libtpms/src/tpm2/crypto/openssl/CryptSym.c
Stefan Berger 380b232ec9 rev150: Code comment changes only
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
2019-01-03 13:15:44 -05:00

480 lines
16 KiB
C

/********************************************************************************/
/* */
/* Symmetric block cipher modes */
/* Written by Ken Goldman */
/* IBM Thomas J. Watson Research Center */
/* $Id: CryptSym.c 1370 2018-11-02 19:39:07Z kgoldman $ */
/* */
/* Licenses and Notices */
/* */
/* 1. Copyright Licenses: */
/* */
/* - Trusted Computing Group (TCG) grants to the user of the source code in */
/* this specification (the "Source Code") a worldwide, irrevocable, */
/* nonexclusive, royalty free, copyright license to reproduce, create */
/* derivative works, distribute, display and perform the Source Code and */
/* derivative works thereof, and to grant others the rights granted herein. */
/* */
/* - The TCG grants to the user of the other parts of the specification */
/* (other than the Source Code) the rights to reproduce, distribute, */
/* display, and perform the specification solely for the purpose of */
/* developing products based on such documents. */
/* */
/* 2. Source Code Distribution Conditions: */
/* */
/* - Redistributions of Source Code must retain the above copyright licenses, */
/* this list of conditions and the following disclaimers. */
/* */
/* - Redistributions in binary form must reproduce the above copyright */
/* licenses, this list of conditions and the following disclaimers in the */
/* documentation and/or other materials provided with the distribution. */
/* */
/* 3. Disclaimers: */
/* */
/* - THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF */
/* LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH */
/* RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) */
/* THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. */
/* Contact TCG Administration (admin@trustedcomputinggroup.org) for */
/* information on specification licensing rights available through TCG */
/* membership agreements. */
/* */
/* - THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED */
/* WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR */
/* FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR */
/* NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY */
/* OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. */
/* */
/* - Without limitation, TCG and its members and licensors disclaim all */
/* liability, including liability for infringement of any proprietary */
/* rights, relating to use of information in this specification and to the */
/* implementation of this specification, and TCG disclaims all liability for */
/* cost of procurement of substitute goods or services, lost profits, loss */
/* of use, loss of data or any incidental, consequential, direct, indirect, */
/* or special damages, whether under contract, tort, warranty or otherwise, */
/* arising in any way out of use or reliance upon this specification or any */
/* information herein. */
/* */
/* (c) Copyright IBM Corp. and others, 2016 - 2018 */
/* */
/********************************************************************************/
/* 10.2.19 CryptSym.c */
/* 10.2.19.1 Introduction */
/* This file contains the implementation of the symmetric block cipher modes allowed for a
TPM. These functions only use the single block encryption functions of the selected symmetric
crypto library. */
/* 10.2.19.2 Includes, Defines, and Typedefs */
#include "Tpm.h"
#include "CryptSym.h"
/* 10.2.19.3.1 CryptSymInit() */
/* This function is called to do _TPM_Init() processing */
BOOL
CryptSymInit(
void
)
{
return TRUE;
}
/* 10.2.19.3.2 CryptSymStartup() */
/* This function is called to do TPM2_Startup() processing */
BOOL
CryptSymStartup(
void
)
{
return TRUE;
}
/* 10.2.20.4 Data Access Functions */
/* 10.2.20.4.1 CryptGetSymmetricBlockSize() */
/* This function returns the block size of the algorithm. */
/* Return Values Meaning */
/* <= 0 cipher not supported */
/* > 0 the cipher block size in bytes */
LIB_EXPORT INT16
CryptGetSymmetricBlockSize(
TPM_ALG_ID symmetricAlg, // IN: the symmetric algorithm
UINT16 keySizeInBits // IN: the key size
)
{
switch(symmetricAlg)
{
#if ALG_AES
case ALG_AES_VALUE:
switch(keySizeInBits)
{
case 128:
return AES_128_BLOCK_SIZE_BYTES;
case 192:
return AES_192_BLOCK_SIZE_BYTES;
case 256:
return AES_256_BLOCK_SIZE_BYTES;
default:
break;
}
break;
#endif
#if ALG_SM4
case ALG_SM4_VALUE:
switch(keySizeInBits)
{
case 128:
return SM4_128_BLOCK_SIZE_BYTES;
default:
break;
}
#endif
#if ALG_CAMELLIA
case ALG_CAMELLIA_VALUE:
switch(keySizeInBits)
{
case 128:
return CAMELLIA_128_BLOCK_SIZE_BYTES;
case 192:
return CAMELLIA_192_BLOCK_SIZE_BYTES;
case 256:
return CAMELLIA_256_BLOCK_SIZE_BYTES;
default:
break;
}
#endif
#if ALG_TDES
case ALG_TDES_VALUE:
switch(keySizeInBits)
{
case 128:
return TDES_128_BLOCK_SIZE_BYTES;
case 192:
return TDES_192_BLOCK_SIZE_BYTES;
default:
break;
}
#endif
default:
break;
}
return 0;
}
/* 10.2.20.5 Symmetric Encryption */
/* This function performs symmetric encryption based on the mode. */
/* Error Returns Meaning */
/* TPM_RC_SIZE dSize is not a multiple of the block size for an algorithm that requires it */
/* TPM_RC_FAILURE Fatal error */
LIB_EXPORT TPM_RC
CryptSymmetricEncrypt(
BYTE *dOut, // OUT:
TPM_ALG_ID algorithm, // IN: the symmetric algorithm
UINT16 keySizeInBits, // IN: key size in bits
const BYTE *key, // IN: key buffer. The size of this buffer
// in bytes is (keySizeInBits + 7) / 8
TPM2B_IV *ivInOut, // IN/OUT: IV for decryption.
TPM_ALG_ID mode, // IN: Mode to use
INT32 dSize, // IN: data size (may need to be a
// multiple of the blockSize)
const BYTE *dIn // IN: data buffer
)
{
BYTE *pIv;
int i;
BYTE tmp[MAX_SYM_BLOCK_SIZE];
BYTE *pT;
tpmCryptKeySchedule_t keySchedule;
INT16 blockSize;
TpmCryptSetSymKeyCall_t encrypt;
BYTE *iv;
BYTE defaultIv[MAX_SYM_BLOCK_SIZE] = {0};
//
pAssert(dOut != NULL && key != NULL && dIn != NULL);
if(dSize == 0)
return TPM_RC_SUCCESS;
TEST(algorithm);
blockSize = CryptGetSymmetricBlockSize(algorithm, keySizeInBits);
if(blockSize == 0)
return TPM_RC_FAILURE;
// If the iv is provided, then it is expected to be block sized. In some cases,
// the caller is providing an array of 0's that is equal to [MAX_SYM_BLOCK_SIZE]
// with no knowledge of the actual block size. This function will set it.
if((ivInOut != NULL) && (mode != ALG_ECB_VALUE))
{
ivInOut->t.size = blockSize;
iv = ivInOut->t.buffer;
}
else
iv = defaultIv;
pIv = iv;
// Create encrypt key schedule and set the encryption function pointer.
SELECT(ENCRYPT);
switch(mode)
{
#if ALG_CTR
case ALG_CTR_VALUE:
for(; dSize > 0; dSize -= blockSize)
{
// Encrypt the current value of the IV(counter)
ENCRYPT(&keySchedule, iv, tmp);
//increment the counter (counter is big-endian so start at end)
for(i = blockSize - 1; i >= 0; i--)
if((iv[i] += 1) != 0)
break;
// XOR the encrypted counter value with input and put into output
pT = tmp;
for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)
*dOut++ = *dIn++ ^ *pT++;
}
break;
#endif
#if ALG_OFB
case ALG_OFB_VALUE:
// This is written so that dIn and dOut may be the same
for(; dSize > 0; dSize -= blockSize)
{
// Encrypt the current value of the "IV"
ENCRYPT(&keySchedule, iv, iv);
// XOR the encrypted IV into dIn to create the cipher text (dOut)
pIv = iv;
for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)
*dOut++ = (*pIv++ ^ *dIn++);
}
break;
#endif
#if ALG_CBC
case ALG_CBC_VALUE:
// For CBC the data size must be an even multiple of the
// cipher block size
if((dSize % blockSize) != 0)
return TPM_RC_SIZE;
// XOR the data block into the IV, encrypt the IV into the IV
// and then copy the IV to the output
for(; dSize > 0; dSize -= blockSize)
{
pIv = iv;
for(i = blockSize; i > 0; i--)
*pIv++ ^= *dIn++;
ENCRYPT(&keySchedule, iv, iv);
pIv = iv;
for(i = blockSize; i > 0; i--)
*dOut++ = *pIv++;
}
break;
#endif
// CFB is not optional
case ALG_CFB_VALUE:
// Encrypt the IV into the IV, XOR in the data, and copy to output
for(; dSize > 0; dSize -= blockSize)
{
// Encrypt the current value of the IV
ENCRYPT(&keySchedule, iv, iv);
pIv = iv;
for(i = (int)(dSize < blockSize) ? dSize : blockSize; i > 0; i--)
// XOR the data into the IV to create the cipher text
// and put into the output
*dOut++ = *pIv++ ^= *dIn++;
}
// If the inner loop (i loop) was smaller than blockSize, then dSize
// would have been smaller than blockSize and it is now negative. If
// it is negative, then it indicates how many bytes are needed to pad
// out the IV for the next round.
for(; dSize < 0; dSize++)
*pIv++ = 0;
break;
#if ALG_ECB
case ALG_ECB_VALUE:
// For ECB the data size must be an even multiple of the
// cipher block size
if((dSize % blockSize) != 0)
return TPM_RC_SIZE;
// Encrypt the input block to the output block
for(; dSize > 0; dSize -= blockSize)
{
ENCRYPT(&keySchedule, dIn, dOut);
dIn = &dIn[blockSize];
dOut = &dOut[blockSize];
}
break;
#endif
default:
return TPM_RC_FAILURE;
}
return TPM_RC_SUCCESS;
}
/* 10.2.20.5.1 CryptSymmetricDecrypt() */
/* This function performs symmetric decryption based on the mode. */
/* Error Returns Meaning */
/* TPM_RC_FAILURE A fatal error */
/* TPM_RCS_SIZE dSize is not a multiple of the block size for an algorithm that requires it */
LIB_EXPORT TPM_RC
CryptSymmetricDecrypt(
BYTE *dOut, // OUT: decrypted data
TPM_ALG_ID algorithm, // IN: the symmetric algorithm
UINT16 keySizeInBits, // IN: key size in bits
const BYTE *key, // IN: key buffer. The size of this buffer
// in bytes is (keySizeInBits + 7) / 8
TPM2B_IV *ivInOut, // IN/OUT: IV for decryption.
TPM_ALG_ID mode, // IN: Mode to use
INT32 dSize, // IN: data size (may need to be a
// multiple of the blockSize)
const BYTE *dIn // IN: data buffer
)
{
BYTE *pIv;
int i;
BYTE tmp[MAX_SYM_BLOCK_SIZE];
BYTE *pT;
tpmCryptKeySchedule_t keySchedule;
INT16 blockSize;
BYTE *iv;
TpmCryptSetSymKeyCall_t encrypt;
TpmCryptSetSymKeyCall_t decrypt;
BYTE defaultIv[MAX_SYM_BLOCK_SIZE] = {0};
// These are used but the compiler can't tell because they are initialized
// in case statements and it can't tell if they are always initialized
// when needed, so... Comment these out if the compiler can tell or doesn't
// care that these are initialized before use.
encrypt = NULL;
decrypt = NULL;
pAssert(dOut != NULL && key != NULL && dIn != NULL);
if(dSize == 0)
return TPM_RC_SUCCESS;
TEST(algorithm);
blockSize = CryptGetSymmetricBlockSize(algorithm, keySizeInBits);
if(blockSize == 0)
return TPM_RC_FAILURE;
// If the iv is provided, then it is expected to be block sized. In some cases,
// the caller is providing an array of 0's that is equal to [MAX_SYM_BLOCK_SIZE]
// with no knowledge of the actual block size. This function will set it.
if((ivInOut != NULL) && (mode != ALG_ECB_VALUE))
{
ivInOut->t.size = blockSize;
iv = ivInOut->t.buffer;
}
else
iv = defaultIv;
pIv = iv;
// Use the mode to select the key schedule to create. Encrypt always uses the
// encryption schedule. Depending on the mode, decryption might use either
// the decryption or encryption schedule.
switch(mode)
{
#if ALG_CBC || ALG_ECB
case ALG_CBC_VALUE: // decrypt = decrypt
case ALG_ECB_VALUE:
// For ECB and CBC, the data size must be an even multiple of the
// cipher block size
if((dSize % blockSize) != 0)
return TPM_RC_SIZE;
SELECT(DECRYPT);
break;
#endif
default:
// For the remaining stream ciphers, use encryption to decrypt
SELECT(ENCRYPT);
break;
}
// Now do the mode-dependent decryption
switch(mode)
{
#if ALG_CBC
case ALG_CBC_VALUE:
// Copy the input data to a temp buffer, decrypt the buffer into the
// output, XOR in the IV, and copy the temp buffer to the IV and repeat.
for(; dSize > 0; dSize -= blockSize)
{
pT = tmp;
for(i = blockSize; i > 0; i--)
*pT++ = *dIn++;
DECRYPT(&keySchedule, tmp, dOut);
pIv = iv;
pT = tmp;
for(i = blockSize; i > 0; i--)
{
*dOut++ ^= *pIv;
*pIv++ = *pT++;
}
}
break;
#endif
case TPM_ALG_CFB:
for(; dSize > 0; dSize -= blockSize)
{
// Encrypt the IV into the temp buffer
ENCRYPT(&keySchedule, iv, tmp);
pT = tmp;
pIv = iv;
for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)
// Copy the current cipher text to IV, XOR
// with the temp buffer and put into the output
*dOut++ = *pT++ ^ (*pIv++ = *dIn++);
}
// If the inner loop (i loop) was smaller than blockSize, then dSize
// would have been smaller than blockSize and it is now negative
// If it is negative, then it indicates how may fill bytes
// are needed to pad out the IV for the next round.
for(; dSize < 0; dSize++)
*pIv++ = 0;
break;
#if ALG_CTR
case ALG_CTR_VALUE:
for(; dSize > 0; dSize -= blockSize)
{
// Encrypt the current value of the IV(counter)
ENCRYPT(&keySchedule, iv, tmp);
//increment the counter (counter is big-endian so start at end)
for(i = blockSize - 1; i >= 0; i--)
if((iv[i] += 1) != 0)
break;
// XOR the encrypted counter value with input and put into output
pT = tmp;
for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)
*dOut++ = *dIn++ ^ *pT++;
}
break;
#endif
#if ALG_ECB
case ALG_ECB_VALUE:
for(; dSize > 0; dSize -= blockSize)
{
DECRYPT(&keySchedule, dIn, dOut);
dIn = &dIn[blockSize];
dOut = &dOut[blockSize];
}
break;
#endif
#if ALG_OFB
case TPM_ALG_OFB:
// This is written so that dIn and dOut may be the same
for(; dSize > 0; dSize -= blockSize)
{
// Encrypt the current value of the "IV"
ENCRYPT(&keySchedule, iv, iv);
// XOR the encrypted IV into dIn to create the cipher text (dOut)
pIv = iv;
for(i = (dSize < blockSize) ? dSize : blockSize; i > 0; i--)
*dOut++ = (*pIv++ ^ *dIn++);
}
break;
#endif
default:
return TPM_RC_FAILURE;
}
return TPM_RC_SUCCESS;
}
/* 10.2.20.5.2 CryptSymKeyValidate() */
/* Validate that a provided symmetric key meets the requirements of the TPM */
/* Error Returns Meaning */
/* TPM_RC_KEY_SIZE Key size specifiers do not match */
/* TPM_RC_KEY Key is not allowed */
TPM_RC
CryptSymKeyValidate(
TPMT_SYM_DEF_OBJECT *symDef,
TPM2B_SYM_KEY *key
)
{
if(key->t.size != BITS_TO_BYTES(symDef->keyBits.sym))
return TPM_RCS_KEY_SIZE;
#if ALG_TDES
if(symDef->algorithm == TPM_ALG_TDES && !CryptDesValidateKey(key))
return TPM_RCS_KEY;
#endif // TPM_ALG_TDES
return TPM_RC_SUCCESS;
}