libtpms/src/tpm2/AlgorithmTests.c
Stefan Berger a829ddbdeb Extend TDES test cases (CFB, OFB) with test cases for short input
Add TDES test cases testing CFB and OFB with non-blocksized short
input.

Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
2019-05-08 14:59:55 -04:00

947 lines
33 KiB
C

/********************************************************************************/
/* */
/* Code to perform the various self-test functions. */
/* Written by Ken Goldman */
/* IBM Thomas J. Watson Research Center */
/* $Id: AlgorithmTests.c 1370 2018-11-02 19:39:07Z kgoldman $ */
/* */
/* Licenses and Notices */
/* */
/* 1. Copyright Licenses: */
/* */
/* - Trusted Computing Group (TCG) grants to the user of the source code in */
/* this specification (the "Source Code") a worldwide, irrevocable, */
/* nonexclusive, royalty free, copyright license to reproduce, create */
/* derivative works, distribute, display and perform the Source Code and */
/* derivative works thereof, and to grant others the rights granted herein. */
/* */
/* - The TCG grants to the user of the other parts of the specification */
/* (other than the Source Code) the rights to reproduce, distribute, */
/* display, and perform the specification solely for the purpose of */
/* developing products based on such documents. */
/* */
/* 2. Source Code Distribution Conditions: */
/* */
/* - Redistributions of Source Code must retain the above copyright licenses, */
/* this list of conditions and the following disclaimers. */
/* */
/* - Redistributions in binary form must reproduce the above copyright */
/* licenses, this list of conditions and the following disclaimers in the */
/* documentation and/or other materials provided with the distribution. */
/* */
/* 3. Disclaimers: */
/* */
/* - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF */
/* LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH */
/* RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) */
/* THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. */
/* Contact TCG Administration (admin@trustedcomputinggroup.org) for */
/* information on specification licensing rights available through TCG */
/* membership agreements. */
/* */
/* - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED */
/* WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR */
/* FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR */
/* NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY */
/* OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. */
/* */
/* - Without limitation, TCG and its members and licensors disclaim all */
/* liability, including liability for infringement of any proprietary */
/* rights, relating to use of information in this specification and to the */
/* implementation of this specification, and TCG disclaims all liability for */
/* cost of procurement of substitute goods or services, lost profits, loss */
/* of use, loss of data or any incidental, consequential, direct, indirect, */
/* or special damages, whether under contract, tort, warranty or otherwise, */
/* arising in any way out of use or reliance upon this specification or any */
/* information herein. */
/* */
/* (c) Copyright IBM Corp. and others, 2016 - 2018 */
/* */
/********************************************************************************/
/* 10.2.1 AlgorithmTests.c */
/* 10.2.1.1 Introduction */
/* This file contains the code to perform the various self-test functions. */
/* 10.2.1.2 Includes and Defines */
#include "Tpm.h"
#define SELF_TEST_DATA
#if SELF_TEST
/* These includes pull in the data structures. They contain data definitions for the various
tests. */
#include "SelfTest.h"
#include "SymmetricTest.h"
#include "RsaTestData.h"
#include "EccTestData.h"
#include "HashTestData.h"
#include "KdfTestData.h"
#define TEST_DEFAULT_TEST_HASH(vector) \
if(TEST_BIT(DEFAULT_TEST_HASH, g_toTest)) \
TestHash(DEFAULT_TEST_HASH, vector);
/* Make sure that the algorithm has been tested */
#define CLEAR_BOTH(alg) { CLEAR_BIT(alg, *toTest); \
if(toTest != &g_toTest) \
CLEAR_BIT(alg, g_toTest); }
#define SET_BOTH(alg) { SET_BIT(alg, *toTest); \
if(toTest != &g_toTest) \
SET_BIT(alg, g_toTest); }
#define TEST_BOTH(alg) ((toTest != &g_toTest) \
? TEST_BIT(alg, *toTest) || TEST_BIT(alg, g_toTest) \
: TEST_BIT(alg, *toTest))
/* Can only cancel if doing a list. */
#define CHECK_CANCELED \
if(_plat__IsCanceled() && toTest != &g_toTest) \
return TPM_RC_CANCELED;
/* 10.2.1.3 Hash Tests */
/* 10.2.1.3.1 Description */
/* The hash test does a known-value HMAC using the specified hash algorithm. */
/* 10.2.1.3.2 TestHash() */
/* The hash test function. */
static TPM_RC
TestHash(
TPM_ALG_ID hashAlg,
ALGORITHM_VECTOR *toTest
)
{
TPM2B_DIGEST computed; // value computed
HMAC_STATE state;
UINT16 digestSize;
const TPM2B *testDigest = NULL;
// TPM2B_TYPE(HMAC_BLOCK, DEFAULT_TEST_HASH_BLOCK_SIZE);
pAssert(hashAlg != ALG_NULL_VALUE);
switch(hashAlg)
{
#if ALG_SHA1
case ALG_SHA1_VALUE:
testDigest = &c_SHA1_digest.b;
break;
#endif
#if ALG_SHA256
case ALG_SHA256_VALUE:
testDigest = &c_SHA256_digest.b;
break;
#endif
#if ALG_SHA384
case ALG_SHA384_VALUE:
testDigest = &c_SHA384_digest.b;
break;
#endif
#if ALG_SHA512
case ALG_SHA512_VALUE:
testDigest = &c_SHA512_digest.b;
break;
#endif
#if ALG_SM3_256
case ALG_SM3_256_VALUE:
testDigest = &c_SM3_256_digest.b;
break;
#endif
default:
FAIL(FATAL_ERROR_INTERNAL);
}
// Clear the to-test bits
CLEAR_BOTH(hashAlg);
// Set the HMAC key to twice the digest size
digestSize = CryptHashGetDigestSize(hashAlg);
CryptHmacStart(&state, hashAlg, digestSize * 2,
(BYTE *)c_hashTestKey.t.buffer);
CryptDigestUpdate(&state.hashState, 2 * CryptHashGetBlockSize(hashAlg),
(BYTE *)c_hashTestData.t.buffer);
computed.t.size = digestSize;
CryptHmacEnd(&state, digestSize, computed.t.buffer);
if((testDigest->size != computed.t.size)
|| (memcmp(testDigest->buffer, computed.t.buffer, computed.b.size) != 0)) {
SELF_TEST_FAILURE;
}
return TPM_RC_SUCCESS;
}
/* 10.2.1.4 Symmetric Test Functions */
/* 10.2.1.4.1 MakeIv() */
/* Internal function to make the appropriate IV depending on the mode. */
static UINT32
MakeIv(
TPM_ALG_ID mode, // IN: symmetric mode
UINT32 size, // IN: block size of the algorithm
BYTE *iv // OUT: IV to fill in
)
{
BYTE i;
if(mode == ALG_ECB_VALUE)
return 0;
if(mode == ALG_CTR_VALUE)
{
// The test uses an IV that has 0xff in the last byte
for(i = 1; i <= size; i++)
*iv++ = 0xff - (BYTE)(size - i);
}
else
{
for(i = 0; i < size; i++)
*iv++ = i;
}
return size;
}
/* 10.2.1.4.2 TestSymmetricAlgorithm() */
/* Function to test a specific algorithm, key size, and mode. */
static void
TestSymmetricAlgorithm(
const SYMMETRIC_TEST_VECTOR *test, //
TPM_ALG_ID mode //
)
{
BYTE encrypted[MAX_SYM_BLOCK_SIZE * 2];
BYTE decrypted[MAX_SYM_BLOCK_SIZE * 2];
TPM2B_IV iv;
// libtpms added beging
if (test->dataOut[mode - ALG_CTR_VALUE] == NULL)
return;
// libtpms added end
//
// Get the appropriate IV
iv.t.size = (UINT16)MakeIv(mode, test->ivSize, iv.t.buffer);
// Encrypt known data
CryptSymmetricEncrypt(encrypted, test->alg, test->keyBits, test->key, &iv,
mode, test->dataInOutSize, test->dataIn);
// Check that it matches the expected value
if(!MemoryEqual(encrypted, test->dataOut[mode - ALG_CTR_VALUE],
test->dataInOutSize)) {
SELF_TEST_FAILURE;
}
// Reinitialize the iv for decryption
MakeIv(mode, test->ivSize, iv.t.buffer);
CryptSymmetricDecrypt(decrypted, test->alg, test->keyBits, test->key, &iv,
mode, test->dataInOutSize,
test->dataOut[mode - ALG_CTR_VALUE]);
// Make sure that it matches what we started with
if(!MemoryEqual(decrypted, test->dataIn, test->dataInOutSize)) {
SELF_TEST_FAILURE;
}
}
/* 10.2.1.4.3 AllSymsAreDone() */
/* Checks if both symmetric algorithms have been tested. This is put here so that addition of a
symmetric algorithm will be relatively easy to handle */
/* Return Value Meaning */
/* TRUE(1) all symmetric algorithms tested */
/* FALSE(0) not all symmetric algorithms tested */
static BOOL
AllSymsAreDone(
ALGORITHM_VECTOR *toTest
)
{
return (!TEST_BOTH(ALG_AES_VALUE) && !TEST_BOTH(ALG_SM4_VALUE));
}
/* 10.2.1.4.4 AllModesAreDone() */
/* Checks if all the modes have been tested */
/* Return Value Meaning */
/* TRUE(1) all modes tested */
/* FALSE(0) all modes not tested */
static BOOL
AllModesAreDone(
ALGORITHM_VECTOR *toTest
)
{
TPM_ALG_ID alg;
for(alg = TPM_SYM_MODE_FIRST; alg <= TPM_SYM_MODE_LAST; alg++)
if(TEST_BOTH(alg))
return FALSE;
return TRUE;
}
/* 10.2.1.4.5 TestSymmetric() */
/* If alg is a symmetric block cipher, then all of the modes that are selected are tested. If alg is
a mode, then all algorithms of that mode are tested. */
static TPM_RC
TestSymmetric(
TPM_ALG_ID alg,
ALGORITHM_VECTOR *toTest
)
{
SYM_INDEX index;
TPM_ALG_ID mode;
//
if(!TEST_BIT(alg, *toTest))
return TPM_RC_SUCCESS;
if(alg == ALG_AES_VALUE || alg == ALG_SM4_VALUE || alg == ALG_CAMELLIA_VALUE || alg == ALG_TDES_VALUE)
{
// Will test the algorithm for all modes and key sizes
CLEAR_BOTH(alg);
// A test this algorithm for all modes
for(index = 0; index < NUM_SYMS; index++)
{
if(c_symTestValues[index].alg == alg)
{
for(mode = TPM_SYM_MODE_FIRST;
mode <= TPM_SYM_MODE_LAST;
mode++)
{
if(TEST_BIT(mode, *toTest))
TestSymmetricAlgorithm(&c_symTestValues[index], mode);
}
}
}
// if all the symmetric tests are done
if(AllSymsAreDone(toTest))
{
// all symmetric algorithms tested so no modes should be set
for(alg = TPM_SYM_MODE_FIRST; alg <= TPM_SYM_MODE_LAST; alg++)
CLEAR_BOTH(alg);
}
}
else if(TPM_SYM_MODE_FIRST <= alg && alg <= TPM_SYM_MODE_LAST)
{
// Test this mode for all key sizes and algorithms
for(index = 0; index < NUM_SYMS; index++)
{
// The mode testing only comes into play when doing self tests
// by command. When doing self tests by command, the block ciphers are
// tested first. That means that all of their modes would have been
// tested for all key sizes. If there is no block cipher left to
// test, then clear this mode bit.
if(!TEST_BIT(ALG_AES_VALUE, *toTest)
&& !TEST_BIT(ALG_SM4_VALUE, *toTest))
{
CLEAR_BOTH(alg);
}
else
{
for(index = 0; index < NUM_SYMS; index++)
{
if(TEST_BIT(c_symTestValues[index].alg, *toTest))
TestSymmetricAlgorithm(&c_symTestValues[index], alg);
}
// have tested this mode for all algorithms
CLEAR_BOTH(alg);
}
}
if(AllModesAreDone(toTest))
{
CLEAR_BOTH(ALG_AES_VALUE);
CLEAR_BOTH(ALG_SM4_VALUE);
}
}
else
pAssert(alg == 0 && alg != 0);
return TPM_RC_SUCCESS;
}
/* 10.2.1.5 RSA Tests */
#if ALG_RSA
/* 10.2.1.5.1 Introduction */
/* The tests are for public key only operations and for private key operations. Signature
verification and encryption are public key operations. They are tested by using a KVT. For
signature verification, this means that a known good signature is checked by
CryptRsaValidateSignature(). If it fails, then the TPM enters failure mode. For encryption, the
TPM encrypts known values using the selected scheme and checks that the returned value matches
the expected value. */
/* For private key operations, a full scheme check is used. For a signing key, a known key is used
to sign a known message. Then that signature is verified. since the signature may involve use of
random values, the signature will be different each time and we can't always check that the
signature matches a known value. The same technique is used for decryption (RSADP/RSAEP). */
/* When an operation uses the public key and the verification has not been tested, the TPM will do a
KVT. */
/* The test for the signing algorithm is built into the call for the algorithm */
/* 10.2.1.5.2 RsaKeyInitialize() */
/* The test key is defined by a public modulus and a private prime. The TPM's RSA code computes the
second prime and the private exponent. */
static void
RsaKeyInitialize(
OBJECT *testObject
)
{
MemoryCopy2B(&testObject->publicArea.unique.rsa.b, (P2B)&c_rsaPublicModulus,
sizeof(c_rsaPublicModulus));
MemoryCopy2B(&testObject->sensitive.sensitive.rsa.b, (P2B)&c_rsaPrivatePrime,
sizeof(testObject->sensitive.sensitive.rsa.t.buffer));
testObject->publicArea.parameters.rsaDetail.keyBits = RSA_TEST_KEY_SIZE * 8;
// Use the default exponent
testObject->publicArea.parameters.rsaDetail.exponent = 0;
testObject->attributes.privateExp = 0;
}
/* 10.2.1.5.3 TestRsaEncryptDecrypt() */
/* These test are for an public key encryption that uses a random value */
static TPM_RC
TestRsaEncryptDecrypt(
TPM_ALG_ID scheme, // IN: the scheme
ALGORITHM_VECTOR *toTest //
)
{
TPM2B_PUBLIC_KEY_RSA testInput;
TPM2B_PUBLIC_KEY_RSA testOutput;
OBJECT testObject;
const TPM2B_RSA_TEST_KEY *kvtValue = NULL;
TPM_RC result = TPM_RC_SUCCESS;
const TPM2B *testLabel = NULL;
TPMT_RSA_DECRYPT rsaScheme;
//
// Don't need to initialize much of the test object but do need to initialize
// the flag indicating that the private exponent has been computed.
testObject.attributes.privateExp = CLEAR;
RsaKeyInitialize(&testObject);
rsaScheme.scheme = scheme;
rsaScheme.details.anySig.hashAlg = DEFAULT_TEST_HASH;
CLEAR_BOTH(scheme);
CLEAR_BOTH(ALG_NULL_VALUE);
if(scheme == ALG_NULL_VALUE)
{
// This is an encryption scheme using the private key without any encoding.
memcpy(testInput.t.buffer, c_RsaTestValue, sizeof(c_RsaTestValue));
testInput.t.size = sizeof(c_RsaTestValue);
if(TPM_RC_SUCCESS != CryptRsaEncrypt(&testOutput, &testInput.b,
&testObject, &rsaScheme, NULL, NULL)) {
SELF_TEST_FAILURE;
}
if(!MemoryEqual(testOutput.t.buffer, c_RsaepKvt.buffer, c_RsaepKvt.size)) {
SELF_TEST_FAILURE;
}
MemoryCopy2B(&testInput.b, &testOutput.b, sizeof(testInput.t.buffer));
if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,
&testObject, &rsaScheme, NULL)) {
SELF_TEST_FAILURE;
}
if(!MemoryEqual(testOutput.t.buffer, c_RsaTestValue,
sizeof(c_RsaTestValue))) {
SELF_TEST_FAILURE;
}
}
else
{
// ALG_RSAES_VALUE:
// This is an decryption scheme using padding according to
// PKCS#1v2.1, 7.2. This padding uses random bits. To test a public
// key encryption that uses random data, encrypt a value and then
// decrypt the value and see that we get the encrypted data back.
// The hash is not used by this encryption so it can be TMP_ALG_NULL
// ALG_OAEP_VALUE:
// This is also an decryption scheme and it also uses a
// pseudo-random
// value. However, this also uses a hash algorithm. So, we may need
// to test that algorithm before use.
if(scheme == ALG_OAEP_VALUE)
{
TEST_DEFAULT_TEST_HASH(toTest);
kvtValue = &c_OaepKvt;
testLabel = OAEP_TEST_STRING;
}
else if(scheme == ALG_RSAES_VALUE)
{
kvtValue = &c_RsaesKvt;
testLabel = NULL;
}
else {
SELF_TEST_FAILURE;
}
// Only use a digest-size portion of the test value
memcpy(testInput.t.buffer, c_RsaTestValue, DEFAULT_TEST_DIGEST_SIZE);
testInput.t.size = DEFAULT_TEST_DIGEST_SIZE;
// See if the encryption works
if(TPM_RC_SUCCESS != CryptRsaEncrypt(&testOutput, &testInput.b,
&testObject, &rsaScheme, testLabel,
NULL)) {
SELF_TEST_FAILURE;
}
MemoryCopy2B(&testInput.b, &testOutput.b, sizeof(testInput.t.buffer));
// see if we can decrypt this value and get the original data back
if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,
&testObject, &rsaScheme, testLabel)) {
SELF_TEST_FAILURE;
}
// See if the results compare
if(testOutput.t.size != DEFAULT_TEST_DIGEST_SIZE
|| !MemoryEqual(testOutput.t.buffer, c_RsaTestValue,
DEFAULT_TEST_DIGEST_SIZE)) {
SELF_TEST_FAILURE;
}
// Now check that the decryption works on a known value
MemoryCopy2B(&testInput.b, (P2B)kvtValue,
sizeof(testInput.t.buffer));
if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,
&testObject, &rsaScheme, testLabel)) {
SELF_TEST_FAILURE;
}
if(testOutput.t.size != DEFAULT_TEST_DIGEST_SIZE
|| !MemoryEqual(testOutput.t.buffer, c_RsaTestValue,
DEFAULT_TEST_DIGEST_SIZE)) {
SELF_TEST_FAILURE;
}
}
return result;
}
/* 10.2.1.5.4 TestRsaSignAndVerify() */
/* This function does the testing of the RSA sign and verification functions. This test does a
KVT. */
static TPM_RC
TestRsaSignAndVerify(
TPM_ALG_ID scheme,
ALGORITHM_VECTOR *toTest
)
{
TPM_RC result = TPM_RC_SUCCESS;
OBJECT testObject;
TPM2B_DIGEST testDigest;
TPMT_SIGNATURE testSig;
// Do a sign and signature verification.
// RSASSA:
// This is a signing scheme according to PKCS#1-v2.1 8.2. It does not
// use random data so there is a KVT for the signing operation. On
// first use of the scheme for signing, use the TPM's RSA key to
// sign a portion of c_RsaTestData and compare the results to c_RsassaKvt. Then
// decrypt the data to see that it matches the starting value. This verifies
// the signature with a KVT
// Clear the bits indicating that the function has not been checked. This is to
// prevent looping
CLEAR_BOTH(scheme);
CLEAR_BOTH(ALG_NULL_VALUE);
CLEAR_BOTH(ALG_RSA_VALUE);
RsaKeyInitialize(&testObject);
memcpy(testDigest.t.buffer, (BYTE *)c_RsaTestValue, DEFAULT_TEST_DIGEST_SIZE);
testDigest.t.size = DEFAULT_TEST_DIGEST_SIZE;
testSig.sigAlg = scheme;
testSig.signature.rsapss.hash = DEFAULT_TEST_HASH;
// RSAPSS:
// This is a signing scheme a according to PKCS#1-v2.2 8.1 it uses
// random data in the signature so there is no KVT for the signing
// operation. To test signing, the TPM will use the TPM's RSA key
// to sign a portion of c_RsaTestValue and then it will verify the
// signature. For verification, c_RsapssKvt is verified before the
// user signature blob is verified. The worst case for testing of this
// algorithm is two private and one public key operation.
// The process is to sign known data. If RSASSA is being done, verify that the
// signature matches the precomputed value. For both, use the signed value and
// see that the verification says that it is a good signature. Then
// if testing RSAPSS, do a verify of a known good signature. This ensures that
// the validation function works.
if(TPM_RC_SUCCESS != CryptRsaSign(&testSig, &testObject, &testDigest, NULL)) {
SELF_TEST_FAILURE;
}
// For RSASSA, make sure the results is what we are looking for
if(testSig.sigAlg == ALG_RSASSA_VALUE)
{
if(testSig.signature.rsassa.sig.t.size != RSA_TEST_KEY_SIZE
|| !MemoryEqual(c_RsassaKvt.buffer,
testSig.signature.rsassa.sig.t.buffer,
RSA_TEST_KEY_SIZE)) {
SELF_TEST_FAILURE;
}
}
// See if the TPM will validate its own signatures
if(TPM_RC_SUCCESS != CryptRsaValidateSignature(&testSig, &testObject,
&testDigest)) {
SELF_TEST_FAILURE;
}
// If this is RSAPSS, check the verification with known signature
// Have to copy because CrytpRsaValidateSignature() eats the signature
if(ALG_RSAPSS_VALUE == scheme)
{
MemoryCopy2B(&testSig.signature.rsapss.sig.b, (P2B)&c_RsapssKvt,
sizeof(testSig.signature.rsapss.sig.t.buffer));
if(TPM_RC_SUCCESS != CryptRsaValidateSignature(&testSig, &testObject,
&testDigest)) {
SELF_TEST_FAILURE;
}
}
return result;
}
/* 10.2.1.5.5 TestRSA() */
/* Function uses the provided vector to indicate which tests to run. It will clear the vector after
each test is run and also clear g_toTest */
static TPM_RC
TestRsa(
TPM_ALG_ID alg,
ALGORITHM_VECTOR *toTest
)
{
TPM_RC result = TPM_RC_SUCCESS;
//
switch(alg)
{
case ALG_NULL_VALUE:
// This is the RSAEP/RSADP function. If we are processing a list, don't
// need to test these now because any other test will validate
// RSAEP/RSADP. Can tell this is list of test by checking to see if
// 'toTest' is pointing at g_toTest. If so, this is an isolated test
// an need to go ahead and do the test;
if((toTest == &g_toTest)
|| (!TEST_BIT(ALG_RSASSA_VALUE, *toTest)
&& !TEST_BIT(ALG_RSAES_VALUE, *toTest)
&& !TEST_BIT(ALG_RSAPSS_VALUE, *toTest)
&& !TEST_BIT(ALG_OAEP_VALUE, *toTest)))
// Not running a list of tests or no other tests on the list
// so run the test now
result = TestRsaEncryptDecrypt(alg, toTest);
// if not running the test now, leave the bit on, just in case things
// get interrupted
break;
case ALG_OAEP_VALUE:
case ALG_RSAES_VALUE:
result = TestRsaEncryptDecrypt(alg, toTest);
break;
case ALG_RSAPSS_VALUE:
case ALG_RSASSA_VALUE:
result = TestRsaSignAndVerify(alg, toTest);
break;
default:
SELF_TEST_FAILURE;
}
return result;
}
#endif // TPM_ALG_RSA
/* 10.2.1.6 ECC Tests */
#if ALG_ECC
/* 10.2.1.6.1 LoadEccParameter() */
/* This function is mostly for readability and type checking */
static void
LoadEccParameter(
TPM2B_ECC_PARAMETER *to, // target
const TPM2B_EC_TEST *from // source
)
{
MemoryCopy2B(&to->b, &from->b, sizeof(to->t.buffer));
}
/* 10.2.1.6.2 LoadEccPoint() */
static void
LoadEccPoint(
TPMS_ECC_POINT *point, // target
const TPM2B_EC_TEST *x, // source
const TPM2B_EC_TEST *y
)
{
MemoryCopy2B(&point->x.b, (TPM2B *)x, sizeof(point->x.t.buffer));
MemoryCopy2B(&point->y.b, (TPM2B *)y, sizeof(point->y.t.buffer));
}
/* 10.2.1.6.3 TestECDH() */
/* This test does a KVT on a point multiply. */
static TPM_RC
TestECDH(
TPM_ALG_ID scheme, // IN: for consistency
ALGORITHM_VECTOR *toTest // IN/OUT: modified after test is run
)
{
TPMS_ECC_POINT Z;
TPMS_ECC_POINT Qe;
TPM2B_ECC_PARAMETER ds;
TPM_RC result = TPM_RC_SUCCESS;
//
NOT_REFERENCED(scheme);
CLEAR_BOTH(ALG_ECDH_VALUE);
LoadEccParameter(&ds, &c_ecTestKey_ds);
LoadEccPoint(&Qe, &c_ecTestKey_QeX, &c_ecTestKey_QeY);
if(TPM_RC_SUCCESS != CryptEccPointMultiply(&Z, c_testCurve, &Qe, &ds,
NULL, NULL)) {
SELF_TEST_FAILURE;
}
if(!MemoryEqual2B(&c_ecTestEcdh_X.b, &Z.x.b)
|| !MemoryEqual2B(&c_ecTestEcdh_Y.b, &Z.y.b)) {
SELF_TEST_FAILURE;
}
return result;
}
/* 10.2.1.6.4 TestEccSignAndVerify() */
static TPM_RC
TestEccSignAndVerify(
TPM_ALG_ID scheme,
ALGORITHM_VECTOR *toTest
)
{
OBJECT testObject;
TPMT_SIGNATURE testSig;
TPMT_ECC_SCHEME eccScheme;
testSig.sigAlg = scheme;
testSig.signature.ecdsa.hash = DEFAULT_TEST_HASH;
eccScheme.scheme = scheme;
eccScheme.details.anySig.hashAlg = DEFAULT_TEST_HASH;
CLEAR_BOTH(scheme);
CLEAR_BOTH(ALG_ECDH_VALUE);
// ECC signature verification testing uses a KVT.
switch(scheme)
{
case ALG_ECDSA_VALUE:
LoadEccParameter(&testSig.signature.ecdsa.signatureR, &c_TestEcDsa_r);
LoadEccParameter(&testSig.signature.ecdsa.signatureS, &c_TestEcDsa_s);
break;
case ALG_ECSCHNORR_VALUE:
LoadEccParameter(&testSig.signature.ecschnorr.signatureR,
&c_TestEcSchnorr_r);
LoadEccParameter(&testSig.signature.ecschnorr.signatureS,
&c_TestEcSchnorr_s);
break;
case ALG_SM2_VALUE:
// don't have a test for SM2
return TPM_RC_SUCCESS;
default:
SELF_TEST_FAILURE;
break;
}
TEST_DEFAULT_TEST_HASH(toTest);
// Have to copy the key. This is because the size used in the test vectors
// is the size of the ECC parameter for the test key while the size of a point
// is TPM dependent
MemoryCopy2B(&testObject.sensitive.sensitive.ecc.b, &c_ecTestKey_ds.b,
sizeof(testObject.sensitive.sensitive.ecc.t.buffer));
LoadEccPoint(&testObject.publicArea.unique.ecc, &c_ecTestKey_QsX,
&c_ecTestKey_QsY);
testObject.publicArea.parameters.eccDetail.curveID = c_testCurve;
if(TPM_RC_SUCCESS != CryptEccValidateSignature(&testSig, &testObject,
(TPM2B_DIGEST *)&c_ecTestValue.b))
{
SELF_TEST_FAILURE;
}
CHECK_CANCELED;
// Now sign and verify some data
if(TPM_RC_SUCCESS != CryptEccSign(&testSig, &testObject,
(TPM2B_DIGEST *)&c_ecTestValue,
&eccScheme, NULL)) {
SELF_TEST_FAILURE;
}
CHECK_CANCELED;
if(TPM_RC_SUCCESS != CryptEccValidateSignature(&testSig, &testObject,
(TPM2B_DIGEST *)&c_ecTestValue)) {
SELF_TEST_FAILURE;
}
CHECK_CANCELED;
return TPM_RC_SUCCESS;
}
/* 10.2.1.6.5 TestKDFa() */
static TPM_RC
TestKDFa(
ALGORITHM_VECTOR *toTest
)
{
static TPM2B_KDF_TEST_KEY keyOut;
UINT32 counter = 0;
//
CLEAR_BOTH(ALG_KDF1_SP800_108_VALUE);
keyOut.t.size = CryptKDFa(KDF_TEST_ALG, &c_kdfTestKeyIn.b, &c_kdfTestLabel.b,
&c_kdfTestContextU.b, &c_kdfTestContextV.b,
TEST_KDF_KEY_SIZE * 8, keyOut.t.buffer,
&counter, FALSE);
if ( keyOut.t.size != TEST_KDF_KEY_SIZE
|| !MemoryEqual(keyOut.t.buffer, c_kdfTestKeyOut.t.buffer,
TEST_KDF_KEY_SIZE))
SELF_TEST_FAILURE;
return TPM_RC_SUCCESS;
}
/* 10.2.1.6.6 TestEcc() */
static TPM_RC
TestEcc(
TPM_ALG_ID alg,
ALGORITHM_VECTOR *toTest
)
{
TPM_RC result = TPM_RC_SUCCESS;
NOT_REFERENCED(toTest);
switch(alg)
{
case ALG_ECC_VALUE:
case ALG_ECDH_VALUE:
// If this is in a loop then see if another test is going to deal with
// this.
// If toTest is not a self-test list
if((toTest == &g_toTest)
// or this is the only ECC test in the list
|| !(TEST_BIT(ALG_ECDSA_VALUE, *toTest)
|| TEST_BIT(ALG_ECSCHNORR, *toTest)
|| TEST_BIT(ALG_SM2_VALUE, *toTest)))
{
result = TestECDH(alg, toTest);
}
break;
case ALG_ECDSA_VALUE:
case ALG_ECSCHNORR_VALUE:
case ALG_SM2_VALUE:
result = TestEccSignAndVerify(alg, toTest);
break;
default:
SELF_TEST_FAILURE;
break;
}
return result;
}
#endif // TPM_ALG_ECC
/* 10.2.1.6.4 TestAlgorithm() */
/* Dispatches to the correct test function for the algorithm or gets a list of testable
algorithms. */
/* If toTest is not NULL, then the test decisions are based on the algorithm selections in
toTest. Otherwise, g_toTest is used. When bits are clear in g_toTest they will also be cleared
toTest. */
/* If there doesn't happen to be a test for the algorithm, its associated bit is quietly cleared. */
/* If alg is zero (TPM_ALG_ERROR), then the toTest vector is cleared of any bits for which there is
no test (i.e. no tests are actually run but the vector is cleared). */
/* NOTE: toTest will only ever have bits set for implemented algorithms but alg can be anything. */
/* Error Returns Meaning */
/* TPM_RC_CANCELED test was canceled */
LIB_EXPORT
TPM_RC
TestAlgorithm(
TPM_ALG_ID alg,
ALGORITHM_VECTOR *toTest
)
{
TPM_ALG_ID first = (alg == ALG_ERROR_VALUE) ? ALG_FIRST_VALUE : alg;
TPM_ALG_ID last = (alg == ALG_ERROR_VALUE) ? ALG_LAST_VALUE : alg;
BOOL doTest = (alg != ALG_ERROR_VALUE);
TPM_RC result = TPM_RC_SUCCESS;
if(toTest == NULL)
toTest = &g_toTest;
// This is kind of strange. This function will either run a test of the selected
// algorithm or just clear a bit if there is no test for the algorithm. So,
// either this loop will be executed once for the selected algorithm or once for
// each of the possible algorithms. If it is executed more than once ('alg' ==
// TPM_ALG_ERROR), then no test will be run but bits will be cleared for
// unimplemented algorithms. This was done this way so that there is only one
// case statement with all of the algorithms. It was easier to have one case
// statement than to have multiple ones to manage whenever an algorithm ID is
// added.
for(alg = first; (alg <= last); alg++)
{
// if 'alg' was TPM_ALG_ERROR, then we will be cycling through
// values, some of which may not be implemented. If the bit in toTest
// happens to be set, then we could either generated an assert, or just
// silently CLEAR it. Decided to just clear.
if(!TEST_BIT(alg, g_implementedAlgorithms))
{
CLEAR_BIT(alg, *toTest);
continue;
}
// Process whatever is left.
// NOTE: since this switch will only be called if the algorithm is
// implemented, it is not necessary to modify this list except to comment
// out the algorithms for which there is no test
switch(alg)
{
// Symmetric block ciphers
#if ALG_AES
case ALG_AES_VALUE:
#endif
#if ALG_SM4
// if SM4 is implemented, its test is like other block ciphers but there
// aren't any test vectors for it yet
// case ALG_SM4_VALUE:
#endif
#if ALG_CAMELLIA
// no test vectors for camellia
// case ALG_CAMELLIA_VALUE:
#endif
#if ALG_TDES
case ALG_TDES_VALUE:
#endif
// Symmetric modes
#if !ALG_CFB
# error CFB is required in all TPM implementations
#endif // !TPM_ALG_CFB
case ALG_CFB_VALUE:
if(doTest)
result = TestSymmetric(alg, toTest);
break;
#if ALG_CTR
case ALG_CTR_VALUE:
#endif // TPM_ALG_CRT
#if ALG_OFB
case ALG_OFB_VALUE:
#endif // TPM_ALG_OFB
#if ALG_CBC
case ALG_CBC_VALUE:
#endif // TPM_ALG_CBC
#if ALG_ECB
case ALG_ECB_VALUE:
#endif
if(doTest)
result = TestSymmetric(alg, toTest);
else
// If doing the initialization of g_toTest vector, only need
// to test one of the modes for the symmetric algorithms. If
// initializing for a SelfTest(FULL_TEST), allow all the modes.
if(toTest == &g_toTest)
CLEAR_BIT(alg, *toTest);
break;
#if !ALG_HMAC
# error HMAC is required in all TPM implementations
#endif
case ALG_HMAC_VALUE:
// Clear the bit that indicates that HMAC is required because
// HMAC is used as the basic test for all hash algorithms.
CLEAR_BOTH(alg);
// Testing HMAC means test the default hash
if(doTest)
TestHash(DEFAULT_TEST_HASH, toTest);
else
// If not testing, then indicate that the hash needs to be
// tested because this uses HMAC
SET_BOTH(DEFAULT_TEST_HASH);
break;
#if ALG_SHA1
case ALG_SHA1_VALUE:
#endif // TPM_ALG_SHA1
#if ALG_SHA256
case ALG_SHA256_VALUE:
#endif // TPM_ALG_SHA256
#if ALG_SHA384
case ALG_SHA384_VALUE:
#endif // TPM_ALG_SHA384
#if ALG_SHA512
case ALG_SHA512_VALUE:
#endif // TPM_ALG_SHA512
// if SM3 is implemented its test is like any other hash, but there
// aren't any test vectors yet.
#if ALG_SM3_256
// case ALG_SM3_256_VALUE:
#endif // TPM_ALG_SM3_256
if(doTest)
result = TestHash(alg, toTest);
break;
// RSA-dependent
#if ALG_RSA
case ALG_RSA_VALUE:
CLEAR_BOTH(alg);
if(doTest)
result = TestRsa(ALG_NULL_VALUE, toTest);
else
SET_BOTH(ALG_NULL_VALUE);
break;
case ALG_RSASSA_VALUE:
case ALG_RSAES_VALUE:
case ALG_RSAPSS_VALUE:
case ALG_OAEP_VALUE:
case ALG_NULL_VALUE: // used or RSADP
if(doTest)
result = TestRsa(alg, toTest);
break;
#endif // ALG_RSA_VALUE
#if ALG_KDF1_SP800_108
case ALG_KDF1_SP800_108_VALUE:
if(doTest)
result = TestKDFa(toTest);
break;
#endif // ALG_KDF1_SP800_108_VALUE
#if ALG_ECC
// ECC dependent but no tests
// case ALG_ECDAA_VALUE:
// case ALG_ECMQV_VALUE:
// case ALG_KDF1_SP800_56a_VALUE:
// case ALG_KDF2_VALUE:
// case ALG_MGF1_VALUE:
case ALG_ECC_VALUE:
CLEAR_BOTH(alg);
if(doTest)
result = TestEcc(ALG_ECDH_VALUE, toTest);
else
SET_BOTH(ALG_ECDH_VALUE);
break;
case ALG_ECDSA_VALUE:
case ALG_ECDH_VALUE:
case ALG_ECSCHNORR_VALUE:
// case ALG_SM2_VALUE:
if(doTest)
result = TestEcc(alg, toTest);
break;
#endif // ALG_ECC_VALUE
default:
CLEAR_BIT(alg, *toTest);
break;
}
if(result != TPM_RC_SUCCESS)
break;
}
return result;
}
#endif // SELF_TESTS