak in rio_register_mport() rapidio: fix possible name leaks when rio_add_device() fails ... |
||
![]() |
268325bda5 |
Random number generator updates for Linux 6.2-rc1.
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmOU+U8ACgkQSfxwEqXe A67NnQ//Y5DltmvibyPd7r1TFT2gUYv+Rx3sUV9ZE1NYptd/SWhhcL8c5FZ70Fuw bSKCa1uiWjOxosjXT1kGrWq3de7q7oUpAPSOGxgxzoaNURIt58N/ajItCX/4Au8I RlGAScHy5e5t41/26a498kB6qJ441fBEqCYKQpPLINMBAhe8TQ+NVp0rlpUwNHFX WrUGg4oKWxdBIW3HkDirQjJWDkkAiklRTifQh/Al4b6QDbOnRUGGCeckNOhixsvS waHWTld+Td8jRrA4b82tUb2uVZ2/b8dEvj/A8CuTv4yC0lywoyMgBWmJAGOC+UmT ZVNdGW02Jc2T+Iap8ZdsEmeLHNqbli4+IcbY5xNlov+tHJ2oz41H9TZoYKbudlr6 /ReAUPSn7i50PhbQlEruj3eg+M2gjOeh8OF8UKwwRK8PghvyWQ1ScW0l3kUhPIhI PdIG6j4+D2mJc1FIj2rTVB+Bg933x6S+qx4zDxGlNp62AARUFYf6EgyD6aXFQVuX RxcKb6cjRuFkzFiKc8zkqg5edZH+IJcPNuIBmABqTGBOxbZWURXzIQvK/iULqZa4 CdGAFIs6FuOh8pFHLI3R4YoHBopbHup/xKDEeAO9KZGyeVIuOSERDxxo5f/ITzcq APvT77DFOEuyvanr8RMqqh0yUjzcddXqw9+ieufsAyDwjD9DTuE= =QRhK -----END PGP SIGNATURE----- Merge tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull random number generator updates from Jason Donenfeld: - Replace prandom_u32_max() and various open-coded variants of it, there is now a new family of functions that uses fast rejection sampling to choose properly uniformly random numbers within an interval: get_random_u32_below(ceil) - [0, ceil) get_random_u32_above(floor) - (floor, U32_MAX] get_random_u32_inclusive(floor, ceil) - [floor, ceil] Coccinelle was used to convert all current users of prandom_u32_max(), as well as many open-coded patterns, resulting in improvements throughout the tree. I'll have a "late" 6.1-rc1 pull for you that removes the now unused prandom_u32_max() function, just in case any other trees add a new use case of it that needs to converted. According to linux-next, there may be two trivial cases of prandom_u32_max() reintroductions that are fixable with a 's/.../.../'. So I'll have for you a final conversion patch doing that alongside the removal patch during the second week. This is a treewide change that touches many files throughout. - More consistent use of get_random_canary(). - Updates to comments, documentation, tests, headers, and simplification in configuration. - The arch_get_random*_early() abstraction was only used by arm64 and wasn't entirely useful, so this has been replaced by code that works in all relevant contexts. - The kernel will use and manage random seeds in non-volatile EFI variables, refreshing a variable with a fresh seed when the RNG is initialized. The RNG GUID namespace is then hidden from efivarfs to prevent accidental leakage. These changes are split into random.c infrastructure code used in the EFI subsystem, in this pull request, and related support inside of EFISTUB, in Ard's EFI tree. These are co-dependent for full functionality, but the order of merging doesn't matter. - Part of the infrastructure added for the EFI support is also used for an improvement to the way vsprintf initializes its siphash key, replacing an sleep loop wart. - The hardware RNG framework now always calls its correct random.c input function, add_hwgenerator_randomness(), rather than sometimes going through helpers better suited for other cases. - The add_latent_entropy() function has long been called from the fork handler, but is a no-op when the latent entropy gcc plugin isn't used, which is fine for the purposes of latent entropy. But it was missing out on the cycle counter that was also being mixed in beside the latent entropy variable. So now, if the latent entropy gcc plugin isn't enabled, add_latent_entropy() will expand to a call to add_device_randomness(NULL, 0), which adds a cycle counter, without the absent latent entropy variable. - The RNG is now reseeded from a delayed worker, rather than on demand when used. Always running from a worker allows it to make use of the CPU RNG on platforms like S390x, whose instructions are too slow to do so from interrupts. It also has the effect of adding in new inputs more frequently with more regularity, amounting to a long term transcript of random values. Plus, it helps a bit with the upcoming vDSO implementation (which isn't yet ready for 6.2). - The jitter entropy algorithm now tries to execute on many different CPUs, round-robining, in hopes of hitting even more memory latencies and other unpredictable effects. It also will mix in a cycle counter when the entropy timer fires, in addition to being mixed in from the main loop, to account more explicitly for fluctuations in that timer firing. And the state it touches is now kept within the same cache line, so that it's assured that the different execution contexts will cause latencies. * tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits) random: include <linux/once.h> in the right header random: align entropy_timer_state to cache line random: mix in cycle counter when jitter timer fires random: spread out jitter callback to different CPUs random: remove extraneous period and add a missing one in comments efi: random: refresh non-volatile random seed when RNG is initialized vsprintf: initialize siphash key using notifier random: add back async readiness notifier random: reseed in delayed work rather than on-demand random: always mix cycle counter in add_latent_entropy() hw_random: use add_hwgenerator_randomness() for early entropy random: modernize documentation comment on get_random_bytes() random: adjust comment to account for removed function random: remove early archrandom abstraction random: use random.trust_{bootloader,cpu} command line option only stackprotector: actually use get_random_canary() stackprotector: move get_random_canary() into stackprotector.h treewide: use get_random_u32_inclusive() when possible treewide: use get_random_u32_{above,below}() instead of manual loop treewide: use get_random_u32_below() instead of deprecated function ... |
||
![]() |
add7695957 |
Perf events updates for v6.2:
- Thoroughly rewrite the data structures that implement perf task context handling, with the goal of fixing various quirks and unfeatures both in already merged, and in upcoming proposed code. The old data structure is the per task and per cpu perf_event_contexts: task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context ^ | ^ | ^ `---------------------------------' | `--> pmu ---' v ^ perf_event ------' In this new design this is replaced with a single task context and a single CPU context, plus intermediate data-structures: task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context ^ | ^ ^ `---------------------------' | | | | perf_cpu_pmu_context <--. | `----. ^ | | | | | | v v | | ,--> perf_event_pmu_context | | | | | | | v v | perf_event ---> pmu ----------------' [ See commit |
||
![]() |
456ed864fd |
ACPI updates for 6.2-rc1
- Update the ACPICA code in the kernel to the 20221020 upstream version and fix a couple of issues in it: * Make acpi_ex_load_op() match upstream implementation (Rafael Wysocki). * Add support for loong_arch-specific APICs in MADT (Huacai Chen). * Add support for fixed PCIe wake event (Huacai Chen). * Add EBDA pointer sanity checks (Vit Kabele). * Avoid accessing VGA memory when EBDA < 1KiB (Vit Kabele). * Add CCEL table support to both compiler/disassembler (Kuppuswamy Sathyanarayanan). * Add a couple of new UUIDs to the known UUID list (Bob Moore). * Add support for FFH Opregion special context data (Sudeep Holla). * Improve warning message for "invalid ACPI name" (Bob Moore). * Add support for CXL 3.0 structures (CXIMS & RDPAS) in the CEDT table (Alison Schofield). * Prepare IORT support for revision E.e (Robin Murphy). * Finish support for the CDAT table (Bob Moore). * Fix error code path in acpi_ds_call_control_method() (Rafael Wysocki). * Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage() (Li Zetao). * Update the version of the ACPICA code in the kernel (Bob Moore). - Use ZERO_PAGE(0) instead of empty_zero_page in the ACPI device enumeration code (Giulio Benetti). - Change the return type of the ACPI driver remove callback to void and update its users accordingly (Dawei Li). - Add general support for FFH address space type and implement the low- level part of it for ARM64 (Sudeep Holla). - Fix stale comments in the ACPI tables parsing code and make it print more messages related to MADT (Hanjun Guo, Huacai Chen). - Replace invocations of generic library functions with more kernel- specific counterparts in the ACPI sysfs interface (Christophe JAILLET, Xu Panda). - Print full name paths of ACPI power resource objects during enumeration (Kane Chen). - Eliminate a compiler warning regarding a missing function prototype in the ACPI power management code (Sudeep Holla). - Fix and clean up the ACPI processor driver (Rafael Wysocki, Li Zhong, Colin Ian King, Sudeep Holla). - Add quirk for the HP Pavilion Gaming 15-cx0041ur to the ACPI EC driver (Mia Kanashi). - Add some mew ACPI backlight handling quirks and update some existing ones (Hans de Goede). - Make the ACPI backlight driver prefer the native backlight control over vendor backlight control when possible (Hans de Goede). - Drop unsetting ACPI APEI driver data on remove (Uwe Kleine-König). - Use xchg_release() instead of cmpxchg() for updating new GHES cache slots (Ard Biesheuvel). - Clean up the ACPI APEI code (Sudeep Holla, Christophe JAILLET, Jay Lu). - Add new I2C device enumeration quirks for Medion Lifetab S10346 and Lenovo Yoga Tab 3 Pro (YT3-X90F) (Hans de Goede). - Make the ACPI battery driver notify user space about adding new battery hooks and removing the existing ones (Armin Wolf). - Modify the pfr_update and pfr_telemetry drivers to use ACPI_FREE() for freeing acpi_object structures to help diagnostics (Wang ShaoBo). - Make the ACPI fan driver use sysfs_emit_at() in its sysfs interface code (ye xingchen). - Fix the _FIF package extraction failure handling in the ACPI fan driver (Hanjun Guo). - Fix the PCC mailbox handling error code path (Huisong Li). - Avoid using PCC Opregions if there is no platform interrupt allocated for this purpose (Huisong Li). - Use sysfs_emit() instead of scnprintf() in the ACPI PAD driver and CPPC library (ye xingchen). - Fix some kernel-doc issues in the ACPI GSI processing code (Xiongfeng Wang). - Fix name memory leak in pnp_alloc_dev() (Yang Yingliang). - Do not disable PNP devices on suspend when they cannot be re-enabled on resume (Hans de Goede). - Clean up the ACPI thermal driver a bit (Rafael Wysocki). -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmOXV10SHHJqd0Byand5 c29ja2kubmV0AAoJEILEb/54YlRxuOwP/2zew6val2Jf7I/Yxf1iQLlRyGmhFnaH wpltJvBjlHjAUKnPQ/kLYK9fjuUY5HVgjOE03WpwhFUpmhftYTrSkhoVkJ1Mw9Zl RNOAEgCG484ThHiTIVp/dMPxrtfuqpdbamhWX3Q51IfXjGW8Vc/lDxIa3k/JQxyq ko8GFPCoebJrSCfuwaAf2+xSQaf6dq4jpL/rlIk+nYMMB9mQmXhNEhc+l97NaCe8 MyCIGynyNbhGsIlwdHRvTp04EIe8h0Z1+Dyns7g/TrzHj3Aezy7QVZbn8sKdZWa1 W/Ck9QST5tfpDWyr+hUXxUJjEn4Yy+GXjM2xON0EMx5q+JD9XsOpwWOVwTR7CS5s FwEd6I89SC8OZM86AgMtnGxygjpK24R/kGzHjhG15IQCsypc8Rvzoxl0L0YVoon/ UTkE57GzNWVzu0pY/oXJc2aT7lVqFXMFZ6ft/zHnBRnQmrcIi+xgDO5ni5KxctFN TVFwbAMCuwVx6IOcVQCZM2g4aJw426KpUn19fKnXvPwR5UIufBaCzSKWMiYrtdXr O5BM8ElYuyKCWGYEE0GSMjZygyDpyY6ENLH7s7P1IEmFyigBzaaGBbKm108JJq4V eCWJYTAx8pAptsU/vfuMvEQ1ErfhZ3TTokA5Lv0uPf53VcAnWDb7EAbW6ZGMwFSI IaV6cv6ILoqO =GVzp -----END PGP SIGNATURE----- Merge tag 'acpi-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI and PNP updates from Rafael Wysocki: "These include new code (for instance, support for the FFH address space type and support for new firmware data structures in ACPICA), some new quirks (mostly related to backlight handling and I2C enumeration), a number of fixes and a fair amount of cleanups all over. Specifics: - Update the ACPICA code in the kernel to the 20221020 upstream version and fix a couple of issues in it: - Make acpi_ex_load_op() match upstream implementation (Rafael Wysocki) - Add support for loong_arch-specific APICs in MADT (Huacai Chen) - Add support for fixed PCIe wake event (Huacai Chen) - Add EBDA pointer sanity checks (Vit Kabele) - Avoid accessing VGA memory when EBDA < 1KiB (Vit Kabele) - Add CCEL table support to both compiler/disassembler (Kuppuswamy Sathyanarayanan) - Add a couple of new UUIDs to the known UUID list (Bob Moore) - Add support for FFH Opregion special context data (Sudeep Holla) - Improve warning message for "invalid ACPI name" (Bob Moore) - Add support for CXL 3.0 structures (CXIMS & RDPAS) in the CEDT table (Alison Schofield) - Prepare IORT support for revision E.e (Robin Murphy) - Finish support for the CDAT table (Bob Moore) - Fix error code path in acpi_ds_call_control_method() (Rafael Wysocki) - Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage() (Li Zetao) - Update the version of the ACPICA code in the kernel (Bob Moore) - Use ZERO_PAGE(0) instead of empty_zero_page in the ACPI device enumeration code (Giulio Benetti) - Change the return type of the ACPI driver remove callback to void and update its users accordingly (Dawei Li) - Add general support for FFH address space type and implement the low- level part of it for ARM64 (Sudeep Holla) - Fix stale comments in the ACPI tables parsing code and make it print more messages related to MADT (Hanjun Guo, Huacai Chen) - Replace invocations of generic library functions with more kernel- specific counterparts in the ACPI sysfs interface (Christophe JAILLET, Xu Panda) - Print full name paths of ACPI power resource objects during enumeration (Kane Chen) - Eliminate a compiler warning regarding a missing function prototype in the ACPI power management code (Sudeep Holla) - Fix and clean up the ACPI processor driver (Rafael Wysocki, Li Zhong, Colin Ian King, Sudeep Holla) - Add quirk for the HP Pavilion Gaming 15-cx0041ur to the ACPI EC driver (Mia Kanashi) - Add some mew ACPI backlight handling quirks and update some existing ones (Hans de Goede) - Make the ACPI backlight driver prefer the native backlight control over vendor backlight control when possible (Hans de Goede) - Drop unsetting ACPI APEI driver data on remove (Uwe Kleine-König) - Use xchg_release() instead of cmpxchg() for updating new GHES cache slots (Ard Biesheuvel) - Clean up the ACPI APEI code (Sudeep Holla, Christophe JAILLET, Jay Lu) - Add new I2C device enumeration quirks for Medion Lifetab S10346 and Lenovo Yoga Tab 3 Pro (YT3-X90F) (Hans de Goede) - Make the ACPI battery driver notify user space about adding new battery hooks and removing the existing ones (Armin Wolf) - Modify the pfr_update and pfr_telemetry drivers to use ACPI_FREE() for freeing acpi_object structures to help diagnostics (Wang ShaoBo) - Make the ACPI fan driver use sysfs_emit_at() in its sysfs interface code (ye xingchen) - Fix the _FIF package extraction failure handling in the ACPI fan driver (Hanjun Guo) - Fix the PCC mailbox handling error code path (Huisong Li) - Avoid using PCC Opregions if there is no platform interrupt allocated for this purpose (Huisong Li) - Use sysfs_emit() instead of scnprintf() in the ACPI PAD driver and CPPC library (ye xingchen) - Fix some kernel-doc issues in the ACPI GSI processing code (Xiongfeng Wang) - Fix name memory leak in pnp_alloc_dev() (Yang Yingliang) - Do not disable PNP devices on suspend when they cannot be re-enabled on resume (Hans de Goede) - Clean up the ACPI thermal driver a bit (Rafael Wysocki)" * tag 'acpi-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (67 commits) ACPI: x86: Add skip i2c clients quirk for Medion Lifetab S10346 ACPI: APEI: EINJ: Refactor available_error_type_show() ACPI: APEI: EINJ: Fix formatting errors ACPI: processor: perflib: Adjust acpi_processor_notify_smm() return value ACPI: processor: perflib: Rearrange acpi_processor_notify_smm() ACPI: processor: perflib: Rearrange unregistration routine ACPI: processor: perflib: Drop redundant parentheses ACPI: processor: perflib: Adjust white space ACPI: processor: idle: Drop unnecessary statements and parens ACPI: thermal: Adjust critical.flags.valid check ACPI: fan: Convert to use sysfs_emit_at() API ACPICA: Fix use-after-free in acpi_ut_copy_ipackage_to_ipackage() ACPI: battery: Call power_supply_changed() when adding hooks ACPI: use sysfs_emit() instead of scnprintf() ACPI: x86: Add skip i2c clients quirk for Lenovo Yoga Tab 3 Pro (YT3-X90F) ACPI: APEI: Remove a useless include PNP: Do not disable devices on suspend when they cannot be re-enabled on resume ACPI: processor: Silence missing prototype warnings ACPI: processor_idle: Silence missing prototype warnings ACPI: PM: Silence missing prototype warning ... |
||
![]() |
0a1d4434db |
Updates for timers, timekeeping and drivers:
- Core: - The timer_shutdown[_sync]() infrastructure: Tearing down timers can be tedious when there are circular dependencies to other things which need to be torn down. A prime example is timer and workqueue where the timer schedules work and the work arms the timer. What needs to prevented is that pending work which is drained via destroy_workqueue() does not rearm the previously shutdown timer. Nothing in that shutdown sequence relies on the timer being functional. The conclusion was that the semantics of timer_shutdown_sync() should be: - timer is not enqueued - timer callback is not running - timer cannot be rearmed Preventing the rearming of shutdown timers is done by discarding rearm attempts silently. A warning for the case that a rearm attempt of a shutdown timer is detected would not be really helpful because it's entirely unclear how it should be acted upon. The only way to address such a case is to add 'if (in_shutdown)' conditionals all over the place. This is error prone and in most cases of teardown not required all. - The real fix for the bluetooth HCI teardown based on timer_shutdown_sync(). A larger scale conversion to timer_shutdown_sync() is work in progress. - Consolidation of VDSO time namespace helper functions - Small fixes for timer and timerqueue - Drivers: - Prevent integer overflow on the XGene-1 TVAL register which causes an never ending interrupt storm. - The usual set of new device tree bindings - Small fixes and improvements all over the place -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmOUuC0THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYodpZD/9kCDi009n65QFF1J4kE5aZuABbRMtO 7sy66fJpDyB/MtcbPPH29uzQUEs1VMTQVB+ZM+7e1YGoxSWuSTzeoFH+yK1w4tEZ VPbOcvUEjG0esKUehwYFeOjSnIjy6M1Y41aOUaDnq00/azhfTrzLxQA1BbbFbkpw S7u2hllbyRJ8KdqQyV9cVpXmze6fcpdtNhdQeoA7qQCsSPnJ24MSpZ/PG9bAovq8 75IRROT7CQRd6AMKAVpA9Ov8ak9nbY3EgQmoKcp5ZXfXz8kD3nHky9Lste7djgYB U085Vwcelt39V5iXevDFfzrBYRUqrMKOXIf2xnnoDNeF5Jlj5gChSNVZwTLO38wu RFEVCjCjuC41GQJWSck9LRSYdriW/htVbEE8JLc6uzUJGSyjshgJRn/PK4HjpiLY AvH2rd4rAap/rjDKvfWvBqClcfL7pyBvavgJeyJ8oXyQjHrHQwapPcsMFBm0Cky5 soF0Lr3hIlQ9u+hwUuFdNZkY9mOg09g9ImEjW1AZTKY0DfJMc5JAGjjSCfuopVUN Uf/qqcUeQPSEaC+C9xiFs0T3svYFxBqpgPv4B6t8zAnozon9fyZs+lv5KdRg4X77 qX395qc6PaOSQlA7gcxVw3vjCPd0+hljXX84BORP7z+uzcsomvIH1MxJepIHmgaJ JrYbSZ5qzY5TTA== =JlDe -----END PGP SIGNATURE----- Merge tag 'timers-core-2022-12-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "Updates for timers, timekeeping and drivers: Core: - The timer_shutdown[_sync]() infrastructure: Tearing down timers can be tedious when there are circular dependencies to other things which need to be torn down. A prime example is timer and workqueue where the timer schedules work and the work arms the timer. What needs to prevented is that pending work which is drained via destroy_workqueue() does not rearm the previously shutdown timer. Nothing in that shutdown sequence relies on the timer being functional. The conclusion was that the semantics of timer_shutdown_sync() should be: - timer is not enqueued - timer callback is not running - timer cannot be rearmed Preventing the rearming of shutdown timers is done by discarding rearm attempts silently. A warning for the case that a rearm attempt of a shutdown timer is detected would not be really helpful because it's entirely unclear how it should be acted upon. The only way to address such a case is to add 'if (in_shutdown)' conditionals all over the place. This is error prone and in most cases of teardown not required all. - The real fix for the bluetooth HCI teardown based on timer_shutdown_sync(). A larger scale conversion to timer_shutdown_sync() is work in progress. - Consolidation of VDSO time namespace helper functions - Small fixes for timer and timerqueue Drivers: - Prevent integer overflow on the XGene-1 TVAL register which causes an never ending interrupt storm. - The usual set of new device tree bindings - Small fixes and improvements all over the place" * tag 'timers-core-2022-12-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits) dt-bindings: timer: renesas,cmt: Add r8a779g0 CMT support dt-bindings: timer: renesas,tmu: Add r8a779g0 support clocksource/drivers/arm_arch_timer: Use kstrtobool() instead of strtobool() clocksource/drivers/timer-ti-dm: Fix missing clk_disable_unprepare in dmtimer_systimer_init_clock() clocksource/drivers/timer-ti-dm: Clear settings on probe and free clocksource/drivers/timer-ti-dm: Make timer_get_irq static clocksource/drivers/timer-ti-dm: Fix warning for omap_timer_match clocksource/drivers/arm_arch_timer: Fix XGene-1 TVAL register math error clocksource/drivers/timer-npcm7xx: Enable timer 1 clock before use dt-bindings: timer: nuvoton,npcm7xx-timer: Allow specifying all clocks dt-bindings: timer: rockchip: Add rockchip,rk3128-timer clockevents: Repair kernel-doc for clockevent_delta2ns() clocksource/drivers/ingenic-ost: Define pm functions properly in platform_driver struct clocksource/drivers/sh_cmt: Access registers according to spec vdso/timens: Refactor copy-pasted find_timens_vvar_page() helper into one copy Bluetooth: hci_qca: Fix the teardown problem for real timers: Update the documentation to reflect on the new timer_shutdown() API timers: Provide timer_shutdown[_sync]() timers: Add shutdown mechanism to the internal functions timers: Split [try_to_]del_timer[_sync]() to prepare for shutdown mode ... |
||
![]() |
06cff4a58e |
arm64 updates for 6.2
ACPI: * Enable FPDT support for boot-time profiling * Fix CPU PMU probing to work better with PREEMPT_RT * Update SMMUv3 MSI DeviceID parsing to latest IORT spec * APMT support for probing Arm CoreSight PMU devices CPU features: * Advertise new SVE instructions (v2.1) * Advertise range prefetch instruction * Advertise CSSC ("Common Short Sequence Compression") scalar instructions, adding things like min, max, abs, popcount * Enable DIT (Data Independent Timing) when running in the kernel * More conversion of system register fields over to the generated header CPU misfeatures: * Workaround for Cortex-A715 erratum #2645198 Dynamic SCS: * Support for dynamic shadow call stacks to allow switching at runtime between Clang's SCS implementation and the CPU's pointer authentication feature when it is supported (complete with scary DWARF parser!) Tracing and debug: * Remove static ftrace in favour of, err, dynamic ftrace! * Seperate 'struct ftrace_regs' from 'struct pt_regs' in core ftrace and existing arch code * Introduce and implement FTRACE_WITH_ARGS on arm64 to replace the old FTRACE_WITH_REGS * Extend 'crashkernel=' parameter with default value and fallback to placement above 4G physical if initial (low) allocation fails SVE: * Optimisation to avoid disabling SVE unconditionally on syscall entry and just zeroing the non-shared state on return instead Exceptions: * Rework of undefined instruction handling to avoid serialisation on global lock (this includes emulation of user accesses to the ID registers) Perf and PMU: * Support for TLP filters in Hisilicon's PCIe PMU device * Support for the DDR PMU present in Amlogic Meson G12 SoCs * Support for the terribly-named "CoreSight PMU" architecture from Arm (and Nvidia's implementation of said architecture) Misc: * Tighten up our boot protocol for systems with memory above 52 bits physical * Const-ify static keys to satisty jump label asm constraints * Trivial FFA driver cleanups in preparation for v1.1 support * Export the kernel_neon_* APIs as GPL symbols * Harden our instruction generation routines against instrumentation * A bunch of robustness improvements to our arch-specific selftests * Minor cleanups and fixes all over (kbuild, kprobes, kfence, PMU, ...) -----BEGIN PGP SIGNATURE----- iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmOPLFAQHHdpbGxAa2Vy bmVsLm9yZwAKCRC3rHDchMFjNPRcCACLyDTvkimiqfoPxzzgdkx/6QOvw9s3/mXg UcTORSZBR1VnYkiMYEKVz/tTfG99dnWtD8/0k/rz48NbhBfsF2sN4ukyBBXVf0zR fjnaVyVC11LUgBgZKPo6maV+jf/JWf9hJtpPl06KTiPb2Hw2JX4DXg+PeF8t2hGx NLH4ekQOrlDM8mlsN5mc0YsHbiuO7Xe/NRuet8TsgU4bEvLAwO6bzOLVUMqDQZNq bQe2ENcGVAzAf7iRJb38lj9qB/5hrQTHRXqLXMSnJyyVjQEwYca0PeJMa7x30bXF ZZ+xQ8Wq0mxiffZraf6SE34yD4gaYS4Fziw7rqvydC15vYhzJBH1 =hV+2 -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The highlights this time are support for dynamically enabling and disabling Clang's Shadow Call Stack at boot and a long-awaited optimisation to the way in which we handle the SVE register state on system call entry to avoid taking unnecessary traps from userspace. Summary: ACPI: - Enable FPDT support for boot-time profiling - Fix CPU PMU probing to work better with PREEMPT_RT - Update SMMUv3 MSI DeviceID parsing to latest IORT spec - APMT support for probing Arm CoreSight PMU devices CPU features: - Advertise new SVE instructions (v2.1) - Advertise range prefetch instruction - Advertise CSSC ("Common Short Sequence Compression") scalar instructions, adding things like min, max, abs, popcount - Enable DIT (Data Independent Timing) when running in the kernel - More conversion of system register fields over to the generated header CPU misfeatures: - Workaround for Cortex-A715 erratum #2645198 Dynamic SCS: - Support for dynamic shadow call stacks to allow switching at runtime between Clang's SCS implementation and the CPU's pointer authentication feature when it is supported (complete with scary DWARF parser!) Tracing and debug: - Remove static ftrace in favour of, err, dynamic ftrace! - Seperate 'struct ftrace_regs' from 'struct pt_regs' in core ftrace and existing arch code - Introduce and implement FTRACE_WITH_ARGS on arm64 to replace the old FTRACE_WITH_REGS - Extend 'crashkernel=' parameter with default value and fallback to placement above 4G physical if initial (low) allocation fails SVE: - Optimisation to avoid disabling SVE unconditionally on syscall entry and just zeroing the non-shared state on return instead Exceptions: - Rework of undefined instruction handling to avoid serialisation on global lock (this includes emulation of user accesses to the ID registers) Perf and PMU: - Support for TLP filters in Hisilicon's PCIe PMU device - Support for the DDR PMU present in Amlogic Meson G12 SoCs - Support for the terribly-named "CoreSight PMU" architecture from Arm (and Nvidia's implementation of said architecture) Misc: - Tighten up our boot protocol for systems with memory above 52 bits physical - Const-ify static keys to satisty jump label asm constraints - Trivial FFA driver cleanups in preparation for v1.1 support - Export the kernel_neon_* APIs as GPL symbols - Harden our instruction generation routines against instrumentation - A bunch of robustness improvements to our arch-specific selftests - Minor cleanups and fixes all over (kbuild, kprobes, kfence, PMU, ...)" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (151 commits) arm64: kprobes: Return DBG_HOOK_ERROR if kprobes can not handle a BRK arm64: kprobes: Let arch do_page_fault() fix up page fault in user handler arm64: Prohibit instrumentation on arch_stack_walk() arm64:uprobe fix the uprobe SWBP_INSN in big-endian arm64: alternatives: add __init/__initconst to some functions/variables arm_pmu: Drop redundant armpmu->map_event() in armpmu_event_init() kselftest/arm64: Allow epoll_wait() to return more than one result kselftest/arm64: Don't drain output while spawning children kselftest/arm64: Hold fp-stress children until they're all spawned arm64/sysreg: Remove duplicate definitions from asm/sysreg.h arm64/sysreg: Convert ID_DFR1_EL1 to automatic generation arm64/sysreg: Convert ID_DFR0_EL1 to automatic generation arm64/sysreg: Convert ID_AFR0_EL1 to automatic generation arm64/sysreg: Convert ID_MMFR5_EL1 to automatic generation arm64/sysreg: Convert MVFR2_EL1 to automatic generation arm64/sysreg: Convert MVFR1_EL1 to automatic generation arm64/sysreg: Convert MVFR0_EL1 to automatic generation arm64/sysreg: Convert ID_PFR2_EL1 to automatic generation arm64/sysreg: Convert ID_PFR1_EL1 to automatic generation arm64/sysreg: Convert ID_PFR0_EL1 to automatic generation ... |
||
![]() |
45494d77f2 |
Merge branches 'acpi-scan', 'acpi-bus', 'acpi-tables' and 'acpi-sysfs'
Merge ACPI changes related to device enumeration, device object managenet, operation region handling, table parsing and sysfs interface: - Use ZERO_PAGE(0) instead of empty_zero_page in the ACPI device enumeration code (Giulio Benetti). - Change the return type of the ACPI driver remove callback to void and update its users accordingly (Dawei Li). - Add general support for FFH address space type and implement the low- level part of it for ARM64 (Sudeep Holla). - Fix stale comments in the ACPI tables parsing code and make it print more messages related to MADT (Hanjun Guo, Huacai Chen). - Replace invocations of generic library functions with more kernel- specific counterparts in the ACPI sysfs interface (Christophe JAILLET, Xu Panda). * acpi-scan: ACPI: scan: substitute empty_zero_page with helper ZERO_PAGE(0) * acpi-bus: ACPI: FFH: Silence missing prototype warnings ACPI: make remove callback of ACPI driver void ACPI: bus: Fix the _OSC capability check for FFH OpRegion arm64: Add architecture specific ACPI FFH Opregion callbacks ACPI: Implement a generic FFH Opregion handler * acpi-tables: ACPI: tables: Fix the stale comments for acpi_locate_initial_tables() ACPI: tables: Print CORE_PIC information when MADT is parsed * acpi-sysfs: ACPI: sysfs: use sysfs_emit() to instead of scnprintf() ACPI: sysfs: Use kstrtobool() instead of strtobool() |
||
![]() |
e8dfdf3162 |
arm64: efi: Recover from synchronous exceptions occurring in firmware
Unlike x86, which has machinery to deal with page faults that occur during the execution of EFI runtime services, arm64 has nothing like that, and a synchronous exception raised by firmware code brings down the whole system. With more EFI based systems appearing that were not built to run Linux (such as the Windows-on-ARM laptops based on Qualcomm SOCs), as well as the introduction of PRM (platform specific firmware routines that are callable just like EFI runtime services), we are more likely to run into issues of this sort, and it is much more likely that we can identify and work around such issues if they don't bring down the system entirely. Since we already use a EFI runtime services call wrapper in assembler, we can quite easily add some code that captures the execution state at the point where the call is made, allowing us to revert to this state and proceed execution if the call triggered a synchronous exception. Given that the kernel and the firmware don't share any data structures that could end up in an indeterminate state, we can happily continue running, as long as we mark the EFI runtime services as unavailable from that point on. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ff7a167961 |
arm64: efi: Execute runtime services from a dedicated stack
With the introduction of PRMT in the ACPI subsystem, the EFI rts workqueue is no longer the only caller of efi_call_virt_pointer() in the kernel. This means the EFI runtime services lock is no longer sufficient to manage concurrent calls into firmware, but also that firmware calls may occur that are not marshalled via the workqueue mechanism, but originate directly from the caller context. For added robustness, and to ensure that the runtime services have 8 KiB of stack space available as per the EFI spec, introduce a spinlock protected EFI runtime stack of 8 KiB, where the spinlock also ensures serialization between the EFI rts workqueue (which itself serializes EFI runtime calls) and other callers of efi_call_virt_pointer(). While at it, use the stack pivot to avoid reloading the shadow call stack pointer from the ordinary stack, as doing so could produce a gadget to defeat it. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
d9f26ae731 |
Linux 6.1-rc8
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmONI6weHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG9xgH/jqXGuMoO1ikfmGb 7oY0W/f69G9V/e0DxFLvnIjhFgCUzdnNsmD4jQJA4x6QsxwLWuvpI282Ez+bHV5T U4RPsxJZIIMsXE2lKM9BRgeLzDdCt0aK4Pj+3x2x7NZC5cWFSQ8PyQJkCwg+0PQo u8Ly+GO8c4RUMf4/rrAZQq16qZUqGDaGm1EJhtSoa+KiR81LmUUmbDIK9Mr53rmQ wou+95XhibwMWr17WgXA28bTgYqn9UGr67V3qvTH2LC7GW8BCoKvn+3wh6TVhlWj dsWplXgcOP0/OHvSC5Sb1Uibk5Gx3DlIzYa6OfNZQuZ5xmQqm9kXjW8lmYpWFHy/ 38/5HWc= =EuoA -----END PGP SIGNATURE----- Merge tag 'v6.1-rc8' into efi/next Linux 6.1-rc8 |
||
![]() |
5f4c374760 |
Merge branch 'for-next/undef-traps' into for-next/core
* for-next/undef-traps: arm64: armv8_deprecated: fix unused-function error arm64: armv8_deprecated: rework deprected instruction handling arm64: armv8_deprecated: move aarch32 helper earlier arm64: armv8_deprecated move emulation functions arm64: armv8_deprecated: fold ops into insn_emulation arm64: rework EL0 MRS emulation arm64: factor insn read out of call_undef_hook() arm64: factor out EL1 SSBS emulation hook arm64: split EL0/EL1 UNDEF handlers arm64: allow kprobes on EL0 handlers |
||
![]() |
9d84ad425d |
Merge branch 'for-next/trivial' into for-next/core
* for-next/trivial: arm64: alternatives: add __init/__initconst to some functions/variables arm64/asm: Remove unused assembler DAIF save/restore macros arm64/kpti: Move DAIF masking to C code Revert "arm64/mm: Drop redundant BUG_ON(!pgtable_alloc)" arm64/mm: Drop unused restore_ttbr1 arm64: alternatives: make apply_alternatives_vdso() static arm64/mm: Drop idmap_pg_end[] declaration arm64/mm: Drop redundant BUG_ON(!pgtable_alloc) arm64: make is_ttbrX_addr() noinstr-safe arm64/signal: Document our convention for choosing magic numbers arm64: atomics: lse: remove stale dependency on JUMP_LABEL arm64: paravirt: remove conduit check in has_pv_steal_clock arm64: entry: Fix typo arm64/booting: Add missing colon to FA64 entry arm64/mm: Drop ARM64_KERNEL_USES_PMD_MAPS arm64/asm: Remove unused enable_da macro |
||
![]() |
70b1c62a67 |
Merge branch 'for-next/sysregs' into for-next/core
* for-next/sysregs: (39 commits) arm64/sysreg: Remove duplicate definitions from asm/sysreg.h arm64/sysreg: Convert ID_DFR1_EL1 to automatic generation arm64/sysreg: Convert ID_DFR0_EL1 to automatic generation arm64/sysreg: Convert ID_AFR0_EL1 to automatic generation arm64/sysreg: Convert ID_MMFR5_EL1 to automatic generation arm64/sysreg: Convert MVFR2_EL1 to automatic generation arm64/sysreg: Convert MVFR1_EL1 to automatic generation arm64/sysreg: Convert MVFR0_EL1 to automatic generation arm64/sysreg: Convert ID_PFR2_EL1 to automatic generation arm64/sysreg: Convert ID_PFR1_EL1 to automatic generation arm64/sysreg: Convert ID_PFR0_EL1 to automatic generation arm64/sysreg: Convert ID_ISAR6_EL1 to automatic generation arm64/sysreg: Convert ID_ISAR5_EL1 to automatic generation arm64/sysreg: Convert ID_ISAR4_EL1 to automatic generation arm64/sysreg: Convert ID_ISAR3_EL1 to automatic generation arm64/sysreg: Convert ID_ISAR2_EL1 to automatic generation arm64/sysreg: Convert ID_ISAR1_EL1 to automatic generation arm64/sysreg: Convert ID_ISAR0_EL1 to automatic generation arm64/sysreg: Convert ID_MMFR4_EL1 to automatic generation arm64/sysreg: Convert ID_MMFR3_EL1 to automatic generation ... |
||
![]() |
75bc81d08f |
Merge branch 'for-next/sve-state' into for-next/core
* for-next/sve-state: arm64/fp: Use a struct to pass data to fpsimd_bind_state_to_cpu() arm64/sve: Leave SVE enabled on syscall if we don't context switch arm64/fpsimd: SME no longer requires SVE register state arm64/fpsimd: Load FP state based on recorded data type arm64/fpsimd: Stop using TIF_SVE to manage register saving in KVM arm64/fpsimd: Have KVM explicitly say which FP registers to save arm64/fpsimd: Track the saved FPSIMD state type separately to TIF_SVE KVM: arm64: Discard any SVE state when entering KVM guests |
||
![]() |
595a121e89 |
Merge branch 'for-next/stacks' into for-next/core
* for-next/stacks: arm64: move on_thread_stack() to <asm/stacktrace.h> arm64: remove current_top_of_stack() |
||
![]() |
10162e78ea |
Merge branch 'for-next/perf' into for-next/core
* for-next/perf: (21 commits) arm_pmu: Drop redundant armpmu->map_event() in armpmu_event_init() drivers/perf: hisi: Add TLP filter support Documentation: perf: Indent filter options list of hisi-pcie-pmu docs: perf: Fix PMU instance name of hisi-pcie-pmu drivers/perf: hisi: Fix some event id for hisi-pcie-pmu arm64/perf: Replace PMU version number '0' with ID_AA64DFR0_EL1_PMUVer_NI perf/amlogic: Remove unused header inclusions of <linux/version.h> perf/amlogic: Fix build error for x86_64 allmodconfig dt-binding: perf: Add Amlogic DDR PMU docs/perf: Add documentation for the Amlogic G12 DDR PMU perf/amlogic: Add support for Amlogic meson G12 SoC DDR PMU driver MAINTAINERS: Update HiSilicon PMU maintainers perf: arm_cspmu: Fix module cyclic dependency perf: arm_cspmu: Fix build failure on x86_64 perf: arm_cspmu: Fix modular builds due to missing MODULE_LICENSE()s perf: arm_cspmu: Add support for NVIDIA SCF and MCF attribute perf: arm_cspmu: Add support for ARM CoreSight PMU driver perf/smmuv3: Fix hotplug callback leak in arm_smmu_pmu_init() perf/arm_dmc620: Fix hotplug callback leak in dmc620_pmu_init() drivers: perf: marvell_cn10k: Fix hotplug callback leak in tad_pmu_init() ... |
||
![]() |
37f5d61a96 |
Merge branch 'for-next/kprobes' into for-next/core
* for-next/kprobes: arm64: kprobes: Return DBG_HOOK_ERROR if kprobes can not handle a BRK arm64: kprobes: Let arch do_page_fault() fix up page fault in user handler arm64: Prohibit instrumentation on arch_stack_walk() |
||
![]() |
586e1ad9af |
Merge branch 'for-next/insn' into for-next/core
* for-next/insn: arm64:uprobe fix the uprobe SWBP_INSN in big-endian arm64: insn: always inline hint generation arm64: insn: simplify insn group identification arm64: insn: always inline predicates arm64: insn: remove aarch64_insn_gen_prefetch() |
||
![]() |
a4aebff7ef |
Merge branch 'for-next/ftrace' into for-next/core
* for-next/ftrace: ftrace: arm64: remove static ftrace ftrace: arm64: move from REGS to ARGS ftrace: abstract DYNAMIC_FTRACE_WITH_ARGS accesses ftrace: rename ftrace_instruction_pointer_set() -> ftrace_regs_set_instruction_pointer() ftrace: pass fregs to arch_ftrace_set_direct_caller() |
||
![]() |
1a916ed79b |
Merge branch 'for-next/fpsimd' into for-next/core
* for-next/fpsimd: arm64/fpsimd: Make kernel_neon_ API _GPL |
||
![]() |
f455fb65b4 |
Merge branch 'for-next/errata' into for-next/core
* for-next/errata: arm64: errata: Workaround possible Cortex-A715 [ESR|FAR]_ELx corruption arm64: Add Cortex-715 CPU part definition |
||
![]() |
f6ffa4c8c1 |
Merge branch 'for-next/dynamic-scs' into for-next/core
* for-next/dynamic-scs: arm64: implement dynamic shadow call stack for Clang scs: add support for dynamic shadow call stacks arm64: unwind: add asynchronous unwind tables to kernel and modules |
||
![]() |
753d734f3f |
Merge remote-tracking branch 'arm64/for-next/sysregs' into kvmarm-master/next
Merge arm64's sysreg repainting branch to avoid too many ugly conflicts... Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
382b5b87a9 |
Merge branch kvm-arm64/mte-map-shared into kvmarm-master/next
* kvm-arm64/mte-map-shared: : . : Update the MTE support to allow the VMM to use shared mappings : to back the memslots exposed to MTE-enabled guests. : : Patches courtesy of Catalin Marinas and Peter Collingbourne. : . : Fix a number of issues with MTE, such as races on the tags : being initialised vs the PG_mte_tagged flag as well as the : lack of support for VM_SHARED when KVM is involved. : : Patches from Catalin Marinas and Peter Collingbourne. : . Documentation: document the ABI changes for KVM_CAP_ARM_MTE KVM: arm64: permit all VM_MTE_ALLOWED mappings with MTE enabled KVM: arm64: unify the tests for VMAs in memslots when MTE is enabled arm64: mte: Lock a page for MTE tag initialisation mm: Add PG_arch_3 page flag KVM: arm64: Simplify the sanitise_mte_tags() logic arm64: mte: Fix/clarify the PG_mte_tagged semantics mm: Do not enable PG_arch_2 for all 64-bit architectures Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
cfa72993d1 |
Merge branch kvm-arm64/pkvm-vcpu-state into kvmarm-master/next
* kvm-arm64/pkvm-vcpu-state: (25 commits) : . : Large drop of pKVM patches from Will Deacon and co, adding : a private vm/vcpu state at EL2, managed independently from : the EL1 state. From the cover letter: : : "This is version six of the pKVM EL2 state series, extending the pKVM : hypervisor code so that it can dynamically instantiate and manage VM : data structures without the host being able to access them directly. : These structures consist of a hyp VM, a set of hyp vCPUs and the stage-2 : page-table for the MMU. The pages used to hold the hypervisor structures : are returned to the host when the VM is destroyed." : . KVM: arm64: Use the pKVM hyp vCPU structure in handle___kvm_vcpu_run() KVM: arm64: Don't unnecessarily map host kernel sections at EL2 KVM: arm64: Explicitly map 'kvm_vgic_global_state' at EL2 KVM: arm64: Maintain a copy of 'kvm_arm_vmid_bits' at EL2 KVM: arm64: Unmap 'kvm_arm_hyp_percpu_base' from the host KVM: arm64: Return guest memory from EL2 via dedicated teardown memcache KVM: arm64: Instantiate guest stage-2 page-tables at EL2 KVM: arm64: Consolidate stage-2 initialisation into a single function KVM: arm64: Add generic hyp_memcache helpers KVM: arm64: Provide I-cache invalidation by virtual address at EL2 KVM: arm64: Initialise hypervisor copies of host symbols unconditionally KVM: arm64: Add per-cpu fixmap infrastructure at EL2 KVM: arm64: Instantiate pKVM hypervisor VM and vCPU structures from EL1 KVM: arm64: Add infrastructure to create and track pKVM instances at EL2 KVM: arm64: Rename 'host_kvm' to 'host_mmu' KVM: arm64: Add hyp_spinlock_t static initializer KVM: arm64: Include asm/kvm_mmu.h in nvhe/mem_protect.h KVM: arm64: Add helpers to pin memory shared with the hypervisor at EL2 KVM: arm64: Prevent the donation of no-map pages KVM: arm64: Implement do_donate() helper for donating memory ... Signed-off-by: Marc Zyngier <maz@kernel.org> |
||
![]() |
3b84efc066 |
arm64: kprobes: Return DBG_HOOK_ERROR if kprobes can not handle a BRK
Return DBG_HOOK_ERROR if kprobes can not handle a BRK because it fails to find a kprobe corresponding to the address. Since arm64 kprobes uses stop_machine based text patching for removing BRK, it ensures all running kprobe_break_handler() is done at that point. And after removing the BRK, it removes the kprobe from its hash list. Thus, if the kprobe_break_handler() fails to find kprobe from hash list, there is a bug. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/166994753273.439920.6629626290560350760.stgit@devnote3 Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
30a4215523 |
arm64: kprobes: Let arch do_page_fault() fix up page fault in user handler
Since arm64's do_page_fault() can handle the page fault correctly than kprobe_fault_handler() according to the context, let it handle the page fault instead of simply call fixup_exception() in the kprobe_fault_handler(). Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/166994752269.439920.4801339965959400456.stgit@devnote3 Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
0fbcd8abf3 |
arm64: Prohibit instrumentation on arch_stack_walk()
Mark arch_stack_walk() as noinstr instead of notrace and inline functions
called from arch_stack_walk() as __always_inline so that user does not
put any instrumentations on it, because this function can be used from
return_address() which is used by lockdep.
Without this, if the kernel built with CONFIG_LOCKDEP=y, just probing
arch_stack_walk() via <tracefs>/kprobe_events will crash the kernel on
arm64.
# echo p arch_stack_walk >> ${TRACEFS}/kprobe_events
# echo 1 > ${TRACEFS}/events/kprobes/enable
kprobes: Failed to recover from reentered kprobes.
kprobes: Dump kprobe:
.symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
------------[ cut here ]------------
kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!
kprobes: Failed to recover from reentered kprobes.
kprobes: Dump kprobe:
.symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
------------[ cut here ]------------
kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!
PREEMPT SMP
Modules linked in:
CPU: 0 PID: 17 Comm: migration/0 Tainted: G N 6.1.0-rc5+ #6
Hardware name: linux,dummy-virt (DT)
Stopper: 0x0 <- 0x0
pstate: 600003c5 (nZCv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : kprobe_breakpoint_handler+0x178/0x17c
lr : kprobe_breakpoint_handler+0x178/0x17c
sp : ffff8000080d3090
x29: ffff8000080d3090 x28: ffff0df5845798c0 x27: ffffc4f59057a774
x26: ffff0df5ffbba770 x25: ffff0df58f420f18 x24: ffff49006f641000
x23: ffffc4f590579768 x22: ffff0df58f420f18 x21: ffff8000080d31c0
x20: ffffc4f590579768 x19: ffffc4f590579770 x18: 0000000000000006
x17: 5f6b636174735f68 x16: 637261203d207264 x15: 64612e202c30203d
x14: 2074657366666f2e x13: 30633178302f3078 x12: 302b6b6c61775f6b
x11: 636174735f686372 x10: ffffc4f590dc5bd8 x9 : ffffc4f58eb31958
x8 : 00000000ffffefff x7 : ffffc4f590dc5bd8 x6 : 80000000fffff000
x5 : 000000000000bff4 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : ffff0df5845798c0 x0 : 0000000000000064
Call trace:
kprobes: Failed to recover from reentered kprobes.
kprobes: Dump kprobe:
.symbol_name = arch_stack_walk, .offset = 0, .addr = arch_stack_walk+0x0/0x1c0
------------[ cut here ]------------
kernel BUG at arch/arm64/kernel/probes/kprobes.c:241!
Fixes:
|
||
![]() |
67bc5b2d6d |
arm64: alternatives: add __init/__initconst to some functions/variables
apply_alternatives_vdso(), __apply_alternatives_multi_stop() and kernel_alternatives are not needed after booting, so mark the two functions as __init and the var as __initconst. Signed-off-by: Jisheng Zhang <jszhang@kernel.org> Link: https://lore.kernel.org/r/20221202161859.2228-1-jszhang@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
355479c70a |
Final EFI fix for v6.1
- Revert runtime service sync exception recovery on arm64 -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmOIsLoACgkQw08iOZLZ jyQspgv7BFM/z+PXeKCPee6uGUhNCjUoKP3Pnoo9jwe3sbSVagYUZZ5/vx01Ei33 FHDi4FeSxo+adg2tb8xf8X5tZmfHYiQM5gEqK3xZXaBSJRT7FFY9+eRL6753Qe5W yxn220/nI9xTErGeEAabAHIngIOpth5nGQhRDQbM8r7EZDobGUu0NrJSRVnS7IBF Ov14VMkfqryInnJ8tzHwP4hz40Rrkf54dgNTPyJvUxJ3LCR5TqmeRp+16CZg87By CnmySayLnr+YLbZjp8vmQy9eUGVf4acPoDcXfBTe/lkE1BA4Qi+Hd/TaYgE8Fj0C B5g+sZa3khhaQc4Oc2RMOqpxK80DK41n1Vvy1UOZGOBFgZVoxT2bmDbAPohLyU/4 lw6LqioDR2N4ZxiANGHuOVa8so8iY+Et30fLqRkeXj1TXqC84tDoxXGhsTEjF1Ad Vi0GGmrj4No4l0RM+4yGZIhNMaMGd5OhGdbwAiKUaLS9UyjvfqkaLGJ9S2wYVgZj R1PoDRWX =r/C6 -----END PGP SIGNATURE----- Merge tag 'efi-fixes-for-v6.1-4' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI fix from Ard Biesheuvel: "A single revert for some code that I added during this cycle. The code is not wrong, but it should be a bit more careful about how to handle the shadow call stack pointer, so it is better to revert it for now and bring it back later in improved form. Summary: - Revert runtime service sync exception recovery on arm64" * tag 'efi-fixes-for-v6.1-4' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: arm64: efi: Revert "Recover from synchronous exceptions ..." |
||
![]() |
c6e155e8e5 |
arm64/sysreg: Standardise naming for MVFR2_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the MVFR2_EL1 register use lower-case for feature names where the arm-arm does the same. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-16-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d3e1aa85b1 |
arm64/sysreg: Standardise naming for MVFR1_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the MVFR1_EL1 register use lower-case for feature names where the arm-arm does the same. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-15-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
a3aab94801 |
arm64/sysreg: Standardise naming for MVFR0_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the MVFR0_EL1 register use lower-case for feature names where the arm-arm does the same. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-14-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d092106d73 |
arm64/sysreg: Standardise naming for ID_DFR1_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_DFR1_EL1 register have an _EL1 suffix. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-13-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
f4f5969e35 |
arm64/sysreg: Standardise naming for ID_DFR0_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_DFR0_EL1 register have an _EL1 suffix, and use lower-case for feature names where the arm-arm does the same. The arm-arm has feature names for some of the ID_DFR0_EL1.PerMon encodings. Use these feature names in preference to the '8_4' indication of the architecture version they were introduced in. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-12-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
1ecf3dcb13 |
arm64/sysreg: Standardise naming for ID_PFR2_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_PFR2_EL1 register have an _EL1 suffix. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-11-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
0a648056d6 |
arm64/sysreg: Standardise naming for ID_PFR1_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_PFR1_EL1 register have an _EL1 suffix, and use lower case in feature names where the arm-arm does the same. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-10-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
e0bf98fef3 |
arm64/sysreg: Standardise naming for ID_PFR0_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_PFR0_EL1 register have an _EL1 suffix, and use lower case in feature names where the arm-arm does the same. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-9-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
eef4344f77 |
arm64/sysreg: Standardise naming for ID_ISAR6_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_ISAR6_EL1 register have an _EL1 suffix. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-8-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
816c8638d8 |
arm64/sysreg: Standardise naming for ID_ISAR5_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_ISAR5_EL1 register have an _EL1 suffix. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-7-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
3f08e378f0 |
arm64/sysreg: Standardise naming for ID_ISAR4_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_ISAR4_EL1 register have an _EL1 suffix, and use lower-case for feature names where the arm-arm does the same. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-6-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
52b3dc559a |
arm64/sysreg: Standardise naming for ID_ISAR0_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_ISAR0_EL1 register have an _EL1 suffix, and use lower-case for feature names where the arm-arm does the same. To functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-5-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
7b24177c63 |
arm64/sysreg: Standardise naming for ID_MMFR5_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_MMFR5_EL1 register have an _EL1 suffix. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-4-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
5ea1534ec3 |
arm64/sysreg: Standardise naming for ID_MMFR4_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. Ensure symbols for the ID_MMFR4_EL1 register have an _EL1 suffix, and use lower case in feature names where the arm-arm does the same. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-3-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
37622bae3d |
arm64/sysreg: Standardise naming for ID_MMFR0_EL1
To convert the 32bit id registers to use the sysreg generation, they must first have a regular pattern, to match the symbols the script generates. The scripts would like to follow exactly what is in the arm-arm, which uses lower case for some of these feature names. Ensure symbols for the ID_MMFR0_EL1 register have an _EL1 suffix, and use lower case in feature names where the arm-arm does the same. No functional change. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20221130171637.718182-2-james.morse@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
7572ac3c97 |
arm64: efi: Revert "Recover from synchronous exceptions ..."
This reverts commit
|
||
![]() |
d6c494e8ee |
vdso/timens: Refactor copy-pasted find_timens_vvar_page() helper into one copy
find_timens_vvar_page() is not architecture-specific, as can be seen from how all five per-architecture versions of it are the same. (arm64, powerpc and riscv are exactly the same; x86 and s390 have two characters difference inside a comment, less blank lines, and mark the !CONFIG_TIME_NS version as inline.) Refactor the five copies into a central copy in kernel/time/namespace.c. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20221130115320.2918447-1-jannh@google.com |
||
![]() |
1192b93ba3 |
arm64/fp: Use a struct to pass data to fpsimd_bind_state_to_cpu()
For reasons that are unclear to this reader fpsimd_bind_state_to_cpu() populates the struct fpsimd_last_state_struct that it uses to store the active floating point state for KVM guests by passing an argument for each member of the structure. As the richness of the architecture increases this is resulting in a function with a rather large number of arguments which isn't ideal. Simplify the interface by using the struct directly as the single argument for the function, renaming it as we lift the definition into the header. This could be built on further to reduce the work we do adding storage for new FP state in various places but for now it just simplifies this one interface. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221115094640.112848-9-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
8c845e2731 |
arm64/sve: Leave SVE enabled on syscall if we don't context switch
The syscall ABI says that the SVE register state not shared with FPSIMD may not be preserved on syscall, and this is the only mechanism we have in the ABI to stop tracking the extra SVE state for a process. Currently we do this unconditionally by means of disabling SVE for the process on syscall, causing userspace to take a trap to EL1 if it uses SVE again. These extra traps result in a noticeable overhead for using SVE instead of FPSIMD in some workloads, especially for simple syscalls where we can return directly to userspace and would not otherwise need to update the floating point registers. Tests with fp-pidbench show an approximately 70% overhead on a range of implementations when SVE is in use - while this is an extreme and entirely artificial benchmark it is clear that there is some useful room for improvement here. Now that we have the ability to track the decision about what to save seprately to TIF_SVE we can improve things by leaving TIF_SVE enabled on syscall but only saving the FPSIMD registers if we are in a syscall. This means that if we need to restore the register state from memory (eg, after a context switch or kernel mode NEON) we will drop TIF_SVE and reenable traps for userspace but if we can just return to userspace then traps will remain disabled. Since our current implementation and hence ABI has the effect of zeroing all the SVE register state not shared with FPSIMD on syscall we replace the disabling of TIF_SVE with a flush of the non-shared register state, this means that there is still some overhead for syscalls when SVE is in use but it is very much reduced. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221115094640.112848-8-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
bbc6172eef |
arm64/fpsimd: SME no longer requires SVE register state
Now that we track the type of the stored register state separately to what is active in the task, it is valid to have the FPSIMD register state stored while in streaming mode. Remove the special case handling for SME when setting FPSIMD register state. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221115094640.112848-7-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
a0136be443 |
arm64/fpsimd: Load FP state based on recorded data type
Now that we are recording the type of floating point register state we are saving when we write the register state out to memory we can use that information when we load from memory to decide which format to load, bringing TIF_SVE into line with what we saved rather than relying on TIF_SVE to determine what to load. The SME state details are already recorded directly in the saved SVCR and handled based on the information there. Since we are not changing any of the save paths there should be no functional change from this patch, further patches will make use of this to optimise and clarify the code. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221115094640.112848-6-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
62021cc36a |
arm64/fpsimd: Stop using TIF_SVE to manage register saving in KVM
Now that we are explicitly telling the host FP code which register state it needs to save we can remove the manipulation of TIF_SVE from the KVM code, simplifying it and allowing us to optimise our handling of normal tasks. Remove the manipulation of TIF_SVE from KVM and instead rely on to_save to ensure we save the correct data for it. There should be no functional or performance impact from this change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221115094640.112848-5-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
deeb8f9a80 |
arm64/fpsimd: Have KVM explicitly say which FP registers to save
In order to avoid needlessly saving and restoring the guest registers KVM relies on the host FPSMID code to save the guest registers when we context switch away from the guest. This is done by binding the KVM guest state to the CPU on top of the task state that was originally there, then carefully managing the TIF_SVE flag for the task to cause the host to save the full SVE state when needed regardless of the needs of the host task. This works well enough but isn't terribly direct about what is going on and makes it much more complicated to try to optimise what we're doing with the SVE register state. Let's instead have KVM pass in the register state it wants saving when it binds to the CPU. We introduce a new FP_STATE_CURRENT for use during normal task binding to indicate that we should base our decisions on the current task. This should not be used when actually saving. Ideally we might want to use a separate enum for the type to save but this enum and the enum values would then need to be named which has problems with clarity and ambiguity. In order to ease any future debugging that might be required this patch does not actually update any of the decision making about what to save, it merely starts tracking the new information and warns if the requested state is not what we would otherwise have decided to save. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221115094640.112848-4-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
baa8515281 |
arm64/fpsimd: Track the saved FPSIMD state type separately to TIF_SVE
When we save the state for the floating point registers this can be done in the form visible through either the FPSIMD V registers or the SVE Z and P registers. At present we track which format is currently used based on TIF_SVE and the SME streaming mode state but particularly in the SVE case this limits our options for optimising things, especially around syscalls. Introduce a new enum which we place together with saved floating point state in both thread_struct and the KVM guest state which explicitly states which format is active and keep it up to date when we change it. At present we do not use this state except to verify that it has the expected value when loading the state, future patches will introduce functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221115094640.112848-3-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
93ae6b01ba |
KVM: arm64: Discard any SVE state when entering KVM guests
Since
|
||
![]() |
cc91b94816 |
arm64/perf: Replace PMU version number '0' with ID_AA64DFR0_EL1_PMUVer_NI
__armv8pmu_probe_pmu() returns if detected PMU is either not implemented or implementation defined. Extracted ID_AA64DFR0_EL1_PMUVer value, when PMU is not implemented is '0' which can be replaced with ID_AA64DFR0_EL1_PMUVer_NI defined as '0b0000'. Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: linux-perf-users@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20221128025449.39085-1-anshuman.khandual@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d77e59a8fc |
arm64: mte: Lock a page for MTE tag initialisation
Initialising the tags and setting PG_mte_tagged flag for a page can race between multiple set_pte_at() on shared pages or setting the stage 2 pte via user_mem_abort(). Introduce a new PG_mte_lock flag as PG_arch_3 and set it before attempting page initialisation. Given that PG_mte_tagged is never cleared for a page, consider setting this flag to mean page unlocked and wait on this bit with acquire semantics if the page is locked: - try_page_mte_tagging() - lock the page for tagging, return true if it can be tagged, false if already tagged. No acquire semantics if it returns true (PG_mte_tagged not set) as there is no serialisation with a previous set_page_mte_tagged(). - set_page_mte_tagged() - set PG_mte_tagged with release semantics. The two-bit locking is based on Peter Collingbourne's idea. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Steven Price <steven.price@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Peter Collingbourne <pcc@google.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221104011041.290951-6-pcc@google.com |
||
![]() |
e059853d14 |
arm64: mte: Fix/clarify the PG_mte_tagged semantics
Currently the PG_mte_tagged page flag mostly means the page contains valid tags and it should be set after the tags have been cleared or restored. However, in mte_sync_tags() it is set before setting the tags to avoid, in theory, a race with concurrent mprotect(PROT_MTE) for shared pages. However, a concurrent mprotect(PROT_MTE) with a copy on write in another thread can cause the new page to have stale tags. Similarly, tag reading via ptrace() can read stale tags if the PG_mte_tagged flag is set before actually clearing/restoring the tags. Fix the PG_mte_tagged semantics so that it is only set after the tags have been cleared or restored. This is safe for swap restoring into a MAP_SHARED or CoW page since the core code takes the page lock. Add two functions to test and set the PG_mte_tagged flag with acquire and release semantics. The downside is that concurrent mprotect(PROT_MTE) on a MAP_SHARED page may cause tag loss. This is already the case for KVM guests if a VMM changes the page protection while the guest triggers a user_mem_abort(). Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> [pcc@google.com: fix build with CONFIG_ARM64_MTE disabled] Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Steven Price <steven.price@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Peter Collingbourne <pcc@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221104011041.290951-3-pcc@google.com |
||
![]() |
223d3a0d30 |
arm64: armv8_deprecated: fix unused-function error
If CONFIG_SWP_EMULATION is not set and
CONFIG_CP15_BARRIER_EMULATION is not set,
aarch64-linux-gnu complained about unused-function :
arch/arm64/kernel/armv8_deprecated.c:67:21: error: ‘aarch32_check_condition’ defined but not used [-Werror=unused-function]
static unsigned int aarch32_check_condition(u32 opcode, u32 psr)
^~~~~~~~~~~~~~~~~~~~~~~
cc1: all warnings being treated as errors
To fix this warning, modify aarch32_check_condition() with __maybe_unused.
Fixes:
|
||
![]() |
cfce092dae |
ftrace: arm64: remove static ftrace
The build test robot pointer out that there's a build failure when: CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS=y CONFIG_DYNAMIC_FTRACE_WITH_ARGS=n ... due to some mismatched ifdeffery, some of which checks CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS, and some of which checks CONFIG_DYNAMIC_FTRACE_WITH_ARGS, leading to some missing definitions expected by the core code when CONFIG_DYNAMIC_FTRACE=n and consequently CONFIG_DYNAMIC_FTRACE_WITH_ARGS=n. There's really not much point in supporting CONFIG_DYNAMIC_FTRACE=n (AKA static ftrace). All supported toolchains allow us to implement DYNAMIC_FTRACE, distributions all prefer DYNAMIC_FTRACE, and both powerpc and s390 removed support for static ftrace in commits: |
||
![]() |
23a60a03d9 |
arm64 fixes:
- Fix a build error with CONFIG_CFI_CLANG + CONFIG_FTRACE when CONFIG_FUNCTION_GRAPH_TRACER is not enabled. - Fix a BUG_ON triggered by the page table checker due to incorrect file_map_count for non-leaf pmd/pud (the arm64 pmd_user_accessible_page() not checking whether it's a leaf entry). -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmN3+hMACgkQa9axLQDI XvEB0Q//QIP/rk7g4G5575wnESdNDJXBXfRN+C+p3b3YgXQ7pMnmYUhu96Vgn9Fw ErCpf9g+FzYsY0qg6wTToiVhUP58d1pogiSemAIA56PdVA/uDLM4ETCMqUGEV3Im 1vdtjRly8isdiQAilZBgFCD9mm8OZ75l03zME1ehDUEZVzjMScdaNNiMrRnPr5eq gKZvF2CCdtveCtfz8ycy/pH6U4gWBR6FU+L4wMPEnv/AyLcifFh+o6J1S+PLwzmi njKPvzsPE2sMOouyanagCdt/sdatajY3JWAL+pNs/hdlNmDk6QJvEhRvoII7wJ4K 9QDdF/Sxh8MXczZcU4k4B1ziCsbjbTFlJadBth78AA0B/iJK7+WLYxKKnFlnEO5r pnQxFjdu392HDwB/d/NRtUA8s9laHeDcQaYiIRJeZDm0o8gMJOrL6uNdrQ+iMvZL H+eB0rCnwrS5xFy79WlYgCE8Pff13ElrEg5Lqr9l+0fWlPIzbIONvlysdcBPOd5L kGdM4ADixyGFAHuZBlyMWdSHrMO6UgSL8wv5O44qQTvyHEpJsH7Oz1ZINvYqnZyV U2DfggaofoJi8WbnuRwWAQeTIqgtIRtxMnDV6PpyUPAMQ/39DZ1HhBEoTLqg7T+P nG78oktahqGe/QVgQgKg5Zwr6bi4lFbhGUxXNcWG+BlHYJf66VQ= =cGmY -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: - Fix a build error with CONFIG_CFI_CLANG + CONFIG_FTRACE when CONFIG_FUNCTION_GRAPH_TRACER is not enabled. - Fix a BUG_ON triggered by the page table checker due to incorrect file_map_count for non-leaf pmd/pud (the arm64 pmd_user_accessible_page() not checking whether it's a leaf entry). * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64/mm: fix incorrect file_map_count for non-leaf pmd/pud arm64: ftrace: Define ftrace_stub_graph only with FUNCTION_GRAPH_TRACER |
||
![]() |
44ecda71fd |
arm64: errata: Workaround possible Cortex-A715 [ESR|FAR]_ELx corruption
If a Cortex-A715 cpu sees a page mapping permissions change from executable to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers, on the next instruction abort caused by permission fault. Only user-space does executable to non-executable permission transition via mprotect() system call which calls ptep_modify_prot_start() and ptep_modify _prot_commit() helpers, while changing the page mapping. The platform code can override these helpers via __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION. Work around the problem via doing a break-before-make TLB invalidation, for all executable user space mappings, that go through mprotect() system call. This overrides ptep_modify_prot_start() and ptep_modify_prot_commit(), via defining HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION on the platform thus giving an opportunity to intercept user space exec mappings, and do the necessary TLB invalidation. Similar interceptions are also implemented for HugeTLB. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mark Rutland <mark.rutland@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20221116140915.356601-3-anshuman.khandual@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
4585a93420 |
arm64: move on_thread_stack() to <asm/stacktrace.h>
Currently on_thread_stack() is defined in <asm/processor.h>, depending
upon definitiong from <asm/stacktrace.h> despite this header not being
included. This ends up being fragile, and any user of on_thread_stack()
must include both <asm/processor.h> and <asm/stacktrace.h>.
We organised things this way due to header dependencies back in commit:
|
||
![]() |
56eea7f87f |
arm64: alternatives: make apply_alternatives_vdso() static
We define and use apply_alternatives_vdso() within alternative.c, and don't provide a prototype in a header. There's no need for it to be visible outside of alternative.c, so mark it as static. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221117131650.4056636-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
26299b3f6b |
ftrace: arm64: move from REGS to ARGS
This commit replaces arm64's support for FTRACE_WITH_REGS with support
for FTRACE_WITH_ARGS. This removes some overhead and complexity, and
removes some latent issues with inconsistent presentation of struct
pt_regs (which can only be reliably saved/restored at exception
boundaries).
FTRACE_WITH_REGS has been supported on arm64 since commit:
|
||
![]() |
977122898e | Merge tag 'efi-zboot-direct-for-v6.2' into efi/next | ||
![]() |
8032bf1233 |
treewide: use get_random_u32_below() instead of deprecated function
This is a simple mechanical transformation done by: @@ expression E; @@ - prandom_u32_max + get_random_u32_below (E) Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs Reviewed-by: SeongJae Park <sj@kernel.org> # for damon Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
||
![]() |
687daeeeca |
arm64: ptrace: user_regset_copyin_ignore() always returns 0
user_regset_copyin_ignore() always returns 0, so checking its result seems pointless -- don't do this anymore... Found by Linux Verification Center (linuxtesting.org) with the SVACE static analysis tool. Link: https://lkml.kernel.org/r/20221014212235.10770-4-s.shtylyov@omp.ru Signed-off-by: Sergey Shtylyov <s.shtylyov@omp.ru> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: David S. Miller <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.osdn.me> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
124c49b1b5 |
arm64: armv8_deprecated: rework deprected instruction handling
Support for deprecated instructions can be enabled or disabled at runtime. To handle this, the code in armv8_deprecated.c registers and unregisters undef_hooks, and makes cross CPU calls to configure HW support. This is rather complicated, and the synchronization required to make this safe ends up serializing the handling of instructions which have been trapped. This patch simplifies the deprecated instruction handling by removing the dynamic registration and unregistration, and changing the trap handling code to determine whether a handler should be invoked. This removes the need for dynamic list management, and simplifies the locking requirements, making it possible to handle trapped instructions entirely in parallel. Where changing the emulation state requires a cross-call, this is serialized by locally disabling interrupts, ensuring that the CPU is not left in an inconsistent state. To simplify sysctl management, each insn_emulation is given a separate sysctl table, permitting these to be registered separately. The core sysctl code will iterate over all of these when walking sysfs. I've tested this with userspace programs which use each of the deprecated instructions, and I've concurrently modified the support level for each of the features back-and-forth between HW and emulated to check that there are no spurious SIGILLs sent to userspace when the support level is changed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221019144123.612388-10-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
0c5f416219 |
arm64: armv8_deprecated: move aarch32 helper earlier
Subsequent patches will rework the logic in armv8_deprecated.c. In preparation for subsequent changes, this patch moves some shared logic earlier in the file. This will make subsequent diffs simpler and easier to read. At the same time, drop the `__kprobes` annotation from aarch32_check_condition(), as this is only used for traps from compat userspace, and has no risk of recursion within kprobes. As this is the last kprobes annotation in armve8_deprecated.c, we no longer need to include <asm/kprobes.h>. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221019144123.612388-9-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
25eeac0cfe |
arm64: armv8_deprecated move emulation functions
Subsequent patches will rework the logic in armv8_deprecated.c. In preparation for subsequent changes, this patch moves the emulation logic earlier in the file, and moves the infrastructure later in the file. This will make subsequent diffs simpler and easier to read. This is purely a move. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221019144123.612388-8-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
b4453cc8a7 |
arm64: armv8_deprecated: fold ops into insn_emulation
The code for emulating deprecated instructions has two related structures: struct insn_emulation_ops and struct insn_emulation, where each struct insn_emulation_ops is associated 1-1 with a struct insn_emulation. It would be simpler to combine the two into a single structure, removing the need for (unconditional) dynamic allocation at boot time, and simplifying some runtime pointer chasing. This patch merges the two structures together. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221019144123.612388-7-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
f5962add74 |
arm64: rework EL0 MRS emulation
On CPUs without FEAT_IDST, ID register emulation is slower than it needs to be, as all threads contend for the same lock to perform the emulation. This patch reworks the emulation to avoid this unnecessary contention. On CPUs with FEAT_IDST (which is mandatory from ARMv8.4 onwards), EL0 accesses to ID registers result in a SYS trap, and emulation of these is handled with a sys64_hook. These hooks are statically allocated, and no locking is required to iterate through the hooks and perform the emulation, allowing emulation to occur in parallel with no contention. On CPUs without FEAT_IDST, EL0 accesses to ID registers result in an UNDEFINED exception, and emulation of these accesses is handled with an undef_hook. When an EL0 MRS instruction is trapped to EL1, the kernel finds the relevant handler by iterating through all of the undef_hooks, requiring undef_lock to be held during this lookup. This locking is only required to safely traverse the list of undef_hooks (as it can be concurrently modified), and the actual emulation of the MRS does not require any mutual exclusion. This locking is an unfortunate bottleneck, especially given that MRS emulation is enabled unconditionally and is never disabled. This patch reworks the non-FEAT_IDST MRS emulation logic so that it can be invoked directly from do_el0_undef(). This removes the bottleneck, allowing MRS traps to be handled entirely in parallel, and is a stepping stone to making all of the undef_hooks lock-free. I've tested this in a 64-vCPU VM on a 64-CPU ThunderX2 host, with a benchmark which spawns a number of threads which each try to read ID_AA64ISAR0_EL1 1000000 times. This is vastly more contention than will ever be seen in realistic usage, but clearly demonstrates the removal of the bottleneck: | Threads || Time (seconds) | | || Before || After | | || Real | System || Real | System | |---------++--------+---------++--------+---------| | 1 || 0.29 | 0.20 || 0.24 | 0.12 | | 2 || 0.35 | 0.51 || 0.23 | 0.27 | | 4 || 1.08 | 3.87 || 0.24 | 0.56 | | 8 || 4.31 | 33.60 || 0.24 | 1.11 | | 16 || 9.47 | 149.39 || 0.23 | 2.15 | | 32 || 19.07 | 605.27 || 0.24 | 4.38 | | 64 || 65.40 | 3609.09 || 0.33 | 11.27 | Aside from the speedup, there should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221019144123.612388-6-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
dbfbd87efa |
arm64: factor insn read out of call_undef_hook()
Subsequent patches will rework EL0 UNDEF handling, removing the need for struct undef_hook and call_undef_hook. In preparation for those changes, this patch factors the logic for reading user instructions out of call_undef_hook() and into a new user_insn_read() helper, matching the style of the existing aarch64_insn_read() helper used for reading kernel instructions. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221019144123.612388-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
bff8f413c7 |
arm64: factor out EL1 SSBS emulation hook
Currently call_undef_hook() is used to handle UNDEFINED exceptions from
EL0 and EL1. As support for deprecated instructions may be enabled
independently, the handlers for individual instructions are organised as
a linked list of struct undef_hook which can be manipulated dynamically.
As this can be manipulated dynamically, the list is protected with a
raw_spinlock which must be acquired when handling UNDEFINED exceptions
or when manipulating the list of handlers.
This locking is unfortunate as it serialises handling of UNDEFINED
exceptions, and requires RCU to be enabled for lockdep, requiring the
use of RCU_NONIDLE() in resume path of cpu_suspend() since commit:
|
||
![]() |
61d64a376e |
arm64: split EL0/EL1 UNDEF handlers
In general, exceptions taken from EL1 need to be handled separately from exceptions taken from EL0, as the logic to handle the two cases can be significantly divergent, and exceptions taken from EL1 typically have more stringent requirements on locking and instrumentation. Subsequent patches will rework the way EL1 UNDEFs are handled in order to address longstanding soundness issues with instrumentation and RCU. In preparation for that rework, this patch splits the existing do_undefinstr() handler into separate do_el0_undef() and do_el1_undef() handlers. Prior to this patch, do_undefinstr() was marked with NOKPROBE_SYMBOL(), preventing instrumentation via kprobes. However, do_undefinstr() invokes other code which can be instrumented, and: * For UNDEFINED exceptions taken from EL0, there is no risk of recursion within kprobes. Therefore it is safe for do_el0_undef to be instrumented with kprobes, and it does not need to be marked with NOKPROBE_SYMBOL(). * For UNDEFINED exceptions taken from EL1, either: (a) The exception is has been taken when manipulating SSBS; these cases are limited and do not occur within code that can be invoked recursively via kprobes. Hence, in these cases instrumentation with kprobes is benign. (b) The exception has been taken for an unknown reason, as other than manipulating SSBS we do not expect to take UNDEFINED exceptions from EL1. Any handling of these exception is best-effort. ... and in either case, marking do_el1_undef() with NOKPROBE_SYMBOL() isn't sufficient to prevent recursion via kprobes as functions it calls (including die()) are instrumentable via kprobes. Hence, it's not worthwhile to mark do_el1_undef() with NOKPROBE_SYMBOL(). The same applies to do_el1_bti() and do_el1_fpac(), so their NOKPROBE_SYMBOL() annotations are also removed. Aside from the new instrumentability, there should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221019144123.612388-3-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
b3a0c010e9 |
arm64: allow kprobes on EL0 handlers
Currently do_sysinstr() and do_cp15instr() are marked with NOKPROBE_SYMBOL(). However, these are only called for exceptions taken from EL0, and there is no risk of recursion in kprobes, so this is not necessary. Remove the NOKPROBE_SYMBOL() annotation, and rename the two functions to more clearly indicate that these are solely for exceptions taken from EL0, better matching the names used by the lower level entry points in entry-common.c. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20221019144123.612388-2-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
4488f90c86 |
arm64: insn: simplify insn group identification
The only code which needs to check for an entire instruction group is the aarch64_insn_is_steppable() helper function used by kprobes, which must not be instrumented, and only needs to check for the "Branch, exception generation and system instructions" class. Currently we have an out-of-line helper in insn.c which must be marked as __kprobes, which indexes a table with some bits extracted from the instruction. In aarch64_insn_is_steppable() we then need to compare the result with an expected enum value. It would be simpler to have a predicate for this, as with the other aarch64_insn_is_*() helpers, which would be always inlined to prevent inadvertent instrumentation, and would permit better code generation. This patch adds a predicate function for this instruction group using the existing __AARCH64_INSN_FUNCS() helpers, and removes the existing out-of-line helper. As the only class we currently care about is the branch+exception+sys class, I have only added helpers for this, and left the other classes unimplemented for now. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Link: https://lore.kernel.org/r/20221114135928.3000571-4-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
1d280ce099 |
arm64: Add architecture specific ACPI FFH Opregion callbacks
FFH Operation Region space can be used to trigger SMC or HVC calls, using the Arm SMC Calling Convention (SMCCC). The choice of conduit (SMC or HVC) is based on what the kernel choose based on PSCI as with any other users of SMCCC within the kernel. Function identifiers only in the SMCCC SiP Service, OEM Service and FF-A specific call range are allowed in FFH Opregions. Offset can be either 0(32 bit calling convention) or 1(64 bit calling convention). The length must be set with the range applicable based on the value of the offset. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
||
![]() |
2598ac6ec4 |
arm64: ftrace: Define ftrace_stub_graph only with FUNCTION_GRAPH_TRACER
The 0-day bot reports that arm64 builds with CONFIG_CFI_CLANG +
CONFIG_FTRACE are broken when CONFIG_FUNCTION_GRAPH_TRACER is not
enabled:
ld.lld: error: undefined symbol: __kcfi_typeid_ftrace_stub_graph
>>> referenced by entry-ftrace.S:299 (arch/arm64/kernel/entry-ftrace.S:299)
>>> arch/arm64/kernel/entry-ftrace.o:(.text+0x48) in archive vmlinux.a
This is caused by ftrace_stub_graph using SYM_TYPE_FUNC_START when
the address of the function is not taken in any C translation unit.
Fix the build by only defining ftrace_stub_graph when it's actually
needed, i.e. with CONFIG_FUNCTION_GRAPH_TRACER.
Link: https://lore.kernel.org/lkml/202210251659.tRMs78RH-lkp@intel.com/
Fixes:
|
||
![]() |
ab57bc6f02 |
Third batch of EFI fixes for v6.1
- Force the use of SetVirtualAddressMap() on Ampera Altra arm64 machines, which crash in SetTime() if no virtual remapping is used - Drop a spurious warning on misaligned runtime regions when using 16k or 64k pages on arm64 -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmNvduwACgkQw08iOZLZ jySmkgv9GTFJUWJY1JWsQZf2OB+Ui2JAVCPJVbLGzDxWEFY/z+mgAcC6rJ6+T0Ju 9fNNBnFXeSq5bOPqGFcBOsLxHcP1KpNQHNKHjFUv9RovQGiMD29Fl3kT8XiuqtsB SJcilTJs+J6umBOX+yQ1oho0P5eq/LkvDW3AFxzxrHAl/k9U0eePLIBAgIXS8Iuf wZP3b2Bqt0z9b6JBFBKmXlLTC1WGdoVPmcXc2n+6O3c4MxUrZnbDk9Ou8vA1sCy5 JO4GlU0qvHercsZwcRRcdsKeQPpXIeDDOklUkicxsuYVhi7ipIfLdYsMwFkxGp22 IhXfxfV8OyJm71uD4z7EJAIgZibG86UQlh3Lib5846xYAGbZiUx3CaiiPBgHXgeV PUy4FtYPlf0u8epC2QWKC3FGRIpkcAVwmZPnNvXV+NFg1wzd2B1dGFJajvCKfW93 joBsdWLUZABj5bNtSyLlaswT6gHt58w6PkHaqwi3mQaZs0oNt01iLbZCMy33y4A+ +jhAY/FE =sWO/ -----END PGP SIGNATURE----- Merge tag 'efi-fixes-for-v6.1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI fixes from Ard Biesheuvel: - Force the use of SetVirtualAddressMap() on Ampera Altra arm64 machines, which crash in SetTime() if no virtual remapping is used This is the first time we've added an SMBIOS based quirk on arm64, but fortunately, we can just call a EFI protocol to grab the type #1 SMBIOS record when running in the stub, so we don't need all the machinery we have in the kernel proper to parse SMBIOS data. - Drop a spurious warning on misaligned runtime regions when using 16k or 64k pages on arm64 * tag 'efi-fixes-for-v6.1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: arm64: efi: Fix handling of misaligned runtime regions and drop warning arm64: efi: Force the use of SetVirtualAddressMap() on Altra machines |
||
![]() |
169cd0f823 |
KVM: arm64: Don't unnecessarily map host kernel sections at EL2
We no longer need to map the host's '.rodata' and '.bss' sections in the stage-1 page-table of the pKVM hypervisor at EL2, so remove those mappings and avoid creating any future dependencies at EL2 on host-controlled data structures. Tested-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Quentin Perret <qperret@google.com> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221110190259.26861-25-will@kernel.org |
||
![]() |
73f38ef2ae |
KVM: arm64: Maintain a copy of 'kvm_arm_vmid_bits' at EL2
Sharing 'kvm_arm_vmid_bits' between EL1 and EL2 allows the host to modify the variable arbitrarily, potentially leading to all sorts of shenanians as this is used to configure the VTTBR register for the guest stage-2. In preparation for unmapping host sections entirely from EL2, maintain a copy of 'kvm_arm_vmid_bits' in the pKVM hypervisor and initialise it from the host value while it is still trusted. Tested-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221110190259.26861-23-will@kernel.org |
||
![]() |
fe41a7f8c0 |
KVM: arm64: Unmap 'kvm_arm_hyp_percpu_base' from the host
When pKVM is enabled, the hypervisor at EL2 does not trust the host at EL1 and must therefore prevent it from having unrestricted access to internal hypervisor state. The 'kvm_arm_hyp_percpu_base' array holds the offsets for hypervisor per-cpu allocations, so move this this into the nVHE code where it cannot be modified by the untrusted host at EL1. Tested-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Quentin Perret <qperret@google.com> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221110190259.26861-22-will@kernel.org |
||
![]() |
13e248aab7 |
KVM: arm64: Provide I-cache invalidation by virtual address at EL2
In preparation for handling cache maintenance of guest pages from within the pKVM hypervisor at EL2, introduce an EL2 copy of icache_inval_pou() which will later be plumbed into the stage-2 page-table cache maintenance callbacks, ensuring that the initial contents of pages mapped as executable into the guest stage-2 page-table is visible to the instruction fetcher. Tested-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221110190259.26861-17-will@kernel.org |
||
![]() |
9b9eaee982 |
arm64: efi: Fix handling of misaligned runtime regions and drop warning
Currently, when mapping the EFI runtime regions in the EFI page tables, we complain about misaligned regions in a rather noisy way, using WARN(). Not only does this produce a lot of irrelevant clutter in the log, it is factually incorrect, as misaligned runtime regions are actually allowed by the EFI spec as long as they don't require conflicting memory types within the same 64k page. So let's drop the warning, and tweak the code so that we - take both the start and end of the region into account when checking for misalignment - only revert to RWX mappings for non-code regions if misaligned code regions are also known to exist. Cc: <stable@vger.kernel.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
1e55b44d9e |
arm64: paravirt: remove conduit check in has_pv_steal_clock
arm_smccc_1_1_invoke() which is called later on in the function will return failure if there's no conduit (or pre-SMCCC 1.1), hence the check is unnecessary. Suggested-by: Steven Price <steven.price@arm.com> Signed-off-by: Usama Arif <usama.arif@bytedance.com> Reviewed-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20221104061659.4116508-1-usama.arif@bytedance.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
3b619e22c4 |
arm64: implement dynamic shadow call stack for Clang
Implement dynamic shadow call stack support on Clang, by parsing the unwind tables at init time to locate all occurrences of PACIASP/AUTIASP instructions, and replacing them with the shadow call stack push and pop instructions, respectively. This is useful because the overhead of the shadow call stack is difficult to justify on hardware that implements pointer authentication (PAC), and given that the PAC instructions are executed as NOPs on hardware that doesn't, we can just replace them without breaking anything. As PACIASP/AUTIASP are guaranteed to be paired with respect to manipulations of the return address, replacing them 1:1 with shadow call stack pushes and pops is guaranteed to result in the desired behavior. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lore.kernel.org/r/20221027155908.1940624-4-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
68c76ad4a9 |
arm64: unwind: add asynchronous unwind tables to kernel and modules
Enable asynchronous unwind table generation for both the core kernel as well as modules, and emit the resulting .eh_frame sections as init code so we can use the unwind directives for code patching at boot or module load time. This will be used by dynamic shadow call stack support, which will rely on code patching rather than compiler codegen to emit the shadow call stack push and pop instructions. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lore.kernel.org/r/20221027155908.1940624-2-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d12aada8df |
arm64/hwcap: Add support for SVE 2.1
FEAT_SVE2p1 introduces a number of new SVE instructions. Since there is no new architectural state added kernel support is simply a new hwcap which lets userspace know that the feature is supported. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20221017152520.1039165-6-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
939e4649d4 |
arm64/hwcap: Add support for FEAT_RPRFM
FEAT_RPRFM adds a new range prefetch hint within the existing PRFM space for range prefetch hinting. Add a new hwcap to allow userspace to discover support for the new instruction. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20221017152520.1039165-4-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
95aa6860d6 |
arm64/hwcap: Add support for FEAT_CSSC
FEAT_CSSC adds a number of new instructions usable to optimise common short sequences of instructions, add a hwcap indicating that the feature is available and can be used by userspace. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20221017152520.1039165-2-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
da8dd0c75b |
efi: libstub: Provide local implementations of strrchr() and memchr()
Clone the implementations of strrchr() and memchr() in lib/string.c so we can use them in the standalone zboot decompressor app. These routines are used by the FDT handling code. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
2e6fa86f2d |
efi: libstub: Enable efi_printk() in zboot decompressor
Split the efi_printk() routine into its own source file, and provide local implementations of strlen() and strnlen() so that the standalone zboot app can efi_err and efi_info etc. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
52dce39cd2 |
efi: libstub: Clone memcmp() into the stub
We will no longer be able to call into the kernel image once we merge the decompressor with the EFI stub, so we need our own implementation of memcmp(). Let's add the one from lib/string.c and simplify it. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
fa882a1389 |
efi: libstub: Use local strncmp() implementation unconditionally
In preparation for moving the EFI stub functionality into the zboot decompressor, switch to the stub's implementation of strncmp() unconditionally. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
4ef806096b |
arm64: efi: Move efi-entry.S into the libstub source directory
We will be sharing efi-entry.S with the zboot decompressor build, which does not link against vmlinux directly. So move it into the libstub source directory so we can include in the libstub static library. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
7a35cb0a6e |
arm64: efi: Avoid dcache_clean_poc() altogether in efi_enter_kernel()
To allow efi_enter_kernel() to be shared with the EFI zboot decompressor build, drop another reference to dcache_clean_poc() and replace it with a single DC CVAC* instruction. To ensure that it covers the remainder of efi_enter_kernel() as intended, reorganize the code a bit so it fits in a 32-byte cacheline, and align it to 32 bytes. (Even though the architecture defines 16 as the minimum D-cache line size, even the chosen value of 32 is highly unlikely to ever be encountered on real hardware, and this works with any line size >= 32) * due to ARM64_WORKAROUND_CLEAN_CACHE, we actually use a DC CIVAC here Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
aaeb3fc614 |
arm64: efi: Move dcache cleaning of loaded image out of efi_enter_kernel()
The efi_enter_kernel() routine will be shared between the existing EFI stub and the zboot decompressor, and the version of dcache_clean_to_poc() that the core kernel exports to the stub will not be available in the latter case. So move the handling into the .c file which will remain part of the stub build that integrates directly with the kernel proper. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
aaeca98456 |
arm64/fpsimd: Make kernel_neon_ API _GPL
Currently for reasons lost in the mists of time the kernel_neon_ APIs are EXPORT_SYMBOL() but the general policy for floating point usage is that it should be GPL only given the non-standard runtime environment that holds while it is in use and PCS impacts when code is compiled for FP usage. Given the limited existing deployment of non-GPL modules for arm64 and the fact that other architectures like x86 already make their equivalent functions GPL only this is not expected to be disruptive to existing users. Suggested-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20221107170747.276910-1-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
01ab991fc0 |
arm64: Enable data independent timing (DIT) in the kernel
The ARM architecture revision v8.4 introduces a data independent timing control (DIT) which can be set at any exception level, and instructs the CPU to avoid optimizations that may result in a correlation between the execution time of certain instructions and the value of the data they operate on. The DIT bit is part of PSTATE, and is therefore context switched as usual, given that it becomes part of the saved program state (SPSR) when taking an exception. We have also defined a hwcap for DIT, and so user space can discover already whether or nor DIT is available. This means that, as far as user space is concerned, DIT is wired up and fully functional. In the kernel, however, we never bothered with DIT: we disable at it boot (i.e., INIT_PSTATE_EL1 has DIT cleared) and ignore the fact that we might run with DIT enabled if user space happened to set it. Currently, we have no idea whether or not running privileged code with DIT disabled on a CPU that implements support for it may result in a side channel that exposes privileged data to unprivileged user space processes, so let's be cautious and just enable DIT while running in the kernel if supported by all CPUs. Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Adam Langley <agl@google.com> Link: https://lore.kernel.org/all/YwgCrqutxmX0W72r@gmail.com/ Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20221107172400.1851434-1-ardb@kernel.org [will: Removed cpu_has_dit() as per Mark's suggestion on the list] Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
59598b42eb |
arm64: entry: Fix typo
Fix the following typo in entry-common.c intrumentable => instrumentable Signed-off-by: Mukesh Ojha <quic_mojha@quicinc.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/1667027268-1255-1-git-send-email-quic_mojha@quicinc.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
b208b9fbbc |
arm64 fixes:
- Avoid kprobe recursion when cortex_a76_erratum_1463225_debug_handler() is not inlined (change to __always_inline). - Fix the visibility of compat hwcaps, broken by recent changes to consolidate the visibility of hwcaps and the user-space view of the ID registers. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmNlmqgACgkQa9axLQDI XvF4VRAAiiUH5JeYmq62e07luAdVgAaN77RGu5rTM2ocZPOxvJu/hnvhGTOabksA 7/dgcaLGmdUXTpLN4zplSPvgprq+6BoZBKZPaRcK3NZAdN7oM0lGYgZwDXEzSj/R va99+TWi9TUl9pp6gIk5U2y1lt2H3VnY1nPGXiEya4MCN+ISIoG7sPPPiFBcWKrM ONzKx9CXRT17fF0l5GCR/lsdRCYU2lCBQAxFQ8wSIjrrkfEmU6YBD+9BVufW0Jtb j2apMLoD0Udtn5weqUhSwr7vOWxICgnH2JWRUSq1sV5nJD/YwZ7MehQ4GzkVe+v2 upxeZd9R3DKr+vihw/YxuFhxz8KtRR+3J1zi693R0/4CYhmZSjnzgGN+VJpO9hw1 5oS9+DsYhEeCdFiXGNYo7UF/lPKXRgMF5hZUOWsl3rzDg7wiNjX01L5ki9I3XR+d 6WBB3d09BUgmGmr1o14ozCMaamBscRfFKKXpt7jirMMdx5Cu7wzjzikrAGnqSp69 8Tk3zdQiftUtAUqctSF6/4B/e29kYqY/s0n2xNid8eRokIT0Lvp6YUfwqC4zeBFc m4ZANIqpnOAGtGogPpDW3I96jAM3P4WM4lzsojrCiAnBsjCOcSZz3laigQOPC9cJ fryHvl7zXOAnymUA5urG9tBEZFOH9DOdkze+vEydrB9hcLF2Poc= =5Vh8 -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: - Avoid kprobe recursion when cortex_a76_erratum_1463225_debug_handler() is not inlined (change to __always_inline). - Fix the visibility of compat hwcaps, broken by recent changes to consolidate the visibility of hwcaps and the user-space view of the ID registers. * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: cpufeature: Fix the visibility of compat hwcaps arm64: entry: avoid kprobe recursion |
||
![]() |
1caa2f182a |
Second batch of EFI fixes for v6.1
- A pair of tweaks to the EFI random seed code so that externally provided version of this config table are handled more robustly - Another fix for the v6.0 EFI variable refactor that turned out to break Apple machines which don't provide QueryVariableInfo() - Add some guard rails to the EFI runtime service call wrapper so we can recover from synchronous exceptions caused by firmware -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmNj+NQACgkQw08iOZLZ jyTk1AwAmTAWL8o5U0Z+QTFPUAw1xM7qX7GgPtsrZ8Sn1d9MWYDKVKvDmaZwKWZh rK623STwTwM5PQoiFJgKhuEvDLyAj5ZJ48zd1ZiuzYzCQ2w7Aq4rtCONlfjeeY2C JAH/CqSF9VuSHM+ato5UfpeDfq+fnZWc17cM7xSGtFEJeeqi1la1XN5F9Nr1+Jfw XBckPxTWPh6qZ2Kim4TcYUaVgMwEmbHrzsz4mTNS6MGryPVj9rtDiP/IRs3f4QZl KaVCfY+mRmEy0Jzt0jy9wRKknb0lK+wipiPE4CSAuX4jkuwWIhEt0ZfzuEHCfl4R 6hmL2byMjmGnk9RTUllcMzWvBrRkz7cY3ssAhY+sXPXPmZLLaYpiUYLwnhRUKBGh U0kQYHYaB0kRsq/xLsGtnZVOon89rWOIW6okbpfcrhWNTaQ+DI54G7ci+he6F8lU Nfgo99RMse22ES87l3jsEwYSjLOSYhFAO5HTYblWcrCvVrPRhyelif6bnOF9iF3I 9yRtZV/A =fjxs -----END PGP SIGNATURE----- Merge tag 'efi-fixes-for-v6.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI fixes from Ard Biesheuvel: - A pair of tweaks to the EFI random seed code so that externally provided version of this config table are handled more robustly - Another fix for the v6.0 EFI variable refactor that turned out to break Apple machines which don't provide QueryVariableInfo() - Add some guard rails to the EFI runtime service call wrapper so we can recover from synchronous exceptions caused by firmware * tag 'efi-fixes-for-v6.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: arm64: efi: Recover from synchronous exceptions occurring in firmware efi: efivars: Fix variable writes with unsupported query_variable_store() efi: random: Use 'ACPI reclaim' memory for random seed efi: random: reduce seed size to 32 bytes efi/tpm: Pass correct address to memblock_reserve |
||
![]() |
85f1506337 |
arm64: cpufeature: Fix the visibility of compat hwcaps
Commit |
||
![]() |
23715a26c8 |
arm64: efi: Recover from synchronous exceptions occurring in firmware
Unlike x86, which has machinery to deal with page faults that occur during the execution of EFI runtime services, arm64 has nothing like that, and a synchronous exception raised by firmware code brings down the whole system. With more EFI based systems appearing that were not built to run Linux (such as the Windows-on-ARM laptops based on Qualcomm SOCs), as well as the introduction of PRM (platform specific firmware routines that are callable just like EFI runtime services), we are more likely to run into issues of this sort, and it is much more likely that we can identify and work around such issues if they don't bring down the system entirely. Since we already use a EFI runtime services call wrapper in assembler, we can quite easily add some code that captures the execution state at the point where the call is made, allowing us to revert to this state and proceed execution if the call triggered a synchronous exception. Given that the kernel and the firmware don't share any data structures that could end up in an indeterminate state, we can happily continue running, as long as we mark the EFI runtime services as unavailable from that point on. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
024f4b2e1f |
arm64: entry: avoid kprobe recursion
The cortex_a76_erratum_1463225_debug_handler() function is called when handling debug exceptions (and synchronous exceptions from BRK instructions), and so is called when a probed function executes. If the compiler does not inline cortex_a76_erratum_1463225_debug_handler(), it can be probed. If cortex_a76_erratum_1463225_debug_handler() is probed, any debug exception or software breakpoint exception will result in recursive exceptions leading to a stack overflow. This can be triggered with the ftrace multiple_probes selftest, and as per the example splat below. This is a regression caused by commit: |
||
![]() |
e1789d7c75 |
kbuild: upgrade the orphan section warning to an error if CONFIG_WERROR is set
Andrew Cooper suggested upgrading the orphan section warning to a hard link error. However Nathan Chancellor said outright turning the warning into an error with no escape hatch might be too aggressive, as we have had these warnings triggered by new compiler generated sections, and suggested turning orphan sections into an error only if CONFIG_WERROR is set. Kees Cook echoed and emphasized that the mandate from Linus is that we should avoid breaking builds. It wrecks bisection, it causes problems across compiler versions, etc. Thus upgrade the orphan section warning to a hard link error only if CONFIG_WERROR is set. Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Suggested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Xin Li <xin3.li@intel.com> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20221025073023.16137-2-xin3.li@intel.com |
||
![]() |
bd27568117 |
perf: Rewrite core context handling
There have been various issues and limitations with the way perf uses (task) contexts to track events. Most notable is the single hardware PMU task context, which has resulted in a number of yucky things (both proposed and merged). Notably: - HW breakpoint PMU - ARM big.little PMU / Intel ADL PMU - Intel Branch Monitoring PMU - AMD IBS PMU - S390 cpum_cf PMU - PowerPC trace_imc PMU *Current design:* Currently we have a per task and per cpu perf_event_contexts: task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context ^ | ^ | ^ `---------------------------------' | `--> pmu ---' v ^ perf_event ------' Each task has an array of pointers to a perf_event_context. Each perf_event_context has a direct relation to a PMU and a group of events for that PMU. The task related perf_event_context's have a pointer back to that task. Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which includes a perf_event_context, which again has a direct relation to that PMU, and a group of events for that PMU. The perf_cpu_context also tracks which task context is currently associated with that CPU and includes a few other things like the hrtimer for rotation etc. Each perf_event is then associated with its PMU and one perf_event_context. *Proposed design:* New design proposed by this patch reduce to a single task context and a single CPU context but adds some intermediate data-structures: task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context ^ | ^ ^ `---------------------------' | | | | perf_cpu_pmu_context <--. | `----. ^ | | | | | | v v | | ,--> perf_event_pmu_context | | | | | | | v v | perf_event ---> pmu ----------------' With the new design, perf_event_context will hold all events for all pmus in the (respective pinned/flexible) rbtrees. This can be achieved by adding pmu to rbtree key: {cpu, pmu, cgroup, group_index} Each perf_event_context carries a list of perf_event_pmu_context which is used to hold per-pmu-per-context state. For example, it keeps track of currently active events for that pmu, a pmu specific task_ctx_data, a flag to tell whether rotation is required or not etc. Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu state like hrtimer details to drive the event rotation, a pointer to perf_event_pmu_context of currently running task and some other ancillary information. Each perf_event is associated to it's pmu, perf_event_context and perf_event_pmu_context. Further optimizations to current implementation are possible. For example, ctx_resched() can be optimized to reschedule only single pmu events. Much thanks to Ravi for picking this up and pushing it towards completion. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com> Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com |
||
![]() |
883bbbffa5 |
ftrace,kcfi: Separate ftrace_stub() and ftrace_stub_graph()
Different function signatures means they needs to be different
functions; otherwise CFI gets upset.
As triggered by the ftrace boot tests:
[] CFI failure at ftrace_return_to_handler+0xac/0x16c (target: ftrace_stub+0x0/0x14; expected type: 0x0a5d5347)
Fixes:
|
||
![]() |
f1947d7c8a |
Random number generator fixes for Linux 6.1-rc1.
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmNHYD0ACgkQSfxwEqXe A655AA//dJK0PdRghqrKQsl18GOCffV5TUw5i1VbJQbI9d8anfxNjVUQiNGZi4et qUwZ8OqVXxYx1Z1UDgUE39PjEDSG9/cCvOpMUWqN20/+6955WlNZjwA7Fk6zjvlM R30fz5CIJns9RFvGT4SwKqbVLXIMvfg/wDENUN+8sxt36+VD2gGol7J2JJdngEhM lW+zqzi0ABqYy5so4TU2kixpKmpC08rqFvQbD1GPid+50+JsOiIqftDErt9Eg1Mg MqYivoFCvbAlxxxRh3+UHBd7ZpJLtp1UFEOl2Rf00OXO+ZclLCAQAsTczucIWK9M 8LCZjb7d4lPJv9RpXFAl3R1xvfc+Uy2ga5KeXvufZtc5G3aMUKPuIU7k28ZyblVS XXsXEYhjTSd0tgi3d0JlValrIreSuj0z2QGT5pVcC9utuAqAqRIlosiPmgPlzXjr Us4jXaUhOIPKI+Musv/fqrxsTQziT0jgVA3Njlt4cuAGm/EeUbLUkMWwKXjZLTsv vDsBhEQFmyZqxWu4pYo534VX2mQWTaKRV1SUVVhQEHm57b00EAiZohoOvweB09SR 4KiJapikoopmW4oAUFotUXUL1PM6yi+MXguTuc1SEYuLz/tCFtK8DJVwNpfnWZpE lZKvXyJnHq2Sgod/hEZq58PMvT6aNzTzSg7YzZy+VabxQGOO5mc= =M+mV -----END PGP SIGNATURE----- Merge tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull more random number generator updates from Jason Donenfeld: "This time with some large scale treewide cleanups. The intent of this pull is to clean up the way callers fetch random integers. The current rules for doing this right are: - If you want a secure or an insecure random u64, use get_random_u64() - If you want a secure or an insecure random u32, use get_random_u32() The old function prandom_u32() has been deprecated for a while now and is just a wrapper around get_random_u32(). Same for get_random_int(). - If you want a secure or an insecure random u16, use get_random_u16() - If you want a secure or an insecure random u8, use get_random_u8() - If you want secure or insecure random bytes, use get_random_bytes(). The old function prandom_bytes() has been deprecated for a while now and has long been a wrapper around get_random_bytes() - If you want a non-uniform random u32, u16, or u8 bounded by a certain open interval maximum, use prandom_u32_max() I say "non-uniform", because it doesn't do any rejection sampling or divisions. Hence, it stays within the prandom_*() namespace, not the get_random_*() namespace. I'm currently investigating a "uniform" function for 6.2. We'll see what comes of that. By applying these rules uniformly, we get several benefits: - By using prandom_u32_max() with an upper-bound that the compiler can prove at compile-time is ≤65536 or ≤256, internally get_random_u16() or get_random_u8() is used, which wastes fewer batched random bytes, and hence has higher throughput. - By using prandom_u32_max() instead of %, when the upper-bound is not a constant, division is still avoided, because prandom_u32_max() uses a faster multiplication-based trick instead. - By using get_random_u16() or get_random_u8() in cases where the return value is intended to indeed be a u16 or a u8, we waste fewer batched random bytes, and hence have higher throughput. This series was originally done by hand while I was on an airplane without Internet. Later, Kees and I worked on retroactively figuring out what could be done with Coccinelle and what had to be done manually, and then we split things up based on that. So while this touches a lot of files, the actual amount of code that's hand fiddled is comfortably small" * tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: prandom: remove unused functions treewide: use get_random_bytes() when possible treewide: use get_random_u32() when possible treewide: use get_random_{u8,u16}() when possible, part 2 treewide: use get_random_{u8,u16}() when possible, part 1 treewide: use prandom_u32_max() when possible, part 2 treewide: use prandom_u32_max() when possible, part 1 |
||
![]() |
1df046ab1c |
arm64 fixes:
- Cortex-A55 errata workaround (repeat TLBI). - AMPERE1 added to the Spectre-BHB affected list. - MTE fix to avoid setting PG_mte_tagged if no tags have been touched on a page. - Fixed typo in the SCTLR_EL1.SPINTMASK bit naming (the commit log has other typos). - perf: return value check in ali_drw_pmu_probe(), ALIBABA_UNCORE_DRW_PMU dependency on ACPI. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmNJrpAACgkQa9axLQDI XvFwWQ/+O71bVQPXf43p+O3LapX3IsOxDCWLTMjNcxVgSBSK+TPwtjXN7vIPZDvv Ibx4Y10vmHo8Copbs7C8USx+hGo7hzknk/s2zoeqJQX13WQkqpuAwTDshzMp60La nQoJXab3KapQ3UIPL5El/cbvAD9+DGJSiWdyvC8GBHwtWKWi1WDpSNFN3WMJm97P uQqERiWaf3XOI9BhsuOlCzQE5eemCllycdWoRBelCjIQByuo6SaDPEpTUZDICCPp f4Ji7U1hfORmXg/DJcjSJbtkSshVRqjhSAtAmP/sWUic7+kWGBiC+zJQ0PxwiNQH Bfryz90ETa/INA65hA1iC51lE7hvt1DKueZAMKjozxYSCSVAxUNonSkEOfKegPeU hLhTowmveryqxYGuQ75p5tZjdpvML0Sa/lx7p/GUEhaV77dca/EJ0B68x8WrBpO5 TCsW3iDq2V+ErWgYL7n6nFoMhZQnNvq9jxhAPuJ8Y47ZkeQ8HcvooKLHUSDSjMk2 f/7A7rUJh0piYf0FEPSjRBTO/HyPb1D90n1t2wJoCqwrICZ/mmWzVqua0fgmrbvS H33YQiSEIkwsfLktIIJRGknYgC0P/JALKlAQPAcmsd+njWsThXJ/WwwRrpvCZdMj 9CVuDfhw7Ipt4Iz5Tg61lLDkzi7bPRqPpEKc8zzsI3nmY0KC/iA= =vjYu -----END PGP SIGNATURE----- Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: - Cortex-A55 errata workaround (repeat TLBI) - AMPERE1 added to the Spectre-BHB affected list - MTE fix to avoid setting PG_mte_tagged if no tags have been touched on a page - Fixed typo in the SCTLR_EL1.SPINTMASK bit naming (the commit log has other typos) - perf: return value check in ali_drw_pmu_probe(), ALIBABA_UNCORE_DRW_PMU dependency on ACPI * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: Add AMPERE1 to the Spectre-BHB affected list arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored MAINTAINERS: rectify file entry in ALIBABA PMU DRIVER drivers/perf: ALIBABA_UNCORE_DRW_PMU should depend on ACPI drivers/perf: fix return value check in ali_drw_pmu_probe() arm64: errata: Add Cortex-A55 to the repeat tlbi list arm64/sysreg: Fix typo in SCTR_EL1.SPINTMASK |
||
![]() |
676cb49573 |
- hfs and hfsplus kmap API modernization from Fabio Francesco
- Valentin Schneider makes crash-kexec work properly when invoked from an NMI-time panic. - ntfs bugfixes from Hawkins Jiawei - Jiebin Sun improves IPC msg scalability by replacing atomic_t's with percpu counters. - nilfs2 cleanups from Minghao Chi - lots of other single patches all over the tree! -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0Yf0gAKCRDdBJ7gKXxA joapAQDT1d1zu7T8yf9cQXkYnZVuBKCjxKE/IsYvqaq1a42MjQD/SeWZg0wV05B8 DhJPj9nkEp6R3Rj3Mssip+3vNuceAQM= =lUQY -----END PGP SIGNATURE----- Merge tag 'mm-nonmm-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: - hfs and hfsplus kmap API modernization (Fabio Francesco) - make crash-kexec work properly when invoked from an NMI-time panic (Valentin Schneider) - ntfs bugfixes (Hawkins Jiawei) - improve IPC msg scalability by replacing atomic_t's with percpu counters (Jiebin Sun) - nilfs2 cleanups (Minghao Chi) - lots of other single patches all over the tree! * tag 'mm-nonmm-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (71 commits) include/linux/entry-common.h: remove has_signal comment of arch_do_signal_or_restart() prototype proc: test how it holds up with mapping'less process mailmap: update Frank Rowand email address ia64: mca: use strscpy() is more robust and safer init/Kconfig: fix unmet direct dependencies ia64: update config files nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure fork: remove duplicate included header files init/main.c: remove unnecessary (void*) conversions proc: mark more files as permanent nilfs2: remove the unneeded result variable nilfs2: delete unnecessary checks before brelse() checkpatch: warn for non-standard fixes tag style usr/gen_init_cpio.c: remove unnecessary -1 values from int file ipc/msg: mitigate the lock contention with percpu counter percpu: add percpu_counter_add_local and percpu_counter_sub_local fs/ocfs2: fix repeated words in comments relay: use kvcalloc to alloc page array in relay_alloc_page_array proc: make config PROC_CHILDREN depend on PROC_FS fs: uninline inode_maybe_inc_iversion() ... |
||
![]() |
0e5d5ae837 |
arm64: Add AMPERE1 to the Spectre-BHB affected list
Per AmpereOne erratum AC03_CPU_12, "Branch history may allow control of speculative execution across software contexts," the AMPERE1 core needs the bhb clearing loop to mitigate Spectre-BHB, with a loop iteration count of 11. Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com> Link: https://lore.kernel.org/r/20221011022140.432370-1-scott@os.amperecomputing.com Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
a8e5e5146a |
arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored
Prior to commit |
||
![]() |
7e3cf0843f |
treewide: use get_random_{u8,u16}() when possible, part 1
Rather than truncate a 32-bit value to a 16-bit value or an 8-bit value, simply use the get_random_{u8,u16}() functions, which are faster than wasting the additional bytes from a 32-bit value. This was done mechanically with this coccinelle script: @@ expression E; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; typedef __be16; typedef __le16; typedef u8; @@ ( - (get_random_u32() & 0xffff) + get_random_u16() | - (get_random_u32() & 0xff) + get_random_u8() | - (get_random_u32() % 65536) + get_random_u16() | - (get_random_u32() % 256) + get_random_u8() | - (get_random_u32() >> 16) + get_random_u16() | - (get_random_u32() >> 24) + get_random_u8() | - (u16)get_random_u32() + get_random_u16() | - (u8)get_random_u32() + get_random_u8() | - (__be16)get_random_u32() + (__be16)get_random_u16() | - (__le16)get_random_u32() + (__le16)get_random_u16() | - prandom_u32_max(65536) + get_random_u16() | - prandom_u32_max(256) + get_random_u8() | - E->inet_id = get_random_u32() + E->inet_id = get_random_u16() ) @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; identifier v; @@ - u16 v = get_random_u32(); + u16 v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; identifier v; @@ - u8 v = get_random_u32(); + u8 v = get_random_u8(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; u16 v; @@ - v = get_random_u32(); + v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; u8 v; @@ - v = get_random_u32(); + v = get_random_u8(); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Examine limits @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value < 256: coccinelle.RESULT = cocci.make_ident("get_random_u8") elif value < 65536: coccinelle.RESULT = cocci.make_ident("get_random_u16") else: print("Skipping large mask of %s" % (literal)) cocci.include_match(False) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; identifier add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + (RESULT() & LITERAL) Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Yury Norov <yury.norov@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
||
![]() |
81895a65ec |
treewide: use prandom_u32_max() when possible, part 1
Rather than incurring a division or requesting too many random bytes for the given range, use the prandom_u32_max() function, which only takes the minimum required bytes from the RNG and avoids divisions. This was done mechanically with this coccinelle script: @basic@ expression E; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u64; @@ ( - ((T)get_random_u32() % (E)) + prandom_u32_max(E) | - ((T)get_random_u32() & ((E) - 1)) + prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2) | - ((u64)(E) * get_random_u32() >> 32) + prandom_u32_max(E) | - ((T)get_random_u32() & ~PAGE_MASK) + prandom_u32_max(PAGE_SIZE) ) @multi_line@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; identifier RAND; expression E; @@ - RAND = get_random_u32(); ... when != RAND - RAND %= (E); + RAND = prandom_u32_max(E); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Add one to the literal. @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1: print("Skipping 0x%x for cleanup elsewhere" % (value)) cocci.include_match(False) elif value & (value + 1) != 0: print("Skipping 0x%x because it's not a power of two minus one" % (value)) cocci.include_match(False) elif literal.startswith('0x'): coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1)) else: coccinelle.RESULT = cocci.make_expr("%d" % (value + 1)) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; expression add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + prandom_u32_max(RESULT) @collapse_ret@ type T; identifier VAR; expression E; @@ { - T VAR; - VAR = (E); - return VAR; + return E; } @drop_var@ type T; identifier VAR; @@ { - T VAR; ... when != VAR } Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Yury Norov <yury.norov@gmail.com> Reviewed-by: KP Singh <kpsingh@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390 Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
||
![]() |
27bc50fc90 |
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam R. Howlett. An overlapping range-based tree for vmas. It it apparently slight more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com). This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU= =xfWx -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ... |
||
![]() |
8afc66e8d4 |
Kbuild updates for v6.1
- Remove potentially incomplete targets when Kbuid is interrupted by SIGINT etc. in case GNU Make may miss to do that when stderr is piped to another program. - Rewrite the single target build so it works more correctly. - Fix rpm-pkg builds with V=1. - List top-level subdirectories in ./Kbuild. - Ignore auto-generated __kstrtab_* and __kstrtabns_* symbols in kallsyms. - Avoid two different modules in lib/zstd/ having shared code, which potentially causes building the common code as build-in and modular back-and-forth. - Unify two modpost invocations to optimize the build process. - Remove head-y syntax in favor of linker scripts for placing particular sections in the head of vmlinux. - Bump the minimal GNU Make version to 3.82. - Clean up misc Makefiles and scripts. -----BEGIN PGP SIGNATURE----- iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmM+4vcVHG1hc2FoaXJv eUBrZXJuZWwub3JnAAoJED2LAQed4NsGY2IQAInr0JUNnkkxwUSXtOcQuA3IK8RJ FbU9HXJRoV9H+7+l3SMlN7mIbrs5eE5fTY3iwQ3CVe139d1+1q7nvTMRv8owywJx GBgzswncuu1lk7iQQ//CxiqMwSCG8GJdYn1uDVy4I5jg3o+DtFZJtyq2Wb7pqsMm ZhZ4PozRN+idYQJSF6Vx/zEVLHI7quMBwfe4CME8/0Kg2+hnYzbXV/aUf0ED2emq zdCMDQgIOK5AhY+8qgMXKYnBUJMTqBp6LoR4p3ApfUkwRFY0sGa0/LK3U/B22OE7 uWyR4fCUExGyerlcHEVev+9eBfmsLLPyqlchNwpSDOPf5OSdnKmgqJEBR/Cvx0eh URerPk7EHxyH3G8yi+cU2GtofNTGc5RHPRgJE2ADsQEi5TAUKGmbXMlsFRL/51Vn lTANZObBNa1d4enljF6TfTL5nuccOa+DKvXnH9fQ49t0QdtSikv6J/lGwilwm1Sr BctmCsySPuURZfkpI9OQnLuouloMXl9f7Q/+S39haS/tSgvPpyITyO71nxDnXn/s BbFObZJUk9QkqOACjBP1hNErTLt83uBxQ9z+rDCw/SbLIe4nw0wyneuygfHI5rI8 3RZB2DbGauuJHX2Zs6YGS14SLSY33IsLqKR1/Vy3LrPvOHuEvNiOR8LITq5E0YCK OffK2Y5cIlXR0QWf =DHiN -----END PGP SIGNATURE----- Merge tag 'kbuild-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Remove potentially incomplete targets when Kbuid is interrupted by SIGINT etc in case GNU Make may miss to do that when stderr is piped to another program. - Rewrite the single target build so it works more correctly. - Fix rpm-pkg builds with V=1. - List top-level subdirectories in ./Kbuild. - Ignore auto-generated __kstrtab_* and __kstrtabns_* symbols in kallsyms. - Avoid two different modules in lib/zstd/ having shared code, which potentially causes building the common code as build-in and modular back-and-forth. - Unify two modpost invocations to optimize the build process. - Remove head-y syntax in favor of linker scripts for placing particular sections in the head of vmlinux. - Bump the minimal GNU Make version to 3.82. - Clean up misc Makefiles and scripts. * tag 'kbuild-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (41 commits) docs: bump minimal GNU Make version to 3.82 ia64: simplify esi object addition in Makefile Revert "kbuild: Check if linker supports the -X option" kbuild: rebuild .vmlinux.export.o when its prerequisite is updated kbuild: move modules.builtin(.modinfo) rules to Makefile.vmlinux_o zstd: Fixing mixed module-builtin objects kallsyms: ignore __kstrtab_* and __kstrtabns_* symbols kallsyms: take the input file instead of reading stdin kallsyms: drop duplicated ignore patterns from kallsyms.c kbuild: reuse mksysmap output for kallsyms mksysmap: update comment about __crc_* kbuild: remove head-y syntax kbuild: use obj-y instead extra-y for objects placed at the head kbuild: hide error checker logs for V=1 builds kbuild: re-run modpost when it is updated kbuild: unify two modpost invocations kbuild: move vmlinux.o rule to the top Makefile kbuild: move .vmlinux.objs rule to Makefile.modpost kbuild: list sub-directories in ./Kbuild Makefile.compiler: replace cc-ifversion with compiler-specific macros ... |
||
![]() |
2e64066dab |
RISC-V Patches for the 6.1 Merge Window, Part 1
* Improvements to the CPU topology subsystem, which fix some issues where RISC-V would report bad topology information. * The default NR_CPUS has increased to XLEN, and the maximum configurable value is 512. * The CD-ROM filesystems have been enabled in the defconfig. * Support for THP_SWAP has been added for rv64 systems. There are also a handful of cleanups and fixes throughout the tree. -----BEGIN PGP SIGNATURE----- iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmNAWgwTHHBhbG1lckBk YWJiZWx0LmNvbQAKCRAuExnzX7sYicSiEACmuB9WuGZmAasKvmPgz7thyLqakg7/ cE4YK0MxgJxkhsXzYSAv1Fn+WUfX7DSzhK4OOM5wEngAYul7QoFdc84MF0DYKO+E InjdOvVavzUsWYqETNCuMHPRK6xyzvfHCqqBDDxKHx5jUoicCQfFwJyHLw+cvouR 7WSJoFdvOEV01QyN5Qw9bQp7ASx61ZZX1yE6OAPc2/EJlDEA2QSnjBAi4M+n2ZCx ZsQz+Dp9RfSU8/nIr13oGiL3Zm+kyXwdOS/8PaDqtrkyiGh6+vSeGqZZwRLVITP/ oUxqGEgnn2eFBD1y8vjsQNWMLWoi9Av4746Fxr8CEHX+jX1cp9CCkU2OkkLxaFcv 6XFtXPJIh/UjzVgPmjZxK+ArEX28QOM5IVyBFxsSl0dNtvyVqKpBXCV1RQ+fFHkO ntHF3ZxibqOn8ZJmziCn0nzWSOqugNTdAhD4dJAbl58RB/IQtQT0OnHpmpXCG3xh +/JBzy//xkr7u2HMqU69PzwPtWwZrENUV6jl5SHUDUoW8pySng2Pl4pbmTFqgWty JTfc5EdyWOWyshhoSCtK2//bnVFryl2ntwGr3LIZrZxkiUiOeYjn+C/YedXZIRob yy2CN+QanW/FXdIa4GMNeGc9sGDApd3/RtP+8L9mV1kWK6OE0EVskkI1UMCGXrIP 5JoE1jLMVhjcKQ== =LJg6 -----END PGP SIGNATURE----- Merge tag 'riscv-for-linus-6.1-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull RISC-V updates from Palmer Dabbelt: - Improvements to the CPU topology subsystem, which fix some issues where RISC-V would report bad topology information. - The default NR_CPUS has increased to XLEN, and the maximum configurable value is 512. - The CD-ROM filesystems have been enabled in the defconfig. - Support for THP_SWAP has been added for rv64 systems. There are also a handful of cleanups and fixes throughout the tree. * tag 'riscv-for-linus-6.1-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: riscv: enable THP_SWAP for RV64 RISC-V: Print SSTC in canonical order riscv: compat: s/failed/unsupported if compat mode isn't supported RISC-V: Increase range and default value of NR_CPUS cpuidle: riscv-sbi: Fix CPU_PM_CPU_IDLE_ENTER_xyz() macro usage perf: RISC-V: throttle perf events perf: RISC-V: exclude invalid pmu counters from SBI calls riscv: enable CD-ROM file systems in defconfig riscv: topology: fix default topology reporting arm64: topology: move store_cpu_topology() to shared code |
||
![]() |
0e470763d8 |
EFI updates for v6.1
- implement EFI boot support for LoongArch - implement generic EFI compressed boot support for arm64, RISC-V and LoongArch, none of which implement a decompressor today - measure the kernel command line into the TPM if measured boot is in effect - refactor the EFI stub code in order to isolate DT dependencies for architectures other than x86 - avoid calling SetVirtualAddressMap() on arm64 if the configured size of the VA space guarantees that doing so is unnecessary - move some ARM specific code out of the generic EFI source files - unmap kernel code from the x86 mixed mode 1:1 page tables -----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmM5mfEACgkQw08iOZLZ jySnJwv9G2nBheSlK9bbWKvCpnDvVIExtlL+mg1wB64oxPrGiWRgjxeyA9+92bT0 Y6jYfKbGOGKnxkEJQl19ik6C3JfEwtGm4SnOVp4+osFeDRB7lFemfcIYN5dqz111 wkZA/Y15rnz3tZeGaXnq2jMoFuccQDXPJtOlqbdVqFQ5Py6YT92uMyuI079pN0T+ GSu7VVOX+SBsv4nGaUKIpSVwAP0gXkS/7s7CTf47QiR2+j8WMTlQEYZVjOKZjMJZ /7hXY2/mduxnuVuT7cfx0mpZKEryUREJoBL5nDzjTnlhLb5X8cHKiaE1lx0aJ//G JYTR8lDklJZl/7RUw/IW/YodcKcofr3F36NMzWB5vzM+KHOOpv4qEZhoGnaXv94u auqhzYA83heaRjz7OISlk6kgFxdlIRE1VdrkEBXSlQeCQUv1woS+ZNVGYcKqgR0B 48b31Ogm2A0pAuba89+U9lz/n33lhIDtYvJqLO6AAPLGiVacD9ZdapN5kMftVg/1 SfhFqNzy =d8Ps -----END PGP SIGNATURE----- Merge tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "A bit more going on than usual in the EFI subsystem. The main driver for this has been the introduction of the LoonArch architecture last cycle, which inspired some cleanup and refactoring of the EFI code. Another driver for EFI changes this cycle and in the future is confidential compute. The LoongArch architecture does not use either struct bootparams or DT natively [yet], and so passing information between the EFI stub and the core kernel using either of those is undesirable. And in general, overloading DT has been a source of issues on arm64, so using DT for this on new architectures is a to avoid for the time being (even if we might converge on something DT based for non-x86 architectures in the future). For this reason, in addition to the patch that enables EFI boot for LoongArch, there are a number of refactoring patches applied on top of which separate the DT bits from the generic EFI stub bits. These changes are on a separate topich branch that has been shared with the LoongArch maintainers, who will include it in their pull request as well. This is not ideal, but the best way to manage the conflicts without stalling LoongArch for another cycle. Another development inspired by LoongArch is the newly added support for EFI based decompressors. Instead of adding yet another arch-specific incarnation of this pattern for LoongArch, we are introducing an EFI app based on the existing EFI libstub infrastructure that encapulates the decompression code we use on other architectures, but in a way that is fully generic. This has been developed and tested in collaboration with distro and systemd folks, who are eager to start using this for systemd-boot and also for arm64 secure boot on Fedora. Note that the EFI zimage files this introduces can also be decompressed by non-EFI bootloaders if needed, as the image header describes the location of the payload inside the image, and the type of compression that was used. (Note that Fedora's arm64 GRUB is buggy [0] so you'll need a recent version or switch to systemd-boot in order to use this.) Finally, we are adding TPM measurement of the kernel command line provided by EFI. There is an oversight in the TCG spec which results in a blind spot for command line arguments passed to loaded images, which means that either the loader or the stub needs to take the measurement. Given the combinatorial explosion I am anticipating when it comes to firmware/bootloader stacks and firmware based attestation protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now when it comes to EFI measured boot, which is that the kernel measures the initrd and command line. Intermediate loaders can measure additional assets if needed, but with the baseline in place, we can deploy measured boot in a meaningful way even if you boot into Linux straight from the EFI firmware. Summary: - implement EFI boot support for LoongArch - implement generic EFI compressed boot support for arm64, RISC-V and LoongArch, none of which implement a decompressor today - measure the kernel command line into the TPM if measured boot is in effect - refactor the EFI stub code in order to isolate DT dependencies for architectures other than x86 - avoid calling SetVirtualAddressMap() on arm64 if the configured size of the VA space guarantees that doing so is unnecessary - move some ARM specific code out of the generic EFI source files - unmap kernel code from the x86 mixed mode 1:1 page tables" * tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits) efi/arm64: libstub: avoid SetVirtualAddressMap() when possible efi: zboot: create MemoryMapped() device path for the parent if needed efi: libstub: fix up the last remaining open coded boot service call efi/arm: libstub: move ARM specific code out of generic routines efi/libstub: measure EFI LoadOptions efi/libstub: refactor the initrd measuring functions efi/loongarch: libstub: remove dependency on flattened DT efi: libstub: install boot-time memory map as config table efi: libstub: remove DT dependency from generic stub efi: libstub: unify initrd loading between architectures efi: libstub: remove pointless goto kludge efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap efi: libstub: avoid efi_get_memory_map() for allocating the virt map efi: libstub: drop pointless get_memory_map() call efi: libstub: fix type confusion for load_options_size arm64: efi: enable generic EFI compressed boot loongarch: efi: enable generic EFI compressed boot riscv: efi: enable generic EFI compressed boot efi/libstub: implement generic EFI zboot efi/libstub: move efi_system_table global var into separate object ... |
||
![]() |
171df58028 |
arm64: errata: Add Cortex-A55 to the repeat tlbi list
Cortex-A55 is affected by an erratum where in rare circumstances the CPUs may not handle a race between a break-before-make sequence on one CPU, and another CPU accessing the same page. This could allow a store to a page that has been unmapped. Work around this by adding the affected CPUs to the list that needs TLB sequences to be done twice. Signed-off-by: James Morse <james.morse@arm.com> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20220930131959.3082594-1-james.morse@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
18fd049731 |
arm64 updates for 6.1:
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE vector granule register added to the user regs together with SVE perf extensions documentation. - SVE updates: add HWCAP for SVE EBF16, update the SVE ABI documentation to match the actual kernel behaviour (zeroing the registers on syscall rather than "zeroed or preserved" previously). - More conversions to automatic system registers generation. - vDSO: use self-synchronising virtual counter access in gettimeofday() if the architecture supports it. - arm64 stacktrace cleanups and improvements. - arm64 atomics improvements: always inline assembly, remove LL/SC trampolines. - Improve the reporting of EL1 exceptions: rework BTI and FPAC exception handling, better EL1 undefs reporting. - Cortex-A510 erratum 2658417: remove BF16 support due to incorrect result. - arm64 defconfig updates: build CoreSight as a module, enable options necessary for docker, memory hotplug/hotremove, enable all PMUs provided by Arm. - arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME extensions). - arm64 ftraces updates/fixes: fix module PLTs with mcount, remove unused function. - kselftest updates for arm64: simple HWCAP validation, FP stress test improvements, validation of ZA regs in signal handlers, include larger SVE and SME vector lengths in signal tests, various cleanups. - arm64 alternatives (code patching) improvements to robustness and consistency: replace cpucap static branches with equivalent alternatives, associate callback alternatives with a cpucap. - Miscellaneous updates: optimise kprobe performance of patching single-step slots, simplify uaccess_mask_ptr(), move MTE registers initialisation to C, support huge vmalloc() mappings, run softirqs on the per-CPU IRQ stack, compat (arm32) misalignment fixups for multiword accesses. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmM9W4cACgkQa9axLQDI XvEy3w/+LJ3KCFowWiz5gTAWikjv+UVssHjLMJixn47V7hsEFQ26Xnam/438rTMI kE95u6DHUpw2SMIxKzFRO7oI5cQtP+cWGwTtOUnjVO+U1oN+HqDOIbO9DbylWDcU eeeqMMmawMfTPuZrYklpOhXscsorbrKIvYBg7wHYOcwBYV3EPhWr89lwMvTVRuyJ qpX628KlkGMaBcONNhv3nS3qZcAOs0oHQCAVS4C8czLDL+vtJlumXUS3xr1Mqm72 xtFe7sje8Djr2kZ8mzh0GbFiZEBoBD3F/l7ayq8gVRaVpToUt8sk36Stjs4LojF1 6imuAfji/5TItkScq5KhGqj6MIugwp/eUVbRN74OLNTYx7msF1ZADNFQ+Q0UuY0H SYK13KvmOji0xjS8qAfhqrwNB79sk3fb+zF9LjETbdz4ZJCgg9gcFbSUTY0DvMfS MXZk/jVeB07olA8xYbjh0BRt4UV9xU628FPQzK5k7e4Nzl4jSvgtJZCZanfuVtjy /ZS1vbN8o7tQLBAlVnw+Exi/VedkKxkkMgm8tPKsMgERTFDx0Pc4Gs72hRpDnPWT MRbeCCGleAf3JQ5vF0coBDNOCEVvweQgShHOyHTz0GyhWXLCFx3RJICo5I4EIpps LLUk4JK0fO3LVrf1AEpu5ZP4+Sact0zfsH3gB7qyLPYFDmjDXD8= =jl3Z -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE vector granule register added to the user regs together with SVE perf extensions documentation. - SVE updates: add HWCAP for SVE EBF16, update the SVE ABI documentation to match the actual kernel behaviour (zeroing the registers on syscall rather than "zeroed or preserved" previously). - More conversions to automatic system registers generation. - vDSO: use self-synchronising virtual counter access in gettimeofday() if the architecture supports it. - arm64 stacktrace cleanups and improvements. - arm64 atomics improvements: always inline assembly, remove LL/SC trampolines. - Improve the reporting of EL1 exceptions: rework BTI and FPAC exception handling, better EL1 undefs reporting. - Cortex-A510 erratum 2658417: remove BF16 support due to incorrect result. - arm64 defconfig updates: build CoreSight as a module, enable options necessary for docker, memory hotplug/hotremove, enable all PMUs provided by Arm. - arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME extensions). - arm64 ftraces updates/fixes: fix module PLTs with mcount, remove unused function. - kselftest updates for arm64: simple HWCAP validation, FP stress test improvements, validation of ZA regs in signal handlers, include larger SVE and SME vector lengths in signal tests, various cleanups. - arm64 alternatives (code patching) improvements to robustness and consistency: replace cpucap static branches with equivalent alternatives, associate callback alternatives with a cpucap. - Miscellaneous updates: optimise kprobe performance of patching single-step slots, simplify uaccess_mask_ptr(), move MTE registers initialisation to C, support huge vmalloc() mappings, run softirqs on the per-CPU IRQ stack, compat (arm32) misalignment fixups for multiword accesses. * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (126 commits) arm64: alternatives: Use vdso/bits.h instead of linux/bits.h arm64/kprobe: Optimize the performance of patching single-step slot arm64: defconfig: Add Coresight as module kselftest/arm64: Handle EINTR while reading data from children kselftest/arm64: Flag fp-stress as exiting when we begin finishing up kselftest/arm64: Don't repeat termination handler for fp-stress ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs arm64/mm: fold check for KFENCE into can_set_direct_map() arm64: ftrace: fix module PLTs with mcount arm64: module: Remove unused plt_entry_is_initialized() arm64: module: Make plt_equals_entry() static arm64: fix the build with binutils 2.27 kselftest/arm64: Don't enable v8.5 for MTE selftest builds arm64: uaccess: simplify uaccess_mask_ptr() arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header kselftest/arm64: Fix typo in hwcap check arm64: mte: move register initialization to C arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate() arm64: dma: Drop cache invalidation from arch_dma_prep_coherent() arm64/sve: Add Perf extensions documentation ... |
||
![]() |
865dad2022 |
kcfi updates for v6.1-rc1
This replaces the prior support for Clang's standard Control Flow Integrity (CFI) instrumentation, which has required a lot of special conditions (e.g. LTO) and work-arounds. The current implementation ("Kernel CFI") is specific to C, directly designed for the Linux kernel, and takes advantage of architectural features like x86's IBT. This series retains arm64 support and adds x86 support. Additional "generic" architectural support is expected soon: https://github.com/samitolvanen/llvm-project/commits/kcfi_generic - treewide: Remove old CFI support details - arm64: Replace Clang CFI support with Clang KCFI support - x86: Introduce Clang KCFI support -----BEGIN PGP SIGNATURE----- iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmM4aAUWHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJkgWD/4mUgb7xewNIG/+fuipGd620Iao K0T8q4BNxLNRltOxNc3Q0WMDCggX0qJGCeds7EdFQJQOGxWcbifM8MAS4idAGM0G fc3Gxl1imC/oF6goCAbQgndA6jYFIWXGsv8LsRjAXRidWLFr3GFAqVqYJyokSySr 8zMQsEDuF4I1gQnOhEWdtPZbV3MQ4ZjfFzpv+33agbq6Gb72vKvDh3G6g2VXlxjt 1qnMtS+eEpbBU65cJkOi4MSLgymWbnIAeTMb0dbsV4kJ08YoTl8uz1B+weeH6GgT WP73ZJ4nqh1kkkT9EqS9oKozNB9fObhvCokEuAjuQ7i1eCEZsbShvRc0iL7OKTGG UfuTJa5qQ4h7Z0JS35FCSJETa+fcG0lTyEd133nLXLMZP9K2antf+A6O//fd0J1V Jg4VN7DQmZ+UNGOzRkL6dTtQUy4PkxhniIloaClfSYXxhNirA+v//sHTnTK3z2Bl 6qceYqmFmns2Laual7+lvnZgt6egMBcmAL/MOdbU74+KIR9Xw76wxQjifktHX+WF FEUQkUJDB5XcUyKlbvHoqobRMxvEZ8RIlC5DIkgFiPRE3TI0MqfzNSFnQ/6+lFNg Y0AS9HYJmcj8sVzAJ7ji24WPFCXzsbFn6baJa9usDNbWyQZokYeiv7ZPNPHPDVrv YEBP6aYko0lVSUS9qw== =Li4D -----END PGP SIGNATURE----- Merge tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull kcfi updates from Kees Cook: "This replaces the prior support for Clang's standard Control Flow Integrity (CFI) instrumentation, which has required a lot of special conditions (e.g. LTO) and work-arounds. The new implementation ("Kernel CFI") is specific to C, directly designed for the Linux kernel, and takes advantage of architectural features like x86's IBT. This series retains arm64 support and adds x86 support. GCC support is expected in the future[1], and additional "generic" architectural support is expected soon[2]. Summary: - treewide: Remove old CFI support details - arm64: Replace Clang CFI support with Clang KCFI support - x86: Introduce Clang KCFI support" Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107048 [1] Link: https://github.com/samitolvanen/llvm-project/commits/kcfi_generic [2] * tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (22 commits) x86: Add support for CONFIG_CFI_CLANG x86/purgatory: Disable CFI x86: Add types to indirectly called assembly functions x86/tools/relocs: Ignore __kcfi_typeid_ relocations kallsyms: Drop CONFIG_CFI_CLANG workarounds objtool: Disable CFI warnings objtool: Preserve special st_shndx indexes in elf_update_symbol treewide: Drop __cficanonical treewide: Drop WARN_ON_FUNCTION_MISMATCH treewide: Drop function_nocfi init: Drop __nocfi from __init arm64: Drop unneeded __nocfi attributes arm64: Add CFI error handling arm64: Add types to indirect called assembly functions psci: Fix the function type for psci_initcall_t lkdtm: Emit an indirect call for CFI tests cfi: Add type helper macros cfi: Switch to -fsanitize=kcfi cfi: Drop __CFI_ADDRESSABLE cfi: Remove CONFIG_CFI_CLANG_SHADOW ... |
||
![]() |
3216484550 |
kbuild: use obj-y instead extra-y for objects placed at the head
The objects placed at the head of vmlinux need special treatments: - arch/$(SRCARCH)/Makefile adds them to head-y in order to place them before other archives in the linker command line. - arch/$(SRCARCH)/kernel/Makefile adds them to extra-y instead of obj-y to avoid them going into built-in.a. This commit gets rid of the latter. Create vmlinux.a to collect all the objects that are unconditionally linked to vmlinux. The objects listed in head-y are moved to the head of vmlinux.a by using 'ar m'. With this, arch/$(SRCARCH)/kernel/Makefile can consistently use obj-y for builtin objects. There is no *.o that is directly linked to vmlinux. Drop unneeded code in scripts/clang-tools/gen_compile_commands.py. $(AR) mPi needs 'T' to workaround the llvm-ar bug. The fix was suggested by Nathan Chancellor [1]. [1]: https://lore.kernel.org/llvm/YyjjT5gQ2hGMH0ni@dev-arch.thelio-3990X/ Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> |
||
![]() |
53630a1f61 |
Merge branch 'for-next/misc' into for-next/core
* for-next/misc: : Miscellaneous patches arm64/kprobe: Optimize the performance of patching single-step slot ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs arm64/mm: fold check for KFENCE into can_set_direct_map() arm64: uaccess: simplify uaccess_mask_ptr() arm64: mte: move register initialization to C arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate() arm64: dma: Drop cache invalidation from arch_dma_prep_coherent() arm64: support huge vmalloc mappings arm64: spectre: increase parameters that can be used to turn off bhb mitigation individually arm64: run softirqs on the per-CPU IRQ stack arm64: compat: Implement misalignment fixups for multiword loads |
||
![]() |
c704cf27a1 |
Merge branch 'for-next/alternatives' into for-next/core
* for-next/alternatives: : Alternatives (code patching) improvements arm64: fix the build with binutils 2.27 arm64: avoid BUILD_BUG_ON() in alternative-macros arm64: alternatives: add shared NOP callback arm64: alternatives: add alternative_has_feature_*() arm64: alternatives: have callbacks take a cap arm64: alternatives: make alt_region const arm64: alternatives: hoist print out of __apply_alternatives() arm64: alternatives: proton-pack: prepare for cap changes arm64: alternatives: kvm: prepare for cap changes arm64: cpufeature: make cpus_have_cap() noinstr-safe |
||
![]() |
b23ec74cbd |
Merge branches 'for-next/doc', 'for-next/sve', 'for-next/sysreg', 'for-next/gettimeofday', 'for-next/stacktrace', 'for-next/atomics', 'for-next/el1-exceptions', 'for-next/a510-erratum-2658417', 'for-next/defconfig', 'for-next/tpidr2_el0' and 'for-next/ftrace', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header arm64/sve: Add Perf extensions documentation perf: arm64: Add SVE vector granule register to user regs MAINTAINERS: add maintainers for Alibaba' T-Head PMU driver drivers/perf: add DDR Sub-System Driveway PMU driver for Yitian 710 SoC docs: perf: Add description for Alibaba's T-Head PMU driver * for-next/doc: : Documentation/arm64 updates arm64/sve: Document our actual ABI for clearing registers on syscall * for-next/sve: : SVE updates arm64/sysreg: Add hwcap for SVE EBF16 * for-next/sysreg: (35 commits) : arm64 system registers generation (more conversions) arm64/sysreg: Fix a few missed conversions arm64/sysreg: Convert ID_AA64AFRn_EL1 to automatic generation arm64/sysreg: Convert ID_AA64DFR1_EL1 to automatic generation arm64/sysreg: Convert ID_AA64FDR0_EL1 to automatic generation arm64/sysreg: Use feature numbering for PMU and SPE revisions arm64/sysreg: Add _EL1 into ID_AA64DFR0_EL1 definition names arm64/sysreg: Align field names in ID_AA64DFR0_EL1 with architecture arm64/sysreg: Add defintion for ALLINT arm64/sysreg: Convert SCXTNUM_EL1 to automatic generation arm64/sysreg: Convert TIPDR_EL1 to automatic generation arm64/sysreg: Convert ID_AA64PFR1_EL1 to automatic generation arm64/sysreg: Convert ID_AA64PFR0_EL1 to automatic generation arm64/sysreg: Convert ID_AA64MMFR2_EL1 to automatic generation arm64/sysreg: Convert ID_AA64MMFR1_EL1 to automatic generation arm64/sysreg: Convert ID_AA64MMFR0_EL1 to automatic generation arm64/sysreg: Convert HCRX_EL2 to automatic generation arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 SME enumeration arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 BTI enumeration arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 fractional version fields arm64/sysreg: Standardise naming for MTE feature enumeration ... * for-next/gettimeofday: : Use self-synchronising counter access in gettimeofday() (if FEAT_ECV) arm64: vdso: use SYS_CNTVCTSS_EL0 for gettimeofday arm64: alternative: patch alternatives in the vDSO arm64: module: move find_section to header * for-next/stacktrace: : arm64 stacktrace cleanups and improvements arm64: stacktrace: track hyp stacks in unwinder's address space arm64: stacktrace: track all stack boundaries explicitly arm64: stacktrace: remove stack type from fp translator arm64: stacktrace: rework stack boundary discovery arm64: stacktrace: add stackinfo_on_stack() helper arm64: stacktrace: move SDEI stack helpers to stacktrace code arm64: stacktrace: rename unwind_next_common() -> unwind_next_frame_record() arm64: stacktrace: simplify unwind_next_common() arm64: stacktrace: fix kerneldoc comments * for-next/atomics: : arm64 atomics improvements arm64: atomic: always inline the assembly arm64: atomics: remove LL/SC trampolines * for-next/el1-exceptions: : Improve the reporting of EL1 exceptions arm64: rework BTI exception handling arm64: rework FPAC exception handling arm64: consistently pass ESR_ELx to die() arm64: die(): pass 'err' as long arm64: report EL1 UNDEFs better * for-next/a510-erratum-2658417: : Cortex-A510: 2658417: remove BF16 support due to incorrect result arm64: errata: remove BF16 HWCAP due to incorrect result on Cortex-A510 arm64: cpufeature: Expose get_arm64_ftr_reg() outside cpufeature.c arm64: cpufeature: Force HWCAP to be based on the sysreg visible to user-space * for-next/defconfig: : arm64 defconfig updates arm64: defconfig: Add Coresight as module arm64: Enable docker support in defconfig arm64: defconfig: Enable memory hotplug and hotremove config arm64: configs: Enable all PMUs provided by Arm * for-next/tpidr2_el0: : arm64 ptrace() support for TPIDR2_EL0 kselftest/arm64: Add coverage of TPIDR2_EL0 ptrace interface arm64/ptrace: Support access to TPIDR2_EL0 arm64/ptrace: Document extension of NT_ARM_TLS to cover TPIDR2_EL0 kselftest/arm64: Add test coverage for NT_ARM_TLS * for-next/ftrace: : arm64 ftraces updates/fixes arm64: ftrace: fix module PLTs with mcount arm64: module: Remove unused plt_entry_is_initialized() arm64: module: Make plt_equals_entry() static |
||
![]() |
a0caebbd04 |
arm64/kprobe: Optimize the performance of patching single-step slot
Single-step slot would not be used until kprobe is enabled, that means no race condition occurs on it under SMP, hence it is safe to pacth ss slot without stopping machine. Since I and D caches are coherent within single-step slot from aarch64_insn_patch_text_nosync(), hence no need to do it again via flush_icache_range(). Acked-by: Will Deacon <will@kernel.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Liao Chang <liaochang1@huawei.com> Link: https://lore.kernel.org/r/20220927022435.129965-4-liaochang1@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8c6e3657be |
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
Add missing __init/__exit annotations to module init/exit funcs. Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> Link: https://lore.kernel.org/r/20220911034747.132098-1-xiujianfeng@huawei.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8cfb08575c |
arm64: ftrace: fix module PLTs with mcount
Li Huafei reports that mcount-based ftrace with module PLTs was broken by commit: |
||
![]() |
3fb420f56c |
arm64: module: Make plt_equals_entry() static
Since commit
|
||
![]() |
ef770d180e |
arm64: Change elfcore for_each_mte_vma() to use VMA iterator
Rework for_each_mte_vma() to use a VMA iterator instead of an explicit linked-list. Link: https://lkml.kernel.org/r/20220906194824.2110408-32-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20220218023650.672072-1-Liam.Howlett@oracle.com Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Davidlohr Bueso <dave@stgolabs.net> Tested-by: Yu Zhao <yuzhao@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
de2b84d24b |
arm64: remove mmap linked list from vdso
Use the VMA iterator instead. Link: https://lkml.kernel.org/r/20220906194824.2110408-31-Liam.Howlett@oracle.com Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Davidlohr Bueso <dave@stgolabs.net> Tested-by: Yu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
607289a7cd |
treewide: Drop function_nocfi
With -fsanitize=kcfi, we no longer need function_nocfi() as the compiler won't change function references to point to a jump table. Remove all implementations and uses of the macro. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220908215504.3686827-14-samitolvanen@google.com |
||
![]() |
5f20997c19 |
arm64: Drop unneeded __nocfi attributes
With -fsanitize=kcfi, CONFIG_CFI_CLANG no longer has issues with address space confusion in functions that switch to linear mapping. Now that the indirectly called assembly functions have type annotations, drop the __nocfi attributes. Suggested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220908215504.3686827-12-samitolvanen@google.com |
||
![]() |
b26e484b8b |
arm64: Add CFI error handling
With -fsanitize=kcfi, CFI always traps. Add arm64 support for handling CFI failures. The registers containing the target address and the expected type are encoded in the first ten bits of the ESR as follows: - 0-4: n, where the register Xn contains the target address - 5-9: m, where the register Wm contains the type hash This produces the following oops on CFI failure (generated using lkdtm): [ 21.885179] CFI failure at lkdtm_indirect_call+0x2c/0x44 [lkdtm] (target: lkdtm_increment_int+0x0/0x1c [lkdtm]; expected type: 0x7e0c52a) [ 21.886593] Internal error: Oops - CFI: 0 [#1] PREEMPT SMP [ 21.891060] Modules linked in: lkdtm [ 21.893363] CPU: 0 PID: 151 Comm: sh Not tainted 5.19.0-rc1-00021-g852f4e48dbab #1 [ 21.895560] Hardware name: linux,dummy-virt (DT) [ 21.896543] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 21.897583] pc : lkdtm_indirect_call+0x2c/0x44 [lkdtm] [ 21.898551] lr : lkdtm_CFI_FORWARD_PROTO+0x3c/0x6c [lkdtm] [ 21.899520] sp : ffff8000083a3c50 [ 21.900191] x29: ffff8000083a3c50 x28: ffff0000027e0ec0 x27: 0000000000000000 [ 21.902453] x26: 0000000000000000 x25: ffffc2aa3d07e7b0 x24: 0000000000000002 [ 21.903736] x23: ffffc2aa3d079088 x22: ffffc2aa3d07e7b0 x21: ffff000003379000 [ 21.905062] x20: ffff8000083a3dc0 x19: 0000000000000012 x18: 0000000000000000 [ 21.906371] x17: 000000007e0c52a5 x16: 000000003ad55aca x15: ffffc2aa60d92138 [ 21.907662] x14: ffffffffffffffff x13: 2e2e2e2065707974 x12: 0000000000000018 [ 21.909775] x11: ffffc2aa62322b88 x10: ffffc2aa62322aa0 x9 : c7e305fb5195d200 [ 21.911898] x8 : ffffc2aa3d077e20 x7 : 6d20676e696c6c61 x6 : 43203a6d74646b6c [ 21.913108] x5 : ffffc2aa6266c9df x4 : ffffc2aa6266c9e1 x3 : ffff8000083a3968 [ 21.914358] x2 : 80000000fffff122 x1 : 00000000fffff122 x0 : ffffc2aa3d07e8f8 [ 21.915827] Call trace: [ 21.916375] lkdtm_indirect_call+0x2c/0x44 [lkdtm] [ 21.918060] lkdtm_CFI_FORWARD_PROTO+0x3c/0x6c [lkdtm] [ 21.919030] lkdtm_do_action+0x34/0x4c [lkdtm] [ 21.919920] direct_entry+0x170/0x1ac [lkdtm] [ 21.920772] full_proxy_write+0x84/0x104 [ 21.921759] vfs_write+0x188/0x3d8 [ 21.922387] ksys_write+0x78/0xe8 [ 21.922986] __arm64_sys_write+0x1c/0x2c [ 21.923696] invoke_syscall+0x58/0x134 [ 21.924554] el0_svc_common+0xb4/0xf4 [ 21.925603] do_el0_svc+0x2c/0xb4 [ 21.926563] el0_svc+0x2c/0x7c [ 21.927147] el0t_64_sync_handler+0x84/0xf0 [ 21.927985] el0t_64_sync+0x18c/0x190 [ 21.929133] Code: 728a54b1 72afc191 6b11021f 54000040 (d4304500) [ 21.930690] ---[ end trace 0000000000000000 ]--- [ 21.930971] Kernel panic - not syncing: Oops - CFI: Fatal exception Suggested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220908215504.3686827-11-samitolvanen@google.com |
||
![]() |
c50d32859e |
arm64: Add types to indirect called assembly functions
With CONFIG_CFI_CLANG, assembly functions indirectly called from C code must be annotated with type identifiers to pass CFI checking. Use SYM_TYPED_FUNC_START for the indirectly called functions, and ensure we emit `bti c` also with SYM_TYPED_FUNC_START. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220908215504.3686827-10-samitolvanen@google.com |
||
![]() |
f143ff397a |
treewide: Filter out CC_FLAGS_CFI
In preparation for removing CC_FLAGS_CFI from CC_FLAGS_LTO, explicitly filter out CC_FLAGS_CFI in all the makefiles where we currently filter out CC_FLAGS_LTO. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220908215504.3686827-2-samitolvanen@google.com |
||
![]() |
973b9e3733 |
arm64: mte: move register initialization to C
If FEAT_MTE2 is disabled via the arm64.nomte command line argument on a
CPU that claims to support FEAT_MTE2, the kernel will use Tagged Normal
in the MAIR. If we interpret arm64.nomte to mean that the CPU does not
in fact implement FEAT_MTE2, setting the system register like this may
lead to UNSPECIFIED behavior. Fix it by arranging for MAIR to be set
in the C function cpu_enable_mte which is called based on the sanitized
version of the system register.
There is no need for the rest of the MTE-related system register
initialization to happen from assembly, with the exception of TCR_EL1,
which must be set to include at least TBI1 because the secondary CPUs
access KASan-allocated data structures early. Therefore, make the TCR_EL1
initialization unconditional and move the rest of the initialization to
cpu_enable_mte so that we no longer have a dependency on the unsanitized
ID register value.
Co-developed-by: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Evgenii Stepanov <eugenis@google.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Fixes:
|
||
![]() |
cbb0c02caf |
perf: arm64: Add SVE vector granule register to user regs
Dwarf based unwinding in a function that pushes SVE registers onto the stack requires the unwinder to know the length of the SVE register to calculate the stack offsets correctly. This was added to the Arm specific Dwarf spec as the VG pseudo register[1]. Add the vector length at position 46 if it's requested by userspace and SVE is supported. If it's not supported then fail to open the event. The vector length must be on each sample because it can be changed at runtime via a prctl or ptrace call. Also by adding it as a register rather than a separate attribute, minimal changes will be required in an unwinder that already indexes into the register list. [1]: https://github.com/ARM-software/abi-aa/blob/main/aadwarf64/aadwarf64.rst Reviewed-by: Mark Brown <broonie@kernel.org> Signed-off-by: James Clark <james.clark@arm.com> Link: https://lore.kernel.org/r/20220901132658.1024635-2-james.clark@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
d4955c0ad7 |
arm64: topology: fix possible overflow in amu_fie_setup()
cpufreq_get_hw_max_freq() returns max frequency in kHz as *unsigned int*,
while freq_inv_set_max_ratio() gets passed this frequency in Hz as 'u64'.
Multiplying max frequency by 1000 can potentially result in overflow --
multiplying by 1000ULL instead should avoid that...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool.
Fixes:
|
||
![]() |
0027d9c6c7 |
arm64/ptrace: Support access to TPIDR2_EL0
SME introduces an additional EL0 register, TPIDR2_EL0, intended for use by userspace as part of the SME. Provide ptrace access to it through the existing NT_ARM_TLS regset used for TPIDR_EL0 by expanding it to two registers with TPIDR2_EL0 being the second one. Existing programs that query the size of the register set will be able to observe the increased size of the register set. Programs that assume the register set is single register will see no change. On systems that do not support SME TPIDR2_EL0 will read as 0 and writes will be ignored, support for SME should be queried via hwcaps as normal. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20220829154921.837871-4-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c82ceb440b |
efi/libstub: use EFI provided memcpy/memset routines
The stub is used in different execution environments, but on arm64, RISC-V and LoongArch, we still use the core kernel's implementation of memcpy and memset, as they are just a branch instruction away, and can generally be reused even from code such as the EFI stub that runs in a completely different address space. KAsan complicates this slightly, resulting in the need for some hacks to expose the uninstrumented, __ prefixed versions as the normal ones, as the latter are instrumented to include the KAsan checks, which only work in the core kernel. Unfortunately, #define'ing memcpy to __memcpy when building C code does not guarantee that no explicit memcpy() calls will be emitted. And with the upcoming zboot support, which consists of a separate binary which therefore needs its own implementation of memcpy/memset anyway, it's better to provide one explicitly instead of linking to the existing one. Given that EFI exposes implementations of memmove() and memset() via the boot services table, let's wire those up in the appropriate way, and drop the references to the core kernel ones. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
||
![]() |
d926079f17 |
arm64: alternatives: add shared NOP callback
For each instance of an alternative, the compiler outputs a distinct copy of the alternative instructions into a subsection. As the compiler doesn't have special knowledge of alternatives, it cannot coalesce these to save space. In a defconfig kernel built with GCC 12.1.0, there are approximately 10,000 instances of alternative_has_feature_likely(), where the replacement instruction is always a NOP. As NOPs are position-independent, we don't need a unique copy per alternative sequence. This patch adds a callback to patch an alternative sequence with NOPs, and make use of this in alternative_has_feature_likely(). So that this can be used for other sites in future, this is written to patch multiple instructions up to the original sequence length. For NVHE, an alias is added to image-vars.h. For modules, the callback is exported. Note that as modules are loaded within 2GiB of the kernel, an alt_instr entry in a module can always refer directly to the callback, and no special handling is necessary. When building with GCC 12.1.0, the vmlinux is ~158KiB smaller, though the resulting Image size is unchanged due to alignment constraints and padding: | % ls -al vmlinux-* | -rwxr-xr-x 1 mark mark 134644592 Sep 1 14:52 vmlinux-after | -rwxr-xr-x 1 mark mark 134486232 Sep 1 14:50 vmlinux-before | % ls -al Image-* | -rw-r--r-- 1 mark mark 37108224 Sep 1 14:52 Image-after | -rw-r--r-- 1 mark mark 37108224 Sep 1 14:50 Image-before Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220912162210.3626215-9-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
21fb26bfb0 |
arm64: alternatives: add alternative_has_feature_*()
Currrently we use a mixture of alternative sequences and static branches
to handle features detected at boot time. For ease of maintenance we
generally prefer to use static branches in C code, but this has a few
downsides:
* Each static branch has metadata in the __jump_table section, which is
not discarded after features are finalized. This wastes some space,
and slows down the patching of other static branches.
* The static branches are patched at a different point in time from the
alternatives, so changes are not atomic. This leaves a transient
period where there could be a mismatch between the behaviour of
alternatives and static branches, which could be problematic for some
features (e.g. pseudo-NMI).
* More (instrumentable) kernel code is executed to patch each static
branch, which can be risky when patching certain features (e.g.
irqflags management for pseudo-NMI).
* When CONFIG_JUMP_LABEL=n, static branches are turned into a load of a
flag and a conditional branch. This means it isn't safe to use such
static branches in an alternative address space (e.g. the NVHE/PKVM
hyp code), where the generated address isn't safe to acccess.
To deal with these issues, this patch introduces new
alternative_has_feature_*() helpers, which work like static branches but
are patched using alternatives. This ensures the patching is performed
at the same time as other alternative patching, allows the metadata to
be freed after patching, and is safe for use in alternative address
spaces.
Note that all supported toolchains have asm goto support, and since
commit:
|
||
![]() |
4c0bd995d7 |
arm64: alternatives: have callbacks take a cap
Today, callback alternatives are special-cased within __apply_alternatives(), and are applied alongside patching for system capabilities as ARM64_NCAPS is not part of the boot_capabilities feature mask. This special-casing is less than ideal. Giving special meaning to ARM64_NCAPS for this requires some structures and loops to use ARM64_NCAPS + 1 (AKA ARM64_NPATCHABLE), while others use ARM64_NCAPS. It's also not immediately clear callback alternatives are only applied when applying alternatives for system-wide features. To make this a bit clearer, changes the way that callback alternatives are identified to remove the special-casing of ARM64_NCAPS, and to allow callback alternatives to be associated with a cpucap as with all other alternatives. New cpucaps, ARM64_ALWAYS_BOOT and ARM64_ALWAYS_SYSTEM are added which are always detected alongside boot cpu capabilities and system capabilities respectively. All existing callback alternatives are made to use ARM64_ALWAYS_SYSTEM, and so will be patched at the same point during the boot flow as before. Subsequent patches will make more use of these new cpucaps. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220912162210.3626215-7-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b723edf3a1 |
arm64: alternatives: make alt_region const
We never alter a struct alt_region after creation, and we open-code the bounds of the kernel alternatives region in two functions. The duplication is a bit unfortunate for clarity (and in future we're likely to have more functions altering alternative regions), and to avoid accidents it would be good to make the structure const. This patch adds a shared struct `kernel_alternatives` alt_region for the main kernel image, and marks the alt_regions as const to prevent unintentional modification. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220912162210.3626215-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c5ba03260c |
arm64: alternatives: hoist print out of __apply_alternatives()
Printing in the middle of __apply_alternatives() is potentially unsafe and not all that helpful given these days we practically always patch *something*. Hoist the print out of __apply_alternatives(), and add separate prints to __apply_alternatives() and apply_alternatives_all(), which will make it easier to spot if either patching call goes wrong. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220912162210.3626215-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
747ad8d557 |
arm64: alternatives: proton-pack: prepare for cap changes
The spectre patching callbacks use cpus_have_final_cap(), and subsequent patches will make it invalid to call cpus_have_final_cap() before alternatives patching has completed. In preparation for said change, this patch modifies the spectre patching callbacks use cpus_have_cap(). This is not subject to patching, and will dynamically check the cpu_hwcaps array, which is functionally equivalent to the existing behaviour. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Joey Gouly <joey.gouly@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220912162210.3626215-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
1bdb0fbb2e |
arm64: errata: remove BF16 HWCAP due to incorrect result on Cortex-A510
Cortex-A510's erratum #2658417 causes two BF16 instructions to return the wrong result in rare circumstances when a pair of A510 CPUs are using shared neon hardware. The two instructions affected are BFMMLA and VMMLA, support for these is indicated by the BF16 HWCAP. Remove it on affected platforms. Signed-off-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20220909165938.3931307-4-james.morse@arm.com [catalin.marinas@arm.com: add revision to the Kconfig help; remove .type] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
445c953e4a |
arm64: cpufeature: Expose get_arm64_ftr_reg() outside cpufeature.c
get_arm64_ftr_reg() returns the properties of a system register based on its instruction encoding. This is needed by erratum workaround in cpu_errata.c to modify the user-space visible view of id registers. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Link: https://lore.kernel.org/r/20220909165938.3931307-3-james.morse@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
237405ebef |
arm64: cpufeature: Force HWCAP to be based on the sysreg visible to user-space
arm64 advertises hardware features to user-space via HWCAPs, and by emulating access to the CPUs id registers. The cpufeature code has a sanitised system-wide view of an id register, and a sanitised user-space view of an id register, where some features use their 'safe' value instead of the hardware value. It is currently possible for a HWCAP to be advertised where the user-space view of the id register does not show the feature as supported. Erratum workaround need to remove both the HWCAP, and the feature from the user-space view of the id register. This involves duplicating the code, and spreading it over cpufeature.c and cpu_errata.c. Make the HWCAP code use the user-space view of id registers. This ensures the values never diverge, and allows erratum workaround to remove HWCAP by modifying the user-space view of the id register. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Link: https://lore.kernel.org/r/20220909165938.3931307-2-james.morse@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
121a8fc088 |
arm64/sysreg: Use feature numbering for PMU and SPE revisions
Currently the kernel refers to the versions of the PMU and SPE features by the version of the architecture where those features were updated but the ARM refers to them using the FEAT_ names for the features. To improve consistency and help with updating for newer features and since v9 will make our current naming scheme a bit more confusing update the macros identfying features to use the FEAT_ based scheme. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20220910163354.860255-4-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
fcf37b38ff |
arm64/sysreg: Add _EL1 into ID_AA64DFR0_EL1 definition names
Normally we include the full register name in the defines for fields within registers but this has not been followed for ID registers. In preparation for automatic generation of defines add the _EL1s into the defines for ID_AA64DFR0_EL1 to follow the convention. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20220910163354.860255-3-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
c0357a73fa |
arm64/sysreg: Align field names in ID_AA64DFR0_EL1 with architecture
The naming scheme the architecture uses for the fields in ID_AA64DFR0_EL1 does not align well with kernel conventions, using as it does a lot of MixedCase in various arrangements. In preparation for automatically generating the defines for this register rename the defines used to match what is in the architecture. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20220910163354.860255-2-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
830a2a4d85 |
arm64: rework BTI exception handling
If a BTI exception is taken from EL1, the entry code will treat this as an unhandled exception and will panic() the kernel. This is inconsistent with the way we handle FPAC exceptions, which have a dedicated handler and only necessarily kill the thread from which the exception was taken from, and we don't log all the information that could be relevant to debug the issue. The code in do_bti() has: BUG_ON(!user_mode(regs)); ... and it seems like the intent was to call this for EL1 BTI exceptions, as with FPAC, but this was omitted due to an oversight. This patch adds separate EL0 and EL1 BTI exception handlers, with the latter calling die() directly to report the original context the BTI exception was taken from. This matches our handling of FPAC exceptions. Prior to this patch, a BTI failure is reported as: | Unhandled 64-bit el1h sync exception on CPU0, ESR 0x0000000034000002 -- BTI | CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00131-g7d937ff0221d-dirty #9 | Hardware name: linux,dummy-virt (DT) | pstate: 20400809 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c) | pc : test_bti_callee+0x4/0x10 | lr : test_bti_caller+0x1c/0x28 | sp : ffff80000800bdf0 | x29: ffff80000800bdf0 x28: 0000000000000000 x27: 0000000000000000 | x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 | x23: ffff80000a2b8000 x22: 0000000000000000 x21: 0000000000000000 | x20: ffff8000099fa5b0 x19: ffff800009ff7000 x18: fffffbfffda37000 | x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000041a90000 | x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000 | x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000040000000 | x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000f83 | x5 : ffff80000a2b6000 x4 : ffff0000028d0000 x3 : ffff800009f78378 | x2 : 0000000000000000 x1 : 0000000040210000 x0 : ffff8000080257e4 | Kernel panic - not syncing: Unhandled exception | CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00131-g7d937ff0221d-dirty #9 | Hardware name: linux,dummy-virt (DT) | Call trace: | dump_backtrace.part.0+0xcc/0xe0 | show_stack+0x18/0x5c | dump_stack_lvl+0x64/0x80 | dump_stack+0x18/0x34 | panic+0x170/0x360 | arm64_exit_nmi.isra.0+0x0/0x80 | el1h_64_sync_handler+0x64/0xd0 | el1h_64_sync+0x64/0x68 | test_bti_callee+0x4/0x10 | smp_cpus_done+0xb0/0xbc | smp_init+0x7c/0x8c | kernel_init_freeable+0x128/0x28c | kernel_init+0x28/0x13c | ret_from_fork+0x10/0x20 With this patch applied, a BTI failure is reported as: | Internal error: Oops - BTI: 0000000034000002 [#1] PREEMPT SMP | Modules linked in: | CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00132-g0ad98265d582-dirty #8 | Hardware name: linux,dummy-virt (DT) | pstate: 20400809 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c) | pc : test_bti_callee+0x4/0x10 | lr : test_bti_caller+0x1c/0x28 | sp : ffff80000800bdf0 | x29: ffff80000800bdf0 x28: 0000000000000000 x27: 0000000000000000 | x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 | x23: ffff80000a2b8000 x22: 0000000000000000 x21: 0000000000000000 | x20: ffff8000099fa5b0 x19: ffff800009ff7000 x18: fffffbfffda37000 | x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000041a90000 | x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000 | x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000040000000 | x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000f83 | x5 : ffff80000a2b6000 x4 : ffff0000028d0000 x3 : ffff800009f78378 | x2 : 0000000000000000 x1 : 0000000040210000 x0 : ffff800008025804 | Call trace: | test_bti_callee+0x4/0x10 | smp_cpus_done+0xb0/0xbc | smp_init+0x7c/0x8c | kernel_init_freeable+0x128/0x28c | kernel_init+0x28/0x13c | ret_from_fork+0x10/0x20 | Code: d50323bf d53cd040 d65f03c0 d503233f (d50323bf) Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Alexandru Elisei <alexandru.elisei@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220913101732.3925290-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
a1fafa3b24 |
arm64: rework FPAC exception handling
If an FPAC exception is taken from EL1, the entry code will call do_ptrauth_fault(), where due to: BUG_ON(!user_mode(regs)) ... the kernel will report a problem within do_ptrauth_fault() rather than reporting the original context the FPAC exception was taken from. The pt_regs and ESR value reported will be from within do_ptrauth_fault() and the code dump will be for the BRK in BUG_ON(), which isn't sufficient to debug the cause of the original exception. This patch makes the reporting better by having separate EL0 and EL1 FPAC exception handlers, with the latter calling die() directly to report the original context the FPAC exception was taken from. Note that we only need to prevent kprobes of the EL1 FPAC handler, since the EL0 FPAC handler cannot be called recursively. For consistency with do_el0_svc*(), I've named the split functions do_el{0,1}_fpac() rather than do_el{0,1}_ptrauth_fault(). I've also clarified the comment to not imply there are casues other than FPAC exceptions. Prior to this patch FPAC exceptions are reported as: | kernel BUG at arch/arm64/kernel/traps.c:517! | Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP | Modules linked in: | CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00130-g9c8a180a1cdf-dirty #12 | Hardware name: FVP Base RevC (DT) | pstate: 00400009 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : do_ptrauth_fault+0x3c/0x40 | lr : el1_fpac+0x34/0x54 | sp : ffff80000a3bbc80 | x29: ffff80000a3bbc80 x28: ffff0008001d8000 x27: 0000000000000000 | x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 | x23: 0000000020400009 x22: ffff800008f70fa4 x21: ffff80000a3bbe00 | x20: 0000000072000000 x19: ffff80000a3bbcb0 x18: fffffbfffda37000 | x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000 | x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000 | x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000 | x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783 | x5 : ffff80000a3bbcb0 x4 : ffff0008001d8000 x3 : 0000000072000000 | x2 : 0000000000000000 x1 : 0000000020400009 x0 : ffff80000a3bbcb0 | Call trace: | do_ptrauth_fault+0x3c/0x40 | el1h_64_sync_handler+0xc4/0xd0 | el1h_64_sync+0x64/0x68 | test_pac+0x8/0x10 | smp_init+0x7c/0x8c | kernel_init_freeable+0x128/0x28c | kernel_init+0x28/0x13c | ret_from_fork+0x10/0x20 | Code: 97fffe5e a8c17bfd d50323bf d65f03c0 (d4210000) With this patch applied FPAC exceptions are reported as: | Internal error: Oops - FPAC: 0000000072000000 [#1] PREEMPT SMP | Modules linked in: | CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00132-g78846e1c4757-dirty #11 | Hardware name: FVP Base RevC (DT) | pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : test_pac+0x8/0x10 | lr : 0x0 | sp : ffff80000a3bbe00 | x29: ffff80000a3bbe00 x28: 0000000000000000 x27: 0000000000000000 | x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 | x23: ffff80000a2c8000 x22: 0000000000000000 x21: 0000000000000000 | x20: ffff8000099fa5b0 x19: ffff80000a007000 x18: fffffbfffda37000 | x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000 | x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000 | x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000 | x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783 | x5 : ffff80000a2c6000 x4 : ffff0008001d8000 x3 : ffff800009f88378 | x2 : 0000000000000000 x1 : 0000000080210000 x0 : ffff000001a90000 | Call trace: | test_pac+0x8/0x10 | smp_init+0x7c/0x8c | kernel_init_freeable+0x128/0x28c | kernel_init+0x28/0x13c | ret_from_fork+0x10/0x20 | Code: d50323bf d65f03c0 d503233f aa1f03fe (d50323bf) Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Alexandru Elisei <alexandru.elisei@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220913101732.3925290-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
0f2cb928a1 |
arm64: consistently pass ESR_ELx to die()
Currently, bug_handler() and kasan_handler() call die() with '0' as the 'err' value, whereas die_kernel_fault() passes the ESR_ELx value. For consistency, this patch ensures we always pass the ESR_ELx value to die(). As this is only called for exceptions taken from kernel mode, there should be no user-visible change as a result of this patch. For UNDEFINED exceptions, I've had to modify do_undefinstr() and its callers to pass the ESR_ELx value. In all cases the ESR_ELx value had already been read and was available. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Mark Brown <broonie@kernel.org> Cc: Alexandru Elisei <alexandru.elisei@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20220913101732.3925290-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
18906ff9af |
arm64: die(): pass 'err' as long
Recently, we reworked a lot of code to consistentlt pass ESR_ELx as a 64-bit quantity. However, we missed that this can be passed into die() and __die() as the 'err' parameter where it is truncated to a 32-bit int. As notify_die() already takes 'err' as a long, this patch changes die() and __die() to also take 'err' as a long, ensuring that the full value of ESR_ELx is retained. At the same time, die() is updated to consistently log 'err' as a zero-padded 64-bit quantity. Subsequent patches will pass the ESR_ELx value to die() for a number of exceptions. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Alexandru Elisei <alexandru.elisei@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220913101732.3925290-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b502c87d2a |
arm64: report EL1 UNDEFs better
If an UNDEFINED exception is taken from EL1, and do_undefinstr() doesn't find any suitable undef_hook, it will call: BUG_ON(!user_mode(regs)) ... and the kernel will report a failure witin do_undefinstr() rather than reporting the original context that the UNDEFINED exception was taken from. The pt_regs and ESR value reported within the BUG() handler will be from within do_undefinstr() and the code dump will be for the BRK in BUG_ON(), which isn't sufficient to debug the cause of the original exception. This patch makes the reporting better by having do_undefinstr() call die() directly in this case to report the original context from which the UNDEFINED exception was taken. Prior to this patch, an undefined instruction is reported as: | kernel BUG at arch/arm64/kernel/traps.c:497! | Internal error: Oops - BUG: 0 [#1] PREEMPT SMP | Modules linked in: | CPU: 0 PID: 0 Comm: swapper Not tainted 5.19.0-rc3-00127-geff044f1b04e-dirty #3 | Hardware name: linux,dummy-virt (DT) | pstate: 000000c5 (nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : do_undefinstr+0x28c/0x2ac | lr : do_undefinstr+0x298/0x2ac | sp : ffff800009f63bc0 | x29: ffff800009f63bc0 x28: ffff800009f73c00 x27: ffff800009644a70 | x26: ffff8000096778a8 x25: 0000000000000040 x24: 0000000000000000 | x23: 00000000800000c5 x22: ffff800009894060 x21: ffff800009f63d90 | x20: 0000000000000000 x19: ffff800009f63c40 x18: 0000000000000006 | x17: 0000000000403000 x16: 00000000bfbfd000 x15: ffff800009f63830 | x14: ffffffffffffffff x13: 0000000000000000 x12: 0000000000000019 | x11: 0101010101010101 x10: 0000000000161b98 x9 : 0000000000000000 | x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 | x5 : ffff800009f761d0 x4 : 0000000000000000 x3 : ffff80000a2b80f8 | x2 : 0000000000000000 x1 : ffff800009f73c00 x0 : 00000000800000c5 | Call trace: | do_undefinstr+0x28c/0x2ac | el1_undef+0x2c/0x4c | el1h_64_sync_handler+0x84/0xd0 | el1h_64_sync+0x64/0x68 | setup_arch+0x550/0x598 | start_kernel+0x88/0x6ac | __primary_switched+0xb8/0xc0 | Code: 17ffff95 a9425bf5 17ffffb8 a9025bf5 (d4210000) With this patch applied, an undefined instruction is reported as: | Internal error: Oops - Undefined instruction: 0 [#1] PREEMPT SMP | Modules linked in: | CPU: 0 PID: 0 Comm: swapper Not tainted 5.19.0-rc3-00128-gf27cfcc80e52-dirty #5 | Hardware name: linux,dummy-virt (DT) | pstate: 800000c5 (Nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : setup_arch+0x550/0x598 | lr : setup_arch+0x50c/0x598 | sp : ffff800009f63d90 | x29: ffff800009f63d90 x28: 0000000081000200 x27: ffff800009644a70 | x26: ffff8000096778c8 x25: 0000000000000040 x24: 0000000000000000 | x23: 0000000000000100 x22: ffff800009f69a58 x21: ffff80000a2b80b8 | x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000006 | x17: 0000000000403000 x16: 00000000bfbfd000 x15: ffff800009f63830 | x14: ffffffffffffffff x13: 0000000000000000 x12: 0000000000000019 | x11: 0101010101010101 x10: 0000000000161b98 x9 : 0000000000000000 | x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 | x5 : 0000000000000008 x4 : 0000000000000010 x3 : 0000000000000000 | x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 | Call trace: | setup_arch+0x550/0x598 | start_kernel+0x88/0x6ac | __primary_switched+0xb8/0xc0 | Code: b4000080 90ffed80 912ac000 97db745f (00000000) Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Alexandru Elisei <alexandru.elisei@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Link: https://lore.kernel.org/r/20220913101732.3925290-2-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
2be9880dc8 |
kernel: exit: cleanup release_thread()
Only x86 has own release_thread(), introduce a new weak release_thread() function to clean empty definitions in other ARCHs. Link: https://lkml.kernel.org/r/20220819014406.32266-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Guo Ren <guoren@kernel.org> [csky] Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Brian Cain <bcain@quicinc.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Stafford Horne <shorne@gmail.com> [openrisc] Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Acked-by: Huacai Chen <chenhuacai@kernel.org> [LoongArch] Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Chris Zankel <chris@zankel.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Guo Ren <guoren@kernel.org> [csky] Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Jonas Bonn <jonas@southpole.se> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Xuerui Wang <kernel@xen0n.name> Cc: Yoshinori Sato <ysato@users.osdn.me> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
![]() |
3fe3fd5f30 |
arm64: mm: fix resume for 52-bit enabled builds
__cpu_setup() was changed to take the actual number of VA bits in x0,
however the resume path was not updated at the same time.
Load `vabits_actual` in the resume path, to ensure that the correct
number of VA bits is used.
This fixes booting v6.0-rc kernels on my Juno.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Fixes:
|
||
![]() |
877ace9eab |
arm64: spectre: increase parameters that can be used to turn off bhb mitigation individually
In our environment, it was found that the mitigation BHB has a great impact on the benchmark performance. For example, in the lmbench test, the "process fork && exit" test performance drops by 20%. So it is necessary to have the ability to turn off the mitigation individually through cmdline, thus avoiding having to compile the kernel by adjusting the config. Signed-off-by: Liu Song <liusong@linux.alibaba.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/1661514050-22263-1-git-send-email-liusong@linux.alibaba.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8eb858c44b |
arm64: run softirqs on the per-CPU IRQ stack
Currently arm64 supports per-CPU IRQ stack, but softirqs are still handled in the task context. Since any call to local_bh_enable() at any level in the task's call stack may trigger a softirq processing run, which could potentially cause a task stack overflow if the combined stack footprints exceed the stack's size, let's run these softirqs on the IRQ stack as well. Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220815124739.15948-1-zhengqi.arch@bytedance.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
4b5e694e25 |
arm64: stacktrace: track hyp stacks in unwinder's address space
Currently unwind_next_frame_record() has an optional callback to convert the address space of the FP. This is necessary for the NVHE unwinder, which tracks the stacks in the hyp VA space, but accesses the frame records in the kernel VA space. This is a bit unfortunate since it clutters unwind_next_frame_record(), which will get in the way of future rework. Instead, this patch changes the NVHE unwinder to track the stacks in the kernel's VA space and translate to FP prior to calling unwind_next_frame_record(). This removes the need for the translate_fp() callback, as all unwinders consistently track stacks in the native address space of the unwinder. At the same time, this patch consolidates the generation of the stack addresses behind the stackinfo_get_*() helpers. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220901130646.1316937-10-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8df137300d |
arm64: stacktrace: track all stack boundaries explicitly
Currently we call an on_accessible_stack() callback for each step of the unwinder, requiring redundant work to be performed in the core of the unwind loop (e.g. disabling preemption around accesses to per-cpu variables containing stack boundaries). To prevent unwind loops which go through a stack multiple times, we have to track the set of unwound stacks, requiring a stack_type enum which needs to cater for all the stacks of all possible callees. To prevent loops within a stack, we must track the prior FP values. This patch reworks the unwinder to minimize the work in the core of the unwinder, and to remove the need for the stack_type enum. The set of accessible stacks (and their boundaries) are determined at the start of the unwind, and the current stack is tracked during the unwind, with completed stacks removed from the set of accessible stacks. This makes the boundary checks more accurate (e.g. detecting overlapped frame records), and removes the need for separate tracking of the prior FP and visited stacks. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220901130646.1316937-9-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d1f684e46b |
arm64: stacktrace: rework stack boundary discovery
In subsequent patches we'll want to acquire the stack boundaries ahead-of-time, and we'll need to be able to acquire the relevant stack_info regardless of whether we have an object the happens to be on the stack. This patch replaces the on_XXX_stack() helpers with stackinfo_get_XXX() helpers, with the caller being responsible for the checking whether an object is on a relevant stack. For the moment this is moved into the on_accessible_stack() functions, making these slightly larger; subsequent patches will remove the on_accessible_stack() functions and simplify the logic. The on_irq_stack() and on_task_stack() helpers are kept as these are used by IRQ entry sequences and stackleak respectively. As they're only used as predicates, the stack_info pointer parameter is removed in both cases. As the on_accessible_stack() functions are always passed a non-NULL info pointer, these now update info unconditionally. When updating the type to STACK_TYPE_UNKNOWN, the low/high bounds are also modified, but as these will not be consumed this should have no adverse affect. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220901130646.1316937-7-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
75758d5114 |
arm64: stacktrace: move SDEI stack helpers to stacktrace code
For clarity and ease of maintenance, it would be helpful for all the stack helpers to be in the same place. Move the SDEI stack helpers into the stacktrace code where all the other stack helpers live. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Fuad Tabba <tabba@google.com> Cc: James Morse <james.morse@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220901130646.1316937-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b532ab5f23 |
arm64: stacktrace: rename unwind_next_common() -> unwind_next_frame_record()
The unwind_next_common() function unwinds a single frame record. There are other unwind steps (e.g. unwinding through trampolines) which are handled in the regular kernel unwinder, and in future there may be other common unwind helpers. Clarify the purpose of unwind_next_common() by renaming it to unwind_next_frame_record(). At the same time, add commentary, and delete the redundant comment at the top of asm/stacktrace/common.h. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220901130646.1316937-4-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
bc8d75212d |
arm64: stacktrace: simplify unwind_next_common()
Currently unwind_next_common() takes a pointer to a stack_info which is only ever used within unwind_next_common(). Make it a local variable and simplify callers. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Kalesh Singh <kaleshsingh@google.com> Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Fuad Tabba <tabba@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220901130646.1316937-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
4e3bca8f7c |
arm64: alternative: patch alternatives in the vDSO
Make it possible to use alternatives in the vDSO, so that better implementations can be used if possible. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20220830104833.34636-3-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
b3adc3844e |
arm64: module: move find_section to header
Move it to the header so that the implementation can be shared by the alternatives code. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Will Deacon <will@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20220830104833.34636-2-joey.gouly@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ed9075201c |
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 SME enumeration
In preparation for automatic generation of constants update the define for SME being implemented to the convention we are using, no functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-20-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
514e9b2aed |
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 BTI enumeration
In preparation for automatic generation of constants update the define for BTI being implemented to the convention we are using, no functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-19-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
cf7fdbbe83 |
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 fractional version fields
The naming for fractional versions fields in ID_AA64PFR1_EL1 does not align with that in the architecture, lacking underscores and using upper case where the architecture uses lower case. In preparation for automatic generation of defines bring the code in sync with the architecture, no functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-18-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
2e75b393ff |
arm64/sysreg: Standardise naming for MTE feature enumeration
In preparation for conversion to automatic generation refresh the names given to the items in the MTE feture enumeration to reflect our standard pattern for naming, corresponding to the architecture feature names they reflect. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-17-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
53275da8dc |
arm64/sysreg: Standardise naming for SSBS feature enumeration
In preparation for conversion to automatic generation refresh the names given to the items in the SSBS feature enumeration to reflect our standard pattern for naming, corresponding to the architecture feature names they reflect. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-16-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
5620b4b037 |
arm64/sysreg: Standardise naming for ID_AA64PFR0_EL1.AdvSIMD constants
The architecture refers to the register field identifying advanced SIMD as AdvSIMD but the kernel refers to it as ASIMD. Use the architecture's naming. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-15-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
4f8456c319 |
arm64/sysreg: Standardise naming for ID_AA64PFR0_EL1 constants
We generally refer to the baseline feature implemented as _IMP so in preparation for automatic generation of register defines update those for ID_AA64PFR0_EL1 to reflect this. In the case of ASIMD we don't actually use the define so just remove it. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-14-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ca951862ad |
arm64/sysreg: Standardise naming for ID_AA64MMFR2_EL1.CnP
The kernel refers to ID_AA64MMFR2_EL1.CnP as CNP. In preparation for automatic generation of defines for the system registers bring the naming used by the kernel in sync with that of DDI0487H.a. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-13-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
8f40baded4 |
arm64/sysreg: Standardise naming for ID_AA64MMFR2_EL1.VARange
The kernel refers to ID_AA64MMFR2_EL1.VARange as LVA. In preparation for automatic generation of defines for the system registers bring the naming used by the kernel in sync with that of DDI0487H.a. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-12-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
6fcd019359 |
arm64/sysreg: Standardise naming for ID_AA64MMFR1_EL1 fields
In preparation for converting the ID_AA64MMFR1_EL1 system register defines to automatic generation, rename them to follow the conventions used by other automatically generated registers: * Add _EL1 in the register name. * Rename fields to match the names in the ARM ARM: * LOR -> LO * HPD -> HPDS * VHE -> VH * HADBS -> HAFDBS * SPECSEI -> SpecSEI * VMIDBITS -> VMIDBits There should be no functional change as a result of this patch. Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-11-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
07d7d848b9 |
arm64/sysreg: Standardise naming of ID_AA64MMFR0_EL1.ASIDBits
For some reason we refer to ID_AA64MMFR0_EL1.ASIDBits as ASID. Add BITS into the name, bringing the naming into sync with DDI0487H.a. Due to the large amount of MixedCase in this register which isn't really consistent with either the kernel style or the majority of the architecture the use of upper case is preserved. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-10-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
ed7c138d6f |
arm64/sysreg: Standardise naming of ID_AA64MMFR0_EL1.BigEnd
For some reason we refer to ID_AA64MMFR0_EL1.BigEnd as BIGENDEL. Remove the EL from the name, bringing the naming into sync with DDI0487H.a. Due to the large amount of MixedCase in this register which isn't really consistent with either the kernel style or the majority of the architecture the use of upper case is preserved. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-9-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
6ca2b9ca45 |
arm64/sysreg: Add _EL1 into ID_AA64PFR1_EL1 constant names
Our standard is to include the _EL1 in the constant names for registers but we did not do that for ID_AA64PFR1_EL1, update to do so in preparation for conversion to automatic generation. No functional change. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-8-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
55adc08d7e |
arm64/sysreg: Add _EL1 into ID_AA64PFR0_EL1 definition names
Normally we include the full register name in the defines for fields within registers but this has not been followed for ID registers. In preparation for automatic generation of defines add the _EL1s into the defines for ID_AA64PFR0_EL1 to follow the convention. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-7-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
a957c6be2b |
arm64/sysreg: Add _EL1 into ID_AA64MMFR2_EL1 definition names
Normally we include the full register name in the defines for fields within registers but this has not been followed for ID registers. In preparation for automatic generation of defines add the _EL1s into the defines for ID_AA64MMFR2_EL1 to follow the convention. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-6-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
2d987e64e8 |
arm64/sysreg: Add _EL1 into ID_AA64MMFR0_EL1 definition names
Normally we include the full register name in the defines for fields within registers but this has not been followed for ID registers. In preparation for automatic generation of defines add the _EL1s into the defines for ID_AA64MMFR0_EL1 to follow the convention. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-5-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
d105d6920e |
arm64/ptrace: Don't clear calling process' TIF_SME on OOM
If allocating memory for the target SVE state in za_set() fails we clear TIF_SME for the ptracing task which is obviously not correct. If we are here we know that the target task already had neither TIF_SVE nor TIF_SME set since we only need to allocate if either the target had not used either SVE or SME and had no need to allocate state before or we just changed the vector length with vec_set_vector_length() which clears TIF_ for us on allocation failure so just remove the clear entirely. Reported-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20220902132802.39682-1-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
81ff692ad9 |
arm64/sysreg: Add hwcap for SVE EBF16
SVE has a separate identification register indicating support for BFloat16 operations. Add a hwcap identifying support for EBF16 in this register, mirroring what we did for the non-SVE case. While there is currently an architectural requirement for BF16 support to be the same in SVE and non-SVE contexts there are separate identification registers this separate hwcap helps avoid issues if that requirement were to be relaxed in the future, we have already chosen to have a separate capability for base BF16 support. Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20220829154815.832347-1-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
3fc24ef32d |
arm64: compat: Implement misalignment fixups for multiword loads
The 32-bit ARM kernel implements fixups on behalf of user space when using LDM/STM or LDRD/STRD instructions on addresses that are not 32-bit aligned. This is not something that is supported by the architecture, but was done anyway to increase compatibility with user space software, which mostly targeted x86 at the time and did not care about aligned accesses. This feature is one of the remaining impediments to being able to switch to 64-bit kernels on 64-bit capable hardware running 32-bit user space, so let's implement it for the arm64 compat layer as well. Note that the intent is to implement the exact same handling of misaligned multi-word loads and stores as the 32-bit kernel does, including what appears to be missing support for user space programs that rely on SETEND to switch to a different byte order and back. Also, like the 32-bit ARM version, we rely on the faulting address reported by the CPU to infer the memory address, instead of decoding the instruction fully to obtain this information. This implementation is taken from the 32-bit ARM tree, with all pieces removed that deal with instructions other than LDRD/STRD and LDM/STM, or that deal with alignment exceptions taken in kernel mode. Cc: debian-arm@lists.debian.org Cc: Vagrant Cascadian <vagrant@debian.org> Cc: Riku Voipio <riku.voipio@iki.fi> Cc: Steve McIntyre <steve@einval.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Link: https://lore.kernel.org/r/20220701135322.3025321-1-ardb@kernel.org [catalin.marinas@arm.com: change the option to 'default n'] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> |
||
![]() |
e62b9e6f25 |
arm64: head: Ignore bogus KASLR displacement on non-relocatable kernels
Even non-KASLR kernels can be built as relocatable, to work around broken bootloaders that violate the rules regarding physical placement of the kernel image - in this case, the physical offset modulo 2 MiB is used as the KASLR offset, and all absolute symbol references are fixed up in the usual way. This workaround is enabled by default. CONFIG_RELOCATABLE can also be disabled entirely, in which case the relocation code and the code that captures the offset are omitted from the build. However, since commit |
||
![]() |
4831be702b |
arm64/kexec: Fix missing extra range for crashkres_low.
Like crashk_res, Calling crash_exclude_mem_range function with
crashk_low_res area would need extra crash_mem range too.
Add one more extra cmem slot in case of crashk_low_res is used.
Signed-off-by: Levi Yun <ppbuk5246@gmail.com>
Fixes:
|
||
![]() |
714f3cbd70 |
arm64/sme: Don't flush SVE register state when handling SME traps
Currently as part of handling a SME access trap we flush the SVE register
state. This is not needed and would corrupt register state if the task has
access to the SVE registers already. For non-streaming mode accesses the
required flushing will be done in the SVE access trap. For streaming
mode SVE register accesses the architecture guarantees that the register
state will be flushed when streaming mode is entered or exited so there is
no need for us to do so. Simply remove the register initialisation.
Fixes:
|
||
![]() |
826a4fdd2a |
arm64/sme: Don't flush SVE register state when allocating SME storage
Currently when taking a SME access trap we allocate storage for the SVE
register state in order to be able to handle storage of streaming mode SVE.
Due to the original usage in a purely SVE context the SVE register state
allocation this also flushes the register state for SVE if storage was
already allocated but in the SME context this is not desirable. For a SME
access trap to be taken the task must not be in streaming mode so either
there already is SVE register state present for regular SVE mode which would
be corrupted or the task does not have TIF_SVE and the flush is redundant.
Fix this by adding a flag to sve_alloc() indicating if we are in a SVE
context and need to flush the state. Freshly allocated storage is always
zeroed either way.
Fixes:
|
||
![]() |
ea64baacbc |
arm64/signal: Flush FPSIMD register state when disabling streaming mode
When handling a signal delivered to a context with streaming mode enabled
we will disable streaming mode for the signal handler, when doing so we
should also flush the saved FPSIMD register state like exiting streaming
mode in the hardware would do so that if that state is reloaded we get the
same behaviour. Without this we will reload whatever the last FPSIMD state
that was saved for the task was.
Fixes:
|
||
![]() |
7ddcaf78e9 |
arm64/signal: Raise limit on stack frames
The signal code has a limit of 64K on the size of a stack frame that it will generate, if this limit is exceeded then a process will be killed if it receives a signal. Unfortunately with the advent of SME this limit is too small - the maximum possible size of the ZA register alone is 64K. This is not an issue for practical systems at present but is easily seen using virtual platforms. Raise the limit to 256K, this is substantially more than could be used by any current architecture extension. Signed-off-by: Mark Brown <broonie@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20220817182324.638214-2-broonie@kernel.org Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
e75d18cecb |
arm64: cacheinfo: Fix incorrect assignment of signed error value to unsigned fw_level
Though acpi_find_last_cache_level() always returned signed value and the
document states it will return any errors caused by lack of a PPTT table,
it never returned negative values before.
Commit
|
||
![]() |
e89d120c4b |
arm64: errata: add detection for AMEVCNTR01 incrementing incorrectly
The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate as the system counter. On affected Cortex-A510 cores, AMEVCNTR01 increments incorrectly giving a significantly higher output value. This results in inaccurate task scheduler utilization tracking and incorrect feedback on CPU frequency. Work around this problem by returning 0 when reading the affected counter in key locations that results in disabling all users of this counter from using it either for frequency invariance or as FFH reference counter. This effect is the same to firmware disabling affected counters. Details on how the two features are affected by this erratum: - AMU counters will not be used for frequency invariance for affected CPUs and CPUs in the same cpufreq policy. AMUs can still be used for frequency invariance for unaffected CPUs in the system. Although unlikely, if no alternative method can be found to support frequency invariance for affected CPUs (cpufreq based or solution based on platform counters) frequency invariance will be disabled. Please check the chapter on frequency invariance at Documentation/scheduler/sched-capacity.rst for details of its effect. - Given that FFH can be used to fetch either the core or constant counter values, restrictions are lifted regarding any of these counters returning a valid (!0) value. Therefore FFH is considered supported if there is a least one CPU that support AMUs, independent of any counters being disabled or affected by this erratum. Clarifying comments are now added to the cpc_ffh_supported(), cpu_read_constcnt() and cpu_read_corecnt() functions. The above is achieved through adding a new erratum: ARM64_ERRATUM_2457168. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20220819103050.24211-1-ionela.voinescu@arm.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
729a916599 |
arm64: Fix comment typo
Replace wrong 'FIQ EL1h' comment with 'FIQ EL1t'. Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com> Link: https://lore.kernel.org/r/20220721030531.21234-1-Kuan-Ying.Lee@mediatek.com Signed-off-by: Will Deacon <will@kernel.org> |
||
![]() |
ff59000922 |
arm64: adjust KASLR relocation after ARCH_RANDOM removal
Commit |
||
![]() |
5e1e087457 |
arm64: Fix match_list for erratum 1286807 on Arm Cortex-A76
Since commit |
||
![]() |
456797da79 |
arm64: topology: move store_cpu_topology() to shared code
arm64's method of defining a default cpu topology requires only minimal changes to apply to RISC-V also. The current arm64 implementation exits early in a uniprocessor configuration by reading MPIDR & claiming that uniprocessor can rely on the default values. This is appears to be a hangover from prior to '3102bc0e6ac7 ("arm64: topology: Stop using MPIDR for topology information")', because the current code just assigns default values for multiprocessor systems. With the MPIDR references removed, store_cpu_topolgy() can be moved to the common arch_topology code. Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Signed-off-by: Conor Dooley <conor.dooley@microchip.com> |
||
![]() |
eb5699ba31 |
Updates to various subsystems which I help look after. lib, ocfs2,
fatfs, autofs, squashfs, procfs, etc. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYu9BeQAKCRDdBJ7gKXxA jp1DAP4mjCSvAwYzXklrIt+Knv3CEY5oVVdS+pWOAOGiJpldTAD9E5/0NV+VmlD9 kwS/13j38guulSlXRzDLmitbg81zAAI= =Zfum -----END PGP SIGNATURE----- Merge tag 'mm-nonmm-stable-2022-08-06-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc updates from Andrew Morton: "Updates to various subsystems which I help look after. lib, ocfs2, fatfs, autofs, squashfs, procfs, etc. A relatively small amount of material this time" * tag 'mm-nonmm-stable-2022-08-06-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (72 commits) scripts/gdb: ensure the absolute path is generated on initial source MAINTAINERS: kunit: add David Gow as a maintainer of KUnit mailmap: add linux.dev alias for Brendan Higgins mailmap: update Kirill's email profile: setup_profiling_timer() is moslty not implemented ocfs2: fix a typo in a comment ocfs2: use the bitmap API to simplify code ocfs2: remove some useless functions lib/mpi: fix typo 'the the' in comment proc: add some (hopefully) insightful comments bdi: remove enum wb_congested_state kernel/hung_task: fix address space of proc_dohung_task_timeout_secs lib/lzo/lzo1x_compress.c: replace ternary operator with min() and min_t() squashfs: support reading fragments in readahead call squashfs: implement readahead squashfs: always build "file direct" version of page actor Revert "squashfs: provide backing_dev_info in order to disable read-ahead" fs/ocfs2: Fix spelling typo in comment ia64: old_rr4 added under CONFIG_HUGETLB_PAGE proc: fix test for "vsyscall=xonly" boot option ... |
||
![]() |
7c5c3a6177 |
ARM:
* Unwinder implementations for both nVHE modes (classic and protected), complete with an overflow stack * Rework of the sysreg access from userspace, with a complete rewrite of the vgic-v3 view to allign with the rest of the infrastructure * Disagregation of the vcpu flags in separate sets to better track their use model. * A fix for the GICv2-on-v3 selftest * A small set of cosmetic fixes RISC-V: * Track ISA extensions used by Guest using bitmap * Added system instruction emulation framework * Added CSR emulation framework * Added gfp_custom flag in struct kvm_mmu_memory_cache * Added G-stage ioremap() and iounmap() functions * Added support for Svpbmt inside Guest s390: * add an interface to provide a hypervisor dump for secure guests * improve selftests to use TAP interface * enable interpretive execution of zPCI instructions (for PCI passthrough) * First part of deferred teardown * CPU Topology * PV attestation * Minor fixes x86: * Permit guests to ignore single-bit ECC errors * Intel IPI virtualization * Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS * PEBS virtualization * Simplify PMU emulation by just using PERF_TYPE_RAW events * More accurate event reinjection on SVM (avoid retrying instructions) * Allow getting/setting the state of the speaker port data bit * Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent * "Notify" VM exit (detect microarchitectural hangs) for Intel * Use try_cmpxchg64 instead of cmpxchg64 * Ignore benign host accesses to PMU MSRs when PMU is disabled * Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior * Allow NX huge page mitigation to be disabled on a per-vm basis * Port eager page splitting to shadow MMU as well * Enable CMCI capability by default and handle injected UCNA errors * Expose pid of vcpu threads in debugfs * x2AVIC support for AMD * cleanup PIO emulation * Fixes for LLDT/LTR emulation * Don't require refcounted "struct page" to create huge SPTEs * Miscellaneous cleanups: ** MCE MSR emulation ** Use separate namespaces for guest PTEs and shadow PTEs bitmasks ** PIO emulation ** Reorganize rmap API, mostly around rmap destruction ** Do not workaround very old KVM bugs for L0 that runs with nesting enabled ** new selftests API for CPUID Generic: * Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache * new selftests API using struct kvm_vcpu instead of a (vm, id) tuple -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmLnyo4UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroMtQQf/XjVWiRcWLPR9dqzRM/vvRXpiG+UL jU93R7m6ma99aqTtrxV/AE+kHgamBlma3Cwo+AcWk9uCVNbIhFjv2YKg6HptKU0e oJT3zRYp+XIjEo7Kfw+TwroZbTlG6gN83l1oBLFMqiFmHsMLnXSI2mm8MXyi3dNB vR2uIcTAl58KIprqNNsYJ2dNn74ogOMiXYx9XzoA9/5Xb6c0h4rreHJa5t+0s9RO Gz7Io3PxumgsbJngjyL1Ve5oxhlIAcZA8DU0PQmjxo3eS+k6BcmavGFd45gNL5zg iLpCh4k86spmzh8CWkAAwWPQE4dZknK6jTctJc0OFVad3Z7+X7n0E8TFrA== =PM8o -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "Quite a large pull request due to a selftest API overhaul and some patches that had come in too late for 5.19. ARM: - Unwinder implementations for both nVHE modes (classic and protected), complete with an overflow stack - Rework of the sysreg access from userspace, with a complete rewrite of the vgic-v3 view to allign with the rest of the infrastructure - Disagregation of the vcpu flags in separate sets to better track their use model. - A fix for the GICv2-on-v3 selftest - A small set of cosmetic fixes RISC-V: - Track ISA extensions used by Guest using bitmap - Added system instruction emulation framework - Added CSR emulation framework - Added gfp_custom flag in struct kvm_mmu_memory_cache - Added G-stage ioremap() and iounmap() functions - Added support for Svpbmt inside Guest s390: - add an interface to provide a hypervisor dump for secure guests - improve selftests to use TAP interface - enable interpretive execution of zPCI instructions (for PCI passthrough) - First part of deferred teardown - CPU Topology - PV attestation - Minor fixes x86: - Permit guests to ignore single-bit ECC errors - Intel IPI virtualization - Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS - PEBS virtualization - Simplify PMU emulation by just using PERF_TYPE_RAW events - More accurate event reinjection on SVM (avoid retrying instructions) - Allow getting/setting the state of the speaker port data bit - Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent - "Notify" VM exit (detect microarchitectural hangs) for Intel - Use try_cmpxchg64 instead of cmpxchg64 - Ignore benign host accesses to PMU MSRs when PMU is disabled - Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior - Allow NX huge page mitigation to be disabled on a per-vm basis - Port eager page splitting to shadow MMU as well - Enable CMCI capability by default and handle injected UCNA errors - Expose pid of vcpu threads in debugfs - x2AVIC support for AMD - cleanup PIO emulation - Fixes for LLDT/LTR emulation - Don't require refcounted "struct page" to create huge SPTEs - Miscellaneous cleanups: - MCE MSR emulation - Use separate namespaces for guest PTEs and shadow PTEs bitmasks - PIO emulation - Reorganize rmap API, mostly around rmap destruction - Do not workaround very old KVM bugs for L0 that runs with nesting enabled - new selftests API for CPUID Generic: - Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache - new selftests API using struct kvm_vcpu instead of a (vm, id) tuple" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits) selftests: kvm: set rax before vmcall selftests: KVM: Add exponent check for boolean stats selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test selftests: KVM: Check stat name before other fields KVM: x86/mmu: remove unused variable RISC-V: KVM: Add support for Svpbmt inside Guest/VM RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap() RISC-V: KVM: Add G-stage ioremap() and iounmap() functions KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache RISC-V: KVM: Add extensible CSR emulation framework RISC-V: KVM: Add extensible system instruction emulation framework RISC-V: KVM: Factor-out instruction emulation into separate sources RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function RISC-V: KVM: Fix variable spelling mistake RISC-V: KVM: Improve ISA extension by using a bitmap KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs() KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT KVM: x86: Do not block APIC write for non ICR registers ... |
||
![]() |
cfeafd9466 |
Driver core / kernfs changes for 6.0-rc1
Here is the set of driver core and kernfs changes for 6.0-rc1. "biggest" thing in here is some scalability improvements for kernfs for large systems. Other than that, included in here are: - arch topology and cache info changes that have been reviewed and discussed a lot. - potential error path cleanup fixes - deferred driver probe cleanups - firmware loader cleanups and tweaks - documentation updates - other small things All of these have been in the linux-next tree for a while with no reported problems. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYuqCnw8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ym/JgCcCnaycJY00ZPRQm3LQCyzfJ0HgqoAn2qxGV+K NKycLeXZSnuvIA87dycE =/4Jk -----END PGP SIGNATURE----- Merge tag 'driver-core-6.0-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core / kernfs updates from Greg KH: "Here is the set of driver core and kernfs changes for 6.0-rc1. The "biggest" thing in here is some scalability improvements for kernfs for large systems. Other than that, included in here are: - arch topology and cache info changes that have been reviewed and discussed a lot. - potential error path cleanup fixes - deferred driver probe cleanups - firmware loader cleanups and tweaks - documentation updates - other small things All of these have been in the linux-next tree for a while with no reported problems" * tag 'driver-core-6.0-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (63 commits) docs: embargoed-hardware-issues: fix invalid AMD contact email firmware_loader: Replace kmap() with kmap_local_page() sysfs docs: ABI: Fix typo in comment kobject: fix Kconfig.debug "its" grammar kernfs: Fix typo 'the the' in comment docs: driver-api: firmware: add driver firmware guidelines. (v3) arch_topology: Fix cache attributes detection in the CPU hotplug path ACPI: PPTT: Leave the table mapped for the runtime usage cacheinfo: Use atomic allocation for percpu cache attributes drivers/base: fix userspace break from using bin_attributes for cpumap and cpulist MAINTAINERS: Change mentions of mpm to olivia docs: ABI: sysfs-devices-soc: Update Lee Jones' email address docs: ABI: sysfs-class-pwm: Update Lee Jones' email address Documentation/process: Add embargoed HW contact for LLVM Revert "kernfs: Change kernfs_notify_list to llist." ACPI: Remove the unused find_acpi_cpu_cache_topology() arch_topology: Warn that topology for nested clusters is not supported arch_topology: Add support for parsing sockets in /cpu-map arch_topology: Set cluster identifier in each core/thread from /cpu-map arch_topology: Limit span of cpu_clustergroup_mask() ... |