selftests: coredump: Add stackdump test

Add a test which checks that the kstkesp field in /proc/pid/stat can be
read for all threads of a coredumping process.

For full details including the motivation for this test and how it works,
see the README file added by this commit.

Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Nam Cao <namcao@linutronix.de>
Link: https://lore.kernel.org/r/50e737b6576208566d14efcf1934fe840de6b1f4.1735805772.git.namcao@linutronix.de
Signed-off-by: Christian Brauner <brauner@kernel.org>
This commit is contained in:
Nam Cao 2025-01-02 09:22:57 +01:00 committed by Christian Brauner
parent ab251dacfb
commit 15858da535
No known key found for this signature in database
GPG Key ID: 91C61BC06578DCA2
4 changed files with 222 additions and 0 deletions

View File

@ -0,0 +1,7 @@
# SPDX-License-Identifier: GPL-2.0-only
CFLAGS = $(KHDR_INCLUDES)
TEST_GEN_PROGS := stackdump_test
TEST_FILES := stackdump
include ../lib.mk

View File

@ -0,0 +1,50 @@
coredump selftest
=================
Background context
------------------
`coredump` is a feature which dumps a process's memory space when the process terminates
unexpectedly (e.g. due to segmentation fault), which can be useful for debugging. By default,
`coredump` dumps the memory to the file named `core`, but this behavior can be changed by writing a
different file name to `/proc/sys/kernel/core_pattern`. Furthermore, `coredump` can be piped to a
user-space program by writing the pipe symbol (`|`) followed by the command to be executed to
`/proc/sys/kernel/core_pattern`. For the full description, see `man 5 core`.
The piped user program may be interested in reading the stack pointers of the crashed process. The
crashed process's stack pointers can be read from `procfs`: it is the `kstkesp` field in
`/proc/$PID/stat`. See `man 5 proc` for all the details.
The problem
-----------
While a thread is active, the stack pointer is unsafe to read and therefore the `kstkesp` field
reads zero. But when the thread is dead (e.g. during a coredump), this field should have valid
value.
However, this was broken in the past and `kstkesp` was zero even during coredump:
* commit 0a1eb2d474ed ("fs/proc: Stop reporting eip and esp in /proc/PID/stat") changed kstkesp to
always be zero
* commit fd7d56270b52 ("fs/proc: Report eip/esp in /prod/PID/stat for coredumping") fixed it for the
coredumping thread. However, other threads in a coredumping process still had the problem.
* commit cb8f381f1613 ("fs/proc/array.c: allow reporting eip/esp for all coredumping threads") fixed
for all threads in a coredumping process.
* commit 92307383082d ("coredump: Don't perform any cleanups before dumping core") broke it again
for the other threads in a coredumping process.
The problem has been fixed now, but considering the history, it may appear again in the future.
The goal of this test
---------------------
This test detects problem with reading `kstkesp` during coredump by doing the following:
#. Tell the kernel to execute the "stackdump" script when a coredump happens. This script
reads the stack pointers of all threads of crashed processes.
#. Spawn a child process who creates some threads and then crashes.
#. Read the output from the "stackdump" script, and make sure all stack pointer values are
non-zero.

View File

@ -0,0 +1,14 @@
#!/bin/sh
# SPDX-License-Identifier: GPL-2.0
CRASH_PROGRAM_ID=$1
STACKDUMP_FILE=$2
TMP=$(mktemp)
for t in /proc/$CRASH_PROGRAM_ID/task/*; do
tid=$(basename $t)
cat /proc/$tid/stat | awk '{print $29}' >> $TMP
done
mv $TMP $STACKDUMP_FILE

View File

@ -0,0 +1,151 @@
// SPDX-License-Identifier: GPL-2.0
#include <fcntl.h>
#include <libgen.h>
#include <linux/limits.h>
#include <pthread.h>
#include <string.h>
#include <sys/resource.h>
#include <unistd.h>
#include "../kselftest_harness.h"
#define STACKDUMP_FILE "stack_values"
#define STACKDUMP_SCRIPT "stackdump"
#define NUM_THREAD_SPAWN 128
static void *do_nothing(void *)
{
while (1)
pause();
}
static void crashing_child(void)
{
pthread_t thread;
int i;
for (i = 0; i < NUM_THREAD_SPAWN; ++i)
pthread_create(&thread, NULL, do_nothing, NULL);
/* crash on purpose */
i = *(int *)NULL;
}
FIXTURE(coredump)
{
char original_core_pattern[256];
};
FIXTURE_SETUP(coredump)
{
char buf[PATH_MAX];
FILE *file;
char *dir;
int ret;
file = fopen("/proc/sys/kernel/core_pattern", "r");
ASSERT_NE(NULL, file);
ret = fread(self->original_core_pattern, 1, sizeof(self->original_core_pattern), file);
ASSERT_TRUE(ret || feof(file));
ASSERT_LT(ret, sizeof(self->original_core_pattern));
self->original_core_pattern[ret] = '\0';
ret = fclose(file);
ASSERT_EQ(0, ret);
}
FIXTURE_TEARDOWN(coredump)
{
const char *reason;
FILE *file;
int ret;
unlink(STACKDUMP_FILE);
file = fopen("/proc/sys/kernel/core_pattern", "w");
if (!file) {
reason = "Unable to open core_pattern";
goto fail;
}
ret = fprintf(file, "%s", self->original_core_pattern);
if (ret < 0) {
reason = "Unable to write to core_pattern";
goto fail;
}
ret = fclose(file);
if (ret) {
reason = "Unable to close core_pattern";
goto fail;
}
return;
fail:
/* This should never happen */
fprintf(stderr, "Failed to cleanup stackdump test: %s\n", reason);
}
TEST_F(coredump, stackdump)
{
struct sigaction action = {};
unsigned long long stack;
char *test_dir, *line;
size_t line_length;
char buf[PATH_MAX];
int ret, i;
FILE *file;
pid_t pid;
/*
* Step 1: Setup core_pattern so that the stackdump script is executed when the child
* process crashes
*/
ret = readlink("/proc/self/exe", buf, sizeof(buf));
ASSERT_NE(-1, ret);
ASSERT_LT(ret, sizeof(buf));
buf[ret] = '\0';
test_dir = dirname(buf);
file = fopen("/proc/sys/kernel/core_pattern", "w");
ASSERT_NE(NULL, file);
ret = fprintf(file, "|%1$s/%2$s %%P %1$s/%3$s", test_dir, STACKDUMP_SCRIPT, STACKDUMP_FILE);
ASSERT_LT(0, ret);
ret = fclose(file);
ASSERT_EQ(0, ret);
/* Step 2: Create a process who spawns some threads then crashes */
pid = fork();
ASSERT_TRUE(pid >= 0);
if (pid == 0)
crashing_child();
/*
* Step 3: Wait for the stackdump script to write the stack pointers to the stackdump file
*/
for (i = 0; i < 10; ++i) {
file = fopen(STACKDUMP_FILE, "r");
if (file)
break;
sleep(1);
}
ASSERT_NE(file, NULL);
/* Step 4: Make sure all stack pointer values are non-zero */
for (i = 0; -1 != getline(&line, &line_length, file); ++i) {
stack = strtoull(line, NULL, 10);
ASSERT_NE(stack, 0);
}
ASSERT_EQ(i, 1 + NUM_THREAD_SPAWN);
fclose(file);
}
TEST_HARNESS_MAIN