A split-lock violation in OVMF was discovered due to the
NumApsExecuting field of the MP_CPU_EXCHANGE_INFO
struct (which is used atomically by the AP Reset Vector
assembly code) crossing a cacheline boundary.
Since the MP_CPU_EXCHANGE_INFO struct is unaligned and
the NumApsExecuting field resides after other non-UINTN aligned
fields in the struct (i.e. GdtrProfile/IdtrProfile), the
NumApsExecuting field was allocated at a non-UINTN aligned
address (crossing a cache-line) resulting in the split-lock
violation.
Therefore, align the MP_CPU_EXCHANGE_INFO struct (on a UINTN
boundary) and move the NumApsExecuting field to before the
GdtrProfile/IdtrProfile fields to ensure it is UINTN aligned and
thus resides within a single cacheline avoiding the split-lock.
Do the same for the ApIndex field as it is also used atomically
and thus subject to a split-lock violation.
Cc: Ray Ni <ray.ni@intel.com>
Cc: Jiaxin Wu <jiaxin.wu@intel.com>
Cc: Zhiguang Liu <zhiguang.liu@intel.com>
Cc: Dun Tan <dun.tan@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Star Zeng <star.zeng@intel.com>
Signed-off-by: Aaron Young <aaron.young@oracle.com>
A typical initial AP boot up will choose a CpuNumber based on the ApIndex
value that it gets back after a locked increment of the ApIndex value.
The ApIndex to APIC ID relationship is random, which is not an issue when
a broadcast INIT-SIPI is performed.
With SNP and a hypervisor that supports retrieval of the known APIC IDs,
the broadcast INIT-SIPI method is replaced by waking each individual vCPU.
In this situation, a specific VMSA is associated with a specific APIC ID.
However, random assignment of an ApIndex can break this association. This
isn't typically an issue, because the AP bring-up finishes with the AP
issuing a HLT instruction, which is intercepted by the hypervisor and the
AP won't run again until the next INIT-SIPI. However, when HLT isn't
intercepted by the hypervisor (Qemu '-overcommit cpu-pm=on' parameter),
then the HLT does not exit to the hypervisor. On the next INIT-SIPI, it
can happen that a VMRUN is executed with a different VMSA address than
was originally used, and if that VMSA is still in a VMRUN on another AP,
then the executing VMRUN will fail, crashing the guest.
To fix this issue, add a CPU exchange info field, SevSnpKnownInitApicId,
that indicates the APs are starting with an already known initial APIC ID
and set the initial APIC ID and APIC ID in the CPU_INFO_IN_HOB HOB.
During AP boot, the SevSnpKnownInitApicId field will result in the
CpuNumber being set to the index with a matching APIC ID (similar to AP
booting when the InitFlag != ApInitConfig).
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
No functional changes in this patch.
Updates the comments of _CPU_MP_DATA to delcared that duplications in
CpuMpData are present to avoid to be direct accessed and comprehended
in assembly code. CpuMpData: Intended for use in C code while
ExchangeInfo are used in assembly code in this module.
This patch deletes the unnecessary comments in CpuMpData, since
CpuMpData is no longer responsible for passing information from PEI to
DXE.
Signed-off-by: Yuanhao Xie <yuanhao.xie@intel.com>
Cc: Laszlo Ersek lersek@redhat.com
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Rename AsmRelocateApLoopStart to AsmRelocateApLoopStartAmdSev
Cc: Guo Dong <guo.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Sean Rhodes <sean@starlabs.systems>
Cc: James Lu <james.lu@intel.com>
Cc: Gua Guo <gua.guo@intel.com>
Signed-off-by: Yuanhao Xie <yuanhao.xie@intel.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Tested-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Add the 'AsmRelocateApLoopStartGeneric' for X64 processors except 64-bit
AMD processors with SEV-ES.
Remove the unused arguments of AsmRelocateApLoopStartGeneric, updated
the stack offset.
Create PageTable for the allocated reserved memory.
Only keep 4GB limitation of memory allocation for the case APs still
need to be transferred to 32-bit mode before OS.
Cc: Guo Dong <guo.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Sean Rhodes <sean@starlabs.systems>
Cc: James Lu <james.lu@intel.com>
Cc: Gua Guo <gua.guo@intel.com>
Signed-off-by: Yuanhao Xie <yuanhao.xie@intel.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Tested-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
AsmRelocateApLoop is replicated for future Intel Logic Extraction,
further brings AP into 64-bit, and enables paging.
Signed-off-by: Yuanhao Xie <yuanhao.xie@intel.com>
Reviewed-by: Ray Ni <ray.ni@intel.com>
Today's implementation allocates below 1MB memory for the 16bit, 32bit
and 64bit code.
But it's not necessary since now the 32bit and 64bit code run at high
memory no matter in PEI and DXE phase.
The patch simplifies the logic to remove the code that handles the
case when WakeupBufferHigh is 0.
It also reduce the memory foot print under 1MB by allocating
memory for 16bit code only.
MP_CPU_EXCHANGE_INFO is still under 1MB which is immediate
after the 16bit code.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
The patch does several simplifications:
1. Treat SwitchToRealProc as part of RendezvousFunnelProc.
So the common logic in MpLib.c doesn't need to be aware of
SwitchToRealProc.
As a result, SwitchToRealSize/Offset are removed from
MP_ASSEMBLY_ADDRESS_MAP.
2. Move SwitchToRealProc to AmdSev.nasm.
All other assembly code in AmdSev.nasm is called through
OneTimeCall.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
During AP bringup, just after switching to long mode, APs will do some
cpuid calls to verify that the extended topology leaf (0xB) is available
so they can fetch their x2 APIC IDs from it. In the case of SEV-ES,
these cpuid instructions must be handled by direct use of the GHCB MSR
protocol to fetch the values from the hypervisor, since a #VC handler
is not yet available due to the AP's stack not being set up yet.
For SEV-SNP, rather than relying on the GHCB MSR protocol, it is
expected that these values would be obtained from the SEV-SNP CPUID
table instead. The actual x2 APIC ID (and 8-bit APIC IDs) would still
be fetched from hypervisor using the GHCB MSR protocol however, so
introducing support for the SEV-SNP CPUID table in that part of the AP
bring-up code would only be to handle the checks/validation of the
extended topology leaf.
Rather than introducing all the added complexity needed to handle these
checks via the CPUID table, instead let the BSP do the check in advance,
since it can make use of the #VC handler to avoid the need to scan the
SNP CPUID table directly, and add a flag in ExchangeInfo to communicate
the result of this check to APs.
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Ray Ni <ray.ni@intel.com>
Suggested-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
An SEV-SNP guest requires that the physical address of the GHCB must
be registered with the hypervisor before using it. See the GHCB
specification section 2.3.2 for more details.
Cc: Michael Roth <michael.roth@amd.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Ray Ni <ray.ni@Intel.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
The Lock is no longer needed since "LOCK XADD" was used in
MpFuncs.nasm for ApIndex atomic increment.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>
In Windows environment, "dumpbin /disasm" is used to verify the
disassembly before and after using NASM struc doesn't change.
Signed-off-by: Ray Ni <ray.ni@intel.com>
Reviewed-by: Eric Dong <eric.dong@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Cc: Rahul Kumar <rahul1.kumar@intel.com>