Similar to the gpio groups in main domain, there is one gpio group
in wakup domain with 2 module instances in it. This gpio group pins
out 84 lines(6 banks). Add DT node for these 2 gpio module instances.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Reviewed-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Update the power-domain cells to 2 and mark all devices as
exclusive. Main uart 0 is the debug console for processor boards
and it is used by different software entities like u-boot, atf,
linux simultaneously. So just mark main_uart0 as shared device
for common processor board.
Reviewed-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Add the on-chip SRAM present within the MCU domain as a mmio-sram node.
The K3 J721E SoCs have 1 MB of such memory. Any specific memory range
within this RAM needed by a driver/software module ought to be reserved
using an appropriate child node.
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Wakeup domain in J721E SoC has an interrupt router connected to gpio
in wakeup domain. Add DT node for this interrupt router.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
The J721E SoC belongs to the K3 Multicore SoC architecture platform,
providing advanced system integration to enable lower system costs
of automotive applications such as infotainment, cluster, premium
Audio, Gateway, industrial and a range of broad market applications.
This SoC is designed around reducing the system cost by eliminating
the need of an external system MCU and is targeted towards ASIL-B/C
certification/requirements in addition to allowing complex software
and system use-cases.
Some highlights of this SoC are:
* Dual Cortex-A72s in a single cluster, three clusters of lockstep
capable dual Cortex-R5F MCUs, Deep-learning Matrix Multiply Accelerator(MMA),
C7x floating point Vector DSP, Two C66x floating point DSPs.
* 3D GPU PowerVR Rogue 8XE GE8430
* Vision Processing Accelerator (VPAC) with image signal processor and Depth
and Motion Processing Accelerator (DMPAC)
* Two Gigabit Industrial Communication Subsystems (ICSSG), each with dual
PRUs and dual RTUs
* Two CSI2.0 4L RX plus one CSI2.0 4L TX, one eDP/DP, One DSI Tx, and
up to two DPI interfaces.
* Integrated Ethernet switch supporting up to a total of 8 external ports in
addition to legacy Ethernet switch of up to 2 ports.
* System MMU (SMMU) Version 3.0 and advanced virtualisation
capabilities.
* Upto 4 PCIe-GEN3 controllers, 2 USB3.0 Dual-role device subsystems,
16 MCANs, 12 McASP, eMMC and SD, UFS, OSPI/HyperBus memory controller, QSPI,
I3C and I2C, eCAP/eQEP, eHRPWM, MLB among other peripherals.
* Two hardware accelerator block containing AES/DES/SHA/MD5 called SA2UL
management.
* Configurable L3 Cache and IO-coherent architecture with high data throughput
capable distributed DMA architecture under NAVSS
* Centralized System Controller for Security, Power, and Resource
Management (DMSC)
See J721E Technical Reference Manual (SPRUIL1, May 2019)
for further details: http://www.ti.com/lit/pdf/spruil1
Signed-off-by: Nishanth Menon <nm@ti.com>
Reviewed-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>