Add a new HWCAP to detect the Increased precision of Reciprocal Estimate
and Reciprocal Square Root Estimate feature (FEAT_RPRES), introduced in Armv8.7.
Also expose this to userspace in the ID_AA64ISAR2_EL1 feature register.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211210165432.8106-4-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This is a new ID register, introduced in 8.7.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Reiji Watanabe <reijiw@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211210165432.8106-3-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a new HWCAP to detect the Alternate Floating-point Behaviour
feature (FEAT_AFP), introduced in Armv8.7.
Also expose this to userspace in the ID_AA64MMFR1_EL1 feature register.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211210165432.8106-2-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since userspace can make use of the CNTVSS_EL0 instruction, expose
it via a HWCAP.
Suggested-by: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211017124225.3018098-18-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
In preparation for late initialisation of the "sanitised" AArch32 register
state, move the AArch32 registers out of 'struct cpuinfo' and into their
own struct definition.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210608180313.11502-2-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The GMID_EL1.BS field determines the number of tags accessed by the
LDGM/STGM instructions (EL1 and up), used by the kernel for copying or
zeroing page tags.
Taint the kernel if GMID_EL1.BS differs between CPUs but only of
CONFIG_ARM64_MTE is enabled.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Suzuki K Poulose <Suzuki.Poulose@arm.com>
Link: https://lore.kernel.org/r/20210526193621.21559-3-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The architecture has been updated and the CTR_EL0, CNTFRQ_EL0,
DCZID_EL0, MIDR_EL1, REVIDR_EL1 registers are all 64-bit, even if most
of them have a RES0 top 32-bit.
Change their type to u64 in struct cpuinfo_arm64.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <Suzuki.Poulose@arm.com>
Link: https://lore.kernel.org/r/20210526193621.21559-2-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The icache_policy_str[] definition causes a warning when extra
warning flags are enabled:
arch/arm64/kernel/cpuinfo.c:38:26: warning: initialized field overwritten [-Woverride-init]
38 | [ICACHE_POLICY_VIPT] = "VIPT",
| ^~~~~~
arch/arm64/kernel/cpuinfo.c:38:26: note: (near initialization for 'icache_policy_str[2]')
arch/arm64/kernel/cpuinfo.c:39:26: warning: initialized field overwritten [-Woverride-init]
39 | [ICACHE_POLICY_PIPT] = "PIPT",
| ^~~~~~
arch/arm64/kernel/cpuinfo.c:39:26: note: (near initialization for 'icache_policy_str[3]')
arch/arm64/kernel/cpuinfo.c:40:27: warning: initialized field overwritten [-Woverride-init]
40 | [ICACHE_POLICY_VPIPT] = "VPIPT",
| ^~~~~~~
arch/arm64/kernel/cpuinfo.c:40:27: note: (near initialization for 'icache_policy_str[0]')
There is no real need for the default initializer here, as printing a
NULL string is harmless. Rewrite the logic to have an explicit
reserved value for the only one that uses the default value.
This partially reverts the commit that removed ICACHE_POLICY_AIVIVT.
Fixes: 155433cb36 ("arm64: cache: Remove support for ASID-tagged VIVT I-caches")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20201026193807.3816388-1-arnd@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Add userspace support for the Memory Tagging Extension introduced by
Armv8.5.
(Catalin Marinas and others)
* for-next/mte: (30 commits)
arm64: mte: Fix typo in memory tagging ABI documentation
arm64: mte: Add Memory Tagging Extension documentation
arm64: mte: Kconfig entry
arm64: mte: Save tags when hibernating
arm64: mte: Enable swap of tagged pages
mm: Add arch hooks for saving/restoring tags
fs: Handle intra-page faults in copy_mount_options()
arm64: mte: ptrace: Add NT_ARM_TAGGED_ADDR_CTRL regset
arm64: mte: ptrace: Add PTRACE_{PEEK,POKE}MTETAGS support
arm64: mte: Allow {set,get}_tagged_addr_ctrl() on non-current tasks
arm64: mte: Restore the GCR_EL1 register after a suspend
arm64: mte: Allow user control of the generated random tags via prctl()
arm64: mte: Allow user control of the tag check mode via prctl()
mm: Allow arm64 mmap(PROT_MTE) on RAM-based files
arm64: mte: Validate the PROT_MTE request via arch_validate_flags()
mm: Introduce arch_validate_flags()
arm64: mte: Add PROT_MTE support to mmap() and mprotect()
mm: Introduce arch_calc_vm_flag_bits()
arm64: mte: Tags-aware aware memcmp_pages() implementation
arm64: Avoid unnecessary clear_user_page() indirection
...
HWCAP name arrays (hwcap_str, compat_hwcap_str, compat_hwcap2_str) that are
scanned for /proc/cpuinfo are detached from their bit definitions making it
vulnerable and difficult to correlate. It is also bit problematic because
during /proc/cpuinfo dump these arrays get traversed sequentially assuming
they reflect and match actual HWCAP bit sequence, to test various features
for a given CPU. This redefines name arrays per their HWCAP bit definitions
. It also warns after detecting any feature which is not expected on arm64.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Dave Martin <Dave.Martin@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1599630535-29337-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Add the cpufeature and hwcap entries to detect the presence of MTE. Any
secondary CPU not supporting the feature, if detected on the boot CPU,
will be parked.
Add the minimum SCTLR_EL1 and HCR_EL2 bits for enabling MTE. The Normal
Tagged memory type is configured in MAIR_EL1 before the MMU is enabled
in order to avoid disrupting other CPUs in the CnP domain.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Suzuki K Poulose <Suzuki.Poulose@arm.com>
Fallthrough annotations for consecutive default and case labels
are not necessary.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
While MTE is not supported in the upstream kernel yet, add a comment
that HWCAP2_MTE as (1 << 18) is reserved. Glibc makes use of it for the
resolving (ifunc) of the MTE-safe string routines.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Support for Branch Target Identification (BTI) in user and kernel
(Mark Brown and others)
* for-next/bti: (39 commits)
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
arm64: bti: Fix support for userspace only BTI
arm64: kconfig: Update and comment GCC version check for kernel BTI
arm64: vdso: Map the vDSO text with guarded pages when built for BTI
arm64: vdso: Force the vDSO to be linked as BTI when built for BTI
arm64: vdso: Annotate for BTI
arm64: asm: Provide a mechanism for generating ELF note for BTI
arm64: bti: Provide Kconfig for kernel mode BTI
arm64: mm: Mark executable text as guarded pages
arm64: bpf: Annotate JITed code for BTI
arm64: Set GP bit in kernel page tables to enable BTI for the kernel
arm64: asm: Override SYM_FUNC_START when building the kernel with BTI
arm64: bti: Support building kernel C code using BTI
arm64: Document why we enable PAC support for leaf functions
arm64: insn: Report PAC and BTI instructions as skippable
arm64: insn: Don't assume unrecognized HINTs are skippable
arm64: insn: Provide a better name for aarch64_insn_is_nop()
arm64: insn: Add constants for new HINT instruction decode
arm64: Disable old style assembly annotations
...
ACPI and IORT updates
(Lorenzo Pieralisi)
* for-next/acpi:
ACPI/IORT: Remove the unused __get_pci_rid()
ACPI/IORT: Fix PMCG node single ID mapping handling
ACPI: IORT: Add comments for not calling acpi_put_table()
ACPI: GTDT: Put GTDT table after parsing
ACPI: IORT: Add extra message "applying workaround" for off-by-1 issue
ACPI/IORT: work around num_ids ambiguity
Revert "ACPI/IORT: Fix 'Number of IDs' handling in iort_id_map()"
ACPI/IORT: take _DMA methods into account for named components
BPF JIT optimisations for immediate value generation
(Luke Nelson)
* for-next/bpf:
bpf, arm64: Optimize ADD,SUB,JMP BPF_K using arm64 add/sub immediates
bpf, arm64: Optimize AND,OR,XOR,JSET BPF_K using arm64 logical immediates
arm64: insn: Fix two bugs in encoding 32-bit logical immediates
Addition of new CPU ID register fields and removal of some benign sanity checks
(Anshuman Khandual and others)
* for-next/cpufeature: (27 commits)
KVM: arm64: Check advertised Stage-2 page size capability
arm64/cpufeature: Add get_arm64_ftr_reg_nowarn()
arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register
arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register
arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register
arm64/cpufeature: Add remaining feature bits in ID_PFR0 register
arm64/cpufeature: Introduce ID_MMFR5 CPU register
arm64/cpufeature: Introduce ID_DFR1 CPU register
arm64/cpufeature: Introduce ID_PFR2 CPU register
arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0
arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register
arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register
arm64/cpufeature: Drop open encodings while extracting parange
arm64/cpufeature: Validate hypervisor capabilities during CPU hotplug
arm64: cpufeature: Group indexed system register definitions by name
arm64: cpufeature: Extend comment to describe absence of field info
arm64: drop duplicate definitions of ID_AA64MMFR0_TGRAN constants
arm64: cpufeature: Add an overview comment for the cpufeature framework
...
Minor documentation tweaks for silicon errata and booting requirements
(Rob Herring and Will Deacon)
* for-next/docs:
arm64: silicon-errata.rst: Sort the Cortex-A55 entries
arm64: docs: Mandate that the I-cache doesn't hold stale kernel text
Minor Kconfig cleanups
(Geert Uytterhoeven)
* for-next/kconfig:
arm64: cpufeature: Add "or" to mitigations for multiple errata
arm64: Sort vendor-specific errata
Miscellaneous updates
(Ard Biesheuvel and others)
* for-next/misc:
arm64: mm: Add asid_gen_match() helper
arm64: stacktrace: Factor out some common code into on_stack()
arm64: Call debug_traps_init() from trap_init() to help early kgdb
arm64: cacheflush: Fix KGDB trap detection
arm64/cpuinfo: Move device_initcall() near cpuinfo_regs_init()
arm64: kexec_file: print appropriate variable
arm: mm: use __pfn_to_section() to get mem_section
arm64: Reorder the macro arguments in the copy routines
efi/libstub/arm64: align PE/COFF sections to segment alignment
KVM: arm64: Drop PTE_S2_MEMATTR_MASK
arm64/kernel: Fix range on invalidating dcache for boot page tables
arm64: set TEXT_OFFSET to 0x0 in preparation for removing it entirely
arm64: lib: Consistently enable crc32 extension
arm64/mm: Use phys_to_page() to access pgtable memory
arm64: smp: Make cpus_stuck_in_kernel static
arm64: entry: remove unneeded semicolon in el1_sync_handler()
arm64/kernel: vmlinux.lds: drop redundant discard/keep macros
arm64: drop GZFLAGS definition and export
arm64: kexec_file: Avoid temp buffer for RNG seed
arm64: rename stext to primary_entry
Perf PMU driver updates
(Tang Bin and others)
* for-next/perf:
pmu/smmuv3: Clear IRQ affinity hint on device removal
drivers/perf: hisi: Permit modular builds of HiSilicon uncore drivers
drivers/perf: hisi: Fix typo in events attribute array
drivers/perf: arm_spe_pmu: Avoid duplicate printouts
drivers/perf: arm_dsu_pmu: Avoid duplicate printouts
Pointer authentication updates and support for vmcoreinfo
(Amit Daniel Kachhap and Mark Rutland)
* for-next/ptr-auth:
Documentation/vmcoreinfo: Add documentation for 'KERNELPACMASK'
arm64/crash_core: Export KERNELPACMASK in vmcoreinfo
arm64: simplify ptrauth initialization
arm64: remove ptrauth_keys_install_kernel sync arg
SDEI cleanup and non-critical fixes
(James Morse and others)
* for-next/sdei:
firmware: arm_sdei: Document the motivation behind these set_fs() calls
firmware: arm_sdei: remove unused interfaces
firmware: arm_sdei: Put the SDEI table after using it
firmware: arm_sdei: Drop check for /firmware/ node and always register driver
SMCCC updates and refactoring
(Sudeep Holla)
* for-next/smccc:
firmware: smccc: Fix missing prototype warning for arm_smccc_version_init
firmware: smccc: Add function to fetch SMCCC version
firmware: smccc: Refactor SMCCC specific bits into separate file
firmware: smccc: Drop smccc_version enum and use ARM_SMCCC_VERSION_1_x instead
firmware: smccc: Add the definition for SMCCCv1.2 version/error codes
firmware: smccc: Update link to latest SMCCC specification
firmware: smccc: Add HAVE_ARM_SMCCC_DISCOVERY to identify SMCCC v1.1 and above
vDSO cleanup and non-critical fixes
(Mark Rutland and Vincenzo Frascino)
* for-next/vdso:
arm64: vdso: Add --eh-frame-hdr to ldflags
arm64: vdso: use consistent 'map' nomenclature
arm64: vdso: use consistent 'abi' nomenclature
arm64: vdso: simplify arch_vdso_type ifdeffery
arm64: vdso: remove aarch32_vdso_pages[]
arm64: vdso: Add '-Bsymbolic' to ldflags
ID_MMFR4_EL1 has been missing in the CPU context (i.e cpuinfo_arm64). This
just adds the register along with other required changes.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/1589881254-10082-18-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
This adds basic building blocks required for ID_MMFR5 CPU register which
provides information about the implemented memory model and memory
management support in AArch32 state. This is added per ARM DDI 0487F.a
specification.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/1589881254-10082-7-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
This adds basic building blocks required for ID_DFR1 CPU register which
provides top level information about the debug system in AArch32 state.
We hide the register from KVM guests, as we don't emulate the 'MTPMU'
feature.
This is added per ARM DDI 0487F.a specification.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Will Deacon <will@kernel.org>
Reviewed-by : Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/1589881254-10082-6-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
This adds basic building blocks required for ID_PFR2 CPU register which
provides information about the AArch32 programmers model which must be
interpreted along with ID_PFR0 and ID_PFR1 CPU registers. This is added
per ARM DDI 0487F.a specification.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/1589881254-10082-5-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
This moves device_initcall() near cpuinfo_regs_init() making the calling
sequence clear. Besides it is a standard practice to have device_initcall()
(any __initcall for that matter) just after the function it actually calls.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/1588595377-4503-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
This patch adds the bare minimum required to expose the ARMv8.5
Branch Target Identification feature to userspace.
By itself, this does _not_ automatically enable BTI for any initial
executable pages mapped by execve(). This will come later, but for
now it should be possible to enable BTI manually on those pages by
using mprotect() from within the target process.
Other arches already using the generic mman.h are already using
0x10 for arch-specific prot flags, so we use that for PROT_BTI
here.
For consistency, signal handler entry points in BTI guarded pages
are required to be annotated as such, just like any other function.
This blocks a relatively minor attack vector, but comforming
userspace will have the annotations anyway, so we may as well
enforce them.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Expose the ID_AA64ISAR0.RNDR field to userspace, as the RNG system
registers are always available at EL0.
Implement arch_get_random_seed_long using RNDR. Given that the
TRNG is likely to be a shared resource between cores, and VMs,
do not explicitly force re-seeding with RNDRRS. In order to avoid
code complexity and potential issues with hetrogenous systems only
provide values after cpufeature has finalized the system capabilities.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
[Modified to only function after cpufeature has finalized the system
capabilities and move all the code into the header -- broonie]
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
[will: Advertise HWCAP via /proc/cpuinfo]
Signed-off-by: Will Deacon <will@kernel.org>
This adds basic building blocks required for ID_ISAR6 CPU register which
identifies support for various instruction implementation on AArch32 state.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-kernel@vger.kernel.org
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
[will: Ensure SPECRES is treated the same as on A64]
Signed-off-by: Will Deacon <will@kernel.org>
Export the features introduced as part of ARMv8.6 exposed in the
ID_AA64ISAR1_EL1 and ID_AA64ZFR0_EL1 registers. This introduces the
Matrix features (ARMv8.2-I8MM, ARMv8.2-F64MM and ARMv8.2-F32MM) along
with BFloat16 (Armv8.2-BF16), speculation invalidation (SPECRES) and
Data Gathering Hint (ARMv8.0-DGH).
Signed-off-by: Julien Grall <julien.grall@arm.com>
[Added other features in those registers]
Signed-off-by: Steven Price <steven.price@arm.com>
[will: Don't advertise SPECRES to userspace]
Signed-off-by: Will Deacon <will@kernel.org>
The icache_policy_str[] array contains compile-time constant data, and
is never intentionally modified, so let's mark it as const.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new XAFLAG
and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the 'arm_boot_flags'
introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl0eHqcACgkQa9axLQDI
XvFyNA/+L+bnkz8m3ncydlqqfXomQn4eJJVQ8Uksb0knJz+1+3CUxxbO4ry4jXZN
fMkbggYrDPRKpDbsUl0lsRipj7jW9bqan+N37c3SWqCkgb6HqDaHViwxdx6Ec/Uk
gHudozDSPh/8c7hxGcSyt/CFyuW6b+8eYIQU5rtIgz8aVY2BypBvS/7YtYCbIkx0
w4CFleRTK1zXD5mJQhrc6jyDx659sVkrAvdhf6YIymOY8nBTv40vwdNo3beJMYp8
Po/+0Ixu+VkHUNtmYYZQgP/AGH96xiTcRnUqd172JdtRPpCLqnLqwFokXeVIlUKT
KZFMDPzK+756Ayn4z4huEePPAOGlHbJje8JVNnFyreKhVVcCotW7YPY/oJR10bnc
eo7yD+DxABTn+93G2yP436bNVa8qO1UqjOBfInWBtnNFJfANIkZweij/MQ6MjaTA
o7KtviHnZFClefMPoiI7HDzwL8XSmsBDbeQ04s2Wxku1Y2xUHLx4iLmadwLQ1ZPb
lZMTZP3N/T1554MoURVA1afCjAwiqU3bt1xDUGjbBVjLfSPBAn/25IacsG9Li9AF
7Rp1M9VhrfLftjFFkB2HwpbhRASOxaOSx+EI3kzEfCtM2O9I1WHgP3rvCdc3l0HU
tbK0/IggQicNgz7GSZ8xDlWPwwSadXYGLys+xlMZEYd3pDIOiFc=
=0TDT
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new
XAFLAG and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the
'arm_boot_flags' introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
perf: arm_spe: Enable ACPI/Platform automatic module loading
arm_pmu: acpi: spe: Add initial MADT/SPE probing
ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens
ACPI/PPTT: Modify node flag detection to find last IDENTICAL
x86/entry: Simplify _TIF_SYSCALL_EMU handling
arm64: rename dump_instr as dump_kernel_instr
arm64/mm: Drop [PTE|PMD]_TYPE_FAULT
arm64: Implement panic_smp_self_stop()
arm64: Improve parking of stopped CPUs
arm64: Expose FRINT capabilities to userspace
arm64: Expose ARMv8.5 CondM capability to userspace
arm64: defconfig: enable CONFIG_RANDOMIZE_BASE
arm64: ARM64_MODULES_PLTS must depend on MODULES
arm64: bpf: do not allocate executable memory
arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages
arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP
arm64: module: create module allocations without exec permissions
arm64: Allow user selection of ARM64_MODULE_PLTS
acpi/arm64: ignore 5.1 FADTs that are reported as 5.0
arm64: Allow selecting Pseudo-NMI again
...
ARMv8.5 introduces the FRINT series of instructions for rounding floating
point numbers to integers. Provide a capability to userspace in order to
allow applications to determine if the system supports these instructions.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.5 adds new instructions XAFLAG and AXFLAG to translate the
representation of the results of floating point comparisons between the
native ARM format and an alternative format used by some software. Add
a hwcap allowing userspace to determine if they are present, since we
referred to earlier CondM extensions as FLAGM call these extensions
FLAGM2.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch provides support for reporting the presence of SVE2 and
its optional features to userspace.
This will also enable visibility of SVE2 for guests, when KVM
support for SVE-enabled guests is available.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARMv8.5 builds upon the ARMv8.2 DC CVAP instruction by introducing a DC
CVADP instruction which cleans the data cache to the point of deep
persistence. Let's expose this support via the arm64 ELF hwcaps.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
As we will exhaust the first 32 bits of AT_HWCAP let's start
exposing AT_HWCAP2 to userspace to give us up to 64 caps.
Whilst it's possible to use the remaining 32 bits of AT_HWCAP, we
prefer to expand into AT_HWCAP2 in order to provide a consistent
view to userspace between ILP32 and LP64. However internal to the
kernel we prefer to continue to use the full space of elf_hwcap.
To reduce complexity and allow for future expansion, we now
represent hwcaps in the kernel as ordinals and use a
KERNEL_HWCAP_ prefix. This allows us to support automatic feature
based module loading for all our hwcaps.
We introduce cpu_set_feature to set hwcaps which complements the
existing cpu_have_feature helper. These helpers allow us to clean
up existing direct uses of elf_hwcap and reduce any future effort
required to move beyond 64 caps.
For convenience we also introduce cpu_{have,set}_named_feature which
makes use of the cpu_feature macro to allow providing a hwcap name
without a {KERNEL_}HWCAP_ prefix.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
[will: use const_ilog2() and tweak documentation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds basic support for pointer authentication, allowing
userspace to make use of APIAKey, APIBKey, APDAKey, APDBKey, and
APGAKey. The kernel maintains key values for each process (shared by all
threads within), which are initialised to random values at exec() time.
The ID_AA64ISAR1_EL1.{APA,API,GPA,GPI} fields are exposed to userspace,
to describe that pointer authentication instructions are available and
that the kernel is managing the keys. Two new hwcaps are added for the
same reason: PACA (for address authentication) and PACG (for generic
authentication).
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Tested-by: Adam Wallis <awallis@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[will: Fix sizeof() usage and unroll address key initialisation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
We currently use a DSB; ISB sequence to inhibit speculation in set_fs().
Whilst this works for current CPUs, future CPUs may implement a new SB
barrier instruction which acts as an architected speculation barrier.
On CPUs that support it, patch in an SB; NOP sequence over the DSB; ISB
sequence and advertise the presence of the new instruction to userspace.
Signed-off-by: Will Deacon <will.deacon@arm.com>
CTR_EL0.IDC reports the data cache clean requirements for instruction
to data coherence. However, if the field is 0, we need to check the
CLIDR_EL1 fields to detect the status of the feature. Currently we
don't do this and generate a warning with tainting the kernel, when
there is a mismatch in the field among the CPUs. Also the userspace
doesn't have a reliable way to check the CLIDR_EL1 register to check
the status.
This patch fixes the problem by checking the CLIDR_EL1 fields, when
(CTR_EL0.IDC == 0) and updates the kernel's copy of the CTR_EL0 for
the CPU with the actual status of the feature. This would allow the
sanity check infrastructure to do the proper checking of the fields
and also allow the CTR_EL0 emulation code to supply the real status
of the feature.
Now, if a CPU has raw CTR_EL0.IDC == 0 and effective IDC == 1 (with
overall system wide IDC == 1), we need to expose the real value to
the user. So, we trap CTR_EL0 access on the CPU which reports incorrect
CTR_EL0.IDC.
Fixes: commit 6ae4b6e057 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC")
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Cc: Philip Elcan <pelcan@codeaurora.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Armv8.5 introduces a new PSTATE bit known as Speculative Store Bypass
Safe (SSBS) which can be used as a mitigation against Spectre variant 4.
Additionally, a CPU may provide instructions to manipulate PSTATE.SSBS
directly, so that userspace can toggle the SSBS control without trapping
to the kernel.
This patch probes for the existence of SSBS and advertise the new instructions
to userspace if they exist.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Expose the new features introduced by Arm v8.4 extensions to
Arm v8-A profile.
These include :
1) Data indpendent timing of instructions. (DIT, exposed as HWCAP_DIT)
2) Unaligned atomic instructions and Single-copy atomicity of loads
and stores. (AT, expose as HWCAP_USCAT)
3) LDAPR and STLR instructions with immediate offsets (extension to
LRCPC, exposed as HWCAP_ILRCPC)
4) Flag manipulation instructions (TS, exposed as HWCAP_FLAGM).
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARM v8.4 extensions add new neon instructions for performing a
multiplication of each FP16 element of one vector with the corresponding
FP16 element of a second vector, and to add or subtract this without an
intermediate rounding to the corresponding FP32 element in a third vector.
This patch detects this feature and let the userspace know about it via a
HWCAP bit and MRS emulation.
Cc: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch enables detection of hardware SVE support via the
cpufeatures framework, and reports its presence to the kernel and
userspace via the new ARM64_SVE cpucap and HWCAP_SVE hwcap
respectively.
Userspace can also detect SVE using ID_AA64PFR0_EL1, using the
cpufeatures MRS emulation.
When running on hardware that supports SVE, this enables runtime
kernel support for SVE, and allows user tasks to execute SVE
instructions and make of the of the SVE-specific user/kernel
interface extensions implemented by this series.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch uses the cpufeatures framework to determine common SVE
capabilities and vector lengths, and configures the runtime SVE
support code appropriately.
ZCR_ELx is not really a feature register, but it is convenient to
use it as a template for recording the maximum vector length
supported by a CPU, using the LEN field. This field is similar to
a feature field in that it is a contiguous bitfield for which we
want to determine the minimum system-wide value. This patch adds
ZCR as a pseudo-register in cpuinfo/cpufeatures, with appropriate
custom code to populate it. Finding the minimum supported value of
the LEN field is left to the cpufeatures framework in the usual
way.
The meaning of ID_AA64ZFR0_EL1 is not architecturally defined yet,
so for now we just require it to be zero.
Note that much of this code is dormant and SVE still won't be used
yet, since system_supports_sve() remains hardwired to false.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARMv8-A adds a few optional features for ARMv8.2 and ARMv8.3.
Expose them to the userspace via HWCAPs and mrs emulation.
SHA2-512 - Instruction support for SHA512 Hash algorithm (e.g SHA512H,
SHA512H2, SHA512U0, SHA512SU1)
SHA3 - SHA3 crypto instructions (EOR3, RAX1, XAR, BCAX).
SM3 - Instruction support for Chinese cryptography algorithm SM3
SM4 - Instruction support for Chinese cryptography algorithm SM4
DP - Dot Product instructions (UDOT, SDOT).
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The ARMv8.2-DCPoP feature introduces persistent memory support to the
architecture, by defining a point of persistence in the memory
hierarchy, and a corresponding cache maintenance operation, DC CVAP.
Expose the support via HWCAP and MRS emulation.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
attribute_groups are not supposed to change at runtime. All functions
working with attribute_groups provided by <linux/sysfs.h> work with const
attribute_group. So mark the non-const structs as const.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARMv8.3 adds new instructions to support Release Consistent
processor consistent (RCpc) model, which is weaker than the
RCsc model.
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM v8.3 adds support for new instructions to aid floating-point
multiplication and addition of complex numbers. Expose the support
via HWCAP and MRS emulation
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.3 adds support for a new instruction to perform conversion
from double precision floating point to integer to match the
architected behaviour of the equivalent Javascript conversion.
Expose the availability via HWCAP and MRS emulation.
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for detecting VPIPT I-caches, as introduced by ARMv8.2.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
cachetype.h and cache.h are small and both obviously related to caches.
Merge them together to reduce clutter.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As a recent change to ARMv8, ASID-tagged VIVT I-caches are removed
retrospectively from the architecture. Consequently, we don't need to
support them in Linux either.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The CCSIDR_EL1.{NumSets,Associativity,LineSize} fields are only for use
in conjunction with set/way cache maintenance and are not guaranteed to
represent the actual microarchitectural features of a design.
The architecture explicitly states:
| You cannot make any inference about the actual sizes of caches based
| on these parameters.
We currently use these fields to determine whether or the I-cache is
aliasing, which is bogus and known to break on some platforms. Instead,
assume the I-cache is always aliasing if it advertises a VIPT policy.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM v8.1 extensions include support for rounding double multiply
add/subtract instructions to the A64 SIMD instructions set. Let
the userspace know about it via a HWCAP bit.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds the hook for emulating MRS instruction to
export the 'user visible' value of supported system registers.
We emulate only the following id space for system registers:
Op0=3, Op1=0, CRn=0, CRm=[0, 4-7]
The rest will fall back to SIGILL. This capability is also
advertised via a new HWCAP_CPUID.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: add missing static keyword to enable_mrs_emulation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: rt@linutronix.de
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/20161126231350.10321-17-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is no requirement to keep the sysfs files around until the CPU is
completely dead. Remove them during the DOWN_PREPARE notification. This is
a preparatory patch for converting to the hotplug state machine.
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: rt@linutronix.de
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lkml.kernel.org/r/20161126231350.10321-16-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Right now we run through the work around checks on a CPU
from __cpuinfo_store_cpu. There are some problems with that:
1) We initialise the system wide CPU feature registers only after the
Boot CPU updates its cpuinfo. Now, if a work around depends on the
variance of a CPU ID feature (e.g, check for Cache Line size mismatch),
we have no way of performing it cleanly for the boot CPU.
2) It is out of place, invoked from __cpuinfo_store_cpu() in cpuinfo.c. It
is not an obvious place for that.
This patch rearranges the CPU specific capability(aka work around) checks.
1) At the moment we use verify_local_cpu_capabilities() to check if a new
CPU has all the system advertised features. Use this for the secondary CPUs
to perform the work around check. For that we rename
verify_local_cpu_capabilities() => check_local_cpu_capabilities()
which:
If the system wide capabilities haven't been initialised (i.e, the CPU
is activated at the boot), update the system wide detected work arounds.
Otherwise (i.e a CPU hotplugged in later) verify that this CPU conforms to the
system wide capabilities.
2) Boot CPU updates the work arounds from smp_prepare_boot_cpu() after we have
initialised the system wide CPU feature values.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This is a cosmetic change to rename the functions dealing with
the errata work arounds to be more consistent with their naming.
1) check_local_cpu_errata() => update_cpu_errata_workarounds()
check_local_cpu_errata() actually updates the system's errata work
arounds. So rename it to reflect the same.
2) verify_local_cpu_errata() => verify_local_cpu_errata_workarounds()
Use errata_workarounds instead of _errata.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
It can be useful for JIT software to be aware of MIDR_EL1 and
REVIDR_EL1 to ascertain the presence of any core errata that could
affect code generation.
This patch exposes these registers through sysfs:
/sys/devices/system/cpu/cpu$ID/regs/identification/midr_el1
/sys/devices/system/cpu/cpu$ID/regs/identification/revidr_el1
where $ID is the cpu number. For big.LITTLE systems, one can have a
mixture of cores (e.g. Cortex A53 and Cortex A57), thus all CPUs need
to be enumerated.
If the kernel does not have valid information to populate these entries
with, an empty string is returned to userspace.
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Steve Capper <steve.capper@linaro.org>
[suzuki.poulose@arm.com: ABI documentation updates, hotplug notifiers, kobject changes]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch brings the PER_LINUX32 /proc/cpuinfo format more in line with
the 32-bit ARM one by providing an additional line:
model name : ARMv8 Processor rev X (v8l)
Cc: <stable@vger.kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The loop that browses the array compat_hwcap_str will stop when a NULL
is encountered, however NULL is missing at the end of array. This will
lead to overrun until a NULL is found somewhere in the following memory.
In reality, this works out because the compat_hwcap2_str array tends to
follow immediately in memory, and that *is* terminated correctly.
Furthermore, the unsigned int compat_elf_hwcap is checked before
printing each capability, so we end up doing the right thing because
the size of the two arrays is less than 32. Still, this is an obvious
mistake and should be fixed.
Note for backporting: commit 12d11817ea ("arm64: Move
/proc/cpuinfo handling code") moved this code in v4.4. Prior to that
commit, the same change should be made in arch/arm64/kernel/setup.c.
Fixes: 44b82b7700 "arm64: Fix up /proc/cpuinfo"
Cc: <stable@vger.kernel.org> # v3.19+ (but see note above prior to v4.4)
Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On ARMv8 support for AArch32 state is optional. Hence it is
not safe to check the AArch32 ID registers for sanity, which
could lead to false warnings. This patch makes sure that the
AArch32 state is implemented before we keep track of the 32bit
ID registers.
As per ARM ARM (D.1.21.2 - Support for Exception Levels and
Execution States, DDI0487A.h), checking the support for AArch32
at EL0 is good enough to check the support for AArch32 (i.e,
AArch32 at EL1 => AArch32 at EL0, but not vice versa).
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 0f54b14e76 ("arm64: cpufeature: Change read_cpuid() to use
sysreg's mrs_s macro") changed read_cpuid to require a SYS_ prefix on
register names, to allow manual assembly of registers unknown by the
toolchain, using tables in sysreg.h.
This interacts poorly with commit 42b5573403 ("efi/arm64: Check
for h/w support before booting a >4 KB granular kernel"), which is
curretly queued via the tip tree, and uses read_cpuid without a SYS_
prefix. Due to this, a build of next-20160304 fails if EFI and 64K pages
are selected.
To avoid this issue when trees are merged, move the required SYS_
prefixing into read_cpuid, and revert all of the updated callsites to
pass plain register names. This effectively reverts the bulk of commit
0f54b14e76.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.2 extensions [1] include an optional feature, which supports
half precision(16bit) floating point/asimd data processing
instructions. This patch adds support for detecting and exposing
the same to the userspace via HWCAPs
[1] https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.2 adds a new feature register id_aa64mmfr2. This patch adds the
cpu feature boiler plate used by the actual features in later patches.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Older assemblers may not have support for newer feature registers. To get
round this, sysreg.h provides a 'mrs_s' macro that takes a register
encoding and generates the raw instruction.
Change read_cpuid() to use mrs_s in all cases so that new registers
don't have to be a special case. Including sysreg.h means we need to move
the include and definition of read_cpuid() after the #ifndef __ASSEMBLY__
to avoid syntax errors in vmlinux.lds.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As previously reported, some userspace applications depend on bogomips
showed by /proc/cpuinfo. Although there is much less legacy impact on
aarch64 than arm, it does break libvirt.
This patch reverts commit 326b16db9f ("arm64: delay: don't bother
reporting bogomips in /proc/cpuinfo"), but with some tweak due to
context change and without the pr_info().
Fixes: 326b16db9f ("arm64: delay: don't bother reporting bogomips in /proc/cpuinfo")
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 3.12+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The hwcap string arrays used for generating the contents of
/proc/cpuinfo are currently arrays of non-const pointers.
There's no need for these pointers to be mutable, so this patch makes
them const so that they can be moved to .rodata.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
At the moment we run through the arm64_features capability list for
each CPU and set the capability if one of the CPU supports it. This
could be problematic in a heterogeneous system with differing capabilities.
Delay the CPU feature checks until all the enabled CPUs are up(i.e,
smp_cpus_done(), so that we can make better decisions based on the
overall system capability. Once we decide and advertise the capabilities
the alternatives can be applied. From this state, we cannot roll back
a feature to disabled based on the values from a new hotplugged CPU,
due to the runtime patching and other reasons. So, for all new CPUs,
we need to make sure that they have the established system capabilities.
Failing which, we bring the CPU down, preventing it from turning online.
Once the capabilities are decided, any new CPU booting up goes through
verification to ensure that it has all the enabled capabilities and also
invokes the respective enable() method on the CPU.
The CPU errata checks are not delayed and is still executed per-CPU
to detect the respective capabilities. If we ever come across a non-errata
capability that needs to be checked on each-CPU, we could introduce them via
a new capability table(or introduce a flag), which can be processed per CPU.
The next patch will make the feature checks use the system wide
safe value of a feature register.
NOTE: The enable() methods associated with the capability is scheduled
on all the CPUs (which is the only use case at the moment). If we need
a different type of 'enable()' which only needs to be run once on any CPU,
we should be able to handle that when needed.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
[catalin.marinas@arm.com: static variable and coding style fixes]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch consolidates the CPU Sanity check to the new infrastructure.
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds an infrastructure to keep track of the CPU feature
registers on the system. For each register, the infrastructure keeps
track of the system wide safe value of the feature bits. Also, tracks
the which fields of a register should be matched strictly across all
the CPUs on the system for the SANITY check infrastructure.
The feature bits are classified into following 3 types depending on
the implication of the possible values. This information is used to
decide the safe value for a feature.
LOWER_SAFE - The smaller value is safer
HIGHER_SAFE - The bigger value is safer
EXACT - We can't decide between the two, so a predefined safe_value is used.
This infrastructure will be later used to make better decisions for:
- Kernel features (e.g, KVM, Debug)
- SANITY Check
- CPU capability
- ELF HWCAP
- Exposing CPU Feature register to userspace.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
[catalin.marinas@arm.com: whitespace fix]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch moves the /proc/cpuinfo handling code:
arch/arm64/kernel/{setup.c to cpuinfo.c}
No functional changes
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Move the mixed endian support detection code to cpufeature.c
from cpuinfo.c. This also moves the update_cpu_features()
used by mixed endian detection code, which will get more
functionality.
Also moves the ID register field shifts to asm/sysreg.h,
where all the useful definitions will end up in later patches.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As we detect more architectural features at runtime, it makes
sense to reuse the existing framework whilst avoiding to call
a feature an erratum...
This patch extract the core capability parsing, moves it into
a new file (cpufeature.c), and let the CPU errata detection code
use it.
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch keeps track of the mixed endian EL0 support across
the system and provides helper functions to export it. The status
is a boolean indicating whether all the CPUs on the system supports
mixed endian at EL0.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds support for cacheinfo on ARM64.
On ARMv8, the cache hierarchy can be identified through Cache Level ID
(CLIDR) register while the cache geometry is provided by Cache Size ID
(CCSIDR) register.
Since the architecture doesn't provide any way of detecting the cpus
sharing particular cache, device tree is used for the same purpose.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We don't currently check a number of registers exposed to AArch32 guests
(MVFR{0,1,2}_EL1 and ID_DFR0_EL1), despite the fact these describe
AArch32 feature support exposed to userspace and KVM guests similarly to
AArch64 registers which we do check. We do not expect these registers to
vary across a set of CPUs.
This patch adds said registers to the cpuinfo framework and sanity
checks. No sanity check failures have been observed on a current ARMv8
big.LITTLE platform (Juno).
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
While we currently expect self-hosted debug support to be identical
across CPUs, we don't currently sanity check this.
This patch adds logging of the ID_AA64DFR{0,1}_EL1 values and associated
sanity checking code.
It's not clear to me whether we need to check PMUVer, TraceVer, and
DebugVer, as we don't currently rely on these fields at all.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A missing newline in the WARN_TAINT_ONCE string results in ugly and
somewhat difficult to read output in the case of a sanity check failure,
as the next print does not appear on a new line:
Unsupported CPU feature variation.Modules linked in:
This patch adds the missing newline, fixing the output formatting.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
It seems that Cortex-A53 r0p4 added support for AIFSR and ADFSR, and
ID_MMFR0.AuxReg has been updated accordingly to report this fact. As
Cortex-A53 could be paired with CPUs which do not implement these
registers (e.g. all current revisions of Cortex-A57), this may trigger a
sanity check failure at boot.
The AuxReg value describes the availability of the ACTLR, AIFSR, and
ADFSR registers, which are only of use to 32-bit guest OSs, and have
IMPLEMENTATION DEFINED contents. Given the nature of these registers it
is likely that KVM will need to trap accesses regardless of whether the
CPUs are heterogeneous.
This patch masks out the ID_MMFR0.AuxReg value from the sanity checks,
preventing spurious warnings at boot time.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Andre Przywara <andre.przywara@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
After each CPU has been started, we iterate through a list of
CPU features or bugs to detect CPUs which need (or could benefit
from) kernel code patches.
For each feature/bug there is a function which checks if that
particular CPU is affected. We will later provide some more generic
functions for common things like testing for certain MIDR ranges.
We do this for every CPU to cover big.LITTLE systems properly as
well.
If a certain feature/bug has been detected, the capability bit will
be set, so that later the call to apply_alternatives() will trigger
the actual code patching.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
VIPT caches are non-aliasing if the index is derived from address bits that
are always equal between VA and PA. Classifying these as aliasing results in
unnecessary flushing which may hurt performance.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This adds helper functions and #defines to <asm/cachetype.h> to read the
line size and the number of sets from the level 1 instruction cache.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This removes an unfortunately placed semi-colon resulting in all instruction
caches being classified as AIVIVT.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Due to a missing newline in the I-cache policy detection log output,
it's possible to get some ratehr unfortunate output at boot time:
CPU1: Booted secondary processor
Detected VIPT I-cache on CPU1CPU2: Booted secondary processor
Detected VIPT I-cache on CPU2CPU3: Booted secondary processor
Detected VIPT I-cache on CPU3CPU4: Booted secondary processor
Detected PIPT I-cache on CPU4CPU5: Booted secondary processor
Detected PIPT I-cache on CPU5Brought up 6 CPUs
SMP: Total of 6 processors activated.
This patch adds the missing newline to the format string, cleaning up
the output.
Fixes: 59ccc0d41b ("arm64: cachetype: report weakest cache policy")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Unexpected variation in certain system register values across CPUs is an
indicator of potential problems with a system. The kernel expects CPUs
to be mostly identical in terms of supported features, even in systems
with heterogeneous CPUs, with uniform instruction set support being
critical for the correct operation of userspace.
To help detect issues early where hardware violates the expectations of
the kernel, this patch adds simple runtime sanity checks on important ID
registers in the bring up path of each CPU.
Where CPUs are fundamentally mismatched, set TAINT_CPU_OUT_OF_SPEC.
Given that the kernel assumes CPUs are identical feature wise, let's not
pretend that we expect such configurations to work. Supporting such
configurations would require massive rework, and hopefully they will
never exist.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In big.LITTLE systems, the I-cache policy may differ across CPUs, and
thus we must always meet the most stringent maintenance requirements of
any I-cache in the system when performing maintenance to ensure
correctness. Unfortunately this requirement is not met as we always look
at the current CPU's cache type register to determine the maintenance
requirements.
This patch causes the I-cache policy of all CPUs to be taken into
account for icache_is_aliasing and icache_is_aivivt. If any I-cache in
the system is aliasing or AIVIVT, the respective function will return
true. At boot each CPU may set flags to identify that at least one
I-cache in the system is aliasing and/or AIVIVT.
The now unused and potentially misleading icache_policy function is
removed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Several kernel subsystems need to know details about CPU system register
values, sometimes for CPUs other than that they are executing on. Rather
than hard-coding system register accesses and cross-calls for these
cases, this patch adds logic to record various system register values at
boot-time. This may be used for feature reporting, firmware bug
detection, etc.
Separate hooks are added for the boot and hotplug paths to enable
one-time intialisation and cold/warm boot value mismatch detection in
later patches.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>