iio: adc: ad4000: Add support for SPI offload

FPGA HDL projects can include a PWM generator in addition to SPI-Engine.
The PWM IP is used to trigger SPI-Engine offload modules that in turn set
SPI-Engine to execute transfers to poll data from the ADC. That allows data
to be read at the maximum sample rates. Also, it is possible to set a
specific sample rate by setting the proper PWM duty cycle and related state
parameters, thus allowing an adjustable ADC sample rate when a PWM (offload
trigger) is used in combination with SPI-Engine.

Add support for SPI offload.

Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com>
Link: https://patch.msgid.link/386ce043a0e3fc9e8ff71f17aef8de128ce5869e.1743110188.git.marcelo.schmitt@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
Marcelo Schmitt 2025-03-27 18:24:35 -03:00 committed by Jonathan Cameron
parent ff2e2a5c52
commit 59b51edf71
2 changed files with 354 additions and 35 deletions

View File

@ -28,10 +28,15 @@ config AD4000
tristate "Analog Devices AD4000 ADC Driver"
depends on SPI
select IIO_BUFFER
select IIO_BUFFER_DMAENGINE
select IIO_TRIGGERED_BUFFER
select SPI_OFFLOAD
help
Say yes here to build support for Analog Devices AD4000 high speed
SPI analog to digital converters (ADC).
SPI analog to digital converters (ADC). If intended to use with
SPI offloading support, it is recommended to enable
CONFIG_SPI_AXI_SPI_ENGINE, CONFIG_PWM_AXI_PWMGEN, and
CONFIG_SPI_OFFLOAD_TRIGGER_PWM.
To compile this driver as a module, choose M here: the module will be
called ad4000.

View File

@ -15,12 +15,14 @@
#include <linux/mod_devicetable.h>
#include <linux/gpio/consumer.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/offload/consumer.h>
#include <linux/spi/spi.h>
#include <linux/units.h>
#include <linux/util_macros.h>
#include <linux/iio/iio.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/buffer-dmaengine.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
@ -32,10 +34,11 @@
/* AD4000 Configuration Register programmable bits */
#define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */
#define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */
#define AD4000_CFG_TURBO BIT(1) /* Turbo mode */
#define AD4000_SCALE_OPTIONS 2
#define __AD4000_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access) \
#define __AD4000_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access, _offl)\
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
@ -43,54 +46,65 @@
.channel = 0, \
.channel2 = 1, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
BIT(IIO_CHAN_INFO_SCALE) | \
(_offl ? BIT(IIO_CHAN_INFO_SAMP_FREQ) : 0), \
.info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\
.scan_index = 0, \
.scan_type = { \
.sign = _sign, \
.realbits = _real_bits, \
.storagebits = _storage_bits, \
.shift = _storage_bits - _real_bits, \
.endianness = IIO_BE, \
.shift = (_offl ? 0 : _storage_bits - _real_bits), \
.endianness = _offl ? IIO_CPU : IIO_BE \
}, \
}
#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \
#define AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access, _offl) \
__AD4000_DIFF_CHANNEL((_sign), (_real_bits), \
((_real_bits) > 16 ? 32 : 16), (_reg_access))
(((_offl) || ((_real_bits) > 16)) ? 32 : 16), \
(_reg_access), (_offl))
/*
* When SPI offload is configured, transfers are executed without CPU
* intervention so no soft timestamp can be recorded when transfers run.
* Because of that, the macros that set timestamp channel are only used when
* transfers are not offloaded.
*/
#define AD4000_DIFF_CHANNELS(_sign, _real_bits, _reg_access) \
{ \
AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access), \
AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access, 0), \
IIO_CHAN_SOFT_TIMESTAMP(1), \
}
#define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access)\
#define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, \
_reg_access, _offl) \
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = 0, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OFFSET), \
BIT(IIO_CHAN_INFO_OFFSET) | \
(_offl ? BIT(IIO_CHAN_INFO_SAMP_FREQ) : 0), \
.info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\
.scan_index = 0, \
.scan_type = { \
.sign = _sign, \
.realbits = _real_bits, \
.storagebits = _storage_bits, \
.shift = _storage_bits - _real_bits, \
.endianness = IIO_BE, \
.shift = (_offl ? 0 : _storage_bits - _real_bits), \
.endianness = _offl ? IIO_CPU : IIO_BE \
}, \
}
#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \
#define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access, _offl) \
__AD4000_PSEUDO_DIFF_CHANNEL((_sign), (_real_bits), \
((_real_bits) > 16 ? 32 : 16), (_reg_access))
(((_offl) || ((_real_bits) > 16)) ? 32 : 16),\
(_reg_access), (_offl))
#define AD4000_PSEUDO_DIFF_CHANNELS(_sign, _real_bits, _reg_access) \
{ \
AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access), \
AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access, 0), \
IIO_CHAN_SOFT_TIMESTAMP(1), \
}
@ -184,212 +198,298 @@ struct ad4000_chip_info {
const char *dev_name;
struct iio_chan_spec chan_spec[2];
struct iio_chan_spec reg_access_chan_spec[2];
struct iio_chan_spec offload_chan_spec;
struct iio_chan_spec reg_access_offload_chan_spec;
const struct ad4000_time_spec *time_spec;
bool has_hardware_gain;
int max_rate_hz;
};
static const struct ad4000_chip_info ad4000_chip_info = {
.dev_name = "ad4000",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad4001_chip_info = {
.dev_name = "ad4001",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 16, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad4002_chip_info = {
.dev_name = "ad4002",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad4003_chip_info = {
.dev_name = "ad4003",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 18, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad4004_chip_info = {
.dev_name = "ad4004",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4005_chip_info = {
.dev_name = "ad4005",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 16, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4006_chip_info = {
.dev_name = "ad4006",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4007_chip_info = {
.dev_name = "ad4007",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 18, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4008_chip_info = {
.dev_name = "ad4008",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad4010_chip_info = {
.dev_name = "ad4010",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 0),
.reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 18, 1),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad4011_chip_info = {
.dev_name = "ad4011",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 18, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad4020_chip_info = {
.dev_name = "ad4020",
.chan_spec = AD4000_DIFF_CHANNELS('s', 20, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 20, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1, 1),
.time_spec = &ad4020_t_spec,
.max_rate_hz = 1800 * KILO,
};
static const struct ad4000_chip_info ad4021_chip_info = {
.dev_name = "ad4021",
.chan_spec = AD4000_DIFF_CHANNELS('s', 20, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 20, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1, 1),
.time_spec = &ad4020_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad4022_chip_info = {
.dev_name = "ad4022",
.chan_spec = AD4000_DIFF_CHANNELS('s', 20, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 20, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1, 1),
.time_spec = &ad4020_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info adaq4001_chip_info = {
.dev_name = "adaq4001",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 16, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1, 1),
.time_spec = &ad4000_t_spec,
.has_hardware_gain = true,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info adaq4003_chip_info = {
.dev_name = "adaq4003",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.reg_access_chan_spec = AD4000_DIFF_CHANNELS('s', 18, 1),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.reg_access_offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1, 1),
.time_spec = &ad4000_t_spec,
.has_hardware_gain = true,
.max_rate_hz = 2 * MEGA,
};
static const struct ad4000_chip_info ad7685_chip_info = {
.dev_name = "ad7685",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7687_t_spec,
.max_rate_hz = 250 * KILO,
};
static const struct ad4000_chip_info ad7686_chip_info = {
.dev_name = "ad7686",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad7687_chip_info = {
.dev_name = "ad7687",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.time_spec = &ad7687_t_spec,
.max_rate_hz = 250 * KILO,
};
static const struct ad4000_chip_info ad7688_chip_info = {
.dev_name = "ad7688",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad7690_chip_info = {
.dev_name = "ad7690",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.time_spec = &ad7690_t_spec,
.max_rate_hz = 400 * KILO,
};
static const struct ad4000_chip_info ad7691_chip_info = {
.dev_name = "ad7691",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.time_spec = &ad7691_t_spec,
.max_rate_hz = 250 * KILO,
};
static const struct ad4000_chip_info ad7693_chip_info = {
.dev_name = "ad7693",
.chan_spec = AD4000_DIFF_CHANNELS('s', 16, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad7942_chip_info = {
.dev_name = "ad7942",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 14, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 14, 0, 1),
.time_spec = &ad7687_t_spec,
.max_rate_hz = 250 * KILO,
};
static const struct ad4000_chip_info ad7946_chip_info = {
.dev_name = "ad7946",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 14, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 14, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct ad4000_chip_info ad7980_chip_info = {
.dev_name = "ad7980",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7980_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad7982_chip_info = {
.dev_name = "ad7982",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.time_spec = &ad7980_t_spec,
.max_rate_hz = 1 * MEGA,
};
static const struct ad4000_chip_info ad7983_chip_info = {
.dev_name = "ad7983",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7983_t_spec,
.max_rate_hz = 1 * MEGA + 333 * KILO + 333,
};
static const struct ad4000_chip_info ad7984_chip_info = {
.dev_name = "ad7984",
.chan_spec = AD4000_DIFF_CHANNELS('s', 18, 0),
.offload_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0, 1),
.time_spec = &ad7983_t_spec,
.max_rate_hz = 1 * MEGA + 333 * KILO + 333,
};
static const struct ad4000_chip_info ad7988_1_chip_info = {
.dev_name = "ad7988-1",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7988_1_t_spec,
.max_rate_hz = 100 * KILO,
};
static const struct ad4000_chip_info ad7988_5_chip_info = {
.dev_name = "ad7988-5",
.chan_spec = AD4000_PSEUDO_DIFF_CHANNELS('u', 16, 0),
.offload_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0, 1),
.time_spec = &ad7686_t_spec,
.max_rate_hz = 500 * KILO,
};
static const struct spi_offload_config ad4000_offload_config = {
.capability_flags = SPI_OFFLOAD_CAP_TRIGGER |
SPI_OFFLOAD_CAP_RX_STREAM_DMA,
};
struct ad4000_state {
@ -397,6 +497,13 @@ struct ad4000_state {
struct gpio_desc *cnv_gpio;
struct spi_transfer xfers[2];
struct spi_message msg;
struct spi_transfer offload_xfer;
struct spi_message offload_msg;
struct spi_offload *offload;
struct spi_offload_trigger *offload_trigger;
bool using_offload;
unsigned long offload_trigger_hz;
int max_rate_hz;
struct mutex lock; /* Protect read modify write cycle */
int vref_mv;
enum ad4000_sdi sdi_pin;
@ -411,8 +518,10 @@ struct ad4000_state {
*/
struct {
union {
__be16 sample_buf16;
__be32 sample_buf32;
__be16 sample_buf16_be;
__be32 sample_buf32_be;
u16 sample_buf16;
u32 sample_buf32;
} data;
aligned_s64 timestamp;
} scan __aligned(IIO_DMA_MINALIGN);
@ -487,6 +596,25 @@ static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val)
return ret;
}
static int ad4000_set_sampling_freq(struct ad4000_state *st, int freq)
{
struct spi_offload_trigger_config config = {
.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
.periodic = {
.frequency_hz = freq,
},
};
int ret;
ret = spi_offload_trigger_validate(st->offload_trigger, &config);
if (ret)
return ret;
st->offload_trigger_hz = config.periodic.frequency_hz;
return 0;
}
static int ad4000_convert_and_acquire(struct ad4000_state *st)
{
int ret;
@ -515,10 +643,17 @@ static int ad4000_single_conversion(struct iio_dev *indio_dev,
if (ret < 0)
return ret;
if (chan->scan_type.storagebits > 16)
sample = be32_to_cpu(st->scan.data.sample_buf32);
else
sample = be16_to_cpu(st->scan.data.sample_buf16);
if (chan->scan_type.endianness == IIO_BE) {
if (chan->scan_type.realbits > 16)
sample = be32_to_cpu(st->scan.data.sample_buf32_be);
else
sample = be16_to_cpu(st->scan.data.sample_buf16_be);
} else {
if (chan->scan_type.realbits > 16)
sample = st->scan.data.sample_buf32;
else
sample = st->scan.data.sample_buf16;
}
sample >>= chan->scan_type.shift;
@ -554,6 +689,9 @@ static int ad4000_read_raw(struct iio_dev *indio_dev,
if (st->span_comp)
*val = mult_frac(st->vref_mv, 1, 10);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->offload_trigger_hz;
return IIO_VAL_INT;
default:
return -EINVAL;
@ -620,6 +758,7 @@ static int ad4000_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct ad4000_state *st = iio_priv(indio_dev);
int ret;
switch (mask) {
@ -629,6 +768,15 @@ static int ad4000_write_raw(struct iio_dev *indio_dev,
ret = __ad4000_write_raw(indio_dev, chan, val2);
iio_device_release_direct(indio_dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
if (val < 1 || val > st->max_rate_hz)
return -EINVAL;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad4000_set_sampling_freq(st, val);
iio_device_release_direct(indio_dev);
return ret;
default:
return -EINVAL;
}
@ -659,10 +807,114 @@ static const struct iio_info ad4000_reg_access_info = {
.write_raw_get_fmt = &ad4000_write_raw_get_fmt,
};
static const struct iio_info ad4000_offload_info = {
.read_raw = &ad4000_read_raw,
.write_raw = &ad4000_write_raw,
.write_raw_get_fmt = &ad4000_write_raw_get_fmt,
};
static const struct iio_info ad4000_info = {
.read_raw = &ad4000_read_raw,
};
static int ad4000_offload_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad4000_state *st = iio_priv(indio_dev);
struct spi_offload_trigger_config config = {
.type = SPI_OFFLOAD_TRIGGER_PERIODIC,
.periodic = {
.frequency_hz = st->offload_trigger_hz,
},
};
return spi_offload_trigger_enable(st->offload, st->offload_trigger,
&config);
}
static int ad4000_offload_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad4000_state *st = iio_priv(indio_dev);
spi_offload_trigger_disable(st->offload, st->offload_trigger);
return 0;
}
static const struct iio_buffer_setup_ops ad4000_offload_buffer_setup_ops = {
.postenable = &ad4000_offload_buffer_postenable,
.predisable = &ad4000_offload_buffer_predisable,
};
static int ad4000_spi_offload_setup(struct iio_dev *indio_dev,
struct ad4000_state *st)
{
struct spi_device *spi = st->spi;
struct device *dev = &spi->dev;
struct dma_chan *rx_dma;
int ret;
st->offload_trigger = devm_spi_offload_trigger_get(dev, st->offload,
SPI_OFFLOAD_TRIGGER_PERIODIC);
if (IS_ERR(st->offload_trigger))
return dev_err_probe(dev, PTR_ERR(st->offload_trigger),
"Failed to get offload trigger\n");
ret = ad4000_set_sampling_freq(st, st->max_rate_hz);
if (ret)
return dev_err_probe(dev, ret,
"Failed to set sampling frequency\n");
rx_dma = devm_spi_offload_rx_stream_request_dma_chan(dev, st->offload);
if (IS_ERR(rx_dma))
return dev_err_probe(dev, PTR_ERR(rx_dma),
"Failed to get offload RX DMA\n");
ret = devm_iio_dmaengine_buffer_setup_with_handle(dev, indio_dev, rx_dma,
IIO_BUFFER_DIRECTION_IN);
if (ret)
return dev_err_probe(dev, ret, "Failed to setup DMA buffer\n");
return 0;
}
/*
* This executes a data sample transfer when using SPI offloading. The device
* connections should be in "3-wire" mode, selected either when the adi,sdi-pin
* device tree property is absent or set to "high". Also, the ADC CNV pin must
* be connected to a SPI controller CS (it can't be connected to a GPIO).
*
* In order to achieve the maximum sample rate, we only do one transfer per
* SPI offload trigger. Because the ADC output has a one sample latency (delay)
* when the device is wired in "3-wire" mode and only one transfer per sample is
* being made in turbo mode, the first data sample is not valid because it
* contains the output of an earlier conversion result. We also set transfer
* `bits_per_word` to achieve higher throughput by using the minimum number of
* SCLK cycles. Also, a delay is added to make sure we meet the minimum quiet
* time before releasing the CS line.
*
* Note that, with `bits_per_word` set to the number of ADC precision bits,
* transfers use larger word sizes that get stored in 'in-memory wordsizes' that
* are always in native CPU byte order. Because of that, IIO buffer elements
* ought to be read in CPU endianness which requires setting IIO scan_type
* endianness accordingly (i.e. IIO_CPU).
*/
static int ad4000_prepare_offload_message(struct ad4000_state *st,
const struct iio_chan_spec *chan)
{
struct spi_transfer *xfer = &st->offload_xfer;
xfer->bits_per_word = chan->scan_type.realbits;
xfer->len = chan->scan_type.realbits > 16 ? 4 : 2;
xfer->delay.value = st->time_spec->t_quiet2_ns;
xfer->delay.unit = SPI_DELAY_UNIT_NSECS;
xfer->offload_flags = SPI_OFFLOAD_XFER_RX_STREAM;
spi_message_init_with_transfers(&st->offload_msg, xfer, 1);
st->offload_msg.offload = st->offload;
return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->offload_msg);
}
/*
* This executes a data sample transfer for when the device connections are
* in "3-wire" mode, selected when the adi,sdi-pin device tree property is
@ -690,6 +942,15 @@ static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st,
xfers[1].rx_buf = &st->scan.data;
xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits);
/*
* If the device is set up for SPI offloading, IIO channel scan_type is
* set to IIO_CPU. When that is the case, use larger SPI word sizes for
* single-shot reads too. Thus, sample data can be correctly handled in
* ad4000_single_conversion() according to scan_type endianness.
*/
if (chan->scan_type.endianness != IIO_BE)
xfers[1].bits_per_word = chan->scan_type.realbits;
xfers[1].delay.value = st->time_spec->t_quiet2_ns;
xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS;
@ -733,6 +994,9 @@ static int ad4000_config(struct ad4000_state *st)
if (device_property_present(&st->spi->dev, "adi,high-z-input"))
reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1);
if (st->using_offload)
reg_val |= FIELD_PREP(AD4000_CFG_TURBO, 1);
return ad4000_write_reg(st, reg_val);
}
@ -755,6 +1019,7 @@ static int ad4000_probe(struct spi_device *spi)
st = iio_priv(indio_dev);
st->spi = spi;
st->time_spec = chip->time_spec;
st->max_rate_hz = chip->max_rate_hz;
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ad4000_power_supplies),
ad4000_power_supplies);
@ -772,6 +1037,26 @@ static int ad4000_probe(struct spi_device *spi)
return dev_err_probe(dev, PTR_ERR(st->cnv_gpio),
"Failed to get CNV GPIO");
st->offload = devm_spi_offload_get(dev, spi, &ad4000_offload_config);
ret = PTR_ERR_OR_ZERO(st->offload);
if (ret && ret != -ENODEV)
return dev_err_probe(dev, ret, "Failed to get offload\n");
st->using_offload = !IS_ERR(st->offload);
if (st->using_offload) {
indio_dev->setup_ops = &ad4000_offload_buffer_setup_ops;
ret = ad4000_spi_offload_setup(indio_dev, st);
if (ret)
return ret;
} else {
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
&iio_pollfunc_store_time,
&ad4000_trigger_handler,
NULL);
if (ret)
return ret;
}
ret = device_property_match_property_string(dev, "adi,sdi-pin",
ad4000_sdi_pin,
ARRAY_SIZE(ad4000_sdi_pin));
@ -784,7 +1069,6 @@ static int ad4000_probe(struct spi_device *spi)
switch (st->sdi_pin) {
case AD4000_SDI_MOSI:
indio_dev->info = &ad4000_reg_access_info;
indio_dev->channels = chip->reg_access_chan_spec;
/*
* In "3-wire mode", the ADC SDI line must be kept high when
@ -796,9 +1080,26 @@ static int ad4000_probe(struct spi_device *spi)
if (ret < 0)
return ret;
if (st->using_offload) {
indio_dev->channels = &chip->reg_access_offload_chan_spec;
indio_dev->num_channels = 1;
ret = ad4000_prepare_offload_message(st, indio_dev->channels);
if (ret)
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
} else {
indio_dev->channels = chip->reg_access_chan_spec;
indio_dev->num_channels = ARRAY_SIZE(chip->reg_access_chan_spec);
}
/*
* Call ad4000_prepare_3wire_mode_message() so single-shot read
* SPI messages are always initialized.
*/
ret = ad4000_prepare_3wire_mode_message(st, &indio_dev->channels[0]);
if (ret)
return ret;
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
ret = ad4000_config(st);
if (ret < 0)
@ -806,19 +1107,38 @@ static int ad4000_probe(struct spi_device *spi)
break;
case AD4000_SDI_VIO:
indio_dev->info = &ad4000_info;
indio_dev->channels = chip->chan_spec;
if (st->using_offload) {
indio_dev->info = &ad4000_offload_info;
indio_dev->channels = &chip->offload_chan_spec;
indio_dev->num_channels = 1;
ret = ad4000_prepare_offload_message(st, indio_dev->channels);
if (ret)
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
} else {
indio_dev->info = &ad4000_info;
indio_dev->channels = chip->chan_spec;
indio_dev->num_channels = ARRAY_SIZE(chip->chan_spec);
}
ret = ad4000_prepare_3wire_mode_message(st, &indio_dev->channels[0]);
if (ret)
return ret;
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
break;
case AD4000_SDI_CS:
if (st->using_offload)
return dev_err_probe(dev, -EPROTONOSUPPORT,
"Unsupported sdi-pin + offload config\n");
indio_dev->info = &ad4000_info;
indio_dev->channels = chip->chan_spec;
indio_dev->num_channels = ARRAY_SIZE(chip->chan_spec);
ret = ad4000_prepare_4wire_mode_message(st, &indio_dev->channels[0]);
if (ret)
return ret;
return dev_err_probe(dev, ret,
"Failed to optimize SPI msg\n");
break;
case AD4000_SDI_GND:
@ -830,7 +1150,6 @@ static int ad4000_probe(struct spi_device *spi)
}
indio_dev->name = chip->dev_name;
indio_dev->num_channels = 2;
ret = devm_mutex_init(dev, &st->lock);
if (ret)
@ -853,12 +1172,6 @@ static int ad4000_probe(struct spi_device *spi)
ad4000_fill_scale_tbl(st, &indio_dev->channels[0]);
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
&iio_pollfunc_store_time,
&ad4000_trigger_handler, NULL);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
@ -947,3 +1260,4 @@ module_spi_driver(ad4000_driver);
MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD4000 ADC driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS("IIO_DMAENGINE_BUFFER");