drm/xe: Add migrate layer functions for SVM support

Add functions which migrate to / from VRAM accepting a single DPA
argument (VRAM) and array of dma addresses (SRAM). Used for SVM
migrations.

v2:
 - Don't unlock job_mutex in error path of xe_migrate_vram
v3:
 - Kernel doc (Thomas)
 - Better commit message (Thomas)
 - s/dword/num_dword (Thomas)
 - Return error on to large of migration (Thomas)

Signed-off-by: Oak Zeng <oak.zeng@intel.com>
Signed-off-by: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20250306012657.3505757-21-matthew.brost@intel.com
This commit is contained in:
Matthew Brost 2025-03-05 17:26:45 -08:00
parent 77613a2e10
commit 9c44fd5f6e
2 changed files with 185 additions and 0 deletions

View File

@ -1544,6 +1544,181 @@ void xe_migrate_wait(struct xe_migrate *m)
dma_fence_wait(m->fence, false); dma_fence_wait(m->fence, false);
} }
static u32 pte_update_cmd_size(u64 size)
{
u32 num_dword;
u64 entries = DIV_ROUND_UP(size, XE_PAGE_SIZE);
XE_WARN_ON(size > MAX_PREEMPTDISABLE_TRANSFER);
/*
* MI_STORE_DATA_IMM command is used to update page table. Each
* instruction can update maximumly 0x1ff pte entries. To update
* n (n <= 0x1ff) pte entries, we need:
* 1 dword for the MI_STORE_DATA_IMM command header (opcode etc)
* 2 dword for the page table's physical location
* 2*n dword for value of pte to fill (each pte entry is 2 dwords)
*/
num_dword = (1 + 2) * DIV_ROUND_UP(entries, 0x1ff);
num_dword += entries * 2;
return num_dword;
}
static void build_pt_update_batch_sram(struct xe_migrate *m,
struct xe_bb *bb, u32 pt_offset,
dma_addr_t *sram_addr, u32 size)
{
u16 pat_index = tile_to_xe(m->tile)->pat.idx[XE_CACHE_WB];
u32 ptes;
int i = 0;
ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);
while (ptes) {
u32 chunk = min(0x1ffU, ptes);
bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
bb->cs[bb->len++] = pt_offset;
bb->cs[bb->len++] = 0;
pt_offset += chunk * 8;
ptes -= chunk;
while (chunk--) {
u64 addr = sram_addr[i++] & PAGE_MASK;
xe_tile_assert(m->tile, addr);
addr = m->q->vm->pt_ops->pte_encode_addr(m->tile->xe,
addr, pat_index,
0, false, 0);
bb->cs[bb->len++] = lower_32_bits(addr);
bb->cs[bb->len++] = upper_32_bits(addr);
}
}
}
enum xe_migrate_copy_dir {
XE_MIGRATE_COPY_TO_VRAM,
XE_MIGRATE_COPY_TO_SRAM,
};
static struct dma_fence *xe_migrate_vram(struct xe_migrate *m,
unsigned long npages,
dma_addr_t *sram_addr, u64 vram_addr,
const enum xe_migrate_copy_dir dir)
{
struct xe_gt *gt = m->tile->primary_gt;
struct xe_device *xe = gt_to_xe(gt);
struct dma_fence *fence = NULL;
u32 batch_size = 2;
u64 src_L0_ofs, dst_L0_ofs;
u64 round_update_size;
struct xe_sched_job *job;
struct xe_bb *bb;
u32 update_idx, pt_slot = 0;
int err;
if (npages * PAGE_SIZE > MAX_PREEMPTDISABLE_TRANSFER)
return ERR_PTR(-EINVAL);
round_update_size = npages * PAGE_SIZE;
batch_size += pte_update_cmd_size(round_update_size);
batch_size += EMIT_COPY_DW;
bb = xe_bb_new(gt, batch_size, true);
if (IS_ERR(bb)) {
err = PTR_ERR(bb);
return ERR_PTR(err);
}
build_pt_update_batch_sram(m, bb, pt_slot * XE_PAGE_SIZE,
sram_addr, round_update_size);
if (dir == XE_MIGRATE_COPY_TO_VRAM) {
src_L0_ofs = xe_migrate_vm_addr(pt_slot, 0);
dst_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
} else {
src_L0_ofs = xe_migrate_vram_ofs(xe, vram_addr, false);
dst_L0_ofs = xe_migrate_vm_addr(pt_slot, 0);
}
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
update_idx = bb->len;
emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, round_update_size,
XE_PAGE_SIZE);
job = xe_bb_create_migration_job(m->q, bb,
xe_migrate_batch_base(m, true),
update_idx);
if (IS_ERR(job)) {
err = PTR_ERR(job);
goto err;
}
xe_sched_job_add_migrate_flush(job, 0);
mutex_lock(&m->job_mutex);
xe_sched_job_arm(job);
fence = dma_fence_get(&job->drm.s_fence->finished);
xe_sched_job_push(job);
dma_fence_put(m->fence);
m->fence = dma_fence_get(fence);
mutex_unlock(&m->job_mutex);
xe_bb_free(bb, fence);
return fence;
err:
xe_bb_free(bb, NULL);
return ERR_PTR(err);
}
/**
* xe_migrate_to_vram() - Migrate to VRAM
* @m: The migration context.
* @npages: Number of pages to migrate.
* @src_addr: Array of dma addresses (source of migrate)
* @dst_addr: Device physical address of VRAM (destination of migrate)
*
* Copy from an array dma addresses to a VRAM device physical address
*
* Return: dma fence for migrate to signal completion on succees, ERR_PTR on
* failure
*/
struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m,
unsigned long npages,
dma_addr_t *src_addr,
u64 dst_addr)
{
return xe_migrate_vram(m, npages, src_addr, dst_addr,
XE_MIGRATE_COPY_TO_VRAM);
}
/**
* xe_migrate_from_vram() - Migrate from VRAM
* @m: The migration context.
* @npages: Number of pages to migrate.
* @src_addr: Device physical address of VRAM (source of migrate)
* @dst_addr: Array of dma addresses (destination of migrate)
*
* Copy from a VRAM device physical address to an array dma addresses
*
* Return: dma fence for migrate to signal completion on succees, ERR_PTR on
* failure
*/
struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m,
unsigned long npages,
u64 src_addr,
dma_addr_t *dst_addr)
{
return xe_migrate_vram(m, npages, dst_addr, src_addr,
XE_MIGRATE_COPY_TO_SRAM);
}
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
#include "tests/xe_migrate.c" #include "tests/xe_migrate.c"
#endif #endif

View File

@ -95,6 +95,16 @@ struct xe_migrate_pt_update {
struct xe_migrate *xe_migrate_init(struct xe_tile *tile); struct xe_migrate *xe_migrate_init(struct xe_tile *tile);
struct dma_fence *xe_migrate_to_vram(struct xe_migrate *m,
unsigned long npages,
dma_addr_t *src_addr,
u64 dst_addr);
struct dma_fence *xe_migrate_from_vram(struct xe_migrate *m,
unsigned long npages,
u64 src_addr,
dma_addr_t *dst_addr);
struct dma_fence *xe_migrate_copy(struct xe_migrate *m, struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
struct xe_bo *src_bo, struct xe_bo *src_bo,
struct xe_bo *dst_bo, struct xe_bo *dst_bo,